Evaluating the balance between vertical diffusive nitrate supply and nitrogen fixation with reference to nitrate uptake in the eastern subtropical North Atlantic Ocean

Stuart C. Painter,1 Matthew D. Patey,2 Alexander Forryan,3 and Sinhue Torres-Valdes1

Received 17 June 2013; revised 16 August 2013; accepted 25 September 2013; published 22 October 2013.

[1] The balance between N2 fixation and diffusive NO3- supply is a key determinant for assessing the importance of both processes for new production in subtropical waters. Here we report observations of integrated N2 fixation rates from the eastern subtropical North Atlantic Ocean with coincident estimates of diffusive NO3- supply. We find the average rate of N2 fixation is equivalent to 62% of the diffusive NO3- supply, though N2 fixation could exceed the diffusive flux at individual stations. Turbulent diffusivity measurements across the nitracline indicate a mean diffusivity of 0.077 cm2 s-1. If approximations for methodological underestimates in the dominant N2 fixation technique are considered, the magnitude of N2 fixation is shown to represent 100% of the NO3- flux on average, and can be almost threefold higher at individual stations. As the study site is characterized by low rates of N2 fixation compared to other sectors of the North Atlantic this confirms N2 fixation as a major source term across the subtropical North Atlantic. The seasonal context of our observations suggests environmental factors underlie the in situ variability in observed N2 fixation rates, and may well explain lower previous assessments of the importance of N2 fixation relative to diffusive NO3- supply in this region. The diffusive NO3- supply provides <20% of measurable NO3- uptake with the remainder supplied via other mechanisms, most notably nitrification. The mean integrated rate of N2 fixation equates to just 8% of the NO3- consumed on a daily basis by the phytoplankton community.

1. Introduction

[2] The supply of externally sourced nutrients to the surface waters of subtropical oligotrophic gyres is a key control on overall levels of new production within such ecosystems. Historically, the presence of persistent water column stratification and the absence of strong convective mixing focused attention upon the vertical diffusive flux of NO3- as the primary pathway by which NO3- (and hence new nutrients) reached the surface ocean. The validity of this statement appeared confirmed when Lewis et al. [1986] found a general agreement (to within an order of magnitude) between rates of integrated NO3- uptake and of diffusive NO3- supply across the nitracline. In the period since this important study was published it has been recognized that the diffusive flux of nutrients is augmented by other sporadic inputs such as those provided by mesoscale eddies, internal waves, and atmospheric deposition (reviewed by Lipschultz et al. [2002]). The identification and quantification of these multiple nutrient supply pathways remains a major research objective, particularly given existing imbalances between rates of production that can be supported by directly measured nutrient supply terms and the higher rate of production indirectly inferred by geochemical methods [Jenkins, 1982].

[3] Alongside developments in our understanding and quantification of the physical mechanisms that supply nutrients to the surface ocean has been improved recognition of the role of diazotrophy in injecting new nitrogen into the surface ocean. N2 fixation has now moved from being a relatively unimportant process [Dugdale and Goering, 1967] to one that occupies a central role in our conceptual view of nutrient cycling within the ocean [Gruber, 2008]. In particular, the importance of diazotrophic organisms for new and export production is increasingly recognized [Karl et al., 1997, 2002, 2012; Capone et al., 2005;
that only recently have the rates of diffusive NO₃⁻ been quantitatively more important. Surprisingly, it appears that the marine N cycle is largely balanced [Gruber and Sarmiento, 1997; Capone et al., 2005; Deutsch et al., 2007; Gruber, 2008; DeVries et al., 2012]. However, the relevance of regional variability in N₂ fixation rates is still not properly understood.

Areal estimates of N₂ fixation rates have been shown to rival or exceed in magnitude the diffusive flux of NO₃⁻ [Capone et al., 2005; Mahaffey et al., 2005]. The balance between these two supply processes, however, is spatially and temporally variable. Consequently, direct measurement of both processes is required to validate such conclusions and to identify regions of the ocean where N₂ fixation may be quantitatively more important. Surprisingly, it appears that only recently have the rates of diffusive NO₃⁻ supply and of N₂ fixation been compared simultaneously [Mourino-Carballido et al., 2011]. Previous comparisons, particularly for basin scale syntheses, have often been made on the basis of an assumed turbulent diffusivity (Kz), such as that obtained by Ledwell et al. [1993] (i.e., Kz = 0.11 cm² s⁻¹), which is assumed to be broadly constant in space and time. Nevertheless, even with this assumption in place areal rates of N₂ fixation have been shown to represent significant inputs of new nitrogen, which suggests that unless diffusivities are considerably more heterogeneous than currently thought the general conclusion that N₂ fixation can exceed diffusive NO₃⁻ supply is valid in certain cases. However, limited understanding of the spatiotemporal variability in N₂ fixation rates away from the tropical belt of maximum N₂ fixation means that it is unclear if the dominance of N₂ fixation over the diffusive NO₃⁻ supply can be considered typical.

Despite general conclusions regarding the importance of N₂ fixation, Mourino-Carballido et al. [2011] found that N₂ fixation represented between 2% and 44% of the diffusive NO₃⁻ flux in the subtropical North and South Atlantic, respectively. The low contribution for the North Atlantic seems to be at odds with the broader distribution and importance of diazotrophy across the North Atlantic [Capone et al., 2005; Carpenter and Capone, 2008] and its implied impact upon the distribution of N⁺ [Gruber and Sarmiento, 1997; but see also Singh et al., 2013]. This may indicate an important spatial decoupling between the two supply processes, indicate some facet of regional or seasonal variability that we poorly understand or possibly indicate that the true significance of N₂ fixation for new production is equally poorly understood [Singh et al., 2013].

The eastern subtropical North Atlantic is characterized by relatively low rates of N₂ fixation compared to the western North Atlantic and equatorial regions [Capone et al., 2005; Carpenter and Capone, 2008; Subramaniam et al., 2013] and detailed assessments of the importance of N₂ fixation versus diffusive NO₃⁻ supply for overall productivity levels are lacking. Here we address these omissions and present measurements of primary production, NO₃⁻ uptake, and N₂ fixation from the eastern subtropical North Atlantic along with simultaneous estimates of the vertical diffusive NO₃⁻ supply to critically evaluate the importance of N₂ fixation relative to the NO₃⁻ supply.

2. Methods

2.1. Cruise Overview and Environmental Characterization

All data were collected between 11 August and 12 September 2011 at a nominal location of 26.5°N, 29.5°W (Figure 1). All CTD casts were located within a 160 km radius around this position and conducted during repeated mesoscale surveys of the area. Water sample collection and environmental characterization were performed using a Seabird 9/11+ CTD-Niskin rosette package. Mixed layer depths were estimated using a density threshold criterion of 0.03 kg m⁻³ relative to the density at 10 m [de Boyer Montegut et al., 2004]. Mixed layer depths were generally deeper (20–60 m) between 11 August and 25 August than they were subsequently (<30 m), and the cruise mean mixed layer depth was 28 ± 15 m.

Figure 1. Cruise transect and survey region (red square) shown in relation to the wider subtropical North Atlantic and established time-series study sites including Bermuda Atlantic Time Series (BATS) and the European Station for Time Series in the Ocean (ESTOC). The underlying surface chlorophyll image is the MODIS Aqua mission average for the period 2002–2011. Selected contours (as labeled) are presented to show the long-term mean position of the North Atlantic subtropical gyre.
The depth of the euphotic zone (0.1% surface irradiance) was derived from knowledge of the water column attenuation coefficient (K_d), which was estimated from a regression of log normalized irradiance intensity (PAR; photosynthetically active radiation) against depth. PAR data were collected from a CTG 2π PAR sensor fitted to the CTD frame and only casts conducted around local noon (±3 h) were used in this assessment, which resulted in an average K_d for the cruise of 0.044 (range 0.041–0.048) and produced a cruise average euphotic zone depth of 158 ± 7 m; comparable to the deepest chlorophyll maximum (DCM) we observed.

2.2. Biological and Chemical Variables

Discrete chlorophyll concentrations were estimated fluorometrically from 250 ml or 500 ml seawater samples filtered onto 25 mm Whatman GF/F (0.7 μm pore size) glass fiber filters and extracted in 90% acetone at 4°C overnight (16–20 h). Chlorophyll extracts were measured following the method of Welschmeyer [1994] using a Turner Trilogy fluorometer calibrated against a pure chlorophyll-a standard (spinach extract—Sigma Aldrich). CTD fluorescence profiles were calibrated against the discrete chlorophyll samples using linear regression analysis. The calibration equation $y = 2.5766x - 0.0124$ ($R^2 = 0.93$, $n = 196$), where y is the measured calibrated fluorescence profile (mg m$^{-3}$) and x is the measured chlorophyll concentration (mg m$^{-3}$), was applied to all fluorescence profiles.

Water samples for the determination of total nitrate (NO$_3$− + NO$_2$−, hereafter NO$_3$−), phosphate (PO$_4^{3-}$) and orthosilicic acid (Si(OH)$_4$) concentration were drawn directly from CTD Niskin bottles into clear polystyrene vials and analyzed immediately or stored in the dark at 4°C whilst awaiting analysis. All concentrations were determined colorimetrically using a 3 channel Skalar Sanplus autoanalyser following the methods described by Kirkwood [1996]. Detection limits of better than 0.1 μmol L$^{-1}$ for NO$_3$− and Si(OH)$_4$ and 0.01 μmol L$^{-1}$ for PO$_4^{3-}$ were achieved throughout. As these detection limits were insufficient for the oligotrophic waters of the study site, we also measured NO$_3$− and PO$_4^{3-}$ concentrations at nanomolar levels using the liquid capillary waveguide methodology described by Patey et al. [2008, 2010]. This provided a limit of detection of around 0.5 nmol L$^{-1}$ for both NO$_3$− and PO$_4^{3-}$.

2.3. 13C, 15NO$_3$−, and 15N$_2$ Fixation Rate Measurements

Water samples were collected from five depths across the euphotic zone for the measurement of primary production, NO$_3$− uptake, and N$_2$ fixation. Sampling depths were chosen based on irradiance levels and represented 97, 55, 33, and 14% of surface irradiance intensity with an additional sample from the depth of the DCM (<1% PAR). For the measurement of primary production and NO$_3$− uptake, duplicate 2 L water samples from each depth were carefully measured into clean Nalgene polycarbonate bottles and dual labeled with Na13CO$_3$ and K15NO$_3$. The 13C label (99% enriched, CIL Laboratories) was added at a fixed concentration of 105 μmol L$^{-1}$, equating to 5% of the available dissolved inorganic carbon (DIC) pool (~2100 μmol L$^{-1}$), whereas the 15NO$_3$− label (99.5% enriched) was added at a variable concentration of between 1 and 5 μmol L$^{-1}$ to take into account both spatial and vertical changes in the ambient NO$_3$− concentration. These additions represent on average 16% of the ambient NO$_3$− concentration but in individual bottles the tracer addition varied from <1 to 50% of the actual NO$_3$− concentration; thus whilst our results broadly reflect natural conditions they are a combination of trace and saturated uptake rates.

Samples from the 97–14% irradiance depths were incubated using on-deck incubators shielded to appropriate irradiance levels with optical filters (210.6 Neutral Density and 061 Mist Blue; Lee Filters) and flushed with running seawater collected from ~5 m depth (~24°C). Bottles from the deepest sampling depths were incubated using a FytoScope FS130 plant growth chamber (Photon Systems Instruments, www.psi.cz), which allowed precise temperature and irradiance control (cool white LEDs). The temperature within the growth chamber was set to 17°C reflective of in situ temperatures, whilst the irradiance level was set to ~7 μmol photons m$^{-2}$ s$^{-1}$ which was previously determined to approximate peak daily irradiance intensities at the depth of the DCM. Confirmation of this approximation was gained from a retrospective analysis of ship measured total daily incident PAR, which ranged from 22.5 to 60 mols photons m$^{-2}$ d$^{-1}$ and averaged 50.6 ± 10.6 mols photons m$^{-2}$ d$^{-1}$ over the period of the cruise. The daily irradiance cycle at the DCM was estimated following Kirk [2010] using a transmission coefficient of 0.98 and the cruise average attenuation coefficient of 0.044 m$^{-1}$. Calculated in this way, the average daily maximum irradiance intensity at the DCM was 6.8 ± 1.2 (range 3.2–8) μmol photons m$^{-2}$ s$^{-1}$ (Figure 2), whereas the daily average PAR experienced by the DCM was 1.9 ± 0.4 μmol photons m$^{-2}$ s$^{-1}$ (Figure 2). The daily integrated PAR received by the DCM averaged 0.17 ± 0.04 (range 0.08–0.2) mols photons m$^{-2}$ d$^{-1}$.

All samples were incubated for 4–6 h before gentle filtration onto ashed (>6 h at 450°C) 25 mm Whatman GF/F filters (0.7 μm pore size). Filters were stored frozen at −20°C onboard. Once back in the laboratory all filters were dried overnight at 40°C, pelletted into tin capsules using a laboratory press and analyzed by mass spectrometry for particulate and isotopic N and C content. Uptake rates (units nmol L$^{-1}$ h$^{-1}$) were calculated using the equations of Dugdale and Wilkerson [1986]. 13C uptake rates were calculated assuming an ambient DIC concentration of 2100 μmol C L$^{-1}$ (=25.2 mg C L$^{-1}$) and using a 13C natural abundance of 1.0790%, which was the mean value obtained from the isotopic analysis of independent samples collected for measurements of particulate organic carbon (POC)/particulate organic nitrogen (PON) concentration and T$_0$ initial isotopic conditions as part of the N$_2$ fixation experiments.

N$_2$ fixation rates were measured using the method described by Montoya et al. [1996] for both total and <8 μm size fractions (samples were prefiltered). The <8 μm size fraction was included to provide an indication of diazotrophy by the unicellular component of the plankton community. At each sampled depth and for each size fraction, a 4.2 L polycarbonate bottle was filled to the brim and closed with a gas tight septum cap taking care to remove all air bubbles first. Once sealed, 4 ml of 99% 15N$_2$ gas was injected through the septum and the bottle
rolled from side-to-side for several minutes to aid equili-
bra tion of the tracer with the dissolved N2 gas content of
the sample. All bottles were incubated for 24 h using the
same incubators as described above, though incubators
were covered/LED’s turned off at night to protect samples
from the ship’s lights. All samples were filtered under
gentle vacuum pressure onto ashed 25 mm Whatman GF/
F filters, which were then stored frozen at −20°C for
return to the laboratory where filters were dried and pel-
leted for analysis. N2 fixation rates (nmol L−1 d−1) were
calculated using the mass balance equations detailed in
Montoya et al. [1996].

[15] To provide daily integrals of carbon fixation and of
NO3− uptake from our subdaily incubations to compare to
the daily rates of N2 fixation, we have scaled the hourly
carbon uptake rates by the standard solar day length (12 h)
and hourly NO3− uptake rates by 18 h to account for dark
NO3− uptake, which may be significant [Mulholland and
Lomas, 2008]. In doing this, we have assumed that dark
NO3− uptake occurs at a rate equivalent to 50% of that
observed in the daylight [Mulholland and Lomas, 2008].

3.4. Turbulence Measurements and Diffusive Nitrate
Fluxes

[16] Turbulent kinetic energy dissipation (ε) was mea-
sured at 13 stations during the cruise from microstructure
velocity shear measurements collected using an MSS90L
free-fall microstructure shear profiler produced by Sea and
Sun Technology GmbH and ISW Wassermesstechnik using
the methodology described by Forryan et al. [2012, 2013].
Briefly, turbulent diffusivity is related to the dissipation of
turbulent kinetic energy [Osborn, 1980; Moum et al.,
1995; Rippeth et al., 2003] and under conditions of iso-
tropic turbulence [Yamazaki and Osborn, 1990] the rate of
turbulent kinetic energy dissipation can be calculated from
the variance of the measured vertical microstructure shear
by integration of the vertical microstructure shear power
spectrum [Moum et al., 1995; Rippeth et al., 2003; Stips,
2005]. The microstructure shear power spectrum was esti-
mated using the modified periodogram method [Welch,
1967] from the vertical microstructure shear fluctuations.
This power spectrum was then used to calculate the rate of
turbulent diffusivity (Kz) as described by Forryan et al.
[2012, 2013].

[17] Due to the limited number of stations at which tur-
bulent diffusivity was measured (13) we have calculated
the geometric mean diffusivity profile that we use to esti-
mate diffusive NO3− fluxes. This was achieved by first log
transforming the diffusivity data prior to averaging. We
then subsequently averaged the diffusivity measurements
between 90 and 160 m depth (i.e., across the nitracline) to
obtain the diffusivity term Kz. Vertical diffusive NO3−
fluxes were calculated at the top of the nitracline using a
concentration of 100 nmol NO3− L−1 to signify this posi-
tion and at the depth of the maximum nitracline gradient
using a common methodology. In both cases, the local
NO3− gradient (dNO3−/dz) was obtained via linear interpo-
lation, and combined with the mean diffusivity term (Kz) via
the equation (Kz dNO3−/dz) to produce diffusive flux estimates.

3. Results

3.1. Environmental Context

[18] We present in Figure 3 a time series of observations
for the upper 200 m of the water column under the assump-
tion that spatial differences due to the geographic position-
ing of individual CTD casts is less influential than the
regional temporal trend. The hydrographic conditions char-
acterized by the contour plots of temperature, salinity, and
density reveal that near surface waters (<30 m) increased
by this process alone thus the most likely explanation must
also involve a degree of spatial variability. Within the

Figure 2. (a) Calculated daily irradiance cycles for the deep chlorophyll maximum where peak daily
irradiance intensity averaged 6.8 ± 1.2 μmol photons m−2 s−1. The red line indicates the irradiance in-
tensity setting of the Fytoscope incubator (−7 μmol photons m−2 s−1) used in this study for samples col-
lected from the deep chlorophyll maximum. (b) Daily average irradiance at the deep chlorophyll
maximum with a cruise average of 1.9 ± 0.4 μmol photons m−2 s−1.
All individual profiles. Subsurface oxygen maximum remained clearly visible in oxygen concentrations appear to decrease with time, the significant heterogeneity within the DCM. Chlorophyll could be considerable variability in the maximum chlorophyll concentrations at the DCM were 0.3–0.4 mól L⁻¹ (mean 233 ± 3 mól L⁻¹) and whilst peak oxygen concentrations appear to decrease with time, the subsurface oxygen maximum remained clearly visible in all individual profiles.

[19] Dissolved oxygen profiles, which highlight an important region of primary production, show a persistent subsurface oxygen maximum located at a mean depth of 80 ± 8 m (range 53–99 m) (Figure 3). Maximum oxygen concentrations on individual profiles varied from 226 to 241 mól L⁻¹ (mean 233 ± 3 mól L⁻¹) and whilst peak oxygen concentrations appear to decrease with time, the subsurface oxygen maximum remained clearly visible in all individual profiles.

[20] We also present in Figure 3 calibrated fluorescence and bottle chlorophyll data. The depth of the DCM was identified from calibrated chlorophyll fluorescence profiles and found to vary in depth from 105 to 159 m with a cruise average of 129 ± 11 m, some 50 m deeper than the mean depth of the oxygen maximum [as is typical for subtropical waters Hayward, 1991, 1994]. Maximum chlorophyll concentrations at the DCM were 0.3–0.4 μg L⁻¹, though there could be considerable variability in the maximum chlorophyll concentration observed between profiles indicating significant heterogeneity within the DCM. Chlorophyll concentrations >0.15 μg L⁻¹ were observed between 75 and 175 m depth and elevated relative to surface concentrations (~0.05 μg L⁻¹), resulting in a rather broad feature but at its core the DCM was a rather more abrupt feature usually <10 m thick. Despite repeated sampling only a weak and insignificant correlation between the depth of the DCM and of the 1% irradiance depth was identified. This correlation was far weaker than is widely assumed and resulted from the DCM occupying a deeper position relative to the depth of the 1% isolume at most stations. Using the average attenuation coefficient for the cruise (0.044 m⁻¹), we calculate that the DCM was located at a mean irradiance intensity of 0.39% of surface irradiance and comparable to the 0.26% level identified by Venrick et al. [1973] in the North Pacific.

[21] Nutrient concentrations are also shown in Figure 3. NO₃⁻ concentrations were consistently at nanomolar levels (<10 nmol L⁻¹) throughout the upper 100 m of the water column (mean concentration 7.1 ± 1.8 nmol L⁻¹) and increased below 100 m depth signifying the position of the nitracline. The nitracline, defined here by a concentration of 100 nmol L⁻¹, was located at a mean depth of 129 ± 13 m but found to vary from 95 to 160 m on individual profiles. Silicate concentrations were typically <200 nmol L⁻¹ in the upper 100 m of the water column (mean 164 ± 87 nmol L⁻¹), but Si concentrations proved to be rather variable resulting in a patchy distribution and regions with Si concentrations <100 nmol L⁻¹ could be discerned. The patchy nature of surface silicate concentrations is reflected in the position of deeper isopleths, which are shoaler when

Table 1. Summary of Station Positions, Integration Depths, and Integrated (Trapezoidal Method) State Variables and Biological Uptake Rates

<table>
<thead>
<tr>
<th>Station</th>
<th>Date</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Integration Depth (m)</th>
<th><8 μm NO₃⁻ (mmol m⁻² d⁻¹)</th>
<th>integrated NO₃⁻ (mmol m⁻² d⁻¹)</th>
<th>integrated chl-α (mg m⁻²)</th>
<th>Total Integrated N₂ Fixation (mmol N m⁻² d⁻¹)</th>
<th>Integrated N₂ Fixation (mmol N m⁻² d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13/08/11</td>
<td>27.0022</td>
<td>30.2984</td>
<td>121</td>
<td>0.13</td>
<td>1.35</td>
<td>92</td>
<td>15.35</td>
<td>10.29</td>
</tr>
<tr>
<td>2</td>
<td>15/08/11</td>
<td>25.7964</td>
<td>31.1772</td>
<td>116</td>
<td>0.57</td>
<td>3.47</td>
<td>166</td>
<td>27.74</td>
<td>21.98</td>
</tr>
<tr>
<td>3</td>
<td>17/08/11</td>
<td>26.4469</td>
<td>31.0652</td>
<td>120</td>
<td>0.38</td>
<td>3.15</td>
<td>122</td>
<td>21.98</td>
<td>16.86</td>
</tr>
<tr>
<td>4</td>
<td>25/08/11</td>
<td>26.9946</td>
<td>30.3484</td>
<td>144</td>
<td>0.77</td>
<td>4.57</td>
<td>212</td>
<td>32.47</td>
<td>27.74</td>
</tr>
<tr>
<td>5</td>
<td>29/08/11</td>
<td>26.6028</td>
<td>31.3435</td>
<td>123</td>
<td>0.46</td>
<td>2.82</td>
<td>166</td>
<td>14.86</td>
<td>10.29</td>
</tr>
<tr>
<td>6</td>
<td>04/09/11</td>
<td>26.0971</td>
<td>31.8269</td>
<td>111</td>
<td>0.74</td>
<td>4.82</td>
<td>192</td>
<td>15.08</td>
<td>10.29</td>
</tr>
<tr>
<td>7</td>
<td>06/09/11</td>
<td>26.2992</td>
<td>30.9711</td>
<td>144</td>
<td>0.74</td>
<td>4.82</td>
<td>192</td>
<td>15.08</td>
<td>10.29</td>
</tr>
<tr>
<td>8</td>
<td>08/09/11</td>
<td>26.3992</td>
<td>31.2602</td>
<td>130</td>
<td>0.74</td>
<td>4.82</td>
<td>192</td>
<td>15.08</td>
<td>10.29</td>
</tr>
</tbody>
</table>

Surface concentrations are higher and are deeper when they are lower, suggesting that this variability in surface Si concentrations is related to activity within the thermocline [Bibby and Moore, 2011]. Finally, PO₄³⁻ concentrations were typically <5 nmol L⁻¹ in the upper 100 m (mean 3.2 ± 0.9 nmol L⁻¹) and a little higher than reported for the western subtropical North Atlantic (0.2–1 nmol L⁻¹) [Wu et al., 2000], but increased with depth. Concentrations >10 nmol L⁻¹ were typically encountered below 120 m depth, but there is clearly some variability between stations including what may very well be a number of eutrophication events when pockets of water with PO₄³⁻ > 5 nmol L⁻¹ were identified within the upper 100 m (Figure 3). We have used an arbitrary concentration of 100 nmol PO₄³⁻ L⁻¹ to signify the position of the phosphocline, recognizing that this may overestimate the actual depth given the generally lower concentration of PO₄³⁻ relative to NO₃⁻. In this way, we obtain a mean phosphocline depth of 177 ± 27 m, roughly 40 m deeper than the corresponding nitracline but supportive of the general observation of a vertical decoupling between the nitracline and phosphocline within the Atlantic Ocean [Longhurst and Harrison, 1989].

3.2. Rate Measurements

[22] Rates of carbon fixation varied from 0.6 to 29.3 nmol C L⁻¹ h⁻¹ (0.007–0.35 nmol C m⁻³ d⁻¹) with maximum rates located in surface waters (upper 30 m) and decreasing below this. Daily integrated production (Table 1) ranged from 14.9 to 32.5 mmol C m⁻³ d⁻¹, very similar to previous measurements of primary production rates in these waters [Maranon et al., 2000; Poulton et al., 2006; Perez et al., 2006].

[23] Rates of NO₃⁻ uptake (ρNO₃⁻) varied from 0.03 to 1.17 nmol N L⁻¹ h⁻¹. In general, ρNO₃⁻ rates remained relatively uniform or decreased with depth, which is consistent with both the NO₃⁻ impoverished nature of these waters and the reduction in irradiance intensity with depth. Given the sampling resolution, there is minimal evidence for any enhancement in ρNO₃⁻ at depth around the nitracline as reported previously [Le Bouteiller, 1986; Eppley and Koeve, 1990; Harrison 1990; Painter et al., 2007]. Daily-integrated ρNO₃⁻ rates ranged from 0.13 to 1.18 nmol N m⁻² d⁻¹ (Table 1) and were very comparable to previous observations from this region (see section 4).

[24] Rates of N₂ fixation were generally <0.5 nmol N L⁻¹ d⁻¹ throughout the water column with isolated enhancements of up to 2.8 nmol N L⁻¹ d⁻¹ at the shallowest sampled depths. N₂ fixation rates in the <8 μm fraction were noticeably lower peaking at just 0.24 nmol N L⁻¹ d⁻¹, and unlike the vertical profiles for the total fraction, a small yet distinct peak in N₂ fixation by the <8 μm fraction was evident between 20 and 30 m. Daily-integrated N₂ fixation rates ranged from 15.4 to 95.62 μmol N m⁻² d⁻¹ for the full size fraction and from 8.36 to 11.07 μmol N m⁻² d⁻¹ for the <8 μm fraction (Table 1). The composition of the diazotrophic community, particularly in the <8 μm fraction, is unknown but a large and exceptional bloom of Trichodesmium was encountered during this cruise which was clearly visible from the ship and we consider the larger diazotroph fraction to have been Trichodesmium dominated.
3.3. Vertical Nutrient Gradients

[25] All nutrient concentrations increased significantly below ~100 m depth though there were small and important vertical offsets in the depth at which each nutrient began to increase in concentration. In general, silicate concentrations begin to increase at 100 m depth, NO$_3$ concentrations between 100 and 125 m depth, and PO$_4$ concentrations between 125 and 150 m depth. This vertical separation between the silicicline, nitracline, and phospho-cline is not precise given the subjective criteria used to identify them but such depth offsets are recognized as important for the relative availability of different nutrients at the base of the euphotic zone [Longhurst and Harrison, 1989].

[26] Gradients in NO$_3$ concentration at the top of the nitracline (the depth range over which concentrations begin to consistently increase) for all profiles measured during this cruise ranged from 3 to 190 μmol N m$^{-2}$ d$^{-1}$, with a mean gradient of 25 ± 27 μmol N m$^{-4}$. These gradients are comparable to the mean gradient reported by Mourino-Carbal-lido et al. [2011] of 62 ± 90 μmol N m$^{-2}$ and to the range of gradients reported by Painter et al. [2008] of 33–124 μmol N m$^{-2}$ for this region of the North Atlantic, though our mean gradient is somewhat lower than reported previously. We suspect that this is due to differences in where the nutrient gradient is calculated and sampling resolution between studies. To demonstrate this we present in Table 2 estimates of the nitracline gradient based on measurements taken at the top of the nitracline and on the basis of the maximum gradient in a particular profile, which was usually deeper than the top of the nitracline. Gradients at the top of the nitracline for the subset of eight stations we focus on here ranged from 5.48 to 44.5 μmol m$^{-2}$ (mean 18.5 ± 12.1 μmol m$^{-4}$), whereas the maximum gradient ranged from 54.25 to 129.42 μmol m$^{-4}$ (mean 90.4 ± 23.9 μmol m$^{-4}$). Both estimates are entirely consistent with previous observations but the notable increase in magnitude for the maximum gradient may help explain the ambiguity in interpreting previous nutrient flux estimates due to inconsistencies in the derivation of nitracline gradients (Figure 4; see section 4).

Table 2. Comparison of Turbulent Diffusive NO$_3^-$ Supply Calculated at the Top of the Nitracline (=100 mmol NO$_3^-$ L$^{-1}$) and at the Depth of the Maximum Nitracline Gradient With Local Integrated NO$_3^-$ Uptake

<table>
<thead>
<tr>
<th>Station</th>
<th>NO$_3^-$ Uptake (μmol N m$^{-2}$ d$^{-1}$)</th>
<th>Nitracline Gradient (μmol m$^{-4}$)</th>
<th>NO$_3^-$ Flux (μmol m$^{-2}$ d$^{-1}$)</th>
<th>Flux as % of Uptake</th>
<th>N$_2$ Fix as % of NO$_3^-$ Flux</th>
<th>N$_2$ Fix as % of ρ^{NO_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Nitracline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>134.3</td>
<td>18.76</td>
<td>12.48</td>
<td>9.3</td>
<td>123</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>574.0</td>
<td>12.64</td>
<td>8.41</td>
<td>1.5</td>
<td>330</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>383.3</td>
<td>5.48</td>
<td>3.65</td>
<td>1.0</td>
<td>602</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>773.3</td>
<td>16.95</td>
<td>11.28</td>
<td>1.5</td>
<td>294</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>618.1</td>
<td>11.12</td>
<td>7.40</td>
<td>1.2</td>
<td>227</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>399.6</td>
<td>44.50</td>
<td>29.61</td>
<td>7.4</td>
<td>323</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>735.5</td>
<td>26.01</td>
<td>17.30</td>
<td>2.4</td>
<td>118</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1175.3</td>
<td>12.37</td>
<td>8.23</td>
<td>0.7</td>
<td>769</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Nitracline Gradient</td>
<td>Mean ± standard deviation</td>
<td>599.2 ± 312.7</td>
<td>18.5 ± 12.1</td>
<td>12.3 ± 8.1</td>
<td>3.1 ± 3.3</td>
<td>348 ± 228</td>
</tr>
</tbody>
</table>

3.4. Ambient Diffusivity and Diffusive NO$_3^-$ Fluxes

[27] Profiles of the Brunt-Väisälä buoyancy frequency, turbulent kinetic energy, and turbulent diffusivity from all 13 stations are presented in Figure 5 along with geometrically calculated (log transformed) cruise mean profiles. In general, the individual profiles were very similar to one another indicating minimal spatial or temporal variability. Over the depth range at which the nitracline was located (95–160 m) turbulent diffusivity within individual 8 m depth bins varied from 0.017 to 0.345 cm2 s$^{-1}$. For an individual profile, the mean diffusivity calculated over the 95–160 m depth interval varied from 0.035 to 0.187 cm2 s$^{-1}$. The cruise mean diffusivity over the 95–160 m depth interval was 0.077 ± 0.01 cm2 s$^{-1}$ (95% confidence interval limits 0.059–0.101 cm2 s$^{-1}$) and comparable to existing estimates of open ocean diffusivity (e.g., 0.11 ± 0.02 cm2 s$^{-1}$) [Ledwell et al., 1993]. This mean value appears to be 32% lower than that reported by Ledwell et al. [1993] but as the upper 95% confidence limit (0.101 cm2 s$^{-1}$) approaches the value obtained by Ledwell et al. [1993] the two values are likely indistinguishable. In addition to estimating NO$_3^-$ fluxes at the top of the nitracline we also define fluxes on the basis of the maximum nitracline gradient as this should provide an upper estimate of the magnitude of NO$_3^-$ supply via turbulent diffusion. This is an important distinction as much of the ambiguity in flux estimates between different studies can be traced back to the depth, gradient, or approach used, which can broaden the
The gradient at the depth of the (arbitrarily) defined nitracline is almost four times smaller than the maximum gradient that may be derived from the same nutrient profile. Consequently, considerable variability may be introduced into the estimated nitrate flux. Interestingly, the maximum gradient is typically found near the base of the euphotic zone (0.1% surface PAR). Inset image shows nanomolar nutrient concentrations on a rescaled axis.

3.5. Seasonal Context

[30] Modis Aqua sea surface temperature (SST) and surface chlorophyll data were analyzed to obtain the mean annual cycle for the eastern subtropical North Atlantic and to provide a seasonal context for our observations. In these waters, surface chlorophyll concentrations are typically <0.1 mg m\(^{-3}\) all year round but a weak seasonal cycle with a 2–3 fold variation in concentration is evident. Surface chlorophyll concentrations reach a typical annual maximum of ~0.08 mg m\(^{-3}\) during January to February, and a minimum concentration of ~0.04 mg m\(^{-3}\) in July to August (Figure 6). The mean MODIS chlorophyll concentration for the cruise period was 0.04 mg m\(^{-3}\) and was almost identical to the mean surface (5 m) chlorophyll concentration of 0.05 mg m\(^{-3}\) (range 0.03–0.08 mg m\(^{-3}\)) measured during the cruise. Based on the mean annual cycle shown in Figure 6, the annual mean surface chlorophyll concentration for these waters is 0.05 mg m\(^{-3}\).

PAINTER ET AL.: BALANCE OF N\(_2\) FIXATION AND NITRATE FLUX
The annual cycle in SST is also shown in Figure 6. Maximum SSTs in excess of 26°C are typical from mid-September to early October, though temperatures generally exceed 25°C from mid-August through to mid-November. SST minima of 22°C typically occur from late January through to late March. The climatological annual average SST for these waters is 23.5°C, which is warmer than the typical threshold temperature for Trichodesmium spp. of 20°C [Capone et al., 1997], although below the 24–30°C temperature range over which maximum growth rates are observed [Breitbarth et al., 2007].

The mean climatological MODIS SST for the cruise period was 25.3°C suggesting that ambient SSTs are usually optimal for maximum Trichodesmium growth at this time of year.

In addition to mixed layer depth estimates calculated from cruise CTD casts, we also obtained the annual cycle in mixed layer depth for our study area from the ARGO based mixed layer climatology of Hosoda et al. [2010] and utilizes a density difference criteria of 0.03 kg m⁻³ relative to in situ density at 10 m. Note that Hosoda et al. provide monthly estimates of the mixed layer depth based on each full month of data and that in this figure the date of each mixed layer depth estimate has been reset to the middle of each month. The gray shaded region indicates the period of the present study.
was primarily east northeasterly (there was no consistent change was wind direction, which originated reached the study site. A gradual shift in the air-mass source toward NW Europe, and second, between 10 and 14 August there appears to have been a slight shift in the air-mass source toward NW Europe and Africa can be important source regions for air-borne nutrient and iron deposition to the ocean we have attempted to ascertain what impact, if any, changes in wind direction may have had for our study particularly as sporadic rainfall (wet deposition) events were encountered and observed at a distance from the ship. Although no formal record of rainfall or of its nutrient and iron loading was made, the importance of wet deposition as a mechanism for introducing Saharan dust with its associated P and Fe content to the surface ocean requires consideration in the interpretation of our N\textsubscript{2} fixation results due to the positive effect such inputs can have on N\textsubscript{2} fixation rates and on the diazotrophic community [Langlois et al., 2012; Benavides et al., 2013]. A retrospective assessment of precipitation patterns over the study site was made possible by analysis of the NOAA Climate Prediction Centre’s pentad (5 day) merged analysis of precipitation data set [Xie and Arkin, 1997]. This product is a global data set with a 2.5° resolution and consists of both direct-derived and satellite-derived precipitation rates, and whilst known to contain some inaccuracies [Gruber et al., 2000; Xie et al., 2003; Yin et al., 2004] is useful in the current context for demonstrating the timing of precipitation events. In Figure 9, we present a time series of the average daily precipitation rate for an area of the ocean approximating 23.75–28.75°N, 28.75–33.75°W, slightly larger than our study site. From this analysis, we identify a prominent precipitation event (Pmax) for the period of 19 August to 23 August, when precipitation reached 2.4 mm d$^{-1}$. This was followed by average daily precipitation rates of >0.8 mm d$^{-1}$ for the period 24 August to 2 September. Whilst the overall precipitation rates are low by global standards, the increased precipitation between 19 August and 2 September followed minimal
preference of these processes, we find that on average it was a smaller supply term representing a typical atmospheric input (dry plus wet deposition) for NO$_3^-$ and NH$_4^+$ of 21 μmol m$^{-2}$ d$^{-1}$ and 11.3 μmol m$^{-2}$ d$^{-1}$, respectively, for the region of our study. In the

whilst N$_2$ fixation may represent an important supply process for new nitrogen to the surface ocean the process of N$_2$ fixation itself is dwarfed in magnitude by the rate at which NO$_3^-$ is consumed within these waters.

5742
case of NO$_3^-$, this would equate to 3% or less of the integrated NO$_3^-$ pool (Table 1) suggesting that the atmosphere is a generally less important source than the deep ocean [Okin et al., 2011]. However, depending upon the volume over which the atmospheric input is distributed the typical NO$_3^-$ input suggested by Baker et al. [2010] may be locally significant. For example, if the total atmospheric input was evenly distributed over a 100 m water column this would equate to an input of 0.2 nmol L$^{-1}$ d$^{-1}$, approximately 3% of the mean NO$_3^-$ concentration of 7.1 nmol L$^{-1}$ found over the upper 100 m. If, however, the atmospheric input was localized to a 10 m thick surface layer, the atmospheric input could equate to 2.1 nmol L$^{-1}$ d$^{-1}$ or ~30% of average in situ concentrations. Clearly, therefore, understanding how atmospheric inputs are distributed throughout the surface waters of the ocean is of particular importance for addressing any potential biological impact.

[39] Nitrification, the transformation of NH$_4^+$ to NO$_3^-$, is highly likely to be a major source of NO$_2^-$ and NO$_3^-$ in waters of the eastern subtropical North Atlantic but estimates of nitrification rates range widely [Yool et al., 2007; Ward, 2008]. In an exploratory study from the Atlantic Ocean, Clark et al. [2007] reported NH$_4^+$ and NO$_2^-$ oxidation rates for a single irradiance depth (55% surface PAR) at a station located approximately 770 nmi north of our study site. The measured rates of NH$_4^+$ oxidation (0.05 nmol L$^{-1}$ h$^{-1}$), and in particular of NO$_2^-$ oxidation (0.45 nmol L$^{-1}$ h$^{-1}$), were found to be sufficient to provide 270% of the local NO$_3^-$ demand (0.17 nmol L$^{-1}$ h$^{-1}$). In a more extensive study, Clark et al. [2008] reported NH$_4^+$ and NO$_2^-$ oxidation rates for two irradiance depths (55 and 1% surface PAR) along a transect of the Atlantic Ocean. Rates of NH$_4^+$ oxidation were similar at both depth horizons ranging from 0 to 10 nmol L$^{-1}$ d$^{-1}$, whereas NO$_2^-$ oxidation rates increased from 0.4 to 12 nmol L$^{-1}$ d$^{-1}$ at 55% PAR to 1–31 nmol L$^{-1}$ d$^{-1}$ at the base of the euphotic zone. These rates were sufficient to turnover all inorganic nitrogen pools (NH$_4^+$, NO$_2^-$, NO$_3^-$) on a subdaily timescale.

[40] The mean NO$_3^-$ uptake rate for our observations made between the surface and the deep chlorophyll maximum was equivalent to 4.6 nmol L$^{-1}$ d$^{-1}$, almost identical to the mean NO$_3^-$ oxidation rate of 4.7 nmol L$^{-1}$ d$^{-1}$ reported by Clark et al. [2008] for depths equivalent to 55% PAR. Therefore, typical nitrification rates within the upper euphotic zone appear more than capable of providing the NO$_3^-$ needed to support observed uptake rates and may easily account for the additional 80% needed to support our integrated uptake rates once the contribution from diffusion is accounted for. If, however, NO$_2^-$ oxidation rates approach the higher mean value of 13.2 nmol L$^{-1}$ d$^{-1}$ as reported for the base of the euphotic zone by Clark et al. [2008], then nitrification alone could provide almost three times as much NO$_3^-$ as is consumed on a daily basis. Clearly, under a steady-state assumption a sustained contribution of this magnitude over and above in situ demand would lead to an accumulation of NO$_3^-$ in surface waters that may account for some of the variability in surface NO$_3^-$ concentrations reported in previous studies [Painter et al., 2008] but the breadth of existing nitrification observations is too small to explore this possibility further.

[41] Mourino-Carballido et al. [2011] reported simultaneous measurements of diffusive NO$_3^-$ flux and N$_2$ fixation in the subtropical North Atlantic which indicated that N$_2$ fixation could provide only 2% of the nitrogen supplied by diffusive NO$_3^-$ fluxes across the nitraline. This appears to be the result of an unusually high diffusivity term of 5 cm2 s$^{-1}$, roughly 65 times larger than we observed, but also due to rates of N$_2$ fixation that were lower (11 ± 9 μmol N m$^{-2}$ d$^{-1}$) than those we report here. As the observations reported by Mourino-Carballido et al. [2011] were made in April and May, when sea surface temperatures can be 3–4°C cooler (Figure 6), it is perhaps not surprising that N$_2$ fixation rates were lower but the cause of the higher diffusivity term is less clear. Nitracline gradients reported by Mourino-Carballido et al. [2011] are similar to those we report here which indicates that the difference in diffusivity is a key factor behind the low supply from N$_2$ fixation reported by Mourino-Carballido et al. [2011]. A number of possible explanations for this exist including spurious data, temporal and spatial variability and differences in methodologies for the calculation of diffusivity, which may all singularly or collectively explain the disparity in the significance of N$_2$ fixation in these waters. Independent measurements of turbulent diffusivity from the wider subtropical North Atlantic tend to provide diffusivities closer to 0.1 cm2 s$^{-1}$ [Lewis et al., 1986; Ledwell et al., 1993, 1998, 2008] but diffusivities >1 cm2 s$^{-1}$ are known from studies in the subpolar North Atlantic [Law et al., 2001; Jickells et al., 2008]. It would appear therefore that the assessment of the importance of N$_2$ fixation reported by Mourino-Carballido et al. [2011] and in this study are not directly comparable due to both seasonal differences in N$_2$ fixation rates and important differences in the magnitude of the diffusivity term.

4.1. A Synthesis of Previous Observations

[42] Our principal observations of N$_2$ fixation, NO$_3^-$ uptake and of the nitraline gradient are central to the question of how important N$_2$ fixation is as a supply mechanism of new nitrogen to the subtropical North Atlantic. More fundamentally, however, we must first assess how representative our observations are for the eastern subtropical North Atlantic.

[43] We present in Figure 10 an assessment of the maximum nitracline gradient calculated from 12 separate cruise data sets collected over a 13 year period (1995–2008) as part of the Atlantic Meridional Transect (www.amt-uk.org) [Robinson et al., 2006]. Cruises were conducted in boreal spring or autumn months and show broad similarities in the maximum nitracline gradient between 24 and 36°N. There, gradients rarely exceeded 200 μmol m$^{-2}$ and more typically were <100 μmol m$^{-2}$, which suggests weak interannual variability. Differences in cruise track and occasional sampling within the NW African upwelling system (~20°N) can produce distinctly sharper nitracline gradients. Influence from upwelling near the equatorial region further south has a similar effect. Generally, all cruises show reduced variability in the nitracline gradient between 24 and 36°N. Three cruises shown in Figure 10 are more directly comparable to the present study (the others are influenced to differing degrees by the NW African upwelling system as a result of differences in cruise transect). These three cruises...
produce mean nitracline gradients of 63 ± 24 μmol NO$_3^-$ m$^{-4}$ (AMT12), 78 ± 24 μmol NO$_3^-$ m$^{-4}$ (AMT14), and 96 ± 48 μmol NO$_3^-$ m$^{-4}$ (AMT18) for stations between 24 and 36°N. These mean gradients are very comparable to the mean gradient of the present study (90 ± 24 μmol NO$_3^-$ m$^{-4}$). Table 2) suggesting that nitracline gradients are relatively well constrained in this region to between 50 and 100 μmol NO$_3^-$ m$^{-4}$. Using the individual gradients obtained from the AMT data set presented in Figure 10 in conjunction with the mean diffusivity of 0.077 cm2 s$^{-1}$ obtained in the present study, we thus obtain NO$_3^-$ fluxes which are generally <100 μmol NO$_3^-$ m$^{-2}$ d$^{-1}$ (Figure 10).

[44] In Figure 11, we present a synthesis of NO$_3^-$ uptake rates from previous studies in the eastern subtropical North Atlantic. Though there is quite often some considerable difference in the choice of integration depth between studies (examples range from 20 to 180 m) and in the sampling resolution (3–8 depths), there is nevertheless a broad agreement both in terms of the magnitude of the integrated NO$_3^-$ pool and in terms of the integrated NO$_3^-$ uptake rates. Estimates of the integrated NO$_3^-$ pool vary from 0.2 to 166 mmol NO$_3^-$ m$^{-2}$ (mean 36 mmol NO$_3^-$ m$^{-2}$), with one exceptional estimate of 857 mmol NO$_3^-$ m$^{-2}$ reported by Varela et al. [2005] which appears to derive from the location of this station being close to the NW African upwelling system and correspondingly high NO$_3^-$ concentrations at depth. In the context of these previous observations, our estimates of the integrated NO$_3^-$ pool of 0.72–17.95 mmol NO$_3^-$ m$^{-2}$ are comparable (Table 1 and Figure 11). The same general conclusion is true of our NO$_3^-$ uptake rates (0.13–1.18 mmol N m$^{-2}$ d$^{-1}$) (Table 1), which are within the range of previous estimates of 0.06–34 mmol NO$_3^-$ m$^{-2}$ d$^{-1}$ (mean 3.15 mmol NO$_3^-$ m$^{-2}$ d$^{-1}$) (Figure 11). Finally, we note a disparity between the common assumption for the seasonal increase in surface chlorophyll (Figure 3), which is considered due to the seasonal enrichment of NO$_3^-$ from the nitracline when the surface mixed layer deepens in winter, and the data assembled here. There is no suggestion of seasonality in either the integrated NO$_3^-$ pool or in NO$_3^-$ uptake rates to support the assumption that increased NO$_3^-$ concentrations underlie enhanced chlorophyll concentrations (Figure 11). There is, however, a significant temporal bias underlying the observations which cluster around year day 150 (late May) and year days 260–280 (September to October) which limits this temporal assessment and there appears to be surprisingly little information in the literature regarding NO$_3^-$ uptake during the boreal winter months for this region.
A global synthesis of N_2 fixation rates has recently been made available [Luo et al., 2012] and we utilize this database to assess our observations. Our study site is located in the middle of a region of relatively low N_2 fixation rates (Figure 12) compared to the higher rates that are more typical nearer the equator [Moore et al., 2009]. This is most likely due to relatively low surface iron concentrations in this region [Rijkenberg et al., 2011, 2012] and more broadly to the impact iron has on rates of N_2 fixation [Mills et al., 2004; Moore et al., 2009]. Our measurements of surface N_2 fixation rates are comparable to previous observations (Figure 12), though our integrated rates can be higher. This suggests that general undersampling is responsible for an incomplete picture of the range and interannual variability of integrated N_2 fixation rates in this sector of the northeast subtropical Atlantic Ocean.

4.2. Methodological Caveats

In the context of previous observations from the eastern subtropical North Atlantic there is no suggestion that our rate measurements or NO_3^- flux estimates are atypical. The only parameter that we are unable to fully constrain is the ambient diffusivity, but the majority of existing observations tend to constrain this value closer to $\sim 0.1 \text{ cm}^2 \text{s}^{-1}$ than to $1 \text{ cm}^2 \text{s}^{-1}$. Thus, it is highly unlikely that the conclusions we reach above regarding the importance of N_2 fixation (62% of the diffusive flux) are significantly in error. However, despite its wide usage the $^{15}N_2$ “bubble” technique introduced by Montoya et al. [1996] has recently come under increased scrutiny amid concern that the technique underestimates N_2 fixation rates [Mohr et al., 2010]. These concerns were subsequently investigated by Großkopf et al. [2012] using a technique similar to that first used by Dugdale et al. [1959, 1961] in which a preprepared seawater solution containing dissolved $^{15}N_2$ is added as a solution. Using the method of Mohr et al. [2010], Großkopf et al. [2012] reported elevated N_2 fixation rates in the Atlantic Ocean compared to rates obtained with the bubble technique of Montoya et al. [1996]. In particular Großkopf et al. [2012] report an average increase in N_2 fixation rates of 62% compared to parallel results with the existing bubble technique. The full extent of a methodological underestimate of N_2 fixation rates on global nitrogen budgets requires a great deal of further observational study but Großkopf et al. [2012] estimate that the global N_2 fixation rate could increase by $\sim 70\%$ to $177 \pm 8 \text{Tg N yr}^{-1}$. In a related study, Wilson et al. [2012] compared the N_2 bubble technique, the N_2 solution
technique, and the alternative acetylene reduction technique [Stewart et al., 1967], and independently confirmed that the popular N2 bubble technique does indeed lead to significant underestimates of N2 fixation rates compared to the solution technique. Furthermore, Wilson et al. [2012] also highlight deficiencies in the acetylene reduction technique, particularly the use of a fixed conversion ratio between the amount of acetylene reduced and the amount of nitrogen fixed. Consequently, at the present time the historical record of N2 fixation measurements must be viewed with caution and our best estimates of global N2 fixation rates derived from these measurements as underestimates.

In this study, we used the 15N2 bubble technique and whilst our N2 fixation results compare well to previous observations (Figure 12), the bulk of which are based on the N2 bubble and acetylene reduction assays, growing recognition of methodological problems with the most commonly used method suggests that the historical record is less reliable than thought and that the level of uncertainty over regional and global N2 fixation rates is probably higher than we would like. Although Großkopf et al. [2012] found that the makeup of the underlying diazotroph community was critical in explaining the magnitude of the difference in the results of the two techniques, with Trichodesmium dominated communities producing smaller methodological differences, we cannot say with certainty what error is present in our results as we do not have a full description of the diazotrophic community. Our study region was located at the northern edge of the region recognized as receiving Saharan dust inputs (the Saharan dust belt 10°–25° N), further north than the abundance maxima for Trichodesmium (~10°N) [Moore et al., 2009], located in a region where SST exceeds 25°C only seasonally (Figure 6), and in a region where nitrogenase (nifH) expression suggests a diverse diazotrophic population is present [Turk et al., 2011]. Consequently, it is highly probable that our N2 fixation rates are low. The few size-fractionated N2 fixation results we have, suggest that N2 fixation by the Trichodesmium fraction, which was typically <8 μm size fraction) dots represent the results of this study. All data extracted from the synthesis present by Luo et al. [2012] with individual data coming from studies reported by Benavides et al. [2011], Capone et al. [2005], Fernandez et al. [2010], Mourino-Carballido et al. [2011], McCarthy and Carpenter [1979], Moore et al. [2009], Turk et al. [2011], Goebel et al. [2010], Rees et al. (unpublished data), and Mulholland et al. (unpublished data).

![Figure 12](image-url)

Figure 12. N2 fixation measurements collated from the literature and as measured in this study. (a) The positions of profiles of N2 fixation extracted from the database compiled by Luo et al. [2012] for the eastern subtropical North Atlantic (10–45°W, 10–40°N). The cruise track of the preset study is represented by the black line. (b) Surface (<10 m) N2 fixation rates from the database and we highlight two recent meridional surveys [Moore et al., 2009] black line and [Mourino-Carballido et al., 2011] red line which indicate the low-latitude maxima in surface N2 fixation rates; note that the x axis scale has been restricted to highlight the low N2 fixation rates that are typical of the study region and that two results with fixation rates of ~150 μmol m⁻³ d⁻¹ are excluded from this figure. (c) Integrated N2 fixation rates against latitude, which again highlights the low-latitude maxima that is typical of the North Atlantic. In (d), we present profiles of volumetric N2 fixation rates highlighting the typical near surface maxima in N2 fixation. In Figures 12b–12d, black dots represent literature observations, green (total) and red (<8 μm size fraction) dots represent the results of this study. All data extracted from the synthesis present by Luo et al. [2012] with individual data coming from studies reported by Benavides et al. [2011], Capone et al. [2005], Fernandez et al. [2010], Mourino-Carballido et al. [2011], McCarthy and Carpenter [1979], Moore et al. [2009], Turk et al. [2011], Goebel et al. [2010], Rees et al. (unpublished data), and Mulholland et al. (unpublished data).
Assuming our measured N₂ fixation rates are low by 62% (the average underestimate reported by Großkopf et al. [2012]) we have recalculated the importance of N₂ fixation relative to our NO₃⁻ flux term (Table 2). The results suggest that for an individual comparison N₂ fixation could represent between 29 and 246% of the NO₃⁻ flux with a mean value of 100%. Under this scenario, it would appear that N₂ fixation balances and frequently exceeds the diffusive flux of NO₃. In the eastern subtropical North Atlantic. Recognition of the increase in both the importance and magnitude of N₂ fixation rates will benefit on-going attempts at closing regional nitrogen budgets, particularly for the subtropical ocean where the discrepancy between the rates of nitrogen supply and geochemical estimates of nitrogen demand has remained unresolved for almost three decades. Combined with an important role for carbon export [Karl et al., 2012], N₂ fixation is likely to continue to redefine our understanding of the marine nitrogen cycle in the years ahead.

Acknowledgments. We thank C. M. Moore and D. Honey for technical advice, M. Bolshaw and D. Spanner (all University of Southampton) and A. Rees and L. Al-Moosawi (Plymouth Marine Laboratory) for assistance with the isotopic analyses, Y.-W. Luo (Woods Hole Oceanographic Institute) for providing access to the global diazotrophic database of Luo et al. [2012], S. van Geen, P. Bala, R. Green, and J. Allen for assistance with the turbulence profiler at sea and the Natural Environment Research Council National Capability funding to Plymouth Marine Laboratory. This is contribution 238 of the AMT program. We also thank the two reviewers for their constructive comments.

References

