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ABSTRACT

Glass microfibre waveguides offer an intriguing platform for the investigation of nonlin-

ear effects, due to their high effective nonlinearity which arises from the tight modal

confinement down to dimensions comparable to the wavelength of guided light. This

thesis presents theoretical and experimental work towards achieving efficient third and

second harmonic generation in silica microfibres, as well as in microfibre loop resonators

for enhancing the conversion. Since microfibre resonators themselves exhibit interesting

nonlinear behaviour, the polarisation dependent properties of microcoil resonators were

also studied.

Efficient third harmonic generation is possible through intermodal phase matching, and

experiments using short tapers have demonstrated significant efficiencies up to 10−3 over

a uniform 4 mm waist. On the other hand, the interrogation of longer tapers, in which

the harmonic generation occurs within the taper transition regions of several cm rather

than the waist, allows for a broadband conversion observed to exceed 36 nm at the 5 dB

bandwidth level. A straightforward technique to improve efficiency using microfibre loop

resonators was also investigated. Near resonance, the recirculation of the pump power

inside the resonator was experimentally shown to increase conversion by 7.7 dB higher

than that of the straight microfibre, similar to simulated predictions, and by optimising

the loop geometry the resonant efficiency enhancement can potentially reach 20 dB.

Simulations on second harmonic generation in microfibres indicate that the second order

nonlinearity originates primarily from the structural anisotropy at the glass-air bound-

ary (which exploits the high surface electric field strength of microfibres) as well as

multipolar effects within the bulk. To overcome the inherent weakness of these effects,

experiments focused on conversion enhancement via the aforementioned technique using

loop resonators, with a measured 7.6 dB efficiency improvement.

In addition, an accurate polarisation dependent model for microcoils was developed for

both the linear and nonlinear regimes by incorporating the effects of fibre twist and

birefringence. The coupling between orthogonally polarised modes propagating along

the microcoil results in a strongly polarisation sensitive transmission, especially near

resonances, which in turn influences the nonlinear hysteresis characteristics.
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Chapter 1

Introduction

1.1 Motivation and aims

In recent years, optical microfibres (OMs) have attracted attention for a range of non-

linear applications such as supercontinuum generation [9, 10], pulse shaping [11], sec-

ond harmonic generation (SHG) [12, 13, 14] and third harmonic generation (THG)

[11, 14, 15, 16, 17, 18]. OMs are typically fabricated by heating and pulling optical

fibres down to a diameter comparable to the wavelength, which in conjunction with the

large glass-air refractive index contrast offers modal confinement as low as a few square

microns for silica. The resulting taper structure shown in Fig. 1.1 consists of a narrow

waist (usually with a uniform or slightly parabolic diameter profile) connected on both

sides to transition regions.

For OMs fabricated from standard silica single mode fibre (SMF), the effective nonlinear-

ity γ can be enhanced by approximately 2 orders of magnitude [1, 19]. Furthermore, the

large evanescent field in the surrounding air may be easily accessed and exploited to self-

couple light between different segments of the OM and thus form loop [20, 21], knot [22]

Microfibre waist

D ~ μm

Uptaper transition region

Downtaper transition region

SMF

SMF
D = 125 μm

D = 125 μm

Figure 1.1: A schematic of a taper, showing a uniform microfibre waist region in
the centre and two transition regions (the downtaper and uptaper) connected to the

original untapered fibre.
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2 Chapter 1 Introduction

and microcoil [23] resonators in which the high internal amplitudes near resonance would

be ideal for reducing the input threshold powers required to observe nonlinear effects.

The fabrication of such microfibres and their resonators is relatively low-cost and straight-

forward compared to that of microstructured fibres or integrated micro/nano-scale waveg-

uides and microresonators (which often involve lithographic processes), and the input

and output coupling losses can be almost negligible since the light can be launched and

collected by splicing the fiberised pigtails to regular fibre.

Microfibres thus serve as an excellent candidate for studying nonlinear effects, and the

aim of this thesis will be to contribute to the growing body of research in three key subject

areas by investigating the following nonlinear phenomena using silica microfibres:

1. Third harmonic generation.

2. Second harmonic generation.

3. Nonlinear effects in microfibre resonators.

A main objective of this work will be to model and investigate third harmonic generation.

It is known that microfibres can be used to phase match the fundamental pump with

higher order third harmonic modes at critical diameters [17], with predicted conversion

efficiencies up to 80% over several cm. In practice, the surface quality of microfibres and

the tapering rig fabrication tolerances would limit the achievable conversion, but the mi-

crofibre would nonetheless provide a low cost source for the third harmonic wavelength,

offering an alternative to traditional frequency triplers which often rely on a two-stage

conversion process. As we shall see, the use of tapers also allows for a wide conversion

bandwidth.

The second goal is to study second harmonic generation in the silica microfibre. Whilst

SHG in an isotropic glass is usually assumed to be impossible owing to the centrosymmet-

ric structure, the anisotropy at the air-glass interface [24] and multipolar contributions

from the bulk [25, 26] contribute to give a non-zero second order susceptibility χ(2) which

permits second harmonic generation. Microfibres are especially well suited for studying

surface SHG owing to their large field strength at the surface. To date, there has been

limited literature on SHG in microfibres [13, 14] and hence this work shall endeavour to

model and experimentally characterise the second harmonic.

The third aim, to study the nonlinear behaviour in resonators, is comprised of two

parts: (i) To use loop resonators for improving the efficiency of second and third har-

monic generation, and (ii) to develop the nonlinear model of optical microcoil resonators

(OMRs). Loop resonators can be formed by simply twisting and pushing a microfibre

towards itself, to form a loop and coupling region. Though simple in concept and fab-

rication, the loop resonator can offer a Q factor of at least 104–105 in experiments even
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when manufactured manually without any specialist equipment. As such, a pump wave-

length residing near a resonance would be recirculated within the loop, which greatly

increases the pump power inside the resonator. Assuming that the harmonic is phase

matched along a section of microfibre within the loop, this would consequently enhance

the conversion since the second and third harmonic power would respectively increase

quadratically and cubically with increasing pump power.

Coiling a microfibre around a rod results in a unique resonator geometry known as the

optical microcoil resonator, in which light can evanescently couple between adjacent

turns to produce high Q resonances. OMR applications in a wide range of fields, such as

sensing [27] and signal processing [28], have previously been studied at the Optoelectron-

ics Research Centre (ORC), and a detailed understanding of OMR optical characteristics

is crucial for further development. This work therefore aims to extend the theoretical

models of OMRs published in literature [29, 30] by incorporating and assessing polari-

sation effects due to twist and birefringence, in both the linear and nonlinear domains.

1.2 Thesis structure

After this introduction, the thesis contains 6 chapters. We begin with an overview of

the modal, nonlinear, and dispersive properties of microfibres in Chapter 2. In order to

provide a technical reference for subsequent chapters, a detailed summary of the modes’

electric fields and relevant formulae are also provided for convenience.

Next, Chapter 3 discusses both the theoretical and experimental results for third har-

monic generation, including experiments towards increasing the bandwidth. For clarity,

resonantly-enhanced THG, using loop resonators, is presented separately in Chapter 4,

which theoretically studies the influence of the resonator geometry on the potential en-

hancement before discussing an experimental demonstration. Chapter 5 describes the

theory and simulation work for second harmonic generation in both microfibres and loop

resonators, as well as an experimental observation of the second harmonic in both cases.

In Chapter 6, the focus shifts to theoretically explore the polarisation dependent nonlin-

ear properties of microcoil resonators. The behaviour is complex and so we first analyse

the simpler linear regime in sec. 6.2.1, as well as Berry’s phase effects in sec. 6.2.2, before

proceeding to the nonlinear case in sec. 6.3.

Finally, Chapter 7 summarises the results achieved in this thesis and proposes several

exciting areas in which the current work could be extended. In addition, three appen-

dices are included for readers inclined or curious to read more about the high power

pump source used in the experiments (Appendix A), derivation of the third harmonic

generation differential equations (Appendix B) and numerical techniques used to solve

the microcoil equations (Appendix C).





Chapter 2

Optical Properties of Microfibres

The attraction of microfibres for nonlinear experiments lies in the unusual combination

of optical properties which include tight modal confinement, high effective nonlinearity,

large evanescent field and a tailorable dispersion profile. In this chapter, these key linear

and nonlinear optical characteristics will be explained, beginning with a discussion of

the different modes supported by microfibres, followed by their nonlinear and dispersive

properties. Since the experimental OMs described in this work are pulled from standard

single mode fibre (SMF), emphasis will be given towards the differences between the

properties of SMF and OMs. In addition, as a reference aid, the formulae describing the

modal distributions (pertinent to Chapters 3, 4 and 5) are collectively presented here.

2.1 Optical guidance

Typically, a taper consists of a narrow microfibre waist region in between two transition

regions connected to the original untapered fibre pigtails. As we are most interested in

the propagation behaviour near the waist where the confinement is stronger, we model

the OM as a homogenous uniform cylindrical waveguide, shown in Fig. 2.1, with a silica

z

D

n

r
θ

1

n2

Figure 2.1: Schematic of the ideal silica microfibre in air, with a uniform diameter D
and refractive index of n1 ≈ 1.44 surrounded by air (n2 = 1.0).
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6 Chapter 2 Optical Properties of Microfibres

core refractive index of n1 ≈ 1.44 at λ = 1.55 µm surrounded by the air cladding of

n2 = 1.0. The diameters D of interest, with regards to the work discussed in subsequent

chapters, range from several microns down to a few hundred nm, and due to the struc-

tural symmetry it is convenient to describe the system using cylindrical coordinates

(r, θ, z). Although the following discussions focus on silica OMs, the underlying the-

ory remains nonetheless valid for other materials, such as chalcogenide and soft-glasses,

as well as for OMs embedded low-index surroundings such as polymer for protective

purposes.

The modes in a microfibre fall into 3 families, categorized according to the direction of

their electric and magnetic field vector:

• Hybrid (HE, EH) modes, which possess non-zero electric and magnetic field vector

components in all three r, θ and z directions.

• Transverse magnetic (TM) modes, for which the magnetic field vector lies only in

the r − θ plane.

• Transverse electric (TE) modes, for which the electric field vector lies only in the

r − θ plane.

In order to determine which modes are supported by the OM and their propagation

constants β, for each mode family there exists an eigenvalue equation (EVE) expressable

in the form f(β) = 0 whose real roots correspond to the β values of supported modes.

For guided modes, these will always lie in the range 2πn2/λ < β < 2πn1/λ.

The EVEs can be derived via an approach similar to that used for standard SMF since

both the OM and SMF resemble step-index profile waveguides, and the standard text-

book derivation beginning from Maxwell’s equations can be found for example in [31]

and [32]. However, whereas the weakly-guiding approximation n1 ≈ n2 holds true for

SMF (in which the core-cladding index difference ∆n = n1 − n2 between a fused sil-

ica cladding and germanium-doped silica core is typically only ∆n ≈ 10−3), the ∆n of

microfibres is over a hundred-fold greater, and consequently the EVEs must be derived

and solved in their rigorous form.

Firstly, to clarify the notation, the propagating electric and magnetic fields are assumed

to take the form:

Ẽ(r, θ, z, t) =
1

2
A(z, t)E(r, θ)ei(ωt−βz) + c.c. (2.1a)

H̃(r, θ, z, t) =
1

2
A(z, t)H(r, θ)ei(ωt−βz) + c.c. (2.1b)

where A(z, t) denotes the slowly-varying ‘pulse envelope’ amplitude, exp(i(ωt− βz))
accounts for the rapid phase oscillation in time and space, and E(r, θ) describes the

modal distribution in the transverse plane, which is independent of z for a longitudinally
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invariant waveguide cross-section and can be further decomposed into its constituent

vector components:

E(r, θ) = r̂Er(r, θ) + θ̂Eθ(r, θ) + ẑEz(r, θ) (2.2)

(a similar formula expresses the modal magnetic field H(r, θ)). Substituting Eqns. 2.1

into Maxwell’s equations yields the familiar wave equations:

∂2Ez
∂r2

+
1

r

∂Ez
∂r

+
1

r2

∂2Ez
∂θ2

+ [k2n(r, θ)2 − β2]Ez = 0 (2.3a)

∂2Hz

∂r2
+

1

r

∂Hz

∂r
+

1

r2

∂2Hz

∂θ2
+ [k2n(r, θ)2 − β2]Hz = 0 (2.3b)

The only physical solutions to Eqn. 2.3 satisfying |E| → 0 as r tends to ∞ are functions

of Bessel functions of the first kind J (in the core) and modified Bessel functions of

the second kind K (in the cladding). Combining this knowledge with the boundary

conditions, which stipulate continuity of the tangential electric field, radial displacement

field Dr = εEr and all magnetic field components at the glass-air interface, allows the

full field expressions as well as the eigenvalue equations to be deduced. The resulting

EVE for hybrid HEνm and EHνm modes, where ν and m denote the modes’ azimuthal

and radial order respectively, is expressed as [31]:[
J ′ν(U)

UJν(U)
+

K ′ν(W )

WKν(W )

][
J ′ν(U)

UJν(U)
+

(
n2

n1

)2 K ′ν(W )

WKν(W )

]
=

(
νβ

kn1

)2( V

UW

)4

(2.4)

where U , W and the normalised frequency V -parameter are related to β and the free

space propagation constant k = 2π/λ as follows:

U = a
√
k2n2

1 − β2 (2.5a)

W = a
√
β2 − k2n2

2 (2.5b)

V 2 = U2 +W 2 (2.5c)

with a denoting the microfibre radius. The EVE is transcendental in β and hence the

supported propagation constants are solved for numerically. Similarly, for TE0m modes

the EVE is:
J1(U)

UJ0(U)
+

K1(W )

WK0(W )
= 0 (2.6)

and for TM0m modes:
J1(U)

UJ0(U)
+

(
n2

n1

)2 K1(W )

WK0(W )
= 0 (2.7)

At the telecoms wavelength of λ = 1.55 µm, solving Eqns. 2.4, 2.6 and 2.7 for different

OM diameters yields the modes shown in Fig. 2.2. When the diameter is below the

threshold of 1.15 µm, the microfibre is single-moded as only the fundamental HE11

mode is supported. This critical diameter corresponds to the V -number of approximately
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V = 2.405, which is the cut off of the lowest order TE/TM modes (given by first root

of J0(U) = 0 when U = V , as seen from Eqn. 2.6). The fundamental mode is strongly

guided at a diameter of D = 1.0 µm and so the bend loss remains negligible even for

curvature-radii down to ≈ 0.1 mm [33]; a feature which lends OMs to the fabrication

of compact microresonators. However, for D < 0.5 µm the guidance is much weaker,

with the effective index being only marginally above that of the surrounding air, and

the light may radiate out from any sharp turns or structural perturbations.

At larger diameters of several µm, a variety of higher order modes are supported and

due to the high numerical aperture of NA =
√
n2

1 − n2
2 = 1.04, the number of modes

grows rapidly with increasing diameter. For instance, increasing D from 2.5 to 3.0 µm

introduces an additional 4 modes. It should be noted that all the modes are mutually

non-degenerate. By comparison, the higher order modes in SMF may be degenerate and

thus grouped under linear-polarisation (LP) mode designations – as an example, the

LP11 multiplet in an SMF consists of the TE01, TM01 and HE21 modes, whereas in an

OM these modes would each follow entirely distinct dispersion curves. It is possible to

limit the number of supported modes in the OM by controlling the diameter in order

to filter out higher order modes, or to extend the single-mode operation bandwidth to

shorter wavelengths [34, 35].
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Figure 2.2: Mode dispersion neff curves showing effective index against microfibre
diameter for the fundamental HE11 mode and various higher order modes. Azimuthal
mode order number ν = 0 corresponds to TE/TM transverse modes, whilst ν ≥ 1

corresponds to HE/EH hybrid modes. λ = 1.55 µm.
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2.2 Mode properties

Having discussed how to determine which modes are supported by a microfibre in the

previous section, to understand the properties of the modes further it is necessary to

study their field distributions. For hybrid modes, the electric field has both transverse

and longitudinal components; the latter being +π/2 out of phase [31]:

Er =

−
a1Jν−1(UR)+a2Jν+1(UR)

Jν(U) fν(θ) r ≤ a

− U
W

a1Kν−1(WR)−a2Kν+1(WR)
Kν(W ) fν(θ) r > a

(2.8a)

Eθ =

−
a1Jν−1(UR)−a2Jν+1(UR)

Jν(U) gν(θ) r ≤ a

− U
W

a1Kν−1(WR)+a2Kν+1(WR)
Kν(W ) gν(θ) r > a

(2.8b)

Ez =

− iU
ρβ

Jν(UR)
Jν(U) fν(θ) r ≤ a

− iU
ρβ

Kν(WR)
Kν(W ) fν(θ) r > a

(2.8c)

where a is the core radius, R = r/a is the normalised radial position, and the other

parameters are listed below:

a1 =
F2 − 1

2
, a2 =

F2 + 1

2
(2.9a)

F1 =

(
UW

V

)2 b1 + (1− 2∆)b2
ν

, F2 =

(
V

UW

)2 ν

b1 + b2
(2.9b)

b1 =
1

2U

[
Jν−1(U)

Jν(U)
− Jν+1(U)

Jν(U)

]
, b2 = − 1

2W

[
Kν−1(W )

Kν(W )
+
Kν+1(W )

Kν(W )

]
(2.9c)

∆ =
n2

1 − n2
2

2n2
1

(2.9d)

and the fields vary sinuisoidally with azimuthal angle θ:

fν(θ) = sin(νθ + Φ) (2.10a)

gν(θ) = cos(νθ + Φ) (2.10b)

In the case of TE modes, the electric field only contains the Eθ component:

Er, Ez = 0 (2.11a)

Eθ =

−
J1(UR)
J1(U) r ≤ a

−K1(WR)
K1(W ) r > a

(2.11b)
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whereas for TM modes there exists a longitudinal Ez component in addition to a radial

transverse field:

Er =


J1(UR)
J1(U) r ≤ a(
n1
n2

)2K1(WR)
K1(W ) r > a

(2.12a)

Eθ = 0 (2.12b)

Ez =

− iU
ρβ

J0(UR)
J1(U) r ≤ a

−i
(
n1
n2

)2W
ρβ

K0(WR)
K1(W ) r > a

(2.12c)

Since the TE0m and TM0m field distributions are circularly symmetric, they are inde-

pendent of θ and have ν = 0 azimuthal order with reference to Eqns. 2.10. As we shall

see in later chapters on harmonic generation, this symmetry of fields must be carefully

considered in order to determine which higher order harmonic modes could potentially

be generated, since only some will experience a non-zero overlap with the pump mode.

Furthermore, the distribution and confinement of the pump mode itself is particularly

important as it governs the effective nonlinearity γ. For the experiments in this work,

the pump is always chosen as the fundamental HE11 mode and the typical |E|2 intensity
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Figure 2.3: Mode field intensity |E|2 profiles for (a, b) a 1 µm diameter microfibre
in air and (c, d) a typical telecoms single mode fibre with a ∆n = 0.01 core-cladding
index difference and 8 µm diameter core. Dimensions are normalised with respect to

the core radius a. λ = 1.55 µm.
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profile in a 1 µm diameter OM is shown in Fig. 2.3(a-b). Since the microfibres are

fabricated from regular fibre, the fundamental mode in an 8 µm core diameter SMF is

also shown in Fig 2.3(c-d) as a comparison.

Firstly, it can be seen that the mode in the OM is much more confined, spanning only

over 2 µm or six times narrower at the full-width half-maximum (FWHM) than the

SMF, due to the much higher index contrast. For the same reason, the field shows a

large discontinuity at the microfibre surface and hence cannot be approximated to be

a Gaussian function as is the case for optical fibre. The discontinuity arises from the

boundary condition for the radial electric field, which states Er(r = a+)/Er(r = a−) =

(n1/n2)2 according to Gauss’ Law in matter.

Secondly, the fraction of the mode in the evanescent field is much larger for the narrower

microfibre than the SMF. Note that this does not contradict the aforementioned tight

confinement – for an equivalent 8 micron diameter OM, the power would indeed remain

tighter confined in the core than an 8 µm SMF. For a quantitative assessment, the ratio

η of the power inside the OM over the total power P0 can be defined as:

η =
Pcore

P0
=

∫∫
core SzdA∫∫∞
−∞ SzdA

(2.13)

where Sz denotes the time-averaged Poynting vector’s longitudinal component which

gives the propagating power per unit area:

Sz =
1

2
(E×H∗) · ẑ =

1

2
(ErH

∗
θ − EθH∗r ) (2.14)

As shown in Fig. 2.4, for diameters above 3 µm, close to η = 100 % of the power resides

within the microfibre. When the diameter falls towards 1 µm however, η falls sharply

with decreasing diameter and for a half micron diameter OM over 90 % of the light is in

the evanescent field, as illustrated in Fig. 2.4(b). With such a large fraction of the power

guided outside of the silica, it is perhaps more intuitive from a conceptual standpoint to

conceive of the microfibre as a light rail, rather than a channel. It is also apparent from

comparing Figs. 2.4(b-c) that narrower microfibres will experience a relatively higher

field intensity at the glass surface, which for OMs with D < 0.8 µm will in fact exceed

the intensity inside the core. Whilst this will enhance any interface effects, including

surface-second harmonic generation, it also leaves the OM more susceptible to losses

incurred by surface irregularities and contamination or bend loss. A narrower OM is

also mechanically weaker, though this can be mitigated by embedding in a polymer if

so required [36, 37, 38].

The large evanescent field itself is not amenable for nonlinear applications (unless the

air is replaced by a nonlinear medium) but can be utilised for sensing or detection, since

it is accessible to the environment. Examples of such devices include sensors based on
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Figure 2.4: (a) Fraction of the power in the core, η, against diameter D for a silica
microfibre in air, and the |E|2 field intensity distribution for microfibres with diameters

of (b) D = 0.5 µm, (c) 1.0 µm and (d) 2.0 µm. λ = 1.55 µm.

absorption loss/spectroscopy [39, 40, 41] and refractometric sensors [27, 38, 42, 43]. The

evanescent field does however allow resonators useful for nonlinear experiments to be

realised, via evanescent coupling between different sections of the same microfibre, such

as the microcoil [23] and loop resonators [21] as explained in Chapters 4, 5 and 6.

Modal confinement is also a strong function of diameter for wavelengths comparable to

D/n1, and is commonly measured by the effective area Aeff which essentially gives the

power-weighted average area of the mode:

Aeff =
|
∫∫∞
−∞(E×H∗) · ẑdA|2∫∫∞
−∞|(E×H∗) · ẑ|2dA

=
|
∫∫∞
−∞ SzdA|

2∫∫∞
−∞|Sz|2dA

(2.15)

For diameters of several microns, the effective area decreases with decreasing D as shown

in Fig. 2.5, with the modal area limited by the waveguide cross section area. Near to

D = 1.0 µm, Aeff reaches a minimum of approximately 1.1 µm2 which corresponds

to a 1/e2 intensity spot-size of approximately ω = 0.8 µm. This point of maximum

confinement is close to the diffraction limited value of ω0 = λ/(2n1), and the ability

of microfibres to maintain such a tight modal confinement over potentially indefinite

distances (limited only by the tapering rig equipment and loss) allows for long nonlinear
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a silica microfibre. λ = 1.55 µm.

interaction lengths. Using higher index glasses would improve the confinement further,

with the minimum Aeff occurring at a narrower diameter. The strong confinement

permits tight turns, and indeed bend-radii down to ρ = 100 µm in coiled microfibres

have been fabricated with negligible bend loss [33, 44]. For diameters narrower than

0.5 µm (V < 1) however, the evanescent field can extend far from the microfibre and

grow unbound which causes Aeff to expand rapidly with decreasing diameter, increasing

by over 3 orders of magnitude from D = 0.5 µm to 0.3 µm (in theory, Aeff →∞ in the

limit D → 0, although at a diameter of 100 nm the guidance will already be too weak

for most practical purposes).

Reducing the diameter will not only increase the evanescent field fraction and alter

the confinement by changing the power distribution of the mode, but will also affect

the direction of the electric field vectors. For a large OM with D ≈ 10 µm, the x-

polarised fundamental mode vectors would be almost entirely unidirectional, much like

a linearly polarised LP01 mode in SMF. However, when the OM diameter is comparable

to λ/n1 there is also a significant component of the transverse field vector which points

orthogonally to the dominant polarisation as shown in 2.6(a). For this reason, the

microfibre HE11 mode is sometimes termed ‘quasi-x or y- polarised’ [45]. Furthermore,

the longitudinal component Ez cannot be neglected, since it can account for almost

a third of the mode’s power. The fraction of light in the transverse components can

be evaluated by the transversality parameter [19], defined below and plotted against

diameter in Fig. 2.6(b):

T = 1−
∫∫∞
−∞|E

2
z |dA∫∫∞

−∞|E|2dA
(2.16)

Whereas the transversality for large diameters is almost 100 %, since the power is largely

contained in the transverse field components, for narrower diameters the longitudinal

field becomes greater and near D = 1 µm the transversality reaches a minimum of
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85 % at the point coinciding with the tightest confinement. In higher index OMs this

effect would be more pronounced; for example, the minimum transversality in a silicon

microfibre would be only 64 % [19]. The multidimensional nature of the vector field

must be considered for an accurate assessment of the OM’s nonlinearity [19, 46, 47, 48]

as discussed in the next section.

2.3 Nonlinearity

The high effective nonlinearity γ of the microfibre, being inversely proportional to the

effective modal area, arises from the tight confinement offered by the large index contrast:

γ =
2π

λ

n(2)

Aeff
(2.17)

Eqn. 2.17 does not directly include the nonlinear refractive index coefficient of silica,

n(2) = 2.7 × 1016 cm2 W−1 at λ = 1.55 µm, but instead uses its averaged counterpart
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n(2) which is weighted according to the fraction of power distributed within the core:

n(2) = k

(
ε0
µ0

)∫∫
Acore

n2
1(x, y)n(2)(x, y)[2|E|4 + |E ·E|2]dA

3
∫∫∞
−∞|(E×H∗) · ẑ|2dA

(2.18)

In contrast to the nonlinear model for SMF, this distinction is required for OMs to

take into account the lack of nonlinearity for the evanescent field in air. Furthermore,

both n(2) and Aeff must be evaluated vectorially since the equivalent scalar calculations

traditionally used for bulk/SMF, in which the fields are assumed entirely transverse,

underestimate the nonlinearity by ignoring the sizable longitudinal field contribution [46,

48].

Figure 2.7 shows that the effective nonlinearity peaks as expected near the region of

greatest confinement around D = 1.1 µm with γ = 0.09 m−1W−1 for a 1.55 µm wave-

length, which is 2 orders of magnitude greater than that of telecoms SMF [24]. Note that

this diameter is in fact marginally wider than the point at which Aeff is minimal, since

in the narrow core regime η and hence n(2) both fall rapidly with narrowing diameter.

As explained Chapters 3 and 5, the high nonlinearity allows appreciable third and second

harmonic to be generated in sub-micron diameter OMs over distances of several millime-

ters and relatively low peak pump powers down to 1 kW. For the shorter wavelength

of 1.03 µm, the maximum possible modal confinement is tighter and so the nonlinearity

peaks with a higher value of γ = 0.34 m−1W−1 at a correspondingly narrower diameter

of 0.7 µm. Yet higher nonlinearities are possible for highly nonlinear glasses, e. g. up to

γ = 93 m−1W−1 with chalcogenide microfibres [49].

Lastly, it is worth noting that the vectorial nonlinear model also implies an interesting

anisotropy in the interaction of different polarisations for elliptical OMs: aside from

each polarisation having different nonlinear coefficients γx 6= γy, the non-transversality

breaks the usual orthogonality relationship, giving a non-zero
∫∫

core|Ex ·Ey|dA overlap
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which not only increases the cross phase modulation coefficients between orthogonally

polarised waves but introduces a route for cross-polarisation power exchange mediated

by their longitudinal field components [19, 50].

2.4 Dispersion

The chromatic dispersion of a microfibre, which causes different frequencies to propa-

gate with different phase velocities and delays, comprises of two distinct contributions

summed together:

1. Material dispersion, which arises from the variation of the glass’ refractive in-

dex with wavelength (n(λ) is often modelled empirically using a Sellmeier equa-

tion [51]). Since this is an intrinsic property of the glass, material dispersion would

be present even for propagation in bulk media.

2. Waveguide dispersion. The modal distributions and hence the neff and propagation

constant vary according to the size of the diameter relative to the wavelength, even

if a constant material index were assumed. This dispersion is therefore governed

by geometry, rather than the material properties.

Dispersive effects are especially important for short pulse nonlinear interactions (usu-

ally ps or shorter) involving spectrally-broad signals or multiple wavelengths such as

supercontinuum generation [9, 10, 52], and even in many linear systems including com-

munication networks where the pulse broadening from dispersion warrants consideration.

In any case, a pulse in time cannot be perfectly monochromatic but will contain a finite

bandwidth centred on a central frequency ω0, with each frequency component experienc-

ing a slightly different propagation constant β(ω). The model of chromatic dispersion

is therefore based on expanding β(ω) as a Taylor series about ω0:

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)2 +

1

6
β3(ω − ω0)3 · · ·

= β0 +

∞∑
j=1

1

j!
βj(ω − ω0)j

(2.19)

where the derivatives βj define the jth order dispersion coefficients:

βj =
∂jβ(ω)

∂ωj

∣∣∣
ω=ω0

(2.20)

The first order dispersion gives the inverse of the group velocity vg [24]:

β1 =
1

vg
=

1

c

(
n+ ω

dn

dω

)
(2.21)
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Physically, vg represents the speed at which the pulse envelope travels along the OM.

For very wide diameters the mode is largely contained within the OM and so vg is

close to c/n1, whereas for narrow OMs (D � λ/n1 ) vg will approach c since the

power propagates mostly in air. In between these extremes, vg does not simply vary

monotonically with diameter but instead reaches a minimum value slightly under c/n1,

at the diameter coinciding with greatest confinement [53].

The second order dispersion β2 denotes the group velocity dispersion, which causes pulse

broadening and is often expressed in the alternative form by the dispersion parameter

Dc:

Dc = −2πc

λ2
β2 (2.22)

Figure 2.8 compares the dispersion profilesDc of OMs with various diameters. For a large

3 µm diameter OM, Dc is close to the bulk material dispersion of silica since the mode

resides mostly within the silica OM, and only one zero dispersion wavelength (ZDW)

is present in the plotted wavelength range up to λ = 2.5 µm. For narrower diameters

around 1 µm however, the waveguide dispersion component becomes dominant which

drastically alters the profile by introducing a second ZDW at a longer wavelength as

well as wide spectral regions of negative (i. e. ‘normal’) dispersion. As an example,

the dispersion in a 600 nm diameter OM at λ = 1.55 µm is over 77 times greater in

magnitude than that of bulk silica.

The first and second ZDWs divide the dispersion profile into a region of anomalous

dispersion sandwiched between two normal dispersion regions as shown in Fig. 2.9. The

spectral range of the anomalous region decreases for narrower OMs, until it disappears

altogether for D < 0.43 µm which results in an wholly normal dispersion profile.
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The higher order terms (βj , j ≥ 4) are less significant and generally neglected unless

operating a few nanometers from a ZDW where β2 ≈ 0, or working in the ultrafast

regime, where they can influence the pulse shape.

2.5 Summary

The modal properties of a microfibre differ significantly from standard single mode

fibre due largely to the high index-contrast between the glass OM and surrounding air,

which permits guidance even with sub-micron waveguide dimensions. It is consequently

possible to achieve tight modal confinement down to Aeff ≈ (λ/n1)2 µm2 and a large

effective nonlinearity close to γ = 0.1 W−1 m−1, for a telecom wavelength of 1.55 µm.

Furthermore, the strongly geometry-dependent dispersion profile can be engineered by

simply adjusting the diameter, for example to shift the zero dispersion wavelength. For

narrow microfibres D ≈ λ/n1, the external evanescent field is large and can be utilised

for sensing.

Having established a theoretical background for the microfibre’s optical characteristics in

this chapter, the next section shall proceed to discuss, in detail, how the high nonlinearity

can be applied for efficient third harmonic generation.



Chapter 3

Third Harmonic Generation in

Microfibres

Efficient frequency tripling in microfibres is possible by utilising the inherent χ(3) of silica

for third harmonic generation. This chapter begins by providing an overview of the key

concepts behind third harmonic generation (THG) in microfibres and a brief review of

background literature. Next, the theoretical phase matching conditions are calculated,

followed by an analysis of the conversion efficiency for different third harmonic modes.

A selection of experimental THG results obtained using short and long microfibres are

then discussed.

3.1 Overview

At the microscopic level, an electromagnetic field in a dielectric medium will induce a

polarisation P̃(r, t) by distorting the electron cloud distribution to give a dipole moment.

Assuming a quasi-instantaneous response, the dependency on the electric field Ẽ(r, t)

can be expressed as a power series [54]:

P̃(r, t) = χ(1) · Ẽ(r, t) + χ(2) : Ẽ(r, t)Ẽ(r, t) + χ(3)...Ẽ(r, t)Ẽ(r, t)Ẽ(r, t) · · · (3.1)

where χ(1) denotes the linear susceptibility, and the first term gives the linear polarisation

P̃L. The subsequent terms comprise the nonlinear polarisation P̃NL, and the notation ‘ : ’

and ‘
...’ indicate they should be evaluated through the susceptibility χ(i) tensor product

with the electric fields. The second order susceptibility χ(2) governs SHG and three wave

interactions, and χ(3) is responsible for THG and four wave mixing (FWM) processes.

In general, χ(i) represents a rank (i + 1) tensor with 3(i+1) components, but for many

materials the structural symmetry can be exploited to simplify analysis. In particular,

the centrosymmetry of fused silica implies that P̃(Ẽ) ≡ −P̃(−Ẽ), which is only possible

19
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if χ(2) is identically zero1, and also the χ(3) tensor simplifies considerably. If the smaller

contributions from higher order nonlinear processes are neglected, P̃NL reduces to [19]:

P̃NL =
1

2
ε0χ

(3)
xxxx

[
(Ẽ · Ẽ∗)Ẽ +

1

2
(Ẽ · Ẽ)Ẽ∗

]
(3.2)

It is clear from Eqn. 3.2 that the nonlinear polarisation can mix an input pump beam

E ∼ exp (iω1t) + c.c. to generate new frequencies including a term at exp (i3ω1t), which

provides a route for coupling power into the third harmonic. However, since the pump

and harmonic waves travel in the waveguide with different propagation constants β1 and

β3 respectively, the harmonic can only grow if the waves are phase matched with each

other, i.e. δβ = β3 − 3β1 ≈ 0, which is equivalent to ensuring their modes share the

roughly the same effective index (a slight difference may be needed to offset nonlinear

phase modulations, but for ∼kW power levels the correction is small).

Ideally, it would be preferable to phase match the fundamental pump mode with the fun-

damental harmonic mode, since their mode profile similarity guarantees a large overlap,

but such a scheme is unfortunately unfeasible - even in the absence of material dis-

persion, a fundamental mode at a shorter wavelength would always be confined tighter

within the core, and hence the neff of the fundamental harmonic mode would always

exceed that of the fundamental pump regardless of the microfibre size or material.

On the other hand, it is possible to phase match the pump to a higher order harmonic

mode with the same neff by carefully choosing the diameter of the microfibre and indeed

this is the scheme which is employed in this work. The idea of intermodal phase matching

has in the past been considered for various parametric processes such as four wave mixing

in optical fibres, but the low modal confinement results in a poor overlap between the

interacting waves, which severely limits the efficiency [55]. In microfibres however, the

stronger confinement allows for much larger overlaps between the pump and harmonic

modes as will be shown section 3.3.2.

3.2 Background

The earliest reported observation of THG in tapered fibres by Akimov et al. [15] used

1.25 µm Cr:forsterite laser pulses to produce a third harmonic signal. After deriving

the conditions for phase matching, a 9 cm taper was fabricated with the critical phase

matching diameter of 2.6 µm. When pumped using 30 fs pulses with a peak power of

10 kW, the conversion efficiency was estimated to be η = 0.05 %. Meanwhile, Koletova

et al. theoretically studied THG in microfibres by accounting for group-delay effects and

nonlinear phase shifts, as well as calculating the required phase matching diameters [56].

1Strictly, a small non-zero second order susceptibility exists in silica due to magnetic dipole and
higher order electric quadrupole effects, as well as surface structural anisotropy near an interface. These
are discussed further in Chapter 5.
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Later, Grubsky and Savchenko refined the theory by deriving the differential equations

and evaluating the overlap integrals between the pump and various TH modes, using a

more accurate vectorised field model rather than scalar fields [17]. Experimental work

by Grubsky et al. also confirmed the sudden onset of THG when the taper is pulled to

the critical diameter [16]. However, the conversion efficiency of 10−6 was low due to the

short 100 µm taper length. In the same series of experiments, the second harmonic was

also observed for a taper diameter which corresponded to its phase matching, although

this was not studied any further.

During the course of this work, other teams have also investigated harmonic generation

in microfibres. THG using a 1.55 µm source was observed by Coillet et al. [11], who also

highlighted the potential and practicalities of using microfibres based on highly nonlinear

glasses such as tellurite and chalcogenide [18]. Karapetyan et al. reported on a possible

application for characterising microfibre diameters by tuning a Ti:Sapphire source across

the 850-1000 nm range and recording the wavelengths at which the third and second

harmonic peaks appear [14]. At these wavelengths, the diameter must correspond to a

phase match point and can therefore be deduced. Whilst the work did not attempt to

maximise the strength of the harmonic signals, it nonetheless confirmed that the SH/TH

at multiple predicted phase match points are observable.

Furthermore, Delgado-Pinar et al. observed THG in 500 nm diameter silica microfibres

produced using the flame brushing technique [57]. The waist length of 3 cm in this case

was significantly longer than those previously reported so as to increase the conversion,

and the fibres were found to be capable of sustaining high peak powers up to 3 kW with

ps pulses at MHz repetition rates. When pumped with a pulsed 1064 nm source, the

HE12(3ω) TH mode was indeed excited as confirmed by modal imaging at the output

but the efficiency was only 4 × 10−6. This may have been limited by a combination of

UV absorption, low fabrication tolerance and walkoff associated with short pulses.

3.3 Theory and simulations

3.3.1 Phase match points

To find the phase match points, we first calculate the mode dispersion curves of neff

against diameter. The rigourous form of the modal eigenvalue equations (EVE) in

Eqn. 2.4 must be used [31], since the large index contrast between the silica core and

air cladding invalidates the weakly-guiding approximation normally used for standard

fibre analysis.

The motivation for simulating a step-index profile, rather than a three layer system based

on the SMF-core/cladding/air, lies in that fact that the high processing temperatures of

1300◦C needed to pull the microfibres will facilitate dopant diffusion between the core
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and cladding of the original parent fibre, so the final taper is likely to have uniform

material properties. Note that a three-layer model [58, 59] might however be applicable

were one to solve for modes in the mid-transition region where the larger diameter might

retain a distinct core.

Since the harmonic and pump signals experience different material dispersion, a wavelength-

dependant Sellmeier formula [60] was used to calculate the silica’s refractive index n1:

n2
1 = 1 +

0.6961663λ2

λ2 − (0.0684043)2
+

0.4079426λ2

λ2 − (0.1162414)2
+

0.8974794λ2

λ2 − (9.896161)2
(3.3)

This formula has been verified to be accurate to within 10−5 between 0.3 µm < λ < 2 µm,

which covers both the pump λ1 and harmonic λ3 wavelengths for λ1 down to 1 µm.

To solve the eigenvalue equation, it is convenient to reformulate it as a function of the

normalised propagation parameter b = (n2
eff−n2

2)/(n2
1−n2

2) as any guided mode solution
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Figure 3.1: Effective index curves for the fundamental HE11(ω) pump mode (red)
and third harmonic hybrid modes with azimuthal order ν = 1 (solid blue) and ν = 3
(dashed cyan) in a silica microfibre for (a) λ1 = 1.550 µm and (b) λ1 = 1.03 µm. Phase

match points are highlighted.
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J J J J

EH11 625 1.03 0.33 0.76 4.60E-03 4.27 28 2.14
HE12 766 1.08 0.97 1.46 0.34 3.97 9 0.027
EH12 3475 1.41 0.35 0.20 2.73E-04 0.37 26 33
HE13 3811 1.42 0.29 0.26 7.80E-04 0.47 31 11
HE31 717 1.06 0.74 0.99 0.061 4.03 12 0.15
EH31 2510 1.38 0.61 0.19 2.75E-04 0.58 15 33
HE32 3538 1.41 0.34 0.18 7.80E-04 0.32 27 12

 Harmonic 
Mode 

Diameter 
(nm)

Overlaps (μm-2)
(mm) (m) 

1 2 3 5

L NL LTHGneff

Table 3.1: A summary of the possible phase match points for a 1.55 µm wavelength
pump and corresponding overlap integrals Ji for the pump and harmonic modes, which
are defined in Eqn. 3.8. The nonlinear length LNL and third harmonic length LTHG are
also provided for each diameter, and represent the distances over which the nonlinearity

and third harmonic signal become significant for 1 kW pump power, respectively.

is guaranteed to reside in the range 0 < b < 1. The EVE is transcendental in b and so

a numerical approach (the Newton method) was adopted to be find the roots. When

multiple solutions exist, the search range was divided into segments between values of b

which correspond to the cut off for different modes to ensure all solutions can be found.

Mode index curves for the fundamental pump and hybrid HEνm(3ω)/EHνm(3ω) third

harmonic modes are shown in Fig. 3.1 for a λ1 = 1.55 and λ1 = 1.03 µm pump.

These two pump wavelengths are of particular interest since high power sources for both

wavelengths are readily available, namely through Erbium and Ytterbium doped laser

systems.

For microfibre diameters up to 2 microns, both pump sources can phase match with the

EH11(3ω) and HE12(3ω) modes, but the 1.03 µm pump can also match with additional

modes including the EH12(3ω) and HE13(3ω) (in general, a fibre of a given diameter will

support more modes if a shorter wavelength is used, as this corresponds to a larger V

number). The phase matching points for both graphs are summarised in Table 3.1, and

show that the critical diameters are roughly half a micron or larger - dimensions which

are realisable using existing tapering rigs at the ORC with a microheater element.

Higher azimuthal order harmonic modes with ν = 3 also can be phase matched, such

as the HE31(3ω) mode. However, certain modes such as those with an even ν or ν > 3

do not have any overlap with the pump due to their field symmetry, so these cannot be

observed and hence are not considered (see Appendix B for a detailed explanation).

To summarise, the critical THG diameters were calculated for a range of different pump

wavelengths and are plotted in Fig. 3.2, which includes all matching hybrid TH modes for

ν = 1, 3. Compared to shorter pump wavelengths, the 1.55 µm pump’s phase matching

diameters are further apart - experimentally, this has the advantage of being able to

resolve the modes easier if the TH is being measured in-situ whilst tapering the fibre,

or preferentially couple to only one particular harmonic mode.
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Finally, it is worth mentioning that each and every harmonic mode (except the funda-

mental) can in fact be phase matched with the pump. At its cut-off diameter, a higher

order harmonic mode’s index will always be near 1, so neff (ω) > neff (3ω). However, as

the diameter tends to infinity, neff (ω) approaches n1(ω) whereas neff (3ω) approaches

n1(3ω), which is higher owing to material dispersion. Therefore, at a certain point be-

tween the cut-off diameter and D =∞, the two modes’ neff must be equal to each other.

To determine which harmonic mode offers the greatest conversion efficiency, the next

section will consider their overlap with the pump.

3.3.2 Efficiency calculation

To simulate the THG conversion, the overlap between the interacting pump and har-

monic modes must be evaluated. The electric and magnetic fields in the fibre are defined

as:

Ẽ(r, t) =
∑
i=1,3

Ai(z)
√
Z0Ei(r⊥) exp i(βiz − ωit) + c.c. (3.4a)

H̃(r, t) =
∑
i=1,3

Ai(z)
1√
Z0

Hi(r⊥) exp i(βiz − ωit) + c.c. (3.4b)
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where the subscripts i = 1 and i = 3 refer to pump and third harmonic with angular

frequencies ω1 and ω3 = 3ω1 respectively, and the mode distributions Ei and Hi are

power normalised:
1

4

∫
A∞

(Ei ×H∗i + E∗i ×Hi).ẑ dA = 1 (3.5)

The vacuum impedance term Z0 =
√
µ0/ε0 is included so as to conform with the field

definitions used by Grubsky [17] and conveniently provide the amplitudes Ai(z) with

units of W 1/2 so the power in each mode given simply by the square of its amplitude:∫∫
∞
SzdA =

∫∫
∞
〈Ẽi × H̃i〉t.ẑ dA = |Ai(z)|2 (3.6)

By substituting Eqn. 3.4 into the expression for the nonlinear polarisation Eqn. 3.2 and

applying the reciprocity theorem as shown in Appendix. B, the coupled mode differen-

tial equations describing the evolution of the TH along the fibre can be expressed as

follows [17]:

dA1

dz
= −α1A1 + in(2)k1

{
(J1|A1|2 + 2J2|A3|2)A1 + J3A

∗2
1 A3e

iδβz
}

(3.7a)

dA3

dz
= −α3A3 + in(2)k1

{
(6J2|A1|2 + 3J5|A3|2)A3 + J∗3A

3
1e
−iδβz

}
(3.7b)

where k1 = 2π/λ1 is the pump’s free space propagation constant, δβ = β3 − 3β1 is the

detuning, n(2) ≈ 2.5 × 10−20 m2W−1 is the nonlinear refractive index coefficient, α1,3

are the losses, and the overlap integrals Ji are integrated over the nonlinear glass core

area:

J1 =
1

3

∫∫
ANL

(
2|E1|4 + |E2

1|2
)
dA (3.8a)

J2 =
1

3

∫∫
ANL

(
|E1|2|E3|2 + |E1.E3|2 + |E1.E

∗
3|2
)
dA (3.8b)

J3 =

∫∫
ANL

(
(E1.E3)|E∗1|2

)
dA (3.8c)

J5 =
1

3

∫∫
ANL

(
2|E3|4 + |E2

3|2
)
dA (3.8d)

Of these, J3 is the most important as it gives the overlap between the pump and TH

modes and therefore dictates how rapidly the power can be exchanged between them

along the waveguide. J1 and J5 govern the self phase modulation (SPM) of the pump

and harmonic wave respectively, whilst J2 relates to the cross phase modulation (XPM).

All overlaps are listed in Table 3.1 on p. 23.

Fig. 3.3 shows the values of the overlap integrals for some of the phase match points
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listed earlier. For 1.03 µm and 1.55 µm pumps, the HE12(3ω) mode overlap is largest at

0.76 µm−2 and 0.38 µm−2 respectively; and therefore represents the best candidate for

achieving efficient THG. This is due the HE12 mode containing a large peak in the centre

which coincides with the peak of the fundamental pump field, as illustrated in Fig. 3.4.

On the other hand, it is clear that increasing the hybrid mode number m introduces more

radial oscillations and zeroes in the field profile, which generally reduces the overlap with

the pump. The same is true of modes with higher azimuthal number ν, and hence the

overlap with most other modes is over an order of magnitude smaller (only the HE31(3ω)

overlap is comparable).

Note that the overlaps for a 1.03 µm pump are slightly greater than for a 1.55 µm, since

the phase matching occurs at a narrower diameter with greater modal confinement.

Unfortunately, the TH from a 1.03 µm pump would be in the UV range where standard

SMF shows strong absorption by the traditional germanium and phosphorous dopants.

EH11 HE12 EH12
Third harmonic mode

HE31 EH31 HE32
10−4

10−3

10−2

10−1

100

J 3 (µ
m

−2
)

λ  = 1.03 μm1
λ  = 1.55 μm1

Figure 3.3: The pump-harmonic overlap integral J3 evaluated for different harmonic
modes using a 1.55 µm and 1.03 µm pump.
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Figure 3.4: The electric field intensity |E|2 and transverse vector plot for (a) the
HE11(ω) pump mode at 1.55 µm and (b) the HE12(3ω) harmonic mode at 0.517 µm.
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As a result, the experiments in this work were carried out using a 1.55 µm pump so the

resulting 517 nm harmonic signal could be easily coupled out.
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Figure 3.5: A comparison of the simulated conversion to different higher order har-
monic modes using a 1 kW 1.550 µm fundamental mode pump. In each case, the

microfibre diameter is chosen to ensure phase matching.
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is LNL. Pump parameters same as Fig. 3.5.

By applying the Runge-Kutta method to solve the coupled ODEs in Eqns. 3.7, the

expected conversion efficiency for each harmonic mode was simulated as shown in Fig. 3.5

assuming a 1 kW pump at 1.55 µm wavelength. For the HE12(3ω) mode, close to η ≈
80% is possible over a 5 cm uniform microfibre. For short distances up to a centimetre,

the harmonic signal grows quadratically, beyond which the conversion begins to plateau

due to pump depletion and also to some extent the exchange in power between the pump

and harmonic disrupting the delicate balance between the nonlinear phase and detuning
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δβ. This plateauing is not observed for the other modes’ conversion graphs, since their

efficiencies are much lower. To faciliate comparison, the THG length LTHG, defined

as the distance required to attain an efficiency of η = 50%, is given for each mode in

Table 3.1; for example, LTH for the HE12(3ω) and HE31(3ω) modes are of the order of cm.

The potential for such efficient conversion over a short distances ensures that competing

nonlinear effects can be minimised, in particular those which grow exponentially with

distance such as stimulated Raman or Brillouin scattering [24].

In Fig. 3.5, the detuning was optimised to ensure maximum conversion after propagating

along 5 cm. From Eqn. 3.7, the optimum detuning δβ0 for harmonic growth can be

calculated by incorporating the phase contributions from XPM and SPM:

δβ0(z) = −3n(2)k1

[
(2J2 − J1)P1(z) + (J5 − 2J2)P3(z)

]
(3.9)

At the start of the microfibre, the condition reduces to:

δβ0(0) = −3n(2)k1(2J2 − J1)P0 (3.10)

where P0 is the input pump power. To investigate other values of detunings, Fig. 3.6 plots

the normalised amplitude |A3|/A0 against normalised detuning δβLNL (where LNL =

1/(n(2)k1J1P0) is the nonlinear length and roughly 1 cm). Firstly, it can be seen that

the optimal detuning is around δβLNL = −5. This value is non-zero owing to combined

effects of the SPM and XPM terms in the ODEs, but nonetheless is close enough to zero

for the phase matching condition of neff (ω)≈neff (3ω) to hold. When detuned either

above or below this optimum value, the harmonic amplitude falls and begins to show

a sinusoidal dependance on distance, indicating a periodic exchange of energy between

the pump and TH mode as expected for a phase mismatched scenario. Furthermore, the

power conversion falls significantly: for δβLNL = 2, the conversion is limited to about

1%.

The effect of detuning on the output harmonic amplitude from a 5 cm OM is further

explored in Fig. 3.7(a) and (b), whilst Fig. 3.7(c) shows the corresponding diameter for

the given detuning range. The TH amplitude resembles a sinc function of δβ (similar to

what might be expected for SHG with an undepleted pump), but is asymmetric about

the peak and offset from zero by −500 m−1 due to nonlinear phase modulation. It is clear

that the conversion efficiency only peaks over a very narrow range which would demand

an impossibly high tolerance of < 0.1 nm; this unfortunately cannot be achieved using

silica glass given that it is comparable to molecular dimensions. The range over which the

conversion envelope exceeds 1% is however more lenient (−1400 m−1 < δβ < 200 m−1)

but nonetheless requires nm accuracy. It is unlikely that microfibres can be consistently

and repeatably tapered within this range, but if the waist is deliberately fabricated

slightly smaller than the critical diameter, there will be two segments (in the uptaper

and downtaper) over which this diameter criteria is satisfied. With this approach, the
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Figure 3.7: (a) The effect of detuning δβ on the amplitude conversion and (b) a close
up of the highest conversion regime for THG with the HE12(3ω) mode. (c) The detuning

corresponding to different microfibre diameters. P0 = 1 kW and λ1 = 1.55 µm.

transition regions would have to be several centimetres long to maximise THG, whilst

the length of the waist itself is insignificant. Alternatively, if the pump is tunable, the

wavelength can be adjusted until it phase matches in the waist.

The sensitivity of the conversion to diameter variations also depends upon the choice

of phase match point, in particular, the slope of the neff vs D graph at the point of

intersection between the pump and harmonic neff curves. For example, in Fig. 3.1(b) at

the HE12(3ω) phase match point, the slope is steeper than that of the HE32(3ω) point,

which implies a greater detuning δβ for a given diameter offset. Nonetheless, the higher

conversion offered by the HE12(3ω) mode outweighs any benefit in terms of diameter

sensitivity from using the HE32(3ω) mode or other high order modes.

3.4 Experiments

Having presented the theoretical considerations for third harmonic generation in the pre-

vious section, the following discussions will outline the procedure for manufacturing the

tapers, before analysing the resulting harmonic spectra which were recorded. Broadly,

these experiments can be divided into two main categories:
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Figure 3.8: Schematic of the tapering rig. Both translation stages are computer
controlled, and the height of the microheater can be manually adjusted.

1. Short tapers with waist lengths of a few mm, with phase matching in the uniform

waist region to give high conversion at a specific wavelength.

2. Longer tapers, with THG occuring instead in the transition regions which are

purposely extended over several cm to increase the conversion bandwidth (albeit

at reduced efficiency).

Parts of the experimental work were carried out in collaboration with Yongmin Jung

(ORC, University of Southampton) and Kotya Karapetyan (University of Bonn), and

pump source components were loaned from Christophe Codemard (SPI Lasers, UK).

Scanning electron microscopy of microfibre samples was conducted by Ming Ding (ORC,

University of Southampton).

3.4.1 Taper fabrication

The tapers were fabricated from standard SMF (SMF-1300/1500-9-125-0.25-L, OZ Op-

tics, Canada) in-house at the ORC using the modified flame brushing method [61] as

shown in Fig. 3.8. The fibre is tensioned in the rig by two computer controlled stages

and translated back and forth through a stationary ceramic heater at roughly 1320 oC

until the desired microfibre diameter is reached. Compared to the more commonly used

flame burner, the heater’s wide hot zone of 4 mm offers more uniform heating. The

taper diameter profile is adjusted by setting the gradient parameter αt [62] in the stage

control algorithm, where αt = 0 corresponds to a parabolic profile with a short waist

and shallow transition regions, whilst αt = 1 represents the opposite extreme with much

steeper transition regions. For the short tapers with total lengths of a few cm, αt is

chosen as zero to ensure an adiabatic transition for the pump mode in the downtaper

(and of the harmonic mode in the uptaper), whereas for the longer tapers whose the

total length range between 3 to 4.5 cm, a higher value of αt ≈ 0.3 can be used without

any adiabacity issues.
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Taper Diameter Waist η η
Ref. (µm) Length (mm) (Experimental) (Theory)

A 0.75±0.05 1±0.1 5× 10−5 1× 10−3

B 0.75±0.05 2±0.1 3× 10−4 5× 10−3

C 0.78±0.05 4±0.1 3× 10−3 2× 10−2

Table 3.2: Details for three of the characterised short tapers. Diameter profile param-
eter is αt = 0 for all tapers, and the experimental efficiencies are evaluated at 1.3 kW

peak power.

3.4.2 Harmonic generation in short tapers

Results from the three short tapers listed in Table 3.2 are analysed in this section; tapers

A and B were fabricated using the aforementioned rig, whilst taper C was produced by

the University of Bonn and investigated at the ORC as a collaborative effort in 2009.

All tapers have a diameter in the range 0.75-0.78 µm, so as to phase match with the

HE12(3ω) mode which is predicted to have the greatest overlap with the pump.

During the fabrication of tapers A and B, the pump was launched into the fibre and the

output passed through a shortpass filter with a 1300 nm cut off wavelength to attenuate

the pump before being monitored on a spectrum analyser (Yokogawa AQ-6315A), as

illustrated in Fig. 3.9. The shortpass filter is a straightforward bend-loss filter formed

by coiling the output fibre (the harmonic signal is not significantly affected as the loss is

only 5 dB at λ = 0.5 µm). In this way, it is possible to simultaneously observe the TH

spectrum in-situ whilst the taper diameter narrows. The pump source at λ1 = 1.55 µm

is fully fiberised and provides 4 ns pulses at a repetition rate of 100 kHz and peak power

of up to 1.3 kW (further details about the source properties and construction are given in

Appendix A). Using nanosecond pulses minimises walkoff issues, whilst maintaining high

average and peak powers of Pav = 0.5 W and P0 = 1.25 kW respectively which were well

tolerated by the microfibre. The relatively long pulses can also be considered as quasi-

continuous waves, a regime in which the aforementioned THG differential equations

which exclude dispersive terms (Eqns. 3.7) are a good approximation. Prior to entering

the taper, the pump pulses’ full-width at half-maximum (FWHM) linewidth is typically

less than 0.5 nm since the preceding SMF is limited to 2 m at most.

During tapering, as the core diameter approached the phase matching diameter, the TH

signal increased slightly at first, before suddenly peaking at a much larger value (and

then decaying away if the diameter continued to fall). These observations differ with

those described by Grubsky et al., who reported a much sharper TH onset [17]. The

discrepancies maybe due to the slightly higher pulse power used in this set up, so the

diameters close to the critical value may in fact be matching to the nonlinearly broadened

wavelength components of the pulse rather than the central wavelength at 1.55 µm).

Once the TH signal appears, the tapering process can be immediately halted at the

critical diameter. However, due to the thermal-optic and thermal expansion/contraction
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Figure 3.9: The λ1 = 1.55 µm fiberised pump source schematic and the experimental
set up for the observing the third harmonic whilst tapering fibre.

effects dn/dT and dD/dT , the final taper is often imperfectly phase matched, in which

case the tunable laser source (TLS) wavelength from the pump can be adjusted.

The third harmonic spectra for taper A are presented in Fig. 3.10. As the estimated uni-

form waist length is 1 mm, the conversion (evaluated for P1 = 1.2 kW) was consequently

relatively low at η = 10−5. The conversion is roughly two orders of magnitude lower

than expected, due to imperfect phase matching. The asymmetry of third harmonic

spectrum (also reported by Akimov et al. [15]) is largely due to the longer pump/TH

wavelengths being phase matched within the transition regions (which possess a range
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Figure 3.10: Output spectrum from taper A, showing the third harmonic at different
pump powers. D = 0.75±0.05 µm, waist length 1±0.1 mm.
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Figure 3.11: Output spectrum from taper B, showing the third harmonic at different
pump powers. Taper diameter D = 0.75±0.05 µm, waist length 2±0.1 mm.

of diameters larger than that of the waist) so the TH peak appears skewed to longer

wavelengths. This spectral asymmetry is further exacerbated if the diameter exceeds

the critical value for phase matching, as is likely the case here, because the TH will only

be generated by the long-wavelength side of the pump peak.

At low pump powers (400 W), the third harmonic signal range is narrow (10 nm) but

for powers approaching 1 kW, the range broadens due to the pump broadening from

SPM, which is strongly enhanced by the tight modal confinement [63].

Taper B was fabricated with the same diameter as taper A, but with a longer waist length

of approximately 2 mm. The third harmonic spectrum given in Fig. 3.11 indicates that

the harmonic peak is indeed greater by 5 dB, and visually a slight green glow could be

observed with the naked eye. The position of the peak at 520 nm, which is closer to

the expected λ1/3 = 517 nm than the peak of taper A, indicates that the diameter is

slightly closer to the target phase matching diameter of 0.77 µm. A conversion efficiency

10 times lower than the simulated value of 10−3 was obtained, most likely due to the

waist being slightly parabolic rather than uniform.

Finally, some interesting comparisons can be made with the spectrum for the 4 mm

taper C, shown in Fig. 3.12. In 2009, the taper was brought to the ORC by Konstantino

(Kotya) Karapetyan from the Uni. Bonn, Germany and the TH spectrum was charac-

terised along with the help of G. Brambilla, Yongmin Jung and Christophe Codemard

(SPI Lasers). The more severe spectral asymmetry and third harmonic wavelength of



34 Chapter 3 Third Harmonic Generation in Microfibres

-80

400 600 800 1000 1200 1400 1600

-60

-40

-90

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
m

/n
m

)

Wavelength (nm)

Pump
1550 nm

-70

-50

-30 Third Harmonic
528 nm P = 1.0 kW

P = 1.1 kW
P = 1.2 kW

P = 0.7 kW
P = 0.4 kW

Figure 3.12: Output spectrum from taper C. Taper diameter D = 0.78±0.05 µm,
waist length 4±0.1 mm.

528 nm (rather than 517 nm) imply that the diameter is in fact more strongly detuned

from the phase match point than the other 2 tapers. Despite this, the TH peak is over

an order of magnitude higher than the other two tapers since the waist length is roughly

4 times longer, and the harmonic power would be expected to grow quadratically with

distance. The efficiency was estimated at 10−3 - for comparison, the maximum value

reported in literature so far is 0.05% at 10 kW pumping by Akimov et al. [15].

Another feature of taper C’s TH spectrum, absent in A and B, is the sharper and more

pronounced peak at 528 nm which is 15 dB higher than the neighbouring TH wave-

lengths. This is again due to the longer waist length over which the 528 nm signal can

grow, whereas the neighbouring TH wavelengths, generated in the microfibre’s transition

regions, cannot develop to the same amplitude.

From the spectra, it can be seen that a potential limit to the maximum achievable

efficiency is the broadening of the pump, which is significant even for taper waists of a

few mm. For longer tapers this is clearly an issue, but could be mitigated by limiting the

pump peak power or perhaps using a different phase match point with a larger diameter,

such as HE11(ω)→ EH31(3ω), at the expense of reduced efficiency.

To study the power dependance further, Fig. 3.13 plots the cube root of the third

harmonic power against the pump power. Taper C shows a fairly linear fit, indicating

that the third harmonic power P3ω increases cubically with pump power as one would

expect from Eqn. 3.7a when A3 << A1. However, for taper B the pattern is inconclusive.

This is perhaps because the taper is shorter, so the fraction of the TH generated in the
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Taper Diameter αt Total η max η
Ref. (µm) Length L (mm) (Experimental) (Theory)

D 2.1±0.05 0.3 45±0.5 1× 10−4 4× 10−3

E 1.8±0.05 0.1 45±0.5 5× 10−5 4× 10−3

F 2.4±0.05 0.3 30±0.5 1× 10−4 2× 10−3

Table 3.3: Details for three of the characterised long tapers. Theoretical η is estimated
for phase matching to the several TH modes along the transition region. Total length
L includes both transition regions. Experimental η values are calculated at a pump

power of 1.2 kW.

transition regions (corresponding to wavelengths other than λ1/3) is relatively larger;

hence increasing the pump peak power does not necessarily lead to a cubic increase in

total TH power.

3.4.3 Long tapers for broadband third harmonic generation

3.4.3.1 Experiment overview

Here, we discuss experiments using longer tapers with total lengths L > 3 cm (including

both transition regions and the waist) wherein the intermodal phase matching occurs

within the range of diameters available in the transition regions, to collectively permit

harmonic generation over a wider range of pump wavelengths. This bandwidth-extension

technique is somewhat analogous to chirping the poling period of quasi phase matched

devices [64], and can potentially allow broad third harmonic continua with broader

spectral ranges to be generated in the green down to the UV wavelengths for applications

such as biological spectroscopy or detection.

We focus in particular on the properties of the three long tapers listed in Table 3.3. The

length and value of αt were chosen to maximise the length of the transition region in the
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range where the diameter is about 2 µm where several phase match points exist. Rather

than scrutinising the full output spectrum of each taper, this section will expound upon

the differences between short and long tapers and also examine specific attributes from

each taper, such as its response to the pump power level or wavelength detuning.

From scanning electron microscope (SEM) images recorded with the help of M. Ding

(ORC, University of Southampton), Fig. 3.14(a) summarises the reconstructed profile

of taper A’s downtaper. The uptaper is identical and tapers B and C contain simi-

lar transition regions. The diameter falls exponentially (∼ exp(−0.31 mm−1z)) which

gives a shallow gradient close to the phase matching diameter of 2 µm, thus ensuring a

sufficient interaction length for the harmonic to grow. The diameter near the waist is

roughly uniform over 3 mm. A low surface roughness with diameter variations < 10 nm

is also confirmed by the SEM images taken along the taper, shown in Fig 3.14(b-d).

The experimental set up and fabrication technique are the same as described for the

shorter tapers in the previous section and Fig. 3.9. For taper F, the tapering process

was stopped just after the third harmonic signal peaked, but both tapers D and E were

deliberatly pulled for a slightly longer time to give a narrower waist which shifts the

phase matching further within the transition region.

3.4.3.2 Simulations

Fig. 3.15 plots the predicted phase matching wavelength at different diameters for

ν = 1, 3 hybrid TH modes. When compared with the profile of taper D, it is clear that

a 1.55 µm pump can potentially phase match to several modes, including the EH31(3ω),
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Figure 3.14: (a) The diameter profile for the transition region of taper D (D = 2.1 µm
and L = 45 mm) characterised from SEM images, showing an exponential decreasing
diameter along the taper. (b-d) SEM images of the taper at the start, transition region

and waist.
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EH12(3ω), HE32(3ω), and HE13(3ω) modes, albeit at different points along the transi-

tion region. Indeed, since any taper with a waist narrower than D=2.5 µm will permit

phase matching with these four modes at various positions, we shall refer to this as the

critical diameter. To assess the relative contribution of the modes, the modal overlaps

J3 between the pump and each mode were calculated and found to be similar in the

range of 10−4 < J3 < 10−3 µm−2. We therefore expect each of the modes to contribute

a significant fraction to the third harmonic signal power at the taper output. Although

the overlap with the HE12(3ω) mode at D = 0.77 µm is greater, the key aim of the

current experiment is to increase bandwidth and so we focus on the phase match points

at larger diameters, which can be more consistently fabricated with longer lengths and

tolerate higher peak pump powers (exceeding kW levels for ns pulses).

3.4.3.3 Results and discussion

When the long tapers’ waist neared the phase matching diameter during the tapering

process, the THG signal took several minutes attain its peak conversion, unlike previous

experiments with short tapers where the onset of THG appeared over seconds. This

observation occurs mainly because the longer microfibres are drawn slower (i.e. smaller

dD/dt) when the diameter approaches a few microns because the stages move at a fixed

speed and hence take a longer time to physically translate the length of the microfibre

through the heater. Secondly, a narrower waist diameter decreases the minimum pump
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Figure 3.16: (a) The pump spectrum measured via a -25 dB coupler from the
source output and also (b) at the taper output with an input pump wavelength of

λ1 = 1.55 µm.

wavelength (from the broadened pump spectrum) which can be phase matched. Hence,

as this limit approaches the 1550 nm pump peak, the THG peak is expected to gradually

rise. Indeed, as the waist narrowed from 3.3 µm to 2.4 µm, the TH peak grew by 25

dB whilst simultaneously falling from 600 nm to 520 nm as expected from Fig. 3.15.

Furthermore, the TH signal remains even after the waist diameter falls several hundred

nanometres below the critical value (although the peak is reduced by over 10 dB) which

implies that the locale of THG has shifted away from the waist into the transition

regions.

For taper D, the pump spectrum before and after the taper is shown in Fig. 3.16(a-b),

characterised via a -25 dB coupler, whilst the harmonic spectrum is given in Fig. 3.17.

The input pump pulse is initially narrowband with a FWHM linewidth < 0.5 nm,

but undergoes nonlinear broadening to over several hundred nanometres as it enters the

taper. These broadened components are subsequently phase matched along the uptaper,

resulting in the measured broadband THG spectrum. Comparison of the pump spectrum

before and after the taper in Figs. 3.16 (a) and (b) verifies that the pump broadening

is more significant at higher powers – for example, at 1.3 kW peak power, the power at

1525 nm was measured from the source as -29 dBm/nm (being comprised largely of CW

ASE rather than the pulse) but increases to -24 dBm/nm after the taper. Additionally,
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Figure 3.17: (a) The third harmonic spectrum for taper D, measured after a short-
pass filter with approximately 5 dB loss. (b) The estimated experimental conversion
efficiency at each of the pump wavelengths. Taper D parameters: D = 2.1 µm and

L = 45 mm.

the side peaks in Fig. 3.16(b) were observed, which did not exist in the original source

spectrum, possibly due to nonlinear effects such as self phase modulation and modulation

instability. Note that these are partially masked by the source’s background amplified

spontaneous emission peaks, which are CW and low power (with a cumulative total

power of 0.1 W) and hence do not contribute to the THG.

Aside from the distinct peak at 522 nm, there exist also the third harmonic of the sec-

ondary peaks and broadened components at longer wavelengths in the harmonic spec-

trum of Fig. 3.17. The shape of the TH signal is to some extent dictated by the generation

of multiple third harmonic modes, which contribute their individual conversion spectra.

As the pump power increases from 0.9 kW up to 1.3 kW, these extend from 540 nm up to

570 nm. Whereas the components of the pump which broadened to longer wavelengths

are able to phase match within the transition regions, the shorter wavelengths require

a phase matching diameter narrower than the taper waist and hence cannot generate

a detectable TH signal. The harmonic spectrum is therefore asymmetrically skewed

towards longer wavelengths.



40 Chapter 3 Third Harmonic Generation in Microfibres

−80

−60

−40

Wavelength λ (nm)

 (a) P = 0.5 kW

−80

−60

−40

Wavelength λ (nm)

 (b) P = 0.7 kW

−80

−60

−40

Wavelength λ (nm)P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/n

m
)

 (c) P = 1.0 kW

400 450 500 550 600 650
−80

−60

−40

Wavelength  (nm)

 (d) P = 1.2 kW

Figure 3.18: Third harmonic spectrum for different pump powers for taper E, showing
broad TH signal detectable over 150 nm. Pump wavelength is λ1 = 1.55 µm. Taper E

parameters: D = 1.8 µm and L = 45 mm.

Calculating the efficiency over moving 5 nm steps at maximum pump power (10 µJ

pulse energy) results in the conversion rates shown in Fig. 3.17(b). At λ = 1550 nm,

the value of η = 10−6 is low, but nonetheless comparable to that reported in published

experiments with uniform diameter waveguides [16]. For shorter pump wavelengths, the

conversion falls below 10−7 due to poor phase matching. On the other hand, for λ > 1560

nm, η rises by over a hundred-fold to more than 0.3× 10−3 with a 5 dB bandwidth of at

least 36 nm. From Fig. 3.17(b) it is also apparent that the true bandwidth may extend

further to longer wavelengths, but confirmation would require a source for > 1.6µm

L-band wavelengths and a longer wavelength OSA.

To study the dependency upon the taper profile further, taper E was purposely fabricated

with a narrower waist of 1.8 µm. The resulting third harmonic output spectrum in

Fig. 3.18 is over twice as broad as that of taper D and covers a wider range of 150

nm at P = 1.2 kW, because the shorter wavelength components of the pump are also

able to contribute to the third harmonic signal. The TH spectrum therefore appears

much more symmetrical and extends down to 450 nm (60 nm lower than for taper D).

Compared to the THG in uniform waveguides in [15], this spectral width is an order

of magnitude broader, despite pumping at a tenfold lower peak power. However, an

important consequence of the narrower waist is that the efficiency of η = 5 × 10−5

is notably lower than that of taper D, since the THG occurs in a steeper part of the

transition region.

Using powers below 0.7 kW provides a distinct THG peak as shown in Fig. 3.18(a)

and (b) - in the latter, the secondary peaks are also visible. On the other hand, at
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Figure 3.19: Third harmonic spectrum when the pump wavelength is tuned from
1535 nm to 1560 nm using taper F (D = 2.4 µm and L = 30 mm). Pump power is

approximately P = 0.6 kW to minimise broadening.

higher powers the peak becomes masked by the nonlinear broadening as in (d) when

P = 1.2 kW. This was not observed in the spectra of 3.16 (c) and can be attributed to

a combination of the higher field intensity in the narrower taper E, as well as differences

in their dispersion properties which vary strongly with fibre diameter.

Finally, to investigate the effect of tuning the pump wavelength λ1 in more detail,

taper F was fabricated with a shorter length of 30 mm with a diameter of 2.4 µm and

characterised at the lower power of P0 = 0.6 kW. These two changes intend to minimise

nonlinear broadening so that a distinct TH peak can be identified and tracked during

pump tuning, as shown in Fig. 3.19.

As λ1 is tuned from 1535 nm up to 1560 nm, the TH peak wavelength is confirmed

to vary as λ1/3. For this taper, the THG from phase matching to the EH31(3ω) third

harmonic mode is likely to be dominant near the waist since the 2.4 µm diameter is

very close to the critical diameter of 2.5 µm. However, due to the slight difference, the

largest conversion occurs at the shorter wavelength of λ1 = 1545 nm rather than 1550

nm.

Even when the pump wavelength is tuned over the wide 25 nm range, the TH peak

level only varies by only 6 dB which implies the distribution of the corresponding phase

matching diameters is fairly even in the transition region, in agreement with SEM charac-

terisation. The slight narrowing of the TH peak when pumped at the longer wavelength

of 1560 nm may be due to a fall in the gain spectrum of the source amplifier as well as

the steeper taper gradient at phase matching position.
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3.5 Conclusion

We have simulated the required phase matching conditions for third harmonic genera-

tion in silica microfibres and studied the different possible harmonic modes which can

be obtained. Of these, the HE12(3ω) exhibits the largest modal overlap with the funda-

mental pump mode and hence can offer the highest conversion, up to 80% over uniform

5 cm microfibre using a 1 kW 1.55 µm pump.

Experimentally, both short and long tapers for were fabricated and investigated for THG.

For short tapers where THG occurs in the uniform waist, efficiencies up to 0.1% were

obtained over 4 mm, but the bandwidth was limited to the order of nm. On the other

hand, when using longer tapers where the phase matching occurs within the transition

regions of several cm, broadband conversion is possible with 5 dB bandwidths in excess

of 36 nm.



Chapter 4

Resonantly Enhanced Third

Harmonic Generation

4.1 Overview

For THG in a microfibre, diameter fluctuations present a fundamental limitation to the

efficiency. Whilst increasing the pump power would increase conversion quadratically,

this also facilitates nonlinear pump broadening in the preceding fibre, which may be

undesirable and furthermore reduce the power at the central pump wavelength. Also,

extending the taper length will not improve the conversion unless a high uniformity can

be maintained.

One solution is to configure the microfibre into a loop resonator architecture, in which the

taper is self-coupled via its own evanescent field [20, 21]. The recirculation of the pump

light on resonance will only locally enhance the electric field near the taper (including

the region where harmonic generation occurs) and importantly, since the loop is usually

only a few mm in length, this does not require diameter uniformity over long microfibre

distances. Such a technique therefore offers an inexpensive method, with straightforward

fabrication steps, to increase the efficiency without resorting to higher powers. We focus

on the loop resonator since it is simplest of all microfibre resonators to fabricate, but

alternative resonators such as the microcoil [23] or knot [22] would likewise offer resonant

enhancement. A similar concept has also been previously applied to harmonic generation

in ring resonators [65, 66, 67] and microtoroids [68],

In the following sections, resonantly enhanced THG in loop resonators will be first

studied theoretically, before discussing the experimental observations.

43
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4.2 Theoretical study

Here, we study the effect of the pump light resonance on the THG conversion, including

the influence of the coupling and loss parameters (which both dictate the resonance

characteristics) for a silica loop resonator. At higher powers, the transmission is modified

by hysteresis, and the effect of bistability on the THG will be analysed, as well as the

co-resonant case in which the harmonic signal is partially recirculated.

4.2.1 Theoretical modelling details

The ideal loop resonator geometry is illustrated in Fig. 4.1, formed from a microfibre

arranged into loop and coupling regions with lengths L0 and Lc respectively. Nonlinear

phase modulation effects and third harmonic generation are assumed throughout the

resonator. Typically, the diameter of a loop varies between several hundred microns to a

centimetre, whilst the coupling length can vary considerably according to the tightness

of the loop. The coupling coefficient between the adjacent OMs κω,3ω falls exponentially

with their separation and so it can be assumed that the coupling is only significant over

a small range Lc � L0.

Here, we focus on simulations using the loop parameters listed in Table 4.1 which can

be readily realized using manual stages without the need for specialist equipment after

the microfibre is fabricated, with L0 = 3 mm and Lc = 50 µm.

In order to phase match with the HE11(ω) mode with the HE12(3ω) harmonic mode,

the OM diameter is chosen to be 767 nm, at which both the pump and harmonic modes

have an effective index of neff = 1.08 for a pump wavelength of λ1 = 1.55 µm. Only
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Figure 4.1: Microfibre loop resonator schematic. A1(z) and A2(z) represent the
amplitudes in the each arm of the coupling region, and A0(s) is the amplitudes inside

the loop.
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Parameter Symbol Value

Pump SPM overlap J1 0.97 µm−2

Pump XPM overlap J2 1.46 µm−2

Harmonic-pump overlap J3 0.39 µm−2

Harmonic SPM overlap J5 3.96 µm−2

Loop length L0 3 mm

Coupling length Lc 50 µm

Effective index neff 1.081

Table 4.1: Summary of parameters used in the simulation of the loop resonator, when
phase matching the HE11(ω) mode with the HE12(3ω) mode for λ1 = 1.55 µm.

these two modes will experience any significant power exchange, since the microfibre is

single-moded at λ = λ1 with a V number of 1.6, and all other harmonic modes are far

from phase matched.

In the loop region, the coupled mode differential equations describing the evolution of

the co-propagating pump and third harmonic mode amplitudes Aω0 and A3ω
0 are adapted

from [17] to include loss:

dAω0
ds

=− αωAω0 + in(2)k1

[
(J1|Aω0 |2

+ 2J2|A3ω
0 |2)Aω0 + J3(Aω∗0 )2A3ω

0 eiδβs
]

(4.1a)

dA3ω
0

ds
=− α3ωA

3ω
0 + in(2)k1

[
(6J2|Aω0 |2

+ 3J5|A3ω
0 |2)A3ω

0 + J∗3 (A3ω
0 )3e−iδβs

]
(4.1b)

where the overlap integrals J1, J2, J3 and J5 correspond to the terms for pump self-

phase modulation (SPM), cross-phase modulation (XPM), pump-harmonic overlap, and

harmonic SPM respectively. Since the analysis will concentrate on the narrow range of

wavelengths (< 1 nm) around a resonance, it is reasonable to approximate these overlaps

as constants, with the values given in Table 4.1. The detuning is given by δβ = β3ω−3βω,

whilst k1 = 2π/λ1 is the pump free space propagation constant and n(2) = 2.7 × 10−20

m2/W is the silica nonlinear refractive index coefficient. In the coupling region, the

equations for the amplitudes Aωi (s) and A3ω
i (s) are similar albeit with the addition of

the linear coupling terms:

dAωi
ds

=− αωAωi + iκωA
ω
j + in(2)k1

[
(J1|Aωi |2

+ 2J2|A3ω
i |2)Aωi + J3(Aω∗i )2A3ω

i eiδβs
]

(4.2a)

dA3ω
i

ds
=− α3ωA

3ω
i + iκ3ωA

3ω
j + in(2)k1

[
(6J2|Aωi |2

+ 3J5|A3ω
i |2)A3ω

i + J∗3 (A3ω
i )3e−iδβs

]
(4.2b)
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Eqns. 4.2 (a) and (b) give the differential equations for the modes Aω1 , A
3ω
1 , propagating

in the first arm of the coupling region when i = 1 and j = 2; and likewise for the second

arm Aω2 , A
3ω
2 , when i = 2 and j = 1. These equations are then solved iteratively with

the boundary conditions for field continuity:

Aω,3ω0 (0) = Aω,3ω1 (Lc) exp (iβω,3ωLc) (4.3a)

Aω,3ω2 (0) = Aω,3ω0 (L0) exp (iβω,3ωL0) (4.3b)

as well as the input initial conditions:

Aω1 (0) =
√
P0 (4.4a)

A3ω
1 (0) = 0 (4.4b)

for an input pump power P0. The output transmissions can then be evaluated as:

Pω,3ω
P0

=

∣∣∣∣Aω,3ω2 (Lc)

Aω1 (0)
exp (iβω,3ωLc)

∣∣∣∣2 (4.5)

The free spectral range (FSR) of the 3 mm loop is FSR ≈ λ2/(neffL0) = 740 pm near the

1.55 µm pump wavelength. A larger resonant enhancement would be expected if the loop

resonator were nearer to critical coupling, which occurs when Kc = κcLc = π(2m+ 1)/2

for integer m ≥ 1 [21] with the lowest value (m = 1) of κc = 9.4× 104 m−1. The power

within a critically coupled loop resonator may be several orders of magnitude larger than

the original input power, and hence the avoidance of dust and other surface contaminants

becomes especially important in order to prevent hotspots. Experimentally, the loop will

often be slightly undercoupled or overcoupled due to fabrication limitations in controlling

the spacing between the microfibres and for these reasons we will study the dependency

of ζ on proximity to critical coupling for cases where ∆K = (κc − κω)Lc ≈ 1, rather

than zero.

Powers in excess of 100 W will be studied, which can be straightforwardly achieved in

experiments using pulsed sources. It is worth noting from previous reports that such

high powers can induce thermal phase shifts arising from the temperature dependent

refractive index and thermal expansion, which introduce their own nonlinearities and

hysteresis into the power transfer function of a microfibre resonator [69]. However,

provided that the repetition rate of the source is greater than the inverse of the thermal

response time (typically of the order of 0.1–1 ms, depending on the OM diameter and

surrounding environment) we may assume here that the resonator exists in a dynamic

thermal equilibrium in which the loop geometry and linear/nonlinear index are steady

state.
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Figure 4.2: The pump Pω and third harmonic P3ω output power from a loop resonator
when input pump power P0 is (a) 100 W, (b) 250 W and (c) 600 W. The labelled dots
indicate the position of the detunings for the transfer characteristics shown in Fig. 4.3.
Parameters: L0 = 3 mm Lc = 50 µm, αω,3ω = 5 m−1, κ = 8×104 m−1, δβ ≈ 1440 m−1.
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4.2.2 Discussion

Firstly, the transmitted pump Pω and harmonic P3ω output powers will be studied

for different input powers as shown in Fig. 4.2, where the pump is detuned from a

resonance at λR ≈ 1550 nm (to avoid confusion with the phase matching detuning δβ,

this detuning will be denoted as δλ). The coupling between pump modes is chosen to be

κω = 8 × 104 m−1, which is achievable with close contact between the two microfibres,

and corresponds to ∆K = 0.71 (for reference, values of ∆K = 0 and ∆K = 3π/2 would

correspond to the critically-coupled and totally-uncoupled extremes respectively). Since

the higher order harmonic mode’s transverse profile contains more oscillations/zeroes,

κ3ω is roughly an order of magnitude smaller than κω. Furthermore, in the most general

case the resulting third harmonic signal will not necessarily coincide with a resonance

and so κ3ω will be set to zero here (situations in which κ3ω > 0 will be considered later).

We choose δβ ≈ −1440 m−1, which is close to the optimum detuning for THG in the

loop resonator. The value is negatively offset from zero to compensate for the nonlinear

phase shifts, although a smaller but nonetheless significant third harmonic signal would

still be detectable if δβ = 0 m−1. It should be noted that the magnitude of the opti-

mum detuning for THG in a loop resonator, which experiences stronger SPM/XPM on

resonance, is generally larger than that of the straight microfibre (for the OM, the ideal

detuning and input parameters can be deduced by finding soliton solutions to the third

harmonic interaction which offer the greatest conversion [70]).

For an input power of P0 = 100 W, Fig. 4.2(a) confirms that the pump’s nonlinear

resonance spectrum appears asymmetrically skewed towards longer wavelengths by δλ =

25 pm due to the accumulated phase shift from SPM. The extinction ratio also exceeds

that of the linear resonance due to exchange of power into the harmonic mode – indeed,

a peak conversion of η = P3ω/Pω = 0.0174 is attained. For comparison, the theoretical

conversion for an equivalent 3 mm long microfibre (calculated by setting κω,3ω to zero)

would be η0 = 2.7 × 10−5. The loop therefore provides a resonant enhancement of

ζ = η/η0 = 640 times greater than the straight microfibre. This enhancement arises

primarily due to a large field enhancement inside the loop of Pcirc = |Aω0 (0)|2 = 8.6P0,

corresponding to an internal power level of 860 W which should be well tolerated by the

OM (if pumping with nanosecond pulses and ≈1 W average powers) and hence possible

to demonstrate experimentally using current fabrication techniques. However, far from

resonance (e.g. at δλ = 200 pm) η will fall below η0 since a fraction of the light will

bypass the loop in the coupling region, and thus experience an effective path length

shorter than L0.

Increasing P0 to 250 W will further red-shift the resonance wavelength as shown in

Fig. 4.2(b). In addition, the greater pump power increases both η and η0 to 0.17 and

2.24 × 10−4 respectively, yielding a resonant enhancement of ζ = 750, i.e. 17 % times

larger than for P0 = 100 W. Although ζ is to a large extent dictated by the intrinsic
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Figure 4.3: Transfer characteristics when the pump is detuned from resonance by (a)
50 pm (b) 96 pm (c) 100 pm (d) 120 pm. Other parameters are same as Fig. 4.2.

resonance characteristics (namely the proximity to critical coupling, as will be discussed

later), the growth of the third harmonic signal remains nonetheless highly sensitive to

any changes to the phase matching conditions. In this case, the detuning of −1440 m−1

is slightly lower than the optimum detuning, so at the higher power levels experienced

inside the loop, the greater nonlinear phase modulation serves to compensate for this

offset and thus increase the conversion and ζ. However, the same mechanism would also

reduce the efficiency if δβ was positively offset; physically this depends on whether the

OM diameter is slightly larger or smaller than the critical phase matching diameter.

When P0 = 600 W in Fig. 4.2(c), the peak efficiency of η = 0.50 is sufficiently high such

that the maximum enhancement becomes limited by pump depletion, with the pump

extinction ratio being 2.3 times greater than the linear case. For this reason, the enhance-

ment of ζ = 240 is smaller than that predicted for the lower input powers. Furthermore,

the output spectra from the resonator becomes multi-valued for a band of red-detunings

near δλ ≈ 100 pm due to bistability. To explain this behaviour, Figs. 4.3(a-d) provide

the power transfer characteristics at several positive detunings for a loop resonator of

the same parameters. When δλ = 50 pm, the pump wavelength resides within the orig-

inal linear resonance and so the output is monostable. Increasing δλ further however

introduces hysteresis as expected, and at δλ = 96 pm the upper nonlinear switching

power coincides with the input power of P0 = 600 W. For δλ = 100 pm the same input
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power resides on the bistable region, with the upper and lower branches corresponding

to the two values in Fig. 4.2(c). Note that only the upper branch for P3ω/P0 generates

any significant harmonic power, since the pump light in the other branch is in an off-

resonance high transmission state. Finally, when the detuning is increased to 120 pm,

the output for a P0 = 600 W pump becomes single valued again since both the upper

and lower switching powers exceed 600 W.

As mentioned earlier, the maximum possible enhancement is greater if the loop resonator

is closer to critical coupling, as can be seen in Fig. 4.4 which shows the expected ζ for

different ∆K. For comparison purposes, the situation presented earlier in Fig. 4.2(a),

when κω = 8× 104 m−1, is highlighted by the dotted line at ∆K = 0.71. In addition,

Fig 4.5 shows the corresponding circulating power ratio on resonance Pcirc/P0 for the

same range of ∆K.

Near to critical coupling, with ∆K = 0.6, Pcirc exceeds the input power by 9 times which

results in large enhancements > 103, but only over a narrow range of 20 pm near the

resonance. Furthermore, ζ only exceeds unity across a 150 pm span - outside of this

range, the harmonic signal can become two orders of magnitude weaker than that of the

original OM. As ∆K increases, the Q factor of the resonance and hence the enhancement

both decrease dramatically, with ζ = 2 at ∆K = 1.4 since the recirculating power is

only 1.3P0. On the other hand, the conversion bandwidth increases with the resonance
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other parameters are same as Fig. 4.2. The inset confirms the cubic pump dependency

of the enhancement over the range of values simulated.

linewidth. Note that the efficiency also peaks closer to δλ = 0 pm and the P3ω spectrum

is more symmetric, mirroring the loop’s linear resonance spectra, since the smaller field

in the loop reduces the nonlinear phase shift.

A higher pump loss αω will reduce the circulating power ratio and ζ as expected, but

the reduction becomes more significant with lower values of ∆K since the light traverses

a longer effective path length within the loop on resonance. Although the bend losses

of loop resonators with a few millimetres diameter are negligible for sub-micron OM

diameters, the microfibre surface may become contaminated by dust or moisture from

the atmosphere which increases the surface scattering and absorption losses to reduce

Pcirc. Nonetheless, from Fig. 4.5 it can be seen that even for very large losses of αω = 30

the recirculating power ratio still exceeds 5 which provides a corresponding enhancement

of ζ = 125.

For the range of ∆K and loss discussed above, the highest efficiency is 5 % (when

∆K = 0.6 and α = 3 m−1) and so the pump can be approximated to be undepleted

such that the pump distribution inside the loop is similar to what would be observed

in the absence of THG. Indeed, the inset in Fig. 4.5 confirms that the enhancement

increases cubically with Pcirc. The enhancement can therefore be estimated from the

linear properties accounting for the loss, which are discussed in reference [21]. On

resonance, when m = 1 (where m is the integer eigenvalue index for the critical coupling

condition as mentioned previously), the power transmission simplifies to:

|T |2 =
|Aω2 (Lc)|2

P0
=

e−αωL0 + sin(κωLc)

1 + sin(κωLc)e−αωL0
(4.6)
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and the power recirculation is given by:

Pcirc

P0
=

1− |T |2

1− exp(−2αωL0)
(4.7)

From Eqns. 4.6 and 4.7 the maximum enhancement can be estimated as:

ζ ≈
[

1− sin2(κωLc)

(1 + sin(κωLc)e−αωL0)2

]3

(4.8)

Interestingly, Eqn. 4.7 also predicts that Pcirc/P0 would counter-intuitively increase with

increasing loss if π/2 < ∆K < 3π/2 (where ∆K was previously defined as the difference

from the critical coupling value at κcLc = 3π/2). This can indeed be seen from Fig. 4.5,

where the highest loss (α = 30 m−1) does not correspond to the lowest circulating power

for values of ∆K near 1.5 (the behaviour shown in the numerically calculated graph

differs somewhat from the aforementioned analytical prediction based on Eqn. 4.7, due

to the phase modulation effects). This phenomenon is however unlikely to be of practical

use since it occurs far from critical coupling, where the enhancement is poor, and the

larger loss values would detriment the out-coupling of the third harmonic signal.

In general, the bandwidth B of the enhancement is dictated by the resonance linewidth,

with a greater resonant enhancement from a higher Q resonance (|∆K| closer to 0)

achieved at the expense of bandwidth as shown in Fig. 4.6. For weak coupling at

∆K = 1.4, the full width half maximum (FWHM) bandwidth of ζ (measured from a
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ζ = 1 and maximum ζ) for different proximities to critical coupling ∆K. P0 = 100 W

and other parameters are same as Fig. 4.2.
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baseline of ζ = 1) is 185 pm, or roughly 25 % of the resonator’s FSR. On the other hand,

nearer to critical coupling at ∆K = 0.8, the Q factor is approximately 2.8 times greater

and limits B to only 40 pm, which may however be useful for applications requiring a

narrow linewidth at the harmonic wavelength.

A relatively wide bandwidth is advantageous for converting a wider range of the pump

light’s nonlinear broadened wavelength components, which may have been generated

even before reaching the taper waist region by self phase modulation (additional broad-

ening mechanisms may become significant depending on the pulse duration, power, and

the pump wavelength’s position on the OM dispersion curve, and indeed their influ-

ence has been discussed in the context of continuum generation - see for example ref-

erences [9, 10]). The broadened pump components will each experience a different en-

hancement depending on their proximity to the resonance as explained from Fig. 4.2,

and it should thus be noted that in the limit when B � FSR � pump-linewidth, the

overall conversion would fall and tend towards the off-resonance level.

Finally, it is interesting to consider cases with κ3ω > 0 in which the harmonic is also

near resonance, since previous studies on resonantly enhanced harmonic generation in

ring resonators [65, 67] suggest that co-resonance of the pump and harmonic can further

increase the conversion. However, in order for any efficiency enhancement to be observed

at the resonator output, the gain in harmonic power circulating within the loop would

need to be large enough to compensate for the reduction in coupling out the harmonic

power due its resonance. For values of κ3ω up to 2×104 m−1, Fig. 4.7 shows the expected

harmonic conversion spectrum for a loop with the same parameters as Fig. 4.2(a) and

P0 = 100 W input. Both κω and κ3ω can be altered in practice by adjusting the OM

index, surrounding index, OM separation and pump wavelength. Altering one of these
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parameters will inevitably affect both couplings, but by changing two or more parameters

simultaneously it is possible to keep constant one of the couplings and change the other

(or alternatively, tailor their ratio). As κ3ω increases from zero, the conversion generally

falls because the third harmonic signal is being recirculated rather than coupled out.

However, for detunings in the range +20 pm to +30 pm, the efficiency can be enhanced

significantly (by up to 50 % greater when κ3ω = 2× 104 m−1).

The behaviour can be understood from Eqn. 4.2b, which states that at the start of loop

|A3ω
0 | will grow if 0 < θ3ω(s = 0)− 3θω(s = 0) < π (neglecting phase modulation) where

θi represents the phase of Ai0. For this particular example, the condition is satisfied not

at zero detuning, but rather at the detunings around δλ ≈ +30 pm where the power

of the recirculated harmonic ’seed’ will grow with distance as it propagates around the

loop. Note that although this phase condition is also met at δλ = 40 pm, the pump is

off resonance and hence η is low. For this reason, the co-resonant enhancement is only

apparent over a relatively narrow 10 pm range.

4.2.3 Summary

The use of microfibre loop resonators can greatly enhance third harmonic generation

efficiency by several orders of magnitude greater than that of the straight microfibre,

thus allowing conversion rates of several percent even at pump powers as low as 100 W.

Importantly, this requires microfibre loop lengths of only a few mm which is sufficiently

short to be fabricated to a high diameter uniformity; the distance being comparable to

the microheater hot zone size. A range of interesting characteristics arise from the inter-

play of the nonlinear properties of the fibre and the resonant behaviour. For example, at

higher powers, the resonator hysteresis causes nonlinear switching of both the pump and

third harmonic power levels. Furthermore, allowing co-resonance of both the harmonic

and pump light can increase the conversion further.

4.3 Experiment

4.3.1 Experimental details

In order to observe resonantly-enhanced third harmonic generation, silica microfibre

loop resonators were fabricated by Rand Ismaeel (ORC, University of Southampton).

These samples were produced from silica tapers with a 770 nm diameter waist (to ensure

phase matching to the HE12(3ω) harmonic mode) and a 1 mm waist length, and were

characterised using the same experimental setup shown in Fig. 3.9 on page 32 with

λ1 = 1.55 µm 4 ns pump pulses. In order to limit nonlinear pump broadening, a

lower pump power of P0 = 100 W was used during the nonlinear measurements on
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Figure 4.8: The output spectrum for the 6 mm diameter loop resonator, recorded
with an ASE source at the resonator input. The wavelength resolution of the spectrum

analyser is 20 pm. (Loop resonator fabricated and spectra recorded by R. Ismaeel).

both the taper and loop, such that the 100 pm pump linewidth remains comparable to

the resonance FWHM, and the repetition rate was increased to 250 kHz to provide a

moderately high average power to aid detection.

The loop resonator was produced by fixing the fibre ends of the taper onto linear stages,

which were subsequently pushed together so the OM is slightly bent. Next, a rotation

stage was used to twist one end of the fibre, providing a torsion which forced the taper

into a 1 cm diameter loop, before both fibre pigtails were simultaneously pulled apart

until the desired loop diameter and tightness were achieved.

With this procedure, Q factors in the range 104 > Q > 105 and extinction ratios

of several dB can be achieved consistently. The linear spectrum for a typical loop in

Fig. 4.8, recorded using the ASE from an amplifier as a source, shows a FWHM linewidth

of 50 pm, i. e. Q ≈ λ/FWHM = 3.1×104 (the true Q may be higher, since the measured

linewidth is comparable to the OSA resolution of 20 pm).

4.3.2 Discussion

Before analysing the experimental results, we shall first determine the expected enhance-

ment by applying the parameters of the experimentally fabricated loops to the theory

from the previous section. Although the loop diameter is 6 mm, the length of the waist

over which phase matching occurs is only 1 mm. The simulations from section 4.2 are

therefore modified so that THG only occurs over a 1 mm section within the loop, whereas

SPM and XPM are assumed throughout the entire length of the loop.

In addition, losses of αω,3ω = 5 m−1 are included to account for scattering losses and

surface contamination incurred during the manipulation of the taper, and the coupling
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length and coefficient are Lc = 50 µm and κω = 7.3 × 104 m−1 respectively. These

values were chosen to ensure the linear resonance spectrum matches that which was

experimentally recorded.
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Figure 4.10: (a) The pump spectrum with central wavelength of 1550 nm (recorded
via a -20 dB coupler). (b) Logarithmic plot of third harmonic against pump peak
powers in the range P0 =0.1-1 kW. The dotted line provides a linear fit with a gradient

of 2.8.
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Figure 4.9 shows the simulated output pump Pω and third harmonic power P3ω at differ-

ent pump detunings δλω from the resonant wavelength over one free spectral range. The

third harmonic conversion efficiency is maximal when the pump light is on resonance,

with an enhancement of ζ ≈ 12 dB greater than that which would be expected from the

straight microfibre (η0 = P3ω/P0 = 1.2× 10−5).

Having estimated the expected enhancement, we now discuss the experimental results.

At P0 = 100 W, the straight microfibre conversion is η0 = 3.0 × 10−6; similar to the

level reported in [16] and roughly 5 times lower than the simulated value (primarily

due to an offset between the actual and ideal phase matching diameter). To verify

the signal arises from a χ(3) interaction, the logarithmic harmonic-pump power graph

in Fig. 4.10(b) confirms a linear gradient of 2.8; close to the expected gradient of 3

but somewhat lower due to the efficiency reduction when the pump broadens at higher

powers near 1 kW.

Figure 4.11 compares the third harmonic spectrum of the straight OM and the loop,

whilst the latter is being tightened (the loop diameter is kept at 6 mm throughout). With

an initially loose loop, the enhancement is only ζ ≈ 1 dB since the coupling is too low.

Tightening the loop by further twisting one pigtail forces the microfibre segments in the

coupling region closer together which increases κω towards critical coupling, as well as

increasing Lc, resulting in stronger resonances. The efficiency subsequently increases to

six times greater than that of the taper, with η = 1.8×10−5 (ζ = 7.7 dB enhancement).
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Figure 4.11: A comparison of the third harmonic signal spectrum before and after
configuring the straight microfibre into the loop resonator. For the loop, several spectra
are given, corresponding to different loop tightness during fabrication whilst keeping

diameter at 6 mm (measured via a short pass filter with 5 dB loss at λ ≈ 0.5 µm).
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This experimentally observed enhancement is similar but slightly lower than the theo-

retical value, perhaps due to additional scattering loss from the coupling region. The

value of α3ω for the harmonic mode may also be larger than αω for the pump, although

this value could not be experimentally estimated without a calibrated source at the har-

monic mode. Also, the 3 dB THG linewidth of 50 pm is slightly larger than the original

45 pm linewidth recorded from the straight OM, due to the higher circulating power in

the loop broadening the pump further. Note that a larger ∆K with a weaker resonance

would increase the enhancement bandwidth, albeit at the cost of a reduced peak ζ value.

4.3.3 Summary

We fabricated tapers with waist diameters near 0.76 µm and an estimated waist length

of 1 mm to ensure intermodal phase matching for THG. When pumped with λ = 1.55

µm 4 ns pulses at 100 W peak power, the conversion was η = 3 × 10−6. The loop

resonator was then formed by manually translating and twisting the microfibre ends,

to produce loop diameters down to 6 mm and resonant efficiency enhancements up to

ζ =7.7 dB for the same pump parameters.

4.4 Conclusions

By simply configuring the taper into a loop resonator, it is possible to enhance the third

harmonic efficiency by orders of magnitude. We have experimentally observed efficien-

cies in loop resonators ζ = 7.7 dB greater than that of the original straight microfibre

when pumping at 100 W peak power, and by optimising the coupling geometry, enhance-

ments up to 20 dB can be realistically expected using currently available manufacturing

technology. As in many optical systems however, there exists a compromise between the

gain and bandwidth – in this case, a stronger resonance nearer to critical coupling offers

greater enhancement at the expense of reduced bandwidth.

Although the work described in this chapter relates to loop resonators, one would ex-

pect similar behaviour in other microfibre resonators such as the knot [22] or the micro-

coil [23], which offer improved stability whilst maintaining the advantage of straightfor-

ward fabrication.



Chapter 5

Second Harmonic Generation

5.1 Overview

The process of second harmonic generation requires a non-zero second order nonlinear

susceptibility χ(2), in order to induce a corresponding second order polarisation term:

P̃(2)(r, t) = χ(2) : Ẽ(r, t)Ẽ(r, t) (5.1)

In particular, this term is responsible for mixing the pump beam, with an Ẽ ∼ exp(iω1t)

time dependency, to produce the frequency doubled signal at 2ω1. It is often assumed

that silica waveguides alone cannot be used for second harmonic generation (SHG),

since the isotropic structure of the glass would appear to deny any χ(2). However, whilst

it is true that there is no bulk dipole contribution to the second order susceptibility

χ(2), there exist however two other small but significant χ(2) sources – (i) the bulk

quadrupole and magnetic dipole effects [24, 25], and (ii) the surface dipole at the glass-

air interface [71, 72, 73, 74]. The surface χ(2) effect is especially interesting in microfibres

and becomes influential since the surface field strength is relatively large, in addition to

the relatively high surface-area to volume ratio.

In this chapter, we shall provide a short background of SHG in microfibres, before

discussing the theory in detail and simulations to predict the potential second harmonic

efficiencies which might be achieved. In addition, we present our experimental work

towards achieving SHG in microfibres, as well as loop resonators to improve efficiency.

The experiments were carried out in collaboration with R. Ismaeel (ORC, University of

Southampton) and M. A. Gouveia (UNICAMP, Brazil).

59
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5.2 Background

Surface SHG from the interface between isotropic media was first studied by Bloember-

gen and Pershan in 1962 [75], and by the late 1960s, had been experimentally observed

at the boundary of liquids and glasses [71, 76]. Furthermore, the phenomena has since

been employed as tool for surface characterisation since the harmonic signal depends

upon the interface material and quality [77]. In such instances, the absence of phase

matching over any appreciable distance limits the conversion.

Using microfibres, however, allows intermodal phase matching between the second har-

monic and the pump so that a larger conversion can be attained. SHG was indeed

observed and noted in microfibres [14, 16, 57], although there were no attempts to fur-

ther investigate or optimise the SH signal since these experiments focused on THG, and

to date there remains little experimental literature on SHG in microfibres. Recently

however, Lægsgaard modelled SHG in circular microfibres and ‘wagonwheel’ holey silica

fibres by solving the SHG differential equations in the undepleted pump approximation

[13]. In both cases, the second order polarisation consists mainly of surface dipole contri-

butions, and was modelled using the surface χ(2) components characterised by Rodriguez

et al. [26].

Simulations on SHG in microfibres were also undertaken by Richard [12]. As before,

the second harmonic is generated through intermodal phase matching, but unlike Lægs-

gaard’s work, the core is assumed to possess a bulk χ(2) (for example, an effective χ(2)

can be induced from homogenous electric poling of a silica microfibre [78]). Further-

more, the phase mismatch is taken to vary along the fibre with gradient κ′ in order to

model a realistic taper profile. For κ′ ≈ 0 the conversion can reach close to 100% as

expected intuitively, but interestingly the efficiency remains high even for larger values

of κ′ which suggests that a slight tapering of the profile in the waist can introduce a

detuning gradient to compensate the changes in nonlinear phase (due to pump-harmonic

power exchanges), to maintain a near-optimum effective detuning.

5.3 Theory and simulations

5.3.1 Second harmonic generation phase matching

The same intermodal technique used to phase match the third harmonic, explained in

section 3.3, can be applied to second harmonic generation, i. e. by choosing an appro-

priate microfibre diameter at which the fundamental HE11(ω) pump mode and a higher

order second harmonic mode propagate with the same effective index.

Figure 5.1 shows that for a λ1 = 1.55 µm pump, there are two key phase match points,

with the TM01(2ω) and HE21(2ω) modes at critical diameters of 690 nm and 780 nm
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respectively. Over the range of pump wavelengths between 0.6 µm to 1.7 µm, these

phase matching diameters scale roughly linearly with λ1 as shown in Fig. 5.2 and would

be around D = 0.5 µm for a 1 µm pump, which remains well within the range that

can be fabricated with most tapering rigs (for shorter pump wavelengths however, the

required diameter would be challenging to realise).

Note that the set of higher order modes considered for SHG differs from that of THG,

since the form of their overlap integral between the pump and harmonic mode differs

considerably. Namely, neither the TM01 and HE21 modes can be generated for THG

due to their field symmetry (see Appendix B), but both are possible for SHG.
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The electric field intensity |E|2 profile for these modes are shown in Fig. 5.3, along with

the transverse field vector plot. The surface field strength is high for each of the modes

and even exceeds the bulk field by a factor of 2 in the fundamental pump. Moreover,

the field is strongly radial at the surface, which is beneficial for surface SHG since it is

aligned with the direction of material anisotropy.

5.3.2 Calculation of second harmonic conversion efficiency

We begin our analysis of the second harmonic conversion by first defining the propagating

electric and magnetic fields:

Ẽi = AiEi exp(i(βi − ωit)) + c.c. (5.2a)

H̃i = AiHi exp(i(βi − ωit)) + c.c. (5.2b)
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where i = 1 and 2 for the pump and harmonic fields respectively, and the amplitudes

are normalised so that the power is given by the square of the amplitude |Ai|2, i. e. such

that:

S =
1

2

∫∫
∞

(Ei ×Hi
∗) · ẑ dA = 1 (5.3)

Assuming the slowly varying envelope approximation, we can derive the nonlinear prop-

agation equations for SHG by adopting the same approach using the Lorentz reciprocity

theorem as for THG (Appendix B), but using P̃NL = P̃(2). The coupled mode differential

equations are then expressed as follows:

dA1

dz
=− α1A1 + in(2)k1

[
(J1|A1|2 + 2J2|A2|2)A1

]
+ iρ2A

∗
1A2e

iδβz (5.4a)

dA2

dz
=− α2A2 + in(2)k1

[
(4J2|A1|2 + 2J5|A2|2)A2

]
+ iρ2A

2
1e
−iδβz (5.4b)

where the overlap integrals Ji are defined previously in Eqn. 3.8 and the detuning is

δβ = β2 − 2β1. The nonlinear coupling (overlap) coefficient ρ2 is evaluated between the

harmonic mode and the second order nonlinear polarisation P(2), and can be decomposed

into the anisotropic surface dipole (ρs) and bulk multipolar (ρb) contributions [13]:

ρ2 = ρs + ρb (5.5a)

ρs =
ω2

2

∫ 2π

0
E∗2 ·P(2)

s a dθ (5.5b)

ρb =
ω2

2

∫ a

0

∫ 2π

0
E∗2 ·P

(2)
b r dθ dr (5.5c)

where a is the microfibre radius. Physically, the surface nonlinearity arises from the

presence of termination bonds at the interface (e.g. between Si and –OH or –H), whereas

below the surface, the bonds are predominantly between Si and O only. This structural

anisotropy is consequently reflected in the response of the electrons to an external field

and hence can be modelled with an effective χ(2) tensor. The surface second order

polarisation P
(2)
s itself therefore contains several terms, corresponding to the various

tensor elements of χ(2) [13]:

P(2)
s = P

(2)
s1 + P

(2)
s2 + P

(2)
s3 (5.6a)

P
(2)
s1 = ε0χ⊥E

2
1⊥r̂ (5.6b)

P
(2)
s2 = ε0χ⊥‖|E1‖|2r̂ (5.6c)

P
(2)
s3 = 2ε0χ‖E1⊥E1‖ (5.6d)

where r̂ is the unit radial vector perpendicular to the OM surface, and the surface χ(2)

tensor elements χ⊥, χ⊥‖ and χ‖ are 6300, 770 and 790 pm2/V respectively [26]. E1⊥

and E1‖ represent the pump electric field components perpendicular and parallel to

the surface, respectively. Eqns. 5.6b to 5.6d are substituted into Eqn. 5.5b and then
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integrated over the microfibre circumference to determine their relative contribution to

the total ρ2. This can be performed analytically using the mode electric field expressions

from Eqns. 2.12 and 2.8, and for the TM01(2ω) mode, these surface components take

the form:

ρs1 =
π

2
c2

1c2ε0ω2χ⊥a
4 β

2
1β2

U2
1U2

R2
1r(a)J1(U2) (5.7a)

ρs2 =
π

2
c2

1c2ε0ω2χ⊥‖a
2 β2

U2
J1(U2)

[(
β1a

U1

)2

R2
1θ(a) + J2

1 (U1)

]
(5.7b)

ρs3 = πc2
1c2ε0ω2χ‖a

2 β1

U1
R1r(a)J1(U1)J0(U2) (5.7c)

and for the HE21(2ω) mode, the surface contributions are:

ρs1 =
π

4
c2

1c2ε0ω2χ⊥a
4 β

2
1β2

U2
1U2

R2
1r(a)R2r(a) (5.8a)

ρs2 = −π
4
c2

1c2ε0ω2χ⊥‖a
2 β2

U2
R2r(a)

[(
β1

U1
aR1θ(a)

)2

− J2
1 (U1)

]
(5.8b)

ρs3 =
π

2
c2

1c2ε0ω2χ‖a
2 β1

U1
R1r(a)

[
β1β2

U1U2
a2R1θ(a)R2θ(a) + J1(U1)J2(U2)

]
(5.8c)

where the field distribution coefficients are given by:

Ui =
2π

λi
a
√
n2

1 − n2
eff,i (5.9a)

Wi =
2π

λi
a
√
n2

eff,i − n2
2 (5.9b)

Rνr,i =
1− sν

2
Jν−1

(
Uir

a

)
− 1 + sν

2
Jν+1

(
Uir

a

)
(5.9c)

Rνθ,i =
1− sν

2
Jν−1

(
Uir

a

)
+

1 + sν
2

Jν+1

(
Uir

a

)
(5.9d)

sν,i =
ν
(
U−2
i +W−2

i

)
J ′ν(Ui)
UiJ ′ν(Ui)

+ K′ν(Wi)
WiK′ν(Wi)

(5.9e)

and the power normalisation factor is:

c0 =
2
√

2∫∫∞
−∞(E1 ×H1

∗) · ẑ dA
√∫∫∞

−∞(E2 ×H2
∗) · ẑ dA

(5.10)

On the other hand, the bulk multipolar term P
(2)
b contain two components:

P
(2)
b = P

(2)
b1 + P

(2)
b2 (5.11a)

P
(2)
b1 = ε0γ∇(E1 ·E1) (5.11b)

P
(2)
b2 = ε0δ(E1 · ∇)E1 (5.11c)

where δ and γ are bulk multipolar coefficients with values of -390 and 780 pm2/V
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respectively [26]. The term ‘multipolar’ is used here to imply that the coefficients’

values collectively incorporate both the electric quadrupole and magnetic dipole effects.

The second term P
(2)
b2 can be written more explicitly as:

P
(2)
b2 = ε0δ

 Er
∂Er
∂r + Eθ

r
∂Er
∂θ

Er
∂Eθ
∂r + Eθ

r
∂Eθ
∂θ

Er
∂Ez
∂r + Eθ

r
∂Ez
∂θ

 (5.12a)

The calculated total overlap ρ2 and its components are shown in Fig. 5.4 for the

TM01(2ω) and HE21(2ω) modes, assuming a HE11(ω) pump. Although the surface

contributions ρs are the greatest as expected, it is also clear that the bulk components

cannot be neglected, especially for the HE21(2ω) mode where ρb2 is large and negative,

which reduces the net overlap. For a λ1 = 1.55 µm pump, the overlap for both modes

is roughly equal at ρ2 = 0.12 m−1W−1/2 and 0.11 m−1W−1/2 for the TM01(2ω) and

HE21(2ω) modes respectively, which implies they would offer similar SHG conversion

efficiencies.

Next, we integrate Eqns. 5.4a and 5.4b, using the parameters summarised in Table 5.1,

to give the theoretical conversion efficiency of both modes as shown in Fig. 5.5. For the

TM01(2ω) and HE21(2ω) modes, the conversion can reach a significant level of η = 3.4%

and 3.0% respectively over 5 cm with a 1 kW 1.55 µm wavelength pump. For the ideal

conversion curves, the optimum detuning δβ0 was roughly 200 m−1 in order to offset the

nonlinear phase modulation, i. e.:

δβ0 = −2n(2)k1

[
(2J2 − J1)P0] (5.13)

As with THG, the harmonic power varies strongly with detuning and will fall consid-

erably if δβ is offset by even several hundred m−1 away from δβ0, which thus imposes
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Parameter Symbol TM01(2ω) HE21(2ω)

Diameter (nm) D 695 777

Pump SPM overlap (µm−2) J1 0.64 1.02

Pump XPM overlap (µm−2) J2 0.55 0.98

Harmonic-pump overlap (m−1W−0.5) ρ2 0.12 0.11

Harmonic SPM overlap (µm−2) J5 1.47 2.40

Table 5.1: Summary of the SHG phase matching diameters and modal overlaps,
when phase matching the HE11(ω) mode with the TM01(2ω) and HE21(2ω) mode for

a λ1 = 1.55 µm pump.
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Figure 5.5: Simulated conversion efficiency for the TM01(2ω) and HE21(2ω) harmonic
modes for a 1 kW λ1 = 1.55 µm pump. Solid lines indicate ideal conversion (optimised
detuning), whilst the dotted and dashed lines represent different variously detuned cases

for the HE21(2ω) mode.

fabrication tolerances of the order of nm. For the distance of several cm, the pump

remains undepleted and so η scales quadratically with interaction distance.

5.3.3 Resonantly enhanced second harmonic generation

Compared to THG, theoretical efficiency reached over a few cm is roughly an order of

magnitude lower, since the surface and bulk χ(2) is relatively weak compared to the bulk

χ(3), and the SH power scales only quadratically with pump power rather than cubi-

cally. Therefore, to increase the second harmonic power, the use of loop resonators for

resonantly enhanced SHG will be discussed theoretically here, as well as experimentally

in the following section.
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Figure 5.6: Pump transmission and resonant second harmonic efficiency enhancement
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and dashed lines represent linear and nonlinear spectra respectively. Parameters: 4 mm

diameter loop, αω,2ω = 1 m−1, ∆K = 0.6 (κ = 8.5× 104 m−1, Lc = 50 µm).

To model SHG in a loop resonator, we apply essentially the same theoretical framework

and notation as for resonantly-enhanced THG in section 4.2 and simply adapt Eqns. 4.1–

4.5 on page 45 by using Eqn. 5.4 in order to incorporate the ρ2 SHG term.

For a pump power of 50 W at 1.55 µm wavelength, Fig. 5.6(a) plots the pump and

enhancement spectra against detuning from the linear resonance wavelength, where the

pump is taken to be phase matched with the TM01(2ω) mode. The conversion can be

enhanced by over ζ = η/η0 = 20 dB near resonance in a 4 mm diameter loop, where

η0 = 1× 10−5 is the efficiency for a straight microfibre of the same length. For the low

pump powers discussed here, the maximum possible enhancement increases quadratically

with increasing recirculating power within the loop and can be estimated as:

ζ ≈
[

1− sin2(κωLc)

(1 + sin(κωLc)e−αωL0)2

]2

(5.14)
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Figure 5.8: (a) The peak enhancement ζ against proximity to critical coupling ∆K,
for different values of loss α and (b) the corresponding FWHM bandwidth of the en-

hancement. Other parameters same as Fig. 5.7

Using a higher pump power of 200 W in Fig. 5.6(b), the maximum enhancement is

roughly the same since the pump remains undepleted, but due to its higher power the

output conversion becomes 16 times greater than for the 50 W case, giving a reasonable

conversion of η = 1.6 % despite the short SHG interaction length.

In Fig. 5.6, the loop is close to critical coupling κc with ∆K = (κc − κ)Lc = 0.6, which

limits the bandwidth to only a dozen pm. If weaker coupling strengths are chosen, i. e.

larger ∆K, we can improve the bandwidth as shown in Figs. 5.7 and 5.8. For example,

when ∆K = 1, the FWHM bandwidth is roughly three-fold wider. In addition, the

region where ζ < 0 (where the pump light bypasses the loop via the coupling region)

becomes narrower by roughly 30 pm which is beneficial if the pump central wavelength
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Figure 5.9: A logarithmic plot of the experimentally measured peak harmonic power
against the peak pump power, when pumping between peak powers of P0 = 90 to 150
W. Dotted line indicates a linear fit. Taper diameter is 0.7 µm and SHG interaction

length is 200 µm.

cannot be finely tuned, but the peak enhancement falls to only 10 dB due to the weaker

resonance.

5.4 Experiment for resonantly enhanced second harmonic

generation

Due to the inherently low second order nonlinearity in silica microfibres, a high con-

version of several percent would require diameter uniformity on the order of nm over

microfibre lengths of > 5 cm, which unfortunately exceeds the capabilities of the ta-

pering rigs available today. We therefore focus our experiments on resonantly enhanced

SHG using microfibre loop resonators, in which the resonant field intensity provides a

high efficiency and so diameter uniformity is only required over a much shorter interac-

tion length of a few mm. The following work was conducted with Marcelo A. Gouveia

(UNICAMP, Brazil) and Rand Ismaeel (ORC, University of Southampton), in which

the SHG is characterised before and after configuring a taper into loop resonator.

Results from two tapers (with similar geometries) are discussed here; the first was in-

vestigated to verify that the harmonic power increases quadratically with pump power

(to ensure that the detected signal indeed arises from the χ(2) process), and the second

taper was used as loop resonator to demonstrate the resonant SHG enhancement.

Both silica tapers were fabricated from single mode fibre (SMF-28) using the same

microheater-based tapering rig and procedure as described in section 3.4.1. The tapers

were pulled whilst being pumped with 4 ns 200 kHz λ1 = 1.55 µm pump pulses from
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the source as shown in Fig. 3.9, so that the rig could be stopped as soon as the second

harmonic signal was detected on an OSA connected to the taper output (via a 1300 nm

cutoff shortpass filter).

Firstly, for the first taper, the diameter was measured with SEM images as 0.70 µm,

which allows phase matching with the HE21(2ω) harmonic mode within the transition

regions close to the waist. Although the full taper length was 2 cm, the SHG interaction

length (the distance over which the diameter is within 1 nm of the critical phase matching

diameter, 777± 1 nm) is roughly 200 µm.

Since the experiment aims to provide a preliminary demonstration of the resonantly

enhanced SHG, we use low pump powers to minimise competing nonlinear effects such

as SPM-induced broadening or Raman in the fibre. For peak pump powers P0 between

90 to 150 W, Fig. 5.9 verifies that the harmonic power increases roughly quadratically

with increasing P0. At P0 = 90 W, the efficiency is low at only η = 2.5× 10−9, and rises

to 5× 10−9 if the pump power is increased to 150 W. Therefore, since η only increases

linearly with P0, using higher pump powers to boost the conversion is not particularly

effective, unless P0 is increased by orders of magnitude.

To demonstrate the resonant efficiency improvement, we fabricated a second taper sam-

ple with similar specifications and a diameter of 0.7 µm. An efficiency of η = 4.2× 10−8

was observed at 90 W peak pump power for the straight taper, which is close to the

theoretical conversion of 8× 10−7 over a 200 µm phase matched length. The harmonic

spectrum is shown in Fig. 5.10.
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Next, the taper was rearranged into a 4 mm diameter loop resonator with a Q-factor of

1.6×104. The simulated linear/nonlinear pump and second harmonic spectrum for such

a device in Fig. 5.11 predicts enhancements up to ζ = 12, i. e. 10.8 dB (the resonator

parameters were chosen by fitting the theoretical and experimental linear spectra).

Experimentally, the conversion for the loop was calculated as η = 2.4 × 10−7, which

confirms an enhancement of 7.6 dB as shown in Fig. 5.10 and corresponds to a recircu-

lating pump power of 210 W inside the loop. The measured value of ζ is lower than the

theoretical value most likely due to the nonlinear broadening of the pump pulse, as any

wavelength components which lie outside of the narrow FWHM of resonance (0.05 nm)

will not benefit from the resonance.

5.5 Conclusion

The study of second harmonic generation in silica microfibres represents an interesting

area of research since it relies upon a second order nonlinearity arising from the often

overlooked surface anisotropy and bulk multipolar effects. We have modelled the contri-

butions from both phenomena, which together would give an estimated SHG efficiency

of η ≈ 3 % over a 5 cm microfibre for a 1 kW 1.55 µm wavelength pump.

As a potential method for improving the SHG conversion, we have simulated and suc-

cessfully observed resonantly enhanced SHG by producing a microfibre loop resonator in

which the pump light is near resonance, giving an efficiency 7.6 dB higher than the orig-

inal straight microfibre. The efficiency of η = 4.2× 10−7 when pumped at a peak power
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of only 90 W is comparable to that reported in straight tapers where the powers were

10 times greater [16]. It is envisaged that this enhancement can be further increased up

to 20 dB, primarily by improving the coupling within the resonator.



Chapter 6

Polarisation Effects in Microcoils

First proposed in 2004 [23], optical microcoil resonators (OMRs) have attracted much

research interest for their unique optical properties including strong dispersion, a large

external evanescent field, slow light and high Q factor resonances [23, 29, 79]. These

characteristics arise from the OMR structure in which a microfibre is tightly wrapped

around a central rod to evanescently couple the adjacent turns, allowing specific wave-

lengths to recirculate within the coil and thus produce a resonance spectrum.

In this chapter, we first introduce the microfibre resonators and motivation in section 6.1.

Next, section 6.2 presents the linear polarisation dependent effects in microcoils arising

from fibre twist or birefringence, to develop an understanding of the resonance character-

istics. We also explore an interesting but often overlooked phenomenon termed ‘Berry’s

phase,’ which can couple light between two orthogonal polarisations co-propagating in

a helical waveguide structure such as an OMR. Finally, section 6.3 extends the work

into the nonlinear regime and also outlines possible applications for nonlinear signal

processing using OMRs.

6.1 Overview

Since a considerable fraction of the mode propagates in the surrounding air, microfibres

are often used to evanescently couple light into various optical structures such as micro-

spheres [80, 81, 82] or other waveguides [83, 84]. However, by bending the taper onto

itself, light can self-couple between different segments of the same microfibre to form

optical resonators, including the loop [20, 21, 29], knot [22, 85, 86] and microcoil [23, 29].

In addition, there are also more complex variants based on two or more microfibres such

as the racetrack [87], reefknot [88], and multiport microcoil resonator [89], which offer

four-port functionality. Together, these form a class of resonators which benefit from

low-cost, high Q-factor (up to Q > 105 demonstrated [90]), relatively straightforward

fabrication and negligible input/output coupling losses if the fibre pigtails are retained.

73
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For wavelengths near resonance, light is repeatedly coupled back into resonator and

so the internal field strength can grow to orders of magnitude higher than the input

level, which (in conjunction with the high microfibre effective nonlinearity of γ ≈ 0.1

m−1W−1) allows nonlinear effects to be observed at relatively low powers – indeed, we

have seen in Chapters 4 and 5 that the loop resonator can be used to resonantly enhance

the third and second harmonic generation efficiency. Previous studies have also shown

that OMRs can exhibit nonlinear characteristics when detuned near resonance, such as

bistability and nonlinear switching of the output, at powers potentially down to only

dozens of watts in silica OMRs [30].

The theoretical models exploring OMR transmission in the linear and nonlinear regime

[23, 30] have so far negelected polarisation effects since the core is assumed perfectly

circular and relaxed, with degenerate and uncoupled x and y polarisations propagating

independently and identically. In general however, the microfibre can become slightly

twisted during OMR manufacture, leading to coupling between these orthogonally po-

larised modes. Furthermore, simulations by Wang et al. on polarisation coupling in

microfibre knot and loop resonators (the latter akin to an OMR with only 1 turn) in-

dicate that such effects can significantly alter the resonance spectrum, and must be

accounted for during microfibre resonator design [86]. It is therefore reasonable to ex-

pect that the OMR will also exhibit a polarisation dependency reflected not only in the

linear spectrum, but also the nonlinear transfer characteristic and hysteresis properties.

The following three sections thus aim to comprise an accurate and polarisation sensitive

linear and nonlinear model for OMRs.

6.2 Linear polarisation dependent behaviour

6.2.1 Twisted birefringent microcoils

This section discusses the effect of fibre twisting and birefringence on the transmission of

OMRs by formulating and solving the equations describing the simultaneous propagation

of both the x and y polarised modes.

Although the birefringence B = nyeff − nxeff for the parent SMF is negligibly small

(B ≈ 10−6), the tapering process may inadvertently induce a linear form birefringence

by core deformation. The birefringence of elliptical microfibres, calculated in COMSOL

software and plotted in Fig. 6.1, shows that even for a small core ellipticity of e = 1.01

(where e = b/a is defined as the ratio of the major and minor axes), the birefringence

can reach up to B = 10−3. On the other hand, much larger birefringences of −10−2

can be purposely achieved as reported in ‘Hi-Bi’ silica microfibres with elliptical and

rectangular cross sections [91, 92, 93]. If the taper is gently twisted, the polarisations of
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Figure 6.1: Simulated birefringence of elliptical fibres for different core widths b and
ellipticities e = a/b. λ = 1.55 µm.

the propagating modes would also be rotated, and we therefore analyse the simultaneous

influence of fibre birefringence and twist upon the output spectrum.

6.2.1.1 Theory

We begin by defining the coordinate system shown in Fig. 6.2 along with the microcoil

schematic. Whereas the laboratory axes (X,Y ) are fixed and invariant, the local (x, y)

axes are aligned with the birefringent axes of the fibre and hence rotate with the fibre’s

twist angle θ(z). It is convenient to adopt the local coordinate system since a linearly

polarised mode propagating through small twists would maintain its polarisation angle

in the x-y plane, whereas the direction of polarisation in the laboratory frame (X,Y )
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Figure 6.2: (a) Schematic of the microcoil and (b) a cross section of three neighbouring
turns showing the local fibre axes (x, y) and laboratory axes (X,Y ), when the fibre is

twisted at an angle θ(z).
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would constantly change. Along these axes, the corresponding x and y-polarised com-

plex slowly-varying electric field amplitudes in the jth turn of the coil are governed by

the following couple-mode differential equations, which are adapted from those of the

standard microcoil [23]:

dAxj
ds

= iκ0

[
Axj−1 cos(θ−) +Ayj−1 sin(θ−) +Axj+1 cos(θ+)−Ayj+1 sin(θ+)

]
+ iκxyA

y
j

(6.1a)

dAyj
ds

= iκ0

[
Ayj−1 cos(θ−)−Axj−1 sin(θ−) +Ayj+1 cos(θ+) +Axj+1 sin(θ+)

]
+ iκyxA

x
j + i∆βAyj

(6.1b)

where ∆β = βy−βx = 2πB/λ is the propagation constant mismatch due to birefringence,

κ0 is the coupling coefficient between neighbouring turns of the OMR and the angles

θ+ and θ− shown in Fig. 6.2(b) represent the difference in twist angle between adjacent

turns:

θ− = θj − θj−1 = θ(z)− θ(z − S) (6.2a)

θ+ = θj+1 − θj = θ(z + S)− θ(z) (6.2b)

where S is the length of one loop of the microcoil. The sine and cosine terms arise

from the twist dependent coupling between the two polarisations in adjacent turns. For

example, regarding the coupling between Axj and the modes in the (j − 1)th turn, since

the latter are rotated by θ− relative to the jth turn, Axj will couple to the components

of these modes which are polarised in the same direction as itself, i. e. Axj−1 cos(θ−) and

Ayj−1 sin(θ−).

Practically, linear twists are the easiest to fabricate in the OMR fibre by simply rotating

one end of the microfibre whilst fixing the other, and hence we shall focus on twist

functions taking the form θ(z) = τz, where the torsion τ is a left-handed twist coefficient

measured in radians per metre along the fibre axial length. Thus, the sine and cosine

terms in Eqn. 6.1 will be longitudinally invariant, since θ− = θ+ = τS is constant along

the OMR fibre.

For the first turn, Eqn. 6.1 is modified so that it only couples to the second turn, and

likewise for the final turn the light will only couple to the penultimate turn.

Note that the fibre ellipticity is assumed to be sufficiently low (e < 1.1) such that the

linearly polarised fundamental modes are essentially identical and thus can couple from

one to the other with similar coupling coefficients κ0.

Whilst a gently twisted birefringent fibre is expected to be polarisation maintaining, this

is untrue for stronger twists since the mechanical strain will induce an additional, circular

birefringence which may be comparable to that of the existing linear birefringence, i.e.
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the twist is non-adiabatic. In Eqn. 6.1, this is modelled by the κxy and κyx terms, where

the coupling coefficients are derived from the fibre elastic properties [94]:

κxy = −κyx = − in
2
0p44τ

2
(6.3)

From the elastooptic tensor of silica, the value of p44 is −0.075 [95], and n0 is the re-

fractive index. Since κxy and κyx are imaginary, they rotate the polarisation, which

combined with the fibre’s inherent linear birefringence will cause the polarisation to

evolve elliptically. For the small twist angles τ < 100 rad/m considered in the discussion

however, these terms are relatively unimportant since they are roughly 2 orders of mag-

nitude smaller than the κ0 terms, but have nonetheless been included for completeness.

Continuity of the field amplitude and phase from the output of each turn to the start of

the next requires the amplitudes to satisfy:

Ax,yj (0) =

A
x,y
in j = 1

Ax,yj−1(S) exp (iβxS) j = 2 . . . n
(6.4)

Note that βx is used in both the x and y polarisations’ boundary conditions since the

phase difference due to birefringence accumulated per turn has been accounted for by

the i∆βAyj term in Eqn. 6.1b. The fibre loss α is introduced as the imaginary component

of β, and can be assumed to be roughly identical for both polarisations:

βx,y =
2πnx,yeff

λ
+ iα (6.5)

At the output the amplitude transmissions are:

T x,y =
Ax,yn (S) exp (iβxS)√
|Axin|2 + |Ayin|2

(6.6)

In practice, the coupling parameter κ0 would be different between x-x and y-y polarised

modes since the fundamental HE11 mode is slightly asymmetric [96]. However, the

difference is generally small compared to the sine and cosine factors in Eqn. 6.1 unless

the microfibre is highly elliptical and so κ0 is approximated to be the same between both

polarisations.

To solve Eqs. 6.1 and 6.4, we use a modified Newton method similar to that described

in reference [30], to calculate the amplitudes within an error of < 10−6. Further details

of the numerical solution algorithm, which was implemented in MATLAB, can be found

in Appendix C.
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Figure 6.3: The effect of twist torsion coefficient τ on the (a) x and (b) y polarised
output spectrum. Parameters: 3 turns, nx

eff = 1.45, B = 10−3, κ0 = 5400 m−1, α = 4.6
m−1, S = 1 mm. Input amplitudes Ax1 = 1, Ay1 = 1. Wavelength range covers one FSR.

6.2.1.2 Discussion

In the following simulation results, we shall study (i) the effect of different values of

twist torsion τ in the presence of a fibre birefringence on the resonance characteristics,

(ii) OMRs with different numbers of turns, and (iii) the effect of birefringence on the

linear spectrum for each polarisation.

For a 3 turn OMR, introducing a fibre twist significantly alters the output spectrum,

as shown Fig. 6.3 over one free spectral range (FSR). The input was linearly polarised

at φ = π/4 rad, with an input amplitude of Ax1 = Ay1 = 1, and the output power is

taken to be normalised so that P = |A|2. In the absence of twist (τ = 0 rad/m), the two

polarisations are uncoupled and propagate independently, with both the x and y spectra

only showing their own fundamental resonance dips at λx = 1501.4 nm and λy = 1500.9

nm respectively. The difference in these resonant wavelengths is solely due to the modes’

different β and so the separation is given by ∆λ ≈ Bλ/neff .

As τ increases, a peak in the x transmission forms at λy, whilst the extinction of the

existing y resonance dip is enhanced, because some of the initially y polarised input

light couples into the x polarisation which is off-resonance at λy and can be transmitted

without being coupled back into the OMR. Therefore, the overall absorption is reduced

and indeed the total output power is 10% larger than the τ = 0 rad/m case as illustrated

by the close up of the λy resonance in Fig. 6.4(a), for a small twist of τ = 30 rad/m.

On the other hand, at λx, coupling from the y to x polarisation also occurs but since this

wavelength corresponds to an x resonance, more power is consequently recirculated than
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if there were no twist. Thus the total absorption is greater as confirmed by Fig. 6.4(b),

in contrast to the previously described situation at λy.

This effect occurs even with weak twists of τ = 10 rad/m, or ∼ 1◦/turn, because at

the high Q resonance the recirculation of light within the OMR increases the effective

length over which polarisation coupling occurs. To confirm this, when κ0 was adjusted

to give lower Q resonances, a stronger twist was required to achieve the same result.

In the results discussed so far, light couples predominantly from the y to x mode due

to the choice of twist direction and input polarisation angle: for a positive τ , the x axis

is rotated towards the original polarisation of the light (π/4 rad for Ax1 = Ay1). Using a

negative τ to simulate right handed twisting, or alternatively using Ax1 = −Ay1, would

reverse the roles of the two polarisations and favour coupling from the x to y mode

instead. Since both scenarios are essentially the same, we focus on positive twists.

To study the effect of twist on resonance behaviour further, Fig. 6.5 shows how the

output power and extinction ratio of the y polarised output at λy change with twist.

Increasing τ from 0 to 80 rad/m raises the extinction ratio (as more light is converted

into the x state), until it peaks with an improvement of over 27 dB. Increasing the twist

further towards 100 rad/m will however rotate the polarisation enough to couple light

back into the high transmission x state and so the extinction ratio falls.

Interestingly, for τ > 30 rad/m, a band appears between λy < λ < λx where the output is

largely x polarised, despite the input light being originally polarised at 45◦. For example,
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with τ = 100 rad/m, over 95% of the output power is x polarised at λ = 1501.2 nm.

For wavelengths outside this range the x and y output powers are roughly equal and

close to 1 (i.e. similar to the original input) which indicates the effects of twist can be

significant even when off resonance.

In general, for a large birefringence of B = 10−3 the fibre is highly polarisation main-

taining for τ < 100 rad/m and hence the aforementioned effects arise primarily from the

relative rotation of the modes in the neighbouring turns, rather than from the strain

induced cross-polarisation coupling (the κxy and κyx terms). It should be noted that the

output is almost always elliptically polarised regardless of the input polarisation state,

due to the accumulated phase difference between the x and y propagating modes as well

as their different output amplitude.
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Both the resonant wavelengths λx and λy vary slightly with twist. Fig. 6.6, which

focuses on the wavelength range around the x resonance, shows that increasing τ from

0 to 100 rad/m causes the resonance to shift to a longer wavelength by +0.02 nm, or

1.3% of the FSR. Whilst this shift is not particularly large, it is nonetheless comparable

to the resonance’s full-width at half maximum (FWHM) value of 10−2 nm and therefore

sufficient to change an on-resonance wavelength to off-resonance.

Although the discussion so far has been related to OMRs with n = 3, similar behaviour

can be seen in coils with more turns as shown in Fig. 6.7(a)-(d), which compares typical

spectra for OMRs with n = 3, 4, 5 and 6 turns. For example, the n = 4 OMR also

provides a spectrum with wavelength bands over which one polarisation is dominant

over the other at the output, and in all four spectra, the effect of polarisation coupling

is most obvious at resonance. In the case of the five and six turn microcoil, higher order

resonances are supported which give rise to a complex transmission structure.

In the 3 and 4 turn OMR from Fig. 6.7 (a) and (b), the coupling is largely from the y to

x mode for reasons explained earlier. For OMRs with more turns however, the coupling

can no longer be understood so intuitively since the extra turns introduce more intricate

possible routes for the light to take. The five turn OMR’s output spectrum alternates

between being predominantly x polarised to y polarised and vice versa, while the 6 turn

OMR output is mostly y polarised with the exception of certain resonances.
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Figure 6.8: Effect of birefringence on the (a) x and (b) y polarised output spectrum.
τ = 30 rad/m and other parameters are the same as Fig. 6.3.

Finally, the dependance on the birefringence B is summarised in Fig. 6.8. In the plots,

nx
eff is kept constant at 1.45 and ny

eff is increased from 1.45 to 1.4512, which has the

effect of shifting the y resonances to longer wavelengths whilst keeping the x resonances

stationary. When B < 2 × 10−4, the spectrum is characterised by the original and

twist-induced resonances and in between these wavelengths, the x output power is only

marginally higher than the y output.

On the other hand, for a moderate birefringence of B ≈ 7 × 10−4, the x output power

is 1.5-1.7 times greater than the y output across the non-resonant wavelengths. Fur-

ther increasing B above 10−3 causes the spectrum to evolve into alternating wavelength

bands where the output power varies between being equally distributed in the two po-

larisations and being mostly x polarised. Interestingly, the width of these bands appears

to be determined by the spectral proximity of the resonances; hence by adjusting the

birefringence and twist it may be possible to utilise these for filter applications.

6.2.1.3 Summary

We have shown that the transmission of microcoils based on birefringent or twisted

microfibres is strongly polarisation sensitive, especially near resonance where even a

mild cross-polarisation coupling mediated by a light twist can become greatly amplified

by the recirculation of the resonant polarisation mode. For example, the extinction ratio

can be either improved or reduced, depending on the direction of twist.

Away from resonance, twisting may also introduce broad wavelength ranges where the

output is primarily polarised in one direction only, even if the input power was originally
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evenly distributed between the x and y modes. The width of these spectral bands, and

to some extent their output polarisation direction, is governed by the fibre birefringence.

6.2.2 Berry’s phase magnification in microcoils

In the previous section, the anisotropy between the x and y polarised output spectra from

the microcoil is a direct result of the microfibre twist and birefringence. Under certain

conditions however, it is still possible for the two polarisations to interact significantly

in the linear domain even if the fibre is neither twisted nor birefringent, due to effects

of the Berry’s phase φB as explained in this section.

6.2.2.1 Theory

When linearly polarised light is guided through a non-planar curved path in space, such

as the helix of a microcoil, it will acquire a Berry’s phase which is detectable as a rotation

of the plane of polarisation by an angle equal to φB. The generation of Berry’s phase is

well documented both theoretically and experimentally [97, 98, 99], with much research

driven by its manifestation in various quantum mechanical and optical phenomena.

More recently, the amplification of Berry’s phase using ring resonators was observed by

Golub [100, 101], and in this section we show that it is also possible to accumulate a

large φB in a microcoil which is on resonance. Note that in the previous two sections, as

well as current literature on OMR properties, the Berry’s phase is neglected because the

coil diameter Dc is assumed to be 102−103 times greater than the pitch p between turns,

so the turns are essentially planar and thus incapable of producing any large φB. The

simulations here will focus on situations when these geometric assumptions are invalid,

i. e. when the OMR diameter is of the order of 0.1 mm, under which the optical activity

induced by φB becomes significant.

Before proceeding, it should be mentioned that the acquisition and size of Berry’s phase

is purely topological and independent of the wavelength, refractive index or initial state

of polarisation. If the light traverses a closed curve, the polarisation plane will have been

rotated despite being parallel transported perpendicular to it’s propagation direction.

As an analogy, Fig. 6.9 shows that if a pencil is placed flat at the north pole of a sphere

and then translated around the path, whilst keeping the pencil horizontal against the

surface at all times, when it is returned to the north pole it will not point in the same

direction. This process, like the acquisition of the Berry phase, is therefore nonholonomic

since the final state of the system depends on the path taken.

Mathematically, Berry’s phase is found to be equal to the solid angle Ω(σ) subtended by

the path traced σ out by the momentum vector p (which is coparallel with fibre axis) in
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1 (start)

2
3

4

5 (end)

Figure 6.9: Analogy of anholonomy on a sphere, where the arrow does not return to
its original state after being transported through a closed loop/cyclic change. (Similar
result follows if arrow is perpendicular to the path rather than parallel). The system

is nonholonomic since the final state of the arrow depends on the traversed path.

momentum space [98, 102]. For an OMR, this path is helical and so p traces out a cone

and circular path as represented in Fig. 6.10 (the fibre incline angle is θ = cos−1(p/S)

for a pitch p and loop length S). For one complete turn of the OMR, the initial and

final momentum vector are identical which results in a closed loop path where Ω(C) can

be calculated in circular coordinates (r,θ′,φ′) as:

Ω(σ) =

∫ 2π

0

∫ θ

0
sin θ′dθ′dφ′

= 2π(1− cos θ) [per turn]

(6.7)



px

py

p

pz

Plane of polarisation

Momentum vector

θ

Figure 6.10: Momentum vector p of the light represented in momentum space, when
propagating along a helix. The path traced out by the vector is indicated by the dashed

line.
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and hence the single turn Berry’s phase has a magnitude of 2π cos θ per turn, or equiv-

alently τhS where τh is the helical torsion:

τh =
2πp

p2 + 4π2R2
(6.8)

where R is the radius of the helix. Since φB increases linearly with distance in a uniform

microcoil helix, we may describe the propagation of an initially linearly polarised light

with x and y amplitudes of Ax(z) and Ay(z) in an uncoupled helix as follows [97]:

d

dz

(
Ax

Ay

)
=

(
−iC2

2β τh

−τh 0

)(
Ax

Ay

)
(6.9)

The off diagonal terms of the coupling matrix account for the optical activity due to

Berry’s phase, and bend induced propagation mismatch between the the polarisations

is modelled by the C curvature term, where:

C =
4π2R

p2 + 4π2R2
(6.10)

For a helix with a ∼ 0.1 mm diameter, this term is generally several orders of magnitude

smaller than τh and hence for an x polarised input the solutions Ax and Ay would

resemble cos(τhz) and sin(τhz) functions respectively.

Next, to determine how the Berry’s phase affects the transmission of the microcoil, we

include the terms of Eqns. 6.9 into the microcoil differential equations of Eqns. 6.1 which

incorporate the coupling between turns to obtain :

dAxj
ds

= iκx
(
Axj−1 +Axj+1

)
+ τhA

y
j +

(
i∆βb − i

C2

2β
− α

)
Axj (6.11a)

dAyj
ds

= iκy
(
Ayj−1 +Ayj+1

)
− τhAxj − αA

y
j (6.11b)

with the boundary conditions to stipulate field continuity between each of the n turns

of the coil:

Ax,yj (0) =

A
x,y
in j = 1

Ax,yj−1(S) exp (iβS) j = 2 . . . n.
(6.12)

where κx,y are the coupling coefficients between two x or two y polarised modes in

adjacent turns. In section 6.2.1, these were assumed to be equal (κx = κy = κ0), but a

more accurate model must be used here because the torsion term is small (τh ≈ 10−1,

compared to κ ≈ 103) and so Berry’s phase effects are highly sensitive to parameter

variations. In the weakly guiding approximation, κ is usually analytically calculated

from the modal overlap of electric fields in adjacent fibres as derived from perturbation

theory [31]. However, the strong index contrast of the OMR microfibre (∆n = 0.45

for air surrounding) necessitates a more accurate numerical evaluation of κx,y using
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finite element analysis via COMSOL. A 2D mode analysis of two neighbouring air-clad

silica microfibres with D = 1 µm diameters was parametrically swept through different

separations pitches. At each pitch, the x and y odd/even supermodes were solved and

the coupling deduced from the difference in their propagation constants:

κx,y = |βx,y(even)− βx,y(odd)| (6.13)

Due to the geometry, κy is slightly larger than κx since the former’s field extends further

into the turns above and below. Whilst the difference, it can significantly affect the

resonance strength, since small polarisation dependent variations of either parameter

can alter the Q factor. The OMR will therefore behave differently for different input

polarisations.

For the first and last turns, Eqn. 6.11 is rewritten to couple only with the second and

penultimate turns respectively. Of the two propagation mismatch terms, the first arises

from bend-stress birefringence ∆βb = βx − βy as calculated by adapting Eqn. 4 in [103]

for a microfibre, and the second geometrically from the curvature C = 4π2R/S2 [97].

Whilst the sum of these two terms is small, totalling≈ −50 m−1, they remain nonetheless

comparable to the helical torsion term and must therefore be included (in particular, one

would expect them to induce a slight shift between the x and y resonance frequencies

and broaden the overall resonance lineshape).

6.2.2.2 Discussion

We shall study the Berry’s phase effects for a 3 turn OMR with an air-clad silica 1 µm

diameter microfibre operating at a wavelength of λ = 1.55 µm since these parameters

correspond to OMRs which can be realistically fabricated. The pitch of p = 2.5 µm

corresponds to a helix torsion of τh = 40 m−1. However, as the Berry phase is a purely

geometric effect, similar results would be seen in OMRs with a different number of turns

or made out of different materials.

Solving Eqns. 6.11 and 6.12 with a pitch of p = 2.50 µm produces the transmission

spectrum in Fig. 6.11. Note that Ax and Ay would be uncoupled if the Berry phase

term were neglected (τ = 0), and hence Berry’s phase effects are clearly seen in the

coupling of light from one orthogonal state of polarisation to another. This is apparent

in Fig. 6.11(a) where an x-polarised input propagating through a lossless coil produces

an output with up to η = Py/PTotal > 97 % of the power in the y polarisation. For

this value of p, κx is closer to the critical coupling κc than κy (physically at the critical

coupling κc light at a resonant wavelength λc is trapped indefinitely in the coil). The y

polarised light being further from resonance couples out of the coil quicker than the x

polarisation, which contributes to the high value of η.
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Figure 6.11: OMR output spectrum, showing the coupling of light between the x and
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Figure 6.12: (a) Output power resonance spectrum against detuning from resonance
for helix torsion values τh from 0 to 40 m−1. (b) Resonance extinction ratio (dashed)

and Q factor (solid) against helix torsion τh. Other parameters same as Fig. 6.11.

By comparison, an uncoupled helix (κx,y = 0) with the same geometry only has a Berry’s

phase of φB = 0.025 rad and η0 = 6× 10−4, because the light only makes a single pass

through the coil. The high degree of optical activity in an OMR is only observed near

resonance; off-resonance however, η < η0 since the light is simply coupled up the turns

and out of the OMR.

In the more realistic lossy case of Fig. 6.11(b), η is marginally lower but remains suffi-

ciently large to be detected experimentally, despite τh being over 100 times smaller than
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κx,y. The Berry phase could also be increased by using a narrower OMR or wider pitch

to increase the helical torsion.

Finally, Fig. 6.11(c) and (d) presents the effect input polarisation angle on the output

power. Fig. 6.11(c) shows that a y-polarised input gives a significantly smaller polar-

isation rotation at resonance than before. This is due to two reasons: firstly the y

resonance is intrinsically weaker, and secondly any light coupled into the x polarisa-

tion will be stored for longer within the coil, during which it will be partially coupled

back into the y polarisation. When the input contains both x and y polarisations as

in Fig. 6.11(d), the resulting spectrum varies strongly with geometry. The elasto-optic

effects, though minor, induce a bend birefringence which shifts the x and y resonances

apart by 10 pm, which is comparable to the resonance linewidth and results in an asym-

metric total power PT spectrum. The offset between the x and y resonance frequencies

also exists for the cases in Fig. 6.11(a-c), so when the original input polarisation is on

resonance, the light converted into the other polarisation is consequently detuned from

its own resonance which increases leakage.

Another important and apparent consequence of the cross-polarisation coupling is a

reduction in the extinction ratio (ER) as summarised in Fig. 6.12(a), which plots PT

near resonance for τh from 0 to 40 m−1 whilst keeping the other coil parameters constant.

Physically, this is equivalent to changing the coil diameter from D =∞ to 0.2 mm while

maintaining a constant dimensionless coupling parameter K = κS, such that any change

in resonance quality is attributed to a change in τh rather than deviation from critical

coupling. The τ = 0 case models an OMR in the planar limit, under which φB = 0 and

the ER is maximum. As τh increases, more light couples into Ay, which expends less

time in the circulating coil than Ax and hence less light is absorbed. The overall ER of

the OMR is limited by that of the y resonance, and Fig. 6.12(b) shows the ER can be

reduced by up to 80%.

By the same mechanism, Fig. 6.12(b) shows that the Q-factor (defined asQ = ∆λFWHM/λ

where ∆λFWHM is the full width at half maximum linewidth) falls by 32 %. This effect

is clearly sensitive to both geometry and polarisation, since the aforementioned trends

would be reversed were a y polarised input used, or if the pitch was chosen such that κx

was closer to critical coupling than κy, in which case both the Q-factor and ER would

increase with τh.

The choice of a 1 µm microfibre diameter in these simulations ensures a large evanescent

field for the λ = 1.55 µm fundamental mode, so that the κx,y remain high even for pitches

several times wider than the microfibre. However, the exponential dependence of κx,y

on p would suggest that even small pitch variations can noticeably alter η, especially

when κ is close to the critical coupling condition given by [23]:

κc =
√

2
(mπ ± sin−1(1/

√
3)

S
(6.14)
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which for m = 1 evaluates to κc = 5686 m−1. Fig. 6.13 illustrates this for a range of

pitches near 2.5 µm where κx,y vary exponentially from 4500 to 6900 m−1. When κ ≈ κc,
the value of η is close to 100%, but when far from critical coupling the resonance is too

weak to observe the effects of Berry phase because negligible power is coupled into y

polarisation. Interestingly, η = 0 when the coupling is precisely critical at p = pxc and pyc

– at these two points respectively, the x and y resonances are absent when solving the

ODEs [29], because the light can be trapped indefinitely even for infinitely small input

amplitude, which is a mathematically undefined scenario.

6.2.2.3 Summary

Although the generation of Berry’s phase is weak in a microcoil, near resonance it can

become greatly magnified by the repeated coupling of light back into the coil, providing
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a significant exchange of power between the two states of polarisation which would

otherwise propagate uncoupled. Along with the resonance extinction ratio and Q-factor,

this behaviour is highly sensitive to the coil geometry, in particular the pitch and torsion,

since the Berry’s phase is innately topological. Decreasing the rod radius to increase

τh and using a smaller core diameter in conjunction with a larger pitch would also

maximise the generation of Berry’s phase. Practically, with an appropriate pitch the

effects of Berry’s phase on the output of an OMR are sufficiently large to be observed

experimentally.

6.3 Nonlinear polarisation dependent behaviour

Having presented a detailed linear model of the polarisation dependent properties of

microcoils, we now extend the analysis by incorporating the third order nonlinearity

of the silica to study the behaviour near resonances, where the amplified field strength

inside the coil plays a crucial role in facilitating nonlinear effects. In previous litera-

ture [28, 30], OMRs were shown exhibit hysteresis when detuned from resonance, and

given the findings from the previous section, in the birefringent case it is reasonable to

expect the hysteresis characteristic and switching powers will be polarisation sensitive.

6.3.1 Theory

As before, the fibre is assumed to be both birefringent and slightly twisted, but the

ODEs from Eqs. 6.1 are modified to account for a Kerr nonlinearity. To simplify the

model, the coil diameter is assumed to be of the order of 1 mm or larger, so the helix

torsion is low enough for Berry’s phase effects to be excluded. In the jth turn of the coil,

the corresponding field amplitudes Axj and Ayj are governed by the following equations:

dAxj
ds

=iκ0

[
Axj−1 cos(θ−) +Ayj−1 sin(θ−) +Axj+1 cos(θ+)−Ayj+1 sin(θ+)

]
− iαAxj + iγ(|Axj |2 +

2

3
|Ayj |

2)Axj + iκxyA
y
j

(6.15a)

dAyj
ds

=iκ0

[
Ayj−1 cos(θ−)−Axj−1 sin(θ−) +Ayj+1 cos(θ+) +Axj+1 sin(θ+)

]
− iαAyj + iγ(|Ayj |

2 +
2

3
|Axj |2)Ayj + iκyxA

x
j + i∆βAyj

(6.15b)

Here, the loss term α is included in the ODEs because the amplitudes cannot simply

be scaled down at the boundary conditions (as was done before) due to the presence

of the nonlinear γ terms, which model the self and cross phase modulation [24]. Since

the effective nonlinearity γ varies considerably with material and core size for diameters
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Figure 6.14: The linear spectrum of a microcoil based on twisted birefringent fibre
(a) shown over one free spectral range. The shaded ranges are shown in close ups near
(b) the y-resonance and (c) x-resonance. Coil parameters: n = 3 turns, S = 1 mm,
κ = 5370 m−1, α = 4.6 m−1, B = 1 × 10−3, twist torsion τ = 30 rad m−1, |Ain| = 1

and input polarisation angle is π/4 rad.

around 1 µm (up to 0.1/W/m for an air clad silica microfibre at λ = 1.55 µm), in the

simulations the amplitudes are normalised such that γ = 1 W−1m−1, or equivalently,

A→ Aγ−0.5, so as to model the general case.

To study the hysteresis properties, these equations could be numerically solved by in-

crementing the input power and using the modified Newton method to find the output

amplitudes Aout. However, when multiple solutions exist this will only converge to a

single root which is usually closest to the initial start vector, leading to an incomplete

set of solutions. For this reason, the technique used here involves incrementing the OMR

stored energy E instead, since there is a many-to-one mapping between values of E and

Aout, so the full hysteresis loop can be obtained as described in Appendix C.

6.3.2 Discussion

We shall first analyse a three turn microcoil with τ = 30 rad m−1 and B = 1 × 10−3,

whose linear spectrum is given in Fig. 6.14. The coupling of κ0 = 5370 m−1 was chosen

sufficiently close to the critical coupling (κc = 5313 m−1) to offer sharp resonances and

provides only one easily identifiable x or y resonance per free spectral range (FSR) to

simplify our analysis.
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From Fig. 6.14(a) it is clear that although the input is linearly polarised at π/4 rad,

propagation through the coil has resulted in a net power transfer from Py → Px (for

negative τ , the opposite holds true), for the reasons explained earlier in section 6.2.1.

The effects are most obvious near the resonance wavelengths λy and λx as shown in

Figs. 6.14(b) and (c), where the light becomes trapped and traverses a longer effective

path length within the OMR, thus allowing a greater interaction length for the cross

polarisation coupling. To study the nonlinear behaviour, we therefore focus on wave-

lengths slightly red-detuned from one of the resonances such that λ = λx,y + δλ, so the

hysteresis will involve an interplay between the nonlinearity, twist and birefringence.

Firstly, the effect of detuning will be studied. Figure 6.15(a-d) plots the power hysteresis

curve for detuning values of 5 pm ≤ δλ ≤ 35 pm from λy for an OMR with the same

parameters as that used in Fig. 6.14. The input power is normalised to be Pin = |Ain|2,

and the transmissions are given by Tx,y = P x,yout/Pin and Ttotal = Tx + Ty. When δ = 5

pm, the detuning is similar to the linewidth of the resonance (9 pm at full-width half-

maximum (FWHM)) and hence no hysteresis exists. Raising Pin to 2 will increase the

nonlinear refractive index and nonlinear phase shift until the y-resonance condition is

satisfied which consequently extinguishes the y-polarised output, after which any further

increase in Pin will move the microcoil out of resonance. Note that these changes in

Tx and Ty can be understood intuitively by comparison with Fig. 6.14(b); increasing

the power from a low to high value is analogous to moving from the original detuned

wavelength to a shorter wavelength in the direction of the resonance. For this reason,

the x-polarised output is seen to sharply increase before falling gradually with Pin.

A more interesting response is seen when the detuning is greater as shown in Figs. 6.15(b-

c) for δλ = 15 and 25 pm respectively. The transmission curves Ttotal show a bistability

characteristic similar to the standard microcoil [30], with two stable levels connected by

a third branch. As with ring resonators, the intermediate branch solutions are unstable

and so cannot be observed in practice [104]; indeed, if one attempts to solve for these

solutions by repeated Runge Kutta iterations (see Appendix section C.2, the amplitudes

will only converge to either the upper or lower branch, even if the starting amplitudes

were initially chosen to reside on a valid solution from the middle branch.

Resolving the transmission into its constituent x and y components confirms that the

hysteresis is primarily due to the y-polarised light since the x-polarisation is off reso-

nance. When Pin is decreased from an initially high value, the transmission follows the

lower branch wherein the recirculation of y-polarised light keeps the microcoil in the

low transmission state until the lower switching power PSL is passed. The Ty contrast

ratio of ηy = 71.4 measured at this lower switching point is independent of the detuning

but instead corresponds to the linear resonance extinction ratio (ER) from Fig. 6.14(b).

However, since the x-polarised light is coupled out, the overall output contrast is only

ηtotal = 1.4.
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Figure 6.17: Nonlinear hysteresis characteristics for different input angles φ when
detuned by δ = 25 pm from (a-c) λy and (d-f) λx. Other parameters the same as

Fig. 6.14.

For the largest detuning of δ = 35 pm shown in Fig. 6.15(d), the wavelength is too far

off resonance so the upper switching power PSU exceeds the plotted range and hence

the output would remain largely static unless a very large input Pin ≥ 80 is applied.

Indeed, Fig. 6.16 confirms both that the lower and upper switching powers increase with

δλ as expected. From the same graph it is also evident that using a more positive τ (i.e.

stronger twist) increases the switching powers, because more power is transferred into

the off-resonance x-polarisation which quickly couples out of the coil and thus would

not contribute significantly to any resonantly-enhanced nonlinear effects. Alternatively,

if the wavelength had been detuned from λx the same mechanism would lead to a fall

in PSU and PSL.

It should be noted that at high powers the solutions may not necessarily be stable in

the time domain. Simulations modelling the full time propagation effects suggest that

although the assumption of a steady-state solution is valid at low powers, increasing Pin

may cause the output to become periodic or even chaotic [28] and so for these situations

the temporary stability will be studied separately.

The hysteresis curve is also heavily dependent upon the input polarisation angle φ as

summarised in Figs. 6.17 and 6.18. In particular, the contrast here varies with φ -

for example, when detuned from λy with φ = π/2 rad as in Fig. 6.17(a), the overall

hysteresis characteristic Ttotal is predominantly determined by, and hence mirrors, that

of Ty. The overall contrast is therefore high at ηtotal = 9.0, although nonetheless lower

than ηy = 16.0 due to the slight coupling into the non-resonant x-polarisation. At the
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other extreme, if an x-polarised input is used, no hysteresis is observed since the amount

of light coupled into the y-polarisation is too low to induce nonlinear switching.

It is also insightful to compare Figs. 6.17(b) and (e) which are detuned from λy and

λx respectively but otherwise share the same simulation parameters. For the latter, the

larger contrast ηtotal originates from its 28% higher linear ER (seen in Fig. 6.14(b-c))

whilst the higher switching powers are due to choice of twist which, as alluded to earlier,

favours net coupling of power into Ax rather than Ay and consequently elongates the

hysteresis loop.

This comparison highlights the importance of twist effects, which are analysed further

in Figs. 6.18, where the switching powers and ηtotal are shown when the input angle is

varied from π/4 rad (half x and half y-polarised) up to π/2 rad (purely y-polarised).

The wavelength in both cases is detuned 25 pm from λy. When φ = π/4, increasing τ

from 0 to 30 rad m−1 will increase PSU and PSL as explained previously. This is also

accompanied by a 2.7 dB reduction in the contrast to 1.4, due to the larger fraction of

light being coupled out of the y-polarisation.

For φ ≈ π/2 rad however, both trends are no longer monotonic with τ but instead there

exists a minimum switching power and maximum contrast level which occur at a certain

value of torsion τc close to 0. This behaviour is best explained by considering the limit

φ = π/2 rad. If there is no twist (τ = τc = 0), all the power would remain y-polarised

during propagation and hence remain stored in the coil at resonance, resulting in a

strong overall extinction ratio and low switching powers. However, any deviation from

τc = 0 would couple light into the x polarisation and hence reduce the extinction ratio

as well as increasing PSU and PSL. When φ is just below π/2, τc must be slightly offset

negative so as to couple the small fraction of x-polarised light into the predominant and

resonant y-polarisation.

Another unusual feature is observed at the other extreme in Fig. 6.17(f)when detuned

from λx with φ ≈ 0. Here, the two polarisations can undergo nonlinear switching in the

same direction - in particular, both Tx and Ty appear to switch down at Pin =14. In

all the other cases analysed from Figs. 6.17 and 6.15, the nonlinear switching is always

complementary in that if one polarisation switches up, its orthogonal counterpart will

be forced to switch down and vice versa.

In the previous discussions, it has been assumed that the birefringence is large enough

to separate the x and y resonances sufficiently such that the hysteresis will only depend

on one of the resonances. However, for small birefringences, the separation becomes

comparable to the resonance FWHM and so the nonlinear characteristics are affected by

both polarisations’ resonances. For the microcoil parameters in Fig. 6.14, this requires

B ≈ 10−5. Alternatively, since the coupling is such that only one resonance exists

per FSR, a similar situation arises if B ≈ mλ/S which effectively offsets the x and

y-resonance spectra by a shift equal to m integer multiples of the FSR.
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An example of this situation is illustrated in Fig. 6.19(a), which shows the linear output

spectra for a coil with B = 1 × 10−5. Here, λx and λy are almost co-resonant with a

separation of only 19 pm (note that due to twisting, this shift is slightly larger than the

value of ∆λ = Bλ/n expected when τ = 0). When detuned by 6 pm from λy, plotting

the stored energy against Pin reveals two hysteresis curves shown in Fig. 6.19(b) which

correspond to each of the polarisations’ resonances. Such a microcoil therefore exhibits

multiple bistability similar to that reported in a birefringent Fabry-Perot cavity [105].

The dual bistability is also apparent from the nonlinear transmission characteristic in

Fig. 6.19(c). Although somewhat more complex than those previously presented, it

can nonetheless be resolved into the y and x-resonances’ contributions, with Ty and

Tx being extinguished at Pin = 2.5 and 5.2 respectively (due to the larger detuning

for the latter). For this reason, the hysteresis curve resembles a combination of those

shown in Figs. 6.17(b) and (e) but with slight disparities owing to their different linear

transmission spectrum and detuning.

So far, the analysis has concentrated on n = 3 turn microcoils since these can be fabri-

cated easily and consistently, whereas increasing the number of loops whilst maintaining

a high uniformity becomes increasingly challenging and raises the overall loss without

adding to the underlying physics. The nonlinear effects presented would nonetheless exist

in OMRs with more turns, since their linear transmission is also polarisation dependent.

However, their spectra are generally more complex, with each FSR containing several

sets of resonances varying in extinction ratio and Q factor. The choice of resonance

would thus significantly affect the switching powers and contrast, as would changing the

proximity from critical coupling (which varies with n). This is illustrated in Fig. 6.20

which shows the spectrum for an n = 5 turn OMR along with the upper/lower switching

powers associated with each resonance when detuned by 15 pm. Over one FSR, there

are two sets of resonances (λ(1) and λ(2)) each of which has its x and y resonances offset

by birefringence. It is clear that the λ(2) resonances offer a higher ER and lower switch-

ing powers. Furthermore, the y resonances’ switching powers are lower than those of

the x resonances’ (in contrast to the 3 turn case) - this is due to the larger number of

turns increasing the path length such that the direction of net power transfer reverses

to favour Px → Py.

Similar polarisation dependencies would be expected for nonlinear bistability in other

resonator architectures based on twisted/birefringent microfibre, for example in the loop

resonator which is essentially a single turn microcoil, provided that the fibre is twisted

at some point along the loop. However, due to the relatively short coupling region,

either stronger twists or a higher Q-factor resonance would be needed to observe the

same effects. The case of the knot resonator is more interesting since the intertwining of

the microfibre at the coupling region will itself induce cross-polarisation coupling [86].

This inherent polarisation dependency would be present even when τ = 0, but could
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be potentially increased or reduced by introducing a non-zero τ depending on the twist

direction.

Finally, note that although the Berry’s phase effects were excluded here since we are

primarily interested in the effects of the fibre twist and birefringence, one could ac-

count for it by simply modifying the cross-polarisation coupling term in Eqn. 6.15, i. e.

iκxyA
y
j → (iκxy + τh)Ayj (and similarly for κyx), where τh is the helix torsion defined

earlier in Eqn. 6.8. The consequences would be somewhat similar to using a stronger or

weaker twist, but would only be apparent near resonance.

6.3.3 Potential applications in signal processing

The nonlinear properties of the standard microcoil may be utilised for a variety of

signal processing applications such as switching, boolean logic and memory, and in the

twisted and birefringent microcoil, these can be expanded to offer polarisation dependent

features. It is straightforward, for example, to adapt Fig. 6.15(a) into a Boolean NOT

gate in which the logical input and output are designated by P yin and Ty respectively.

Although the Kerr effect itself is quasi-instaneous, the processing speed of such devices

would be limited by the transit time of the signal pulse through the coil. This introduces

a trade-off between the required threshold powers and signal bandwidth, since a higher

Q resonance would offer lower switching powers, but also store a pulse for a longer

duration. On the other hand, it is worth noting that a large delay would be attractive

for all-optical delay line applications.
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For memory devices, the OMR bistability can be employed, and Fig. 6.21 illustrates the

use of hysteresis (from a coil similar to that discussed earlier for Fig. 6.15) as a basic

memory unit. In this scheme, the input to the microcoil consists of two parts: Pbias,

a constant which biases the microcoil onto the bistable region, and Psig, which is the

signal used to switch the power between the two stable states. The output is given by

Ty with the high and low transmission states denoting two logical states A and B. When

detuned 8 pm from the y-resonance the switching powers are low so only a weak bias

amplitude of Ax = Ay = 1 is needed, and with Psig = 0 the microcoil is initially in

the high transmission state A at (1) with Ty = 0.4. If Psig is then increased above PSU

= 0.25, the nonlinear switching at (2) toggles the microcoil into state B. When the signal

power is returned to 0 again however, the microcoil remains latched in the same state
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(3) until Pbias is temporarily reset low. The transmission contrast between the on-off

states when Psig = 0 is approximately 19 dB and hence the binary state can be clearly

distinguished.

Crucially, the previous two devices are only sensitive to a y-polarised signal; using an

x-polarised signal would not trigger switching and only a minor change in transmission

would be detected. On the other hand, for certain situations it is desirable to interact

with both polarisations - for example, the output of a polarisation switcher must be

capable of alternating between either polarisation state. Such a device can be realised

using the dual-bistable nature of Fig. 6.19(c) by noting that there exist two points where

either Tx or Ty is extinguished, which can be reached by only changing Pin. Figure 6.22

illustrates one possibility where the microcoil is initially biased with Pin = 10, which

ensures the microcoil state begins on the middle branch between the two hysteresis loops

and furthermore provides an approximately balanced neutral output with Tx/Ty = 1.07

(the input power is equally distributed between the x and y polarisations). If Pin is

increased above PSU of the x-hysteresis loop and then lowered again, the microcoil will

now operate on the lower transmission branch, and at Pin = 5.4 the output is almost

entirely y-polarised with Ty/Tx = 20.6 dB. Pin can then either be reverted to the bias

state or, alternatively, further reduced to enter the y-hysteresis loop’s low transmission

branch. At Pin = 2.5 the output is now largely x-polarised as Tx/Ty = 24.0 dB.

In addition to switching between polarisations, this OMR could also be used as a spa-

tial switch if the output were coupled to a polarising beam splitter or similar device.

Overall, the strength of nonlinear microcoils for such applications lies in the wide range

of parameters which can be configured to adjust both the linear and nonlinear charac-

teristics.

6.3.4 Summary

Cross polarisation coupling in birefringent and twisted fibre OMRs plays a crucial role in

determining the nonlinear hysteresis characteristics. The switching power and bistability

contrast, in particular, are highly dependent on the input polarisation angle and choice

of x or y resonance.

Near a resonance, the input/ouput power transfer characteristic shows significant changes

in both polarisations’ output power which are to some extent dictated by the linear reso-

nance spectrum - for example, the contrast is largely determined by the extinction ratio

of the microcoil resonance. However, the nonlinear switching is predominantly driven

by the recirculation of only the resonant polarisation, not the orthogonal (off-resonance)

polarisation which is quickly coupled out. For this reason, by adjusting the twist and

input polarisation angle, one may tailor both the upper and lower switching powers. For
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weak birefringences (B ≈ 10−5), the x and y resonances are spectrally close enough for

a red detuned wavelength to interact with both and thus experience multiple bistability.

Finally, we have shown that the hysteresis of the microcoil can be used as the basis

for performing polarisation sensitive Boolean logic operations and rudimentary memory

buffering, which might be realised in practice using powers down to tens of watts for

silica coils.

6.4 Conclusion

Accounting for the polarisation dependent coupling mechanics between the x and y

modes in microcoils reveals interesting behaviour in both the linear and nonlinear

regimes. Even when the microfibre is only mildly twisted or birefringent, the trans-

mission and resonance spectrum can be significantly altered which would be detectable

as a change in the extinction ratio or Q-factor. We have also studied the magnifica-

tion of the Berry phase in microcoils. In this case the OMR microfibre need not be

twisted nor birefringent, but if the microcoil diameter is sufficiently narrow (∼0.1 mm),

the accumulated Berry’s phase on resonance can be great enough to rotate the input

polarisation considerably.

The anisotropy between the two polarisations’ transmissions is also manifested in the

nonlinear bistability and switching characteristics with different polarised inputs. Of

particular interest is the ability to adjust the hysteresis loop shape by altering the

twist and birefringence, since the nonlinear OMRs can potentially be used for nonlinear

signal processing, such as performing Boolean logic on inputs represented by different

polarisations.

Importantly, the predicted polarisation effects are sufficiently large that an experimental

verification should be realistically possible using microcoils with parameters similar to

those reported in literature, which can be fabricated using current technology. For the

nonlinear case, the hysteresis should be observable with relatively low powers ranging

between 10 to 100 W, which can be easily achieved with pulsed sources.



Chapter 7

Conclusions

7.1 Summary

In this thesis, we have shown how microfibres and their resonators exhibit a range of

intriguing nonlinear phenomena which include intermodally phase matched third and

second harmonic generation, as well as hysteresis and bistability in resonator architec-

tures.

For third harmonic generation in uniform taper waists, we have obtained efficiencies

up to η = 3× 10−3 over 4 mm, an order of magnitude greater than currently reported

in literature [15] despite pumping with a ten-fold lower peak power of 1.2 kW at a

1.55 µm wavelength. A more interesting situation arises when THG occurs instead in

transition regions which have been purposely extended over several cm, so as to offer a

considerably wider bandwidth than bulk or uniform waveguides, and using such tapers

we have demonstrated a 5 dB bandwidth in excess of 36 nm.

Furthermore, reconfiguring tapers into loop resonators successfully improved the experi-

mental efficiency of THG interactions by 7.7 dB greater than that of the original straight

microfibre, with simulations suggesting that higher enhancements of 20 dB would be

realistically achievable were the resonator closer to critical coupling. Importantly, a sig-

nificant conversion of several percent is attainable using pump powers as low as 100 W

and short loop lengths of several mm. This conversion can be increased further by co-

resonance of the harmonic and pump, such that the recirculated harmonic light acts as

a seed for the incoming pump.

The second harmonic generation in microfibres was studied both theoretically and ex-

perimentally. Simulations show that over a 5 cm uniform microfibre, the efficiency can

potentially reach several percent, but may be orders of magnitude lower in practice

due to fabrication tolerances. We have therefore investigated resonant SHG in loop

resonators as a means of overcoming this limit. To demonstrate the enhancement, the

103
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efficiency of η = 4.2 × 10−8 in a straight taper (recorded with a peak pump power of

100 W and 200 µm interaction length) was found to increase by 7.6 dB when the taper

was rearranged into a loop resonator.

We have also modelled the nonlinear response of microcoils based on twisted birefringent

microfibres by incorporating a Kerr nonlinearity. Even in the linear regime, the OMR

transmission varies strongly with twist which couples the two orthogonal polarisations in

the microfibre to either enhance or dampen the resonance quality factor and extinction

ratio. It is interesting to note that for narrower diameter microcoils, such effects can

arise even without any twisting or birefringence, due to the polarisation rotation incurred

when the generation of Berry’s phase is magnified on resonance.

Likewise, the nonlinear hysteresis characteristics were found to be highly polarisation

dependent, with both the switching powers and bistability contrast strongly influenced

by the twist as well as the input polarisation angle. In addition, multiple bistability in

OMRs can occur when the two orthogonal polarisations’ resonances are spectrally close

enough to influence the propagation of a slightly red detuned pump.

7.2 Outlook

A number of promising projects could explore and extend the currently presented work

further.

One method to increase the third harmonic generation efficiency would be to use ta-

pers pulled from soft glasses like tellurites or lead silicate. The effective nonlinearity

γ of such tapers not only benefits from their larger nonlinear coefficients n(2) than

silica, but also their higher linear refractive indices which allow tighter modal con-

finement. For example, the nonlinearity of chalcogenide microfibres can reach up to

γ = 90 W−1m−1 [49], two orders of magnitude greater than for silica microfibres. In-

deed, both tellurite and chalcogenide microfibres were recently studied and proposed for

harmonic generation [18].

The use of transition regions for broadband third harmonic generation also raises a

compelling possibility – if the initial pump pulse is chirped, the different frequency

components will be converted to their harmonic wavelength at different points in time

and space. By designing an appropriate taper diameter gradient and pulse chirp, it

should therefore be possible to simultaneously compress and frequency triple the pulse

over the transition region. To model such an experiment would also require modifying

the THG equations from Eqn. 3.7 to incorporate the time dependency of the amplitudes

and dispersive terms.

It is worth noting that the same intermodal phase matching for THG may be adopted for

the inverse process of one-third harmonic generation (OTHG), either for photon-triplet
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generation to produce entangled photons, or for parametric downconversion [70, 106,

107]. The first process would be low in efficiency since the photons grow from quantum

fluctuation noise, but nonetheless would be of interest for applications in quantum infor-

mation processing and communication experiments. On the other hand, the parametric

process, which uses essentially the same classical physics as THG, would be able to pro-

vide gain for a seed at the longer wavelength. Although parametric amplifiers already

exist, they tend to generate longer wavelengths by converting two pump photons into a

shorter wavelength signal and longer wavelength idler photon, whereas OTHG directly

downconverts one pump photon to three idlers, thus providing a six-fold higher quantum

efficiency. If implemented using tapers based on soft glasses with transparency windows

extending far into the IR, such as chalcogenide, these OTHG processes would be partic-

ularly useful for generating or amplifying signals at wavelengths of several microns.

For second harmonic generation, the use of surface coatings based on molecules with

a large electric dipole to increase the microfibre surface χ(2) and efficiency is especially

attractive if a high surface quality and uniformity of the coating can be maintained, possi-

bly via a self-assembly process. In the case of resonantly enhanced harmonic generation,

we expect that the efficiency can be increased up to 20 dB by refining or automating

the loop manufacturing technique, for example by implementing a computer-controlled

system to improve tolerance and control over loop geometry.

The work on microcoils in this thesis has been restricted to theoretical modelling, but

in terms of experiments, it would be reasonably straightforward to first verify the pre-

dicted linear polarisation dependent properties by fabricating microcoils from elliptical

birefringent microfibres [91, 92]. Observation of the nonlinear switching however re-

quires a more careful experimental design. Whilst low peak pump powers of 100 W are

sufficient, the repetition rate should ideally exceed 10 kHz in order to average out the

slower thermal nonlinearities [69]. The use of long nanosecond pulses, measured on an

oscilloscope before and after the microcoil, would allow easier identification of nonlinear

switching points in order to eventually reconstruct the hysteresis characteristic.

Ultimately, these OMRs may be implemented as polarisation-sensitive devices in areas

such as signal processing, whilst the harmonic generation processes could be exploited

as a low cost means to provide wavelengths in ranges unavailable from standard sources.

With a growing interest in microfibres from institutes around the world, it is envis-

aged that the research community will continue to offer novel insights into their optical

properties and develop innovative applications over the coming years.





Appendix A

High Power 1.55 µm Pump

Source

For the third and second harmonic generation experiments in Chapters 3-5, a tunable

1.55 µm wavelength pulsed source was constructed to use as a high power pump. The

source was built using several components kindly loaned from Christophe A. Codemard

(SPI Lasers, UK), who also provided useful advice on the design. Fig. A.1 shows the
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Figure A.1: Schematic of the 1.55 µm tunable wavelength source, used as the pump
for the third and second harmonic generation experiments.
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Figure A.2: (a) The output pump power spectrum and (b) a close up of the 1.55 µm
pump peak power spectral density spectra and ASE level at different amplifier currents.
Spectra were measured through a coupler with -25 dB attenuation. The highest current

corresponds to a peak power of 1.3 kW.

schematic of the source, which follows a master-oscillator power-amplifier (MOPA) ar-

rangement.

First, the seed light from the a tunable laser source (TLS) (Photonetics TUNICS-PR-

1550) is pre-amplified with a 10 dB gain erbium doped fibre amplifier (EDFA) and passed

through a τ1 = 4 ns electro optic modulator (EOM) to produce the seed pulse. The

EOM is driven directly using the TTL output from a pulse generator, at a repetition rate
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which can be adjusted between f1 = 10 kHz up to 0.5 MHz. A polarisation controller

before the EOM is necessary to maximise the output since the transmission of the electro

optic media is polarisation dependent.

Since the pulse energy is only circa 10 mW, a second, medium power amplifier (Amonics

C-band EDFA) is used to boost the peak power by 30 dB to roughly 1 W. The ASE from

the EDFA introduces a background CW noise, which is subsequently removed by the

acousto-optic modulator (AOM) driven using the same pulse generator and frequency

f2 = f1, such that only the pulse can pass through the τ2 = 150 ns AOM window. Note

that a small delay of td = 270 ns is required in between generating the EOM and AOM

electrical pulses, to account for the pulse propagation time along the adjoining fibre.

Finally, the pulse is passed through a high power amplifier which was made by reconfig-

uring an old erbium doped fibre laser. The final gain exceeds 30 dB, which gives peak

powers up to 1.3 kW at an amplifier pump current of 2 A (although the current can

be increased further, the signal-to-noise ratio falls since the gain observed by the pulse

begins to saturate whilst the background ASE continues to rise, which is undesirable).

The maximum average output power at an amplifier current of 2 A is 0.6 W, of which

the 1.55 µm peak accounts for 0.5 W at a repetition rate of 100 kHz. If a weaker pulse

power is used, the repetition rate can be increased up to 500 kHz to maintain a high

signal to noise ratio (typically, in experiments we use f = 100 kHz for 1 kW peak powers,

whilst 200 kHz or above can be used if only ∼ 100 W peak powers are needed.
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Figure A.3: Close up of the pump peak at a current of I = 1.5 A, measured through
a -30 dB coupler. The pump peak power is 1 kW.
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The output spectrum of the source shown in Fig. A.2 indicates the peak is roughly 100

times greater than the background ASE level. As the current approaches 2.0 A, the

average power continues to increase roughly linearly with current due to the increase in

ASE, but the power in the 4 ns pulse begins to plateau and the 1.55 µm peak experiences

spectral broadening. For a 1 kW peak pulse power, the FWHM spectral width is typically

0.1 nm after leaving the source but broadens to 0.3 nm after 2 m of SMF patch-cord

as illustrated in Fig. A.3. Using a much lower peak power of 100 W, the SPM is much

weaker and so the FWHM is maintained at 50 pm even after several metres of SMF.



Appendix B

Third Harmonic Generation

Equations

This appendix supplements Chapter 3 by outlining the derivation details for the third

harmonic differential equations, which incorporate the vectorial nature of the fields. In

addition, section B.2 determines which of the harmonic modes have a zero or non-zero

overlap with the pump mode.

B.1 Derivation of differential equations

The calculation is based on the conjugated Lorentz reciprocity theorem, which relates

two sets of fields {Ẽ0(r, ω0), H̃0(r, ω0)} and {Ẽ∗(r, ω), H̃∗(r, ω)}. These can represent

any two electromagnetic fields (provided they satisfy Maxwell’s equations in their un-

conjugated and conjugated form respectively) which allows the theorem to be applied

in diverse situations such as proof of modal orthogonality [31], difference-frequency gen-

eration [108] and nonlinear propagation in waveguides [19].

Here, we use {Ẽ0, H̃0} to represent an unperturbed field propagating in the waveguide

without nonlinearity with P̃0,NL = 0, and {Ẽ, H̃} will represent its perturbed equivalent

due to a nonlinearity introduced by a non-zero P̃NL. The theorem is applied firstly for the

pump, i. e. where the unperturbed and perturbed fields model the pump, and then again

for the harmonic. In this way, we can determine the propagation of the amplitudes for the

perturbed pump and harmonic fields based on the interaction of the original unperturbed

field with the nonlinear polarisation. We adopt a similar procedure and notation to that

used in [19, 108], albeit modified to focus on third harmonic generation. The reciprocity

method was also used by Grubsky et al. to obtain their differential equations for THG

in reference [17], although the derivation details were largely omitted.
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The theorem of reciprocity is given by:

∂

∂z

∫∫
∞

F · ẑdA =

∫∫
∞
∇ · FdA (B.1)

where the vector function F links the perturbed and unperturbed fields as follows:

F = Ẽ0 × H̃∗ + Ẽ∗ × H̃0 (B.2)

The integrals are evaluated over the infinite transverse cross section of the waveguide.

We first analyse the LHS of Eqn. B.1. For a microfibre, the unperturbed field will be

one of the guided modes (mode ν) and in the frequency domain takes the form:

Ẽ0(r, ω0) = Eν(r⊥, ω)eiβνz (B.3a)

H̃0(r, ω0) = Hν(r⊥, ω)eiβνz (B.3b)

Here, the tilded notation Ẽ0(r, ω0) indicates that the field includes the fast oscillating

phase term, whereas the untilded field Eν(r⊥, ω) describes the modal field distribution

at the given frequency. For example, if Ẽ0(r, ω) represents the harmonic, then Eν(r⊥)

might be the HE12 mode with ω0 = ω3. On the other hand, the perturbed field must be

expanded as a sum of all possible original unperturbed modes at that frequency since

the perturbation may, in the general case, lead to the excitation of other modes:

Ẽ(r, ω) =
∑
µ

Aµ(z, ω)Eµ(r⊥, ω0)eiβµz (B.4a)

H̃(r, ω) =
∑
µ

Aµ(z, ω)Hµ(r⊥, ω0)eiβµz (B.4b)

where any frequency dependency is implicitly included in the amplitudes Aµ(z, ω), and

the mode distributions are each power normalised:

1

4

∫
A∞

(Eµ ×H∗µ + E∗µ ×Hµ).ẑ dA = 1 (B.5)

Importantly, the modes are mutually orthogonal such that
∫∫
∞Eµ×H∗νdA = 0 for µ 6= ν.

Substituting Eqns. B.3, B.4 into the LHS of Eqn. B.1, and then applying Eqn. B.5 and

the orthogonality relation gives:

∂

∂z

∫∫
∞

F · ẑdA =
∂

∂z

[∑
µ

A∗µ(z)ei(βν−βµ)

∫∫
∞

(
Eν ×H∗µ + E∗ν ×Hµ

)
· ẑdA

]

= 4
∂

∂z
A∗ν(z, ω)

(B.6)

Next, we analyse the RHS of Eqn. B.1 by expanding the divergence term. Transforming

Maxwell’s equations into the Fourier domain conveniently simplifies the time differential
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terms (∂t→ −iω) to give:

∇× Ẽ(r, ω) = iωµ0H̃(r, ω) (B.7a)

∇× H̃(r, ω) = −iωε0Ẽ(r, ω)− iωP̃(r, ω) (B.7b)

Since the polarisation can be represented as P̃(r, ω) = ε0χ
(1)Ẽ(r, ω) + P̃NL(r, ω), and

(1 + χ(2)) = εr = n2, Eqn. B.7b can be rewritten as:

∇× H̃(r, ω) = −iωε0n2(r, ω)Ẽ(r, ω)− iωP̃NL(r, ω) (B.8)

Substituting the perturbed and unperturbed equivalents of Eqns. B.7a and B.8 into the

integrand on the right hand side (RHS) of Eqn. B.1 and applying the vector calculus

identity ∇.(A×B) = B.(∇×A)−A.(∇×B) gives:

∇ · F =− iµ0(ω − ω0)H̃ · H̃0

− iε0
[
ωn2(r, ω)− ω0n

2(r, ω0)
]
Ẽ∗ · Ẽ0

− (iωẼ∗0 · P̃NL − iω0Ẽ · P̃∗0,NL)

(B.9)

Assuming the fields are monochromatic (i.e. CW) at the pump/harmonic frequency and

setting P̃0,NL = 0 for the unperturbed field reduces Eqn. B.9 to:

∇ · F = −iωẼ0(r, ω) · P̃∗NL(r, ω) (B.10)

Substituting B.10 and B.6 into the reciprocity relation of Eqn. B.1, and taking the

complex conjugate gives:

∂

∂z
Aν(z, ω) =

iω

4

∫∫
∞

Ẽ∗0(r⊥, ω) · P̃NL(r, ω)dA (B.11)

To find the time domain equivalent, both sides are multiplied by exp (−i(ω0 − ω)t) before

taking their inverse Fourier transform to give:

∂

∂z
Aν(z, t) =

iω0

4
e−i(βνz−ω0t)

∫∫
∞

E∗ν(r⊥) · P̃NL(r, t)dA (B.12)

where the corresponding unperturbed time domain electric fields have the time depen-

dence exp(−iω0t):

Ẽ0(r, t) = Eν(r⊥)ei(βνz−ω0t) + c.c. (B.13)

Equation B.12 serves as a basic general first order differential equation describing the

amplitudes’ propagation. We now apply it to the specific case of third harmonic genera-

tion by considering a nonlinear polarisation P̃NL based on the third order nonlinearity:

P̃NL =
1

2
ε0χ

(3)
xxxx

[
(Ẽ · Ẽ∗)Ẽ +

1

2
(Ẽ · Ẽ)Ẽ∗

]
(B.14)
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To obtain the full range of possible interactions between the pump and harmonic waves,

we substitute into Eqn. B.14 a field which contains both frequencies. Strictly, this should

be expressed as the summation of all possible supported modes, which would lead to

large number of terms in Eqn. B.14. However, it is worth noting that due to non-

degeneracy, any terms consisting of more than one type of mode will contain a phase

matching requirement which is not satisfied, except for cross-phase modulation terms

and intermodally phase matched third harmonic terms for which we assume β3 ≈ 3β1

between only a specific pump mode (denoted henceforth as µ = 1) and harmonic mode

(µ = 3). Also, a circularly symmetric microfibre is assumed so that nonlinear coupling

between different polarisations of the same mode and frequency can be neglected. At

this point, we therefore simplify this perturbed field:

Ẽ = E1(r⊥)ei(β1z−ω1t) + E3(r⊥)ei(β3z−ω3t) + c.c. (B.15)

To determine which phase matched terms with frequencies at ω1 or ω3 are of interest, we

substitute Eqn. B.15 into the integrand Ẽ∗0 ·PNL on the RHS of the reciprocity relation

Eqn. B.12. We perform this firstly for the case when the perturbed and unperturbed

fields represent the pump mode, i. e. Ẽ∗0 = E∗1:

e−i(β1z−ω1t)Ẽ∗1.P̃NL =
1

2
ε0χ

(3)
xxxx

{
A1|A1|4

[
|E1|2 +

1

2
(E1)2(E∗1)2

]
+ |A3|2A3

[
|E1.E

∗
3|2 + |E1.E3|2 + |E3|2|E1|2

]
+

3

2
(A∗1)2A3

[
(E∗1)2(E3.E

∗
1)

]
ei(β3−3β1)z

+ other phase terms

}
(B.16)

The first and second terms represent self and cross phase modulation respectively, which

do not require phase matching, whilst the third term is responsible for THG and only

becomes significant if β3 ≈ 3β1. The remaining terms which are neglected, namely

various four wave mixing terms, contain fast oscillating phase factors which are assumed

to average out to zero. Repeating the same procedure with the harmonic field Ẽ∗0 = Ẽ∗3
gives:

e−i(β3z−ω3t)Ẽ∗3.P̃NL =
1

2
ε0χ

(3)
xxxx

{
A3|A3|4

[
|E3|2 +

1

2
(E3)2(E∗3)2

]
+ |A1|2A3

[
|E∗1.E3|2 + |E∗1.E∗3|2 + |E3|2|E1|2

]
+

3

2
A3

1

[
(E1)2(E1.E

∗
3)

]
e−i(β3−3β1)z

+ other phase terms

}
(B.17)
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Finally, integrating Eqns. B.16 and B.17 over the nonlinear microfibre cross-section, then

substituting the results into the differential equation B.12 and applying the formula for

nonlinear refractive index n(2) = (3/16)ε0χ
(3) gives:

dA1

dz
= i

(
ε0
µ0

)
n(2)k1

{
(J1|A1|2 + 2J2|A3|2)A1 + J3A

∗2
1 A3e

iδβz
}

(B.18a)

dA3

dz
= i

(
ε0
µ0

)
n(2)k3

{
(2J4|A1|2 + J5|A3|2)A3 + J∗3A

3
1e
−iδβz

}
(B.18b)

where the overlaps are integrated over the nonlinear cross section of the microfibre if it

is surrounded in air:

J1 =
1

3

∫∫
ANL

(
2|E1|4 + |E2

1|2
)
dA (B.19a)

J2 =
1

3

∫∫
ANL

(
|E1|2|E3|2 + |E1.E3|2 + |E1.E

∗
3|2
)
dA (B.19b)

J3 =

∫∫
ANL

(
(E∗1.E3)(E∗1)2

)
dA (B.19c)

J∗3 = J3 (B.19d)

J4 = J∗2 = J2 (B.19e)

J5 =
1

3

∫∫
ANL

(
2|E3|4 + |E2

3|2
)
dA (B.19f)

These equations are equivalent to those reported in reference [17], although the electric

fields there were normalised to the vacuum impedance i. e. Ai(z, t) → Ai(z, t)
√
ε0/µ0,

so the coefficient of (ε0/µ0) from Eqn. B.18 does not appear.

B.2 Determination of non-zero pump-harmonic overlaps

To ascertain which harmonic modes experience a non-zero J3 overlap integral with the

fundamental pump mode, we divide the integration area (i. e. the microfibre cross sec-

tion) into a series of infinitely thin rings with width δr. From the field distributions in

Eqns. 2.8, 2.11 and 2.12, the individual (r, φ, z) components of each mode are express-

ible in the separable form E(r, θ) = f(r) sin(νθ) or f(r) cos(νθ) where ν is the azimuthal

mode order number. For the fundamental pump, ν = 1, whereas for the harmonic it

will vary depending on the type of mode. Therefore, within each ring, the value of the

integral for each component may be written as:

δJ3 = C(r)rδr

∫ π

−π
sin3(θ) sin(ν(θ + ∆))dθ (B.20)
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where ∆ is the relative rotation angle between the pump and harmonic fields, and

C(r)rδr is constant along the ring (alternatively, cosine rather than sine functions can

be used in the integrand). For TE and TM modes, the situation is trivial since the

distributions of both modes are independent of θ, which implies ν = 0 and so δJ3 = 0

since the integrand is an odd function of θ. It follows that the total value of J3 =
∑
δJ3

is identically zero for all transverse electric and magnetic third harmonic modes.

For harmonic hybrid modes with ν = 1, applying trigonometric product-to-sum identi-

ties to the annular integral gives:

δJ3 = C(r)rδr

∫ π

−π
sin3(θ) sin(θ + ∆)dθ

= C(r)rδr
1

32

[
2 sin(−2θ + ∆)− 6 sin(2θ + ∆) + sin(4θ + ∆) + 12θ cos(∆)

]θ=π
θ=−π

= C(r)rδr
3

4
π cos(∆)

(B.21)

which confirms that the harmonic shares an overlap with the pump. Furthermore, it

is evident that the overlap is largest when the two mode’s polarisations are aligned so

that ∆ = 0 or π rad, but will fall to zero the harmonic is rotated by ∆ = ±π/2 rad.

Similarly, the overlap for ν = 3 hybrid modes is also non-zero:

δJ3 = C(r)rδr

∫ π

−π
sin3(θ) sin(3θ + ∆)dθ

= C(r)rδr
1

96

[
18 sin(2θ + ∆)− 9 sin(4θ + ∆) + 2 sin(6θ + ∆)− 12θ cos(∆)

]θ=π
θ=−π

= C(r)rδr
1

4
π cos(∆)

(B.22)

For all other hybrid modes, the integral is evaluated from the more general form:

δJ3 = C(r)rδr

∫ π

−π
sin3(θ) sin(νθ + ∆)dθ

= C(r)rδr
1

8

[
−sin[(ν − 3)θ + ∆]

ν − 3
+

3 sin[(n− 1)θ + ∆]

n− 1

− 3 sin[(ν + 1)θ + ∆]

ν + 1
+

sin[(ν + 3)θ + ∆]

ν + 3

]θ=π
θ=−π

= 0 (ν 6= 1, 3)

(B.23)

which proves that the only harmonic modes with a non-zero overlaps are the ν = 1, 3

hybrid modes. Note that the presence of (ν − 1) and (ν − 3) in the denominators

invalidates the above equation for the case of ν = 1, 3; hence the reason for treating

them separately earlier.



Appendix C

Solving the Microcoil Differential

Equations

C.1 Overview

Two methods for solving the OMR differential equations are explained below:

1. The iterative Runge Kutta (RK) technique.

2. The modified Newton method [30].

The first algorithm adopts a more straightforward and intuitive approach, whilst the

second is more complex but converges far quicker. In the simulations described in

Chapter 6, the Newton method is used, but since this technique itself requires performing

some RK iterations, we shall describe both numerical methods here.

For the following explanations, it is convenient to express the microcoil coupled mode

differential equations and boundary conditions (Eqns. 6.1 and 6.4) in matrix form as:

d

ds
A(s) = C ·A(s) (C.1a)

A(0) = B ·A(L) +Ain (C.1b)

where A and C are the amplitude vector and coupling matrix respectively, whilst the

input B is a matrix containing the phases accumulated from each turn. The input

amplitude vector Ain is only non-zero for the elements corresponding to the first turn.
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Figure C.1: Solving coupled mode microcoil ODEs by repeated Runge-Kutta itera-
tion.

C.2 Iterative Runge Kutta method

The simplest procedure for solving these ODEs is outlined in Fig. C.1. First, the value

of A(0) is initialised to a start vector of (1, 0, . . . , 0), and the ODEs are numerically inte-

grated using the Runge-Kutta (RK) method to obtain the amplitudes A(L). Physically,

the resulting A(s) solution would be similar to that obtained after allowing the light to

propagate through one round trip. It follows that to obtain the steady solution, further

RK iterations need to be undertaken until convergence, with the start vector updated

according to Eqn. 6.4 after each iteration.

Once the difference between A(0) values from successive iterations falls below 10−5,

the simulation assumes the solution has converged and repeats the process for the next
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wavelength. By extrapolating from the converged A(0) values of the previous three

wavelengths, a start vector closer to the solution for the next wavelength can be found,

and usually 30% fewer RK iterations are needed. In this way the transmission spectrum

of the microcoil can be built up.

This method is consistently stable (in the absence of gain), and when the spectrum

contains low Q, weak resonances, convergence can be attained within <100 iterations

using MATLAB. However, if there are strong resonances (>10 dB extinction ratio) or

if there are many turns the simulation tends to run far slower and may require up to

102−103 iterations before convergence. The physical basis behind this is that for deeper

resonances, the light is ‘trapped’ longer inside the coil and thus experiences a greater

effective path length within the coil, so more iterations are needed.

C.3 Iterative modified Newton method

To improve the convergence rate, the Newton method illustrated in Fig. C.2 was imple-

mented [30]. This technique is based on finding the value of A(0) which minimises the

difference vector R(A(0)):
r1(A(0))

rj(A(0))
...

rn(A(0))

 =


Ai+1

1 (0)

Ai+1
j (0)

...

Ai+1
n (0)

−


Ai1(0)

Aij(0)
...

Ain(0)

 (C.2)

where the values of Ai+1(0) are those obtained after one iteration of RK using Ai(0) as

the start vector. Fig. C.3 explains how the zero for one element of R can be found by

repeatedly iterating the Newton method from a nearby start point. rj would of course

depend on all the elements of A(0), although only one can be shown in the diagram.

Furthermore, unlike the standard Newton method for a scalar function, here all elements

of R must be simultaneously minimised by choosing an appropriate direction of descent

−∆A to add to the current A(0):

Ak+1 = Ak −∆A (C.3)

Since the amplitudes are complex valued, the corresponding direction vector for the real

and imaginary parts must be treated separately. Thus, for an OMR of n turns, there will

be 2(n−1) equations represented in Eqn. C.3 (the input to the first coil is already known

and fixed). The direction −∆A is found from solving the simultaneous equations:

J ·∆A = R (C.4)
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Figure C.2: Solving coupled mode microcoil ODEs by Newton method.
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where the values of R and the Jacobian matrix J are both evaluated at A(0) = Ak.

Here, the Jacobian is a square matrix of numerically-computed first derivatives given

by:

J(R) =


∂r1
∂A1

∂r1
∂A2

. . . ∂r1
∂An

∂r2
∂A1

∂r2
∂A2

. . . ∂r2
∂An

...
...

...
∂rn
∂A1

∂rn
∂A2

. . . ∂rn
∂An

 (C.5)

(the actual Jacobian would have the real and imaginary parts of Ai and rj and also their

x and y amplitude components as separate variables, but here they are shown combined

simply for clarity).

When solving the nonlinear equations as in section 6.3, simply stepping through and

solving for an array of input amplitudes will almost certainly miss some solutions if

the system is bistable, since the technique will generally converge to whichever solution

is closest to the start vector. Instead, rather than stepping through different input

amplitudes to find the hysteresis curve, we solve through a continuous range of stored

microcoil energies E in order to obtain the complete transfer characteristic. To ensure

that the Newton method converges to the desired stored energy, in the difference vector

R we include an element r1(E) = E − E0, where E0 is the target energy, since the

Newton method must simultaneously minimise all elements of R. The energy is defined

by summing the powers in each turn:

E =
n∑
j=1

[∫ L

s=0
|Axj (s)|2 + |Ayj (s)|

2ds

]
(C.6)

Incrementing and solving through an appropriate range of E0 values produces the full

hysteresis loop, including both stable states and the intermediate unstable state when

the transfer characteristic is multi-valued.

Note that RK iterations still need to be performed using the Newton method, to obtain

a suitable initial vector and also to evaluate values for R. Nonetheless, this technique

is superior to the RK looping method in terms of speed, and typically converges in a

few dozen iterations rather than several hundred. Although there are more advanced

methods which convergence in fewer iterations by computing the second derivatives of R

to determine an improved direction vector [109], calculating the Hessian matrix would

need 4 RK iterations per element which places a much greater workload on the algorithm

with little benefit.
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