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Abstract 57 

Background Studies have highlighted asymmetries in knee joint moments during activities of 58 

daily living in individuals with osteoarthritis and joint replacements. However, there is a need 59 

to investigate the forces at the knee joints in order to establish the extent of loading 60 

asymmetry.  61 

Methods Twenty healthy (mean, 62; range, 55-79 years of age) and 34 pre- to post-knee 62 

arthroplasty (mean, 64; range, 39-79 years of age) participants performed gait and sit-stand 63 

activities in a motion capture laboratory. Testing was conducted 4 weeks pre- and 6 months 64 

post- knee arthroplasty. Knee joint forces and moments were predicted using inverse 65 

dynamics and used to calculate peak loading and impulse data which were normalized to 66 

body weight (BW). Comparisons were made in loading between affected and contralateral 67 

limbs, and changes from pre- to post-knee arthroplasty.  68 

Findings Pre-knee arthroplasty mean peak vertical knee forces were greater in the 69 

contralateral limb compared to the affected limb during both gait 3.5*BW vs. 3.2*BW and 70 

sit-stand 1.8*BW vs. 1.5*BW.   During gait, peak knee adduction moment asymmetries 71 

significantly changed from pre- to post-knee arthroplasty (-0.3 to 0.8*% BWm.Ht), although 72 

differences in vertical knee forces remained. The sit-stand activity showed vertical ground 73 

reaction asymmetries slightly increased post- knee arthroplasty (from 0.06*BW pre- to 74 

0.08*BW post).  The healthy participants showed no noteworthy asymmetries.  75 

Interpretation This study showed loading asymmetry of the ground reaction and TFJ forces 76 

between affected and contralateral limbs both pre- post-knee arthroplasty. Over reliance of 77 

the contralateral limb could lead to pathology. 78 
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Introduction 79 

Knee osteoarthritis (OA) is a common age-related pathology causing pain and loss of 80 

function (Fitzgerald et al., 2004). The prevalence of knee joint OA has increased in recent 81 

years and now comprises one of the greatest sources of expenditure for modern society (NJR, 82 

2007). When advance OA causes significant pain and functional decline for an individual, 83 

joint surgery is used to replace degenerated articular surfaces, with knee arthroplasty (KA) 84 

being the most common procedure for advanced OA (NJR, 2010). Evidence suggests that KA 85 

patients experience more difficulty performing daily tasks than the healthy age, matched 86 

population (Noble et al., 2005), and they often use compensatory strategies during gait and 87 

sit-to-stand  (McClelland et al., 2007, Farquhar et al., 2009). The symmetry of joint 88 

movement (kinematics) and loading (kinetics) has been described to vary in the health 89 

population during activities such as gait, although relatively small differences are commonly 90 

observed (Sadeghi et al., 2000).  When an individual has joint pain and pathology significant 91 

asymmetries can develop between the affected and contralateral limb, commonly to reduce 92 

loading in pathological joints (which can increase loading in the contralateral limb).  93 

Asymmetries between limbs have been reported during several activities of daily living in 94 

patients with OA or with joint replacement. Studies have combined motion capture and basic 95 

inverse dynamic techniques to show asymmetries of joint moments during sit to stand  96 

(Farquhar et al., 2009, Christiansen and Stevens-Lapsley, 2010), stair ascent (Lamontagne et 97 

al., 2011), and gait (Alnahdi et al., 2011). Difference in effected and contralateral joint loading 98 

have been assessed in patient pre- and post-hip arthroplasty  using motion capture and inverse 99 

dynamic modeling techniques (Shakoor et al., 2003). They found the contralateral knee was 100 

subjected to higher dynamic loading during gait pre-operatively,  which was retained  post-101 

THA (range 10-23 months), with three of the five knee force and moment variables collected  102 

being significantly higher in the contralateral limb (knee adduction and extension moment, 103 
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medial knee compartment contact force). This is despite improvements in pain and function 104 

scores. Metcalfe et al. [20] recently showed OA patients experienced increased joint 105 

moments in the effected knees compared to age matched healthy individuals. One year post-106 

knee replacement (patients received either unilateral and total replacement), the affected 107 

limbs had returned to normal, with slightly higher moments in the contralateral limb 108 

(Metcalfe et al., 2012). These previous studies, however, have relied on inverse dynamics 109 

techniques that either include basic or no muscle forces to calculate joint reactions. Research 110 

has shown muscles and soft tissues have a significant contribution to forces and moments 111 

acting across a joint (Shelburne et al., 2006, Winby et al., 2009). 112 

 Recent evidence which has shown a significant association between elevated joint loading 113 

and OA progression (Bennell et al., 2011). In addition, the contralateral limb has been shown 114 

to predict long term function post-KA (Farquhar and Snyder-Mackler, 2010) and a large 115 

proportion of primary TKA patients will have their contralateral joints replaced within 10 116 

years (Sayeed et al., 2011).  There is a need to expand research surrounding joint loading pre- 117 

and post-KA and include predicted muscle forces that estimate the full extent of joint loading 118 

asymmetries. We therefore investigated whether (1) pre-KA patients would have greater 119 

asymmetry in joint loading between limbs (larger loading through the contralateral knees) 120 

compared to healthy individuals and (2) if this asymmetry would be retained post-operation.  121 

Patients and Methods 122 

We recruited 20 healthy volunteers between the ages of 50 to 80 years (nine men, 11 women) 123 

from the local community who had no pain in the lower limbs, no previous pathologies in the 124 

last 2 years, and no known musculoskeletal or neurological diseases. We selected the patients 125 

using the following criteria:  (1) primary knee arthroplasty, (2) no other comorbidities which 126 

significantly affect pain and function, (3) able to walk 50 meters.  The mean age of the 34 127 

patients was 64 years (range, 40-82 years); there were 14 men and 20 women. These patients 128 
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were all diagnosed with OA after radiographs and clinical assessments were performed by 129 

the consultant; the patients were tested approximately 4 weeks prior to their KAs (14 130 

unicompartmental KA and 20 total KA) and 6 months after their KA (Table 1). Institutional 131 

and National Health Service (NHS) ethics approval was attained prior to the study, and 132 

written informed consent was obtained from each participant.  133 

The participant demographics showed that patients scheduled to undergo KAs were slightly 134 

older and had higher BMI compared to the healthy cohort, although none of these variables 135 

were significantly different between the groups (Table 1). All pre-KA patients had higher 136 

perceived pain and instability scores, as well as lower perceived function, measured by the 137 

Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 138 

1988) and the Oxford Knee Score (OKS) (Dawson et al., 1998). 139 

Gait and sit to stand activities were assessed in patients 4 weeks pre-operation and at 6 140 

months post-operation using a Vicon motion analysis system (Combination of 460 and T 141 

series, Vicon Motion Systems, Oxford, UK) and two Kistler force plates (Kistler Instrument 142 

AG, Kistler Group, Winterthur, Switzerland). Marker data were collected at 120 Hz, and 143 

analogue data from the force platforms were collected at 1080 Hz (Worsley, et al, , 2011). 144 

Marker and force plate data were low-pass filtered at 5 Hz during post-processing. Twenty-145 

four retroreflective markers (9 mm) were placed directly on the skin of each participant using 146 

double-sided adhesive tape. Markers were placed in a modified Helen Hayes (Kadaba et al., 147 

1990) marker set-up with anatomical landmarks established by a physiotherapist (PW). 148 

Additional markers were placed on the superior surface of the iliac crests to reconstruct the 149 

pelvis if other markers were occluded. Further markers were also added to the foot (the fifth 150 

metatarsal head, and cuboid and navicular bones) in order to model inversion and eversion 151 

articulations more accurately (Figure. 1A). Participants were asked to perform gait and sit-152 

stand motions three times. Gait trials were performed along a 10-minute walkway and were 153 
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normalized from heel strike to heel strike. The sit-stand motion was normalized from full-154 

sitting to standing with the knees and trunk extended. The chair used for the sit-stand activity 155 

was of a standard 45-cm height, and the back of the chair was removed to ensure all pelvic 156 

markers were visible to the motion capture cameras. Participants were encouraged to perform 157 

the activities as they normally would in their home environments.  158 

We then used the musculoskeletal modeling process published (Worsley et al., 2011). 159 

Briefly, inverse dynamics were calculated from the motion capture and force plate data using 160 

musculoskeletal modeling software (The AnyBody Modeling System™, AnyBody 161 

Technology, Aalborg, Denmark) (Damsgaard et al., 2006).  From these models we obtained 162 

the following parameters:  knee joint kinematics (angles) and kinetics (resultant joint 163 

moments and forces).  Key parameters were; 1) vertical force plate reaction, 2) vertical TFJ 164 

force, 3) posterior-anterior TFJ force, 4) TFJ flexion moment 5) TFJ adduction moment. 165 

Patient-specific musculoskeletal models were derived from static standing postures (soft-166 

tissue artifact is assumed to be minimal during quiet standing) and used to create the subject-167 

specific models. Models were scaled from a single anthropometric data set (Klein Horsman et 168 

al., 2007) using criteria that take the BMI into account. A 13-segment, rigid body model, with 169 

16° of freedom, was orientated in the segments included lower limb structures, the trunk, and 170 

the head. During the dynamic modeling process joint kinematics were established using a 171 

global optimization method, which utilized a set of Karush–Kuhn–Tucker optimality 172 

conditions. This approach calculates the position of each segment in relation to the measured 173 

markers, subject to the degrees of freedom within the model. Once optimized kinematics 174 

were derived, inverse dynamics were performed. In order to solve the known moments about 175 

each joint muscles were recruited using a MinMax solver where the load is distributed across 176 

muscle elements so that fatigue of a given muscle is postponed as long as possible (larger 177 

muscles provide most of the force) (Rasmussen et al., 2001).  The model had over 300 Hill-178 
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type muscle elements, these were established based on anthropometric data and International 179 

Society of Biomechanics (ISB) standards (Klein Horsman et al., 2007, Wu et al., 2002). Final 180 

joint forces and moments were derived from the combination of applied (force plate), known 181 

(segment mass), and optimized muscle forces acting about each joint 182 

The knee was simplified to a hinge joint because of the known soft tissue artifact errors in 183 

motion capture techniques. This constraint on the model was placed because evidence 184 

surrounding estimations of secondary motions of the knee (e.g. internal external rotation) 185 

from motion capture data show significant errors (>4°), despite optimization techniques 186 

(Andersen et al., 2010). Resultant TFJ kinematics and kinetics, along with force plate data 187 

from the three trials for each of the activities, were averaged and collated for all participants. 188 

The kinetic forces produced from the musculoskeletal modeling and force plates were 189 

normalized to bodyweight (BW) and moments to percentage body weight and height. Recent 190 

evidence has highlighted the important of observing joint loading over the who activity cycle 191 

and not relying on discrete parameters (mean, peak etc.) (Bennell et al., 2011). We therefore 192 

analyzed both the peaks of the waveforms and the knee adduction impulse where the integral 193 

of the whole positive section of the curve was calculated (stance phase of gait, whole sit-194 

stand cycle) .These data were then used to compare differences between affected and 195 

contralateral limbs (dominant and non-dominant limbs of the healthy group).  196 

Two tailed and paired sample t-tests were used to examine differences between limb loading 197 

data. Two-way, repeated, measure ANOVAs were used to compare pre-KA to post-KA 198 

changes in loading differences among the limbs.  Mann Whitney U tests were performed to 199 

compare healthy vs. pre-KA and healthy vs. post-KA between limb loading differences. All 200 

analysis was performed using Matlab (The MathWorks Inc, Massachusetts, USA).   201 

 202 
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Results  203 

 The healthy participants showed no significant differences between limbs in the force plate 204 

data or forces and moments acting at the knee joints during both activities. Pre-KA patients 205 

showed significant greater contralateral mean peak vertical TFJ force (Figure 2A, 3A) and 206 

TFJ adduction impulse (p=0.01, p=0.04) compared to the affected limb during gait (Table 2). 207 

This asymmetry of TFJ adduction impulse was significantly greater than the healthy control 208 

group (p=0.03). No other significant differences between affected and contralateral limb 209 

loading were observed pre-arthroplasty during gait. The sit-stand activity showed pre-KA 210 

patients had significantly increased peak vertical force plate reaction in the contralateral limb 211 

(p=0.01).  At the TFJ there were also significantly greater peak forces (vertical and anterio-212 

posterior) and moments (flexion, addiction and addiction impulse) in the contralateral limb 213 

pre-KA (Table 3). These asymmetries of loading were significantly greater than the health 214 

group for both vertical force plate reaction (p=0.007) and peak TFJ adduction moment 215 

(p=0.04).  216 

 217 

 Post-KA the only significant between limb asymmetry during gait was in the vertical knee 218 

reactions (Fig 2B), with greater loading in the contralateral limb (p=0.03). The mean peak 219 

vertical force on the contralateral TFJ was 0.4 *BW greater than the affected TFJ. When 220 

comparing changes from pre- to post-KA, both peak adduction moment and adduction 221 

impulse differences were significantly changed (p =0.01-0.03). However, during gait, ground 222 

reaction and TFJ forces were not shown to changes significantly (p>0.1) from pre- to post-223 

KA.  During sit-stand the contralateral limb vertical force plate and TFJ reactions remained 224 

significantly greater (p=0.01, p=0.04) than the affected side post-KA (Figure 3B). In 225 

addition, peak flexion moment and adduction impulse also remained significantly increased 226 

in the contralateral limb (p=0.03, p=0.04). The post-KA group also showed significantly 227 
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greater asymmetries in the ground reaction forces than the healthy group (p=0.04). However, 228 

no statistically significant changes (p=0.54-0.84) were observed in the between limb loading 229 

differences from pre- to post-KA.  230 

 231 

Discussion  232 

  Previous research has shown significant asymmetries in lower limb loading in individuals 233 

with OA and joint replacements (Metcalfe et al., 2012, Shakoor et al., 2003). However, these 234 

studies have predominantly relied on inverse dynamic simulations of activity data which 235 

calculated joint moments and neglect joint reactions which can be affected by muscle 236 

contributions. This study was performed to assess patient’s pre- and post- knee arthroplasty 237 

using modeling techniques which calculated resultant joint forces and moments subject to 238 

both extrinsic factors (foot reactions) and muscle contributions. The purpose of the study was 239 

to identify any differences between affected and contralateral limb loading, and to assess if 240 

symmetry of loading patterns were changed pre- to post-knee arthroplasty. .   241 

We found asymmetries in loading between affected and contralateral limbs pre-knee 242 

arthroplasty during both gait and sit-stand activities. During gait the most significant 243 

differences were observed in vertical knee force and adduction moment impulses. Results 244 

showed a significant increase in contralateral knee loading compared to the affected side for 245 

vertical knee reaction, but a significantly lesser knee adduction moment. This result is similar 246 

to other studies have assessed between limb loading in patients suffering from osteoarthritis 247 

(Hunt et al., 2006, Metcalfe et al., 2012, Chan et al., 2005). The magnitudes of these peak 248 

adduction moments appear similar between studies (Table 4). However, the normalization of 249 

these data has varied in the literature making direct comparisons difficult (Chan et al., 2005, 250 

Hunt et al., 2006). Previous studies (Farquhar et al., 2009, Mizner and Snyder-Mackler, 251 
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2005) have also highlighted asymmetry in movement patterns during the sit-to-stand task in 252 

OA patients and the early months following unilateral knee arthroplasty. This asymmetry has 253 

been associated with shifts in posture to reduce weight bearing through the operated lower 254 

limb (Mizner and Snyder-Mackler, 2005).This shift in weight balance could help to explain 255 

the large differences in vertical force plates and knee joint loading between affected and 256 

contralateral knees in our study. Previous reports of these ground reaction asymmetries have 257 

ranged from 0.03-0.1*BW, with the results from the present study falling within these values. 258 

 259 

The present study found the asymmetries in loading that were observed pre-KA were general 260 

observed post-KA for gait and more significantly sit-stand. During gait the most significant 261 

change in was seen in TFJ adduction moments (peak and impulse), where pre-KA increases 262 

in the affected limb were reversed post-KA. This is a finding shared by Metcalfe et al., where 263 

small but significant changes in knee adduction impulse were observed during gait (Metcalfe 264 

et al., 2012). The present study has shown that although some changes have been observed in 265 

gait, the sit-stand activity was predominantly unchanged with increased loading on the 266 

contralateral limb. To our knowledge there is very little research looking into the nature of 267 

ground reaction and joint loading asymmetries from pre- to post-KA during sit-stand. What 268 

the evidence does show is an apparent association between the time of assessment post-KA 269 

and the level of asymmetry, with those assessed later having less asymmetry (Farquhar et al., 270 

2008). Indeed, those assessed up to 3 months post-KA have shown as much as 0.1*BW 271 

ground reaction force increase in the contralateral limb (Mizner and Snyder-Mackler, 2005).  272 

In contrast, those assessed 12 months post-KA had as little as 0.03*BW, with our study 273 

falling within this range 0.07*BW. There is the potential that if we had followed our patients 274 

up over a longer period the asymmetries we observed may have reduced. However, 275 

comparisons between studies are limited due to the different patient populations being 276 
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assessed and the different analytical approaches of the studies.  277 

 Shakoor et al has hypothesized that neuromuscular adaptations that place greater loads on 278 

the contralateral limb in joint replacement patients may have consequences for the 279 

development of multiarticular OA particularly if these movement patterns do not resolve 280 

(Shakoor et al., 2002). Indeed, recent evidence by Bennell et al. [5] showed that knee 281 

adduction moment impulse was independently associated with greater loss in the medial, 282 

tibial, cartilage volume over a 12-month period (Bennell et al., 2011). Further studies are 283 

needed to determine whether there is an association between changes in joint loading and the 284 

development of contralateral joint pathology, though this would be challenging because of 285 

multiple factors that can cause OA (genetics, hormones, anatomy, obesity, age) (Hart et al., 286 

1999). Increasing the need for research is the evidence that the contralateral limb predicts 287 

function 3 years post-unilateral KA, and the average non-operated limb weakens over time, 288 

possibly representing not only changes resulting from aging but progression of OA (Farquhar 289 

and Snyder-Mackler, 2010). Further, 35% to 43% of patients who have undergone unilateral 290 

TKAs have replacements on the contralateral side within 10 years (McMahon and Block, 291 

2003, Sayeed et al., 2011), with evident implications on patient health and cost to society. 292 

 293 

The authors acknowledge limitations to the present study.  Firstly this study was conducted 294 

on small samples of healthy and knee arthroplasty patients. The implication are that the 295 

results cannot be generalized across populations and larger longitudinal studies are required 296 

to assess the loading of joints during activities of daily living in different sub-populations. 297 

There were also some differences in the demographics of the participants with the KA 298 

patients having a larger BMI than the healthy subjects. Secondly, the length of follow up for 299 

knee arthroplasty patients was only 6 months and continued recovery of function is known to 300 

occur in excess of one year post-operation (Vogt and Saarbach, 2009). However, studies have 301 
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shown early adaptations in joint movement patterns are retained one year post-operation  302 

(Levinger et al., 2012). Thirdly, our findings must be interpreted in the context of accuracy of 303 

methods to estimate the loading asymmetries. Estimated joint moments and forces from the 304 

musculoskeletal models  relies on a set of assumptions, including anthropometric scaling, 305 

joint simplification and muscle recruitment solvers which do not allow for co-contractions. 306 

The most stringent test of the modeling outputs is conducted during the “Grand Challenge 307 

Competition to Predict In Vivo Knee Loads” (Fregly et al., 2011). This annual competition 308 

provides researchers with in vivo motion capture, ground reaction, electromyography, muscle 309 

strength, imaging, and instrumented tibial prosthesis contact force data for gait and other 310 

movement trials. The software used within this study (The AnyBody Modeling System™, 311 

AnyBody Technology, Aalborg, Denmark) predicted medial and lateral knee contact forces 312 

for two specified gait trials. The predictions did follow the in vivo medial contact force trends 313 

(although some over prediction), but the predictions did not follow the in vivo, lateral, 314 

contact force measurements. Thus, the accuracy of the total contact force predictions was 315 

unclear. Based on the fact that both limbs in the model used the same set of assumptions and 316 

are subject to the same limitations, there is an argument that these asymmetries truly exist. 317 

The magnitudes of these asymmetries, however, may not be reflected in our estimations. 318 

 319 

 320 

Conclusions 321 

Patient’s scheduled for knee arthroplasty had significantly increased ground reaction and 322 

resultant knee forces and moments in their contralateral limb during both gait and sit-stand. 323 

Six months post-knee arthroplasty symmetry of TFJ adduction moment significantly changed 324 

during gait, although knee forces continued to be increased on the contralateral side. 325 
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However, the sit-stand activity showed no improvement from pre- to post- knee arthroplasty, 326 

with continued increased loading on the contralateral limb. The implications of these 327 

sustained asymmetries in joint loading require further investigation, with regards to the 328 

deposition of the contralateral limb developing pathology.   329 
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Legends 

Fig. 1 A The motion capture and modeling techniques included (A) a marker set-up during a 

gait trial and (B) a 16°-of-freedom AnyBody musculoskeletal model with over 300 muscles. 

Fig. 2A-B Illustrated here are the mean vertical knee forces during the gait cycle in mean 

values for (A) pre-KA patients and (B) post-KA patients. The affected side is represented by 

a solid line, and the contralateral side is represented by a dashed line.  

Fig. 3A-B Illustrated here is the vertical knee force during sit-to-stand activities in mean 

values for (A) pre-KA patients and (B) post-KA patients. The affected side is represented by 

a solid line, and the contralateral side is represented by a dashed line. 
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Figure 2 
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Figure 3 
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Table 1. Demographics of 20 healthy and 34 pre- and post-knee arthroplasty (KA) 

participants. 

Variable Healthy Pre-KA Post-KA 
Healthy vs. 

Pre-KA 

Pre-KA vs. 

post-KA 

Age (years) 62 ± 6 64 ± 10 65 ± 9 p=0.43 p=0.71 

Weight (kg) 78 ± 13 85 ± 18 86 ± 17 p=0.18 p=0.57 

Height (cm) 166 ± 11 167 ± 10 167 ± 10 p=0.97 p=0.97 

BMI 28 ± 4 31 ± 6 31 ± 5 p=0.23 p=0.93 

WOMAC 1 ± 3 46 ± 15 17 ± 13 p<0.001 p<0.001 

OKS 47 ± 2 24 ± 9 38 ± 8 p<0.001 p<0.001 

Mean value presented ± SD; OKS = Oxford Knee Score.; WOMAC = Western Ontario and 

McMaster Universities Arthritis Index 
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Table 2.  Moments and forces at the knee and force plates during gait in 20 healthy and 34 pre- to post-knee arthroplasty participants. Statistical 

significance between limbs† and groups‡ are detailed (p<0.05). 

 

 Healthy Pre-operation Post-operation    

Parameter Dom. 
Non-

dom. 
Contra. Affected Contra. Affected 

Healthy vs. Pre-

KA 

Healthy vs. 

Post-KA 

Pre-KA vs. 

Post-KA 

Peak FP vertical 

reaction (BW) 

1.1 ±     

0.1 

1.1 ±     

0.1 

1.1 ±     

0.1 

1.1   ±     

0.1 

1.1 ±     

0.1 

1.1   ±     

0.1 

p=0.81 p=0.75 p=0.2 

Peak Vertical TFJ 

reaction (BW) 

3.4 ±     

0.5 

3.2 ±     

0.6 

3.5 ±     

0.6 

3.2   ±     

0.6† 

3.9  ±     

0.6 

3.5  ±     

0.6† 

p=0.37 p=0.25 p=0.33 

Peak P-A TFJ 

reaction (BW) 

0.6 ±     

0.2 

0.6 ±     

0.3 

0.7 ±     

0.3 

0.6   ±     

0.3 

0.7 ±     

0.2 

0.6   ±     

0.3 

p=0.39 p=0.42 p=0.1 

Peak TFJ flexion 

mom (Nm/BW.Ht%) 

2.6  ±     

0.5 

2.5  ±     

0.4 

2.2 ±     

0.7 

2.1  ±      

0.7 

2.1 ±     

0.8 

2.1  ±      

0.7 

p=0.61 p=0.57 p=0.34 

Peak TFJ adduct mom 

(Nm/BW.Ht%) 

1.8  ±     

0.5 

1.9  ±     

0.4 

2.6   ±     

1.3 

2.9   ±     

1.4 

2.9  ±       

1.0 

2.1  ±       

1.0 

p=0.56 p=0.27 p=0.04‡ 

TFJ adduct impulse 

(Nm.s/BW.Ht%) 

1.4 ±     

0.4 

1.3 ±     

0.4 

0.6 ±     

0.4 

1.1 ±       

0.6† 

1.4 ±       

0.5 

1.2 ±       

0.4 

p=0.03‡ p=0.33 p=0.02‡ 

Mean presented ± SD; TFJ = Tibiofemoral joint; FP = Force plate; KA = Knee arthroplasty; P-A = Posterior-Anterior; N = Newton ; BW = 

Bodyweight; Nm = Newton meter ; Ht = Height 
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Table 3.  Moments and forces at the knee and force plates during sit-stand in 20 healthy and 34 pre- to post-knee arthroplasty participants. 

Statistical significance between limbs† and groups‡ are detailed (p < 0.05). 

 Healthy Preoperation Postoperation    

Parameter Dom. 
Non-

dom. 
Contra. Affected Contra. Affected 

Healthy vs. 

Pre-KA 

Healthy vs. 

Post-KA 

Pre-KA vs. 

Post-KA 

Peak FP vertical 

reaction (BW) 

0.55 ± 

0.1 

0.54 ± 

0.1 

0.61 ± 

0.1 

0.55 ± 

0.1† 

0.61 ±   

0.1 

0.53 ± 

0.1† 

p<0.01‡ p<0.05‡ p=0.8 

Peak Vertical TFJ 

reaction (BW) 

1.7 ± 

0.4 

1.8 ± 

0.6 

1.8 ±   

0.4 

1.5 ±   

0.4† 

1.8 ±     

0.4 

1.6 ±   

0.5† 

p=0.32 p=0.29 p=0.84 

Peak P-A TFJ 

reaction (BW) 

1.5 ± 

0.5 

1.6 ± 

0.6 

1.6 ±   

0.6 

1.3  ±  

0.5† 

1.4 ±     

0.6 

1.2 ±     

0.5 

p=0.32 p=0.45 p=0.7 

Peak TFJ flexion 

mom (Nm/BW.Ht%) 

3.2  ± 

1.1 

3.5   ± 

1.2 

3.2   ± 

1.1 

2.5   ± 

1.2† 

2.4 ±     

1.1 

2.1 ±     

1.1† 

p=0.21 p=0.27 p=0.54 

Peak TFJ adduct mom 

(Nm/BW.Ht%) 

3.5 ±     

1.7 

3.1 ±    

1.6 

3.5 ±      

1.5 

2.7 ±    

1.6† 

3.6 ±     

1.4 

3.1 ±     

1.1 

p<0.05‡ p=0.27 p=0.55 

TFJ adduct impulse 

(Nm.s/BW.Ht%) 

2.3 ±     

1.2 

2.3 ±     

1.4 

2.1 ±     

1.5 

1.6 ±     

1.6† 

2.3 ±     

1.4 

1.8 ±     

1.5† 

p=0.29 p=0.33 p=0.67 

*Mean presented ± SD; TFJ = Tibiofemoral joint; FP = Force plate; KA = Knee arthroplasty; P-A = Posterior-Anterior; N = Newton ; BW = 

Bodyweight; Nm = Newton meter ; Ht = Height 
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Table 4. Summary of literature investigating loading differences at the knee, in osteoarthritic and knee arthroplasty patients.  

Study Sample 
Time post-

KA (months) 
Activity 

Peak knee adduction 

difference 

Peak knee adduction 

impulse difference 

Peak knee 

vertical reaction 

difference 

Peak vertical 

ground reaction 

difference 

Metcalfe et 

al., 2012 
14 (KA) 12  Gait NA 0.1 Nm.s/BW.Ht NA NA 

Shakoor et 

al., 2003 
22 (THA) 10-23  Gait 0.1% BWm.Ht NA 0.3*BW NA 

Alnahdi et 

al., 2010 
24 (THA) 12  Gait 0.06 Nm/kg.Ht 0.03 Nm/kg.m.s NA NA 

Chan et al., 

2005 
14 (OA) NA Gait 0.26 Nm/kg NA NA NA 

Hunt et al., 

2006 
100 (OA) NA Gait 0.5% BWm.Ht NA NA 0.03*BW 

Farquhar et 

al., 2008 
12 (TKA) 3  Sit-stand NA NA NA 0.08*BW 

Farquhar et 

al., 2008 
12 (TKA) 12  Sit-stand NA NA NA 0.03*BW 

Mizner and 

Snyder-

Mackler, 

2005 

14 (TKA) 3  Sit-stand NA NA NA 0.1*BW 

Worsley et al 34 (KA) 6  
Gait 0.8% BWm.Ht 0.2% Nm.s/BW.Ht 0.4*BW 0.03*BW 

Sit-stand 0.5% BWm.Ht 0.5% Nm.s/BW.Ht 0.24*BW 0.07*BW 

*NA – data not applicable or not available.  

 


