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ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES
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Doctor of Philosophy

ON THE PROSPECT OF RESONANCE ENERGY TRANSFER FOR HYBRID
OPTOELECTRONICS

by Jan Junis Rindermann

This work focusses on resonance energy transfer from excitons in QWs to absorptive
media in the form of organic polymers or colloidal QDs. In view of the use of the latter as
colour converters in LEDs it is demonstrated that the combination of the green-emitting
polymer F8BT with blue-emitting InGaN/GaN QWs in a modified, commercially used
LED wafer enables efficient energy transfer and achieves the desired emission of white
light from the composite device. However, commercialisation of the scheme is prevented
by the drastically degraded device performance. A detailed study of a GaN/AlGaN
QW covered with F8BT reveals that the energy transfer dynamics in this material
are dominated by point-like localised exciton states at temperatures up to 50 K and
energetically higher lying free exciton states at room temperature. A model is presented
to quantitatively explain the observation of the peak energy transfer efficiency at 43 K
where localised and free excitons contribute equally to the thermalised exciton ensemble.
The non-monotonous temperature dependence is directly related to the non-monotonous
dependence of the energy transfer rate on the exciton wave vector which allows for
some optimisation of the mechanism by creating increased populations of excitons with
suitable wave vectors. These excitons achieve efficient energy transfer with capping
layers that are tenfold thicker than the 4 nm thin capping layer studied here. This
could be implemented by adjustment of the material purity or the density of states for
specific wave vectors by the use of an imprinted grating. In an attempt to study the
wave vector dependence explicitly transient grating spectroscopy is performed on a GaAs
QW covered with an absorptive layer of PbS QDs. An effect of energy transfer on the
diffracted signal is not observed because of the nearly instantaneous thermalisation of
the exciton ensemble. Finally, energy transfer is simulated in the reverse configuration,
i.e. from PbS QDs to a slab of bulk silicon separated by a spacer layer of variable
thickness. In agreement with recent experimental results on this material combination,
energy transfer breakes down for spacer layers as thin as 10 nm. Thus, the energy

transfer scheme is neither viable for LEDs nor sensitised silicon solar cells.
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Chapter

Introduction

1.1 Motivation

Over the last 250 years human activities have resulted in an ever increasing emission
of green house gases into the earth’s atmosphere where they cause substantial global
warming. This is one of the conclusions from the Fourth Assessment Report of the In-
ternational Panel on Climate Change (IPCC) from 2007 [3-6]. Two figures are presented
therein to quantify this effect in terms of the increased heat uptake by the earth: the
first, shown in Fig. 1.1(a), shows the sudden increase of the concentration of the major
greenhouse gases carbon dioxide, methane and nitrous oxide in the atmosphere coincid-
ing with the beginning of the industrial revolution. To parry any cynic conclusion about
the short timespan covered on this graph it should be added that in the year 2005 the
atmospheric concentrations of carbon dioxide and methane exceeded by far the range
found over the last 650,000 years. The other figure, presented in Fig. 1.1(b), provides a
detailed breakdown of the most important components contributing to radiative forcing
between the years 1750 and 2005. Radiative forcing is the change in net irradiance by
the entire planet, measured in W/m?. If the value is positive, the planet warms up. The
production of green house gases in large quantities results in the net warming effect of
all human activities since 1750 because in the atmosphere these gases absorb and re-
emit infrared radiation back to the earth. This contribution is driven by the burning of
fossil fuels to generate electricity and heat and to serve transportation. Also agriculture
and deforestation contribute substantially to radiative forcing. Consequently, the IPCC
projected a rise of the mean global surface temperature during the 21st century between
1.1 and 2.9 °C for their lowest and between 2.4 and 6.4 °C for their highest green house
gas emission scenario [6]. An analysis of the severe effects of global warming on our lives
and ecosystems which are expected over the coming decades can be found in the publi-
cations of the IPCC. Among them are climate extremes which threaten substantial parts

of the global population, their harvest and livestock [7]. A systemic analysis also reveals
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Chapter 1 Energy savings with LEDs

Radiative forcing of climate between 1750 and 2005

Radiative Forcing Terms
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Figure 1.1 — Atmospheric concentrations and effects of important long-lived greenhouse
gases. (a) Atmospheric concentration over the last 2000 years. (b) Summary of the principal
components of the radiative forcing of climate change due to human activities since 1750.
Both figures from the FAQ section of Ref. [3].

feedback effects that have to be considered [5, 7]. Naturally, the reduction of green
house gas emission is among the most important initiatives for the mitigation of climate
change. The Kyoto Protocol from 1997 to the United Nations Framework Convention
on Climate Change sets binding obligations on the industrialised nations to reduce their
emission of greenhouse gases. To date, the US is the only industrialised nation which
has not ratified the protocol, while Canada has renounced it in 2011. In its current
form the protocol terminated in 2012. A discussion of the future and effectiveness of the

protocol is beyond the scope of this thesis and can be found elsewhere.

1.2 Energy savings with LEDs

This work relates to energy saving in the field of lighting by the use of light emitting
diodes (LEDs) instead of other established light sources, for example incandescent light
bulbs. Roughly one third of the global energy consumption is spent for the generation
of electricity, which to 68 % is generated by burning of fossil fuels [8, 9]. Currently,
lighting alone consumes 20 % of that electricity. Brown estimates a saving potential of
65 % for the global lighting sector by 2020 [10]. This can potentially be achieved by the
use of efficient light sources such as fluorescent sources, high intensity discharge sources
and LEDs as well as energy efficient lighting schedules. The US Ministry of Energy
expects more moderate savings for the US [11]. For the lighting sector they estimate
electricity savings of nearly one half by 2030 with the use of the increasingly efficient
solid state lighting (SSL) technology in comparison with a scenario without SSL. The

authors employed an econometric logit model that predicts the acceptance and market
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Chapter 1 Energy savings with LEDs

penetration of energy saving lighting technologies based on the value that customers
receive. The currently projected industry goals for the performance of future generation
of LEDs by far exceed the potential of the already established light sources. Not only
does their study show what substantial energy savings can be achieved in the lighting
sector. The key finding is that consumers will likely choose LEDs in favour of other
alternatives because they are more energy efficient and provide high quality of light at

the same time. The high efficiency of LEDs is indicated in table 1.1. By consideration of

Table 1.1 — Luminous efficiencies of different light sources. (a) Incandescent sources. (b)
Fluorescent sources. (c) High-intensity discharge (HID) sources. (d) LED sources. The
luminous efficiency is an important figure of merit for visible-spectrum sources. It measures
the perceived light power normalised to the electrical power expended to operate the light
source. Table from Ref. [12]. *World R&D performance record as of April 2012 [13].

Light source Luminous efficiency
Edison’s first light bulb (with C filament) (a) 1.4 Im/W
Tungsten filament light bulbs (a) 15-20 Im/W
Quartz halogen light bulbs (a) 20-25 Im/W
Fluorescent light tubes and compact bulbs  (b) 50-80 Im/W
Mercury vapor light bulbs (c) 50-60 lm/W

()

()

(d)

a
a

Metal halide light bulbs c 80-125 Im/W
High-pressure sodium vapour light bulbs ¢ 100-140 lm/W
Current world record white LED* d 254 Im/W

the light sources at his own home the reader may convince himself that the second criteria
is indeed crucial and limits the acceptance of energy efficient light sources despite their
evident economical advantage. Under no circumstances can the predictions for the US
lighting sector be generalised for the whole world. One in three people obtain light from
burning kerosene or other fuels and the associated primary energy costs represent 20%
of the global costs for lighting [14]. However, it could be argued that the predictions for
the US market can be transferred to the European Union, if not other regions with large
markets and a high development index. The European Union’s favour for regulative
influence might lead to an even faster development. Legislations in many countries
around the world have scheduled a phase out of incandescent light bulbs or have banned
them already because of their inferior performance in comparison with energy saving

technologies. This certainly accelerates the market penetration of new LED technologies.

Modern, high efficiency LEDs have now entered the general daylight illumination mar-
ket and the market for packaged LED has surpassed $10 bn in 2012 [15, 16]. They
are rightfully marketed as the technologically prime energy saving alternative to con-
ventional incandescent light sources. Among the advantages of LEDs are their lower
power consumption and longevity (see again Tab. 1.1). Because of their high efficiency

they are already an economical alternative to incandescent light bulbs, despite their
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currently higher manufacturing costs. The promising development of LED pricing and

performance can be seen in Fig. 1.2.
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Figure 1.2 — Development of the luminous flux per package and lamp purchase price per
lumen of LEDs in comparison with an incandescent tungsten-filament light bulb of 60 W.
The graph shows the evolution over more than 4 decades. The reference light bulb has a
luminous efficiency of 17 Im/W and a luminous flux of 1000 Im. Source: Ref. [12].

1.3 Hybrid optoelectronics for efficient white LEDs

LEDs are inherently monochromatic light sources, thus white light emission from LEDs
is a technical challenge. Several approaches to white light illumination with LEDs ex-
ist [12]: multi coloured emission can be achieved from an epitaxially grown stack of
multiple LEDs of different band gaps. Similarly, colour tuned semiconductors can be
stacked on a LED as colour converters. However, the required epitaxial growth is not cost
effective for mass production, and current state of the art white LEDs follow a different
route: they utilise a layer of yttrium aluminum garnets doped with rare-earth com-
pounds as a colour converter for high energy photons emitted by a quantum well (QW)
LED based on group III nitrides. The rare-earth compounds are optically active in the
visible region and absorb (partly) the light from the underlying LED. They feature broad
emission spectra which yield white emission when combined with an appropriate blue or
UV pump LED. Advances in the field of organic LEDs, organic photovoltaics and in the
chemical synthesis of colloidal inorganic nano-particles resulted in new materials like flu-
orescent polymers and colloidal quantum dots (QDs) with tuneable emission properties
throughout the visible region of the spectrum. In contrast to the rare-earth materials,
which are becoming increasingly scarce, fluorescent polymers and QDs can easily be
mass produced at low costs [17-19]. A new generation of hybrid optoelectronic devices
combines inorganic semiconductors with organic materials or colloidal QDs. They merge

the superior electrical properties of inorganic crystals with the high photoluminescence
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yield across the visible spectrum that can be found in organic materials or QDs. It has
been demonstrated that in principal these materials can be employed as highly efficient
colour converters on top of UV or blue-emitting LEDs, similar to the rare-earth doped
YAGs [1, 20-26]. However, the use of organic materials and quantum dots for hybrid
optoelectronics beyond colour conversion is fundamentally limited by their low charge
injection and transport in comparison with their inorganic counterparts. Based on the-
oretical considerations, Agranovich proposed to transfer electronic excitations from an
inorganic QW to an absorptive organic material in close proximity without the need for
electrical connectivity and without optical pumping [27-31]. Accordingly, electron-hole
excitations are transferred via dipolar coupling from one material to the other, effec-
tively converting the nature of the exciton. This resonant energy transfer (RET) from
inorganic QWs to organic layers (or layers of QDs) has been demonstrated for a wide
range of material combinations, many of which are relevant for the application of this
scheme to pump the colour converter in a hybrid LED that embeds organic materials
for colour conversion [1, 20-26, 32, 33]. In one study it was demonstrated that the char-
acteristic absorption and emission properties of J-aggregates and QDs can be arbitrarily
combined in a hybrid material stack when excitations are efficiently transferred from
one species to the other via RET [34]. Agranovich recently prepared a complete review

of all applications of RET for hybrid optoelectronics [35].

Given the combination of great optical properties and poor electrical properties of QDs
and organic layers, is resonance energy transfer the key to integrate these materials into
optoelectronics devices like LEDs and solar cells? Especially in closely packed planar
geometries, like they are found in LEDs, non-radiative RET has been demonstrated to
be orders of magnitude more efficient than the commonly employed radiative energy
transfer, i.e. absorption and re-emission of light by the colour converter [1, 20, 25]. An

answer will be given in the following.

1.4 Structure of this thesis

This thesis presents a detailed study of the resonant transfer of excitons from inorganic
QWs to organic layers and layers of QDs. In chapter 2 the most relevant principles
and mechanisms in hybrid inorganic-organic structures will be explained as part of an
extended introduction. The work from chapter 3 is application driven and deals with
an exemplary implementation of an organic colour converter in combination with the
resonant energy transfer scheme on a LED wafer supplied by a LED manufacturer.
In chapter 4 the theory of energy transfer from QW excitons will be reviewed and
extended for thermalised ensembles of excitons. The considerations made therein in
combination with the presented experimental evidence allows to make conclusions about
the optimisation of energy transfer in such planar geometries. What follows in chapter 5

is a very thorough attempt to provide direct experimental evidence for the theoretically
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Chapter 1 Structure of this thesis

expected non-monotonous dependence of resonance energy transfer on the wave vector
of the QW exciton. This chapter will likely appeal to a reader with an interest in
spectroscopy techniques because the experiments follow closely the work on transient
grating spectroscopy from the 1980s while benefitting from modern femtosecond laser
sources. The last chapter (6) is devoted to an old idea by Dexter (1979) who proposed
to bring into play a strongly absorbing organic dye to sensitise a silicon solar cell by
the use of energy transfer from the former to the latter [36]. A review of the existing
experimental evidence in this field is followed by the discussion of the results from a
finite element simulation of the scheme and recent experiments on the subject. The
thesis closes with conclusions about the potential of optoelectronics based on resonance

energy transfer.



Chapter

Theoretical Background

2.1 Bulk inorganic semiconductors

The central topic of study in this thesis is resonance energy transfer, a process which
occurs via the coupling between dipole transition moments in different semiconducting
materials. Hence, the natural starting point for the introduction to the mechanism is
the origin of optical transitions in semiconductors. When individual atoms are combined
to form a crystalline solid the resulting material can be generally classified to be either
an insulator, conductor or semiconductor. The two former are characterised by their
property to be either inhibiting or promoting the transport of electrons, whereas the
conductivity of semiconductors can be manipulated to vary over several orders of mag-
nitude by doping their crystalline structure with impurity atoms or by variation of the
temperature. This is a consequence of their characteristic band gap, a range of energies
for which no electronic states exist in the material. In the case of semiconductors this
energy gap lies between the filled and unfilled states constituting the valence and con-
duction band. These bands describe the energy-momentum relation for electrons inside
the crystalline semiconductor and they are the equivalent of the dispersion relation for
a free electron in vacuum. The existence of continuous bands can be understood by
considering the hybridisation of electronic states when two atoms are brought in close
proximity: two equivalent electronic states hybridise into a bonding and anti-bonding
state. Similarly, when a (nearly) infinite number of atoms is brought together to form a
crystal their discrete energy levels hybridise into two energy bands which might or might
not overlap and which determine the electronic properties of the material. Moreover, the
lattice can be purposely or unintentionally doped by atoms that contribute more or less
electrons than the atoms of the host lattice. In this case the semiconductor becomes n
or p doped, respectively. Additional (or absent) electrons may contribute substantially
to charge transport in the semiconductor and effectively render it a conductor. The

motion of electrons through the semiconductor is described by their momentum p = Ak,
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Chapter 2 Bulk inorganic semiconductors

where k is the wave vector. As a consequence of the periodicity of the crystal lattice the
energy-wave vector dispersion relation is periodical in the wave vector and can be folded
back into the so called Brillouin zone, the wave vector equivalent of a primitive cell in
the crystal lattice. More specifically, the Bloch Theorem states that the wavefunction of
the electron is periodic in space and wave vector and can be separated into a products
of two parts, one that accounts for the crystal potential and one in the form of a prop-
agating wave. It can be shown that for many problems it suffices to consider only an
envelope function composed of plane waves, and neglect the fast oscillating part of the
wave function that accounts for the crystal potential. Different approximate approaches
to calculate the band structure of semiconductors lead to the result that near the ex-
trema of the energy bands the dependence of the energy on the wave vector is quadratic
like it is the case for a free electron in vacuum. The curvature of the dispersion then
defines an important parameter of the semiconductor, the effective mass of the electron.
Figure 2.1 shows the band structure of GaAs and Si, two of the best studied semicon-

ductors. The figure also shows the degeneracy of the valence bands at k = 0 that is
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Figure 2.1 — Electronic band structure of Si (a) and GaAs (b). The dashed arrows indi-
cate optical interband transitions. In the case of a non-vertical transition in the indirect

semiconductor Si a phonon contributes or absorbs the required momentum. Figure modified
from Ref. 37.

found in most semiconducting materials. It originates from the predominantly triplet
nature of the sp? atomic orbitals that form the valence band. The different curvature
of the bands results in different effective masses. In a bulk semiconductor the density of

states (DOS), including different spin states, along the parabolic part of the dispersion
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is given by

DOSsp(E) = - <2;';C> ' VE- B, (2.1)

272
where V' is the volume of the crystal, m. the effective mass of the electron in the

conduction band and F, the energy at the edge of the conduction band. A more thorough

introduction to solid states physics can be found in Refs. 38, 39.

2.2 Optical transitions

The existence of a band gap implies that in a semiconductor electrons have to acquire
at least the energy corresponding to the band gap FEyq, in order to be promoted from
the valence to the conduction band. At elevated temperatures this energy can be sup-
plied during thermal collisions with other carriers, but more relevant for this study are
transitions where the interaction with a photon causes an interband transition. Interac-
tions with photons can also result in transitions within one band, intraband transitions.
These will not be discussed here. Because the photon’s wave vector |kopt| = h/27 is so
small in comparison with the electron’s wave vector optical transitions occur effectively
at constant k. We will now constrain the discussion to interband transitions in direct
semiconductors, i.e. materials where the maximum of the valence band aligns at k = 0
with the minimum of the conduction band. The coupling between the photon and the
electron can be described in terms of a transition dipole moment which is a measure
for the probability that an electron subject to an electromagnetic wave is promoted to

another band. The matrix element for the dipolar interaction is given by
Wy (k) = —qE - ry 0(k' — kopt — k), (2.2)

where ¢ is the charge of the electron, E the electric field of the electromagnetic wave, k
and k" are the wave vector before and after the interaction. The factor ry . is defined as
Ive = (Uck|T|uy k), Where u denotes the fast oscillating part of the wavefunction for a
specific band and wave vector. In indirect semiconductors the band extrema do not align
at the same wave vector and a transition at the band edge requires the interaction with
a phonon, a quantised vibration of the crystal lattice, to compensate the difference in
wave vector. Direct and indirect transitions are indicated as dashed arrows in the band
structures shown in Fig. 2.1. Kane’s k- p method is a theoretical procedure to calculate
the band structure of semiconductors from parameters that can be obtained in optical
experiments. Accordingly, the dipole matrix element is to first order in k constant and

the factor ry . can be approximated and expressed using the Kane energy Ep[37, 40]:

h Ep

R 2.
i\ o (2.3)

rycl =
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where mg is the free electron mass and Fy,), is the band gap. This relation is used in
chapter 4 to quantitatively calculate the rate of resonance energy transfer for a given
material system. The underlying theory of resonance energy transfer will be briefly

outlined at the end of this chapter.

When an electron undergoes a transition from the valence to the conduction band it
leaves behind an unoccupied electronic state. It can be shown that all remaining elec-
trons in the valence band collectively behave as if they were a single charge carrier of
opposite spin, opposite charge and opposite momentum to the deficient electron and
with a new effective mass. The result is the description of the vacant state in terms of
the quasi particle named hole. When an electron undergoes a transition back from the
conduction to the valence band where it fills a vacant state it is said that it recombines
with a hole.

2.3 Organic semiconductors

In conjugated organic molecules the constituting carbon atoms promote one of their 6
electrons from the 2s-shell to the otherwise unfilled 2p,-shell and subsequently hybridi-
sation between the remaining 2s-shell and the now filled 2p-shell occurs. The resulting
Sp1, sp2 or sps hybrid orbitals contribute in total 4 electrons to bind with other atoms.
Possible binding combinations are a strong o-bond when two sp-orbitals overlap or a
m-bond when two remaining p-orbitals overlap. When both types of binding orbitals
overlap together the resulting carbon double bond is rather weak and yields one de-
localised electron. A typical example is found in the benzene ring (CgHg, shown in
Fig. 2.2(a)) where it is not possible to assign a particular location to the m-electrons

constituting the double bonds. In some conjugated molecules this delocalisation bears

Figure 2.2 — Chemical formula of benzene and two variants of the polyfluorene F8BT.
(a) The two possible conformations of the benzene ring with delocalised electrons from
the m-bonds. (b) F8BT variant that absorbs around 460 nm: Poly(9,9-dioctylfluorene-alt-
benzothiadiazole). (¢) F8BT variant that absorbs around 375 nm: Poly(9,9-dioctylfluorene-
co-benzothiadiazole). Both variants feature a broad emission spectrum in the green-yellow
spectral region.
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Chapter 2 Low dimensional semiconductors

similarities with the delocalisation of electrons in the crystal lattice of a semiconductor.
Accordingly, the highest occupied molecular orbital (HOMO) is filled up by electrons
from strong o-bonds whereas the lowest unoccupied molecular orbital (LUMO) is a delo-
calised electronic state from a m-electron cloud. Similar to their inorganic counterparts,
conjugated molecules are considered to be semiconducting when their band gap, i.e.
the difference between the HOMO and LUMO levels, corresponds to a photon from the
visible range of the electromagnetic spectrum. This is the case for the polymer Poly(9,9-
dioctylfluorene-benzothiadiazole) (F8BT) that is used in two studies for this thesis as
an acceptor in excitonic energy transfer for the purpose of colour conversion in hybrid
inorganic-organic LEDs. The chemical formulae of two variations of the F8BT polymer
are shown in Fig. 2.2. Below the HOMO and above the LUMO levels the energy states
remain discrete in contrast to the continuous states in an inorganic semiconductor and
in some molecules it is possible to assign the electronic levels to specific subgroups. Dis-
crete vibrational states contribute further to the discrete character of the energy levels in
organic semiconductors and effectively broaden their emission and absorption spectrum

around a particular electronic transition.

2.4 Low dimensional semiconductors

So far our considerations on semiconductors covered bulk crystals where the ordered
assembly of atoms approaches infinite dimensions in comparison with all relevant length
scales. However, it is possible to grow crystals with heterojunctions between different
semiconductors. When doing so the main concern is the matching of the lattice con-
stants, otherwise the crystal will be strained where the two materials merge, resulting
in dislocations in the lattice. At the heterojunction the band edges of the two materials
align depending on their electron affinity. In the case of a straddling heterojunction the
energy gap of one material lies within the energy gap of the other and electrons as well

as holes experience a potential barrier relative to the material with the lower band gap.

2.4.1 Quantum wells

In quantum wells (QWs) electrons and holes are trapped between two straddling het-
erojunctions. When the thickness of the inner material is only a few nanometres and on
the order of the de Broglie wavelength of the electron, A\ = h/\/2m.E with the effective
mass m., the problem resembles that of a particle in a box, where quantised energy
states evolve as a consequence of quantum confinement in one direction. Exact and
approximate solutions to the problem can be found in Refs. [37, 39, 41]. The motion
of the electron in the other two directions remains unchanged and subbands emerge for

each quantised energy level. Within each subband the density of states is constant and
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Chapter 2 Low dimensional semiconductors

the joint density of states has a step-like shape which is given by

DOSap(E Amc Z@ (E - E,) (2.4)

where m, denotes the effective mass in the well material, A the considered area of
the QW, E, the energy of the n-th subband and © the unit step function. The same
arguments apply to the hole states in the valence band. As a consequence of the quantum
confinement the lowest interband transition in QWs lies at an energy above that of
the bulk material. This offset can be adjusted by the bandgaps of the constituting
materials and more importantly by the width of the QW. This tunability of the emission
wavelength is one of the reasons why QWs are commonly used in LEDs, semiconductor
lasers and other optoelectronic devices. It should be noted that due to the orthogonality
of the wave functions for different subbands optical transitions are only allowed between

electron and hole states with the same subband index.

2.4.2 Colloidal quantum dots

When electrons and holes become confined in three dimensions one obtains so called
quantum dots (QDs). This can be achieved by the application of an electrostatic po-
tential in the plane of a QW, by epitaxially growing small islands of a semiconductor
on a planar interface or by the wet-chemical synthesis of semiconductor nanocrystals
which contain only a few hundred atoms and vary in size between a few nanometres
and tens of nanometres. All these systems are called artificial atoms because of the
delta function-like peaks in their density of states. Figure 2.3 shows the shape of the
joint density of states in semiconductors with different degrees of quantum confinement.
Evidence for the sharp spikes in the DOS for QDs can be found in low temperature

absorption spectra.

Colloidal QDs have been successfully implemented as colour converters with size tuneable
emission properties for light emitting diodes [1, 21, 24-26]. In chapters 3, 5 and 6 they
are used as energy transfer acceptors and donors.

3D 2D 1D oD

D(E) D(E) D(E) D(E)

> > >

Figure 2.3 — Density of states in semiconductors with different degrees of freedom for
electron motion. Units for DOS are eV~tcm™P, where D is the number of unconstrained
dimensions.
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Chapter 2 Excitons

2.5 Excitons

2.5.1 Wannier Mott excitons

A negatively charged electron in the conduction band and a positively charged hole in
the valence band attract each other via coulombic interaction, analogue to the interac-
tion of the electron and nucleus in the hydrogen atom. The interaction is reduced by
the screening of the electric fields due to the high dielectric constant and large number
of atoms in the crystal. As a consequence the bound two particle state extends over
several lattice sites and propagates without allocation to a specific site freely through
the crystal lattice. The resulting quasi particle is referred to as an Wannier Mott exci-
ton [42]. As long as the temperature (measured in kg7’) is lower than the binding energy
excitons contribute substantially to the electronic and optical properties of semiconduc-
tors because they constitute the lowest lying electronic excitation of the semiconductor.
Excitons have a stronger dipole moment for the interaction with light because of the en-
hanced overlap of the electron and hole wavefunction. The underlying two body problem

is conveniently solved in analogy with the hydrogen atom, yielding an exciton binding

energy of
2
o mr 60
EX bind = %?ERyd (2.5)
and an exciton Bohr radius of
mo €o
axB = — —ag, (2.6)
me €

V=mol+m, !is the reduced mass determined from the effective electron and

where m.~
hole masses, mg the free electron mass, € the relative permittivity of the semiconductor,
€0 the vacuum permittivity, ag the Bohr radius and Egryq the Rydberg energy with a
value of 13.6 eV. In GaAs the exciton binding energy is 5.6 meV and the Bohr radius
10.6 nm. When the thickness of a quantum well becomes smaller than the exciton Bohr
radius these expression need to be recomputed. Numerical methods can be found in
Ref. [43]. In the limiting case of an infinitely thin QW the exciton becomes purely

two-dimensional and the binding energy and Bohr radius are given by:
Expind2p = 4 EXbind (2.7)

axB2p = axB/2 (2.8)

2.5.2 Frenkel excitons

In organic semiconductors or organic crystals the dielectric constant is small and an
electron-hole excitation may occur on one individual molecule. In this case the binding
energy is at least one order of magnitude larger than for Wannier Mott excitons and the

Bohr radius does not exceed the size of the unit cell or the sub group of the molecule.
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Chapter 2 Resonance energy transfer

These strongly localised excitons are referred to as Frenkel excitons [44]. Due to the
substantial spacial overlap of the electron and hole wave functions they posses a very
high oscillator strength close to the molecular oscillator strength. This is the reason why
organic semiconductors are desired building blocks for photonic devices like lasers, light

emitting diodes or solar cells.

2.6 Resonance energy transfer

2.6.1 Definition

The non-radiative, resonant transfer of electronic excitation energy between a donor and

acceptor that is studied throughout this thesis originates from an interaction of the form
Hgpr = —E - P,, (2.9)

where E denotes the electrostatic field produced by the oscillations of the electronic
dipole polarisation of the donor and P, is the polarisation of the acceptor. Because the
process relies on the energetic alignment of electronic states in the donor and acceptor
it is commonly called resonance energy transfer or, shorter, RET. The dipole-dipole
coupling is the electrodynamic analogue of the coupling between two mechanical oscil-
lators with similar frequencies connected by a spring. RET is a near field effect where
the donor-acceptor distance is much smaller than the wavelength and retardation effects
can be neglected. However, on the scale of the electronic wave functions we consider
relatively long separations where the electronic wave functions do not overlap and RET
is to be distinguished from another from of resonant energy transfer, namely Dexter

energy transfer [45].

2.6.2 Resonance energy transfer between point dipoles

Forster was the first who presented a quantitative description of the underlying process
for the case of dipolar coupling as it can be found between pairs of molecules with
broadened and overlapping emission and absorption spectra [46, 47]. The polarisation
of the acceptor is subject to the well known electric field produced by the polarisation

of the donor

BR) L] [(Pd-R)R

= —— -P 2.10
4rreg R3 R? d] ’ (2.10)

where R is the vector connecting the two molecules and R is its magnitude. The rate

of energy transfer is then given by

Ro\°
I'rET,d-d(R) = Traa =) (2.11)

14



Chapter 2 Resonance energy transfer

where I'}qq = % is the radiative decay rate (the inverse of the fluorescence lifetime) of the
donor molecule and Ry the so called Forster radius, a material parameter including the

spectral overlap and donor quantum yield. It is usually on the order of a few nanometres.

The expression for the energy transfer rate between two point dipoles can be generalised
to the case of energy transfer from one point dipole to an array of acceptor dipoles. In

this case one obtains by spatial integration over the acceptor array
I'rReT/Trvac = (Ro/d)", (2.12)

where the power n is a function of the dimensionality of the array [48]. A line of acceptor
yields n = b, while a thin layer yields n = 4, and a volume of acceptors gives n = 3. It is
important to keep in mind that Forster’s theory and this subsequent consideration only
holds for the interaction between point-like dipoles which are well enough approximated
by the electronic excitation found in ions, dye molecules or (sufficiently small) QDs. Lunz
et al. found good agreement between the theory and the results from their experimental
realisation of energy transfer between QDs arranged in thin layers [49]. In chapter 4
it will be argued that an exciton in a QW cannot be represented as a point-like dipole
and hence the distance dependence of the rate of energy transfer to an adjacent layer of

organic material does not follow a power law like it was initially proposed [20)].

2.6.3 Resonance energy transfer in arbitrary geometries

The approach outlined above to calculate the energy transfer rate between two dipoles is
invalid in the case of excitations that are spatially extended like Wannier Mott excitons
in QWs. Theoretical work led by Agranovich and Basko has shown that the rate of
resonance energy transfer in the weak coupling regime can nevertheless be calculated for
arbitrary geometries equivalently either by treating excitonic energy transfer as Joule
losses or by the fully quantum mechanical treatment of all electronic states in the sys-
tem [28, 29, 31]. The criteria for the weak coupling regime are a fast acceptor relaxation
time and a broad acceptor spectrum at the spectral region of the resonance. Here, we

will reproduce the semi classical approach.

The electric field created by oscillations of the QW polarisation penetrates into an ab-
sorbing medium and dissipates energy by the excitation of electronic states. In the
first step we note that the total transition dipole moment is replaced by the spatially
dependent excitonic polarisation P(r) that can be computed from the exciton wavefunc-

tion [39, 50]. The corresponding charge density is then given by
p(r) ==V -P(r). (2.13)

This step effectively reduces the problem to a typical electrostatic problem, where the

Poisson equation can be employed to solve for the electric potential ¢(r) in the standard
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Chapter 2 Light emitting diodes

formulation:

Er) = —Vo(r) (2.14)
V- (er)Vor) = —p(r) (2.15)

Here, €(r) is the position dependent dielectric function that along with the exciton
wavefunction accounts for the geometry of the configuration. In view of the chap-
ters 3, 4 and 5 the reader may consider already a planar geometry where a QW is
covered with some type of absorbing material. Now the problem can be be solved taking
into consideration the appropriate boundary conditions for ¢(r) at all interfaces and
at infinity. The result is the position dependent electric field E(r) that is required to
determine the Joule losses [51]. We only reproduce the expression for the power dissi-
pated in an non-conducting, isotropic and absorbing medium with the dielectric function
e(w) = € (w) + i’ (w) [35]:

WweQ

Q) = 5° / ¢/ (w)|E(r)[2dr. (2.16)

This semiclassical approach conveniently allows to compute the energy transfer rate
when only the macroscopic dielectric function (or tensor) of the absorbing medium is
known. The equivalency of the semiclassical and microscopical quantum mechanical
derivations are discussed in Ref. [29]. This reference also presents the explicit solution
to the Poisson equation in the case of a planar geometry. The transfer time for an exciton
of energy hwx in the QW to the absorbing medium is then given by the relationship:
hwx

TRET = 7@(

L (2.17)

2.7 Light emitting diodes

Light emitting diodes, short LEDs, are optoelectronic devices that emit light by electro-
luminescence when they are driven by an electric current. The colour of the emitted light
is mainly determined by the band gap of the optically active material in them. It can be
tuned to some extent by the use of QWs or doping with optically active impurities [12].
Since their first implementation in the 1960s as dim, red emitting indicators material
science and fabrication techniques have evolved further such that emission from LEDs
can now cover the spectrum from ultraviolet to infrared [12]. Especially their use as a
replacement for incandescent light sources allows huge energy savings along with costs
savings due to their high luminous efficiency., i.e. the ability to convert electrical power
into light that we can actually perceive. The performance of light sources is measured
taking into account the sensitivity curve of the human eye which peaks around 555 nm.
In the most basic configuration a LED consists of a pn-junction, i.e. a crystalline junc-

tion between a p and n-doped region of a semiconductor. When electrons and holes
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are injected into the p and n-region by the use of metallic contacts they can recombine
radiatively in the junction region, giving rise to electroluminescence. This process can
be enhanced when QWs are incorporated into the junction region. Typical materials
are GaAs, InGaN or GaN. The emission spectrum of a LED is governed by the density
and occupation of electron and hole states in the conduction and valence bands. Under
standard conditions the excess carrier density in a LED is low and the carrier distribu-
tion is well approximated with a Boltzmann distribution. Then we obtain the emission
spectrum as the product between the density of states and the Boltzmann factor. In the
case of a LED based on a bulk pn-junction we obtain I(E) \/m e~ B/ kT a5
indicated in Fig. 2.4. The FWHM of the resulting spectrum is then

1.8kgT )2

” (2.18)

AE =1.8kgT or A=

When the active material is a QW, as it is commonly the case in commercial devices,
the emission spectrum becomes narrower due to the step-like shape of the density of

states. For the application in general lighting, where white light emission is desired,

3.18 hv(eV)
403530 25 20 16115 1.0
- 1T T T T T
(a) R U\ VISIBLE ! IR
Boltzmann s 2 )
ARSI % e Density of states
~ | distribution T E_ g2 YELLOW
Z | e exp (<EAT) ] o (E-Eg) Gaso 15Poss
5 ~ “~\ BLUE
£ . GaAs PHOSPHOR | ORANGE INFRARED
o4 ! { GaAs 35 Po 65 G f A P
= 1 VIOLET| GREEN 40.28/N0.72AS0.60"0.40
3 ! RED Gag.17/N0.53AS0.54P
2 ' X GaN GaP:N GaP-Zn0 0.171N0.83AS0.34 0.66
4] 0 Theoretical - \ \ . GaAs l
é FWHM = 1.8 kT emission spectrum % 1.0k X »/A(EaAs”P“" s
= i T 08F e
! £ 06 / RESPONSE
! ° 04F !
| £ o2} /
1 = 2F /
i . 3 ot—il 20 N L /1 L/
£y Eg +kT72 Energy £ C 03 04 05 06 07 08 09 1.0 1.1 1.2 1.3

A (um)

Figure 2.4 — Emission spectrum of a LED with a bulk junction. (a) Theoretical spectrum.
(b) Spectra from LEDs fabricated from different materials. Figures from Ref. 41.

LEDs bring inherent advantages and disadvantages in comparison with incandescent
light sources: the spectrum of an incandescent light bulb resembles by definition very
well that of a black body emitter. Thus, its correlated colour temperature (CRT), i.e.
the temperature of the blackbody emitter that has the most similar emission colour, can
easily be adjusted to yield the desired similarity with natural sun light. Due to the band
gap specific emission wavelength a single LED cannot yield white light. Nevertheless,
this can be achieved by the combination of several different LED chips in one device
or in a monolithic implementation of a multi-chromatic device which embeds different
QW stacks and a colour converting semiconductor layer. The third and economically
most viable option is a ultraviolet or blue emitting LED which is covered with a colour
converting, rare-earth doped garnet, most commonly in the form of a yttrium aluminium
garnet (YAG). The material is deposited on top of the LED and (partially) absorbs the

emitted ultraviolet or blue photons. Due to the complex energy structure of the rare
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Chapter 2 Photovoltaic cells

earth ions the phosphor features a very broad emission spectra that in combination
with the light from the LED yields “white” light. A brief introduction to the field of
colorimetry, the methodology used to describe the colour of a light source, will be given in
the next chapter. At last, it should be noted that the the external quantum efficiency of
modern LEDs, i.e. the ratio between the injected electrons and the photons emitted into
free space, regularly exceeds 70 %, thus allowing for noticeably higher power efficiencies

(wall plug efficiencies) in comparison with incandescent light bulbs [17].

2.8 Photovoltaic cells

Photovoltaic cells, also called solar cells, absorb incoming light and convert the photon
energy to drive a current without being subject to a voltage. The simplest device con-
stitutes again a single pn-junction with electrical contacts. When a photon is absorbed
in the junction region the created electron and hole pair is separated by the electric
field that is produced by the built-in potential between the differently doped regions.
The charge separation on the opposite sides of the pn-junction is the driving force for an
electrical current when the terminals of the device are connected to an electric load. Due
to the absorption mechanism in the semiconductor the band gap of the chosen material
determines the fraction of the (sun) light’s spectrum that the device can possibly absorb.
A material with a too small band gap, however, will absorb most of the incoming light,
but at the price of a reduced built-in potential and a large amount of excess heat that is
produced when highly energetic photons produce electrons and holes with energies high
above the band gap. The band gap of silicon, Fgap, si = 1.1 €V, is very close to the opti-
mum value. For this reason and due to its abundance it is the most commonly employed
material for large scale photovoltaic installations, despite its poor absorption coefficient
originating from its indirect band gap. The theoretical upper boundary for the energy
conversion efficiency of a pn-junction cell is determined by the Shockley-Queisser limit,
the result of a detailed consideration of Blackbody radiation, carrier recombination and
spectral losses in such a device subject to the sun’s radiation [52]. The state of the
art, best performing mono-crystalline silicon solar cell has an efficiency of 27.6 % under
laboratory conditions in comparison with the Shockley-Queisser limit of 33.7 % [53].
More complex configurations employ up to three stacked junctions on top of each other
and yield efficiencies of 43.5 %. For triple junction cells the Shockley-Queisser limit is
49 % and for an imaginary cell with an infinitely high number of stacked junctions with
gradually changing band gaps it is 68 %. This trend is indicated in Fig. 2.5. Due to the
abundance of silicon on the surface of the earth it seems to be the material of choice for
the large scale employment of photovoltaic power as a means to reduce carbon emissions
from burning fossil energies or to reduce nuclear waste. In addition to the aforemen-
tioned mono-crystalline silicon cell other, amorphous, or thin film, architectures have

been demonstrated [55]. The major difficulty connected with the use of silicon is the low
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Figure 2.5 — Efficiency increase in multi junction solar cells. (a) Fraction of the solar
spectrum that is harvested by junctions of different band gaps. (b) Theoretical efficiency of
multi junction devices. Figure from 54.

absorption coefficient. As indicated in the introduction it has been proposed to equip
poorly absorbing silicon cells with a layer of a highly absorbing organic dye [36]. The
dye molecule (or colloidal QD) absorbs photons more efficiently and can transfer the
electronic excitation energy to the underlying silicon cell by virtue of resonance energy
transfer. The exciton created in the silicon in this way is subsequently separated by the
electric field in the junction region and converted into electrical energy. In chapter 6
we will present the results of a computational study on the characteristic distance at
which resonance energy transfer from colloidal QDs to silicon breaks down due to the

near field nature of the process.

Currently, the largest contribution to the material costs of a silicon solar cells results
from the silicon itself. The cells have a thickness of several hundred micrometers because
of the long absorption length in the material. New concepts of thin film devices, only
a few hundred nanometers thin and made of amorphous silicon or other materials, will
employ nanoplasmonics and better antireflection coatings to increase the absorption of
light [55]. Such devices might also benefit from energy transfer pumping because by
virtue of being thin a sensitising layer on the top moves closer to the depletion zone
of the cell, increasing the effectiveness of energy transfer. A similar argument holds
for organic photovoltaic cells, where the entire solar cell is composed of p and n-doped
organic polymers and energy transfer between light absorbing and current conducting

species could be essential.
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Chapter

Hybrid InGaN /F8BT light emitting
diodes

3.1 Previous work

A few examples for the application of resonance energy transfer in hybrid LEDs, in-
cluding the work by my predecessor Dr. Soontorn Chanyawadee, were mentioned in the
introduction. He studied energy transfer from a InGaN-based MQW LED to a layer
of QDs deposited into the holes of a photonic crystal fabricated on the top surface of
the LED [21, 56]. The sample for the study was a wafer for blue emitting LEDs (peak
wavelength around 460 nm) provided by LuxtalTek, Taiwan. The LEDs’ surface was
nanostructured with a photonic crystal to enhance the outcoupling of emitted light that
otherwise would predominantly remain trapped inside the wafer due to the high refrac-
tive index of GaN. In the previous study two designs were compared: an LED with a hole
pattern etched with the standard depth, and an LED where the hole pattern is etched
deeper than it is usual for the production of such devices. In this case the etching goes
through the MQW layers. Both LEDs were covered with a thin layer of QDs which ab-
sorb part of the blue light from the LED and re-emit light at a lower energy. Thus, they
act as much as colour converters as the traditionally used rare earth doped phosphors.
The two samples, which are schematically depicted in Fig. 3.1, were operated at currents
which yield the same amount of blue light from the LEDs before the addition of QDs. It
was found that the emission from the QDs is enhanced in the deep-etched LED due to
additional transfer of excitations from the QWs to adjacent QDs at the revealed inter-
faces of the deep etched holes. In this process excitons are transferred via non-radiative
resonance energy transfer without the transfer of net charge. The presence of energy
transfer was concluded from the enhanced QD emission and the characteristic photolu-

minescence decay curves of the MQW and the QDs, which both were in agreement with
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Figure 3.1 — Schematics of the shallow (a) and deep (b) etched LEDs with QDs in the
holes of the photonic crystal. The unlabelled arrows indicate emission of blue and yellow
light by the LED and QDs, whereas the arrows labelled with “FRET” indicate resonance
energy transfer. The schematic of the heterostructure is reproduced with permission by the
creator Dr. Soontorn Chanyawadee.

the model rate equations for the energy transfer process. The work is described in detail
in Refs. [21, 56].

This chapter will give an overview of the experiments performed with never samples
since the studies of my predecessor. Here, different LED wafers are covered with the
polyfluorene F8BT and resonance energy transfer from the QWs to the F8BT is char-
acterised. Focus is given in particular to the emission of white light from the hybrid
LED.

3.2 Materials and methods

3.2.1 Different generations of GaN/InGaN multiple quantum well wafers
3.2.1.1 First generation of LED wafers

All generations of InGaN/GaN LED wafers for the studies in this chapter were fabricated
and supplied by LuxtalTek, Taiwan. For the first generation of wafers that were studied
in Refs. [21, 56] LuxtalTek provided wafers that are usually manufactured into LED de-
vices. These samples were only briefly used in the context of this work to compare them
to newer sample generations. Nevertheless, they are still discussed here because their
epitaxial structure is identical to the one found in later generations. Moreover, knowl-
edge about the first iteration of samples facilitates placing the work from this chapter
in the context of the previous work. The epitaxial growth for these samples starts with
2 um of undoped GaN as a buffer layer on a sapphire substrate. This is followed by a
2 um thick layer of n-doped GaN. The active layer of the LED wafer consists of five In-
GaN/GaN QWs which are slightly offset in energy to yield a broader emission spectrum.
On top of the QWs a 50 nm thick p-doped AlGaN layer is grown before the structure
is terminated with a 0.2 wm thick p-doped GaN layer. The doped GaN layers allow

the electrical injection of carriers into the QWs when metal probes are placed onto the
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(a) First generation (b) Second generation (c) Third generation
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Figure 3.2 — Comparison of the different hole patterns on different generations of LED
wafers. Figures (a)-(c) show images obtained with a scanning electron microscope at the
same magnification. It can be seen that the filling factor and hole shape varies between
different sample generations.

top surface and onto the buried n-doped layer which is revealed by purposely scratching
the surface. Dr. Martin Charlton from the School of Engineering and Computer Sci-
ence at the University of Southampton developed the required nanoimprint lithography
and etching processes to produce the photonic crystal hole pattern on the wafers. The
motivation to fabricate a pattern onto the LED wafer originates from the dramatically
enhanced outcoupling of light from the high refractive index material with the help of a
photonic crystal. It should be noted, that in this first sample generation the fabricated
hole pattern was not a computed and optimised photonic crystal, but a random part of
the bit pattern of a DVD. The resulting pattern along with the patterns used for later
sample generations is shown in Fig. 3.2. The hole patterns can be etched into the surface
of the wafer with two different depths. While in the shallow etched sample the holes do
not reach the QWs, in the deep etched sample they penetrate through the QW layers,
enabling resonance energy transfer from the QWs to a colour converter deposited into
the holes. The details about the previous experiments as well as the nanoimprint and
reactive ion etching process can be found in Refs. [21, 56]. References 57, 58 present
recent results from the group of Dr. Martin Charlton on fabrication techniques and real
world performance of photonic crystal LEDs based on the same material system as the
one studied here. Although strongly related in terms of their content, these projects

were unrelated to the work presented in this chapter.

3.2.1.2 Second generation of LED wafers featuring a photonic crystal and surface

passivation

Another direct consequence of etching the holes deep into the LED surface is the decrease
of the quantum yield and photoluminescence lifetime of the QW excitons. Non-radiative
carrier recombination occurs at the lateral surfaces of the revealed QWs. Also, a longer
and more aggressive etching process produces more cracks and defects in the crystal
structure which also result in a loss of quantum efficiency. Evidence for these detrimental

effects will be given in the results section. To compensate for the detrimental effects of
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the etching some of the second generation wafers were treated with a surface passivation
procedure directly after the etching process. (The etching procedure itself is confidential
information and is not known to the author.) An effective surface passivation was
achieved by exposing the samples to phosphoric acid (HsPO,). The effect of the surface
passivation will be discussed in the results section. The second wafer generation also
features an actual photonic crystal pattern on the surface. This pattern was designed
by Dr. Martin Charlton, but fabricated in the production facilities at LuxtalTek. As it
will be seen in the results section, the reliable electrical characterisation of this second

generation of wafers remains a challenge because of the lack of metal contacts.

3.2.1.3 Third generation of LED wafers featuring individual LEDs

Difficulties with the electrical characterisation were finally resolved in the third gen-
eration of wafers. In contrast to the previous two generations these wafers feature
individual LED chips which are equipped with dedicated areas to make electrical con-
tact. The buried n-doped GaN layer is revealed over a dedicated area and the upper
contact is made via a few nanometres thin metallic overlayer to enhance the current
spreading over the top surface. This wafer generation again featured a modified pho-
tonic crystal (Fig. 3.2(c)). Unfortunately, this third generation of wafer is only available
with an unknown depth of the etched holes, making a comparative study of any kind is

impossible.

3.2.2 The polyfluorene F8BT

Preliminary considerations lead to the conclusion that the blue emission of the LED wafer
in combination with the yellow emission of the polyfluorene Poly(9,9-dioctylfluorene-alt-
benzothiadiazole) (F8BT) end-capped with 2,5-dimethylphenyl result in white light (the
molecular structure of the polyfluorene is depicted in Fig. 2.2). For the purpose of general
lighting applications this is desirable and the combination of these two constituents also
has the potential to be a good pair for resonance energy transfer. The emission spectra
of the LED and F8BT as well as the absorption spectrum of F8BT are shown in Fig. 3.3.
Here, a variant of F8BT is used that absorbs strongly at the emission wavelength of the
LED in the spectral region around 460 nm. In chapter 4 we study another variant of
F8BT that has very similar emission properties, but absorbs around 375 nm. For sample
preparation the polymer is dissolved in toluene and equal amounts of the solution are
deposited as droplets onto the different samples. After evaporation of the solvent this

yields circular patches of approximately 8 mm diameter.
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Figure 3.3 — Spectral overlap between LED emission (blue filled graph) and F8BT absorp-
tion (black interrupted line). The red filled curve shows the emission spectrum of FSBT.

3.2.3 Optical characterisation
3.2.3.1 Colorimetry

In continuation of the previous work with the InGaN/GaN-based MQW LED wafers this
work aims for white light emission from hybrid LEDs that exploit resonance energy trans-
fer. The design of LEDs which are perceived as “white” requires careful consideration of
the spectral properties of the colour converters. To date, the technical characterisation
of colours and light sources bases mainly on the standards set by CIE, the International
Commission on Illumination (Commission internationale de ’éclairage) in 1931. The
1931 CIE XYZ colour space is a standard to describe the brightness and chromaticity
of any colour. The left part of Fig. 3.4 shows the 1931 colour space chromaticity di-
agram which contains all colours at their maximal brightness (the representation on a
computer screen or a printed page is necessarily limited by the primary colours of the
device). The 1931 CIE colour space is accompanied by the 1931 CIE RGB colour space
which is distinguished by a particular choice of monochromatic primary colours (Red,
Green, and Blue) and a specific white point. Later, other colour spaces for specific
purposes were suggested. However, their use is generally limited to a certain field and
the 1931 CIE XYZ colour space is still most commonly used to describe colours. For
computer graphics RGB colour spaces are more convenient than the CIE XYZ space.

For consumer grade digital cameras and displays the sRGB colour space is widely used.

I have developed a program to facilitate the process of identifying colour converters which
are appropriate to yield white light in combination with the blue LED emission. The
program loads several experimentally determined emission spectra from different sources
like the LED wafer, colloidal QDs or organic polymers and calculates the effective CIE
coordinates for the sum of these emitters. In order to test if a specified white point in the
1931 CIE XYZ colour space can be reached with a given combination of emitters their
relative contributions can be adjusted. “Live” visual feedback accelerates the process of

finding the appropriate relative contributions of the emitters and enables fast testing of
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Figure 3.4 — Screenshot of the ColorimetryLab program written in Igor Pro. Left part:
chromaticity diagram of the 1931 CIE colour space. The triangle shows the gamut of sSRGB,
a common standard for the use on monitors, printers, and the Internet. The black cross
and black dot (partly covered by the cross) represent the CIE coordinates of the spectra
shown on the right and the white point of the SRGB standard, respectively. Right part: the
user interface which allows to predict the colour resulting from a combination of different
emission spectra. The blue and yellow spectra are the emission spectra of the LED wafer
and a layer of F8BT in Poly(methyl methacrylate) (PMMA), respectively.

different emitter combinations. Also, any electroluminescence spectrum can be loaded
into the program to determine the colour it represents. A screenshot of the program is

presented in Fig. 3.4.

In a later stage the program could be updated such that it computes the colour rendering

index (CRI) and correlated colour temperature (CCT).

“The color rendering index (CRI)..., is a quantitative measure of the ability
of a light source to reproduce the colours of various objects faithfully in

comparison with an ideal or natural light source.”?

Evidently, the CRI of a white light source is an important parameter to compare the
performance of different white light sources. The CCT is another important quantity
to characterise a white light source. The CCT is the temperature of a planckian black-
body radiator whose colour is closest to the colour of the white light source. Note,
that proximity between different colours is well defined within a colour space. Natural
daylight resembles to a good approximation a Planckian spectrum and has a CCT of
approx. 5500 °K. While a “cold” Planckian light source is more orange-tinted, a “hot”

source is blue-tinted. The calculation of the CCT and CRI is cumbersome because it

'"From wikipedia.org, Color rendering index, http://en.wikipedia.org/wiki/Color_
rendering_index (as of Nov. 13, 2010, 21:26 GMT).
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requires the numerical integration of the sample spectrum convoluted with 14 tabulated
reference spectra describing the reflectance of objects with typical colours like “leaf of
tree” or “skin colour” as well as a number of non-linear coordinate transformations [12].
For this reason the programming of this functionality has been withheld until the actual
necessity for this step arises and the available functionality in commercial programs has

been reviewed.

3.2.3.2 Measurement of time resolved photoluminescence with a streak camera

Resonance energy transfer is routinely identified and quantified on the basis of time re-
solved photoluminescence measurements [1, 21, 59]. Here, the photoluminescence decay
dynamics of the QWs in the LED wafers are recorded with a streak camera (Hamamatsu
C5680). This is a device which in conjunction with a spectrometer and a pulsed light
source for excitation allows the simultaneous measurement of the temporal and spec-
tral characteristics of a photoluminescence signal. It is usually operated in a repetitive
fashion using a pulsed laser source to excite the sample, but also single shot operation
has been demonstrated [60]. Recently, a streak camera has been used to perform femto
photography [61]. For the non-resonant excitation of photoluminescence the wafers are
excited at 400 nm with the frequency doubled output beam of a Ti:saphhire regenerative
amplifier operating at 250 kHz. The amplifier is seeded from a mode locked Ti:sapphire
oscillator with a repetition rate of 80 MHz. This yields amplified pulses with a temporal
width of ~ 250 fs at 800 nm and a bandwidth corresponding to 14 meV. Frequency
doubling tends to shorten the pulses and reduce their bandwidth because of the non-
linear nature of the process, but this effect is irrelevant for the non-resonant excitation
scheme. These experiments are performed at a range of excitation energy densities per
pulse covering 50 wJem™2, 250 uJem ™2, 1250 pJem ™2 and 6250 pJem 2. The lower end
of the range was chosen to ensure excitonic recombination in contrast to free carrier re-
combination which may be found at higher excitation densities. This aspect is discussed
further in section 3.3.2. For the operation of the streak camera light emitted from the
sample is collected with a lens and passes through a spectrometer before it is guided
onto a photocathode which in turns emits a number of photoelectrons proportional to
the number of photons. The electrons are accelerated by an electric field and pass a
vertical electric field between two sweep electrodes. The vertical electric field increases
and collapses (“sweeps”) once per excitation pulse and hence the vertical deflection of
the electrons depends on when they pass through the vertical field. Early electrons are
deflected less than later electrons. After passing the sweeping field the electrons hit a
multichannel plate for their multiplication and reach a phosphor screen which undergoes
phosphorescence when hit by the electrons. Finally, light from the phosphor screen is
detected with a CCD (charge coupled device) camera that is mounted directly behind
it. The resulting image shows the photoluminescence resolved in time and wavelength

along the two axes. The time range covered by the sweeps of the streak camera depends
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on the installed sweep unit which in turn is matched with the repetition rate of the
excitation source in use. Whereas the slow sweep unit used in this experiment allows to
cover time windows between 5 ns and 10 ms and can be triggered at the repetition rate of
the regenerative amplifier at 250 kHz or slower, the fast sweep unit operates only at the
fixed repetition rate of the main oscillator (80 MHz) and covers time windows between
200 ps and 2000 ps. The temporal resolution, defined as the width of the instrument
response function, is obtained from the time profile of the laser pulse as it is measured
by the camera. In this particular experiment with the slow sweep unit it is 200 ps, but it
varies with the settings and time range of the measurement. The fast sweep unit yields

a resolution of 25 ps or better, depending on the chosen time window.

3.2.4 Electrical characterisation

The electrical characterisation of the LED wafers requires great care because the samples,
as explained above, are lacking sound electrical contacts in the form of highly conductive
metallic layers. On the first and second generation of wafers the surface is scratched
thoroughly with a diamond scribe such that the buried n-doped layer is revealed. The
wafer is connected to a current supply via one spring loaded metallic needle which is
positioned onto the scratched area and a second blunt probe that is carefully touching
the top surface. Micropositioners and a far field microscope are used to accurately
position the probes on the sample surface. This scheme does allow for electrical carrier
injection into the wafers, but the contact to the material is poor and there is a permanent
risk to shorten the device when the needle in the scratched groove touches the buried
contact and the top layer at the same time. At the required currents, which are of the
order of a few mA, the material tends to heat up too much at the point of contact and
as a consequence the circuit is often shortened, leaving behind a black, burned spot.
Evidently, this hinders an accurate comparative study of the amount of light emitted

from the wafer under standardised conditions. Nevertheless, an attempt is made.

In order to conclude whether non-radiative energy transfer from the QWs in the wafer
to the polyfluorene material in the holes of the photonic crystal enhances the colour
conversion, electroluminescence from the wafer and secondary luminescence from the
polyfluorene layer has to be accurately measured. This requires a detector with a high
dynamic range because the intensity of the electroluminescence and the secondary lu-
minescence is measured over a large range of injection currents. Moreover, the optics
collecting the light and guiding it to the detector have to be accurately positioned and
refocussed for the different colours. The system has to be well aligned and reproducably
operated, otherwise misalignment would be falsely interpreted as a reduction in the in-
tensity of the emitted light. Therefore a high dynamic range CCD array was chosen to
record standard images of the wafer area around the top electrode where the majority

of light is being emitted from. Figure 3.5 shows a false colour representation of the top
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Figure 3.5 — False colour image of the electroluminescence from the LED wafer. The
superimposed crosshair was used to align images from different measurements repeatably
on the detector. Evidence for the non-isotropic emission due to the photonic crystal can be
found in the angular emission pattern.

view under standard conditions onto the LED wafer under electrical carrier injection.
It can be seen that light is emitted around the top contacting electrode. The image
shows an area of approx. 4 mm x 4 mm and does not show the needle shaped probe
contacting the buried n-contact. The needle probe is approximately 1.5 cm away from
the imaged area. Due to poor current spreading in the top contact light emission is
confined to a few mm around the point of the contact and naturally the area with the
brightest emission is shadowed by the probe itself (see again Fig. 3.5). This image of the
electroluminescence also shows the non-isotropic emission pattern due to the photonic
crystal. Due to a lack of knowledge about the proprietary geometry of the photonic
crystal a quantitative analysis of this emission pattern is omitted here. It is evident
from the regular intensity features shown in Fig. 3.2 that the positioning of the etched
holes does indeed follow some systematic pattern. When the wafer is covered with FSBT
the QW emission and F8BT emission are recorded separately by the use of short and
long pass filters. The appropriate correction procedure is undertaken to account for
any light that is unintentionally leaking through the filters. The effectiveness of the
filters and the correction procedure is checked once before the recording of the data by
spectrally resolving the light that goes onto the CCD. In addition to the quantitative
and comparative measurement of the emission intensities also RGB images of the wafer
covered with the polyfluorene are taken with a CMOS camera. These images are not
analysed in any particular way but they do indicate that the emission from the QWs
and the F8BT can be successfully separated by the use of colour filters. The are shown

for reference in Fig. 3.6.

A self written LabView program is employed to automatically acquire the images of the
LED wafers with the CCD detector for a range of currents. The current is supplied by
a Keithley 236 Source-Measure unit. Data acquisition for the electrical characterisation

of the second generation LED wafers follows these steps:
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Figure 3.6 — Colour filtered images of the LED wafer covered with F8BT. (a) Recorded
with the use of a 500 nm short pass filter. (b) Recorded with the use of a 550 nm long pass
filter. The edges of the droplet of the F8BT solution can be seen in (b).

1. Bring the needle probe into a suitable position on the scratched area and turn on

the power supply with a low current setting.

2. Position the upper electrode with the help of the CCD image and contact the

sample surface such that electroluminescence is observed.

3. Slowly ramp up the current and check whether the current contact spot can sustain
higher currents. If the contact heats up excessively and the circuit is shortened

move the sample marginally and restart from step 1.

4. If the spot is suitable start the program. The program ramps up the current from
zero to 12 mA in steps of 0.25 mA. For each step one image with the CCD array
is taken to record the QW emission through the appropriate filters. If during the
ramping of the current the electrical contact to the wafer is lost the measurement

is aborted and restarted from step 1.

5. If the current sample is coated with the polyfluorene, replace the short pass filter
in the collection path with the long pass filter and repeat the current ramping to
measure the emission from the polyfluorene in the same way as the LED emission.
If during the ramping of the current the electrical contact to the wafer is lost the

measurement is aborted and restarted from step 1.

For the second generation of LED wafers the complete procedure was performed ten
times each for the shallow and deep etched samples and before and after the deposition

of the polyfluorene.

29



Chapter 3 Results and discussion

3.3 Results and discussion

3.3.1 Effect of etching and surface passivation on the photoluminescence
lifetime

To study the detrimental effect of the deep-etching process on the quantum efficiency
as well as the effectiveness of the subsequent surface passivation time resolved photo-
luminescence measurements are performed with the streak camera. Two pieces of the
LED wafers are studied where the photonic crystal is shallow and deep-etched into the
surface. Additionally, each sample was partially subject to the surface passivation pro-
cedure after the etching process (see sample description). In order to check whether
energy transfer is enabled in each sample the photoluminescence decay of all samples is
measured before and after coating with F8BT. Figure 3.7 shows the experimental data
measured at an excitation energy density per pulse of £ = 50 pwJem™2, which is suffi-
ciently low to guarantee excitonic recombination. Before the effect of resonance energy
transfer will be discussed, focus is given to the effect of the surface passivation on the
photoluminescence decay dynamics. Both, the shallow and deep etched samples with
surface passivation show slower photoluminescence decays than their unpassivated coun-
terparts, indicating a successful passivation. When comparing the unpassivated shallow
and deep etched samples it is evident, that the latter shows strongly quenched photo-

luminescence due to non-radiative exciton recombination at the surfaces of the laterally
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Figure 3.7 — Effect of surface passivation and deep etching on the photoluminescence decay
of the QWs. The photoluminescence decay of the QWs in absence and presence of the F8BT
is indicated by solid red and interrupted blue curves.
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revealed QWs. As a result the photoluminescence decay time is shorter and the deep
etched LED wafer emits less light for the same density of injected carriers. The success-
ful passivation of the disturbed QWs is proven by the increase of the photoluminescence
decay time for both the shallow and deep etched sample. In the deep etched wafer the
passivation “heals” the undesired carrier recombination at the QW cross sections and
the photoluminescence of the shallow etched and passivated sample is recovered. But
also the shallow etched sample benefits from the passivation step because the etching
process introduces microscopic cracks in the crystal that apparently penetrate through
the QWs. These also contribute to undesired defects and non-radiative recombination
in the QWs and are successfully healed by the application of the passivation step. From
the studies of my predecessor it is well known that the deep etched holes are a require-
ment to enable resonance energy transfer in these samples, but that this comes at the
cost of a reduced quantum efficiency of the QWs. Is the passivation then the key to the
successful application of energy transfer in such structures? An answer will be given

shortly.

As expected, both the unpassivated and passivated shallow etched samples show abso-
lutely no quenching after the deposition of F8BT (see Fig. 3.7). Non-radiative resonance
energy transfer plays no role in the shallow etched samples and can only be observed
on the deep etched samples. The unpassivated deep etched sample shows a substantial
quenching upon addition of the F8BT (bottom right graph in Fig. 3.7). The efficiency
of the quenching is 28 % and significantly exceeds the previously reported value of a few
percent for the first generation sample [21]. This is attributed to two factors: a) The
fill factor of the hole pattern has increased from 12 % to 40 % such that the mean free
path for carriers before arrival at an etched hole has reduced noticeably (see SEM im-
ages from Fig. 3.2). b) The spectral overlap between the QW emission and polyfluorene
absorption is optimal and the material combination seems to be a perfect match that
promises high energy transfer rates and high colour conversion efficiencies. This result
is a very encouraging first step and it is hoped that resonance energy transfer noticeably

enhances the emission from the F8BT under electrical operation of the hybrid device.

Finally, consider the passivated deep etched and shallow etched samples (3.7). As ex-
pected, the shallow etched sample with surface passivation does not show any quenching
after the addition of the F8BT. The deep etched passivated sample does show some pho-
toluminescence quenching upon addition of the polyfluorene, although the efficiency of
the quenching does not exceed 1 %, which is more than one order of magnitude less
than what is observed for the unpassivated deep etched sample. Apparently, the surface
passivation introduces an insulating layer on the sidewalls of the holes which is so thick
that excitons do not reach close proximity within approximately ten nanometres with
the F8BT molecules on the sidewalls. This does indeed prohibit undesired non-radiative
carrier recombination, but it also prevents the transfer of excitation energy from the QW

to the polyfluorene via near field dipole-dipole coupling. Consequently, the passivated
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samples have very limited use for the study of energy transfer. Successful passivation

comes at the cost of preventing the desired resonance energy transfer process.

3.3.2 Quenching of energy transfer at high excitation densities

In the previous section the quenching of the QW photoluminescence due to energy
transfer to the F8BT layer was discussed. What has been omitted from the discussion
is the observation that the quenching does depend on the excitation density. This is
clearly seen in Fig. 3.8 where photoluminescence data for a range of excitation energy
densities is shown. With increasing excitation density an accelerating fast component
can be identified (red interrupted lines in Figs. 3.8(a)-(d)) and the quenching due to
energy transfer is vanishing. This is typical for the high carrier density regime where
excitons begin to ionise and free carriers participate in Auger recombination of excitons
or unbound electron-hole pairs [62, 63]. The exciton density nyott at the Mott transition

can be approximated for a QW by the relation

NMott X A% pop = 1, (3.1)

where ax pop is the 2D exciton Bohr radius. This yields a value of nyorr = 1.7 x
101 m~2. At the lowest excitation density, Ey, the density of photons incident on the
wafer is Ny 0 = 10" m~2, while it is Nph max = 1.25% 10'6 m~2 for the highest excitation
density corresponding to E.x = 125 X Ey. Because of the commercial interests of the
manufacturer LuxtalTek the actual composition of the multiple QWs as well as the
in and out coupling efficiencies for light of different wavelengths into the wafer are
not known to the author. Hence, only a rough estimate about the number of excited
electron-hole pairs in the QWs can be provided. In eq. 3.1 the Bohr radius of a strictly
two dimensional exciton was used. This value is two times smaller than the 3D exciton
Bohr radius, and thus eq. 3.1 overestimates the exciton density at the Mott transition
when a QW with a thickness greater than the 3D Bohr radius (3.4 nm for InGaN)
is considered. At the excitation energy density Fax, the pronounced bi-exponential
decay and the lack of any quenching upon addition of the F8BT indicate that the
carrier density lies well above that of the Mott transition. The pronounced energy
transfer quenching and a nearly exponential photoluminescence decay at Ey support the
hypothesis that here the exciton density lies well below the Mott density. The probability
of Auger recombination increases with the density of free carriers and becomes more
pronounced at high excitation densities. From the photoluminescence decay curves
it can be seen that only the fast component of the decay accelerates with increasing
excitation densities. The tails of the decays follow similar dynamics for all measurements,
except for the first curve at the lowest excitation density where possibly a substantial
fraction of localised excitons with a characteristic recombination time is contributing

to the observed photoluminescence. The decrease of energy transfer quenching with
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Figure 3.8 — Power dependence of the time resolved photoluminescence of the QW be-
fore (red curves) and after addition of F8BT (interrupted blue curves). Ey = 49 pJem—2
is the energy density of the excitation pulse on the sample. The interrupted lines with
corresponding colour are exponential decays fitted to match the first 2 ns of the decays.

increasing excitation density can be understood from the theoretical considerations by
Basko et al. [29] which show that resonance energy transfer from free electron-hole
pairs is very slow compared to the exciton recombination time and is not expected to
contribute substantially to the recombination dynamics at all as long as a considerable
exciton population is present [64]. Accordingly, only when the entire carrier population
is dominated by free carriers, the slow energy transfer time for free carriers can become
comparable with the slow radiative recombination time for free carriers and energy
transfer can potentially play a role in their dynamics. In the three measurements with
the higher excitation densities the majority of carriers recombine quickly via Auger
recombination such that only a small population of excitons is remaining and energy

transfer from these has a negligible effect on the photoluminescence of the entire carrier

ensemble.

3.3.3 Increased colour conversion due to resonance energy transfer

So far we have collected evidence for resonance energy transfer from photolumines-
cence measurements. It remains to be seen whether the pronounced photoluminescence
quenching that is interpreted as energy transfer leads to measurable enhancements of the
colour conversion in the device under electrical carrier injection. Due to the described
difficulties associated with making electrical contact to the samples ten independent

measurements of the electroluminescence are combined to yield the intensity vs current
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Figure 3.9 — Colour conversion in the deep and shallow etched LED covered with the
polymer F8BT. (a) Electroluminescence of the shallow and deep etched QWs without F8BT
vs injection current. Shallow etched: solid curve. Deep etched: interrupted curve. (b)
Secondary luminescence of the F8BT layer vs injection current for the shallow (solid curve)
and deep etched QWs (interrupted curve). It can be seen that for a comparable QW emission
the polymer emission is enhanced in the deep etched device.

curves discussed in this section. Both, the QW electroluminescence (in absence and
presence of the F8BT) as well as the secondary luminescence from the F8BT is mea-
sured. The resulting averages of these measurements are shown in Fig. 3.9. In the upper
graph it is seen that the emission intensity increases with the injection current, but that
the increase slows down for larger injection currents. This effect is characteristically
referred to as efficiency droop and is fundamentally limiting the performance of solid
state light sources at the high injection currents required for their efficient operation in
single chip LED or laser diodes. To date its origin remains unknown and only specula-
tive explanations and hints have been provided, some of which are summarised, rejected
and refined in Ref. 65. Accordingly, neither the junction temperature nor the carrier
density in the QW cause the efficiency drop off because it occurs only under electrical
pumping conditions, but not under optical carrier injection. The authors propose that
under electrical operation polarisation fields in the MQW allow the escape of electrons
from the QWs and thus quench the electroluminescence. The discussion of the origin

continues and a very recent attempt for an explanation can be found in Ref. 66.

The luminescence from the F8BT is referred to as “secondary luminescence” because it
is not directly caused by the electrical injection of carriers into the polymer, but rather
by the absorption of photons and excitation energy originating from the QW which in

turn is electrically driven. The deposition procedure for the F8BT layer ensures that
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different samples feature comparable layers of the polymer. Moreover, the measurement
of the luminescence is not a point measurement but instead it measures luminescence
from an area such that inhomogeneities in the layer thickness are averaged out. In both
samples the F8BT layer absorbs a considerable fraction of the blue photons emitted
from the QW and re-emits. Hence, the emission intensity follows a trend proportional
to the emission of the QW itself, including the efficiency droop effect. However, a closer
examination reveals that the deep etched sample yields stronger luminescence from the
F8BT layer, indicating enhanced colour conversion in this sample. The enhancement
can be determined graphically from Fig. 3.9. The upper figure shows the QW emission
intensity for different injection currents before the addition of F8BT. For any value of
the emission intensity, for example the one chosen in Fig. 3.9(a), the injection currents
that yield this level of intensity for the shallow and deep etched sample can be deter-
mined. Then, the F8BT emission for these currents can be compared, and it is found
that the secondary F8BT luminescence is enhanced by approx. 10 % in the deep etched
sample in comparison to the shallow etched sample. It could be argued, that this effect
stems from the photonic crystal which couples out the light from the structure with dif-
ferent efficiencies depending on whether they are deep or shallow etched. But here the
normalisation is performed for equal amounts of blue light that escape from the struc-
ture and in both cases the F8BT fills the shallow and deep etched holes of the photonic
crystal. After ruling out optical effects for the enhanced emission, and in view of the
photoluminescence quenching in the deep etched sample upon addition of the polymer
layer, we propose that it originates from resonance energy transfer. However, the ob-
served increase in the colour conversion efficiency of approx. 10 % is low compared to
the efficient photoluminescence quenching of 28 % for the low excitation density regime.
This value is also lower than the previously observed colour conversion enhancement of
43 % from Ref. 21. A possible explanation can be found in the particular band align-
ment between the polyfluorene and the InGaN QW (shown in Fig. 3.10). With direct
contact, electrons will quickly transfer back to the semiconductor if they do not diffuse
further into the polyfluorene or recombine with a hole. This is because the electron
affinity of the polyfluorene is 1.8 eV lower than that of the InGaN. The electron affinity
of organic polymers is generally lower than that of inorganic semiconductors and this
type of detrimental back transfer can only be prevented by the inclusion of an insulating
layer which is thick enough to prevent the back transfer, but thin enough to enable
efficient non-radiative energy transfer. This leaves little margin for the thickness of the
insulating layer which has to be on the order of only a few nanometres, a thickness that
is hard to achieve reliably for devices. Alternatively, colloidal QDs, which themselves
are generally not conductive could be used, or the electron conducting organic polymer
F8BT could be embedded into an insulating matrix like PMMA. As it will be detailed
in the next section, this was indeed necessary for another reason: to achieve a sufficient
thicknesses of the F8BT on the surface of the wafer. However, another study of en-

ergy transfer between the two conjugated polymers Poly(9,9-dioctyl fluorene) (F8) and
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Figure 3.10 — Back transfer of electrons from the polyfluorene to the InGaN QW. Energy
offsets not drawn to scale.

F8BT in a ternary blend containing the polymer PMMA showed a strong suppression of
excitonic energy transfer [67]. The authors argue that the PMMA effectively “dilutes”
the polyfluorenes and thus limits energy transfer and exciton diffusion. They conclude
that adding a third chemically dissimilar polymer to a binary conjugated-polymer blend

alters the electronic properties and can be used to suppress excitonic energy transfer.

Finally, for the application in real world devices it is important to know whether it
is worth sacrificing the quantum efficiency of the device in order to employ resonance
energy transfer in the deep etched sample for an enhanced colour conversion. In order to
answer this question one would need to compare the electrical power that is need to drive
the shallow and deep etched LEDs. Although both the current and voltage is recorded in
these measurements, only the injection current can be seen as a meaningful number. Due
to the poor electrical contact between the two probes and the wafer material the voltage
required to drive the same current through the same sample but under different contact
conditions can be orders of magnitude apart. This makes it effectively impossible to
draw conclusions about the total colour conversion efficiency which considers how much

electrical power is needed to obtain emission from the device.

3.3.4 White light emission

Preliminary considerations lead to the conclusion that the FS8BT layer on the LEDs
studied in the previous sections is by far not thick enough to yield white emission as the
result of an appropriate balance between the blue QW emission and the yellow emission
from the F8BT. Additionally, overloading the samples with the pure polymer from highly
concentrated solutions does not yield stable films of F8BT. Instead, the polymer can
easily be scratched of by the probes. Therefore another approach is taken: the F8BT
can easily be implemented into a PMMA (Poly(methyl 2-methylpropenoate)) matrix
by adding some PMMA to the solvent containing the F8BT. By adjusting the ratio of
the two constituents the required thickness of the F8BT containing colour conversion
layer can be reached. It should be noted that the emission wavelength of F8BT shifts
from 540 nm to 550 nm when it is embedded in PMMA. The shifted spectrum is still

perfectly suited to mix white light in combination with the blue LED emission and it
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Figure 3.11 — White light emission from the shallow and deep etched LEDs covered with a
layer of F8BT in a PMMA matrix. (a) CIE diagram showing the sSRGB white point (circle)
in relation to the white emission from the shallow etched and deep etched LEDs (triangle
and cross respectively). (b) and (c) show the electroluminescence spectra of the shallow and
deep etched LED before and after coating with the F8BT/PMMA layer, respectively. Red
interrupted curves: shallow etched LED. Blue solid curvesdeep etched LED.

took only two iterations to find the correct thickness of the FSBT/PMMA layer which
yields white light emission from the samples. Figure 3.11(a) shows how the white light
emission from the shallow and deep etched sample relates to the sSRGB white point.
While the amounts of colour converting material is the same for both samples, the deep
etched LED shows, as expected, stronger emission from the F8BT and as a consequence
the white emission moves closer from the blue side of the CIE diagram towards the
white point in its centre. The enhancement of the colour conversion can also be seen
directly in the emission spectra of the shallow and deep-etched LED covered with the
F8BT/PMMA blend. These are shown in Fig. 3.11(b) and (c). In the deep etched
sample the emission from the F8BT layer is slightly enhanced and thus leads to a better
balanced, more “white” emission than from the shallow etched sample. The fact that
the enhancement is only small could be explained by the presence of PMMA. In the
blend it separates the F8BT molecules further from the QW and in Ref. 67 it was found
that it can prevent excitonic energy transfer. The combination of these two detrimental
side effects cannot be compensated for by the advantageous insulation that the PMMA
matrix offers between the InGaN and the F8BT.

3.3.5 Shortcomings of the third generation of LED wafers

The third generation wafer, made for electrical characterisation, features a metal layer on
the top surface that is only tens of nanometres thin and insufficient to make good contact

to the underlying LED. It is suspected that it was accidentally removed from larger parts
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]

Figure 3.12 — Single LED chips on the third generation wafer. (a) SEM image of the wafer.
(b) Electroluminescence from a single LED chip.

of the wafer in other processing steps and thus this sample generation does not resolve
the difficulties related to making electrical contact to the wafer. This iteration of the
sample finally features individually separated LED chips which can be contacted and
operated separately. Figure 3.12 shows the individual LED chips on the wafer. In the
SEM image on the left the photonic crystal pattern cannot be resolved clearly. Instead
only a disturbance in the centre of the image indicates the presence of a periodic hole
pattern on the surface. The hole pattern is successfully resolved on the corresponding

high magnification image in Fig. 3.2(c).

The experiments with this sample did not lead to any meaningful conclusions because
only one sample was supplied and it is unknown whether it features surface passivation
and if the holes were deep or shallow etched into the surface. This prohibits any com-
parative studies, and due to the poor electrical connectivity an absolute quantification

of the total colour conversion efficiency can still not be performed.

3.4 Conclusions

The study of hybrid LEDs constituting blue emitting InGaN/GaN QWs and F8BT as
a yellow emitting colour converting layer lead to a series of results that together justify
further research on organic polymers for real world white light emitting LEDs. However,
these devices will likely rely solely on radiative pumping of the colour converter because
the short range nature of resonance energy transfer does not seem to be compatible
with the constraints of manufacturing energy transfer efficient devices that suffer only
marginally from unwanted non-radiative carrier recombination at their interfaces. It
could be shown that a deep etched photonic crystal on the LED wafer enables efficient
resonance energy transfer, especially when the holes of the photonic crystal are densely
packed and the spectral overlap between energy donor and acceptor material is good.
However, enabling resonance energy transfer and thus more efficient pumping of the
colour converting layer comes at the cost of a decreased quantum yield. A comparative
study revealed that a surface passivation step with HsPO, after etching the photonic

crystal does indeed heal the sample and prevents undesired non-radiative recombination
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of carriers. However, this step also nearly completely disables the energy transfer process,
likely as a consequence of the introduction of an insulating layer on the sample surface
which is too thick to support the near field energy transfer process. The unpassivated
deep etched samples show strong photoluminescence quenching after addition of F8BT as
an energy transfer acceptor to the system. The effect of energy transfer is also confirmed
in electroluminescence measurements where the colour conversion of the deep etched
LED is 10 % higher than that of the shallow etched counterpart. The accuracy of these
measurements is fundamentally limited due to the poor conditions for electrical contact
with the samples and it is hoped that future iterations of the samples will finally feature
metallic contacts. Further electroluminescence measurements with F8BT in a PMMA
matrix as a colour converting layer prove that this material in combination with a blue
emitting LED wafer can indeed yield white light emission and is thus technologically
relevant. A direct comparison of the emission from the shallow etched and deep etched
sample showes that colour conversion is enhanced in the latter. It it is also found, that
PMMA is not a suitable host matrix for the polymer F8BT if resonance energy transfer

is to be employed, as it tends to hinder excitonic energy transfer and exciton diffusion.

In terms of applications in devices, the ultimate evidence for an enhancement of the total
colour conversion efficiency (electrical to optical power) remains to be presented. This is
due to a lack of suitable samples that allow electrical measurements under standard con-
ditions. Given the multiple iterations through different sample generations the persisting
lack of suitable samples for accurate electrical measurements is seen as an unfortunate
outcome to this series of experiments which were leading to an electrically operated,
resonance energy transfer enabled hybrid LED. Altogether, the study shows that the
detrimental effects caused by enabling resonance energy transfer by far overweight the
increased efficiency of pumping the first few nanometres of the colour converting layer.
It is the near field nature of the process that sets fundamental limits to its application.
The next chapter is dedicated to an investigation on how to increase the characteristic

range for resonance energy transfer from QW excitons.
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Chapter

Dependence of Resonance Energy

Transfer on Exciton Dimensionality

In this chapter we study the mechanism that governs resonance energy transfer from
excitons in a QW to an organic overlayer. Energy transfer can be employed in hybrid
inorganic-organic LEDs to efficiently pump a colour converter in the form of a colour-
tuned mixture of different organic dyes and/or colloidal QDs [22, 23, 26]. The work
presented here makes use of the theoretical framework presented by Basko et al. [29] to
calculate the dynamics of resonance energy transfer from QW excitons. According to
Basko et al. so called free excitons and localised excitons have to be considered sepa-
rately, the latter being a consequence of the imperfections in a real world QW. From our
experiments it is evident that in this geometry resonance energy transfer features a dis-
tinct non-monotonous temperature dependence. We argue that this dependence stems
from a temperature dependent balance between localised and free excitons in the QW.
Our theoretical model [1, 2] provides a quantitative explanation for the experimentally
observed data and allows us to draw conclusions on how to exploit the underlying mech-
anism for the optimisation of energy transfer in LEDs. In view of this application we
study a material system that has the potential to be used in the commercial fabrication

of such devices.

4.1 Materials and methods

4.1.1 Material system

The hybrid configuration studied here consists of a single GaN QW between Alg 16Gag.gaN
barriers which is covered by an overlayer of the green emitting polyfluorene Poly(9,9-
dioctylfluorene-co-benzothiadiazole) (F8BT) end-capped with 2,5-dimethylphenyl. The
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Figure 4.1 — Hybrid inorganic-organic material system for a hybrid LED employing reso-
nance energy transfer. (a) Spectral overlap between the QW emission (blue line) and the
polyfluorene absorption (black interrupted line). Red dotted line: polyfluorene emission
spectrum. (b) Schematic of a hybrid LED consisting of a GaN QW and an organic colour
converter. The actual sample studied here does not feature electrical contacts and excitons
are injected into the QW by means of optical excitation. (c) Spectral broadening and shift of
the QW emission spectrum with increasing temperature. Black solid line: without polyflu-
orene; red interrupted line: with polyfluorene. The emission spectra show a contribution
from the 1 pm thick GaN buffer layer.

thickness of the QW and the capping layer is Ly, = 2 nm and Ly, = 4 nm, respectively.
This variant of FSBT was purchased from American Dye Company, Canada under the
product code ADS233YE. Non-radiative resonance energy transfer from the QW to the
polyfluorene layer is enabled by the combination of a thin capping layer and a good spec-
tral overlap between the QW emission and the polyfluorene absorption (see Fig. 1(a)).
As a reminder, a good spectral overlap is not only a requirement for radiative energy
transfer, but also for non-radiative resonance energy transfer (see also the discussion
in chapter 2.6). A schematic of the hybrid material system studied here is shown in
Fig. 4.1(b). Note, that the electrical contacts shown in the schematic were not fabri-
cated, but they are included to illustrate the electrical operation of a hybrid LED. Our
study also covers control samples which feature thicker capping layers of Ly, = 6 nm
and 9 nm width. As it will be discussed later, this thickness is sufficient to prohibit
resonance energy transfer from the QW to the polyfluorene layer. The GaN QWs were
grown on sapphire substrates by means of metal organic chemical vapour deposition at
a temperature of 1050 °C using trimethyl gallium, trimethyl alluminum and ammonia
as precursors. The polyfluorene was dissolved in toluene at a concentration of 20 mg/ml
and spin cast onto the QW. This yields a 15 nm thin film as estimated by a contact

profilometer measurement.
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4.1.2 Characterisation of energy transfer with time resolved spectroscopy

Due to the undoped, non-conducting AlGaN top barriers and the lack of electrical con-
tacts our samples do not allow the observation of energy transfer under electrical carrier
injection. The process can only be studied by using optical spectroscopy where excitons
are injected into the QW by laser excitation and the evolution of the exciton population
is probed with an optical technique. We use the third harmonics from a Ti:sapphire fem-
tosecond pulsed laser (average power density ca. 50 W/cm? at Apyse = 266 nm) with a
repetition rate of 75 MHz to excite the QW. The time and energy resolved photolumines-
cence was recorded with a Hamamatsu synchroscan streak camera with ~ 2 ps resolution
to characterise resonance energy transfer from the QW at various temperatures between
5 K and room temperature. (The operation principle of a streak camera is explained in
chapter 3.2.3.2.) The time integrated QW emission spectrum in the bare (QW only) and
hybrid (QW-polyfluorene) configuration at different temperatures is shown Fig. 4.1(c).
It can be seen that at low temperatures the linewidth is inhomogeneously broadened
with a full width at half maximum (FWHM) of 25 meV at 5 K. With increasing temper-
ature similar thermal broadening is observed for both the bare and hybrid configuration,
leading to 90 and 71 meV FWHM, respectively, at room temperature. The associated
shift in emission energy is 50 meV. In presence of the polyfluorene the exciton popula-
tion is quenched by resonance energy transfer. The rate of energy transfer is revealed
by a time resolved measurement of the QW’s photoluminescence. Figure 4.2(a) shows
the PL decay of the QW before and after deposition of the polyfluorene overlayer for a
few selected temperatures. Such measurements are performed over an extensive range
of temperatures between 5 K and room temperature. The decay rates obtained from an
exponential fit to the PL decays are summarised in Fig. 4.2(b). Above 50 K the PL de-
cay is noticeably accelerated in presence of the polyfluorene while the most pronounced
quenching is found between 100 and 170 K. It should be noted that the PL decay
fully recovers after removal of the polyfluorene layer, indicating that the QW PL is not
quenched due damage to the surface. The 4 nm thick undoped capping layer between
the QW and the organic effectively prohibits charge transfer between them and, hence,
cannot account for the observed PL quenching. The two lowermost graphs in Fig. 4.2(a)
show the PL decay of the QW control sample with the thicker capping layer (6 nm).
The decay remains unaltered after the deposition of the polyfluorene layer. Therefore,
the accelerated PL decay is attributed to resonance energy transfer mediated via the
near field dipolar coupling between the excitonic dipole moment and the polarisability
of the organic material. Evidence for resonance energy transfer can also be found in the
PL decay of the polyfluorene, the energy transfer acceptor: energy transfer acts as an
additional pumping source that can be identified and quantified from the rise time of
the polyfluorene’s PL dynamics. A detailed application of the respective rate equations
can be found in Refs. [21, 68, 69]. Because the polyfluorene absorbs strongly at the
wavelength of the laser pulse used to excite the QW (Apyie = 266 nm, see Fig. 4.1(a))
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Figure 4.2 — Evidence for resonance energy transfer in the photoluminescence from the
QW. (a) Photoluminescence decay of the QW before (black curves) and after (red curves)
deposition of the polyfluorene at various temperatures. (b) Temperature dependence of
the exciton recombination rate in the QW before (black triangles) and after (red circles)
deposition of F8BT. (c),(d) Energy transfer rate and efficiency at different temperatures.
The black line in (c) is the energy transfer rate calculated according to the model described
in the text. (e) Photoluminescence transient of the polyfluorene deposited on samples with
a 4 (red dotted line) and 9 nm (black line) capping layer.

it is also directly excited and only a small difference in the buildup of the polyfluorene’s
PL dynamics is expected. Indeed, Fig. 4.2(e) reveals a slightly longer rise time for the
sample where resonance energy transfer is enabled. Resonant back-transfer of energy
from the F8BT to the QW cannot occur because the excited state relaxation time in
the polyfluorene is much shorter than the characteristic energy transfer time of a few
hundred ps and, hence, the interaction occurs in the weak coupling regime [70]. How-
ever, other material systems and geometries, for example microcavities, can support the
strong coupling regime where hybrid excitonic states are formed when energy is coher-
ently exchanged between the Wannier-Mott excitons in the QW and Frenkel excitons in
the organic constituent [71]. As evidenced in the presentation of Fig. 4.2(a) the PL of

the QW obeys an exponential decay law and can be accurately characterised by a decay
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rate ['yo. Different decay mechanisms contribute to the decay of the exciton population
and in absence of the polyfluorene the total decay rate can be written as the sum of
radiative and other non-radiative rates intrinsic to the QW, I'tot=I"rad + T'non—rad- When
energy transfer is enabled in the presence of the polyfluorene layer the rate of RET can
be quantified from the increased decay rate of the QW PL, I'ReT=I"tot,hybrid — L'tot,bares
where the subscripts hybrid and bare denote the QW with and without the layer respec-
tively. Given the rate of resonance energy transfer, I'rgr, the efficiency of the process is
defined as nRET:%. The temperature dependence of the total decay rates of the
bare and hybrid QW, the rate of energy transfer, and the efficiency of energy transfer

is summarised in Figs. 4.2(c)-(e).

The increase of the total PL decay rate of the bare QW with temperature is attributed
to the temperature dependence of non-radiative recombination channels, intrinsic to the
QW. This includes carrier trapping and non-radiative recombination at defect states
at dislocations or AlGaN/GaN interfaces. Consequently, the quantum yield QYqw,
estimated from the PL decay rate, drops monotonously from an assumed 100 % at 5 K
to less than 30 % at room temperature. It is found that the rate and efficiency of energy
transfer do not follow a monotonous trend, but show a pronounced maximum around
130 K where the transfer of excitons from the QW to the organic material reaches a
maximal efficiency of 43 % (Fig. 4.2(c),(d)). Our group has previously performed similar
experiments over a smaller temperature range up to 130 K on a QW that was coated
with QDs instead of an organic material [72]. Also in these experiments it was found
that the energy transfer rate keeps increasing up to 130 K but it remained undecided

how the energy transfer rate changes above this temperature.

4.2 Resonance energy transfer dynamics of quantum well ex-

citons

In this section we will develop the ansatz to understand the experimentally observed non-
monotonous temperature dependence of energy transfer. Starting point is a review of
the theory of energy transfer from QW excitons developed by Basko et al.. At first, let us
recollect Forster’s original theory from which it follows that the rate of resonance energy
transfer is not explicitly temperature dependent but that it is proportional to the fluo-
rescence decay rate of the donor and the sixth power of the donor’s quantum yield [46].
Any particular, non-monotonous temperature dependence of the energy transfer rate
and efficiency would originate from non-monotonous changes of the donor’s fluorescence
properties with increasing temperature. As this is not seen in our experiment, another
theoretical framework is needed to describe the energy transfer process. Forster’s theory
of energy transfer considers electronic excitations in the form of bound Frenkel excitons
at individual molecular sites. In contrast, the electronic excitations found in a crystalline

inorganic semiconductor QW are propagating Wannier-Mott excitons characterised by
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a wave vector k. With regard to the the planar configuration of a QW and an organic
overlayer it is known that the dipolar coupling between two planes separated by distance
d scales with

V(k,d) x ke™*, (4.1)

where k is the magnitude of the relative in-plane wave vector k [29]. Basko et al.
showed that the resulting non-monotonic dependence of the dipolar coupling on the
wave vector gives rise to a strong dependence of energy transfer on exciton localisation
in real space. The general approach to calculate the rate of energy transfer for a donor-
acceptor system was outlined in chapter 2.6. Following the theoretical approach by
Basko et al. the rate of energy transfer from QW excitons in the linear regime to a bulk
epilayer of organic molecules [29] or QDs [73] is calculated by applying Fermi’s golden
rule to the interaction of the electric field produced by the QW polarisation with the
polarisability of the polyfluorene. For that purpose the polyfluorene’s properties can be
summarised by the macroscopic complex dielectric function which originates from the
detailed electronic level structure of the organic molecules. It can be shown that either

can be used to calculate the rate of energy transfer [29].

4.2.1 Free excitons

Let us first consider a free exciton, subject only to the confinement in the growth direc-
tion and moving freely in the QW plane. The exciton’s centre of mass motion is then
characterised by an in-plane wave vector k that depends on the kinetic energy of the
exciton and the exciton’s envelope wave function has the form of a plane wave. The
exciton is further described by the 2D in-plane exciton Bohr radius ax p2p and the ex-
citon’s optical properties are summarised by the dipole moment between the conduction
and valence band dy.. From equation 4.1 it can be understood that the energy transfer
rate for a free exciton is expected to be small for both very small and large wave vectors
while it is maximum for some intermediate value of k& = |k|. The explicit dependence
of the RET rate on the magnitude of the exciton wave vector shall not be reproduced
here because the shape of the resulting curve is not apparent from the equation alone.
The derivation of the explicit expression is explained in great detail in the original work
by Basko et al. [29]. However, it is instructive to look at the plot of the wave vector
dependence of the energy transfer rate for a free exciton in our material system as it is
shown in Fig. 4.3. The behaviour from the two plane model is indeed reproduced and
it can be seen on the double logarithmic plot that the dependence is non-monotonous,
non-linear and that the energy transfer rate drops rapidly for large wave vectors. This
can be qualitatively understood by considering that for large wave vectors the evanes-
cent field of the exciton polarisation decays very fast, and thus little interaction with the
overlayer can be expected. The behaviour for very small wave vectors originates from
the fact that the exciton charge density serves as a source term for the polarisation. A

slow in-plane oscillation of the exciton charge density yields a small gradient and thus
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Figure 4.3 — Dependence of the energy transfer rate on the exciton wave vector. The graph
is calculated with the parameters of the AlGaN/GaN and F8BT material system used for
study in this chapter.

a small polarisation, which in turn results in a low interaction strength for resonance

energy transfer.

For an ideal QW it would suffice to consider the Boltzmann distribution of a thermalised
ensemble of free excitons to obtain a non-monotonous dependence of the energy transfer
rate on temperature. At both low and high temperatures the majority of excitons
occupies states below or above the wave vector that yields efficient energy transfer.
Real world QWs suffer from imperfections in the QW potential, especially when made
of AlGaN/GaN. As a result, a substantial fraction of excitons can be trapped in the
potential disorder of the QW and, as we will see in the next paragraph, their energy

transfer dynamics will be distinctly different from their free counterparts.

4.2.2 Localized excitons

Localised excitons in a QW are effectively zero-dimensional and have more similarity
with QD excitons than with free 2D excitons. However, their in-plane wavefunction can
be decomposed into plane waves with an average wave vector of zero. Figure 4.4 shows
schematically the potential disorder along with the wave functions of a localised and free
exciton. For simplicity, the in-plane potential trap experienced by a localised exciton is
approximated as being harmonic and isotropic. The in-plane wavefunction of the ground
state is then a gaussian function, which in turn yields a gaussian function for the Fourier
decomposition into plane waves of different wave vectors. The localisation length L. is
a measure for the spatial extent of the exciton wave function in the QW plane and, evi-
dently, a small localisation length goes along with a broad distribution of wave vectors.
As a consequence from the discussion in the previous paragraph, the dependence of the
energy transfer rate on the localisation length L. is non-monotonic and shows a dis-
tinct resonance. The explicit expression for the dependence of the energy transfer rate

on the localisation length is not reproduced here. It is discussed thoroughly in Ref. [29].
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Figure 4.4 — Schematic of the potential landscape experienced by excitons in an imperfect
QW. The potential landscape is drawn in shaded green. Also shown are the wavefunctions
of an exciton trapped in a local minimum (blue) and a free moving exciton at a higher
energy (red). Resonance energy transfer from excitons in the quantum well to an overlayer
of organic dyes is governed by the excitons’ dimensionality.

10 F T T T i
///"'\\\

2 1} / . ;
o /

+~

2 /

—

= 01¢ /

€3

o

0.01 L L L
100 pm 1 nm 10 nm 100 nm 1 pm

Exciton localization length (m)

Figure 4.5 — Dependence of the energy transfer rate on the exciton localisation length.
The graph is calculated with the parameters of the AlGaN/GaN and F8BT material system
used for study in this chapter.

Instead, we refer to Fig. 4.5 for a plot of the dependence for our material parameters.
Note that localisation lengths well below a few nanometres are not physically relevant,
because the respective confinement energy makes them energetically unfavourable. In
order to link the populations of localised and free excitons we introduce a typical po-
tential trap depth Vi;ap that acts as a threshold energy which a localised exciton has to
overcome to propagate freely. With increasing temperature we can expect a transition
from localised to free excitons and a signature in the temperature dynamics of reso-
nance energy transfer. The occurrence of localised excitons will depend on the potential
disorder and hence some characterisation of the random potential disorder is required.
An accurate description of the potential disorder and its origins goes beyond the scope
of this thesis and cannot be given without further knowledge, but an approximation
can be attempted. We assume that the potential disorder can be described by three
characteristic parameters: the typical localisation length Lj,. (which in the case of a

distribution of localisation lengths takes the place of an average localisation length), the
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Figure 4.6 — Distribution of excitonic states in the imperfect QW. (a) Schematic of the
potential fluctuations experienced by excitons in the QW. (b) Density of states composed
of a delta function at low energies for localised excitons and a flat contribution above an
energy threshold for free excitons (relative contributions not drawn to scale). (c) Relative
population of localised (blue interrupted line) and free (red line) excitons vs temperature.

typical potential trap depth Vi;ap and the area density pirap of traps in the QW plane.
In the next section it will be shown how these parameters determine the temperature

dependence of resonance energy transfer.

4.2.3 Energy transfer in the exciton ensemble

After excitation with the laser pulse the exciton population thermalises and the dis-
tribution of excitons among localised and free states is determined by the Boltzmann
factor and the density of states (DOS). Localised and free excitonic states contribute
differently to the DOS: free exciton states contribute with a constant DOS above Viyap,
whereas localised exciton states contribute with a weighted delta function at £ = 0. In
this approximation only the first subband with the lowest quantum number in respect
to the vertical confinement is considered. Figure 4.6(a)+(b) show a schematic plot of
the potential landscape and the resulting DOS. The absolute value of the DOS for free
excitons is given by eq. 2.4 while the weight of the delta function representing the lo-
calised states is determined by the area density piap of potential traps. Energy transfer
from free electrons and holes is not included in our model because at this low excitation
density their population is very small and thermalisation of electrons and holes into
excitonic states occurs within their characteristic energy transfer time [29]. Moreover,
the large exciton binding energy in GaN (23 meV in bulk and 92 meV in an infinitely

thin QW) prohibits exciton dissociation at the temperatures from our experiments.

For the exciton ensemble we define an average rate of energy transfer at temperature T'

as [1]
(Trer)(T) = Z(lT)/O FRET(E)DOS(E)G_ICBLTdEa (4.2)
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where Z(T') is the partition function, kg is Boltzmann’s constant, and the integration
is performed over energy. For the computation of the integral I'ggr is calculated for
localised and free excitons as outlined above. Because the control sample with a 6 nm
thick capping layer did not show PL quenching upon addition of the F8BT layer, it
is justified to approximate the the 15 nm thick F8BT layer found on our samples as
an infinitely thick polarisable layer in line with the formalism from Ref. [29]. Energy
transfer from excitons in the QW is mediated via the excitonic dipole moment both
in (L) and out (Z) of the QW plane. The corresponding rates differ at most by a
factor of 3 and here their average is taken. The energy transfer rate I'grpr depends on a
number of material parameters that are briefly summarised in the following. The dipole
moment dy. for the transition between the conduction and valence band goes into the
energy transfer rate with its magnitude squared. It is obtained from the Kane energy
via the relation |dy|* = e*h*Eo/ (2moEZ,,),
Egap = 3.502 eV — 0.79 x 1073 eV/K x T?%/ (T + 1000K) is the temperature dependent
band gap of GaN, my is the free electron mass and e the electron charge [74]. For a
GaN QW embraced by AlGaN barriers the dipole moment dy. is reduced due to the

internal electric field in the heterostructure [75]. In a single QW we account for this

where Fy = 14eV is the Kane energy,

effect by the reduction of the dipole moment by a factor of 1/0.63, a smaller correction
than that expected for a superlattice according to Ref. [75]. The exciton Bohr radius
in the QW is approximated at ax g = 3 nm [76], and the translational mass of the
exciton is taken as the sum of the effective masses of the electron (m. = 0.2 - my)
and hole (mj = 1.3 -myg) [74]. The dielectric constant of GaN is set to 9.5, and the
optical properties of the F8BT at the resonance energy of the QW are approximated
to be independent of temperature and isotropic. They are described with the dielectric
function €350nm = 2.9 4+ 0.51 [77]. It has been reported that thin films of F8BT indeed
show birefringence due to alignment of the long molecules parallel to the surface [77], but
this effect can be neglected for the non-resonant excitation at 350 nm considered here
because it is only dominant at the m — 7* transition. In certain cases, for example when
the organic overlayer is crystalline or the transition energy lies close to the resonance of
the organic material the anisotropy of the material has to be considered. Kawka and La
Rocca have provided a specialisation of the formalism from Basko et al. that accounts

for anisotropy in the optical properties of the organic layer [78].

4.2.4 Comparison between experiment and simulation

Equipped with an expression for the average rate of resonance energy transfer in the
exciton ensemble at a given temperature and the relevant material parameters we are in a
position to compute equation 4.2 and compare the result directly with the experimentally
observed temperature dependence from Fig. 4.2. The three parameters that remain
unknown a priori and are thus allowed to be adjusted to yield a good match are the

characteristic parameters which together describe the potential disorder: the localisation
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length Lj,, the potential depth Vi;ap and the number of potential traps per area, pirap-
The best matching simulated curve is shown as a solid line along the experimental
data in Fig. 4.2(c). The simulated curve reproduces well the characteristics of the
experimental data: at low temperatures up to 50 K the energy transfer rate remains
nearly constant and depends solely on the localisation length of the localised excitons.
The energy transfer rate peaks at 130 K where the efficiency of the process reaches 43 %
before it decreases again for higher temperatures. At room temperature the efficiency
of energy transfer is approximately 18 %. Figure 4.6(c) shows the calculated occupation
probability for localised and free excitons over the entire temperature range. It can be
seen that below 50 K the majority of excitons are localised, which is in agreement with
an unchanging energy transfer rate in this temperate range. A small value of Lj,. = 0.9
nm yields a corresponding energy transfer rate of 0.23 ns~!. Given an in-plane lattice
constant for GaN of 0.32 nm, this localisation length corresponds to approximately 9
lattice sites in the QW plane, and suggests that excitons are trapped in the potential
disorder and not at individual impurity sites. According to calculations by Gallart et al.,
the estimated value for L. is comparable to the average spacing between Al atoms in
the AlGaN barriers (~ 2 nm)[76]. When the temperate is elevated to 50 K or greater a
substantial fraction of excitons acquires adequate thermal energy to overcome the energy
threshold for escaping the traps and undergoes energy transfer with a rate depending on
their wave vector. With a trap depth of Vi;ap = 20 meV and an area density of potential
traps of pirap = 4 - 10" cm™? the simulation reproduces accurately the characteristic
increase and peak of the energy transfer rate above 50 K (see again Fig. 4.2(c)). The
calculated relative occupation of the localised and free exciton states reveals that at
130 K, where the rate of energy transfer is maximum, the fractions of localised and free
excitons are approximately equal (see Fig. 4.6(c)). Above this temperature the exciton
ensemble is dominated by free excitons and the rate of energy transfer decreases again

because their wave vectors become too large for efficient dipolar coupling.

4.2.5 Comparison of radiative and non-radiative energy transfer

The discussion of energy transfer in the hybrid organic-inorganic device would be incom-
plete if we only considered non-radiative resonance energy transfer. In addition, radiative
energy transfer also offers a channel for transferring electronic excitations from the QW
to the organic layer. This process relies on the emission of a photon from the QW and
subsequent absorption of the same to finally yield an electronic excitation in the organic
overlayer. In contrast to non-radiative energy transfer, the efficiency of radiative energy
transfer scales with the quantum yield QYqw of the QW. In the experiment we have
observed that the quantum yield drops dramatically with increasing temperature, and
this will be reflected in the efficiency of radiative energy transfer 7,,q. The latter is the
product of the probability for the emission of a photon from the QW and absorption of
the same photon by the polyfluorene layer, 1,aq = QYqw PrspT, where the factor Prspr
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takes into account isotropic emission from the QW, Fresnel reflection of the emitted light
at the GaN/F8BT interface (3.6 %), and absorption of light in the 15 nm thick polyflu-
orene layer. Based on these values the efficiency for radiative energy transfer at room
temperature is estimated to be 2 orders of magnitude lower than the efficiency observed
for non-radiative resonance energy transfer, 0.15 % vs. 22 %. This large discrepancy in
the efficiencies is in agreement with the findings from another similar study by Itskos et
al. [20]. These results prove that for thin film geometries non-radiative resonance energy
transfer is the dominating energy transfer mechanism that easily outperforms radiative
pumping of the colour converting layer. It can be exploited in hybrid organic-inorganic
microcavities which can feature the hybridisation between excitons in the organic and
inorganic constituents and allow coupling of the high oscillator strength and binding
energy of Frenkel excitons with the optical non-linearities and high mobility of Mott-
Wannier excitons [79]. However, for the application in LEDs a thin capping layer on the
QW will substantially limit current injection and hinder efficient thermal management
of the device. This aspect will be discussed in detail in the next section. We note,
that radiative pumping of the colour converter is fundamentally limited by the low light
extraction efficiencies from GaN based substrates and even a macroscopically thick layer
of polyfluorene on the order of a few microns can only absorb the few photons that are
leaving the solid state substrate. As mentioned in chapter 3 one common approach to
improve light extraction from an LED is to impose a photonic crystal structure on the
surface which effectively couples the waveguided light modes with free space modes. In
chapter 3 it was shown that such a LED design with thick current injection layers and
a photonic crystal can be used in conjunction with energy transfer pumping of a colour
converter deposited into the holes of the photonic crystal. However, resonance energy
transfer is only enabled when the holes of the photonic crystal penetrate sufficiently
deep through the multiple QWs and reveal an interface with the QWs [21]. Because
this process is detrimental to the quantum yield of the QWs, enabling resonance energy

transfer comes at the cost of lower device performance.

4.3 Optimization of resonance energy transfer

In this section we will explore a few possibilities to optimise resonance energy transfer
in planar geometries for the application in hybrid LEDs. According to Forster’s theory
of resonance energy transfer between molecules the coupling depends crucially on the
separation distance and scales with %p where 7 is the distance between energy transfer
donor and acceptor, and P = 6 for two molecules represented as point dipoles. The
exponent reduces to P = 4 for the case of a point dipole that couples to a plane of
acceptors and for two planes of dipoles coupling to each other the exponent reduces
further to P = 2. Although the application of this formalism to QW excitons and an

organic layer is crude and incomplete, it has been reported that the best match with
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Figure 4.7 — Forster radii of QW excitons. (a) Calculated energy transfer rate for localised
excitons (blue interrupted line) and free excitons (red line) at 130 K for varying thickness
of the capping layer. The dotted green line corresponds to the energy transfer rate of an
exciton with the optimum wave vector for each capping layer thickness. The thin horizontal
line marks the exciton decay rate T'tp; at 130 K without energy transfer. (b) Tempera-
ture dependence of the Forster radii of localised (blue interrupted line), free (red line) and
excitons with the optimum wave vector (green dotted line).

experimental data from a configuration similar to the one considered here was found
for P = 2, indicative of plane-to-plane coupling in terms of the Forster theory [20].
The distance where the energy transfer rate equals the sum of all other decay rates
is traditionally referred to as Forster radius and we shall employ the same definition
here. For molecular optical dipoles the Forster radius is usually between 1 and 5 nm,
rendering energy transfer inefficient for larger separation distances. However, we find
that under certain conditions QW excitons can feature Forster radii up to several tens
of nanometres. The actual dependency of the rate of energy transfer on the separation
between the QW plane and the organic material cannot be described with a simple
expression like the one above. Instead, the more accurate framework outlined throughout
this chapter should be applied. To underline the effect of the exciton dimensionality on
the Forster radius, we split the exciton ensemble into two sub ensembles of localised and
free excitons and calculate their Forster radii separately. Moreover, we also calculate
for each capping layer thickness the energy transfer rate of an exciton with the optimum
wave vector that yields the highest rate. The results are shown in Fig. 4.7(a) where
the sub ensemble of free excitons is considered at a temperature of 130 K. It can be
seen that the energy transfer rate for localised excitons drops faster with increasing
capping layer thickness than for free excitons. Moreover, the resonant excitons sustain
a high energy transfer rate for much thicker capping layers. Figure 4.7(a) also indicates
the decay rate of the exciton ensemble at 130 K by a horizontal interrupted line. The
Forster radii for the different cases are found at the intersections between the graphs
and the horizontal line. At a temperature of 130 K where (I'rgr) (the average rate of
energy transfer in the exciton ensemble) is the highest the Forster radii for the three
cases are: 1 nm for localised excitons, 4 nm for the sub ensemble of free excitons and
25 nm for excitons with the optimum wave vector. The same procedure is used to
compute the complete temperature dependence of the Forster radii. It is shown in
Fig. 4.7(b) where it can be seen that the optimally tuned excitons yield a Forster radius

of 12 nm at room temperature. This value is one order of magnitude larger than for a
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complete exciton ensemble at 130 K which consists of 50 % free excitons with a Forster
radius of 4 nm and 50 % localised excitons with a Forster radius of 1 nm. In order
to exploit the advantageous energy transfer properties of the excitons with a optimised
wave vector the DOS needs to be enhanced for this particular wave vector and resonant
excitons need to be produced within the exciton ensemble. In principal, this could be
achieved by optical injection via a coupling grating configuration which also acts a a
periodic potential modulation for the QW potential. Such a device, which is tuned to
resonance with the optimum exciton wave vector, might hold the potential to resolve
the compromise between a thick and a thin capping layer; the former can support a
reasonable electrical current, but yields a low energy transfer rate, and the latter is too
thin to carry substantial current, but yields a high transfer rate. Admittedly, this finding
might be difficult to implement in commercial applications like the LED wafers studied

in chapter 3.

Another possibility to improve the efficiency of energy transfer under the operating
conditions of a real world device is to manipulate the balance between localised and free
excitons. We saw that by enabling the excitons to move freely and with the optimum
wave vector the rate of energy transfer can be increased by over an order of magnitude
compared to point-like localised excitons. In devices this can be exploited by variation
of the potential trap depth Vi;ap, the density pirap and the localisation length [, of
such traps. In general, more and deeper potential traps will increase the temperature
at which excitons start to move freely. As a result, the maximum of the graph in
Fig. 4.2(c) could be shifted from 150 K to higher temperatures. Indeed, this trend can
be identified in the computed graphs from Figs. 4.8(a) and (b) where the effect of the
parameters Viyap and peap on the average energy transfer rate (Urgr)(77) is shown for
different temperatures. In addition, Fig. 4.8(c) shows how the average rate of energy
transfer at room temperature, (CrpT) (7 = 300 K), is affected when Viyap and pirap are
varied. It can be seen that as long as piap is sufficiently low, i.e. equal or less than in
these samples, (I'rpT)(7 = 300 K) reaches an approximately constant plateau over a
range of trap depths because the dominating fraction of excitons becomes free at 300 K.
Consequently, energy transfer can be controlled by the use of high purity materials and
long annealing phases during the epitaxial growth of the heterostructure. A pronounced
and high maximum in the temperature dependence of the energy transfer rate can only
be achieved for relatively flat and neat potential landscapes and occurs around 30 K.
However, such a nearly perfect potential landscape is not needed to yield a reasonably
high energy transfer rate and efficiency at room temperature. Figure 4.8(c) shows that
for a wide range of potential trap depths and trap densities an efficiency of around 23 %
can be maintained. This is similar to the observed energy transfer efficiency of 18 % at

room temperature for our sample.
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Figure 4.8 — Optimisation of resonance energy transfer through variation of the potential
landscape. (a) Dependence of the average rate of resonance energy transfer in the exciton
ensemble, (I'ggr), on the temperature and the trap depth Viyap. (b) Dependence of (TrgT)
on the temperature and the trap density piap. (c) Dependence of (I'rgr) (T = 300 K) on
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4.4 Conclusions

In summary, we have studied the dependence of resonance energy transfer from QW
excitons to a polyfluorene overlayer on exciton dimensionality. Localised and free exci-
tons show different energy transfer dynamics which are determined by their localisation
length and wave vector, respectively. In the AlGaN/GaN QW under investigation the
potential landscape experienced by excitons in the QW features a considerable density
of potential traps that capture excitons at temperatures below 50 K. In our experiments
the ratio between localised and free excitons is controlled by tuning the temperature of
the exciton ensemble. With increasing temperature the fraction of excitons which es-
cape traps in the potential landscape and become free increases. We find a maximum
efficiency of resonance energy transfer of 43 % at 130 K. At room temperature the
efficiency drops to 22 %, which is still 2 orders of magnitude larger than the efficiency
of radiative energy transfer for this configuration. The temperature dependence of reso-
nance energy transfer is effectively determined by three characteristic parameters which
describe the potential disorder in the QW: the characteristic exciton localisation length
Ly, for localised excitons, the trap depth Vi;ap that localised excitons have to overcome
to move freely, and the density pirap of such traps in the QW. In principle, these pa-

rameters can be influenced by the growth conditions. Based on simulations we present
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examples how this could be exploited to yield higher energy transfer efficiencies at a
defined temperature. Energy transfer can be further enhanced by tuning specifically the
exciton wave vector through manipulation of the density of states and a resonant exci-
tation scheme. This approach exploits the fact that for a optimum wave vector excitons
undergo energy transfer on a length scale of tens of nanometres, whereas it is only a few
nanometres for localised excitons. Each of these approaches, or even the combination,
could be used to enable energy transfer in LEDs where a too thin capping layer would
prohibit the electrical injection of carriers, and a too thick capping layer would prohibit
efficient transfer. Our findings encourage the experimental realisation of a hybrid LED
or microcavity structure that is designed to support the propagation of excitons at the
wave vector which yields the optimum resonance energy transfer rate. The findings and
conclusions about the wave vector dependence in this chapter rely on the indirect ex-
perimental evidence obtained through the temperature dependence and on the results
of the simulation. Because the wave vector dependence of resonance energy transfer
has not been explicitly measured, yet, we pursued this aim in a rigorous experimental

approach of which the results and conclusions will be given in the next chapter.

4.5 The author’s contribution

The measurements with the streak camera discussed in this chapter were performed by
Dr. Galia Pozina at the University of Linképing. My own contribution to the acquisition
of the experimental data was the coating of the QW samples with F8BT. The ansatz
for the physical model concerning the temperature activation of free excitons and all

simulations in this chapter were developed and tested by me, Jan Junis Rindermann.
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Dependence of Resonance Energy

Transter on Exciton Wave Vector

In the previous chapter we studied resonance energy transfer from a thermalised exciton
ensemble in a GaN quantum well to an overlayer of the polyfluorene F8BT. This chapter
covers the continuation of the project with a rigorous attempt to probe directly the
dependence of the rate of resonance energy transfer on the magnitude of the exciton wave
vector. In contrast to the experiment from the previous chapter, here, we do not rely on
the thermalisation of the exciton ensemble to study the average rate of energy transfer
based on the temperature dependent occupation of excitonic states with different wave
vectors. We rather design and perform a pump probe experiment that potentially allows
to measure directly changes of the rate of energy transfer with increasing magnitude of
the exciton wave vector. Moreover, angle resolved photoluminescence is employed in an

attempt to obtain the desired dependency.

5.1 Materials and methods

5.1.1 Single AlGaAs/GaAs quantum well

The sample used for this series of experiments is the sample NU2601 fabricated by Prof.
Mohamed Henini at the University of Nottingham. It is a single GaAs quantum well
of 6.5 nm thickness with Alp35GaggsAs barriers, where the widths of the inner and
outer barrier is approx. 20 nm and 7.5 nm, respectively. The heterostructure is grown
on top of a 500 nm thick GaAs buffer layer on a (100) GaAs substrate. Other pieces
of this sample were successfully used in a previous study on resonance energy transfer

by my predecessor Dr. Soontorn Chanyawadee [56, 68]. In the previous study it was
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proven that the relatively thin outer barrier of the QW enables efficient resonance energy

transfer from the QW to an organic overlayer on the sample.

5.1.2 PbS quantum dots

For this experiment we chose to use PbS QDs instead of an organic absorber as the
energy transfer acceptor. This is due to the difficulty to obtain and prepare an organic
material that can strongly absorb in the infrared and hence support strong resonance
energy transfer from this QW. For this QW the transition of the heavy hole exciton lies
at 796 nm at 10 K. The PbS QDs provide both, a strong absorption coefficient at this
energy and an easy sample preparation by spin coating a thin film onto the QW sample.
In contrast to organic materials, the QDs were readily available from other experiments
in the research group, like the ones performed by Dr. Peristera Andreakou [80]. The par-
ticles were synthesised in the group of Prof. Gerasimos Konstantatos from The Institute

of Photonic Sciences, Barcelona following the recipe and procedure from Ref. 81.

5.1.3 Pump-probe reflection technique

The understanding and discussion of the potential as well as difficulties of the experi-
ments in this chapter requires familiarity with the so called pump-probe reflection tech-
nique. This variation of pump-probe spectroscopy allows to measure the temporal evo-
lution of a population of photo-excited excitons in the quantum well. It is based on the
measurement of a change in reflection of a laser pulse (probe) from the sample induced
by a population of excitons created by a preceding laser pulse (pump). The absorption
and reflection of the second pulse is determined by the number of carriers that have
already undergone an interband transition into the conduction band due to absorption
of the pump pulse. The temporal evolution of the exciton population is obtained by
changing the delay between the pump and probe pulses, where the temporal resolution
is given by the pulse length or the accuracy of the delay stage, whichever is smaller.
For our experimental realisation we use the output beam of a regenerative amplifier
operating at 250 kHz which is seeded from a mode locked Ti:sapphire oscillator with
a repetition rate of 80 MHz. The resulting pulses have a duration of ~ 250 fs and a
band width corresponding to 14 meV. The laser is tuned to the energy of the exciton
transition around 796 nm which was estimated from photoluminescence measurements
with a streak camera. The output beam of the amplifier is split into two parts with
vertical and horizontal polarisation which represent the pump and probe, respectively.
The probe beam passes through a delay stage in form of a retroreflector mounted onto
a linear translation stage before both beams are brought to a cryostat containing the
sample. For most of the measurements in this chapter the sample was cooled to 10 K
using liquid helium in a cold finger cryostat. One pump-probe measurement was per-

formed at 50 K. Figure 5.1 shows a schematic of the experimental setup. The prism
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Figure 5.1 — Pump probe reflection setup. Components without individual annotation rep-
resent mirrors. PD1 and PD2 denote two identical photodiodes. The dotted line represents
the undesired reflection of the pump beam, while the dashed line represents the reflected
probe beam. The grayed out components are irrelevant for this experiment. They belong
to the transient grating setup which will be explained in the next section.

is coated with silver and at this stage acts like an ordinary mirror. A large aspherical
lens (f = 10 cm, @ = 10 cm) is used to focus the pump and probe beams onto the
sample with overlapping spots of the size 75 ym and 25 um, respectively, where the spot
size of the probe beam is adjusted by means of a telescope in the beam path (telescope
not shown in schematic). The excitation energy density per pulse is 90 pJ/cm? and
81 pJ/cm? for the pump and probe beams, respectively. A camera with a zoom lens was
used to monitor the overlap of the different beams on the sample surface. The probe
beam is guided on the centre axis of the lens whereas the pump beam enters the lens on
an off-centre axis. In this way the two beams are spacially separated after the reflection
from the sample surface. The same lens is also used to collect and collimate the probe
beam after reflection and the probe beam is separated from the reflected pump beam
with an aperture as well as a polariser. Finally, the reflected probe beam is focussed
with an identical aspherical lens onto a photodiode. Because the change in the sample’s
reflectivity induced by the pump pulse is generally very small, the signal is typically
measured employing a detection scheme with a lock-in amplifier in combination with
two balanced detectors. This scheme requires two identical photodiodes to measure the
probe beam before and after the reflection, as well as the modulation of the probe and

pump beams with two phase locked optical choppers at different frequencies wy and ws.
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Here, the modulation frequencies lie in the range of a few kHz. The intensity of the
probe beam on the photodiodes is adjusted with neutral density filters such that both
detectors yield equal output voltages in absence of the pump beam. A preamplifier is
used to obtain the difference of the two signals and to amplify the resulting signal by
a factor of 500. Finally, the pre-amplified differential voltage goes as input to a lock-in
amplifier that demodulates the signal at the sum frequency wy + we and yields a signal
which is proportional to the change of reflectivity induced by the presence of the pump
beam. The change of reflectivity directly corresponds to the population of the state
that is being probed. Because the lock-in amplifier operates at the sum frequency, the
detection scheme is only sensitive to a change of light intensity on PD2 that is caused
by the arrival of the pump beam on the sample, but not by room light or laser light

scattered from optical components.

5.1.4 Transient grating spectroscopy

The experimental setup explained in the previous paragraph was effectively implemented
as a part of another experimental configuration that provides the main tool for the
studies in this chapter: transient grating spectroscopy. This technique, also referred to
as transient four wave mixing, is another pump-probe technique where the interference
pattern of two laser beams creates a periodic modulation of the carrier density in the
sample which effectively acts as a diffraction grating for a third incoming laser beam.
It has been employed in different configurations since the 1980s to study carrier and
spin diffusion as well as coherence phenomena in AlGaAs/GaAs heterostructures with
subpicosecond resolution [82-94]. Reference [86] is of particular relevance as it is the
first demonstration of the experimental configuration we employ. Since the 1980s the
general interest in the technique has faded away with a few exceptions [95-97]. The
pioneering work undertaken by a few individuals, namely the spectroscopists A. Miller,
L. Schultheis, A. Honold and K. Leo, proved to be the most valuable resource when
we set up our own experiment. Although the laser systems and electronics that were
available at that time were inferior to our current equipment their work has set a very

high standard that we are seeking to match.

5.1.4.1 Population grating

The first variation of the transient grating technique employs a population grating that
diffracts the probe beam. By performing the experiment with a pulsed laser and a
variable retardation between the two pump beams that produce the periodic modulation
of the carrier density and the probe beam that gets diffracted, the decay dynamics of
the effective grating can be obtained. The longer the delay between the probe beam and

the pump beams, the more carriers have recombined or diffused from regions of high to
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Figure 5.2 — Transient grating setup. Components without individual annotation repre-
sent mirrors. PD1 and PD2 denote two identical photodiodes. The dotted lines represent
undesired reflections, while the dashed line represents the diffracted probe beam.

low population, reducing the contrast and thus the efficiency of the grating. The decay
rate of the carrier concentration grating is given by the expression
_4Ar*D, 1

I'= — A

where D, is the ambipolar (combined electron and hole) diffusion coefficient whose mag-
nitude is dominantly determined by the hole mobility and 7x is the exciton recombina-
tion time. It should be noted that the intensity of the diffracted signal in transmission
and reflection, the FWM signal, decreases with a rate of 2I' because the magnitude
of the diffracted electric field, not the intensity, decreases with the decay rate of the
concentration grating. Our experimental configuration (shown in Fig. 5.2) measures the
diffracted signal in the reflection geometry because this does not require the removal of

the substrate from the sample.

The process that we just described as diffraction can also be thought of as an incoherent
four wave mixing experiment: here there are three input photons from the two pump
beams and the probe beam and one output photon corresponding to the diffracted beam.

The energy and direction of the generated FWM photon can be obtained by applying
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/
kewwm krwm

Figure 5.3 - FWM vector diagram. The two pulsed pump beams with wave vectors k; and
ko interfere to create a grating with periodicity vector G = k; — ko. The probe pulse with
wave vector ks diffracts off the transient grating induced by the pump pulses and propagates
into the k; — ko + k3 = kpw direction. This wave vector is not energy-conserving and
gets projected back along the growth direction (dotted line) onto the energy-conserving
sphere (solid circle). The new resulting direction is kjyy; or also ki, for a backwards
propagating version. (Figure according to Ref. [96].)

the laws of energy and momentum conservation:

Frwym = FEi1— Eo+ Ej (5.2)
krewv = ki — ko + ks (5.3)

However, the wave vector kpwa is not energy conserving and gets projected back onto
the energy conserving sphere such that the in plane wave vector is conserved, but not
the out of plane wave vector (see Fig. 5.3). This is due to the lack of translational
symmetry in the direction normal to the QW plane. The projection of kpwn gives rise
to two possible directions of the outgoing photon: Kpyyy p and Kgyyy g for the forward
and backward propagating diffracted photon. According to Heisenberg’s uncertainty
principle these two possible wave vectors are permitted because the interaction length
in the direction normal to the QW plane, Az, is small and, hence, the uncertainty in the
momentum in this direction, the Ak,, must be correspondingly large. This technique
allows one to probe a distinct exciton wave vector kx | which is equivalent to the grating
vector and the in plane momentum of the diffracted photons, kx | = k’FWM|| =G =
2m/A - e|, where A is the grating period and e is the unit vector parallel to the surface

and across the interference pattern.

5.1.4.2 Spin grating

Before we focus on the details of the experiment we briefly summarise another variation
of this technique that allows measurement of the electron spin diffusion coefficient in
contrast to the ambipolar carrier diffusion coefficient. This is achieved by producing a
so called spin grating from the interference between two pump beams with perpendicular
polarisations and equal intensity. Both pump beams and the probe beam are tuned to
the heavy-hole exciton transition. The resulting interference pattern on the sample has

uniform intensity, but the vector of the electric field is spatially modulated from linear

61



Chapter 5 Materials and methods

to circular to orthogonally linear to circular of the opposite sense and back to linear
polarisation. In GaAs QWs the degeneracy between the light and heavy hole bands
is lifted and hence the polarisation sensitive selection rules for interband transitions
determine the spin statistics of the electrons and holes after absorption of polarised
light. Absorption of circularly polarised light by the QW yields 100 % spin-polarised
electron-hole pairs where the hole spin relaxes much faster than the electron spin due
to band mixing and the mixed spin character of the valence states [94]. Hence, the
polarisation grating effectively produces a spatial modulation of electron spins in the
semiconductor. As a consequence, an incoming probe beam gets diffracted from this
spin grating similarly to the case of the population grating discussed above. The spin
grating then decays through carrier diffusion and spin relaxation and the dynamics of
the process can be time resolved with a retarded probe beam as described before. Also in
this case the decay rate of the spin grating can be described by an expression equivalent
to eq. 5.1 where the ambipolar diffusion coefficient is replaced by the electron diffusion
coefficient and the exciton recombination time is replaced by the spin relaxation time. A
direct comparison of the different typical parameters for a population and spin grating
in GaAs QWs can be found in Refs. 94 and 96.

5.1.5 Effect of energy transfer on the FWM signal

The measurement of the QW’s photoluminescence decay from chapter 4 provides a typi-
cal example for the characterisation of energy transfer in the time domain. Alternatively,
the transient dynamics of the exciton population can be measured by the pump-probe
reflection technique. In both cases an increased decay rate of the exciton population
in the QW along with certain control experiments provide strong evidence for the oc-
currence of resonance energy transfer. However, these techniques measure the decay of
the entire exciton population and one of the main conclusions of the previous chapter
was that this gives access only to the average rate of energy transfer in the thermalised
exciton ensemble. According to the theory, excitons with different wave vectors undergo
energy transfer at different rates and the ensemble constantly thermalises while photo-
luminescence is only observed from excitons near the band edge and within the light
cone. We are seeking a means to probe the energy transfer rate for an excitonic state
with a distinct wave vector. When the transient grating technique is employed this wave
vector is given by the grating vector G which in turn is determined by the wavelength of
the incident pump beams and the angle between them. Hence, the resonant wave vector
can be adjusted by the angle ¢ between the two incoming pump beams according to the

relation [88]

27 2 - 27sin(¢/2)
kx| =G=—7e=—"7— ¢

Evidently, this is the main parameter that is varied in our experiment (see Fig. 5.2). The

(5.4)

periodically modulated carrier population created by the interference pattern of the two
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pump beams acts as a grating to the incoming probe beam. The created charge density
collectively transfers momentum to the incoming beam such that it gets diffracted in
transmission and reflection. This produces an outgoing light beam with an in-plane wave
vector G that itself can interact with the QW before it exits the sample. Therefore,
the FWM signal, namely the diffracted beam, carries information about the interaction
with excitonic states of a particular wave vector G. The intensity of the FWM signal
for a particular angle ¢ will be reduced by the amount of light that gets absorbed by
the exciton state with the corresponding wave vector. The absorption by this state
in turn is enhanced if resonance energy transfer contributes to its depletion. Since
resonance energy transfer is a wave vector dependent process, the direct comparison of
the FWM signal intensity with and without energy transfer for different wave vectors
potentially yields the desired wave vector dependence. In the experiment this is achieved
by performing separate measurements with two QW samples, one bare sample and one
which is covered with a thin layer of QDs to enable resonance energy transfer. This
gives rise to a great experimental challenge because the measurement and comparison
of absolute intensities between different samples is more difficult than the measurement
of only the decay rate of a signal as it is the case for the pump probe technique or time

resolved photoluminescence measurements.

5.1.6 Wave vector and time resolved photoluminescence

The proposed FWM technique to measure the wave vector dependence of resonance en-
ergy transfer is novel and experimentally challenging. In order to have some indication
for the validity of the results we also performed wave vector and time resolved photolu-
minescence measurements with a streak camera (the basic principle of a streak camera
was explained in chapter 3.2.3.2). The required setup is routinely used in this research
group to study the dynamics of exciton polaritons in semiconductor microcavities and
relatively little effort was required to yield the desired result [98, 99]. The setup (de-
picted in Fig. 5.4) employs a 100x far field objective with NA 0.7 to focus the excitation
laser onto the sample and collect the photoluminescence. A lens behind the objective
transforms the real space image of the sample to the Fourier representation and this
transformed image is then projected onto the entry slit of the streak camera. The slit
is aligned with the image such that the cross section includes the k = 0 point of the
dispersion. Reflected and scattered laser light is filtered out from the detection arm by

suitable long pass filters.

5.1.7 Angle resolved pump probe technique

Another technique that holds the potential to yield the desired wave vector dependence

of resonance energy transfer should be briefly mentioned here. The angle resolved pump
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Figure 5.4 — Wave vector resolved photoluminescence setup with a streak camera.

probe technique is effectively a pump probe configuration as described above where the
angle of the incident pump beam is adjusted to a distinct wave vector. However, the
technique is limited in the sense that although excitons are injected into the QW with the
wave vector of the pump beam exciton scattering will quickly populate excitonic states
with other wave vectors, making it impossible to probe the evolution of the resonant state
isolated and directly. The absorption of the resonant pump beam by a specific exciton
state will be enhanced if this state is depleted more efficiently by energy transfer and
only a few excitons will scatter into other wave vectors which together are probed by the
probe beam. In this way the wave vector dependence of energy transfer can be probed
only indirectly. It can be thought of an equivalent of photoluminescence excitation
spectroscopy in terms of the parameters of a pump probe experiment: the pump beam
is scanned over different incident angles and for each angle the signal amplitude and the
decay rate of the pump probe signal is recorded to yield a dependence on the incident
angle. After the other techniques gave compatible results this experiment was omitted
from this study. Nevertheless, ongoing research in the group will continue to design and

implement novel ways to probe the wave vector dependence of resonance energy transfer.

5.1.8 Comparison of the different techniques

Each of the different techniques discussed so far has its respective advantages and short-
comings. The transient grating technique promises to be particularly sensitive as four
wave mixing is a non-linear process and the intensity of the outgoing diffracted beam
is directly affected by energy transfer. However, for a single QW the signal level is
so low that it is challenging to detect the signal at all, especially with an acceptable
signal to noise ratio. The main drawback of the angle resolved pump probe technique
is that it only indirectly probes the energy transfer process via the resonantly pumped
exciton state which undergoes efficient energy transfer. Excitons that do not directly

undergo energy transfer will be thermalised to other wave vectors and only the total
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Figure 5.5 — Range of exciton wave vectors accessible by different spectroscopy techniques.
(a) and (b): Calculated dependence of the energy transfer rate on the exciton wave vector
(according to the model from chapter 4). (c¢) and (d) show which grating period and angle
between the pump beams is required to access different wave vectors with the transient
grating technique. The vertical lines represent the maximum wave vector accessible by
different techniques (from left to right): FWM (blue solid line), conventional pump probe
with the same lens for all beams (green dotted line) and angle resolved photoluminescence
with the streak camera (red interrupted line). The rightmost black line corresponds to the
wave vector at the edge of the light cone.

exciton population can be detected by the probe beam. The angle resolved photolumi-
nescence measurement holds the potential to yield the complete wave vector dependence
of resonance energy transfer in two shots with the streak camera, one for the reference
sample and one for the sample covered with QDs. In comparison with the pump probe
techniques the time resolution of the streak camera is fundamentally limited not by the
duration of the laser pulses used for excitation, but by the internals of the streak camera.
The resulting time resolution was estimated to be = 80 ps, which is two orders of mag-
nitude greater than the resolution of the pump probe techniques which is given by the
pulse length (=~ 0.2 ps). The final important criteria for comparing the different tech-
niques is the range of wave vectors that can be probed. The maximum wave vector that
can be accessed by each of the different techniques is presented graphically in Fig. 5.5.
The figure also shows the rate of energy transfer that according to the previously used
model by Basko et al. is to be expected over this range of wave vectors [1, 29]. It can be
seen that none of the techniques allows one to reach the wave vectors where the energy
transfer rate is maximal but that all of them allow to cover wave vectors for which en-
ergy transfer becomes significant in relation to the decay rate of the QW excitons. The
setup with the streak camera and the 100x objective allows to cover the greatest range

of wave vectors.
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5.2 Results and discussion

5.2.1 Evidence for energy transfer in the exciton ensemble

Let us start the results section with some evidence that energy transfer does indeed occur
in the GaAs QW/PbS QD material system to justify all the other experiments performed
for this study. In the presence of the QD overlayer on the sample an accelerated depletion
of the exciton population is observed in pump probe experiments for small angles of
incidence of the pump and probe beams. The decay of the exciton population without
and with the QD layer is presented in Fig. 5.6. It can be seen that not only the decay rate
inherent to the QW excitons is different for 10 K and 50 K but also the rate of energy
transfer varies. At 10 K and 50 K the observed exciton lifetimes are 170 ps and 3670 ps
and the average efficiency of energy transfer from the exciton ensemble is 18 % and 63 %,
respectively. The longer carrier recombination time observed at 50 K is a consequence of
the increased thermal energy of the excitons. With increasing temperature an increasing
fraction of excitons occupies states with wave vectors which lie outside of the light
cone while exciton recombination can only occur from excitons within the light cone.
The entire exciton ensemble effectively shares the oscillator strength of the interband
transition at k &~ 0 and thus the lifetime of the exciton recombination process increases as
the temperature and the homogenous broadening of the exciton ensemble increases [100].
The increased rate of energy transfer at 50 K is also temperature related and is explained
by the freeze out of excitons at low temperatures. At 10 K a considerable fraction of
excitons remains trapped in local potential fluctuations or bound to impurity atoms and
any free excitons occupy only states with small wave vectors where energy transfer is
very slow. At higher temperatures the localised excitons become free and according to

Boltzmann’s statistics excitonic states with higher wave vectors are occupied such that
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Figure 5.6 — Evidence for resonance energy transfer from excitons in the GaAs QW to an
overlayer of PbS QDs. (a) and (b) show the temporal evolution of the exciton population
measured with the pump probe technique at 10 K and 50 K, respectively. The green circles
and blue triangles represent the evolution in absence and presence of the QD overlayer,
respectively. The overlaid black lines are fitted exponential decays.
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efficient energy transfer is enabled. The temperatures that yield wave vectors which are

too high for efficient energy transfer lie above the 50 K used for this experiment.

5.2.1.1 Constructing a suitable model function for fitting the data

In order to achieve accurate data fitting of the transient FWM data a model function f(¢)
was constructed. As it will be shown shortly, the experimental data features a constant
background level which reveals itself for both negative probe delays and very long positive
probe delays. This is accounted for by the inclusion of a constant background B in f(t).
The population grating decays exponentially with a decay rate of I' and hence the FWM
signal decays exponentially with a rate of I'pwy = 2-I'. The characteristic timescale of
the decaying FWM signal approaches the temporal width of the laser (§ ~ 250 fs) and
therefore it is good practice to employ the convolution of an exponential decay with a
gaussian excitation pulse rather than just an exponential decay when fitting the FWM

signal. The resulting contribution to the fitting function is the convolution

[AFWM . e~ Trwme(t—trwn) ot — tFWM)} * [\/21?5 . e;;?] ’ (5.5)
where the star symbol (%) denotes the convolution, Apyw is the initial amplitude of the
FWM signal, tpw is the time where the FWM signal begins and ©(t —tpww) is the unit
step function. When looking at the experimentally obtained transient FWM signal (the
reader may take a preview on Fig. 5.8) it is apparent that each of the recorded decays
is preceded by a very short peak with a large negative amplitude. This peak of opposite
sign to the actual signal is of comparable amplitude for the measurements with different
grating periods and closer examination of the same reveals that for all measurements
it has the temporal width § of the laser pulse. We interpret this peak as an coherent
artefact that occurs at time ¢ty when all three beams hit the sample simultaneously and

it is accounted for in the model function by the subtraction of a gaussian pulse, i.e.

Aca  —(-w)2/20?

B oV 2w

The resulting function f(¢) that is used for fitting the transient FWM signals is then
given by

(5.6)

A
fTArwM, Drwns trwn, Acas to, 6, B](t) - = F;N M Trwn (Tewad?/2-(t~trwi))
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Figure 5.7 — Different contributions to the model function for the FWM signal. The model
function is plotted as a black curve, while the different contributions are plotted separately
in various colours: the exponential decay of the transient FWM amplitude is shown before
and after convolution with the laser pulse as a red dotted and solid curve, respectively. The
coherent artefact that occurs when all three beams hit the sample is represented as a blue
gaussian pulse. The green horizontal line corresponds to a constant voltage offset when
measuring the FWM amplitude. See Eq. 5.7 for the mathematical definition of the symbols
and curves.

where the parameters of f(t) are listed inside the square brackets and the result of
the convolution is explicitly given in terms of the error function. In the experimental
realisation of this experiment the position corresponding to “0” delay between the probe
pulse and the two pump pulses shifts along the delay stage as the prism position is varied.
We choose to only approximate this shift and plot the data against a horizontal axis
where “0” may occur a few ps before the coherent artefact. Accurate data fitting is
ensured by allowing for an offset ¢y for the coherent artefact. The different contributions

to the model function are visualised in Fig. 5.7.

5.2.2 Determination of the ambipolar diffusion coefficient

It was mentioned above that the measurement of the wave vector dependence of energy
transfer by means of FWM relies on the measurement and comparison of the amplitude
of the FWM signal from the QW without and with the QD overlayer, but not the
decay rate of the signal. Along with the measured amplitude we naturally also obtained
the grating decay rate and this data should be briefly discussed here as it yields the
ambipolar carrier diffusion coefficient. Equipped with the fitting function f(¢) from
eq. 5.7 the different features of the transient FWM data can be well reproduced and
the decay rate of the signal is extracted with high accuracy. The transient of the FWM
signal for different grating periods along with the best fit curves superimposed is shown in
Fig. 5.8. Evidently, the grating decay accelerates as the period of the grating becomes
smaller. When the decay rate of the FWM signal is plotted against SAL; the slope of

the resulting graph corresponds to the ambipolar carrier diffusion coefficient D, while
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Figure 5.8 — Determination of the ambipolar diffusion coefficient from transient grating
experiments. Figures (a)-(g) show the decay of the FWM amplitude with increasing probe
delay for different grating periods. The black lines are fitted model curves according to
equ. 5.7. (f) shows the grating decay rate plotted vs SAL;, where A is the grating period. The
slope of the line gives the ambipolar diffusion coefficient D, while the exciton recombination
time can be estimated from the offset on the y-axis.
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the offset with the y-axis gives 2/7x where 7x is the exciton recombination time. By
performing a least square fit with a line of variable slope and offset the ambipolar
diffusion coefficient was determined as D, = 33 cm?/s. This value is about three times
larger than the value of 13 cm? /s observed in Ref. 94 for room temperature for MQWs
of the same thickness. Our larger value for the ambipolar diffusion coefficient at 10 K in
comparison with the value at room temperature is consistent with the observation of a
monotonic decrease of the diffusion coefficient with temperature as it was observed for
bulk GaAs [101]. The carrier recombination time was extracted from the offset of the
graph on the x-axis as 7x = 163 ps, which is in very good agreement with the value of
170 ps obtained from the pump probe experiment at the same temperature. After these
warm-up experiments have yielded satisfying results the study continues with the more

challenging comparative measurement of the amplitude of the FWM signal.

5.2.3 FWM signal with and without energy transfer for different grating
periods

The difficulty in this part of the study arises from the fact that the amplitude, not the
decay rate, of the FWM signal has to be compared for the samples without and with
the QD layer in independent measurements. The amplitude of the signal is measured
by a photodiode and naturally any misalignment of the (invisible) diffracted beam on
the photodiode will result in an apparent lower signal. The crucial alignment of the
sample surface relative to the incoming beams was done by guiding the reflection of the
probe beam from the sample through an iris. The apparent amplitude of the signal will
also crucially depend on the spacial overlap between the three beam. Any directional
fluctuation of the output beam from the regenerative amplifier will result in a decreased
spacial overlap because the three beams travel along different paths and pass differently
aligned retroreflectors. It was found that a CMOS camera sensor in the focal plane of
the focussing lens can be used as a reliable tool to calibrate and correct the drift of the
three beams such that all beams remain centred when the prism is moved to change the
grating period (see Fig. 5.2). During the measurements another camera with a zoom
lens permanently monitors the overlap and helps to identify excessively large movements
and vibrations of the cryostat when the floating optical table is disturbed. In principal
these measurements are identical to the ones performed for the measurement of the
ambipolar diffusion coefficient. However, because the scanning of the probe delay is
time consuming and the actual time dependence of the FWM signal is not of interest
here, the delay line is only scanned over a range of 5 ps for each grating period to
capture the rise and initial amplitude of the FWM signal. A computer program is used
to control the movement of the translation stages that mount the prism and the delay
line of the probe beam while the amplified and filtered voltage from the photodiodes is
recorded. In this way four datasets are measured for each the reference sample without

QDs and the energy transfer enabled sample with QDs. Each of these datasets contains
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Figure 5.9 — One exemplary full dataset used to determine the amplitude of the FWM
signal for different grating periods. (a)-(j) show the transient of the diffracted probe beam
for a 5 ps range of delay times. The black lines are the best fits when using the function
fitting f(t) as defined in equ. 5.7.
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Figure 5.10 — Amplitude of the FWM signal for different resonant wave vectors. (a),(b)
Data from independent measurements on the reference sample without QDs and the sample
covered with QDs, respectively. (¢) The green and blue curves correspond to the average of
the curves from (a) and (b), respectively.

data in the same format as the one shown exemplary in Fig. 5.9. When one dataset is
analysed a global fitting is applied such that the parameters d, (tca —to) are constrained
to be identical for all FMW decays in the dataset. This decreases the uncertainty of
these parameters and their influence onto the values of the FWM amplitudes Apw;,
where the index i denotes the i-th grating period during the scan. The evolution of the
amplitudes Apww,; for increasing grating period, measured four times for the reference
sample and the sample with the QD layer, is shown in Fig. 5.10. All curves follow
the same trend: the magnitude of the FWM signal increases as the grating period
decreases and the last two data points lie at a slightly lower level. The position of the
maximum is a result of the alignment and calibration procedure. Because the rate of
energy transfer increases monotonous over the range of wave vectors that can be probed
in this experiment we expect the difference in the FWM amplitudes to increase as the
wave vector increases. The best temporal alignment between the two pump beams is
adjusted for a prism position corresponding to large wave vectors such that features on
the right hand end of the graph can be identified more easily. In theory there should
not be any drift in the temporal overlap between the two pump beams when the prism
is moved but here we face the experimental reality where the alignment of the beams,
translation stages and optical elements can only be performed with limited accuracy.
Despite the calibration related shape of the curve, the different measurements for the
bare and hybrid sample do not show any obvious trend in the change of the relative
FWM amplitude with increasing wave vector. From the four individual scans the mean

values and the corresponding standard variance was calculated. The data is shown in
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Fig. 5.10. Unfortunately, also the combined data does not reveal any trend on the change
of the FWM amplitude when energy transfer is enabled in the QD covered sample. The
difference between the two curves is less than 5 % and is clearly within the standard
variance of the values. In short, the accelerated depletion of the excitonic state with the
wave vector corresponding to the grating period does not affect (visibly) the amplitude
of the diffracted beam. A possible explanation for why it is not possible to observe an
effect of resonance energy transfer on the intensity of the FWM signal relates to the fast
thermalisation of the exciton ensemble. When all exciton states are coupled to each other
via fast thermalisation, it is impossible to measure energy transfer from an isolated state
via photoluminescence or absorption measurements. This is because the characteristic
time scale of the resonance energy transfer process is orders of magnitude slower than
that of exciton scattering which occurs on the order of hundreds of femtoseconds. fast
thermalisation makes the energy transfer process from a selected exciton state invisible

to our measurements.

5.2.4 Wave vector resolved photoluminescence

These experiments are performed with the same excitation density as the pump-probe
and FWM measurements. We also investigate the effect for an excitation density that
is 10 times larger. In the configuration that is used for this experiment the full angle
dependence of the photoluminescence is not covered by a single image from the streak
camera, but by three overlapping segments in k-space. This allows more accurate bin-
ning of the data for different wave vectors over smaller areas and yields less noise in
the photoluminescence decays that are extracted for the different wave vectors. The
streak images from the measurement on the reference sample without QDs are shown
in Fig. 5.11. No trend can be identified from the images alone. A closer look at the
extracted photoluminescence decays reveals a moderate quenching of the photolumines-
cence decay in the presence of the QDs, typical for the occurrence of energy transfer
(Fig. 5.12). Figure 5.13 summarises all results of the experiment and shows the wave
vector dependence of the photoluminescence decay rates of the QW without and with
the QDs. Two observations can be made: over the complete range of wave vectors cov-
ered in this experiment the photoluminescence decay is accelerated in the presence of
the QD overlayer, but a distinct wave vector dependence of energy transfer cannot be

observed.
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Figure 5.11 — Time and wave vector resolved photoluminescence of the QW. The three
streak images overlap in k-space. The red rectangle indicates the binning of vertical lines
to extract a photoluminescence decay for a specific wave vector.
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Figure 5.12 — Time resolved photoluminescence of the QW. (a), (b): Time resolved photo-
luminescence of the QW without (green line) and with the QD overlayer (blue dashed line)
for k = 0 and the largest accessible wave vector, respectively. The excitation energy density
Ey is the same as in the FWM experiment. (c), (d) show the same data for an excitation
energy density which is ten times higher. The black lines are fitted exponential decays.
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Figure 5.13 — Photoluminescence decay rate of the QW exciton for different wave vectors.
(a) and (b) show the decay rates without and with the QD overlayer for the same excitation
energy density Fy as in the FWM experiment. (c) and (d) show the same data for an
excitation energy density which is ten times higher. Connected data points are extracted
from the same streak image.
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5.3 Conclusions

In summary, an extensive range of techniques and experiments was employed to measure
the dependence of resonance energy transfer on the wave vector of QW excitons. The
pump-probe reflection technique as well as time resolved photoluminescence measure-
ments prove the occurrence of energy transfer from excitons in the GaAs QW to an
overlayer of PbS colloidal nanocrystals. The pump-probe experiment provides evidence
that the average efficiency of energy transfer in the exciton ensemble at 10 K reaches
nearly 20 %. Also the time and wave vector resolved photoluminescence measurements
indicate the occurrence of energy transfer. The ultimate goal to obtain experimentally
the explicit dependence of resonance energy transfer on the exciton wave vector was
reached neither by the use of the transient grating technique nor by performing an-
gle resolved photoluminescence measurements. In conclusion, the dynamics of energy
transfer from an exciton state with a defined wave vector are shielded to our optical mea-
surements because exciton thermalisation occurs much faster than the energy transfer
process. Due to the thermalisation within hundreds of femtoseconds only the average
rate of the energy transfer dynamics in the exciton ensemble can be probed by our

measurements.

5.4 The author’s contribution

I am grateful to Dr. Chunyong Li, University of Southampton, who has introduced me
to the pump probe reflection technique used in this chapter. Together, we have designed,
built and tested the setup for the transient grating technique, a technique that was new
for both of us. It is not possible to separate our contributions to the work in the lab
and data acquisition. The data analysis and calculations presented in this chapter were
done by me alone, Jan Junis Rindermann. Occasionally, Dr. Li performed his own

calculations to find agreement between our results.
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Chapter

Resonance Energy Transfer from PbS

Quantum Dots to Silicon

In the introduction to this work (chapters 1 and 2) it was noted why and, in terms of
technology, how our societies seek to reduce their carbon footprint. Research on semi-
conductors in the fields of of LEDs as energy saving light sources as well as photovoltaic
cells for the direct production of electricity from sun light promise to return sustainable
solutions. The majority of the work in this thesis covers the former, but in view of the
support that I received from the Reiner Lemoine Stiftung' the scope of this thesis is
completed by the summary of my initially planned research and the results concerning

solar cells.

In this chapter we investigate energy transfer from PbS QDs to a silicon slab by means
of a finite element method (FEM) simulation. The study will unveil important design
constraints for the implementation of this scheme in real world solar cells. The focus
lies on the dependence of the energy transfer rate on the thickness of a spacing layer
separating the QDs from the absorptive silicon. In practice this layer is an anti-reflection

coating and/or a passivation layer or a transparent electrode on top of a p-n junction.

! “Reiner Lemoine, *1949, 12006, was a German entrepreneur in the the field of Renewable Energy.
During his studies of aerospace engineering he co-founded Wuseltronik, a socialistic collective for engi-
neering based in Berlin-Kreuzberg. In 1996 he co-founded Solon AG, followed in 1999 by the solar cell
manufacturer Q-Cells. In 2005 he was awarded as “Entrepreneur of the year” together with Anton Mil-
ner for Q-Cells. Shortly before this death in December 2006 he founded the Reiner Lemoine Foundation
which offers stipends for Ph.D. candidates in the area of renewable energies. On 20th of August 2008
the German Minister of Environment Sigmar Gabriel inaugurated the Reiner-Lemoine-Research Center
at Q-Cells SE.” Source: Wikipedia [102]. The author was generously funded by the Reiner Lemoine
Foundation for the work on his Diploma and Ph.D. theses. More information about the Reiner Lemoine
Foundation and the Reiner Lemoine Institute can be found on their websites [103, 104].
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6.1 Background

6.1.1 An earlier paper by Dexter

Although not always credited for his idea, Dexter was the first to envision hybrid solar
cells which employ strongly absorbing organic dye molecules painted on top of an oth-
erwise poorly absorbing silicon solar cell. In combination the solar cell’s absorption is
enhanced which in turn yields an improved efficiency [30, 36]. In this scheme light is
efficiently absorbed by the organic molecules on the surface of the solar cell from where
electronic excitations in the dye molecules can be transferred over short distances to
the silicon by means of non-radiative resonance energy transfer. Naturally, the scheme
can be extended to more complex configurations where the organic coating contains
different interacting species optimised for the absorption of light by the first kind and
energy transfer from the second. Exciton diffusion in both the organic material and
the semiconductor can possibly increase the effective range of this transfer mechanism
from a few to hundreds of nanometres, but this shall not concern us here as the actual
value will depend on the specific organic material used. This effect can be added to the
simulation at a later stage. The energy transfer mechanism is the same as the one which
pumps the QD (or polymer) colour converter deposited onto the different QWs studied
in chapters 3, 4 and 5, but here it is employed in the reverse direction. Also, here the

donor is a small QD which, to some extent, can be thought of as a point dipole.

6.1.2 Quenching of a dipole in close vicinity of a semiconductor

The underlying mechanism for energy transfer and quenching of a dipole emitter (ex-
perimentally realised in a molecule or ion) placed in the vicinity of inorganic materials
has been investigated for numerous years before and after Dexter’s paper without no-
tice of the particular application in solar cells. This includes metallic, insulating or
semiconducting materials and in the case of metals the work lead to an experimental
confirmation of the Purcell effect, i.e. the change of the spontaneous emission rate
depending on the photon mode density at the position of an emitter [105, 106]. The
observed oscillatory modulation of the radiative decay rate of the dipole emitter with
increasing distance to a metal surface originates from the constructive/destructive in-
terference between the dipole emission and the field reflected from the metal surface.
For very small distances which are smaller than \/2 absorption effects dominate and
lead to a steep increase of the decay rate with decreasing separation. The review paper
by Agranovich on “Hybrid resonant organic-inorganic nanostructures for optoelectronic
applications” points out the works which are historically most relevant in respect to
non-radiative energy transfer to a semiconductor slab [35, 107, 108]. These studies focus
on the macroscopic treatment of the field produced by a dipole surrounded by medium

1 and placed at distance d to an interface with medium 2. For applications in solar cells
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medium 1 is the matrix containing the organic material or the absorbing material itself,
and medium 2 is the semiconductor slab. The most important result relates the dipole’s
radiative decay rate in vacuum, I'; yac, to the rate of non-radiative energy transfer into

medium 2, T'y;:

T by 3 "
~ ( > 2. (6.1)
[t vac 2rd ) e + e

Here, A is the wavelength corresponding to the transition and ¢; refers to the frequency
dependent complex dielectric function of the medium ¢, €;(w) = €;(w) + i€/ (w). The
expression for the rate of energy transfer recovers the power law dependence which was
given in eq. 2.12 for the interaction between one donor dipole and an array of acceptor
dipoles. As expected for tis geometry we find n = 3. The first factor in the expression
on the right side gives an idea of the order of magnitude for the effectiveness of non-
radiative energy transfer over short distances. Consider a dipole with a transition at
2 eV (corresponding to A ~ 600 nm) placed at a distance of 1 nm near medium 2. In
this case the factor is on the order of 10°. The actual enhancement is smaller than this
due to the dielectric screening: typically the denominator |e; + €2|? is on the order of
102 —103. The absorptive strength €’ in the semiconductor is also energy dependent and
varies greatly between direct and indirect transitions. For silicon €’ at 2 eV is about
0.17 [109], resulting in an energy transfer rate that is two order of magnitude larger than
the radiative decay rate in vacuum. At higher energies, at the offset for direct transi-
tions in silicon around 3.4 €V, the rate of energy transfer to silicon increases by another
order of magnitude [110]. It can be seen that a dipole will be strongly quenched near a
semiconductor interface and transfer energy non-radiatively to the absorbing medium.
However, the expression from eq. 6.1 should be seen only as a crude estimate for the
actual energy transfer rate because e(w) can only successfully describe the medium re-
sponse for nearly uniform and plane electromagnetic fields. The near-zone field within a
few nanometres of the dipole is highly non-uniform and contains a multitude of planar
wave vector components, an effect that becomes increasingly important for very small
distances. In this case the range of relevant wave vectors (k ~ é) can become substan-
tial in comparison with the Brillouin zone of the absorbing medium and quantitative
agreement between experiments and calculations can only be recovered by the use of the
wave vector dependent dielectric tensor €(w, k) [35, 51, 111]. In other words, the optical
response described by the dielectric function €(w) can only account for the excitation

¢

of electron-hole pairs in a “vertical” transition between the valence and the conduction
band, while the dipolar field in the near-zone can also excite them “non-vertically”. For
this reason resonance energy transfer promises to be of great use to pump excitations

into solar cells made of the indirect band gap semiconductor silicon.

It should be added that beside the macroscopical treatment of the problem another ap-
proach exists for the case of a dipole near to a semiconducting half space: Stavola, Dexter
and Knox presented a calculation that considers the excitation of electronic transitions

near the band edge by the dipole near-field in the effective mass approximation [112].
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Their approach distinguishes explicitly between direct and indirect band gap materials.
For indirect semiconductors it was found that the phonon-less excitation of the semicon-
ductor by the dipole field of a nearby molecular exciton can be more efficient than the
phonon-assisted process. Later, Agranovich concludes in his review: “This effect may

make prospects of non-radiative energy transfer into Si substrates even better.”

6.1.3 Experimental demonstrations of energy transfer to a semiconductor

The few existing experimental studies on energy transfer from organic materials (or
QDs) to a semiconductor will be summarised here before our own results are put into
context. Along with the author names also the year of their publications will be given
to show how interest in this old idea has been paused for a few decades. Nevertheless,
theoretical work on the topic has been published during this time by Agranovich and
co-authors. Presumably new fabrication techniques and new ideas for applications were
required to justify further experimental investigations. Alivisatos et al. (1983 & 1987)
demonstrated energy transfer from thin films of pyridine to GaAs and from pyrene films
to an underlying silicon slab [110, 113]. In both studies they used spacer layers of variable
thickness to proof that the observed quenching is indeed dependent on the distance to
the absorptive semiconductor material. When working with silicon as an acceptor they
observed a clear increase of the energy transfer rate at the offset for direct transitions.
In their work from 1987 they underline the importance of phonon-less and non-vertical
transitions when the dipole emitter comes very close to the semiconductor, in line with
the theoretical findings from Stavola, Dexter and Knox (1985) [112]. Gowrishankar et
al. (2008) studied another type of hybrid organic-inorganic solar cells where efficient
charge separation at the interface between amorphous-silicon (a-Si:H) on one side and
MEH-PPV and P3HT on the other side occurs. More importantly for our purposes,
they found that this material combination supports very efficient non-radiative energy
transfer from the MEH-PPV and P3HT to the amorphous silicon with efficiencies greater
than 80% and 30%, respectively. Lu et al. (2007) proved energy transfer from a layer
of PbS QDs to an InGaAs QW buried under the surface of a slab of GaAs [114]. This
experiment is the analogue to the study from chapter 5 but with a reversed direction
of energy transfer. Dr. Soontorn Chanyawadee, my predecessor, and coworkers (2009)
were the first to proof that energy transfer pumping of a semiconductor can indeed be
utilised to enhance the photocurrent of a photodiode or solar cell [115, 116]. Their
pin-diodes were successfully sensitised by the addition of CdSe/CdS and CdTe QDs.
The diodes were specially prepared by the etching of deep vertical channels into their
surface by use of a focussed ion beam. Colloidal QDs covering the surface of the etched
channels absorb light efficiently and the created electron-hole excitations are then non-
radiatively transferred directly into the depletion zone of the diode where the charges can
be separated by the built in electric field. Their conclusions about energy transfer were

based on the measurement of the photocurrent and time resolved fluorescence of the QDs.
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These studies employed pin photodiodes made of a AlGaAs/GaAs QW heterostructure
or bulk GaAs and in practice the etching process they used is destructive in nature and
not suitable for the preparation of actual devices. More details on the deterioration
of the devices during the etching process itself can be found in my Diploma thesis
and a corresponding publication [69, 117]. The technologically more relevant material
silicon was studied by Lu et al. (2009). They used again PbS QDs to sensitise the
absorption of light by a planar array of silicon nano wires and observed the effect of
both radiative and non-radiative transfer of excitations from the QDs to the adjacent
silicon nano wires. Time-resolved photocurrent measurements indicate a contribution of
carrier injection into the silicon from the QDs. A recent study by Nguyen et al. (2011)
deals again with silicon as a substrate, sensitised by a layer of CdSe QDs on the surface.
In agreement with the older study by Alivisatos on silicon as an acceptor quenching of
the donor was observed when the thickness of the spacing layer between the QDs and the
silicon was reduced. This study was limited on the spectroscopic characterisation of the
energy transfer process. So far, the electrical measurements on energy transfer sensitised
photodiodes (solar cells) were performed under illumination with monochromatic laser
light, which presumably lead to a larger enhancement as if a broadband spectrum had
been used because of resonances in the absorption of the employed QDs. In fact, my
previous work from Refs. [69, 117] shows that the power conversion efficiency of the
bulk GaAs diodes under illumination with a solar simulator is only marginally enhanced
when they are sensitised with QDs. The diodes were treated with the FIB fabrication
procedure from Refs. [115, 116].

The careful reader will have noticed that this overview omitted reports where semicon-
ductor colloidal QDs (or, alternatively, organic semiconductors) are employed as energy
transfer acceptors in the context of LEDs. This has two reasons: from the physical point
of view the problem there is reduced again to an array of dipole-like acceptors because
electronic states are not delocalised but strongly bound to individuals sites. Moreover,
these works are so close to the main topic of this thesis that they were already sum-

marised in the introduction.

6.1.4 Work towards a sensitised silicon solar cell

After our research group has gained expertise with the design and preparation of sen-
sitised photodiodes it was sought after to produce such a device made of silicon, the
most commonly used material for solar cells. For this purpose collaborations with the
leading german solar cell manufactorers at that time were initiated. Solarworld AG,
Bonn, Germany supplied wafers of amorphous silicon which had been prepared with
a shallow lying pn-junction which features a deletion zone within the first 200 nm. It
was thought that e-beam lithography or nano imprint lithography in combination with

reactive ion etching could be used to produce fine channels similar to the ones in the
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GaAs photodiodes. In another step electrical contacts would have been added to allow
electrical measurements. However, the fabrication facilities and processes available did

not allow the manufacturing of such devices.

Another collaboration with Q-Cells AG, Bitterfeld-Wolfen, Germany gave us access to
mono crystalline silicon wafers with the doping profile of their commercial solar cells.
These wafers yield a power conversion efficiency above 12% when they are equipped
with the optimised electrodes from the Q-Cells production line. Delays and faults in the
clean room facilities at the Southampton Nanofabrication Centre at the University of
Southampton kept delaying the activities on this project and just at the point of writing

an internal collaboration is set up to maintain continuous work in the future.

A parallel strand of activities in the research group performed by Mael Brossard covers
photoconductivity measurements on silicon substrates equipped with electrodes and PbS
QDs on the top. In this configuration enhanced absorption of light by the device due
to the layer of strongly absorbing QDs on the surface and subsequent radiative and
non-radiative energy transfer of excitations to the silicon can be proved directly by
electrical measurements without the need for nanofrabrication processes or fine tuning

of the doping profile of the device.

6.2 Methods

6.2.1 Definition of the problem

Due to its simplicity Dexter’s idea leaves out many details on the actual implementation
of the scheme in real world devices. Some of the questions that have to be considered
are: What is the optimum thickness of the sensitising layer (such that it does not absorb
too much light without transferring energy to the silicon)? What is the optimum depth
of the depletion zone under the surface of the solar cell? What is the critical distance
between the sensitising layer and the silicon at which energy transfer brakes down?
While all of these questions are equally important for the design of a device, one could
argue that the last question serves best as a starting point. The answer will provide an
upper boundary for the characteristic layer thicknesses that are expected in a device in

order to benefit from energy transfer at all.

The problem that is studied here concerns the rate of energy transfer from a PbS QD
(represented as a point dipole) which is lying on top of a silicon slab, separated from
the silicon by a silicon oxide (SiO2) layer of variable thickness. Figure 6.1 shows a
schematic of the geometry. The rate of energy transfer is determined by computing
the expressions from eqgs. 2.16 and 2.17. This requires knowledge of the dipole near
field which is determined by the boundary conditions and material constants of the

particular geometry. Note, that this geometry is not equivalent with the one leading
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Figure 6.1 — Geometry of the scheme for energy transfer from a PbS QD to a silicon slab.
The thickness of the SiOs is the variable parameter in the FEM simulation. The simulation
requires to average over all possible orientations 6 of the dipole moment in the QD. The
silicon slab extends to infinity. See text for the approximation of infinity in the simulation.

to the expression from eq. 6.1, because of the distinction between the material that

separates the dipole and the absorber and the other material that lies above the dipole.

6.2.2 Finite element analysis

The electric field distribution of the dipole is computed numerically by means of finite
elements analysis with the software COMSOL. The simulation discretises the spacial
dimensions, approximates the derivatives of the electric field numerically and solves the
differential equations given by Maxwell’s equations and the Poisson equation for the
electric field. One of the most common errors when using FEM software is to consider
only an insufficiently large volume to approximate infinity. The numerical solution
will only be accurate if the fields and potentials decrease to zero far enough from the
area of interest, and are not constrained by the particular geometry of the bounding
box of the simulation. This was ensured by a) varying the size of the bounding box
until a minimum value was found above which the result does not change and b) the
actual simulation extends to infinity beyond the size of the bounding box by the use
of a geometrical transformation. The simulation presented here does not result in the
absolute value of the energy transfer rate from the dipole because the values contain one
overall scaling factor to account for the shielding of the dipole field due to the different
refractive indices of the QD and its sourrounding. The QD is represented by a point
dipole which, by definition, does not have any spacial features. In reality, however, the
QD has a diameter of 10 nm, a size that is comparable with the thickness of the silicon
oxide spacer layer. In this case it is not sufficient to place the point dipole in the centre
of a sphere made of PbS to determine the shielding factor. Although this approach
would indeed account for the screening of the electric field due to the high dielectric
constant of the sourrounding PbS sphere (e = 17) [118], it constitutes a misleading
combination of a microscopic and macroscopic representation of the geometry. If a
truly microscopic representation is desired, the actual charge densities would need to

be calculated from the different wave functions in the QD. This task is omitted here
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for simplicity. In this way Basko et al. have computed analytically the rate of energy
transfer for a a geometry with spherical symmetry where a spherical QD is surrounded
by a homogeneous absorbing medium [119, 120]. The authors proceed very carefully by
considering separately the different excited states in the different confinement regimes.
Due to the break of symmetry in our planar arrangements their results cannot be directly

applied here.

6.3 Results and discussion

The results from the FEM simulation for the variation of the energy transfer rate with

the thickness of the silicon oxide layer are shown in Fig. 6.2. As expected, the energy

6
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Figure 6.2 — Simulated energy transfer rate for different thicknesses of the spacing layer
(blue solid line). The experimental data from Ref. [80] is also shown (red circles) along with
a fit of a power law with n = 3 according to eq. 6.1 (blue interrupted line). The horizontal
line corresponds to the experimentally determined radiative decay rate of the QDs.

transfer rate drops steeply with increasing spacer thickness and for a thickness above
approximately 15 nm it nearly vanishes. This characteristic value corresponds well with
experimental data observed by Dr. Peristera Andreakou for the same geometry and
material combination [80]. Note, that the blue solid curve in Fig. 6.2 was scaled with
an overall scaling factor to provide visual correspondence between the simulated and
experimental data. For the experimental study by Andreakou et al. undoped silicon
was covered with silicon oxide of various thicknesses between 5 and 55 nm before it
was covered with PbS QDs. Time-resolved spectroscopy was performed with a streak
camera to quantify the quenching of the lowest lying exciton state in the QD due to non-
radiative energy transfer to the underlying silicon slab. The actual uncertainty in the
thickness of the spacer layer is unknown and varies with the thickness of the layer. Also,

a systematic error is likely because of formation of a native oxide between processing
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steps. Although these error sources are substantial the resulting error bars in the x-
direction of the graph are omitted because they are not discussed in the original source
of the data [80]. From discussions with the author I learned that the measurements were
performed on a QD ensemble which was highly dispersed on the surface. Hence, effects
of inter particle interactions can be ruled out and the scenario of an isolated dipole holds
true. It is instructive to compare the energy transfer rate with the radiative decay rate,
the latter not determined by the FEM simulation, but directly from the experiment. It
can be seen from Fig. 6.2 that already for a spacing layer that is only 5.5 nm thick the
efficiency of energy transfer is reduced to 50 % in the experiment. The radiative decay
rate is determined from a measurement with an “infinitely thick” spacer layer which is
around 100 nm thick. Figure 6.2 also shows a fit to the experimental data according to
the power law with n = 3 from eq. 6.1. In direct comparison, the power law drops faster
than the numerically calculated curve. Especially between 8 and 15 nm the power law

curve underestimates the energy transfer rate.

6.4 Conclusions

The finite element simulation results in a realistic shape for the distance dependence of
energy transfer from a dipole emitter to an absorbing semiconductor half space. It is
found that when the thickness of the spacer layer between the dipole and the absorber
exceeds 10 — 15 nm non-radiative energy transfer breaks down. This value is in good
agreement with the findings from Refs. [80, 110] where silicon was sensitised with an
organic dye or PbS QDs on top of a spacer layer of various thickness. We conclude
that the design of a sensitised solar cell requires careful treatment of the surface in
order to prevent the suppression of energy transfer in the presence of native oxides, anti
reflection coatings or passivating coatings. Only when the donor species is brought into
close proximity to the absorber energy can be efficiently transferred by means of non-
radiative resonance energy transfer. For a common solar cell made of mono crystalline
silicon the depletion zone of the pn-junction lies several hundreds of nanometres deep and
excitations will never be injected directly into this zone by non-radiative energy transfer.
Nevertheless, materials with a high exciton diffusion coefficient can still benefit from
energy transfer pumping as long as they allow diffusion of excitons from the first 10 nm
to the the underlying depletion zone. (A very accurate method for the determination
of the exciton diffusion coefficient is described in chapter 5). The critical distance of
10 nm has also consequences for the optimum thickness of the sensitising layer: if the
material on the top does not allow efficient exciton diffusion within the layer itself,
then energy transfer to the silicon will only occur from the first few nanometres of the
layer adjacent to the substrate, limiting the effectiveness of the scheme substantially.
From the discussion in chapter 2 it can be seen that the strong oscillator strength and

absorption found in organic dyes, semiconducting polymers and QDs originates from the
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confinement and localisation of carriers in the materials. Naturally, this is contradictory
with efficient exciton diffusion, unless the material supports mechanisms for effective
exciton migration and hopping between different molecules or polymer segments. The
well studied organic semiconductors possess diffusion coefficients of 5-20 nm for singlet
excitons [121-126]. For triplet excitons a larger range of values between 10 and more
than 100 nm, depending on the material, can be found in the literature [127-129]. The
higher diffusion length of the long living triplet states could possibly be employed for
this scheme. A few examples exist where the weakened optical transitions in triplet
states contribute substantially to the photoluminescence and energy transfer dynamics
of a material [130, 131]. The effect of carrier diffusion on the effective range of energy
transfer can also be studied with simulation methods and is the logical next step following

the basic investigation presented here.
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Chapter

Conclusions and Future Work

7.1 Conclusions

Within this thesis a range of experiments and theoretical considerations was executed to
investigate the conditions for effective resonance energy transfer. The primary system
under study consists of excitons in QWs as energy transfer donors and absorptive organic
material layers as acceptors. QW excitons posses quantum mechanical properties like a
wave vector or the spacial extent of the wave function that give rise to effects beyond
the scope of the point dipole approximation that is commonly exerted in the context of
resonance energy transfer. For the QW-polyfluorene combination it was also investigated
in detail how the rate of energy transfer changes with the distance between the QW
and the organic material layer. This material combination bears some potential for
the application in LEDs where the rich colours of organic materials render them good
candidates as colour converters on top of UV or blue-emitting LED wafers instead of

conventional phosphors.

The scheme of energy transfer for colour conversion was tested on blue emitting LED
wafers supplied by a LED manufacturer (chapter 3. It was found that the polymer
F8BT is an ideal partner for this particular LED to yield high quality white light.
Nevertheless, the alterations to the LED design which are required to enable resonance
energy transfer to the F8BT are detrimental and outweigh by far the benefit of the
more efficient pumping of the colour converter that potentially could be achieved. In
conclusion, it seems more viable to be leave the LED design unchanged and embed
a sufficiently thick layer of the colour converting material in the same way as it is
done for current state of the art white LEDs using either traditional phosphors or QD
phosphors. Realistically, for commercial applications where only the output power vs.
input electrical power and cost is considered it is not worth to pursue the resonance

energy transfer scheme. This was implicitly confirmed by the dying interest of the LED
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manufacturer in the project. Due to the constraints on the availability of the rare earths
colour conversion materials like organic semiconductors and colloidal QDs can serve as a
cost efficient replacement and are expected to become increasingly important for a large
scale introduction of LED lighting [1, 17-26, 32, 33].

One of the reasons why the resonance energy transfer scheme is not commercially attrac-
tive for LED manufacturers is the close proximity on the order of only a few nanometres
that is required between the QW and the absorptive medium. Evidently, this is in-
compatible with the need for thick material layers for the injection and spreading of
currents of a few hundred mA in a high power LED. From the simulations and exper-
iments in chapter 4 we found that the balance between localised and free exceptions
governs the energy transfer dynamics in the technologically important GaN, AlGaN and
InGaN material systems. In comparison with other technologically relevant materials
like GaAs these materials posses relatively high densities of localised excitons and a high
exciton binding energy such that excitons, both localised and free, play a key role at
room temperature. We propose a scheme to make use of the high rate of resonance
energy transfer for a distinct, resonant wave vector such that energy transfer is enabled
over a length scale one order of magnitude longer than the characteristic length scale
for the process. The scheme employs fine tuning of the material and interface quality
of the heterostructure to achieve the desired fraction and wave vector for free excitons
in the exciton ensemble. However, to my judgement this limited degree of freedom is
insufficient to enable efficient resonant energy transfer in real world devices and to make

them feasible for LED manufacturers.

Not many conclusions can be drawn from the experiments in chapter 5 because after all
they did not result in the observation of the desired wave vector dependence of resonance
energy transfer. It was thought that in a transient grating experiment energy transfer
from a selected wave vector state will enhance the absorption of light by this state so
much, that the intensity of the diffracted beam will decrease measurably. However, doe
to the fast thermalisation of the exciton ensemble it is not possible to probe the much
slower energy transfer processes of one isolated exciton state alone. Instead, within
hundreds of fs all excitons interact with each other via direct scattering or phonons

which effectively shields the evolution of the selected state from our experiment.

In chapter 6 the result of a computational thought-experiment following the idea of
Dexter was presented. A finite element analysis simulation was set up to compute the
distance dependence of resonance energy transfer from a PbS QD to a slab of silicon. A
layer of silicon oxide with variable thickness was placed between the two, representing
any technologically required passivation or anti reflection layers on a real world silicon
solar cell. It was observed that the rate of energy transfer drops rather rapidly with
increasing spacer thickness such that for a thickness above 10 nm the effect nearly

vanishes. This observation matches recently performed experiments on this material
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combination and I conclude that the scheme is of little use to enhance the efficiency of

a real world device [80].

In conclusion, these findings underline that resonance energy transfer is an inherently
short ranged mechanism that is not compatible with real world LEDs or solar cells. In
inherently thin layered structures, like they are found in planar microcavities, it may pro-
vide useful as an efficient pathway for the transfer of excitations between inorganic and

organic constituents, orders of magnitude more effective than radiative energy transfer.

7.2 Future work

Future work on resonance energy transfer in QWs will have a focus on the fundamental
physics of the process, not applications. For example, different theoretical models exist
about the role of free carriers for energy transfer in QWs, but it remains to be seen
if, or if they are not, contributing substantially to the transfer of excitations to the
acceptor [64, 132]. Also, hybrid inorganic/organic microcavities are predestinated to
employ resonance energy transfer and experimental efforts will eventually catch up with
the theoretical work on the topic. Beyond QWs, the process is technologically important
because it is occurring in blends of organic polymers, dyes and QDs, as they are found
for example in organic photovoltaic cells, organic light emitting diodes or in LEDs for
colour conversion. In organic polymers energy transfer competes with non-radiative
recombination and effectively contributes to exciton diffusion, two effects that need to

be understood to achieve efficient organic optoelectronic devices.
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