

Incorporating Initial Conditions into Nonlinear Input-Output Theory

Jing Liu and Mark French

{jl4g10|mcf}@ecs.soton.ac.uk

University of Southampton

School of Electronics and Computer Science

The Question

For a dynamical system represented by a set of input output pairs, how should we define initial conditions to discuss robust stability?

- Adding nonzero initial conditions to the purely I/O theory, e.g., Georgiou & Smith [1];
- Turning ISS/IOS theory of Sontag *et al.* [2] into a purely I/O theory.

Signal Spaces & System

Signal spaces. Given normed signal space \mathcal{V} (e.g., $\mathcal{L}_\infty(R)$), $\tau \in \mathbb{R}$ and $\omega \in (\tau, \infty]$, we let (detailed definition not given here).

- $\mathcal{V}_{[\tau]}^+ \triangleq \mathbb{P}_\tau^+ \mathcal{V}$ (e.g., $\mathcal{L}_\infty[\tau, \infty]$);
- $\mathcal{V}_{[\tau, \omega]}$: *interval space* (e.g., $\mathcal{L}_\infty[\tau, \omega]$);
- $\mathcal{V}_{[\tau, \omega]}$: contains unbounded signal (e.g., $\mathcal{L}_\infty^e[\tau, \omega]$);
- $\mathcal{V}_{a[\tau]}^+ \triangleq \cup_{t > \tau} \mathcal{V}_{[\tau, t]}$: *ambient space*.

where \mathbb{P}_τ^+ is an operator which maps time function $f : (t_1, t_2) \rightarrow \mathbb{R}^n$ to time function $g : [\tau, t_2) \rightarrow \mathbb{R}^n$ such that $f|_{[\tau, t_2)} = g$. ($\tau \in (t_1, t_2) \subset [-\infty, +\infty)$). We can similarly define \mathbb{P}_τ^- (i.e., if $\text{dom}(f) = (t_1, t_2)$, then $\text{dom}(\mathbb{P}_\tau^- f) = (t_1, \tau)$) and $\mathcal{V}_{a[\tau]}^-$. Let

$$\mathcal{V}_{a[\tau]} \triangleq \mathcal{V}_{a[\tau]}^+ \oplus \mathcal{V}_{a[\tau]}^-.$$

System. Given normed signal spaces $\mathcal{U}, \mathcal{Y}, \mathcal{W} \triangleq \mathcal{U} \times \mathcal{Y}$ and initial time $t_0 \in \mathbb{R}$ and $\Delta > 0$, a *system* Q is defined to be the *behaviour* denoted by $\mathfrak{B}_{Q[t_0]}$:

$$\left\{ w \in \mathcal{W}_{a[t_0]} \mid w = (u, y)^T \text{ is input-output pair of } Q, t_0 - \Delta \in \text{dom}(w) \right\}$$

The system Q is said to be *well defined* if

- ① the input u is *free*, i.e., for all $u \in \mathcal{U}_{a[t_0]}$ with $t_0 - \Delta \in \text{dom}(u)$, there exists a $y \in \mathcal{Y}_{a[t_0]}$ such that $(u, y)^T \in \mathcal{W}_{a[t_0]}$ is an input-output pair of Q .
- ② for any $w = (u, y)^T$ and $\tilde{w} = (\tilde{u}, \tilde{y})^T$ in $\mathfrak{B}_{Q[t_0]}$, if $\mathbb{P}_{t_0}^- w = \mathbb{P}_{t_0}^- \tilde{w}$ and $\mathbb{P}_{t_0}^+ u = \mathbb{P}_{t_0}^+ \tilde{u}$, then $\mathbb{P}_{t_0}^+ y = \mathbb{P}_{t_0}^+ \tilde{y}$.

An operator $\Phi : \mathcal{U}_{a[t_0]} \rightarrow \mathcal{Y}_{a[t_0]}$ is said to be *causal* if

$$\left\{ \forall u, v \in \mathcal{U}_{a[t_0]}, \quad : \quad \begin{bmatrix} \mathbb{P}_t^- u = \mathbb{P}_t^- v & \Rightarrow \\ \forall t \in \text{dom}(u, v, \Phi u, \Phi v) & \mathbb{P}_t^-(\Phi u) = \mathbb{P}_t^-(\Phi v) \end{bmatrix} \right.$$

A well defined system Q is said to be *causal* if the following natural defined operators in (3) are all causal.

Initial Conditions

For a *well defined system* Q , we know that $\forall w_- \in \mathfrak{B}_{Q[t_0]}^- \triangleq \mathbb{P}_{t_0}^- \mathfrak{B}_{Q[t_0]}$, $\forall u_+ \in \mathcal{U}_{a[t_0]}^+$, there exists one and only one $y_+ \in \mathcal{Y}_{a[t_0]}^+$ such that $w_- \oplus w_+ \in \mathfrak{B}_{Q[t_0]}$ with $w_+ = (u_+, y_+)^T$. Thus for any fixed $w_- \in \mathfrak{B}_{Q[t_0]}^-$, we can naturally define an operator Q_{w_-} by:

$$Q_{w_-} : \mathcal{U}_{a[t_0]}^+ \rightarrow \mathcal{Y}_{a[t_0]}^+, \quad u_+ \mapsto y_+.$$

Next we define an equivalence relation \sim on $\mathfrak{B}_{Q[t_0]}^-$ as follows: for any $w_-, \tilde{w}_- \in \mathfrak{B}_{Q[t_0]}^-$, we say

$$w_- \sim \tilde{w}_- \text{ if and only if } Q_{w_-} = Q_{\tilde{w}_-}$$

The set of all equivalence classes in $\mathfrak{B}_{Q[t_0]}^-$ related to \sim is denoted as $\mathfrak{S}_{Q[t_0]}$ called the *initial state space* of Q . Note that for any $x_{t_0} \in \mathfrak{S}_{Q[t_0]}$, we can easily define an operator $Q_{x_{t_0}} : \mathcal{U}_{a[t_0]}^+ \rightarrow \mathcal{Y}_{a[t_0]}^+$ from (3). The *size* of any initial state in $\mathfrak{S}_{Q[t_0]}$ is characterized by the following defined real valued function $d : \mathfrak{S}_{Q[t_0]} \rightarrow \mathbb{R}_{\geq 0}$, for any $x_{t_0} \in \mathfrak{S}_{Q[t_0]}$, define

$$d(x_{t_0}) \triangleq \inf_{w_- \in x_{t_0}} \|w_-\|_{[t_0-\Delta, t_0]}$$

Closed-loop System

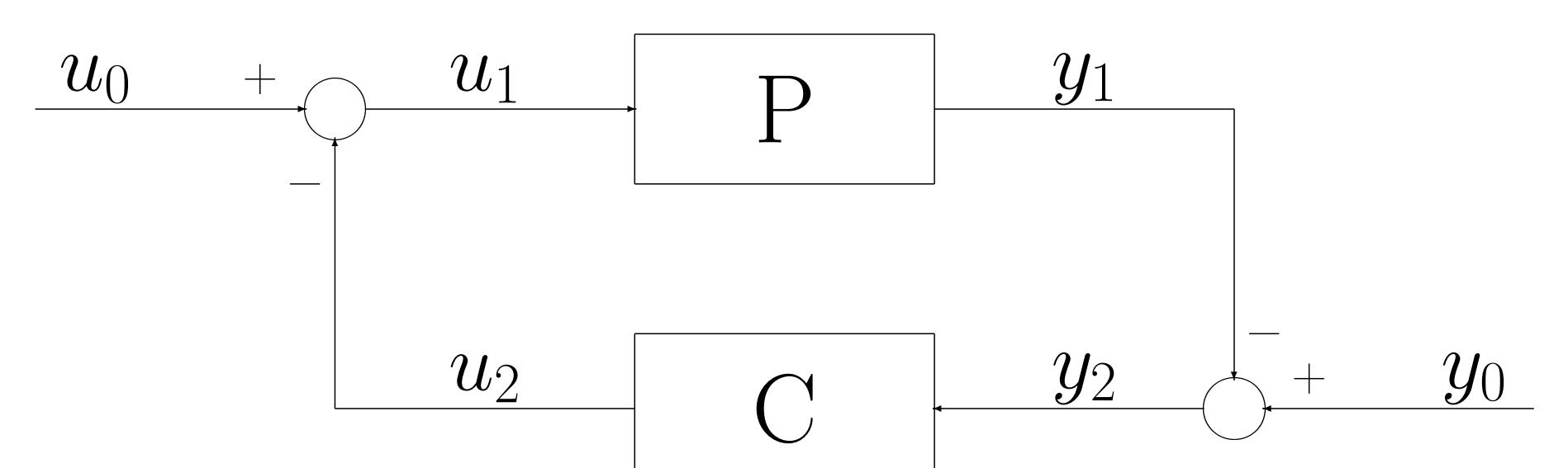


Fig. 1: Closed-loop system $[P, C]$. $w_i = (u_i, y_i)^T$, $(i = 0, 1, 2)$, $w_0 = w_1 + w_2$, $w_1 \in \mathfrak{B}_{P[t_0]}$, $w_2 \in \mathfrak{B}_{C[t_0]}$

Let behaviours $\mathfrak{B}_{P[t_0]}$ with initial state space $\mathfrak{S}_{P[t_0]}$ and $\mathfrak{B}_{C[t_0]}$ with initial state space $\mathfrak{S}_{C[t_0]}$ represent two well defined subsystems called the *plant* P and *controller* C , respectively.

The *closed-loop system* $[P, C]$ represented by the behaviour $\mathfrak{B}_{P/C[t_0]}$ is defined as the interconnection of the *plant* P and *controller* C shown in Fig. 1:

$$\left\{ \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \in \mathcal{W}_{a[t_0]}^2 \mid \begin{array}{l} w_0 \text{ is input, } w_1 \in \mathfrak{B}_{P[t_0]}, \\ w_0 - w_1 \in \mathfrak{B}_{C[t_0]} \end{array} \right\}$$

It is natural to define the initial state of the closed loop system $[P, C]$ by $\mathfrak{S}_{P[t_0]} \times \mathfrak{S}_{C[t_0]}$, here we do not require $[P, C]$ to be well defined. The size of any element in the product space $\mathfrak{S}_{P[t_0]} \times \mathfrak{S}_{C[t_0]}$ is defined in the usual way.

Well-posedness of $[P, C]$

Fixed any $x_{t_0} \in \mathfrak{S}_{P[t_0]} \times \mathfrak{S}_{C[t_0]}$. For any $w_{0+} \in \mathcal{W}_{a[t_0]}^+$, a pair $(w_{1+}, w_{2+}) \in \mathfrak{B}_{P[t_0]}^+ \times \mathfrak{B}_{C[t_0]}^+$ is a *solution* if it satisfies $w_{0+} = w_{1+} + w_{2+}$ (see Fig. 1) on time domain of $\text{dom}(w_{1+}, w_{2+})$. The closed-loop system $[P, C]$ is said to have the *existence property* if $\forall x_{t_0}, \forall w_{0+}$, the solution exists. $[P, C]$ is said to have the *uniqueness property* if $\forall x_{t_0}, \forall w_{0+}$, any two solutions equal at any same time domain. To define the following closed-loop operator in (7) for any fixed x_{t_0} , we let (w_{1+}, w_{2+}) be the solution with maximal time domain of existence:

$$\Pi_{P/C}^{x_{t_0}} : \mathcal{W}_{a[t_0]}^+ \rightarrow \mathcal{W}_{a[t_0]}^+, \quad w_{0+} \mapsto w_{1+}.$$

$[P, C]$ is said to be *well-posed* if it has the existence and uniqueness properties and $\Pi_{P/C}^{x_{t_0}}$ is causal for any x_{t_0} . We next define the *graph* \mathcal{G}_P of the plant P and the *graph* \mathcal{G}_C of the controller C respectively by

$$\mathcal{G}_P \triangleq \mathcal{W}_{a[t_0-\Delta]}^+ \cap \mathfrak{B}_{P[t_0]}, \quad \mathcal{G}_C \triangleq \mathcal{W}_{a[t_0-\Delta]}^+ \cap \mathfrak{B}_{C[t_0]}.$$

The Idea

The initial state space is defined by a set of equivalent classes of past input-output signals up to initial time. The size of any initial state is defined by the smallest input-output pairs in terms of norm in that corresponding equivalent class. A robust stability theorem with initial conditions is then given.

Robust Stability Theorem

Theorem. Given normed signal spaces $\mathcal{U}, \mathcal{Y}, \mathcal{W} \triangleq \mathcal{U} \times \mathcal{Y}$, initial time $t_0 \in \mathbb{R}$ and $\Delta > 0$. Let P denoted by $\mathfrak{B}_{P[t_0]}$ with initial state space $\mathfrak{S}_{P[t_0]}$ and C denoted by $\mathfrak{B}_{C[t_0]}$ with initial state space $\mathfrak{S}_{C[t_0]}$ be causal well defined systems representing the nominal plant and the controller, respectively. Suppose that $[P, C]$ is well-posed relatively continuous and time-invariant. Let $[P, C]$ be *input to output stable*, i.e., there exist functions $\beta(\cdot, \cdot) \in \mathcal{KL}$ and $\gamma(\cdot) \in \mathcal{K}_\infty$ such that, $\forall x_{t_0} = (x_{1t_0}, x_{2t_0})^T \in \mathfrak{S}_{P[t_0]} \times \mathfrak{S}_{C[t_0]}$, $\forall w_{0+} \in \mathcal{W}_{a[t_0]}^+$, $\forall t > t_0$,

$$|(\Pi_{P/C}^{x_{t_0}} w_{0+})(t)| \leq \beta(d(x_{t_0}), t - t_0) + \gamma(\|w_{0+}\|_{[t_0, t]}),$$

Let \tilde{P} denoted by $\mathfrak{B}_{\tilde{P}[t_0]}$ with initial state space $\mathfrak{S}_{\tilde{P}[t_0]}$ be causal well defined system representing the perturbed plant of P . If $[\tilde{P}, C]$ has the uniqueness property, and there exists a causal surjective operator $\Phi : \mathcal{G}_P \rightarrow \mathcal{G}_{\tilde{P}}$ and functions $\beta_0(\cdot, \cdot) \in \mathcal{KL}$, $\sigma(\cdot) \in \mathcal{K}_\infty$, $\sigma_0(\cdot) \in \mathcal{K}_\infty$, such that, $\forall t > h \geq t_0$, $\forall w \in \mathcal{G}_P$,

$$\|\Phi w\|_{[t_0-\Delta, t_0]} \geq \sigma_0^{-1}(\|w\|_{[t_0-\Delta, t_0]}),$$

$$|((\Phi - I)w)(t)| \leq \beta_0(\|w\|_{[t_0-\Delta, h]}, t - h) + \sigma(\|w\|_{[h, t]}).$$

and $\mathbb{P}_t^-(\Phi - I)$ is compact for any $t \geq t_0$, and if there exist two functions $\rho(\cdot), \varepsilon(\cdot)$ of class \mathcal{K}_∞ such that

$$\sigma \circ (I + \rho) \circ \gamma(s) \leq (I + \varepsilon)^{-1}(s), \quad \forall s \geq 0.$$

Then the closed loop system $[\tilde{P}, C]$ is also *input to output stable*, i.e., there exist functions $\tilde{\beta}(\cdot, \cdot) \in \mathcal{KL}$ and $\tilde{\gamma}(\cdot) \in \mathcal{K}_\infty$ such that, $\forall \tilde{x}_{t_0} \in \mathfrak{S}_{\tilde{P}[t_0]} \times \mathfrak{S}_{C[t_0]}$, $\forall \tilde{w}_{0+} \in \mathcal{W}_{a[t_0]}^+$, $\forall t > t_0$,

$$|(\Pi_{\tilde{P}/C}^{\tilde{x}_{t_0}} \tilde{w}_{0+})(t)| \leq \tilde{\beta}(d(\tilde{x}_{t_0}), t - t_0) + \tilde{\gamma}(\|\tilde{w}_{0+}\|_{[t_0, t]}).$$

References

- [1] T.T. Georgiou and M.C. Smith *Robustness analysis of nonlinear feedback systems: an input-output approach*, IEEE Transactions on Automatic Control **42**, 1997.
- [2] <http://www.math.rutgers.edu/~sontag/>

Acknowledgements

J.L. is supported by UK-China SfE: BIS/CSC/UoS.

