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Abstract—In this contribution, we propose and study a signal
transmission scheme, namely the multihop diversity (MHD)
scheme, conceived for transmission of information over multihop
links (MHLs). During each time-slot (TS), the MHD scheme
activates the specific hop transmission, whose signal-to-noise ratio
(SNR) cumulative distribution function (CDF) gives the highest
ordinate value amongst all the available hops. The next packet
is then transmitted over the selected hop. Our studies show that
this CDF-aware MHD scheme represents a generalized MHD
scheme suitable for operation in the scenarios, where the different
hops may have different distances, hence resulting in different
average SNRs, and/or experience different types of fading. This
MHD scheme is also capable of achieving the full diversity gain
provided by the independent fading experienced by the different
hops. In this paper, our attention is dedicated to the error prob-
ability, outage probability as well as to the achievable diversity
order, when BPSK andM -ary quadrature amplitude modulation
(MQAM) are employed. Both the error probability and the
outage probability of the MHLs are investigated for transmission
over Nakagami-m fading channels, both of which demonstrate a
significant diversity gain. Furthermore, the impact of the various
system parameters on the achievable error probability and outage
performance is characterized.

Index Terms—Multihop communication, cumulative distribu-
tion function, diversity, relay, Nakagami-m fading channel, error
probability, outage probability, diversity order.

I. I NTRODUCTION

In multihop wireless communications, the source nodes
(SNs) send information to the corresponding destination nodes
(DNs) via intermediate relay nodes (RNs), which provides a
range of advantages over conventional single-hop communi-
cations. These advantages may typically include an improved
link performance, quantified in terms of energy-efficiency
and extended coverage, enhanced throughput, simplicity and
flexibility of network planning, etc [1–3]. Hence, multihop
networks have attracted much attention, as evidenced by [1–
11] and the references therein.

In the context of multi-hop links (MHLs), it has typically
been assumed that information is successively transmitted
from the SN to the DN node by node, without any store-and-
wait stage at the intermediate RNs [4, 5, 8]. For convenience
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of description, we refer to this scheme as theconventional
multi-hop transmission schemein our forthcoming discourse.
In this conventional multi-hop scheme, information is trans-
mitted over a single hop during its scheduled time-slot (TS),
regardless of its link quality often quantified, for example, by
its signal-to-noise ratio (SNR). Hence, the overall reliability of
a MHL is dominated by that of the poorest hop and a route-
outage occurs, once a hop outage is encountered in any of
the invoked hops. As a result, the route’s BER and outage
performance of a MHL typically degrades or remains the
same in the best case, as the number of hops increases. In
order to improve the performance of MHLs, novel signaling
schemes have been proposed [1, 3, 12], which require the
nodes to have a store-and-wait capability. For example, in [1,
12], adaptive modulation and coding (AMC) combined with
automatic repeat request (ARQ) schemes has been invoked
in cooperative decode-and-forward (DF) communications. Re-
cently, the authors of [3] have employed AMC for dual-hop
cooperative communications relying on a regenerative RN,
where the AMC mode of both the hops may be configured
independently. Very recently, the buffer-aided transmission
scheme was exploited in a two hop network [13, 14].

In [15–17], we have proposed a multihop diversity (MHD)
scheme by exploiting the independent fading experienced
by the different hops of a MHL. The studies demonstrated
that significant performance improvements may be attainable
in comparison to the conventional multi-hop transmission
scheme. In [15–17], we assumed that all hops have the same
distance and also experience the same fading CDF. Under
these assumptions, during each TS, the specific hop having
the highest instantaneous SNR was selected from the set of
available hops and, then a packet was transmitted over the
selected hop. Explicitly, this MHD scheme achieved selection
diversity. Furthermore, all the hops have the same probability
to be chosen during a TS, which is desirable for attaining
the maximum possible throughput and minimum possible
transmission delay.

As a further development of our work in [15–17], in this
contribution, we generalize both the system model and the
corresponding MHD scheme studied in [15–17]. In the context
of the system model, we now consider the general MHLs,
where different hops may have different distances and may
also experience different fading. When selecting a hop for
transmission based on the instantaneous SNRs of the hops



invoked, as in [15–17], it will result in the hops being selected
with different probabilities. Explicitly, a hop having a higher
average SNR owing to experiencing less severe fading has
a higher chance of being activated than a hop having a
lower average SNR. Clearly, this is undesirable. In order
to circumvent this impediment, while still benefitting from
MHD, our MHD scheme proposed in this contribution opts
for activating a hop for transmission according to the instan-
taneous probability values provided by the SNR’s cumulative
distribution functions (CDFs) of the available hops. To be more
specific, let us assume thatL hops are available for selection,
where we assume having the knowledge of theL Nakagami-
m parameters ofm1,m2, . . . ,mL and the knowledge of the
L SNR values ofγ1, γ2, . . . , γL. Therefore, the SNR CDF
ordinate values ofFml

(γl), l = 1, 2, . . . , L, can be calculated.
Then, the hop having the highest CDF ordinate value is
selected for transmitting a packet within the TS. This way
we can avoid granting a higher transmission probability to the
links subjected to benign fading. To elaborate a little further,
activating always the highest-SNR link would potentially lead
to buffer-overflow for the severely fading lower-SNR links.
More explanation, it is possible that a higher SNRγl actually
maps to a lowerFml

(γl) ordinate value, even if the fading
parameterml is higher, because the fading is less severe. In
this way, it can be shown that allL hops have the same
probability to be chosen, regardless of the specific fading
parameterml experienced by them. Note however that if all
hops have the same average SNR and also experience the
same fading CDF, implying that all hops have the same SNR
CDF, our CDF-assisted MHD scheme proposed in this paper
becomes equivalent to the MHD scheme considered in [15–
17]. This is, because in this case a higher instantaneous SNR
generates a higher CDF value.

In this paper, we study the performance of the MHLs em-
ploying our proposed MHD scheme, when assuming that the
different hops may experience different fading CDF modeled
by Nakagami-m distributions associated with different fading
parameters. We analyze both the BER and outage probability
of the MHLs employingM -ary quadrature amplitude modu-
lation (MQAM), when either buffers of limited or unlimited
size are used. We derive both the lower-bound expression and
the exact expressions for them. Furthermore, approximation
technologies are proposed for the efficient evaluation of both
the BER and of the outage probability. Additionally, we
demonstrate that our proposed MHD scheme is capable of
achieving the full multi-hop diversity. Our performance results
demonstrate that the CDF-assisted MHD scheme has the
potential of providing a significant diversity gain for improving
the reliability of multihop communications, hence both the
attainable BER and the outage performance can be enhanced.

We should note that, the terminology of MHD has also
been used in [18]. However, the MHD considered in [18]
and that defined in this paper as well as in [15–17] have an
entirely different meaning. Specifically, in [18] it is assumed
that a receiver node can receive replicas of the same signal
from several other nodes. In this case, MHD is achieved at
the receiver node by combining the signals received from the
different nodes transmitting the same information. Therefore,

the MHD in [18] is obtained by multipath combining. By
contrast, our MHD belongs to the category of a type of
selection diversity. Furthermore, in [18], the RNs do not use
a buffer for storing packets, hence the signals are transmitted
hop-by-hop based on the conventional multi-hop transmission
scheme.

Additionally, we noted that as analyzed in [16], once a
SN completes its transmission, an increased buffering-induced
delay is imposed, since the RNs have to empty their buffer.
This process makes the overall delay higher than that of the
conventional multihop transmission scheme [19]. However,for
the transmission of a sufficiently large amount of data, the
multihop diversity scheme does not have to strike an explicit
trade-off between the delay tolerated and the achievable er-
ror/outage performance on average, because the MHD scheme
transmits a single packet over a single hop per time-slot, which
is identical to the conventional multihop transmission scheme.

The contributions of this paper are summarized as follows:
1. A CDF-assisted MHD scheme is proposed, which makes

use of the multiple hops of a MHL for enhancing the reliability
of information delivery over the MHL.

2. The end-to-end BER and end-to-end outage probability
of MHLs are analyzed, when the signal is transmitted using
MQAM, leading to a range of expressions for both the lower-
bound and for the exact BER as well as for the lower-bound
and the exact outage probability.

3. An approximate algorithm is provided for evaluating the
steady-state probabilities that are required for computing both
the end-to-end BER and the end-to-end outage probability.

4. We demonstrate that for anL-hop link, the achievable
diversity order isL.

The remainder of this paper is organized as follows. In
the next sections, we present both our system model and
the implementation of the MHD scheme. Section III analyzes
both the BER and the outage probabilities. In Section IV,
we provide our numerical and simulation results. Finally, our
conclusions are offered in Section V.

II. SYSTEM MODEL OF MULTI -HOP L INKS

nL

D

nL−1

RL−1

Hop 1 Hop 2 Hop L

n1 n2

S R1 R2

d1
d2 dL

Fig. 1. System model for a multihop wireless link, where the sourceS sends
messages to the destinationD via (L − 1) intermediate relays.

The system model under consideration is a typical multi-
hop wireless link [8, 19], which is shown in Fig. 1. The MHL
consists of(L + 1) nodes, a SNS (node 0), (L − 1) RNs
R1, R2, · · · , RL−1 and a DND (node L). The distance of
the lth hop between nodes(l − 1) and l is dl, l = 1, · · · , L,
and the total distance or the distance between SN and DN is
d =

∑L
l=1 dl. The SNS sends its information to the DND via

L hops with the aid of the(L−1) RNs. At the RNs, the classic



decode-and-forward (DF) protocol is employed for relaying
the signals. For convenience, we denote the symbol transmitted
by node0 as x0 and its estimate at the DND of node L
by xL = x̂0, while the symbol estimated at thelth RN by
xl, l = 1, . . . , L−1. At packet level, they are correspondingly
represented byxxx0, xxxl, l = 1, . . . , L − 1, and xxxL = x̂xx0.
We assume baseband BPSK/MQAM modulation and that the
signals are transmitted on the basis of TSs having a durationof
T seconds. In addition to propagation pathloss, the channelsof
theL hops are assumed to experience independent block-based
flat Nakagami-m fading, where the complex-valued fading
envelope of a hop remains constant within a TS, but it is
independently faded for different TSs. Based on the above
assumptions, when the(l−1)st node transmits a packetxxxl−1,
the observations received by nodel can be expressed as

yyyl = hlxxxl−1 + nnnl, l = 1, 2, . . . , L, (1)

wherehl represents the channel gain of thelth hop from node
(l−1) to nodel, while nnnl denotes the Gaussian noise at node
l. When communicating over Nakagami-m fading channels,
|hl| obeys the Nakagami-m distribution with the probability
density function (PDF) [20]

f|hl|(y) =
2mml

l

Γ(ml)
y2ml−1 exp

(
−mly

2
)
, y ≥ 0 (2)

where Γ(·) denotes the gamma function [21](8.310.1),
E
[
|hl|2

]
= 1 andml is the Nakagami-m fading parameter of

the lth hop1. As shown in [25], the Nakagami-m fading can
be used for modelling of different types of fading channels,
which are characterized by the associated fading parameterm.
Specifically, the Nakagami-m fading reduces to the Rayleigh
fading whenm = 1, m → ∞ corresponds to the conventional
Gaussian scenario, andm = 1/2 describes the so-called one-
side Gaussian fading, i.e., the worst-case fading condition.
The Rician and lognormal distributions can also be closely
approximated by the Nakagami distribution in conjunction
with values ofm > 1. In (1), the background noise samples of
nnnl obey the complex Gaussian distribution with zero mean and
a variance ofσ2

l = 1/(2γ̄l) per dimension. Here,̄γl denotes
the average SNR of thelth hop, which is dependent on the
propagation pathloss experienced by thelth hop.

Let us consider a given TS. The corresponding in-
stantaneous SNR values of theL hops are expressed as
{γ1, γ2, . . . , γL}, where γl = |hl|2γ̄l, l = 1, . . . , L. Then,
given the PDF of|hl| as shown in (2), the PDF and CDF of
γl can be readily derived, which are

fl(γl) =
1

Γ(ml)

(
ml

γ̄l

)ml

γml−1
l exp

(

−mlγl

γ̄l

)

, γl ≥ 0,

(3)

Fml
(γl) =

γ(ml,
mlγl

γ̄l
)

Γ(ml)
, γl ≥ 0. (4)

1The estimation of parameterm is important for practical systems. A related
paper [22] and the references cited in it discussed this issue. The fading
parameter can be estimated according to (6) of [22] and the result is accurate
within an average mean squared error of3.81×10−5. Apart from the model
mentioned in this paper, both Kronecker model [23] and the Weichselberger
model [24] are capable of accurately estimating the channel parameters at a
low complexity for SISO system.

whereγ(a, x) is the incomplete gamma function [26].
Given the SNRs,γ1, γ2, . . . , γL, of the L hops within a

TS, in our multi-hop transmission scheme, the packets are
transmitted over the MHLs based on the following strategy.
Among those hops, whose transmitter buffers have packets
awaiting transmission and whose receivers are ready for recep-
tion, the MHD protocol first decides, which of theL CDFs,
Fm1

(γ1), Fm2
(γ2), . . . , FmL

(γL), has the highest value. Then,
a packet is transmitted over the specific hop having the highest
CDF ordinate value using a TS. Naturally, due to the store-
and-wait characteristics of the RNs, the potential performance
improvement is obtained at the cost of an increased delay.
In this contribution, we study both theblock delayand the
packet delay. The block delay is defined as the time required
for a block of packets generated by the SN to reach the
DN. By contrast, the packet delay is the time required for
delivering a specific packet from the SN to the DN, when
assuming that there is an infinite number of packets to trans-
mit. Furthermore, we also found that for a sufficiently large
amount of data, the MHD scheme on average does not have
to strike an explicit trade-off between the delay toleratedand
the achievable error/outage performance. Our studies show
that both our MHD scheme and the conventional multi-hop
transmission scheme [19] use exactly the same number of TSs
to deliver a block of packets, hence yielding the same block
delay. This is because our MHD scheme transmits a single
packet over one hop per TS, identically to the conventional
multi-hop transmission scheme. By contrast, the packet delay
is a random variable, distributed in a range bounded by the
minimum and maximum packet delays. However, for anL-
hop link, the MHD scheme delivers on average one packet per
L TSs to the DN, while the conventional multi-hop scheme
delivers exactly one packet perL TSs to the DN.

As mentioned in Section I, we have proposed a MHD
scheme in [16, 17], which selects the specific hop having the
highest SNR for transmitting a packet within a TS, which
effectively implements selection diversity. In the MHD scheme
proposed in [16, 17], we assumed that all the hops have the
same average SNR and their channels experience the same
fading, implying that the SNRs of all the hops obey the same
CDF. Hence, the selection procedure directly based on the
SNRs of theL hops would give each hop the same probability
of 1/L to be chosen. By contrast, in this paper, the SNRs of
the L hops obey different distributions, which depend on the
L parametersml, for l = 1, 2, . . . , L. In this case, directly
selecting the hop having the highest SNR would result in
different activation probabilities for theL links. Again, this is
undesirable, since the hops chosen with relatively low proba-
bilities may impose significant delays on the packet delivery,
potentially resulting in a low throughput and possible buffer-
overflow. Therefore, our proposed MHD scheme activates the
specific hop, whose SNR maps to the maximum CDF ordinate
value from the setFm1

(γ1), Fm2
(γ2), . . . , FmL

(γL), so that
each hop has the same probability of1/L to be chosen for
transmission within a TS.

Given the set of independent CDFsFm1
(γ1),

Fm2
(γ2), . . . , FmL

(γL) corresponding to L hops, the
proof that any hop is selected with a probability of1/L is as



follows. Let us define a new random variableXj = Fmj
(γj)

as the CDF ofγj which constitutes our selection criterion. It
may be readily shown thatXj are i.i.d for the different hops.
In fact, the CDF ofXj is expressed by2

FXj
(x) = P (Xj <= x)

= P (Fmj
(γj) <= x)

= P (γj <= F−1
mj

(x)) (5)

(since the CDF is always an increasing function)

= Fmj
(F−1

mj
(x))(by definition)

= x independent ofj, (6)

whereF−1(·) denotes the inverse function of the CDFF (·).
Therefore,Xj are i.i.d (we already know that they are inde-
pendent). Hence, we can say that the probability of selecting
any hop is 1

L .
In addition to the above property, this MHD scheme also

has the following pair of desirable properties. Firstly, when the
SNRs of all hops have the same CDF, selecting the hop with
the maximum SNR from the setγ1, γ2, . . . , γL is equivalent
to selecting the hop with the maximum CDF value, since this
maximum CDF value is generated by the maximum SNR in
the set ofγ1, γ2, . . . , γL. Secondly, our forthcoming discourse
will demonstrate that similarly to the MHD scheme of [16,
17] the proposed MHD scheme is also capable of achieving
full diversity. Based on the above properties, the MHD scheme
proposed in this contribution may be viewed as a generalized
MHD scheme, which achieves full multihop diversity, while
guaranteeing that all hops have the same probability to be
activated for transmission.

Note additionally that in [16] a decentralized MAC layer
protocol was proposed for the implementation of the MHD
scheme. There are three stages in this protocol. In the first
two stages, each node may assume the knowledge of the
buffer - fullness in its immediately adjacent nodes as well
as the channel condition knowledge of nearby nodes within
one or two hops. In the third stage, each node will broadcast
different MAC layer control signals at specific time instant
based on above-mentioned buffer and channel knowledge, as
well as by exploiting the knowledge of the hop index of
this node and of the previously received MAC layer control
signal. Given this knowledge, the ‘best’ hop can be selected
within no more than(9 + L × Si) symbol durations, where
L is the total number of hops andSi is the channel quality
identifier. Physically this delays corresponds to the maximum
MAC layer delay. Note that the delay of the first transmission
is significantly lower than the maximum MAC layer delay.
One of the specific examples given in [16] shows that the
MAC layer delay is only3.7% of the time slot duration. This
MAC layer protocol can be directly used for the MHD scheme
proposed in this contribution, after replacingγ1, γ2, . . . , γL of
[16] by Fm1

(γ1), Fm2
(γ2), . . . , FmL

(γL).
Having described the system model and the MHD scheme,

below we focus our attention on the MHL’s performance,
including its BER, outage probability as well as diversity order.

2The authors gratefully acknowledge that this proof was generously pro-
vided by one of the anonymous reviewers.

The main assumptions adopted in our study are summarized
as follows:

• The SN always has packets to send, hence the MHL
operates in its steady state.

• The DND can store an infinite number of packets, while
the RNs can only store at mostB packets.

• The fading processes of theL hops of a MHL are
independent, while the fading of a given hop remains
constant within a packet duration, but it is independently
faded from one packet to another.

III. PERFORMANCEANALYSIS

In this section, we first derive the lower-bound for the
BER of the MHLs conveying BPSK/MQAM baseband signals.
Then, the BER for the MHLs relying on the RNs having a
buffer sizeB is analyzed. Similarly, the lower-bound and exact
outage probabilities are analyzed in this section. Due to the
complexity to evaluate the exact BER and outage probability,
when L and B are large, an approximation approach is
proposed. Finally, the diversity order of our MHD scheme is
derived.

Based on Fig. 1 and the operational principles of the MHLs
described in Section II, the following events may occur, when
every RN has a buffer size ofB packets. Firstly, the buffer of
a RN may be empty at some instants. In this case, this RN
cannot be the transmit node, since it has no packets to transmit.
Secondly, the buffer of a RN may be full. Then, this RN cannot
act as the receiver node, since its buffer is unable to store
further packets. In both of the above cases, a hop has to be
chosen for transmission from the resultant reduced set of hops.
This results in an increased BER and outage probability due
to the associated reduced selection diversity gain, as explained
in our forthcoming discourse. Therefore, if we eliminate the
above-mentioned constraints by assuming that every RN has
an infinite buffer size, and that all the RNs can always transmit
and receive packets, we can obtain the lower-bounds for both
the BER and the outage probability of the MHLs. By contrast,
when the exact performance analysis is considered, the effects
of the finite buffer size have to be considered. In this case,
we can carry out the relevant analysis based on the classic
Markov chains [3]. Let us first analyze the achievable BER.

A. Bit Error Rate Analysis

In this section, the lower-bound single-hop BER for the
lth hop, expressed asP (l)

Le , is analyzed first, when every
RN is assumed to have an infinite buffer for storing the
received packets and also always have packets prepared for
transmission. Then, the end-to-end lower-bound BER,PLE ,
is derived, where the subscript ‘LE’ stands for ‘lower-bound
error rate’. Finally, the accurate single-hop and end-to-end
BER are derived, when assuming that the RNs have buffers
of finite size.

Based on the operational principles of the MHLs and the
identical selection probability of every hop , when thelth hop
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Fig. 2. IQ-axis mapping of the64QAM constellation.

is activated, the instantaneous SNR of the selected hop obeys

fSC
l (γ)

=
L

[Γ(ml)]L

(
ml

γ̄l

)ml

γml−1

[

γ(ml,
mlγ

γ̄l
)

]L−1

exp

(

−mlγ

γ̄l

)

,

0 ≤ γ < ∞; l = 1, 2, . . . , L. (7)

It is interesting to observe from (7) that if thelth hop is
selected based on our MHD scheme, the PDF of its SNR is
independent of the other(L − 1) channels. This conditional
PDF is identical to that encountered, when theL hops ex-
perience the same fading CDF as thelth hop. Furthermore,
we can see that (7) is in fact the PDF of the maximum SNR
selected from the set of SNRs{γ1, γ2, . . . , γL}, when these
SNRs obey independent identical distribution (i.i.d) withthe
PDF and CDF as given by (3). Hence, our MHD scheme
effectively emulates a selection diversity scheme. The more
hops are invoked, the higher the diversity gain becomes and
therefore the better the BER performance becomes. Hence,
when all theL hops are assumed to be always available for
activation, the BER obtained represents the lower-bound ofthe
BER, which justifies the terminology of, lower-bound single-
hop BER, and, lower-bound end-to-end BER, used in this
paper.

Given the PDFfSC
l (γ), as shown in (7), the lower-bound

single-hop BER for thelth hop P
(l)
Le can be derived by first

considering the conditional probabilityP (l)
Le (γ). It is well-

known that the (square) MQAM signal can be decomposed
into two independent PAM signals [25, 27, 28], each of which
has the constellation points located at

{±d,±3d, · · · ,±(
√

M − 1)d}, (8)

where2d represents the minimum Euclidean distance of the
constellation points. When normalized by the noise’s standard
deviationσ, we have [25, 27]

d

σ
=

√

6γ

2(M − 1)
. (9)

In MQAM, the two component PAM signals have the same
error probability and can be treated independently. For exam-
ple, when the classic Gray coded bit mapping is applied, which

is the case considered in this paper, the64QAM constellation
can be decomposed into (I-)PAM and (Q-)PAM, as shown in
Fig. 2, wherebi1bi2bi3 andbq1bq2bq3 are the bits conveyed by
the I-PAM and Q-PAM, respectively.

Let us specifically consider the I-PAM stream and express
the probability Pi that a transmitted signal belongs to the
constellation pointid, where i = ±1, . . . ,±(

√
M − 1). Let

P
(l)
{i,j}(γ) represent the transition probability at thelth hop,

which is the probability that the receiver declares thatjd is
detected, whileid was transmitted. Furthermore, letei,j be the
number of different bits between the signal representing the
constellation pointid and that corresponding to the constel-
lation point jd. Then, the BER of MQAM can be expressed
as

P
(l)
Le (γ) =

2

log2 M

√
M−1∑

i=−
√

M+1

Pi





√
M−1∑

j=−
√

M+1

ei,jP
(l)
{i,j}(γ)



 .

(10)

Let us define

ppp =
[
P−

√
M+1, P−

√
M+3, · · · , P√

M−1

]T

PPP l(γ) =
[

P
(l)
{i,j}(γ)

]

, EEE =
[
ei,j

]
, 111 = [1, 1, · · · , 1]

T
, (11)

whereppp is an
√

M -length vector,111 is an
√

M -length vector
with elements of one, whilePPP l(γ) andEEE are (

√
M ×

√
M)-

dimensional square matrices. Then, (10) can be expressed in
a compact form as

P
(l)
Le (γ) =

2

log2 M
pppT [EEE ⊙PPP l(γ)]111

=
2

log2 M
111T
[
EEET ⊙PPPT

l (γ)
]
ppp, (12)

where⊙ represents the Hadamard product [29]. Observe that
at the right-hand side of (12), onlyPPP l(γ) is a function of
γ. Hence, the average single-hop BERP (l)

Le may be obtained
by averagingP (l)

Le (γ) of (12) with respect to the PDF of (7),
which can be expressed as

P
(l)
Le =

∫ ∞

0

P
(l)
Le (γ)fl(γ)dγ

=
2

log2 M
111T

(

EEET ⊙
∫ ∞

0

PPPT
l (γ)fSC

l (γ)dγ

)

ppp

=
2

log2 M
111T
(
EEET ⊙PPPT

l

)
ppp, (13)

wherePPP l =
[

P
(l)
{i,j}

]

with P
(l)
{i,j} denoting the average tran-

sition probability from the constellation pointi to j, given
by

P
(l)
{i,j} =

∫ ∞

0

P
(l)
{i,j}(γ)fSC

l (γ)dγ,

i, j = ±1,±3, . . . ,±(
√

M − 1). (14)

Again, P
(l)
{i,j}(γ) is the transition probability that the re-

ceiver declares thejth constellation point, given that theith



constellation point was transmitted. This probability canbe
readily derived by referring to Fig. 2, which is

P
(l)
{i,j}(γ) =

{
Q
[
(|i − j| − 1) d

σ

]
, when j = ±(

√
M − 1)

Q
[
(|i − j| − 1) d

σ

]
− Q

[
(|i − j| + 1) d

σ

]
, others

(15)

whereQ(x) is the GaussianQ-function. For example, when
4QAM (QPSK) is employed, we haved/σ =

√
γ. Hence, the

probability transition matrix is expressed with the aid of (15)
as

PPP l(γ) =

[
1 − Q

(√
γ
)

Q
(√

γ
)

Q
(√

γ
)

1 − Q
(√

γ
)

]

. (16)

Finally, when substituting (7), (9) as well as (15) into (14)
and completing the integration,Pi,j can be expressed as

P
(l)
{i,j} =







Q̄l

(√

(|i − j| − 1)γ̄l

)

, when j = ±(
√

M − 1)

Q̄l

(√

(|i − j| − 1)γ̄l

)

− Q̄l

(√

(|i − j| + 1)γ̄l

)

,

others,
(17)

By lettingAi,j = |i−j|−1 or Ai,j = |i−j|+1, Q̄l

(√
Ai,j γ̄l

)

in the above equation is given by

Q̄l

(√

Ai,j γ̄l

)

=

(
ml

γ̄l

)ml L

(Γ(ml))L

∫ ∞

0

Q
(√

Ai,jγ
)

γml−1

×
[

γ

(

ml,
mlγ

γ̄l

)]L−1

exp

(

−mlγ

γ̄l

)

dγ.

(18)

When ml is an arbitrary non-integer value, we find that it
is extremely hard to derive the closed-form solution for the
integral in (18). By contrast, whenm is an integer, a closed-
form expression can be derived for (18). In this case, firstly, the
incomplete Gamma function can be expressed as [21](8.352.6)

γ(m,x)

Γ(m)
=

(

1 − e−x
m−1∑

n=0

xn

n!

)

. (19)

Then, upon substituting (19) into (18) and after some rear-
rangement, we arrive at

Q̄l

(√

Ai,j γ̄l

)

=

(
ml

γ̄l

)ml L

Γ(ml)

L−1∑

li=0

(−1)li

(
L − 1

li

) li(ml−1)
∑

k=0

c
(li)
k

(
ml

γ̄l

)k

×
∫ ∞

0

Q
(√

Ai,jγ
)

γk+ml−1 exp

(

−ml(li + 1)

γ̄l
γ

)

dγ.

(20)

Finally, the above expression can be simplified with the aid of
the results from [26, 30],

Q̄l

(√

Ai,j γ̄l

)

=
L

Γ(ml)

L−1∑

li=0

(−1)li

(
L − 1

li

) li(ml−1)
∑

k=0

c
(li)
k

Γ(k + ml)

(li + 1)ml+k

× 1

2

[

1 − µ

ml+k−1∑

h=0

(
2h

h

)(
1 − µ2

4

)h
]

, (21)

where the coefficientsc(li)
k can be recursively computed ac-

cording to the formulas in (16) of [26], yielding

c
(li)
0 = 1, c

(li)
1 = li, c

(li)
li(ml−1) =

1

[(ml − 1)!]li

c
(li)
k =

1

k

min(k,ml−1)
∑

j=1

j(li + 1) − k

j!
c
(li)
k−j .

(22)

Furthermore, in (21), we have forM ≥ 4

µ =

√

A2
i,jgγ̄l

2ml(li + 1)/γ̄l + A2
i,jgγ̄l

, with g =
1.5

M − 1
, (23)

and, for BPSK (M = 2), we haveAi,j = 2, g = 0.5 and, cor-

respondingly,µ =
√

γ̄l

ml(li+1)/γh+γ̄l
andP

(l)
Le = Q̄l

(√
2γ̄l

)
.

Finally, we note that the lower-bound single-hop BERP
(l)
Le

of theL-hop MHL supported by the proposed MHD principles
can be evaluated by substituting (17) and the associated
formulas into (13).

Having obtained the lower-bound single-hop BERP
(l)
Le of

(13), the lower-bound end-to-end BERPLE can now be
derived by exploiting that the decode-and-forward scheme of
Fig. 1, where a packet is passed through the entire ad hoc chain
from one node to another. Regardless of the number of hops,
we are interested in the end-to-end constellation-constellation
transition matrix.3 Once we determined this transition ma-
trix, the BER performance can be analyzed similarly to the
single hop case. This equivalent end-to-end constellation-
constellation transition matrix is

∏L
l=1 PPPT

l , which is created
as the product of the transition matrix in each hop of the
link. Hence, when considering all the

√
M possible transmitted

symbols, which have the a-priori probabilities ofppp, as shown
in (11), the lower-bound end-to-end average BER of theL-hop
MHL can be expressed as (12), yielding

PLE =
2

m
111T

[

EEET ⊙
[

L∏

l=1

PPPT
l

]]

ppp. (24)

Note that, an end-to-end average BER expression for MHLs
has been derived in [31](42), which has a similar form as (24).
However, the expression [31](42) is only for BPSK/QPSK, but
not for MQAM, whenM ≥ 16. Specifically, for BPSK we can
readily obtain the lower-bound end-to-end BER expression,
which is

PLE =
1

2
− 1

2

L∏

l=1

(

1 − 2P
(l)
Le

)

. (25)

The lower-bound end-to-end BER of the MHLs has been
derived above, which assumed that each RN has an infinite
buffer size and the RNs always have packets to transmit.
The exact end-to-end BER of the MHLs is considered below,
where we assumed that every RN has a buffer of finite
size. In this case, the hops obeying either of the following
conditions should be excluded from the transmission list: a)
the hops, whose transmit nodes do not have packets to transmit

3The constellation-constellation transition matrix represents the transition
probabilities from constellation points from transmitter to constellations points
at the receiver.



and b) the hops, whose receive nodes are unable to accept
packets, since their buffers are full. When taking the above two
situations into account, the exact end-to-end BER of MHLs
can be analyzed as follows.

When deriving the accurate BER of the MHD scheme, we
have to consider the constraint that theL-hop link is forced
to choose the best one from the set ofl̂ hops in order to send
its information, when(L − l̂) out of theL hops are unable
to transmit information. This happens either when some of
the transmit nodes’ buffers are empty or when some of the
receive nodes’ buffers are full. Before finding the exact end-
to-end BERPe with finite size of buffer, the concept of state
is proposed. Based on this concept, the packets transmitted
over anL-hop link under the MHD scheme can be described
as a Markov process.

Let us assume that the buffer size of every RN isB
packets. When MQAM modulation is employed, thenlog2 M
packets are transmitted simultaneously. Hence, we can express
the equivalent buffer size of a RN aŝB = B/log2 M
packets. Let the numbers of packets stored in the(L − 1)
RNs, R1, R2, . . . , RL−1, be b1, b2, . . . , bL−1, where bl =
0, 1, . . . , B. Then, upon considering MQAM, the correspond-
ing equivalent numbers of packets areb̂1, b̂2, . . . , b̂L−1, where
b̂i = bi/ log2 M . Given the above definitions, the states of the
L-hop link can be defined in terms of the number of packets
stored in the(L − 1) RNs as

Si =
[

b̂
(i)
1 , b̂

(i)
2 , · · · , b̂

(i)
L−1

]T

, i = 0, 1, . . . , N − 1, (26)

where b̂
(i)
l denotes the equivalent number of packets stored

in the lth RN, when theL-hop link is in statei, while N =
(B̂+1)L−1 is the total number of states of the Markov process,
which constitute a setS = {S0, S1, . . . , SN−1}. Based on
the transitions among theN states, a state transition matrix
denoted byTTT can be characterized by the state transition
probabilities{Pij = P (s(t + 1) = Sj |s(t) = Si), i, j =
0, 1, . . . , N − 1}.

For example, when considering a three-hop link having the
parameters ofL = 3 andB̂ = 2, there is a total ofN = 32 = 9
states, which form a set

S =
{
S0 = [0, 0]T , S1 = [0, 1]T , S2 = [0, 2]T ,

S3 = [1, 0]T , S4 = [1, 1]T , S5 = [1, 2]T ,

S6 = [2, 0]T , S7 = [2, 1]T , S8 = [2, 2]T
}

.

Correspondingly, the state transition matrix becomes:

TTT =

















0 0 0 1 0 0 0 0 0
1/2 0 0 0 1/2 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
0 1/2 0 0 0 0 1/2 0 0
0 0 1/3 1/3 0 0 0 1/3 0
0 0 0 0 1/2 0 0 0 1/2
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 0 1 0

















.

(27)

Although the transition matrixTTT may be large, it can be
readily constructed. An algorithm conceived for forming the
matrix TTT may be described as follows:

1) The(B̂+1)L−1×(B̂+1)L−1 matrixTTT is first initialized
with zero elements.

2) For row i, i = 0, 1, . . . , (B̂ + 1)L−1 − 1, which

corresponds to theith stateSi =
[

b̂
(i)
1 , b̂

(i)
2 , · · · , b̂

(i)
L−1

]T

,
the following operations are carried out:

• If b̂
(i)
1 + 1 ≤ B̂, the column corresponding to the

output state
[

b̂
(i)
1 + 1, b̂

(i)
2 , · · · , b̂

(i)
L−1

]T

is set to one;

• For l = 1, 2, . . . , L−2, if b
(i)
l −1 ≥ 0 andb̂

(i)
l+1+1 ≤

B̂, the column corresponding to the output state
[

b̂
(i)
1 , . . . , b̂

(i)
l − 1, b̂i

l+1 + 1, · · · , b̂
(i)
L−1

]T

is set to
one;

• If b̂
(i)
L−1 − 1 ≥ 0, the column corresponding to the

output state
[

b̂
(i)
1 , b̂

(i)
2 , · · · , b̂

(i)
L−1 − 1

]T

is set to one.

3) Each of the rows is divided by the number of ones
in the same row, to guarantee that the total transition
probability from stateSi is one.

It can be shown that the state transition matrixTTT has the
following properties:

• Matrix TTT is a sparse matrix. Every row has at mostL
number of non-zero elements, while the remaining at least
(B̂ + 1)L−1 − L number of elements are zero elements.

• The sum of the probabilities in each row is one;
• The number of non-zero elements in a row represents the

number of hops that may be chosen for transmission.
Having obtained the state transition matrixTTT , the steady-

state probabilities can be computed by the formula [32]

πππ = TTTTπππ, (28)

where πππ =
[

π0, π1, . . . , π(B̂+1)L−1−1

]T

, in which πi (or
πSi

) is the steady-state probability that theL-hop link is in
stateSi. Note thatπππ in (28) is the right eigenvector of the
matrix TTTT associated with an eigenvalue of one. Therefore,
πππ can be obtained by solving the corresponding eigenvector
problem [33]. However, the matrixTTT may be extreme by large.
An approximate method of generatingπππ will be provided in
Subsection III-B.

The next step is to find the exact end-to-end BERPe based
on πππ. Firstly, a (L × L) element matrixPPP B̂

sel is computed,
in which PPP B̂

sel(l, l̂) denotes the probability that thelth hop is
selected from̂l available hops, when the equivalent buffer size
per RN is B̂. We assume that the total number of available
hops corresponding to stateSi is NSi

. Then, PPP B̂
sel can be

determined by the following algorithm.
Algorithm 1:
1) Initialization:PPP B̂

sel = 000;
2) for i = 1 : (B̂ + 1)L−1 // all the (B̂ + 1)L−1 possible

states;
for j = 1 : NSi

// all the available hops in stateSi;
compute:

PPP B̂
sel(jSi

, NSi
) = PPP B̂

sel(jSi
, NSi

) +
πi

NSi

; (29)



End
End

In (29), jSi
∈ {1, 2, . . . , L} denotes the hop index of thejth

available hop in stateSi. After obtainingPPP B̂
sel of (29), the

average BERpppB̂
l of the lth hop can be computed with the aid

of the whole probability formula, yielding

pppB̂
l = L

L∑

l̂=1

PPP B̂
sel(l, l̂)P

(l̂)
Le , (30)

whereP
(l̂)
Le is given by (13). Finally, the exact end-to-end BER

of the MHL of the RNs can be obtained for a finite buffer by
substituting (30) into (24).

B. Approximate solution of(28)

The accurate value ofπππ can be obtained by solving (28),
when TTT is small. By contrast, ifTTT is large, the achievable
performance approaches the theoretical bound, which will
be detailed in Section IV. If the size ofTTT is mediocre, an
approximate method is provided here for circumventing this
problem. Note that all our discussions are based on assuming
steady-state operation.

Actually, the number of packets in the RN buffers cannot
be considered independent. Nevertheless, for the sake of
simplicity, they are treated as independent for the sake of hav-
ing the relevant approximate expressions. Assuming thatpi,b̂

represents the probability of havinĝb packets in theith relay,
we can approximateπ

Sj=[b̂
(j)
1 ,b̂

(j)
2 ,··· ,b̂(j)

L−1]
T ≈

∏L−1
i=1 p

i,b̂
(j)
i

.
Based on this formula, we can see that in order to compute
π

Sj=[b̂
(j)
1 ,b̂

(j)
2 ,··· ,b̂(j)

L−1]
T for all the (B̂ + 1)L−1 states, the total

number of unknown probabilities is(L − 1)(B̂ + 1), which
are pi,b̂ for i = 1, 2, . . . , L − 1 and b = 0, 1, . . . , B̂. Hence,
our objective is to express these probabilities by finding at
least(L − 1)(B̂ + 1) equations, which are derived below by
exploiting their specific properties.

1) Symmetry Proposition: Let the probability of a

state Si =
[

b̂
(i)
1 , b̂

(i)
2 , · · · , b̂

(i)
L−1

]T

, i = 0, 1, . . . , N −
1 be πi. Let the probability of another stateSi =
[

B̂ − b̂
(i)
L−1, B̂ − b̂

(i)
L−2, · · · , B̂ − b̂

(i)
1

]T

be πi, where b̂
(i)
l for

l = 1, . . . , L − 1 are given by the correspondinĝb(i)
l in Si.

Then we haveπi = πi.
Proof: The unavailable channels are those ones that are

linked to the specific RNs having either an empty or a full
buffer. The channels available for stateSi are the same as for
stateSi. Since every node that has zero packets to send inSi is
treated as a node havinĝB packets, this represents a full buffer.
Hence it will be unable to receive any packets. By contrast, the
nodes that havêB packets to send inSi are treated as nodes
having zero packets. Since this is a node with an empty buffer,
it will be unable to transmit any packet. Therefore, the number
of available channels remains unchanged. The following is the
mathematical proof. If the stateSi is substituted bySi in (28),
the equation remains unchanged. Therefore, we haveπi = πi.

Let us consider the same example as before. Again, the
relevant parameters areL = 3 and B̂ = 2. Then, from (28)

we have:

πS0=[0,0]T = πS1=[0,1]T × 1

2
(31)

πS1=[0,1]T = πS2=[0,2]T × 1

2
+ πS3=[1,0]T × 1

2

πS2=[0,2]T = πS4=[1,1]T × 1

3

πS3=[1,0]T = πS0=[0,0]T × 1 + πS4=[1,1]T × 1

3

πS4=[1,1]T = πS1=[0,1]T × 1

2
+ πS5=[1,2]T × 1

2
+ πS6=[2,0]T × 1

πS5=[1,2]T = πS2=[0,2]T × 1

2
+ πS7=[2,1]T × 1

2

πS6=[2,0]T = πS3=[1,0]T × 1

2
+ πS7=[2,1]T × 1

2

πS7=[2,1]T = πS4=[1,1]T × 1

3
+ πS8=[2,2]T × 1

πS8=[2,2]T = πS5=[1,2]T × 1

2
.

If all Si values are substituted bySi, the above formula
becomes:

πS8=[2,2]T = πS5=[1,2]T × 1

2
(32)

πS5=[1,2]T = πS2=[0,2]T × 1

2
+ πS7=[2,1]T × 1

2

πS2=[0,2]T = πS4=[1,1]T × 1

3

πS7=[2,1]T = πS8=[2,2]T × 1 + πS4=[1,1]T × 1

3

πS4=[1,1]T = πS5=[1,2]T × 1

2
+ πS1=[0,1]T × 1

2
+ πS6=[2,0]T × 1

πS1=[0,1]T = πS2=[0,2]T × 1

2
+ πS3=[1,0]T × 1

2

πS6=[2,0]T = πS7=[2,1]T × 1

2
+ πS3=[1,0]T × 1

2

πS3=[2,1]T = πS4=[1,1]T × 1

3
+ πS0=[0,0]T × 1

πS0=[2,2]T = πS1=[0,1]T × 1

2
,

which is identical to (31). The only difference is in the
terminology. Hence, the solution of (32) is also the same
as that of (31), which means thatπS0

= πS8
, πS1

= πS5
,

πS3
= πS7

, as so on.



Based on the proposition above, we arrive at

pi,b̂

=

B̂∑

j1=0

B̂∑

j2=0

· · ·
B̂∑

ji−1=0

B̂∑

ji+1=0

· · ·
B̂∑

iL−1=0

× πS=[j1,j2··· ,ji−1,b̂,ji+1··· ,jL−1]T

=
B̂∑

j1=0

B̂∑

j2=0

· · ·
B̂∑

ji−1=0

B̂∑

ji+1=0

· · ·
B̂∑

iL−1=0

× πS=[B̂−jL−1··· ,B̂−ji+1,B̂−b̂,B̂−ji−1,··· ,B̂−j2,B̂−j1]T

=pL−i,B̂−b̂, i = 1, 2, . . . , L − 1; b = 0, 1, . . . , ⌊(B̂ + 1)/2⌋.
(33)

where⌊x⌋ returns the maximal integer less thanx. From (33),
we can see that the proposition can provide⌊(L−1)(B̂+1)/2⌋
equations.

2) The probability of using every channel is identical:
When our MHD scheme is employed and when the MHL
is operated in steady state, every hop has approximately the
same probability to be activated. According to the operational
principles of the MHD, as described in Section II, if theith
hop is selected, the(i−1)st node’s buffer must not be empty,
which has a probability of(1 − pi−1,0), and theith node’s
buffer should not be full, which has a probability of(1−pi,B̂).
In addition to the above mentioned buffer condition, let us
assume that every hop has a1

L probability of experiencing the
"best" channel. Naturally, this is not always exactly satisfied,
hence it remains an approximation. For the SN and DN, we
set p0,0 = 0 and pL,B̂ = 0, since we assumed that the SN
always has packets to transmit and the DN is always ready to
receive a packet. Hence, when considering all theL hops, we
have the following relationship

(1 − p0,B̂) ≈ (1 − pi−1,0)(1 − pi,B̂)

≈ (1 − pj−1,0)(1 − pj,B̂) ≈ (1 − pL,0),

i = 1, . . . , L − 1; j = i + 1, i + 2, . . . , L. (34)

From (34), we can construct a total ofL(L−1)/2 equations.
However, some of them can be derived from some others,
i.e. they are not independent. After a close consideration
and applying the above "Symmetry Proposition", we arrive
at ⌊(L − 1)/2⌋ independent equations.

1

0

B̂

B̂ − 1

b̂ + 1

b̂

Fig. 3. Considering nodei, the probability of preceding from̂b to b̂ + 1 is
the same as that from̂b+1 to b̂, when system is steady. If the buffer of node
i is empty, the(i + 1)th hop is unavailable, while if that of nodei is full,
the ith hop is unavailable.

3) The system is in its steady state:When this is in the
case, for a single RN, the average number of transitions from
b̂ to b̂ + 1 is the same as that from̂b + 1 to b̂. By referring to
Fig. 3, we may readily infer that for̂b = 1, 2, . . . , B̂ − 2, we
have

pi,b̂(1 − pi−1,0)/L ≈ pi,b̂+1(1 − pi+1,B̂)/L,

i = 1, 2, . . . , L − 1, (35)

where(1 − pi−1,0)/L at the left-hand side denotes the prob-
ability that nodei receives a packet from node(i− 1), while
(1 − pi+1,B̂)/L is the probability that nodei sends a packet
to node(i + 1).

When b̂ = 0, the (i + 1)th hop is unavailable, as theith
node’s buffer is empty. Hence, the transitions satisfy

pi,0(1 − pi−1,0)/(L − 1) ≈ pi,1(1 − pi+1,B̂)/L,

i = 1, 2, . . . , L − 1 (36)

Similarly, whenb̂ = B̂ − 1, we have

pi,B̂−1(1 − pi−1,0)/L ≈ pi,B̂(1 − pi+1,B̂)/(L − 1),

i = 1, 2, . . . , L − 1. (37)

where the factor1/(L − 1) at the righthand side is because
there are only(L−1) hops avaliable for selection, when node
i is at stateB̂ (full), resulting in that thei hop is unavailable.

Consequently, when considering (35) - (37) and "Symmetry
Proposition", we can obtain̂B(L − 1)/2 approximate equa-
tions.

4) The total probability is unity:Finally, the sum of the
probabilities ofpi,b̂ at RN i should satisfy:

B̂∑

b̂=0

pi,b̂ = 1, i = 1, 2, . . . , L − 1. (38)

When considering the "Symmetry Proposition", we arrive at
⌊(L − 1)/2⌋ equations.

By exploiting the properties of the MHL operated under our
proposed MHD scheme, we can demonstrate that the number
of equations is no less than the number of unknowns. IfL is
odd andB̂ > 1, the number of equations is given by

⌊(L − 1)(B̂ + 1)/2⌋ + ⌊L/2⌋ + ⌊(L − 1)/2⌋
︸ ︷︷ ︸

L-1

+B̂(L − 1)/2

=
L − 1

2
(B̂ + 1) + (L − 1) + B̂

L − 1

2

=(L − 1)(B̂ +
3

2
), (39)

which is larger than the number of unknowns(L−1)(B̂ +1).
By contrast, ifL is even andB̂ > 1, the number of equations
obeys:

⌊(L − 1)(B̂ + 1)/2⌋ + ⌊L/2⌋ + ⌊(L − 1)/2⌋
︸ ︷︷ ︸

L-1

+B̂(L − 1)/2

=
L − 1

2
(B̂ + 1) − 1

2
+ (L − 1) + (L − 1)(B̂/2)

=(L − 1)(B̂ +
3

2
) − 1

2
, (40)



which is larger than the number of unknowns(L−1)(B̂ +1).
All the above discussion is based on the assumption ofB̂ > 1.
This is because the size ofTTT is 2L−1 × 2L−1 when B̂ = 1,
which is not large.

Hence, we can express the(L−1)(B̂+1) probabilitiespi,b̂i

for i = 1, 2, . . . , L − 1 and b̂i = 0, 1, . . . , B̂ by solving (L −
1)(B̂ + 1) number of the equations. Consequently, the(B̂ +
1)L−1 steady state probabilities{πSj

} can be approximately
determined using the relationship ofπ

Sj=[b̂
(j)
1 ,b̂

(j)
2 ,··· ,b̂(j)

L−1]
T ≈

∏L−1
i=1 p

i,b̂
(j)
i

.
Specifically, a four step algorithm may be formulated as

follows. Step one: Take allpi,0 as unknowns.Step two: Based
on (33), allpi,B̂ can be determined.Step three: Based on (35),
(36) and (37), all otherpi,b̂ can be found.Step four: The pi,0

for i = 1, 2, . . . , L − 1 are solved based on (38). This can
be achieved, since there are(L − 1) equations for(L − 1)
unknowns.

Below we consider the special case of two hops. In this case,
all the approximate formulas provided above become accurate,
yielding:

π0 = πB̂ =
1

2B̂
(41)

πi =
1

B̂
, i = 1, 2, · · · , B̂ − 1,

which can be obtained either from the equations provided in
this subsection or directly from (28). Note that, in (28), each
line has no more then two unknowns. We assumeπ0 = κ and
πi = 2κ, i = 1, 2, · · · , B̂ − 1, as well asπB̂ = κ. Finally, by
exploiting (38) we arrive atκ = 1

2B̂
.

Let us now analyze the outage probability (OP).

C. Outage Probability

The OP characterizes the specific event that the instan-
taneous SNR of the selected hop is lower than a pre-set
threshold. When an outage occurs, no data will be transmitted
over the MHL, in order to avoid violating the required target
BER, since otherwise the BER would become higher than the
target. Therefore, given the set of thresholdsγTl

for the L
hops, the lower-bound OP is

PLO =
1

L

L∑

l=1

[∫ γTl

0

fSC
l (γ)dγ

]

, (42)

when assuming that all theL hops have the same probability
of 1/L being activated. Upon substitutingfSC

l (γ) from (7)
into the above equation, we readily arrive at:

PLO =
1

L

L∑

l=1

[

γ(ml,
mlγTl

γ̄l
)

Γ(ml)

]L

. (43)

Furthermore, givenπππ andPPP B̂
sel, the exact OP of the MHLs

whose RNs have a finite buffer can be expressed as

PO =

L∑

l=1

L∑

l̂=1

PPP B̂
sel(l, l̂)

[

γ(ml,
mlγTl

γ̄l
)

Γ(ml)

]l̂

. (44)

D. Diversity Order

In a single hop, each̄Ql

(√
Ai,j γ̄l

)
has the samēγl andml,

hence,Q̄l

(√
Ai,j γ̄l

)
has the same diversity gain asP

(l)
Le . The

diversity orderDOl can be derived for thelth hop from (18),
yielding

Q̄l

(√

Ai,j γ̄l

)

=

(
ml

γ̄l

)ml L

Γ(ml)

∫ ∞

0

Q
(√

Ai,jγ
)

γml−1

×




γ
(

ml,
mlγ
γ̄l

)

Γ(ml)





L−1

exp

(

−mlγ

γ̄l

)

dγ.

(45)

When γ̄l is large, the incomplete gamma function can be
approximated as [34](06.06.26.0002.01)

γ(ml,
mlγ

γ̄l
)/Γ(ml) =

(mlγ
γ̄l

)ml

Γ(ml)ml

∞∑

n=0

ml

ml + n

(−mlγ
γ̄l

)n

n!

≈ 1

Γ(ml)ml

(
mlγ

γ̄l

)ml

. (46)

Then, substituting (46) into (45), we arrive at:

Q̄l

“

p

Ai,j γ̄l

”

≈
m

mlL−L+1

l

γ̄
mlL

l

L

Γ(ml)L

Z

∞

0

Q
“

p

Ai,jγ
”

γ
mlL−1 exp

„

−
mlγ

γ̄l

«

dγ

≈
m

mlL−L+1

l

γ̄
mlL

l

L

Γ(ml)L

1

2
√

πmlL

„

2

A

«mlL

Γ(mlL +
1

2
)

=C

„

1

γ̄
ml

l

«L

. (47)

whereC is not related tōγl. From (47) we can explicitly see
that the achievable diversity order of thelth hop isDOl = L,
when there areL available hops for activation. Furthermore,
according to the operational principles of the MHD, the end-
to-end performance of the MHL also benefits from attaining
the diversity order ofDOl = L.

Note that the delay analysis of the MHLs employing the
proposed MHD scheme is identical to that in [16]. More
explicitly, the corresponding probability mass function (PMF)
of the delay and the average delay of the system are the same
as those in [16], but we have to replacB in [16] by the
equivalent buffer size ofB̂ = B/log2 M . Again, similarly
to [16], the maximum and minimum packet delay are given
by B̂L2 − B̂L−L + 2 andL TSs. Finally the distribution of
the delay is given by (36) of [16]. Given the distribution of
the delay, the average delay may be readily calculated. The
average delay increases with the number of hops and/or the
sizeB̂ of the buffer. The corresponding examples can be found
in Fig. 10 and Fig.11 of [16].

IV. PERFORMANCERESULTS

In this section, we provide a range of performance results, in
order to characterize both the BER and outage performance of
the MHLs employing our MHD scheme, when communicating
over Nakagami-m fading channels. We illustrate the effects
of various MQAM schemes, buffer sizes, distances of the
different hops and of different Nakagami-m fading parameters



m=[3 2 1], d=[1 2 3]/6: Line (theory), Marker (simulation)
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Fig. 4. BER versus average SNR per bit performance of three-hop links of
the three hops having the distancesd = [ 1

6

2

6

3

6
] and experiencing different

Nakagami-m fading associated withm = [3 2 1], when the buffer size of
every RN isB = 4, . . . , 512 packets, the modulation scheme is16QAM,
and the EA is applied to make all hops achieve the same received average
SNR.

on the achievable performance. In our evaluations, we assume
that the pathloss obeys the negative exponential law ofd−α

l ,
wheredl is the length of thelth hop between nodes(l−1) and
l, while α represents the pathloss exponent having a typical
value between2 to 6. In order to illustrate the impact of the
number of hops per MHL on the achievable performance, we
assume that the total energy assigned for transmitting one
bit from the SN to the DN is constant, regardless of the
number of hops per MHL. Specifically, we let the received
energy at the DN isEb unit when transmitting one bit directly
from SN to DN, which is termed as the ‘Average SNR per
bit’ in the figures. Then, when given a pathloss exponentα
and a distanced between SN and DN, the transmit energy
required is then given byEtotal = log2 M × dαEb. Then, if
the MHL hasL hops, the total energyEtotal is assigned to
the L transmit nodes, according to one of the following two
scenarios. In the first scenario, appropriate energy allocation
(EA) is implemented for assuming that all the hops have
the same average SNR. In this case, theith hop’s transmit
energy isEi =

dα
i Etotal

P

L
l=1 dα

l

. Hence, all theL hops have the same

received (signal) energy, which isE′ = Etotal
P

L
l=1 dα

l

. In the first
scenario, we assume that different hops experience different
fading CDFs, in order to illustrate the impact of diversem-
factors. In the second scenario, we assume that each of the
L hops usesEtotal/L unit of energy to transmit, while all
the hops experience the same fading CDF. This allows us to
investigate the effect of the distances between nodes on the
achievable performance.

Note that in this section the theoretical results shown in the
figures were evaluated from the formulas derived in Section
III, while the values represented by the markers were obtained
via simulations. The curves corresponding toB = 512 were
evaluated based on the approximation algorithm. Furthermore,
the corresponding results for the conventional (Conv.) multi-
hop transmission scheme are depicted as the benchmarkers.

Fig. 4 to Fig. 8 characterize the end-to-end BER perfor-
mance. The impacts of them-factor, of the buffer size of
RN nodes, pathloss exponents, number of hops and of the
modulation schemes on the end-to-end BER are investigated.

m=[3 2 1], d=[1 2 3]/6: Line (theory), Marker (simulation)
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Fig. 5. BER versus average SNR per bit performance of three-hop links of
the three hops having the distancesd = [ 1

6

2

6

3

6
] and experiencing different

Nakagami-m fading associated withm = [3 2 1] and different pathloss
reflected byα = 2, 3, 4, when the buffer size of every RN isB = 32
packets, the modulation scheme is16QAM, and the EA is applied to make
all hops achieve the same received average SNR.

m=[2 2 2], d=[1 2 3]/6: Line (theory), Marker (simulation)
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Fig. 6. BER versus average SNR per bit performance of three-hop links of
the three hops having the distancesd = [ 1
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type of Nakagami-m fading associated withm = 2, when the buffer size of
every RN isB = 4, . . . , 128 packets, the modulation scheme is16QAM,
and1/3 of the total transmission energy is assigned to every hop, hence the
hops have different received average SNR.

m=1,2: Line (theory), Marker (simulation)
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Fig. 7. BER versus average SNR per bit performance with respect to different
number of hops, when the buffer size of every RN isB = 8 packets and the
modulation scheme is16QAM. The distance between SN and DN is the same
regardless of the number of hops and, for any case, all hops have the same
distance.



m=1: Line (theory), Marker (simulation)
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Fig. 8. BER versus average SNR per bit performance of two-hop links with
different modulation schemes, when communicating over Rayleigh (m =
1) fading channels. The buffer size of every RN isB = 32 packets, the
modulation scheme is16QAM and both hops have the same distance.

Except for Fig. 6, where the different hops have different
received average SNRs, in Fig. 4, 5, 7 and 8 all the hops have
the same received average SNR, which is achieved with the
aid of our hop-length-dependent EA. The parameters used in
our investigations can be found in the corresponding figures.
Note that, the distances shown in the figures are normalized
distances obtained by assuming that the distance between SN
and DN is unity.

Fig. 4 illustrates the impact of the buffer size on the end-
to-end BER performance of three-hop links. Explicitly, the
BER performance improves, as the buffer size of the RNs
is increased, implying that MHD is indeed beneficial. When
the buffer size is relatively large, such asB = 512 packets,
corresponding to the equivalent buffer size ofB̂ = 128, the
attainable BER performance is close to the lower-bound BER
achievable by using an infinite buffer size. As shown in the
figure, in comparison to the conventional multihop diversity
scheme, at a BER of10−3, the multihop diversity gain is over
14dB, when a buffer ofB = 512 packets is used by every
RN.

Fig. 5 shows the impact of the propagation pathloss on the
end-to-end BER performance of three-hop links experiencing
different fading CDFs associated withm = [3 2 1] for the first,
second and third hops, respectively. The results show that the
end-to-end BER performance improves, as the pathloss expo-
nent becomes higher, implying a higher propagation pathloss.
Hence, for high pathlosses, it is beneficial to use multihop
transmission relaying on MHD. The reason behind it is that
when the propagation pathloss increases, the total transmission
energy required for single-hop transmission from SN to DN
significantly increases. When this total energy is shared by
multihop transmission, significant performance improvements
can be obtained. Observe in Fig. 5 that our MHD scheme sig-
nificantly outperforms the conventional multihop transmission
scheme.

Fig. 6 shows the end-to-end BER of three-hop links expe-
riencing the same Nakagami fading CDF ofm = 2. In our
simulations, equal energy allocation was applied. Hence, the
different hops have different received average SNRs due to the
different distances assumed. In this case, the system’s BER
performance will be dominated by that of the longest hop.

m=[3 2 1], d=[1 2 3]/6: Line (theory), Marker (simulation)

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

O
ut

ag
e

P
ro

ba
bi

lit
y

-5 0 5 10 15

Average SNR Per Bit (dB)

Conv.
B=4
B=8
B=32
B=128
B=512
Bound

Fig. 9. Outage performance of three-hop links of the three hops having
the distancesd = [ 1
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] and experiencing different Nakagami-m fading

associated withm = [3 2 1], when the buffer size of every RN isB =
4, . . . , 512 packets, the modulation scheme is16QAM, and the EA is applied
to make all hops achieve the same received average SNR.

m=1,2: Line (theory), Marker (simulation)
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Fig. 10. Outage performance with respect to different number of hops, when
the buffer size of every RN isB = 8 packets and the modulation scheme
is 16QAM. The distance between SN and DN is the same regardless of the
number of hops and, for any case, all hops have the same distance.

As seen in Fig. 6, a significant MHD gain can be obtained in
comparison to the conventional multihop transmission scheme.
Specifically, at the BER of10−3, the MHD gain is in excess of
than 7dB, which is achieved by arranging every RN a buffer
of B = 128 packets.

Fig. 7 demonstrates the impact of the number of hops
on the end-to-end BER performance. In the simulations, we
assumed that the modulation scheme was16QAM and the
buffer size wasB = 8. Different hops were assumed to
experience i.i.d Nakagami-m fading and all hops had the same
distance. Explicitly, given the distance between SN and DN,
the BER performance is improved, when the number of hops
is increased, resulting in more diversity gain.

Fig. 8 shows the end-to-end BER performance for different
modulation schemes employed by a2-hop link with a RN of
buffer sizeB = 32, when operated in Rayleigh fading (m =
1) channels. Compared to the conventional multihop diversity
scheme, the MHD achieved a9dB gain for QPSK and a4dB
gain for256QAM at the BER of10−3. The reason for having
a lower diversity gain for high order modulation schemes is
that the equivalent buffer size iŝB = 32/log2 4 = 16 for
4QAM and B̂ = 32/log2 256 = 4 for 256QAM.

Figs. 9, 10 and 11 characterize the outage probability of



m=1: Line (theory), Marker (simulation)
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Fig. 11. Outage performance of two-hop links with different modulation
schemes, when communicating over Rayleigh (m = 1) fading channels. The
buffer size of every RN isB = 32 packets, the modulation scheme is16QAM
and both hops have the same distance.

our multihop links, when various MQAM schemes, various
buffer sizes and various number of hops are considered. These
figures stipulate the same assumptions, as Figs. 4, 7 and 8,
respectively. Note that in our numerical computations and
simulations, the threshold set ofγT1

= · · · = γTL
= γT was

adjusted for maintaining a BER of0.03 for a single-hop link,
when the received energy for a bit transmitted from the SN to
DN was 1 [35]. The outage probability of the corresponding
conventional multihop scheme is also provided for the sake
of comparison in Fig. 9 and Fig. 11. From these figures,
we may derive similar observations to those emerging from
Figs. 4, 7 and 8. In summary, in Fig. 9, a significant multihop
diversity gain is observed for the RNs employing buffers of
a sufficiently high size. The line with solid circles, which
represents the case of a large buffer size (B = 512 packets
giving an equivalent buffer size of̂B = 128), approaches the
theoretical bound. Fig. 10 shows that the outage probability
reduces, as the number of hops increases. Fig. 11 characterize
the outage probability of two hop links relying on different
modulation scheme, as evaluated from (30) and (44), which
exhibits a lower improvement for higher-order modulation
schemes, because the equivalent buffer size of higher-order
modulation schemes is lower than for lower-order modulation
schemes.

V. CONCLUSIONS

In this contribution, a multihop transmission scheme,
namely the MHD scheme, was proposed for transmission
of information over MHLs. Within a given TS, our MHD
scheme activates a specific hop from the set of the all available
hops based on the values given by their CDFs. Our analysis
showed that this CDF-aware MHD scheme represents a gen-
eralized MHD scheme, which is suitable for general MHLs,
where different hops may have different average SNRs and
experience different types of fading CDFs. Furthermore, our
MHD scheme is capable of achieving the full diversity gain
provided by the independent fading experienced by different
hops. In this paper, the performance of MHLs employing the
MHD scheme was investigated, when communicating over
Nakagami-m fading channels. Both accurate and approximate

expressions were derived for the end-to-end BER as well as
for the outage probability of BPSK/MQAM signals. Further-
more, the attainable diversity order was also derived. Our
performance results showed that exploiting the independent
fading of different hops results in a significant diversity gain.
In general, the achievable multihop diversity gain increases, as
the relay’s buffer size increases as well as when the affordable
packet delay increases. The achievable multihop diversity
gain improved as the number of hops increased. Therefore,
the MHD-assisted multihop transmission is significantly more
energy-efficient than the conventional multihop transmission,
although both of them have higher energy-efficiency than
single-hop transmissions.

In our future research, adaptive modulation and coding
(AMC) will be integrated into our CDF-aware MHD scheme.
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