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Power Flow Analysis of Nonlinear Dynamical Systems

by Jian Yang

The power flow analysis approach, which arose from high-frequency vibration problems,

has been developed into a powerful technique to characterise the dynamic behaviour of

complex structures and coupled systems. It has been extensively used to study various

linear systems. However, because of the complexity in modelling and simulation, the

power flow behaviour of nonlinear dynamical systems remains largely unexplored. This

thesis aims to develop power flow analysis approaches for nonlinear dynamical systems,

to investigate the effects of damping and/or stiffness nonlinearities on their power flow

behaviour, and to apply the findings to enhance the performance of energy harvesting

devices as well as vibration control systems.

Power flow characteristics of the Duffing and the Van der Pol (VDP) oscillators are

investigated to address the distinct power input and dissipation behaviour due to stiff-

ness and damping nonlinearities, respectively. It is shown that in a nonlinear velocity

response with multiple frequency signatures, only the in-phase component of the same

frequency as the harmonic excitation contributes to the time-averaged input power. It

is demonstrated that bifurcations can cause significant jumps of time-averaged power

flows, whereas the associated time-averaged input power of a chaotic response is insen-

sitive to the initial conditions but tends to an asymptotic value as the averaging time

increases. It is also found that the time-averaged input power of the unforced VDP

oscillator can become negative in some ranges of excitation frequencies.

Power flow behaviour of two degrees-of-freedom systems with nonlinear stiffness/-

damping is also studied using the developed methods to enhance vibration isolation/ab-

sorption performance. It is demonstrated that the stiffness and damping nonlinearities

in the system affects time-averaged power flows mainly in a narrow frequency range

around resonance frequencies.

The work described in this thesis provides new insights into power flow generation,

transmission and dissipation mechanisms in nonlinear dynamical systems and facilitates

more reliable and effective designs with improved dynamic performance. The ability of

the VDP oscillator to extract external energy sheds light on energy harvesting using

flow-induced vibrations of a nonlinear flapping foil system. A nonlinear isolator with

a negative stiffness mechanism is proposed providing less input power in an enlarged

frequency range. These studies thus yield an improved understanding of power flow

behaviour in nonlinear dynamical systems.
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mass of the absorber in Chapter 7

M pitching moment in Chapter 8

[M ] mass matrix in Chapter 3

[Ml] the linear part of mass matrix in Chapter 3

pa instantaneous absorbed power

p̄a time-averaged absorbed power

pc rate of change of energy stored in an electric inductor

pd dissipated power

p̄d time-averaged dissipated power

pg generated power, i.e., power consumed by resistor R

pin instantaneous input power

p̄in time-averaged input power

pt instantaneous transmitted power

p̄t time-averaged transmitted power

P compression force

P̄in upper bound of time-averaged input power
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rα non-dimensional radius of gyration

R electrical resistance

S mass static moment

t non-dimensional time in Chapters 4 and 5;

physical time in Chapters 6, 7, 8, 9

U potential energy

U̇ the rate of change of potential energy

V velocity of air current

V ∗ non-dimensional velocity of air current

xα non-dimensional distance from elastic axis to centre of mass

α linear stiffness coefficient of the Duffing oscillator;

damping parameter of the Van der Pol oscillator;

nonlinear damping parameter of the isolator in Chapter 6;

nonlinear stiffness parameter of the primary structure in Chapter 7;

pitching angle of the foil in Chapter 8

non-dimensional stiffness parameter in Chapter 9

β nonlinear stiffness coefficient of the Duffing oscillator;

linear stiffness coefficient of the Van der Pol oscillator;

nonlinear stiffness parameter of the isolator in Chapter 6;

nonlinear stiffness parameter of the absorber in Chapter 7;

βα non-dimensional nonlinear stiffness coefficient in pitch DOF

βξ non-dimensional nonlinear stiffness coefficient in heave DOF

γ frequency ratio

δ dynamic deflection of the nonlinear isolator in Chapter 6;

dynamic deflection of the nonlinear absorber in Chapter 7

ε non-dimensional nonlinear stiffness coefficient in Chapter 6;

non-dimensional nonlinear stiffness coefficient in Chapter 7

ζξ non-dimensional damping coefficient in the heave motion

ζα non-dimensional damping coefficient in the pitch motion

η non-dimensional nonlinear damping coefficient in Chapter 6;

non-dimensional nonlinear stiffness coefficient in Chapter 7

µ mass ratio

ξ non-dimensional damping coefficient in Chapters 4 and 9;



xxx NOMENCLATURE

non-dimensional displacement in heave DOF in Chapter 8

ξ1, ξ2 non-dimensional damping coefficient

ρ density of air

Ψ1,Ψ2, ε1, ε2 constants in Wagner function

τ non-dimensional time

φ(τ) Wagner function

ω excitation frequency (non-dimensional in Chapters 4 and 5)

ωr frequency components in response/power

ωα uncoupled natural frequency in pitch motion

ωξ uncoupled natural frequency in heave motion

Ω non-dimensional excitation frequency



Chapter 1

Introduction

1.1 Engineering background

The dynamic behaviour of a system accounts for an important aspect of its overall

performance, but to obtain the detailed dynamic characteristics might be a difficult

task. For simple structures such as uniform rods, beams or plates with ideal boundary

conditions, governing equations of motion can be obtained using classical mechanics

theory and their solutions allow analytical representation of the responses. However,

in many practical situations, where either the geometrical or material properties of a

structure may vary, or the boundary conditions cannot be described by simple functions,

or the structure consists of different types of components, it is impossible to obtain

an analytical solution to the equations of motion satisfying the boundary conditions.

Under these circumstances, the analytical approach is unable to address complicated

dynamical problems. The situation remained largely unchanged until the 1960s when

the development of computing technology allowed finite element analysis (FEA) of large

and complex structures (see, for example, Petyt (2010)). Ever since, FEA has become

a powerful numerical method for analysing the dynamics of complex structures.

In finite element analysis, a continuous structure is discretised into a number of ele-

ments. The motion within each element is approximated by assuming particular shape

functions. Governing equations are obtained by applying the force balance condition of

each element. Together with compatibility conditions at the element joints and bound-

ary conditions, the dynamic response of the structure is obtained numerically. Although

in principle, FEA can be used to analyse any arbitrary structure, as it may be consid-

ered as an assembly of smaller and simpler structures, difficulties arise when analysing

high-frequency vibration problems. One reason is that to ensure the accuracy of FEA

results, the size of each element has to be much smaller than the corresponding wave-

length of the considered frequency. As frequency increases, the response of the system

is affected by an increasing number of modes. Consequently, at high frequencies, the

1
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rapid increase in the size of the finite element model and the number of modes that need

to be considered brings about a high computation and analysis cost. Furthermore, with

the increase of mode order, modal resonance frequencies and relative modal phase re-

sponses become more and more sensitive to small changes in structural details, especially

boundary conditions and damping distributions (see, Fahy (1994)). However, because of

manufacturing tolerances as well as fabrication imperfections, uncertainties concerning

structural details and variability of product properties are unavoidable. Consequently,

the distributions of higher order modes begin to overlap (see, for example, Manohar and

Keane (1994)), and the results derived by a frequency response analysis become more

and more unreliable. This is especially true for the high-frequency dynamic behaviour of

structure components joints (see, for example Ibrahim and Pettit (2005)). As a result,

high-frequency vibration responses of nominally identical structures obtained using FEA

are observed to differ, sometimes greatly (see Kompella and Bernhard (1993)).

The development of energy based modelling approaches arose from a need to avoid the

deficiencies of FEA in addressing structural dynamical response of systems excited at

high frequencies. An important example of these methods is statistical energy analysis

(SEA), developed in the 1960s to predict the vibrational response of flights (see, Fahy

(1994)). A SEA model comprises a statistical set of subsystems described by their gross

geometric forms, dimensions and material properties (see, for example, Lyon (1975)).

The ensemble-average behaviour of each subsystem that shares those properties is con-

sidered in terms of power and energy, instead of the exact detailed response of an indi-

vidual structure. Energy balance is guaranteed by ensuring that the total input power

into a subsystem equals the sum of dissipated power within the subsystem and coupling

powers with other subsystems. Coupling powers are assumed to be proportional to the

difference in modal energies between substructures.

One of the earliest applications of SEA to study simple vibration systems was conducted

by Lyon and Maidanik (1962). In their study, a modal theory was employed to study the

power flow between two randomly excited linear oscillators with weak coupling. It was

found that for conservative coupling, the power flow between these two oscillators was

proportional to the difference in their average modal energy. It was thus proposed that

the high-frequency vibration problem is analogous to a thermal one in which vibration

energy density plays the role of temperature. Lyon (1975) further developed SEA theory

with applications to more complex vibration systems. Langley (1992) presented a wave

approach for SEA. Manning (1994) proposed a mobility approach and formulated SEA

parameters with mobility functions. Fahy (1994) comprehensively reviewed the origin,

development and potential research areas of SEA. Keane and Price (1997) and Fahy and

Price (1998) later presented more recent developments and advances in SEA theory and

its applications to complex vibration systems. Mace (2003, 2005) examined the validity

of the underlying assumptions of SEA by a modal formulation and found that indirect
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coupling loss factors were negligible only when the system modes were local or in the

limit of high modal overlap.

While SEA is suitable in the high-frequency range, as an overall dynamic system reso-

lution, loss of detailed knowledge of local spatial distributions of response variables is

encountered. Many assumptions are made in SEA, which also confine its applications.

In contrast, the application of power flow analysis is not restricted to the high-frequency

range (see, for example, Goyder and White (1980a,b,c)). Vibrational power flow, or

the rate of energy exchange, combines the effects of force and velocity responses as well

as their relative phase angle, and thus provides a good descriptor of vibration trans-

mission between the substructures. The magnitude and direction of the power flow

transmitted through the joints of subsystems with reference to the input power provide

a measure of the amount of energy dissipated in each structural component. In the low-

frequency range with a low modal density, the power flow variables may be expressed

as a modal function aggregation to retain the resonant behaviour of the individual and

global structures. At high frequencies with large modal densities, the mobility describing

finite substructures may be expressed in an equivalent manner to infinite substructures.

Therefore, in this situation the PFA results are similar to those obtained by SEA.

Since the introduction of the concepts of vibrational power flows, extensive research

has been conducted to investigate the power flow behaviour of various dynamical sys-

tems. The findings have been widely used to improve the dynamic performance of linear

systems by enhancing/mitigating the power transmission through a particular path.

Previous applications of the PFA approach were mainly focused on vibration control,

determination of vibration transmission paths for noise reduction, damage detections as

well as evaluations of coupling loss factors in SEA.

1.1.1 Applications to vibration control

A common objective for vibration control is to reduce the net power transmission into

a structure and to minimise the power flow within the structure. The concept of vi-

brational power flow is valuable as it combines both force and velocity characteristics

together. Any attempt to reduce vibration by considering individual force or velocity

amplitude without accounting for their relative phase difference might not necessarily

be successful. However, improvement can be guaranteed by decreasing the amount of

power flow to a structure (see, for example, Goyder and White (1980a,b,c)).

In terms of vibration isolation, a system of interest usually consists of a machine, with

passive isolators and/or active control units, mounted on base structures composed of

beam and plate elements. By conducting power flow analysis, power transmission from

the machine into the base structure can be identified, which is a more appropriate indi-

cator of isolation performance than the traditional force or displacement transmissibility.
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For this reason, many researchers have focused their attention on analysis and control of

vibrational power flows of dynamical systems (see, for example, Pinnington and White

(1981); Pan et al. (1992); Gardonio et al. (1997a,b); Mahajan and Redfield (1998); Li

and Lavrich (1999); Xiong et al. (2000) and Xiong et al. (2003)).

Recently, it was shown that the concept of power flow can also be used in nonlinear

vibration absorption of dynamical systems. Vakakis et al. (2008) discovered the phe-

nomenon of nonlinear energy pumping or targeted energy transfer, which corresponds to

one way channelling of the vibrational energy from a linear system to a passive nonlin-

ear energy sink where it localises and diminishes with time due to damping dissipation.

Based on this phenomenon, nonlinear vibration absorbers were designed to suppress the

undesirable vibrations from seismic excitations (Nucera et al. (2007)) and to improve

the stabilities of aeroelastic or drill-string systems (see, Lee et al. (2007b); Viguié et al.

(2009)).

1.1.2 Applications to noise reduction

In many applications, noise created by structure vibrations contributes to a major fac-

tor of discomfort. For example, in airplanes vibration energy generated by the engines

travels from the wings to fuselage and finally radiates as structure-borne sound into

the cabin (see, for example, Unruh (1987), Gardonio and Elliott (1999)). Similarly, in

buildings vibration energy flows through walls and floors and then radiates into rooms

in the form of noise (see Luzzato and Ortola (1988)). By carrying out a power flow

analysis, variables such as power flow density vectors within a structure can be quan-

tified. Subsequently, this yields the identifications of the dominant power flow paths

such that measures can be taken to reduce the vibration transmission. For example,

damping materials or active control units can be inserted to certain positions of a vi-

brating structure for better absorption and dissipation of vibration energy. In this way,

the structure-borne noise can be greatly mitigated.

1.1.3 Applications to damage detection

Damage may be introduced to structures under fatigue or extreme impact loads and

measures for their early detections and locations have received extensive investigations.

Applying approaches such as acoustic or ultrasonic methods and magnetic or thermal

field methods, is time consuming and costly (see, for example, Li et al. (2001)). Knowl-

edge about the vicinity of the damage is required in advance, which is not practical in

many situations. To avoid the shortcomings, model-based approaches have been devel-

oped, which examine the changes in global vibration characteristics of a structure. An

important one of these approaches is the modal method which employs the fact that

damage can lead to a decrease in dynamic stiffness, which in turn reduces the natural
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frequency of an undamped system. However, this method fails to work when the damage

locates on a nodal point of a certain mode as the corresponding natural frequency will

remain unchanged.

The basic idea of damage detection using the power flow approach is that damage of

any form introduces changes in structures which will result in differences in power flow

behaviour of the perfect and the damaged structures. Based on this, Li et al. (2001,

2004a,b) applied power flow analysis on a damaged Euler beam and a circular plate

structure. It was shown that vibrational power flow is highly dependent on the degree

and location of damage. Khun et al. (2003) studied the power flow pattern of a plate

with single or multiple cutouts, using a finite element method. Lee et al. (2006) extended

their work and showed that this feature can be used to locate the crack. Zhu et al. (2006,

2007) examined a cracked Timoshenko beam as well as a thin cylindrical shell with a

circumferential surface crack and found that the power flow passing through the crack

was highly sensitive to its location and depth. Wang et al. (2009) investigated power

flow features associated with vibration modes of both intact and damaged beams and

suggested that the modal power flow behaviour can be used for damage detection.

1.1.4 Applications to evaluations of coupling loss factors

As stated earlier, one basic assumption made in SEA is that the coupling powers between

substructures are proportional to the differences in average modal energy. The use of

this assumption allows simple formulations of dynamical quantities such as coupling

loss factors to describe the energy flow in the dynamical system using linear differential

equations. However, a strict experimental determination of coupling loss factors can

be difficult as by their definition, samples of infinite size are needed. An alternative

approach is to use the results from power flow analysis in the low or middle frequency

range to solve energy flow problems and estimate coupling loss factors. This can also

improve the prediction by SEA in the low or middle frequency range. Such studies

were conducted by Simmons (1991); Steel and Craik (1994); Fredö (1997) and Shankar

and Keane (1997), in which FEA models were used to calculate the energy flow between

subsystems and estimate the coupling loss factors between different substructures. Mace

and Shorter (2000) proposed computationally efficient energy flow models based on finite

element analysis, in which the results of FEA were post-processed to obtain the time or

frequency average energies as well as input or dissipated powers.

1.2 Development and current state of research in PFA

The concepts of vibrational power flow were firstly discussed by Goyder and White

(1980a,b,c). Since then, different approaches, such as the dynamic stiffness method
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(see, Langley (1989)), the mobility method (see, Cuschieri (1990a)), the travelling wave

approach (see, Langley (1992)), the finite element based energy flow approach (Mace

and Shorter (2000)) and the progressive approach (Xiong et al. (2001)) have been pro-

posed and developed to address the power flow characteristics. Instead of investigating

individual structures such as periodic structures or beam/plate-like structures, Xing and

Price (1999a,b) proposed a more general PFA approach using the fundamental principles

of continuum dynamics, in which energy flow equations, vectors and potentials were de-

fined. However, solutions to the power flow equations of complex structures need further

study.

Recent advances in power flow analysis methods include the development of power flow

mode theories. A mobility-based power flow mode approach was proposed by Ji et al.

(2003), in which the eigenproperties of the real part of the mobility matrix and power

mode force vector were used to describe the time-averaged power input of the excitation

forces applied to a system. However, to predict input power and power transmission by

this method, full knowledge of the system’s mobility is required. To avoid the complexity,

a damping-based power flow mode theory was developed by Xiong et al. (2005b) to de-

scribe the natural power flow behaviour of a dynamic system using its inherent damping

information. A system’s characteristic damping matrix was constructed. The eigenval-

ues and eigenvectors of this matrix can identify natural power flow characteristics. These

eigenvectors were chosen as a set of base vectors spanning the power flow space and com-

pletely describe the power flow in the system. The power flow response vector can be

found by decomposition of the generalised coordinate of velocity vector in this space.

Based on this theory, power flow design approaches were proposed to identify energy

flow patterns satisfying vibration control requirements. Kwon et al. (2011) proposed a

power flow boundary element approach to address multi-domain problems excited in the

middle to high frequency range. Power flow density and intensity of simply-supported

coupled beams and coupled plates were obtained and the results agreed well with those

of the conventional power flow analysis approaches.

Recently, many studies were performed on linear dynamical systems using the PFA

approach. Cho et al. (2006) proposed a level set approach for topological optimisation

of power flow problems at high frequencies. Compared with the other optimisation

methods, it was shown that the developed approach can avoid numerical instability such

as checkerboard problems. Zong et al. (2006) investigated the power flow in human head

subject to impact loading using a three-dimensional FEA model. The results showed

that the structural intensity field can be used to assess injury patterns, which are difficult

to identify using stress-based method. Dong et al. (2008) studied the power absorption

by hand and arm substructures when operating vibrating tools. The trends observed

in vibration power absorptions distributed in the substructures were consistent with

some major findings of various physiological and epidemiological studies. Researchers

also used vibration power flow quantities to assess the performance of different passive
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or active vibration control systems. For example, Niu et al. (2008) provided an active

vibration control model for coupled flexible systems using power flow transmission as the

control function. Choi et al. (2009) evaluated the performance of a floating raft sandwich

isolation system using power flow quantities. Liu et al. (2010) investigated the active

control scheme of power flow at the junctions of connected plates. Advance in damage

detection through PFA was reported by Wong et al. (2009) in which the power flow

characteristics of a damaged plate were investigated using modal power flow analysis.

The results showed that modal power flow was more sensitive to the change in plate

stiffness than the strain mode shape. Guyomar et al. (2011) proposed the detections of

impact or shock loads by examining the associated vibrational power flow patterns. It

was shown experimentally that this approach was able to provide a rough estimation of

the impact location.

There is also growing interest in PFA of nonlinear dynamical systems. Royston and

Singh (1996) employed vibratory power transmission as a performance index in optimi-

sation of multiple degrees-of-freedom nonlinear mounting systems. The same authors

also examined an automotive hydraulic engine mount and investigated the vibratory

power flow from an excited rigid body through a nonlinear path into a resonant receiver

(see, Royston and Singh (1997)). It was found that although modelling the isolation

path with a “softened”nonlinear expression may only moderately alter the fundamental

harmonic response, it could significantly alter high harmonic responses. Xiong et al.

(2005a) studied an interactive system consisting of a machine, a nonlinear isolator as

well as a flexible ship excited by sea waves. The nonlinear isolator was characterised by

a pth power damping model as well as a qth power stiffness model. The input power

spectrum was found to be not globally sensitive to the nonlinearities in damping and

stiffness of the isolator, but affected significantly around resonance frequencies of the

coupled system. More recently, Xiong and Cao (2011) investigated the nonlinear power

flow characteristics of a two degrees-of-freedom system with nonlinear stiffness created

by a pair of oblique springs. Xing et al. (2011) presented a mathematical model with

solution approaches for an integrated electric converter, a nonlinear oscillator and water

interaction system to harness wave energies. Yang et al. (2011) evaluated the energy

harvesting capability of a nonlinear flapping foil system using PFA. They also investi-

gated the time-averaged power flows of nonlinear vibration isolation systems to assess

the isolation performance (see, Yang et al. (2012a, 2013)) and the instantaneous power

flow characteristics of the Duffing oscillator (see, Yang et al. (2012b)).

1.3 Motivations of the research

Previous research on power flow analysis has been mainly focused on the investigation of

linear dynamical systems and the developments of different approaches for this purpose.

The power flow behaviour of nonlinear dynamical systems remains largely unexplored,
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mainly because of the complexity and difficulty associated with nonlinearity. However,

many dynamical systems encountered in engineering practice are inherently nonlinear.

For example, the mounts for hydraulic engine used in automobiles possess nonlinearity

in both damping and stiffness (see Kim and Singh (1995)). Orifice dampers exhibit non-

linear damping with varying damping coefficients dependent on the internal geometry,

frequency of flow oscillation and the Reynolds number (see, Popov and Sankar (1995)).

Significant nonlinearities are also encountered in rotor/stator contact problems in turbo-

machineries (see, for example, von Groll and Ewins (2001)). Ships in regular waves can

experience extreme motions due to parametrically excited roll resonances (see, for exam-

ple, Ahmed et al. (2010)). In these systems, the transmission path between the vibration

source and the receiver may contain significant localised nonlinear elements and thus the

adoption of linear models to predict vibration levels can not provide satisfactory results.

On the other hand, nonlinear elements are increasingly used to enhance the dynamic

performance of systems for better applications. For example, to improve the isola-

tion performance of linear isolators, different configurations of nonlinear vibration iso-

lators have been proposed and analysed (see, for example, Ibrahim (2008); Yang et al.

(2013)). These nonlinear isolations systems can display inherently nonlinear behaviour

such as multiple stable solutions, sub-/super- harmonic resonances, bifurcations and

chaos, which are absent from linear systems. Similarly, it was shown that nonlinear

vibration absorbers can enlarge the working frequency range of their linear counterparts

(see, for example Oueini et al. (1998)).

Either unavoidable or intentionally introduced, nonlinear dynamics problems are fre-

quently confronted with by engineers and researchers. One usual approach to deal with

them is to transform a nonlinear system into its corresponding linear form such that

linear vibration theories can be adopted. However, such transformation results in loss of

dynamic response information arising from the nonlinearity. Alternatively, theories and

analysis methods in nonlinear dynamics research can be used to qualitatively or quanti-

tatively investigate the response characteristics of nonlinear systems (see, for example,

Nayfeh and Mook (1979); Guckenheimer and Holmes (1983)). The latter approach has

been successful in revealing some nonlinear phenomena, such as different types of bifur-

cation and chaotic motions. However, individual displacement or velocity responses were

emphasized in nonlinear dynamics research. The power flow information of nonlinear

dynamical systems has usually been ignored, although it can offer better indications of

the actual vibration level of a system.

The motivation for the present research lies in the scientific and engineering values of

a deeper understanding of the fundamental mechanisms governing power generation,

transmission and dissipation mechanisms in nonlinear dynamical systems. There is also

a strong need to clarify the influences of various types of nonlinearities, such as nonlin-

ear damping and nonlinear stiffness, on the flows of vibration energy through different

parts of a system, or between subsystems of an integrated structure. Moreover, due
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to the difficulty in modelling and simulation of nonlinear dynamical systems, there is a

lack of power flow theory and effective methods to deal with systems involving complex

nonlinear phenomena, such as multiple solutions, sub-/super harmonic resonances, bi-

furcation and chaos. As a result, the power flow behaviour of nonlinear systems remains

unclear and needs exploration. By developing power flow analysis techniques to reveal

dynamic characteristics of nonlinear systems, the research can lead to potential find-

ings and knowledge, which will provide inspirations as well as guidelines for designing

nonlinear systems with high dynamic performance for engineering applications.

1.4 Aims and objectives

The primary aim of this study is to develop the power flow analysis approach to investi-

gate power flow behaviour of nonlinear dynamical systems, especially when they exhibit

complex nonlinear phenomena. This thesis also seeks to understand the effects of dif-

ferent types of damping and stiffness nonlinearities on power generation, transmission

and dissipation mechanisms. In addition, the current research intends to demonstrate

the applications of the developed methods as well as the findings to passive vibration

control and energy harvesting.

To achieve these goals, the following objectives have been set:

• to develop power flow analysis methods for nonlinear dynamical systems;

• to investigate typical nonlinear dynamical systems, such as the Duffing oscilla-

tor and the Van der Pol oscillator, from the power flow perspective for a better

understanding the influences of nonlinear stiffness/damping on power flows;

• to study two degrees-of-freedom nonlinear systems with different configurations of

stiffness and damping nonlinearities to clarify vibration power input, dissipation,

transmission and absorption to improve the effectiveness of nonlinear vibration

isolators/absorbers;

• to examine the associated power flows of nonlinear systems when they exhibit

intrinsic nonlinear phenomena such as multiple solutions, super-/sub- harmonic

resonances, bifurcation and chaos;

• to demonstrate the applications of power flow analysis in designs or investigations

of nonlinear systems for energy harvesting or vibration control.
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1.5 Thesis outline

In Chapter 2, basic concepts in power flow analysis as well as in nonlinear dynamics

are presented. Power flow analysis approaches developed for linear systems are briefly

reviewed. Fundamental knowledge in nonlinear dynamics such as the types of dynamic

responses, analysis methods as well as different nonlinear phenomena is provided.

In Chapter 3, a general power flow formulation for nonlinear dynamical systems is pro-

posed. The method of harmonic balance and the method of averaging are developed for

derivation of power flow variables. The use of numerical methods to obtain power flow

quantities is also discussed.

In Chapter 4, the power flow behaviour of a typical nonlinear stiffness system, i.e., the

Duffing oscillator, is investigated. The effects of different nonlinear phenomena, such

as sub-/super- harmonic resonances, bifurcation and chaos on power flows are studied.

The influences of system parameters, initial conditions and averaging time on the time-

averaged input power are examined. Both the instantaneous and time-averaged power

flow characteristics of the system are analysed. The harmonic balance method is adopted

to obtain approximate analytical solutions of power flow variables while the numerical

simulations based on the Runge-Kutta method are used to provide more accurate results

associated with periodic as well as chaotic responses.

In Chapter 5, the power flow characteristics of a typical nonlinear damping system, i.e.,

the Van der Pol oscillator, are studied. Both the instantaneous and time-averaged power

flows of the unforced and forced system exhibiting periodic or quasi-periodic responses

are investigated using numerical as well as analytical approaches. The variations of

time-averaged input power due to bifurcation are examined. The conditions for negative

time-averaged input power are discussed.

In Chapter 6, power flow analysis of a two degrees-of-freedom nonlinear system with

a nonlinear isolator is performed. The system includes a harmonically-excited mass,

mounted on a one-DOF base through an isolator with nonlinearities both in damping and

stiffness. Averaging approximations as well as numerical simulations are conducted to

obtain the time-averaged input, dissipated and transmitted powers as well as maximum

kinetic energies, and their variations with system parameters.

In Chapter 7, power flow analysis of a two degrees-of-freedom nonlinear system with

a nonlinear absorber attached to a nonlinear primary structure is carried out. The

averaging method is employed to obtain analytical formulations of time-averaged in-

put, dissipated, as well as absorbed powers. Together with numerical simulations, the

performance of the absorber is assessed considering different configurations of stiffness

nonlinearities in the primary structure and/or the absorber.
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Chapter 8 proposes a nonlinear vibration energy harvesting system design, which is

inspired by the findings in Chapter 5. The system consists of a flapping foil supported

by nonlinear springs in both pitch and heave degrees-of-freedom, and an electro-magnetic

generator. The energy input, transmission as well as generation behaviour of the coupled

system is revealed using power flow analysis so as to examine the energy harvesting

capability of the device.

In Chapter 9, the dynamic and power flow behaviour of a nonlinear vibration isolation

system is studied. The system includes a linear spring, configured in parallel with a

negative stiffness mechanism (NSM), which is created by a pair of bars under constant

compression. Using a power flow analysis, it is successfully demonstrated that the NSM

can assist in vibration isolation by reducing time-averaged input power over a large band

of excitation frequencies.

In Chapter 10, some conclusions are drawn and future research areas are given.





Chapter 2

Basic aspects of power flow

analysis and nonlinear dynamics

Since the introduction of the concepts of vibrational power flows, theories as well as

analysis approaches have been put forward to analyse the flow of vibration energy in

engineering dynamical systems. Although they were primarily proposed for linear sys-

tems, insights may still be obtained to develop effective power flow methods for nonlinear

dynamical systems. Also, knowledge in nonlinear dynamics, such as the analysis tools,

the type of dynamic responses, and typical nonlinear phenomena, is needed to under-

stand nonlinear dynamic behaviour and to interpret it from the power flow perspective.

For these purposes, this chapter reviews the basic concepts, formulations and estab-

lished methods in power flow analysis. Some fundamental information used in nonlinear

dynamics research is provided for later references.

2.1 Basic concepts in power flow analysis

The fundamental concepts of power flows were discussed and described by Goyder and

White (1980a,b,c). In their study, the rate of change of vibration energy was employed

to characterise the dynamic response of a system. The use of power flow is valuable as

it combines force and velocity characteristics together, and can better reflect vibration

transmission between sub-structures within an integrated system. Any attempt to re-

duce vibration level by only considering force or displacement amplitude but not their

phase angle may not necessarily be successful. However, improvement can be made by

decreasing the net power flow into the structure.

In dynamical analysis, it is usual to represent harmonic quantities mathematically with

real harmonic functions. For example, a harmonic force f(t) with amplitude F and

frequency ω, and a velocity v(t) with amplitude V and frequency ω with a relative

13
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phase angle of θ are given as

f(t) = F cosωt, (2.1)

v(t) = V cos(ωt+ θ), (2.2)

respectively. Alternatively, these quantities can be expressed in a complex form

f̃(t) = Feiωt = F̃ eiωt, (2.3)

ṽ(t) = V ei(ωt+θ) = Ṽ eiωt, (2.4)

where in these exponential notations, i =
√
−1; the tilde denotes a complex quantity;

F̃ = F and Ṽ = V eiθ are complex variables. For equivalence of representations, only the

real part of a complex quantity is used here to represent the corresponding physically

measurable quantity, so that

f(t) = Re
{
f̃(t)

}
=

1

2
(f̃ + f̃?), (2.5)

v(t) = Re {ṽ(t)} =
1

2
(ṽ + ṽ?). (2.6)

where a star denotes the complex conjugate of a variable.

It should be noted that although complex representations of quantities facilitate math-

ematical flexibility, only the instantaneous real part carries physical meaning (see, Xing

and Price (1999b)). Thus, a safe course of action is to take the real part of a complex

quantity before any operation is performed.

In power flow analysis, power flow is defined as the rate of work done and thus it is a

measurable quantity. At time t, the real power flow is written as

p(t) = f(t)v(t). (2.7)

It can also be given in a complex form of notation, i.e.,

p(t) = Re{f̃(t)}Re{ṽ(t)} =
1

4
(f̃ + f̃?)(ṽ + ṽ?) =

1

2
Re
{
f̃ ṽ + f̃ ṽ?

}
=

1

2
Re
{
f̃ ṽ + f̃?ṽ

}
.

(2.8)

The real power averaged over averaging time tp is

p̄ =
1

tp

∫ tp

0
Re{f̃(t)}Re{ṽ(t)} dt. (2.9)

For a periodic response with an oscillation frequency of ω, the averaging time may be

taken as a cycle of oscillation, i.e., tp = 2π/ω. Then Eq. (2.9) can be expressed in a

complex form as

p̄ =
1

2
Re
{
F̃ Ṽ ?

}
=

1

2
Re
{
F̃ ?Ṽ

}
=

1

2

(
Re
{
F̃
}

Re
{
Ṽ
}

+ Im
{
F̃
}

Im
{
Ṽ
})

. (2.10)
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The instantaneous complex power may be defined mathematically as

p̃(t) = f̃(t)ṽ(t) = F̃ Ṽ e2iωt, (2.11)

with this average value being

p̃(t) =
ω

2π

∫ 2π
ω

0
f̃ ṽ dt = 0. (2.12)

Eqs. (2.10) and (2.12) clearly show the difference between a physical power and a

complex power. In power flow analysis, real power is usually considered.

Frequency response functions (FRFs) are widely used in vibration analysis to charac-

terise dynamic responses of a structure subject to harmonic excitations. There are two

types of FRFs, input FRFs and transfer FRFs. For the former, force and response are

considered to be at the same point of the structure and in the same direction while for

latter, force and response are taken at different points and/or in different directions. In a

PFA, mobility and impedance functions are often used as they provide relations between

force and velocity amplitudes, which are defined as Ỹ = Ṽ /F̃ , Z̃ = F̃ /Ṽ , respectively.

Using these two FRFs, the mean real power flow in Eq. (2.9) can be expressed as

p̄ =
1

2
|F̃ |2Re

{
Ỹ
}

=
1

2
|Ṽ |2Re

{
Z̃
}
. (2.13)

2.2 Review of power flow analysis approaches

In the past few years, different analytical approaches, such as the dynamic stiffness

method (see, Langley (1989)), the receptance method (see, Clarkson (1991)), the mo-

bility approach (see, Cuschieri (1990a,b)), the traveling wave and scattering method

(see, Langley (1992)), a PFA approach based on continuum dynamics (Xing and Price

(1999b)) as well as the progressive approach (see, Xiong et al. (2001)), have been de-

veloped to reveal power flow characteristics of linear dynamical systems under different

loading and boundary conditions. Finite element based power flow analysis models were

also proposed to deal with complex structures (see, Mace and Shorter (2000)). For

certain coupled structures, it may be possible to adopt a hybrid substructure approach

using analytical, numerical or experimental solutions for each subsystem to reduce com-

putational cost (see, Wang et al. (2002a)). These approaches are briefly reviewed in this

section.

2.2.1 Analytical PFA approaches

Langley (1989) proposed the dynamic stiffness method to investigate the transverse

response of a row of coupled plates subject to distributed acoustic load. The panel
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was stiffened transversely and simply-supported along the longitudinal edges so that the

dynamic equation of each uncoupled plate can be derived independently. The dynamic

stiffness matrix of each individual component was obtained. The dynamic stiffness

matrix of the whole structure was then assembled by using standard finite element

techniques. By applying the force balance conditions and geometrical compatibility

requirements at the coupling edges, the dynamic behaviour of the whole panel can be

obtained. Expressions can thus be derived for the mean energy stored in the individual

components and for the power flow between different components. The same approach

was adopted by Bercin and Langley (1996) to examine the in-plane vibrations of similar

plate frames.

Similar to the dynamic stiffness method, in the receptance method, solutions in terms

of characteristics of uncoupled substructures are found. A major difference between this

approach and the dynamic stiffness method lies in the degrees of freedom adopted at the

interface. For the former method, the degrees of freedom are the coupling forces while for

the latter they are the displacements. By applying the compatibility conditions at the

interface, the unknown coupling forces can be calculated. This approach was employed

to investigate the amount of power flows at joints of beams and plates (Clarkson (1991))

and at the interface of two coupled rectangular plates (see, Dimitriadis and Pierce (1988);

Farag and Pan (1996) and Beshara and Keane (1998)).

In the mobility power flow approach, a global structure is divided into a set of coupled

substructures with forces and moments introduced at the junctions of substructures.

The vibrational power flow into a substructure and between substructures is expressed

in terms of input and transfer structural mobility functions, which are defined as the

ratio of the rate of change of displacement with time per unit load. For input mobilities,

the response and the load are at the same location whereas for transfer mobilities, they

are at different locations. The mobility approach was adopted by to obtain the power

flow behaviour of periodic beams and L-shaped plates (see Cuschieri (1990a,b)), multiple

beams, coupled beam structures under in-plane loading (see Farag and Pan (1996)) as

well as elastic cylindrical shells (Ming et al. (1999)).

In the travelling wave and scattering approach (see, for example, Langley (1992)), the

solution of each substructure is expressed in terms of exact wave mode. Then forced

equilibrium and continuity conditions at the junction are employed to calculate the

junction scattering and generation matrices. Power flow results can be extracted from a

wave scattering analysis using the wave mode amplitudes as the basic unknowns. This

approach was applied to study the power flow in a network of structural members (Miller

and Von Flotow (1989)), in beams and joints of beam-like structures (see Horner and

White (1991)), in a number of panel arrays (see, Langley (1992)) and in two-/three-

dimensional frames (see Beale and Accorsi (1995)).
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Xing and Price (1999a,b) proposed a general power flow analysis approach based on

the fundamental principles of continuum dynamics. When developing the mathematical

model, the concept of energy flow density vector was introduced. Based on this concept,

the energy transmission between different parts of a system was uniquely defined. This

allows the definitions of energy flow lines, energy flow potentials, and equipotential sur-

faces. Local equation of energy-flow balance, the equation of energy exchange between

subsystems, and time-averaged equations were derived to describe the characteristics of

the energy flow within the continuum. The applications of this approach were demon-

strated through analysis of some simple dynamical systems. However, the solutions to

power flow equations for complex structures are usually difficult to obtain.

Xiong et al. (2001) presented a generalised mobility/impedance power flow model to

analyse the dynamical behaviour of complex systems. The model can consider systems

containing any number of substructures with various configurations and multiple inter-

action interfaces. To describe the dynamical behaviour of a substructure, equivalent

mobility and equivalent impedance matrices can be constructed upon generalized mo-

bility/impedance matrices. Two progressive approaches were developed which can avoid

the generalized inverse operation associated with rectangular matrices when dealing with

multi-input/multi-output systems. This method is flexible and can be conveniently ex-

tended when additional substructures are further connected to the original structures.

Ji et al. (2003) proposed a mobility-based power flow mode theory to estimate the

power transmitted to a flexible receiver by multiple point force excitations. Using eigen-

decomposition of the real part of the mobility matrix, the vibration power input by the

forces was considered as the power input by independent power modes. Approximate

expressions for the upper and the lower bounds of power flow as well as the mean value

were formulated in terms of the power modes. However, applications of this method

require full information of a system’s mobility. To avoid this, Xiong et al. (2005b)

later presented a damping-based power flow mode theory to describe the natural power

flow behaviour of a system by its inherent damping distribution. Based on this theory,

design approaches were put forward to achieve specific power flow patterns by modifying

damping distributions of a system using passive/active control means.

2.2.2 PFA by FEA models

Although applications of the above theoretical PFA approaches can provide physical

insight of the energy and power flow patterns inside structures, they are limited to

simple uniform structures. For complex structures, FEA models can be used to obtain

their power flow behaviour. Lyon (1975) suggested the use of FEA in predicting coupling

loss factors during the early development stage of statistical energy analysis (SEA). A

power flow finite element method was proposed by Nefske and Sung (1989) and further
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studied by Wohlever and Bernhard (1992). This method were used to predict structure-

borne sound transmission (see, for example, Simmons (1991), Steel and Craik (1994)),

to study vibrational energies of two coupled beams (Shankar and Keane (1995b)), and

to derive energy flow coefficients (Fredö (1997)). In all these studies, the response of a

finite element model was expressed in terms of an energy flow model and a global FEA

was performed on the global system.

To avoid the complexity associated with a global FEA, Shankar and Keane (1995a,

1997) developed a local FEA method using a receptance approach. The response of

each subsystem was described by Green functions to study the energy flow in both

simple and complex structures. These functions can be found by the sums of subsystem

modes which may be obtained analytically (see Shankar and Keane (1995a)) or by using

FEA (see Shankar and Keane (1997)). While this approach can substantially reduce the

computational effort, it is restricted to excitation at discrete frequencies and a number

of discrete locations. Mace and Shorter (2000) established energy flow analysis models

from both global and local FEA models, with the latter based on component-mode

synthesis. Computationally efficient methods of determining an energy flow model from

a deterministic FEA were described.

2.2.3 Substructure approach

The main advantage of theoretical PFA approaches is that they allow efficient calcu-

lation of the power flow transmission between substructures and power flow density

vectors within a structure. There are also no convergence issues as the force and dis-

placement are already analytically formulated. However, theoretical models are confined

to simple structures with particular boundary conditions as analytical expressions for

the responses of complex structures are usually not available. Compared with theoretical

approaches, FEA-based PFA models are effective for large and complicated structures,

but they bring about a much higher computational cost.

One way to overcome this problem is to use both approaches in a hybrid way. A

substructure or a component synthesis approach can be employed to reduce the number

of degrees of freedom of a large, complex structure. In this approach, the whole structure

is divided into several substructures with free-free interface condition. The solution of

each substructure is presented by a modal substitution of a finite element model, a

theoretical model or an experimental test model. The response of the whole structure is

found by assembling all the substructures using interface conditions. Power flow at the

interfaces of the substructures can be determined after the deduction of the displacement

contribution of the external and boundary coupling forces. This method was applied to

investigate the power flow behaviour of indeterminate rod/beam systems (Wang et al.

(2002b)), of L-shaped plates (Wang et al. (2002a)) and of a coupled plate-cylindrical

shell system (Wang et al. (2004)).
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2.3 Fundamentals of nonlinear dynamics

To investigate power flow behaviour of nonlinear dynamical systems, it is necessary to

understand the fundamental concepts and analysis tools used in nonlinear dynamics (see,

for example, Guckenheimer and Holmes (1983); Nayfeh and Balachandran (1995)). This

section provides some basic information for later use. For a m degrees-of-freedom system

governed by a total number of m second-order differential equations, by introducing the

velocities in each DOF as new state variables, the dynamic governing equations can be

transformed into a set of 2m first-order differential equations, i.e.,

ẋ = f(x, t), (2.14)

where x = (x1, x2, · · · , x2m)T is a state vector evolving in a 2m-dimensional state space;

f is usually referred to as a vector field, which may or may not depend explicitly on

the independent variable t. For the former case, the system is non-autonomous, while

for the latter, it’s termed an autonomous system. For a linear dynamical system, f is a

linear function of x , but when nonlinearity exists, f will be a nonlinear function of x.

Nonlinear systems can exhibit unique dynamic behaviour that are absent from their lin-

ear counterparts. For example, with prescribed parameter settings, multiple solutions

may emerge, which results in the dependence of steady-state response on the initial

conditions. Also, dynamic responses of a nonlinear system may contain frequency com-

ponents that are different from the excitation frequencies. In particular, super- or sub-

harmonic resonances can appear even when the excitation frequency is well below or

above the linearised natural frequency. Moreover, the principle of superposition is not

valid nonlinear systems, and the response amplitude does not grow proportionally to that

of a harmonic excitation. Bifurcation occurs when there is sudden topological change of

phase portraits due to small smooth variations of parameters. These nonlinear phenom-

ena were discovered with the dynamic behaviour analysed using displacement or velocity

responses. However, the associated power flow information has usually been ignored.

2.3.1 Analysis methods

Nonlinear dynamical systems are governed by nonlinear differential equations or non-

linear discrete mappings for which few exact solutions exist. Apart from experimental

investigations, qualitative, analytical and numerical approaches are usually used in non-

linear dynamics.

Qualitative approach

The qualitative approach mainly deals with different categories of equilibria, limit cy-

cles and their stabilities. In qualitative analysis of nonlinear dynamical systems, phase
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portraits, Poincaré maps and bifurcation diagrams are frequently used to reveal the ge-

ometrical characteristics of the dynamic responses (see, for example, Nayfeh and Mook

(1979)). Phase portraits can be constructed by plotting trajectories of dynamical sys-

tems with prescribed parameter settings. Each trajectory represents a particular system

response starting at specific sets of initial conditions. Thus by examining the patterns

of the trajectories, the dynamic characteristics of a system can be shown qualitatively.
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Figure 2.1: Phase portraits of the unforce, undamped Duffing oscillator (ξ = f =
ω = 0). Parameters for (a) α = 1, β = 0.1, (b) α = 1, β = −0.5, (c) α = −1, β = 1 and

(d) α = −1, β = −1.

To illustrate, Figure 2.1 shows phase portraits of different types of the Duffing oscillator,

governed by:

ẍ+ 2ξẋ+ αx+ βx3 = f cosωt. (2.15)

The Hamiltonian function of the system is E = 0.5y2 + 0.5αx2 + 0.25βx4, where y = ẋ.

Figure 2.1(a) represents a hardening stiffness oscillator, while Figure 2.1(b) denotes a

softening stiffness system. Figure 2.1(c) and (d) are the phase portraits of the double-well

potential system and a system with a single hump in its potential energy, respectively.

In these four phase portraits, either the number of fixed points or their stabilities is

different. The figure shows that variations of parameter values can cause topological
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changes of the phase structure. At a critical parameter value when such change occurs,

the system is subject to bifurcation.

While phase portraits can provide useful information of the dynamics of a low-dimensional

or autonomous system, they become less advantageous to use when the system is of high

dimensions or non-autonomous. In these scenarios, a Poincaré map may be used to re-

duce the dimension of a continuous system by sampling the original orbits at a certain

time interval, i.g., a cycle of excitation. To examine the effects of system parameters

on its response, bifurcation diagrams can be employed to reveal the variations of the

steady-state response with respect to a varying bifurcation parameter.

Analytical approach

The analytical approach has been extensively used to study transient as well as steady-

state response behaviour of nonlinear systems. Compared with the qualitative approach,

it focuses on analytical solutions of nonlinear differential equations so that the relation-

ship between the response and system parameters can be established. As few exact

solutions exist, analytical approximations are usually pursued using techniques such as

different perturbation methods (see, Nayfeh (1973)), the method of harmonic balance,

and the method of averaging.

The applications of perturbation methods are usually confined to systems with weak non-

linearities. In these methods, the solutions are approximated using the first few terms

of a perturbation expansion and found following an iterative process. In contrast, the

method of harmonic balance can be applied to study systems with strong nonlinearities,

by considering multiple frequency signatures in the response. Another major difference

between these two techniques is that the former uses convergent perturbed series to

represent the response, whereas the latter employs harmonic series, which is not conver-

gent. The method of averaging provides a convenient way to derive frequency-response

relations if a first-order approximation is sought.

It should be noted that the solutions obtained by using the analytical approach are

usually approximations of the actual responses. Therefore, validations by numerical

simulations or experimental results are necessary. The stabilities of the analytical solu-

tions may also be assessed as only the stable ones are physical realisable.

Numerical approach

Numerical methods, such as the Runge-Kutta methods, have been widely adopted to

study the dynamic response characteristics of nonlinear systems with prescribed param-

eters and initial conditions. Mathematically, such methods were proposed for numerical

solutions of ordinary differential equations (see, for example, Press et al. (1992)). One

major advantage of the numerical approach over the above-mentioned analytical ap-

proach is that it can be applied to study different types of steady-state responses, e.g.,
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periodic, quasi-periodic or chaotic motions. However, it usually costs more computa-

tional power and provides less physical insights, compared with the analytical methods.

For this reason, this approach is usually used to verify analytical approximations of pe-

riodic responses and to investigate quasi-periodic or chaotic motions. It should be noted

that potentially significant errors can arise in numerical simulations and factors such as

the time step size as well as the orders of accuracy should be carefully chosen.

2.3.2 Categories of dynamic responses

For a linear damped system subject to a harmonic excitation, the steady-state motion

will be periodic with the same frequency as that of the excitation. In contrast, the

response of a nonlinear dynamical system contains frequencies other than the excitation

frequency, and the system can exhibit periodic, quasi-periodic, or chaotic motions.

Equilibrium solutions

For autonomous systems, an equilibrium solutions or a fixed point solution corresponds

to ẋ = 0 in Eq. (2.14). Thus by solving the first-order equations of f(x) = 0, the

fixed points xs of the system can be found. Physically, a fixed point corresponds to

an equilibrium position of the system. To assess its local stability, the corresponding

linearised system may be examined (Nayfeh and Balachandran (1995)). Assuming a

small disturbance u from the equilibrium solution xs, i.e.,

x = xs + u(t). (2.16)

Substituting Eq. (2.16) back into Eq. (2.14), we have

ẋ = f(xs + u). (2.17)

This equation shows that the condition u = 0 corresponds to the original fixed point

x = xs. A Taylor expansion of or Eq. (2.17) about the equilibrium position retaining

only the linear terms, we obtain

u̇ = f(xs) + Dxf(u)u +O(||u||2) ≈ Au, (2.18)

where O(||u||2) represents the higher-order terms, f(xs) = 0 and A = Dxf(xs) is the

Jacobian matrix expressed by

A =


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂x2m
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂x2m
...

...
. . .

...
∂f2m

∂x1

∂f2m

∂x2
· · · ∂f2m

∂x2m

 . (2.19)
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The eigenvalues of this matrix can be studied to determine the local stability of the fixed

point. If the real parts of the eigenvalues are all negative, the solution will be stable.

Otherwise, if one of the eigenvalues has a positive real part, the corresponding solution

is unstable.

Periodic solutions

A dynamic response of a nonlinear system will be periodic with the least period of T if

x(t+T ) = x(t), and x(t+τ) 6= x(t) when 0 < τ < T . Such solution may be transformed

into a fixed point in the Poincaré map. A periodic solution may be referred to as a limit

cycle, if there are no other periodic solutions sufficiently close to it (see, Nayfeh and

Balachandran (1995)).

Quasi-periodic solutions

A quasi-periodic solution of a nonlinear system is characterised by a finite number (two or

more) of incommensurate frequency components (see, Nayfeh and Balachandran (1995)).

Two frequencies ω1 and ω2 are incommensurate if ω1/ω2 is an irrational number. More

generally, m frequencies ω1, ω2, · · · , ωm are incommensurate if the equation:

n1ω1 + n2ω2 + · · ·+ nmωm = 0

holds only when the value of ni(i = 1, 2, · · · ,m) is zero, where ni are integers. A

quasi-periodic response may be termed a k-period quasi-periodic solution if it contains

k incommensurate frequencies (see, Nayfeh and Balachandran (1995)). To examine

whether a nonlinear response is quasi-periodic, the corresponding Poincaré map can be

depicted. A typical Poincaré section of such motion is a closed orbit.

Chaotic responses

Nonlinear dynamical systems may display chaotic motion, which contains broad band

frequency signatures. It is a steady-state response that is bounded in the state space but

not an equilibrium solution, a periodic solution or a quasi-periodic solution (see, Nayfeh

and Balachandran (1995)). The chaotic attractor cannot be represented by a finite

number of fixed points, closed orbits or a torus in the state space, but has complicated

geometrical shape with fractal dimensions. Chaotic motions are also characterised by

their sensitivity to the initial conditions, i.e., a small variation of the input can result in

large differences in the output. To distinguish chaotic motions from periodic or quasi-

periodic motions, the Lyapunov exponents, which measure the average rates of expansion

and contraction of trajectories surrounding a particular trajectory, may be used (see, for

example, Wolf et al. (1985)). For a chaotic response, the associated largest Lyapunov

exponent should be positive.





Chapter 3

Power flow analysis methods for

nonlinear dynamical systems

In this chapter, methods for analysing the vibrational power flow behaviour of nonlinear

dynamical systems are discussed and developed. Firstly, a general power flow formula-

tion for nonlinear dynamical system is presented. The equations of power and energy

balance are developed in which each term corresponds to a power or energy quantity.

Then, for periodic motions, analytical approximate solutions of power flow quantities

are derived using the method of harmonic balance and the method of averaging. For

systems with non-periodic responses such as quasi-periodic and chaotic motions, the use

of numerical techniques to obtain power flow variables is also discussed.

3.1 General power flow formulations

A general dynamic governing equation of a m degrees-of-freedom nonlinear system may

be written as

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {fe(t)}, (3.1)

where {x} = {x1, x2, · · · , xj , · · · , xm}T is a vector denoting the coordinates; {fe(t)}
represents the external force vector; [M ], [C] and [K] are mass, damping and stiffness

matrices, respectively. Because of nonlinearity, these matrices may not be constant but

dependent on displacement and/or velocity as functions of {x} and/or {ẋ}.

By pre-multiplying the governing equation (3.1) by the velocity vector {ẋ}, the equation

of power balance of the system is obtained:

{ẋ}[M ]{ẍ}+ {ẋ}[C]{ẋ}+ {ẋ}[K]{x} = {ẋ}{fe(t)}. (3.2)

25
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Alternatively, it may be written in the following form

K̇ + pd + U̇ = pin, (3.3)

where K̇ = {ẋ}[M ]{ẍ} and U̇ = {ẋ}[K]{x} are the rates of change of system kinetic and

potential energies, respectively; pd = {ẋ}[C]{ẋ} and pin = {ẋ}{fe(t)} are instantaneous

dissipated and input powers, respectively.

An integration of the power balance equation (3.3) with respect to t lead to

∆K + Ed + ∆U = Ein, (3.4)

where ∆K and ∆U are net changes of kinetic and potential energies; Ed and Ein are total

dissipated and input energies in the time span, respectively. The change in mechanical

energy of the system is obtained by summing ∆K and ∆U . Each term in Eq. (3.3)

represents an instantaneous power flow variable. In many applications, time-averaged

behaviour of power flows are of concern. Using an averaging time of tp, the time-averaged

dissipated and input powers are

p̄d =
Ed
tp

=
1

tp

∫ ti+tp

ti

{ẋ}[C]{ẋ}dt, (3.5a)

p̄in =
Ein
tp

∫ ti+tp

ti

{ẋ}{fe(t)} dt, (3.5b)

respectively, where ti is the starting time for averaging. It should be noted that for a

linear system exhibiting periodic motions, the change in its mechanical energy will vanish

over a cycle of oscillation. Correspondingly, the input energy will all be dissipated and

time-averaged input and dissipated powers will be equal. However, this may not hold

for a nonlinear system as the system motion may become non-periodic.

To obtain the power flow behaviour of a nonlinear dynamical system, it is essential

to solve Eq. (3.1). For periodic motions, analytical approximate approaches, such

as the method of harmonic balance and the method of averaging, can be used. For

quasi-periodic or chaotic motions, numerical solutions of the governing equations are

usually needed. The applications of these methods for power flow analysis of nonlinear

dynamical systems are discussed in the following sections.

3.2 Analytical approximations

3.2.1 The method of harmonic balance

The method of harmonic balance is a useful tool applied in the frequency domain to

study nonlinear dynamical systems (see, von Groll and Ewins (2001)). The basic idea of
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this method is to represent the response and nonlinear terms in the governing equation

with harmonic series and balance the corresponding terms with the same frequency

component to obtain a set of algebraic equations. The solutions to these equations

are then found through an iterative procedure. This method was used by Xiong et al.

(2005a) to derive the response of a coupled machine, nonlinear isolator and flexible ship

interaction system.

For a general representation of obtaining power flow variables using the method of

harmonic balance, Eq. (3.1) is firstly split into a linear part and a nonlinear part, i.e.,

[Ml]{ẍ}+ [Cl]{ẋ}+ [Kl]{x} = {fe(t)}+ {fnon({x}, {ẋ})}, (3.6)

where [Ml], [Cl] and [Kl] are the linear parts of mass, damping and stiffness matrices;

{fnon({x}, {ẋ})} is the nonlinear part combining all the nonlinear effects arising from

damping, stiffness, contacting forces, etc. When the system response is periodic with

a fundamental oscillation frequency of ω1, the time histories of the jth ( 1 ≤ j ≤ m)

coordinate may be represented approximately by a truncated Fourier series with N

harmonics:

xj(t) = x̂(j,0) +
N∑
n=1

(x̂(j,2n−1) cosnω1t+ x̂(j,2n) sinnω1t) =
N∑
n=0

R̃(j,n)e
i(nω1t), (3.7)

where x̂(j,2n−1) and x̂(j,2n) are the coefficients of the nth harmonic term; R̃(j,n) is a

complex variable for the nth harmonic of the jthe coordinate. When n = 0, R(j,0) = x̂(j,0)

and is a real number, whereas when n > 0, we have

R̃(j,n) =
(
x̂(j,2n−1) cosnω1t+ x̂(j,2n) sinnω1t

)
cos(nω1t)−

i
(

(x̂(j,2n−1) cosnω1t+ x̂(j,2n) sinnω1t) sin(nω1t)
)
. (3.8)

Similarly, the jth element in the external force vector {fe(t)} and the corresponding

element in the nonlinear force vector {fnon({x}, {ẋ})} are expanded as

fe,j(t) = ŝ(j,0) +
N∑
n=1

(ŝ(j,2n−1) cosnω1t+ ŝ(j,2n) sinnω1t) =
N∑
n=0

S̃(j,n)e
i(nω1t), (3.9)

fnon,j(t) = q̂(j,0) +

N∑
n=1

(q̂(j,2n−1) cosnω1t+ q̂(j,2n) sinnω1t) =

N∑
n=0

Q̃(j,n)e
i(nω1t), (3.10)

respectively. Inserting Eqs. (3.7), (3.9) and (3.10) into Eq. (3.6) and balancing the

coefficients of the nth harmonic, we have(
− (nω1)

2[Ml] + i(nω1)[Cl] + [Kl]
)
{R̃n} = {S̃n}+ {Q̃n}, (3.11)
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where {R̃n} = {R̃(0,n), · · · , R̃(j,n), · · · , R̃(m,n)}T, {S̃n} = {S̃(0,n), · · · , S̃(j,n), · · · , S̃(m,n)}T

and {Q̃n} = {Q̃(0,n), · · · , Q̃(j,n), · · · , Q̃(m,n)}T. Note that by balancing the real and

imaginary parts, there will be m equations for R̃0, but 2m equations for R̃n when

0 < n ≤ N ,

Introducing a dynamic stiffness matrix

[Dn] = −(nω1)
2[Ml] + i(nω1)[Cl] + [Kl]

for the nth harmonic and combining the balance equations for all the harmonics (n =

0, 1, · · · , N), we have
D0 0 · · · 0

0 D1 · · · 0
...

...
. . .

...

0 0 · · · DN




R̃0

R̃1

...

R̃N

 =


S̃0 + Q̃0

S̃1 + Q̃1

...

S̃N + Q̃N

 . (3.12)

This equation can be transformed into a total number of (2N + 1)m nonlinear algebraic

equations, with the same number of unknowns. When the number is large, methods

such as the Newton-Raphson technique can be used to solve them in an iterative way

(see, for example, Press et al. (1992)).

It should be noted that in many practical situations, nonlinearity is only significant in

a few coordinates. For example, linear continuous systems may couple with each other

through local nonlinear elements (see, Xing and Price (2004)). Using this property, the

problem may be simplified by using a sub-structure method to avoid harmonic expansion

of the linear DOFs so that the computational cost can be reduced.

The approximate instantaneous input power into the system is obtained by

pin =

m∑
j=1

ẋj(t)fe,j(t), (3.13)

where the approximate expression for the velocity is found by differentiating Eq. (3.7)

with respect to t:

ẋj(t) =
N∑
n=1

nω1(−x̂(j,2n−1) sinnω1t+ x̂(j,2n) cosnω1t). (3.14)

The harmonic balance approximation of the time-averaged input power over a cycle of

vibration is

p̄in =
ω1

2π

∫ 2π/ω1

0

m∑
j=1

ẋj(t)fe,j(t) dt. (3.15)
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Substituting fe,j(t) and ẋj(t) using Eqs. (3.9) and (3.14) and completing the integration

in Eq. (3.15), it follows that

p̄in =
1

2
ω1

m∑
j=1

( N∑
n=1

n
(
ŝ(j,2n−1)x̂(j,2n) − ŝ(j,2n)x̂(j,2n−1)

))
, (3.16)

where the orthogonal property of trigonometric functions was used. Instantaneous as

well as time-averaged dissipated/transmitted power can be obtained in a similar way

by taking the product of the Fourier expanded damping/transmitted forces and the

corresponding velocities.

3.2.2 The method of averaging

The method of averaging has been widely used to obtain periodic motions of nonlinear

systems when only a first-order of approximation of the response is sought (see, Nayfeh

and Mook (1979)). To illustrate, the oscillation in jth (1 ≤ j ≤ m) coordinate in Eq.

(3.6) is assumed to be harmonic with the same frequency as the excitation, i.e.,

xj(t) = x̂(j,1) cosω1t+ x̂(j,2) sinω1t = rj cos(ω1t+ φj), (3.17)

where rj and φj are the amplitude and phase angle in the steady-state motion, respec-

tively. Assuming that they are slow-varying variables of time, the velocity is found by

differentiating Eq. (3.17) with respect to time

ẋj(t) = ṙj cos(ω1t+ φj)− rj(ω1 + φ̇j) sin(ω1t+ φj). (3.18)

When a first-order approximation is pursued, the steady-state response will be harmonic

so that we have

ẋj(t) = −ω1rj sin(ω1t+ φj). (3.19)

Comparing Eqs. (3.18) and (3.19), it follows that

ṙj cos(ω1t+ φj)− rjφ̇j sin(ω1t+ φj) = 0. (3.20)

Differentiating Eq. (3.19) with respect to time, we obtain

ẍj(t) = −ω1ṙj sin(ω1t+ φj)− ω1rj(ω1 + φ̇j) cos(ω1t+ φj). (3.21)

Note that from the governing equation (3.6), ẍj(t) may be expressed as a function of

{x} and {ẋ}, i.e., ẍj(t) = gj({x}, {ẋ}). Using this function and Eq. (3.21), we have

ṙj sin(ω1t+ φj) + rjφ̇j cos(ω1t+ φj) = − 1

ω1

(
gj + rjω

2
1 cos(ω1t+ φj)

)
. (3.22)
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From Eqs. (3.20) and (3.22), ṙj and φ̇j are expressed as

ṙj = − 1

ω1

(
gj + rjω

2
1 cos(ω1t+ φj)

)
sin(ω1t+ φj), (3.23a)

φ̇j = − 1

rjω1

(
gj + rjω

2
1 cos(ω1t+ φj)

)
cos(ω1t+ φj). (3.23b)

According to the averaging method, the time change rates of response amplitude ṙj and

phase angle φ̇j can be approximated by their average values over a period of oscillation.

Such operation leads to

ṙj ≈ −
1

2π

∫ 2π/ω1

0

(
gj + rjω

2
1 cos(ω1t+ φj)

)
sin(ω1t+ φj) dt, (3.24a)

φ̇j ≈ −
1

2πrj

∫ 2π/ω1

0

(
gj + rjω

2
1 cos(ω1t+ φj)

)
cos(ω1t+ φj) dt. (3.24b)

In the steady-state motion, we have ṙj = φ̇j = 0 (1 ≤ j ≤ m) so that by evaluating the

integrations in Eqs. (3.24), a total number of 2m algebraic equations are established.

Solutions of these equations yield the response amplitudes and phase angles. Subse-

quently, the power flow variables can be obtained. The expression for time-averaged

input power in Eq. (3.16) is simplified by setting n = 1 into

p̄in =
1

2

m∑
j=1

(
ŝ(j,1)x̂(j,2) − ŝ(j,2)x̂(j,1)

)
, (3.25)

where x̂(j,1) = rj cosφj , x̂(j,2) = rj sinφj , derived from Eq. (3.17).

3.3 Numerical approaches

To demonstrate this approach, we recall the first-order form of the general governing

equation of a nonlinear system:

ẋ = f(x, t). (3.26)

In mathematics, it is usually referred to as an ordinary differential equation, which relates

an unknown function x(t) with its derivative ẋ(t). If the original governing equations

are of second order, new state variables can be introduced to reduce them to the first

order. When the initial conditions of the system are given as x(t0) = x0, the solution

of the dynamic response may be treated as an initial value problem of solving ordinary

differential equations. To deal with it, many numerical approaches, such as the Euler’s

method or the Runge-Kutta methods are readily available.

The general idea of these numerical methods is to discretise the independent variable

t into time steps tn+1 = tn + h, (n = 0, 1, 2, · · · ), with a step size of h, by which the
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problem is transformed into determinations of function values x(tn+1), i.e., xn+1, at

each time step. When the function value at t = tn is known as xn, to obtain xn+1 at

t = tn+1, the slope of the line connecting points (tn,xn) and (tn+1,xn+1) is needed. To

approximate the slope value, many methods have been proposed using the derivative

information at different locations. Here, only the basic ideas of the Euler’s method as

well as the Runge-Kutta methods are provided.

3.3.1 Euler’s method

In Euler’s method, the derivative at the starting point t = tn of each interval [tn, tn+1]

is extrapolated to estimate the value of xn+1, i.e.,

xn+1 = xn + hẋ(tn). (3.27)

To assess the accuracy, a Taylor expansion of xn+1 = x(tn + h) at (tn,xn) leads to

xn+1 = xn + hẋ(tn) +
h2

2!
ẍ(tn,xn) +O(h3), (3.28)

where O(h3) represents the higher-order terms. This method is simple, but very inac-

curate and potentially unstable (see, Gerald and Green (2003)). It is reliable only when

an extremely small step h is used. Improvement can be made by using an average of

the derivatives at t = tn and t = tn+1 for estimation, which leads to a modified Euler

method with a local error of O(h3) at each step.

3.3.2 Runge-Kutta methods

For better accuracy of the results, Runge-Kutta methods can be used, which employ the

Taylor’s theorem from the start to ensure the desired accuracy (see, Gerald and Green

(2003)). For example, in the second-order Runge-Kutta method, the slope of the line

connecting points (tn,xn) and (tn+1,xn+1) is approximated by a weighted average of

two estimates k1 and k2,

xn+1 = xn + ak1 + bk2, (3.29)

where

k1 = hf(tn,xn), (3.30)

k2 = hf(tn + αh,xn + βk1). (3.31)

The values of four unknowns, namely a, b, α and β, can be properly chosen such that

Eq. (3.29) agrees as well as possible with the Taylor series expansion of the differential

equation (3.26), i.e.,

xn+1 = xn+hẋn+
h2

2
ẍn+O(h3) = xn+hfn+

h2

2

(∂f

∂t
|t=tn+(

∂f

∂x
|x=xn)fn

)
+O(h3). (3.32)
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where fn is the abbreviation for f(tn,xn) and the chain rule was used for differentiation.

Similarly, an expansion of Eq. (3.31) in terms of tn and xn gives

k2 = hfn + h2
((∂f

∂t
|t=tn

)
α+

( ∂f

∂x
|x=xn

)
fnβ
)

+O(h3). (3.33)

Substituting Eqs. (3.30) and (3.33) into the original estimation (3.29), we have

xn+1 = xn + h(a+ b)fn + h2
(∂f

∂t
|t=tn)αb+ (

∂f

∂x
|x=xn)fnβb

)
+O(h3). (3.34)

Note that Eqs. (3.32) and (3.34) are identical if

a+ b = 1, αb = 1/2, βb = 1/2.

As there are three equations for four unknown, an arbitrary value can be assigned to one

of the unknowns. The traditional choice is a = b = 1/2, α = β = 1, which corresponds

to the Euler predictor-corrector method.

Results obtained from the second-order Runge-Kutta method have a local error of O(h3).

Improvement can be made by increasing the number of estimates as well as the orders in

Taylor expansions. In the widely used fourth-order Runge-Kutta method, four estimates

are made for the value of xn+1, i.e.,

xn+1 = xn +
1

6

(
k1 + 2(k2 + k3) + k4

)
, (3.35)

where

k1 = hf(tn,xn),

k2 = hf(tn + h/2,xn + k1/2),

k3 = hf(tn + h/2,xn + k2/2),

k4 = hf(tn + h,xn + k3).

The local error for this method will be O(h5), while the global error is O(h4).

Once the time histories of displacement and velocity of each degree of freedom are

obtained, power flow variables can be calculated. These time-histories may be Fourier

transformed so that the dominant response components can be determined, which in

turn assists in analytical modelling. The numerical approaches provide results with

good accuracy as the effects of many frequency components are considered. They can

be used to predict periodic responses, as well as quasi-periodic or chaotic motions.

However, they generally cost more computational power, compared with the analytical

approaches.



Chapter 4

Power flow analysis of the Duffing

oscillator

In this chapter, the power flow characteristics of different forms of the Duffing oscillator,

subject to harmonic excitations, are studied to reveal the distinct power input and dis-

sipation behaviour arising from nonlinear stiffness. This oscillator is a frequently used

model for a variety of problems such as nonlinear elasticity, midplane stretching (see,

Thomsen (2003)) and magnetically buckled beams (see Moon and Holmes (1979)). It

has been extensively studied in nonlinear dynamics emphasizing displacement/velocity

response (see, for example, Nayfeh and Mook (1979), Guckenheimer and Holmes (1983)).

These investigations successfully showed the capability of the system to exhibit a variety

of nonlinear phenomena such as sub-/super- harmonic resonances, non-uniqueness of so-

lutions, bifurcations and chaos (see, for example, Ueda (1980)). However, the associated

power flow behaviour of the system has not been investigated. To address this issue,

both analytical harmonic balance approximations and numerical simulations are used

in this chapter to investigate the instantaneous and time-averaged power flows of the

system with periodic or chaotic responses.

4.1 Power flow formulations and solutions

4.1.1 Power flow formulations

The Duffing oscillator is governed by the equation

ẍ+ 2ξẋ+ αx+ βx3 = f cosωt, (4.1)

in which the restoring force is characterised by a linear term and a cubic nonlinear term.

By the signs of parameters α and β, the system may be categorised into four types:

33
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Case I: softening stiffness system when α > 0, β < 0 ;

Case II: hardening stiffness system when α > 0, β > 0 ;

Case III: double-well potential system when α < 0, β > 0 ;

Case IV: unstable system when α < 0, β < 0.

Case IV refers to a system with a non-positive stiffness, thus it is unstable and will not

be investigated in this chapter.

Multiplying by the velocity ẋ on both sides of Eq. (4.1), the power flow balance equation

of the system is obtained

ẋẍ+ 2ξẋ2 + αẋx+ βẋx3 = ẋf cosωt, (4.2)

which is rewritten as

K̇ + U̇ + pd = pin, (4.3)

Here

K̇ = ẋẍ, (4.4a)

U̇ = αẋx+ βẋx3, (4.4b)

pd = 2ξẋ2, (4.4c)

pin = ẋf cosωt (4.4d)

are time change rates of kinetic and potential energies, and dissipated and input powers,

respectively. Assuming that the displacement and velocity of the system are xi and ẋi

at t = ti, and x and ẋ at t = ti + tp, respectively, an integration of Eq. (4.3) over the

time period leads to

∆K + ∆U + Ed = Ein, (4.5)

where

∆K =
ẋ2 − ẋi2

2
, (4.6a)

∆U =

∫ ti+tp

ti

(αẋx+ βẋx3) dt =
α(x2 − x2i )

2
+
β(x4 − x4i )

4
, (4.6b)

Ed =

∫ ti+tp

ti

2ξẋ2 dt, (4.6c)

Ein =

∫ ti+tp

ti

ẋf cosωtdt (4.6d)

represent the changes in kinetic and potential energies, and total dissipated and input

energies of the system, respectively; tp is the considered time span. The nonlinearity

of the system is demonstrated by Eq. (4.6b), with the potential energy being affected

by the nonlinear parameter β. For Cases I and II systems, only one minimum point in

potential energy exists at x = 0. However, for a Case III system, the potential energy

at x = 0 refers to a local maximum, with two local minima at x = ±
√
−α/β , as shown
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in Figure 4.1. Supposing the reference potential energy at x = 0 is zero, the difference

in the potential energies of the local maximum and minimum points is

∆U = 0− (
α

2
(

√
−α
β

)2 +
β

4
(

√
−α
β

)4) =
α2

4β
, (4.7)

which becomes more significant as α2 increases or β decreases. This quantity is impor-

tant in affecting the dynamics of the Case III systems. As shown in Figure 4.1, the

curve of potential energy forms two wells around the local minimum points. If the sys-

tem firstly oscillates in one of the wells, in order to reach the other it will need enough

energy to overcome the potential barrier at x = 0.
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Figure 4.1: The potential energy of the double-well potential system. Solid line:
α = −1.0, β = 0.5; dashed line: α = −1, β = 1 and dash-dot line: α = −0.5, β = 1.

The time-averaged dissipated and input powers are formulated as

p̄d =
Ed
tp

=
1

tp

∫ ti+tp

ti

2ξẋ2 dt, (4.8a)

p̄in =
Ein
tp

=
1

tp

∫ ti+tp

ti

ẋf cosωtdt. (4.8b)

For a linear system subject to a harmonic excitation, the steady-state response will

also be harmonic. Over a cycle of oscillation, there will be no net change in kinetic

and potential energies (∆K = 0,∆U = 0) and the time-averaged dissipated and input

powers will be equal. However, this is not generally true for nonlinear systems, as the

steady-state response may become non-periodic. For example, they may exhibit quasi-

periodic motion when the response frequency components are incommensurate with each

other (see, for example, Nayfeh and Balachandran (1995)). Chaotic motions may also

be encountered containing infinite frequency components.
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4.1.2 Solution approaches

The harmonic balance (HB) method can be used to obtain the power flow characteristics

of the system exhibiting periodic solutions. This method represents the steady-state

response in a form of truncated Fourier series:

x(t) = x̂0 +
N∑
n=1

(x̂2n−1 cosnω1t+ x̂2n sinnω1t), (4.9)

where ω1 is the fundamental frequency of oscillation; xj(j = 0, 1, · · · , 2N) is the coeffi-

cient of a harmonic function, N is the highest order of harmonics considered. Using Eq.

(4.9), the cubic term in Eq. (4.1) is expressed as

x(t)3 ≈ q̂0 +
N∑
n=1

(q̂2n−1 cosnω1t+ q̂2n sinnω1t), (4.10)

where the coefficients are defined by

q̂0 =
ω1

2π

∫ 2π
ω1

0
x3 dt, (4.11a)

q̂2n−1 =
ω1

π

∫ 2π
ω1

0
x3 cosnω1tdt, (4.11b)

q̂2n =
ω1

π

∫ 2π
ω1

0
x3 sinnω1tdt. (4.11c)

Differentiating Eq. (4.9) with respect to time, we obtain the velocity

ẋ = ω1

N∑
n=1

(−nx̂2n−1 sinnω1t+ nx̂2n cosnω1t), (4.12)

from which, when Eq. (4.4d) is used, it follows that the instantaneous input power

p̄in =
fω1

2

N∑
n=1

n

(
x̂2n
(

cos(nω1+ω)t+cos(nω1−ω)t
)
−x̂2n−1

(
sin(nω1+ω)t+sin(nω1−ω)t

))
,

(4.13)

containing frequency components of nω1 ± ω(n = 0, 1, · · · , N). It can be seen that pin

is periodic with its period being the least common multiple of that of each individual

component. Averaging Eq. (4.13) over its period, only the stationary component with

nω1 − ω = 0 gives a non-zero value, i.e.,

p̄in =
1

2
fω1nx̂2n, (4.14)

where n = ω/ω1 . In other words, only the in-phase component of the velocity with

the same frequency as that of the excitation will contribute to the time-averaged input

power.
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Alternatively, numerical simulations can be used to obtain power flow variables, for which

the governing equation Eq. (4.1) is firstly transformed into two first-order differential

equations, i.e.,

ẋ = y, (4.15a)

ẏ = −2ξy − αx− βx3 + f cosωt, (4.15b)

Note that when the initial condition (x0, y0) is known, it becomes an initial value prob-

lem. The fourth-order Runge-Kutta (RK) method, can be used to determine the time

histories of the responses. The power flow variables are obtained using Eqs. (4.4) and

(4.8). A Fourier transformation of these time histories provides the corresponding fre-

quency spectra, so that the dominant components can be identified and included in

analytical approximations.

Comparing these two methods, the numerical one provides more accurate results incor-

porating the effects of different frequency components on power flows. It is a generalised

approach suitable to solve various systems exhibiting either periodic / quasi-periodic or

even chaotic motions. However, it is computationally more expensive. The harmonic bal-

ance method, in contrast, provides approximate solutions with less computational cost

and more physical insight. Therefore, both the HB method and numerical simulations

will be used in this chapter. The former will be used to derive analytical approximations

of power flow variables when the system exhibits periodic motions, while the latter is

employed to verify the HB results and obtain the power flow behaviour of the system

exhibiting chaotic motions.

4.2 Power flow behaviour associated with periodic responses

4.2.1 A first-order approximation

Frequency-response relations

For a first-order HB approximation (N = 1, ω1 = ω) of power flows, we assume a

harmonic response with the same frequency as that of the excitation, i.e.,

x = x̂0 + x̂1 cosωt+ x̂2 sinωt. (4.16)

The velocity and the nonlinear restoring force term in Eq. (4.1) are expressed as

ẋ = −ωx̂1 sinωt+ ωx̂2 cosωt, (4.17a)

x3 = x̂30 +
3

2
x̂0(x̂

2
1 + x̂22)+

3

4
(x̂21 + x̂22 + 4x̂20)x̂1 cosωt+

3

4
(x̂21 + x̂22 + 4x̂20)x̂2 sinωt,

(4.17b)
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respectively. Substituting Eqs. (4.16) and (4.17) into Eq. (4.1) and equating the

corresponding harmonic terms, we obtain

(α− ω2)x̂1 + 2ξωx̂2 +
3

4
β(x̂21 + x̂22 + 4x̂20)x̂1 = f, (4.18a)

(α− ω2)x̂2 − 2ξωx̂1 +
3

4
β(x̂21 + x̂22 + 4x̂20)x̂2 = 0, (4.18b)

αx̂0 + βx̂0(x̂
2
0 +

3

2
(x̂21 + x̂22)) = 0. (4.18c)

A manipulation of Eqs. (4.18a) and (4.18b) leads to

(α− ω2)r2+
3

4
βr2(r2 + 4x̂20) = fx̂1, (4.19a)

2ξωr2 = fx̂2, (4.19b)

where r =
√
x̂21 + x̂22 , i.e., the amplitude of the oscillation.

For clarity, we define Type-1 oscillations to represent harmonic vibrations with x̂0 = 0,

i.e., oscillations around the static equilibrium point of x = 0, so that Eqs. (4.19) are

further simplified into

(
(α− ω2)r +

3

4
βr3
)2

+ (2ξωr)2 = f2. (4.20)

Similarly, Type-2 oscillations are used to denote harmonic motions with x̂0 6= 0, i.e., a

double-well potential system oscillating in one of its potential wells. In this situation,

Eq. (4.18c) can be transformed to

βx̂20 = −α− 1.5βr2. (4.21)

Substituting Eq. (4.21) back into Eqs. (4.19) and further simplifying, we obtain

(
(ω2 + 2α)r + 3.75βr3

)2
+ (2ξωr)2 = f2. (4.22)

Here, it should be noted that the solution to Eq. (4.22) should satisfy

x20 =
√

(−α− 1.5βr2)/β > 0

for a physically realizable motion. Also, such oscillations in a single potential well require

that |x0| > r such that the system won’t move beyond the point x = 0.

Basic characteristics of the time-averaged input power (TAIP)

Characteristic 1: TAIP p̄in is proportional to the maximum kinetic energy Kmax if

the damping coefficient ξ is fixed.



Chapter 4 Power flow analysis of the Duffing oscillator 39

To show this, TAIP over a cycle of oscillation T = 2π/ω is formulated by using Eqs.

(4.14) and (4.19b), i.e.,

p̄in = ξr2ω2. (4.23)

In steady-state motion, the maximum velocity xmax = rω of the system corresponds to

the maximum kinetic energy:

Kmax =
1

2
r2ω2. (4.24)

Therefore,

p̄in = 2ξKmax. (4.25)

and the characteristic 1 is valid.

Characteristic 2: There exists an upper bound P̄in =
f2

4ξ
of TAIP, independent of

parameters α, β and the excitation frequency.

To demonstrate this, we rewrite Eqs. (4.20) and (4.22) as

r2 =
f2

(ω2 − α− 0.75βr2)2 + (2ξω)2
, (4.26a)

r2 =
f2

(ω2 + 2α+ 3.75βr2)2 + (2ξω)2
, (4.26b)

respectively. Using Eqs. (4.23), (4.24) and (4.26), we have

p̄in =
ξf2(

ω2 − α− 0.75βr2

ω

)2
+ (2ξ)2

, (4.27a)

Kmax =
0.5f2(

ω2 − α− 0.75βr2

ω

)2
+ (2ξ)2

, (4.27b)

for Type-1 oscillations and

p̄in =
ξf2(

ω2 + 2α+ 3.75βr2

ω

)2
+ (2ξ)2

, (4.28a)

Kmax =
0.5f2(

ω2 + 2α+ 3.75βr2

ω

)2
+ (2ξ)2

, (4.28b)

for Type-2 oscillations. Therefore, we have

p̄in ≤
f2

4ξ
= P̄in, (4.29a)

Kmax ≤
f2

8ξ2
, (4.29b)

which confirms Characteristic 2. This implies that the upper bound of the time-averaged

power depends only on the excitation amplitude f and the damping coefficient ξ.
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Table 4.1: Conditions for reaching the upper bound of power flows

System category Number of peaks The value of (r2, ω2)

0, when ∆1 < 0 NA

Type-1 oscillations Case I systems
(−2α

3β
, α2 )

with conditions:
(α > 0, β < 0)

1, when ∆1 = 0

∆1 > 0 (
−2α±

√
∆1

3β
,
2α±

√
∆1

4 )
2, when ∆1 > 0

r2 > 0, ω2 > 0
Case II Systems

(
−2α+

√
∆1

3β
,
2α+

√
∆1

4 )
(α > 0, β > 0) 1, as ∆1 > 0

Case III Systems
(
−2α+

√
∆1

3β
,
2α+

√
∆1

4 )
(α < 0, β > 0) 1, as ∆1 > 0

Type-2 oscillations
Case III systems

0, when ∆2 < 0 NA

with conditions:
(−4α

15β
,−α)

∆2 > 0
(α < 0, β > 0) 1, when ∆2 = 0

(
−4α±

√
∆2

15β
,
−4α∓

√
∆2

4 )
r2 > 0, ω2 > 0 2, when ∆2 > 0

For a Type-1 oscillation to reach the upper bound values of P̄in and Kmax, the values

of ω2 and r2 should satisfy

ω2 − α− 0.75βr2 = 0, (4.30)

as well as Eq. (4.20), from which we obtain

r2 =
−2α±

√
∆1

3β
, ω2 =

2α±
√

∆1

4
,

where ∆1 = 4α2+3β2/ξ2. Similarly, for a Type-2 oscillation to achieve the upper bound,

it requires

ω2 + 2α+ 3.75βr2 = 0. (4.31)

Together with Eq. (4.22), we obtain

r2 =
−4α±

√
∆2

15β
, ω2 =

−4α∓
√

∆2

4
,

where ∆2 = 16α2− 15βf2/ξ2. Table 4.1 lists the conditions and positive solutions of r2

and ω2 to reach the upper bound (maximum/peak value). It is found that for a Case

II system, only one set of (r2, ω2) leads to the maximum TAIP, whereas for Cases I and

III systems, the peak value may be encountered at different locations.

Characteristic 3: In the high-frequency range, p̄in ≈ ξf2

ω2 + 4ξ2
, independent of pa-

rameters α and β.
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When the excitation frequency ω is large, p̄in and Kmax can be approximated by

p̄in ≈
ξf2

ω2 + 4ξ2
, (4.32a)

Kmax ≈
0.5f2

ω2 + 4ξ2
. (4.32b)

Jumps, non-uniqueness of TAIP and its sensitivity to the initial conditions

Solving Eq. (4.20) with a bisection method, the response amplitude and subsequently

TAIP of a Case II system with α = 1.0, β = 0.1, ξ = 0.01, f = 0.1 were obtained

and are shown in Figure 4.2. The default dB reference for p̄in and Kmax is set as

10−12 throughout this thesis. This reference is often used in decibel representations of

quantities such as sound power and sound pressure. It is seen that p̄in increases with

ω on curves A′C ′ and D′C ′, and decreases with it on curve B′D′. The peak value

(upper bound) of p̄in is encountered at point C’. Bifurcations of periodic motions occur

at points C ′ and D′, and consequently, the value of p̄in jumps downwards to point E′

and upwards to point F ′, respectively. Between these critical jumping frequencies, there

are three possible values of p̄in at a single excitation frequency.
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Figure 4.2: A Case II system with α = 1.0, β = 0.1, ξ = 0.01, f = 0.1, ω = 1.1. (a)
Response and (b) the time-averaged input power (TAIP).

In the frequency range of non-unique TAIP, the basins of attraction of the system can be

examined to identify different regions of the initial conditions causing variations in time-

averaged power flows. Each basin represents a domain of all the initial conditions that

lead to the same steady-state response (see, Nayfeh and Balachandran (1995)). To plot

the basins of attraction of a system with fixed parameters, numerical simulations need

to be conducted for each set of initial conditions to obtain the corresponding motions.

Those with the same response are grouped together and marked with the same colour.
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Figure 4.3: Effects of initial conditions on power flows of a Case II system (α =
1.0, β = 0.1, ξ = 0.01, f = 0.1, ω = 1.1). (a) Basins of attraction; (b) instantaneous

input power, solid line: (x0, y0) = (1, 0) and dashed line: (x0, y0) = (−1, 0).

To illustrate, Figure 4.3(a) shows a plot of basins of attraction for the system with

α = 1.0, β = 0.1, ξ = 0.01, f = 0.1, and with the excitation frequency ω = 1.1, locating

between C and D in Figure 4.2(a). The initial displacement and velocity of the system

are represented by x0 and y0, respectively. With these settings, Figure 4.2 has shown

that there are three possible values of amplitude r = 0.52, 1.37, 1.86, and correspondingly

p̄in = 190.44dB, 207.09dB, 212.42dB . The white region of Figure 4.3(a) represents

initial conditions leading to a larger r of 1.86 and larger p̄in of 212.42dB , whereas the

black region denotes initial conditions leading to r = 0.52 and p̄in = 190.44dB. The

intermediate values of r = 1.37 and p̄in = 207.09dB correspond to an unstable motion

which is not physically realisable. Crossing the boundary of the basins, a slight change

in the initial conditions will cause significant variations in TAIP. Figure 4.3(b) shows

the time series of the input power pin with prescribed parameters but with two sets

of initial conditions of (x0, y0) = (1, 0) and (x0, y0) = (−1, 0). The former locates in

the white region of Figure 4.3(a) while the latter in the black. Correspondingly, Figure

4.3(b) shows that the amplitude of pin changes significantly. This clearly demonstrates

the sensitivity of a nonlinear system’s power flows to the initial conditions.

Effects of nonlinear stiffness parameter β on power flows

In Figure 4.4, the effects of parameter β on p̄in and Kmax are examined with other

parameters fixed as ξ = 0.01, α = 1.0, f = 0.1. The system changes from Case I with

a softening stiffness (β = −0.1,−0.01) , to linear (β = 0), and then Case II (β = 0.5)

with a hardening stiffness. From the figure, the following power flow characteristics are

observed.
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Figure 4.4: Effects of the nonlinear stiffness coefficient β on (a) p̄in and (b) Kmax

. First-order HB approximations: dash-dot line (β = −0.1), dashed line (β = −0.01),
solid line (β = 0) and dotted line (β = 0.5). Numerical simulation results: circles

(β = −0.1), squares (β = −0.01) and triangles (β = 0.5)

• The power flow curves bend to the low frequencies for the softening stiffness system

with a negative β but to the high frequencies for the hardening stiffness system

with β being positive.

• The nonlinear parameter β has a strong influence on power flows when the excita-

tion frequency is close to the resonance frequency. When the excitation frequency

ω is far away from the resonance frequency, the power flow variables are not sen-

sitive to variations in β as the curves coincide.

• For the softening, linear and hardening stiffness systems with β = −0.01, 0 and

0.5, the peaks in p̄in and Kmax curves are of the same height. However, the peak

value for the softening system with β = −0.1 is much smaller. Using the analysis

results in Section 4.2.1, it can be shown that the upper bound of power flows can

be realised for the former three cases, but not for the latter with β = −0.1 for

which ∆1 = −26 < 0. This characteristic suggests an approach to reduce the peak

power flow values by adding a nonlinear softening stiffness into a linear isolator

(see, Yang et al. (2013)).

• The figure shows that at points A′, A′′ and B′, B′′on the curves of β = −0.01, as

well as at points D′ and D on the curves of β = 0.5, there are two values of p̄in

and Kmax at each corresponding frequency. Similar to the case shown previously,

bifurcation occurs at these critical bifurcation points with possible jumps in the

values of p̄in and Kmax when the excitation frequency changes.

• A nonlinear stiffness of β 6= 0 introduces a wide frequency band with a larger p̄in ,

compared with the linear system. This feature can be used for broadband vibration
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energy harvesting (see, for example, Ramlan et al. (2010)). However, due to the

existence of non-unique solutions, proper initial conditions have to be chosen such

that they locate in the basin of attraction of the large amplitude motion.

Effects of linear stiffness parameter α on power flows

In Figure 4.5, the effects of the coefficient of the linear restoring force term α on the power

flow variables are examined with the other parameters set as ξ = 0.01, f = 0.1, β = 0.5.

In this way, the system changes from Case II when α = 5, 3 or 1 to Case III when

α = −1. When α > 0, it shows that an increase in α shifts the power flow curves to

the higher frequencies. This is due to the fact that parameter α determines the natural

frequency of the linearized system. At low frequencies, both p̄in and Kmax increase as

α reduces from 5 to 1. However, at frequencies higher than the resonance frequency, a

larger α results in larger power flows into the hardening stiffness system. This figure

again demonstrates that there is a uniform upper bound (peak value) for both p̄in and

Kmax of the system as α varies from 5 to 1.
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Figure 4.5: Effects of the linear stiffness coefficient α on (a) p̄in and (b) Kmax . First-
order HB approximations: solid line (α = 5), dashed line (α = 3), dash-dot line (α = 1)
and dotted line (α = −1). Numerical simulation results: circles (α = 5), triangles

(α = 3), squares (α = 1) and pentagons (α = −1).

For the case with α = −1, numerical simulation results indicate that the system exhibits

Type-2 oscillations in one of the potential wells. Therefore, Eq. (4.22) is used to obtain

the analytical approximations of power flows. The results in Figure 4.5 show that the

corresponding power flow curves bend towards the low frequencies, which is similar to

the characteristics of the softening stiffness system (Case I). Also, using the results

obtained previously, it can be shown that upper bound of p̄in cannot be reached as

correspondingly we have ∆2 = −734 < 0. The figure also shows that as ω increases
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towards high frequencies, the power flow curves of different α values tend to merge with

each other. This demonstrates the basic Characteristics 3 of power flow listed previously.

Effects of damping and the excitation amplitude on power flows
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Figure 4.6: Effects of the damping coefficient ξ (a) p̄in and (b) Kmax. First-order
HB approximations: solid line (ξ = 0.01), dashed line (ξ = 0.02) and dotted line
(ξ = 0.05). Numerical simulation results: circles (ξ = 0.01), squares (ξ = 0.02) and

triangles (ξ = 0.05).
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Figure 4.7: Effects of the excitation amplitude f on (a) p̄in and (b) Kmax . First-
order HB approximations: solid line (f = 0.1), dashed line (f = 0.2) and dotted line
(f = 0.5). Numerical simulation results: circles (f = 0.1), squares (f = 0.2) and

triangles (f = 0.5).

Figures 4.6 and 4.7 show the influences of the damping coefficient ξ and the excitation

amplitude f on power flows of the Case II systems. Their effects on Case I and III

systems can be analysed in a similar way, so the corresponding results are not provided
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here. With the other parameters set as α = 1.0, β = 0.1, f = 0.1, Figure 4.6 shows

that the peak values in both p̄in and Kmax decrease with an increasing ξ. As ξ reduces

from 0.05 to 0.01, the power flow curves bend further to the higher frequency range.

Away from the resonance region, the effects of damping on TAIP and the maximum

kinetic energy are different, with p̄in increasing with damping, but Kmax not sensitive

to it. Figure 4.7 shows that input power increases with the excitation amplitude f when

the other parameters are set as α = 1.0, β = 0.1, ξ = 0.05. It is also seen that as the

f increases from 0.1 to 0.5, the nonlinear effects become stronger and the curves bend

towards the high frequencies.

4.2.2 A second-order approximation

In first-order HB approximations, only the primary response component with the same

frequency as the excitation is considered. However, for a nonlinear system, other fre-

quency components may become large and dominant. To reveal this phenomenon, a

second-order HB approximation is adopted to obtain more accurate solutions of power

flow variables.
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Figure 4.8: Effects of super-harmonic resonances on (a) p̄in and (b) Kmax . Solid
lines: first-order HB approximations; dots: numerical simulation results. Parameters

are set as α = 1.0, β = 0.1, ξ = 0.02, f = 2.

Super-harmonic resonances

For the system with α = 1.0, β = 0.1, ξ = 0.02, f = 2, Figure 4.8 compares the first-order

HB approximations of p̄in and Kmax with those obtained using numerical integrations.

In the low-frequency region, local peaks are found at points A and B in p̄in and at A′

and B′ in Kmax , resulting from the occurrences of super-harmonic resonances.
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Figure 4.9: Power flows of the system when super-harmonic resonances occur (α =
1.0, β = 0.1, ξ = 0.02, f = 2.0):(a)-(c), ω = 0.41; (d)-(f), ω = 0.24. (a, d) Instantaneous
input power; (b, e) frequency spectra of pin ; (c, f) frequency spectra of displacements.

Figures 4.9(a) and (d) show the time histories of pin when the excitation frequency

locates at peaks A and B in Figure 4.8, respectively. The frequency spectra ωr of

the instantaneous input power and the displacement response are presented in Figures

4.9(b, c) and 4.9(e, f). When ω = 0.41, Figure 4.9(c) shows that apart from the primary

response component at ωr = ω, there is a large super-harmonic component at ωr = 3ω.

As a result, there are significant signatures in pin at 2ω and 4ω. Similarly, when ω =

0.24, Figure 4.9(f) shows that major response components locate at ω, 3ω, 5ω and 7ω.

Consequently, the input power pin is dominated by components at 2ω, 4ω, 6ω and 8ω.

To reveal the effects of super-harmonic resonances on power flows, we use a second-order

HB approximation containing two frequency components ω1 and 3ω1:

x = x̂1 cosω1t+ x̂2 sinω1t+ x̂5 cos 3ω1t+ x̂6 sin 3ω1t, (4.33a)

ẋ = −ω1x̂1 sinω1t+ ω1x̂2 cosω1t− 3ω1x̂5 sin 3ω1t+ 3ω1x̂6 cos 3ω1t, (4.33b)

where ω1 equals the excitation frequency ω. Then, the nonlinear term x3 is expressed

with harmonic functions using Eqs. (4.10) and (4.11). A second-order harmonic balance
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condition of Eq. (4.1) yields:

(α− ω2
1)x̂1 = f − 2ξω1x̂2 −

3

4
β
(
x̂31 + x̂1x̂

2
2 + (x̂21 − x̂22)x̂5 + 2x̂1x̂2x̂6 + 2(x̂25 + x̂26)x̂1

)
,

(4.34a)

(α− ω2
1)x̂2 = 2ξω1x̂1 −

3

4
β
(
x̂32 + x̂21x̂2 + (x̂21 − x̂22)x̂6 − 2x̂1x̂2x̂5 + 2(x̂25 + x̂26)x̂2

)
,

(4.34b)

(α−9ω2
1)x̂5 = −6ξω1x̂6 −

1

4
β
(
x̂31 − 3x̂1x̂

2
2 + 6(x̂21 + x̂22)x̂5 + 3x̂35 + 3x̂5x̂

2
6

)
,

(4.34c)

(α−9ω2
1)x̂6 = 6ξω1x̂5 −

1

4
β
(
− x̂32 − 3x̂21x̂2 + 6(x̂21 + x̂22)x̂6 + 3x̂36 + 3x̂25x̂6

)
.

(4.34d)

A Newton-Raphson technique is used to solve this set of nonlinear equations (see, for

example, Press et al. (1992)). Subsequently, TAIP is obtained from p̄in = 0.5fω1x̂2 .

The results for TAIP agree well with those shown in Figure 4.8 around peak A.
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Figure 4.10: Effects of damping on (a) p̄in and (b) Kmax , in super-harmonic res-
onance region. Numerical simulation results: solid line (ξ = 0.005), dashed line
(ξ = 0.01) and dotted line (ξ = 0.02). Second-order HB approximations: circles

(ξ = 0.005), squares (ξ = 0.01) and triangles (ξ = 0.02).

Figures 4.10, 4.11 and 4.12 examine the effects of damping, nonlinearity and the exci-

tation amplitude on the system’s power flows in the super-harmonic region. They show

that the numerical simulation results agree well with the second-order HB approxima-

tions. Figure 4.10 shows that for a system with α = 1, β = 0.1, f = 0.5, large damping

increases TAIP but suppresses the corresponding super-harmonic response peaks. The

value of Kmax is also reduced by increasing damping at the super-harmonic peak, but

becomes insensitive to it when ω is away from the peak region.



Chapter 4 Power flow analysis of the Duffing oscillator 49

0.2 0.3 0.4 0.5
160

170

180

190

 

 

p i
n(
dB

)

(a)

0.1

0.2

0.3

 0

0.2 0.3 0.4 0.5
190

200

210

220

230

 0

0.1

0.2

 

 

K
m
ax
(d
B
)

(b)

0.3

Figure 4.11: Effects of nonlinear parameter β on (a) p̄in and (b) Kmax , in super-
harmonic resonance region. Numerical simulation results: solid line (β = 0), dashed
line (β = 0.1), dash-dot line (β = 0.2) and dotted line (β = 0.3). Second-order HB

approximations: circles (β = 0.1), squares (β = 0.2) and triangles (β = 0.3).
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Figure 4.12: Effects of the excitation amplitude f on (a) p̄in and (b) Kmax , in super-
harmonic resonance region. Numerical simulation results: solid line (f = 0.5), dashed
line (f = 0.75) and dotted line (f = 1.0). Second-order HB approximations: circles

(f = 0.5), squares (f = 0.75) and triangles (f = 1.0).

Figure 4.11 shows the effects of parameter β on both p̄in and Kmax for a system with

ξ = 0.01, α = 1.0, f = 0.5. The peak values of both p̄in and Kmax increase as the system

nonlinearity becomes stronger. Away from the peaks, the influence of nonlinearity on

p̄in is small, but Kmax reduces with an increasing β when 0.4 < ω < 0.5. Figure 4.12

shows that an increase in the excitation amplitude f generally leads to larger p̄in and

Kmax. Two local peaks are found in each kinetic energy curve. Also, with an increase
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in the excitation amplitude, the peaks become higher and the curve shifts to higher

frequencies.
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Figure 4.13: Effects of sub-harmonic resonances on (a) p̄in and (b) Kmax . Solid
lines: first-order HB approximations; dots: numerical simulation results. Parameters

are set as α = 1.0, β = 0.2, ξ = 0.02, f = 10.

For a system subject to strong excitations, sub-harmonic resonances may appear when

the excitation frequency is larger than the natural frequency of the linearized system

(see Nayfeh and Mook (1979)). Thus, it is necessary to study their effects to obtain full

power flow information for effective designs of passive nonlinear vibration isolators (see

Yang et al. (2013)).

Figure 4.13 shows the variations of p̄in and Kmax with the excitation frequency for a

system with α = 1.0, β = 0.2, ξ = 0.02, f = 10. The results are obtained by both the

RK method and a first-order HB method. There are local peaks in the lower branches

of p̄in and Kmax obtained by numerical simulations, with the local peak values much

larger than the first-order HB predictions. Therefore, to obtain a better analytical

approximation, the dominant sub-harmonic components should be included in the HB

model. The figure also shows a super-harmonic peak in the numerical results at ω = 1.14,

with a strong super-harmonic component in the response.

Figure 4.14 shows the time histories as well as frequency spectra of input power and

displacement at two excitation frequencies of ω = 3.5 and ω = 2.8. Figures 4.14(a)-(c)

for ω = 3.5 show a large sub-harmonic response component at ωr = ω/3 and a primary

one at ωr = ω. Correspondingly, significant components in pin exist at 2ω/3, 4ω/3 and

2ω. When ω = 2.8, there is a large sub-harmonic component at ω/2, as shown in Figure
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Figure 4.14: Power flows of the system when sub-harmonic resonances occur (α =
1.0, β = 0.2, ξ = 0.01, f = 10):(a)-(c), ω = 3.5; (d)-(f), ω = 2.8. (a, d) Instantaneous
input power; (b, e) frequency spectra of pin ; (c, f) frequency spectra of displacements.

4.14(f). As a result, the input power is dominated by components at ω/2, 3ω/2 and 2ω.

Clearly, sub-harmonic resonances occur in both cases.

Again, a second-order HB method can be used to approximate TAIP of the system

exhibiting sub-harmonic resonances. Considering two frequency components of ω and

ω/3, Figure 4.15 shows that the second-order HB approximations agree well with nu-

merical simulations results. The value of p̄in increases considerably at ω = 3.38 but

reduces significantly at ω = 3.69. Sub-harmonic resonances occur between these critical

frequencies, resulting in a larger amount of input power. Similarly, the power flows of

the system with (α = 1.0, β = 0.2, ξ = 0.01, f = 10, ω = 2.8) can also be approximated

using a second-order HB model considering frequency components ω and ω/2.

4.3 Power flow behaviour associated with bifurcations and

chaos

The previous section studied the power flows of the system with periodic responses con-

taining discrete frequency components. However, chaotic motions may be encountered

for the Case III systems, containing a broadband frequency signature. The correspond-

ing power flow behaviour of the system is of great interest and investigated herein.
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Figure 4.15: TAIP of the system with sub-harmonic resonances (α = 1.0, β = 0.2, ξ =
0.01, f = 10). Solid line: numerical simulations; dots: second-order HB approximations.

4.3.1 Effects of bifurcations

To reveal the dynamic characteristics of the system over a frequency range, a bifurcation

diagram provides a useful tool. To plot it, numerical simulations are conducted for each

value of ω. The sampling displacement xs(ts) at sampling time ts = ti + (n− 1)T, (n =

1, 2, · · · , ) is recorded, starting from ti and using the excitation period T = 2π/ω as the

sampling interval. In this way, for a period-1 response with a period of T , the samplings

coincide at one point for a specific value of ω. Similarly, for a period-q response with its

period being qT , there are q points shown for a single value of ω. If the motion is not

periodic, i.e., quasi-periodic or chaotic, theoretically, there will be infinite points shown

for a particular ω. The corresponding Lyapunov exponents (see, Wolf et al. (1985)) can

be used to identify chaotic motions. Bifurcation occurs at frequencies where there is a

sudden change in the number of shown sampling points. Similar sampling diagrams for

instantaneous input power ps = pin(ts) at time ts can be plotted to investigate input

power behaviour.

For the system with α = −1, β = 1, ξ = 0.01, f = 0.5 with ti = 500T , Figures 4.16 and

4.17 provide bifurcation diagrams by sampling x and pin , as well as variations of TAIP

based on averaging time tp = 1000T . To reveal different power flow solution branches,

continuations are used by varying the excitation frequency from 0.1 to 10 (Figure 4.16),

and from 10 to 0.1 (Figure 4.17), respectively. First-order HB approximations of TAIP

are also shown in the figures for comparisons. Comparing these figures, it is seen that

different stable motions co-exist when 1.58 < ω < 4.21. In this situation, the TAIP will

be dependent on the initial conditions. Investigating the variations of ps and TAIP with

references of the bifurcation diagrams Xs, the following power flow characteristics are

observed:
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Figure 4.16: Effects of bifurcation on TAIP when varying ω from low to high fre-
quencies. (a) Bifurcation diagram, (b) sampling points ps and (c) TAIP. First-order
HB approximations: solid line (Type-1 oscillations); dashed line (Type-2 oscillations).

Numerical simulation results: dots.

Feature 1: At a specific excitation frequency, there is the same number of sampling

points shown for Xs and ps, so that the sampling diagram for instantaneous input

power can play the same role as the conventional bifurcation diagram for identifications

of periodic/non-periodic motions as well as occurrence of bifurcations.

Feature 2: In the high-frequency range, bifurcations can cause significant jumps of

TAIP.

As shown in Figure 4.16, bifurcation from Type-1 (solid line) to Type-2 (dashed line)

oscillations leads to a substantial jump-down in the numerical value of p̄in at critical fre-

quency ω = 4.21. To examine the reason, Figures 4.18(a) and (d) present the variations

of displacement and dissipated power at ω = 4.21 and 4.22, respectively. It’s shown that

the former type of oscillation is of large amplitude around the point x = 0, while the

latter case with ω = 4.22 yields only a small-amplitude vibration in a single potential
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Figure 4.17: Effects of bifurcation on TAIP when varying ω from high to low fre-
quencies. (a) Bifurcation diagram, (b) sampling points ps and (c) TAIP. First-order
HB approximations: solid line (Type-1 oscillations); dashed line (Type-2 oscillations).

Numerical simulation results: dots.

well. Therefore, there is more power dissipation in the Type-1 oscillation than in the

Type-2 oscillation and a substantial change in TAIP due to the bifurcation is observed.

Similarly in Figure 4.17, when sweeping from high to low frequencies, the system bi-

furcates from a period-2 oscillation to a chaotic motion at ω = 1.58, and then to a

Type-1 oscillation at ω = 1.56. Correspondingly, TAIP increases significantly as a result

of these bifurcations. As shown in Figures 4.18(b) and (e), the period-2 oscillation at

ω = 1.60 is in a single potential well, whereas the chaotic motion at ω = 1.58 oscillates

in both wells with larger amplitude, so that more power is dissipated in the latter case.

Moreover, Figure 4.18(c) shows that the amplitude of Type-1 oscillation at ω = 1.56

is larger than that of the chaotic motion at ω = 1.58. Also, the Type-1 motion moves

across two potential wells more frequently than the chaotic motion, and thus requires

more energy dissipation, as shown in Figure 4.18(f).
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Figure 4.18: Bifurcations at high frequencies (α = −1, β = 1, ξ = 0.01, f = 0.5). (a)
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(a)-(c): displacement response, (d)-(f): dissipated power.
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Figure 4.19: Variations of TAIP at low excitation frequencies using a low-to-high
frequency sweep (α = −1, β = 1, ξ = 0.01, f = 0.5). Dots: chaotic motions; squares:

period-1 motions; triangles: period-2 motions and crosses: period-3 motions.

Feature 3: In the low-frequency range, the changes in TAIP due to bifurcations are

smaller than those at high frequencies described in Feature 2.

Figure 4.19 provides an enlarged and more detailed view of the variations of TAIP

in the low-frequency range for better clarity. This figure shows that TAIP of chaotic

motions indicated by the dots only varies slightly with the excitation frequency. In
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contrast, the TAIP corresponding to period-1 motions marked by squares changes more

abruptly at some frequencies due to bifurcations. For example, the response changes

from a chaotic motion at ω = 0.12 to a period-1 motion at ω = 0.125, and then resumes

being chaotic at ω = 0.13. Correspondingly, TAIP for the period-1 motion is smaller

than that for the chaotic motions. Figure 4.20 shows the frequency components in the

input power at these three excitation frequencies. Figure 4.20(b) shows that the period-1

motion contains discrete frequency signatures, but both chaotic motions with the largest

Laypunov exponent being positive contain broadband frequency spectra, as shown by

Figure 4.20(a) and (c).
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Figure 4.20: Frequency spectra at low excitation frequencies (α = −1, β = 1, ξ =
0.01, f = 0.5). (a) ω = 0.120 with the largest Lyapunov exponent: 0.039, (b) ω = 0.125,

period-1 motion and (c) ω = 0.130 with the largest Lyapunov exponent: 0.04.

4.3.2 Effects of chaotic responses

Here we focus on the effects of chaotic motion on both the instantaneous and time-

averaged input power of the system. Figures 4.16 and 4.17 reveal the following behaviour

of power flows due to the occurrences of chaotic motions.

Chaos effect 1: Given an infinite sampling time span, there would be infinite sampling

points for input power ps(ts) when a chaotic motion occurs as the input power becomes

non-periodic.

Chaos effect 2: Compared with the corresponding HB approximation of TAIP for the

Type-1 oscillations, the numerical results show larger TAIP at low excitation frequencies,

but smaller when the excitation frequency is large.

To explain this characteristic, Figure 4.21 compares the power flows of the system with

α = −1, β = 1, ξ = 0.01, f = 0.5, excited at ω = 0.13 and ω = 1.58, respectively. For

the former case, as shown in Figures 4.21 (a)-(c), the HB approximation underestimates

power flow levels as it neglects the power dissipation caused by super-harmonic oscilla-

tions in the potential wells. This is in contrast to the latter case with a larger excitation
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Figure 4.21: Comparisons of power flows for chaotic motions with the corresponding
HB approximations. (a)-(c): ω = 0.13 and (d)-(f): ω = 1.58. (a) and (d): displacement;
(b) and (e): dissipated power; (c) and (f): input power. Solid line: chaotic motions;

dashed line: first-order HB approximations..

frequency of ω = 1.58. As shown in Figures 4.21(d)-(f), the system moves around the

unstable equilibrium at x = 0 less frequently with smaller amplitude than the HB ap-

proximation. Correspondingly, the dissipated and input powers are much lower than the

HB predictions.

When the system displays chaotic motions, the influences of averaging time tp on TAIP

should be clarified. To examine this, we set tp as N cycles of the excitation, i.e., tp = NT

and plot the variations of p̄in against tp in Figure 4.22. For a chaotic response with the

largest Lyapunov exponent of 0.07, the figure shows that the variations in p̄in are smaller

than 4dB when 10 < N < 100. When N > 100, the value of TAIP remains in between

200dB and 202dB. Moreover, as N increases, the fluctuation becomes smaller and p̄in

tends asymptotically to 200.6dB. This suggests a conclusion as follows.

Chaos effect 3: For a chaotic response, there exists an asymptotic value of TAIP as

the averaging time increases. The asymptotical behaviour of TAIP may be an important

characteristic of chaotic motions of a system. As we have learnt, for periodic vibrations,

TAIP based on tp = NT (N is a positive integer) is constant, independent of N . A

chaotic motion could be considered as a periodic one with an infinite period, and also by

definition it is bounded in space, so that its TAIP tends to a constant with increasing

averaging time.
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Chaos effect 4: The TAIP for chaotic motions is not sensitive to initial conditions if

the averaging time is large enough.
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Figure 4.23: Effects of initial conditions, on time-averaged input power of chaotic
motions (α = −1, β = 1, ξ = 0.01, f = 0.1, ω = 0.4).

To examine the effects of initial conditions on TAIP of a chaotic response, Figure 4.23

provides the numerical results of TAIP, averaged from ti = 500T using averaging time

tp = 1000T . With the initial displacement x0 and velocity y0 varying between −1 and

1, it shows that the variations in TAIP are smaller than 1dB. It should be noted that

the chaotic motion considered here is the only stable solution in the examined region of
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initial conditions. Otherwise, the value of TAIP may change significantly if the system

response evolves to other stable solutions.

4.4 Conclusions

The Duffing oscillator was investigated in this chapter to explore its intrinsic power flow

behaviour due to the stiffness nonlinearity. The effects of different nonlinear phenomena,

such as sub-/super- harmonic resonances, bifurcation and chaos on power flows were

investigated. The influences of different parameters, initial conditions and averaging

time on the time-averaged input power (TAIP) were examined. Both the instantaneous

and time-averaged power flow characteristics of the system were analysed. The HB

(Harmonic balance) method was used to obtain approximate analytical solutions of

power flow variables while the numerical simulations based on the Runge-Kutta method

were used to provide more accurate results associated with periodic/chaotic motions.

Based on the study, the following conclusions are drawn:

• If the system exhibits periodic motions, only the in-phase velocity component with

the same frequency as the excitation contributes to the TAIP averaged over the

response period;

• Using a first-order HB approximation, the TAIP is proportional to the maximum

kinetic energy Kmax of the system if the damping coefficient remains unchanged.

Also, there exist upper bounds (peak values) for both TAIP and Kmax, indepen-

dent of the coefficients α and β. The upper bound values increase with the exci-

tation amplitude and decrease with an increasing damping coefficient. Moreover,

the TAIP and Kmax are not sensitive to parameters α and β when the excitation

frequency is large. The nonlinear parameter β has a significant influence on TAIP

of the hardening/softening systems (α > 0) near the resonance frequency. When

the excitation frequency is away from the resonance, TAIP is not sensitive to vari-

ations in β. Similarly, variations in α with a fixed positive β affect TAIP mainly

when the excitation frequency is close to or smaller than the primary resonance

frequency;

• The TAIP may be non-unique and exhibits sensitivity to the initial conditions.

The basins of attraction can be examined to identify different regions of initial

conditions corresponding to varying power flow levels. Crossing the boundary of

different basins, the TAIP may change significantly;

• When the system exhibits sub-/super- harmonic resonances, there will be large sub-

/super- components in the input power, and also a potentially significant increase

in its time-averaged value. HB formulations of different orders can be used for

analytical approximations;
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• Bifurcations of different types of motions can cause large jumps in the TAIP. This

is especially true for the double-well potential system when the motion bifurcates

from oscillations in a single potential well to be in both potential wells;

• In the low-frequency range, the numerical results of TAIP of a double well potential

system were shown to be larger than the first-order HB approximations, resulting

from large super-harmonic components. Compare with that, the numerical value

of TAIP corresponding to chaotic motion at high frequencies was smaller than the

HB approximation;

• When the system exhibits chaotic motion, the corresponding TAIP tends to an

asymptotic value with increasing averaging time. Also, the TAIP is not sensitive

to the initial conditions when there is a single chaotic attractor in the region;

• The TAIP provides a uniform index to assess the dynamic performance of different

types of the Duffing system, exhibiting periodic/chaotic motions.



Chapter 5

Power flow analysis of the Van

der Pol oscillator

In this chapter, the power flow behaviour of the Van der Pol (VDP) oscillator is in-

vestigated to examine the effects of nonlinear damping on the system’s power flows.

This oscillator is a typical dynamical system characterised by possible negative damping

and has been shown to exhibit complex nonlinear behaviour. It was firstly proposed

about a century ago to model the limit cycle oscillation (LCO) of currents in electrical

circuits with a triode valve (see, Van der Pol (1920)). Ever since then, the model has

been frequently used to reveal the dynamics of various systems in many scientific and

industrial fields. For example, in biology, it provided a good model for the gastric mill

central pattern generator in lobsters (see, for example, Rowat and Selverston (1993)).

In seismology, the Van der Pol equation was used to develop a model of the interaction

between two plates in geological fault (see Cartwright et al. (1999)). Similar oscillations

that are exhibited by the VDP oscillator were also encountered in aero-elastic systems,

such as in-flow bluff bodies (see Dowell (1981)). The essential nonlinearity in damping

gives rise to complicated nonlinear phenomena, the effects of which on power flows have

not been thoroughly addressed and are studied herein.

5.1 Power flow formulations

The general governing equation of a harmonically excited Van der Pol oscillator can be

expressed as

ẍ+ α(x2 − 1)ẋ+ βx = f cosωt, (5.1)

where f and ω denote the amplitude and frequency of the harmonic excitation force,

respectively; parameter α is assumed to be positive throughout this chapter.

61
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The nonlinearity of this oscillator is demonstrated by the damping term, i.e.,

fd = α(x2 − 1)ẋ, (5.2)

This equation and Figure 5.1(a) show that the damping coefficient α(x2 − 1) is positive

when |x| > 1, i.e., the displacement is large. It becomes zero when |x| = 1 and negative

when the absolute value of displacement x is smaller than unity.
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Figure 5.1: Variations of (a) nonlinear damping force and (b) dissipated power, with
respect to displacement and velocity (α = 1).

Multiplying by velocity ẋ on both sides of Eq. (5.1), the equation of power balance is

obtained, i.e.,

ẍẋ+ α(x2 − 1)ẋẋ+ βxẋ = ẋf cosωt, (5.3)

which may alternatively be written as

K̇ + U̇ + pd = pin, (5.4)

where

K̇ = ẍẋ, (5.5a)

U̇ = βxẋ, (5.5b)

pd = α(x2 − 1)ẋẋ, (5.5c)

pin = ẋf cosωt (5.5d)

are the instantaneous rates of change of kinetic and potential energies and instantaneous

dissipated and input powers, respectively. It can be seen that the dissipated power pd is

positive when |x| > 1 and x 6= 0, as shown in Eq. (5.5c) as well as Figure 5.1(b). When
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the displacement is large, the damping term in the oscillator dissipates vibration energy,

similar to the effects of conventional linear viscous damping. However, when |x| < 1 and

ẋ 6= 0, the value of pd would be negative, indicating net energy input by damping. In

other words, the damping force plays the role of energy supply when the displacement

is small. This feature of the van der Pol oscillator differs greatly from linear vibration

systems and has a significant impact on the system’s dynamic behaviour.

Assuming that the displacement and velocity at t = ti are xi and ẋi, respectively, and

become x and ẋ at t = ti + tp, an integration of Eq. (5.3) over the time span yields the

equation of energy balance, i.e.,

∆K + ∆U + Ed = Ein, (5.6)

where

∆K =
ẋ2 − ẋi2

2
, (5.7a)

∆U =

∫ ti+tp

ti

βxẋ dt =
β(x2 − x2i )

2
, (5.7b)

Ed =

∫ ti+tp

ti

α(x2 − 1)ẋ2 dt, (5.7c)

Ein =

∫ ti+tp

ti

ẋf cosωtdt, (5.7d)

which represent the net changes in kinetic and potential energies and total dissipated and

input energies, respectively. Time-averaged input and dissipated powers using averaging

time tp are formulated as

p̄d =
Ed
tp

=
1

tp

∫ ti+tp

ti

α(x2 − 1)ẋ2 dt, (5.8a)

p̄in =
Ein
tp

=
1

tp

∫ ti+tp

ti

ẋf cosωtdt. (5.8b)

For a linear system, the net changes in potential and kinetic energies of the system will

vanish over a cycle of oscillation. Correspondingly, the time-averaged dissipated and

input powers will be equal. However, this may not be the case for the current nonlinear

system, as the steady-state motion may become non-periodic.

To obtain the response and subsequently power flow variables of the oscillator, analytical

approximations based on the harmonic balance or the averaging methods can be used.

Numerical simulations, although computationally more expensive, provide a valuable

approach for verifications of analytical formulations. For the implementation, Eq. (5.1)
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is firstly written in a form of two first-order differential equations in the phase space:

ẋ = y, (5.9a)

ẏ = −α(x2 − 1)ẋ− βx+ f cosωt. (5.9b)

Then numerical techniques, such as the fourth-order Runge-Kutta method, are avail-

able to obtain the solutions. In the remaining content of this chapter, the power flow

behaviour of the unforced and the forced oscillators will be studied separately using

analytical approximations as well as numerical methods.

5.2 Power flow characteristics of the unforced system

5.2.1 Limit cycle oscillations

The unforced Van der Pol oscillator (f = 0) is characterised by limit cycle oscillations,

i.e., a free vibration of the unforced system arising from an initial disturbance (x0, y0) 6=
(0, 0) will not decay with time but evolve to a stable periodic motion. This is in contrast

to conventional unforced, damped linear systems, which will eventually rest at static

equilibrium positions as the initial energy input will be dissipated by damping. Using the

fourth-order Runge-Kutta method, limit cycle oscillations of an unforced VDP oscillator

with α = 0.5, β = 1, f = 0 are shown in Figure 5.2(a), which suggests the steady-state

motion of the system starting either from point B with (x0, y0) = (1, 0) or point C with

(x0, y0) = (3, 0) corresponds to an enclosed curve in phase plane. When the dissipated

power pd is added to the phase portrait as another coordinate, the two-dimensional limit

cycle can be transformed to a three-dimensional form, as shown in Figure 5.2(b).
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Figure 5.2: Phase portraits. (a) Two-dimensional and (b) three-dimensional forms.
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Figure 5.3: Power flows of the unforced system. (a) Time histories of pd, (b) frequency
spectrum of pd and (c) frequency spectrum of displacement. Parameters α = 0.5, β =

1, f = 0 and initial condition (x0, y0) = (1, 0).

For an unforced Van der Pol oscillator, there will be no input power by the excitation.

However, the instantaneous dissipated power may not be zero, as shown in Figure 5.2(b),

though its time-averaged value over an oscillation cycle will vanish such that the power

balance condition is satisfied. Figure 5.3 shows the time histories of the dissipated power

of an unforced system with α = 0.5, β = 1. Using a Fourier transformation of the time

histories, the dominant frequencies in the dissipated power and the displacement are

found and shown in Figures 5.3(b) and (c), respectively. It is shown that the response

contains a large component at ωr = ωp ≈ 0.985 and a small one at ωr = 3ωp ≈ 2.954.

Correspondingly, there are frequency signatures in dissipated power at 2ωp, 4ωp, 6ωp, 8ωp

and 10ωp.

5.2.2 Analytical approximations

As an alternative to the numerical investigations, analytical harmonic balance (HB)

approximations can be used to reveal the power flow behaviour of the unforced sys-

tem. Note that when it exhibits periodic motions, the displacement response may be

represented by a truncated Fourier series, i.e.,

x(t) =

N∑
n=1

(ẑ2n−1 cosnωpt+ ẑ2n sinnωpt), (5.10)

where ωp is assumed to be the unknown fundamental frequency of the oscillation; zj(j =

1, 2, · · · , 2N) are the coefficients of the harmonic functions. A differentiation of the

displacement with respect to time yields the velocity of the system:

ẋ(t) =
N∑
n=1

(−nωpẑ2n−1 sinnωpt+ nωpẑ2n cosnωpt). (5.11)
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The nonlinear term in Eq. (5.1) can be expanded as

x2ẋ = q̂0 +

N∑
n=1

(q̂2n−1 cosnωpt+ q̂2n sinnωpt), (5.12)

where the coefficients of the components are

q̂0 =
ωp
2π

∫ 2π
ωp

0
x2ẋ dt, (5.13a)

q̂2n−1 =
ωp
π

∫ 2π
ωp

0
x2ẋ cosnωpt dt, (5.13b)

q̂2n =
ωp
π

∫ 2π
ωp

0
x2ẋ sinnωpt dt. (5.13c)

Inserting the expanded expressions into the governing equation (5.1) and balancing the

coefficients of the corresponding harmonic terms, a total number of 2N equations can be

established. Note that a phase condition can be used by setting ẑ2 = 0 so that there are

2N unknowns in total (See, for example, Liu et al. (2007)). By solving these equations,

the natural frequency, the coefficients of harmonic terms and subsequently the power

flow variables are found.

To illustrate, a first-order approximation of the unforced response is assumed, i.e.,

x = ẑ1 cosωpt, (5.14a)

ẋ = −ẑ1ωp sinωpt, (5.14b)

where ẑ2 = 0 by using a phase condition. Using Eqs. (5.12), (5.13) and (5.14), the

nonlinear term is approximated by

x2ẋ = −ωpẑ31 cosω2
pt sinωpt. (5.15)

Substituting Eqs. (5.14) and (5.15) into Eq. (5.1) and further simplifying, it follows

that

(β − ω2
p)ẑ1 cosωpt−

1

4
αωpẑ

3
1(sinωpt+ sin 3ωpt) + αωpẑ1 sinωpt = 0. (5.16)

Equating the coefficients of the first-order terms in Eq. (5.16), we obtain

(β − ω2
p)ẑ1 = 0, (5.17a)

1

4
αωpẑ1(4− ẑ21) = 0, (5.17b)

from which the natural frequency and the response amplitude are found to be ωp =
√
β, ẑ1 = 2, respectively. It suggests that the natural frequency ωp is a monotonically
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increasing function of β and the response amplitude keeps constant regardless of vari-

ations in the parameters α and β. With reference to Eq. (5.5c), the instantaneous

dissipated power is approximated by

pd ≈ 4αβ
(
4 cos2(

√
βt)− 1

)
sin2(

√
βt) = 2αβ

(
cos(2

√
βt)− cos(4

√
βt)
)
, (5.18)

which suggests the existence of two frequency components in the dissipated power. Using

a first-order approximation, the maximum kinetic energy of the unforced system is

Kmax ≈
1

2
ẑ21ω

2
p = 2β, (5.19)

which indicates the maximum kinetic energy is a monotonically increasing function of

the stiffness coefficient β.

As has been shown in Figure 5.3, the unforced response contains more than one frequency

component. Therefore, possible improvements to the accuracy of the above first-order

approximations of power flows can be made by including the frequency component at

3Ω in the analytical model:

x = ẑ1 cosωpt+ ẑ5 cos 3ωpt+ ẑ6 sin 3ωpt, (5.20a)

ẋ =− ẑ1ωp sinωpt− 3ωpẑ5 sin 3ωpt+ 3ωpẑ6 cos 3ωpt. (5.20b)

Using Eqs. (5.13), the Fourier coefficients of the nonlinear term may be expressed as

q̂1 =
ωpẑ

2
1 ẑ6

4
, (5.21a)

q̂2 =
−ωpẑ1(ẑ21 + ẑ1ẑ5 + 2ẑ25 + 2ẑ26)

4
, (5.21b)

q̂5 =
3ωp(2ẑ

2
1 + ẑ25 + ẑ26)ẑ6

4
, (5.21c)

q̂6 = −ωpẑ
3
1

4
− 3ωp(2ẑ

2
1 + ẑ25 + ẑ26)ẑ5

4
. (5.21d)

Inserting the expanded expression of responses as well as the nonlinear term back into

Eq. (5.1) and balancing the coefficients of the corresponding harmonic terms leads to

(β − ω2
p)ẑ1 + αq1 = 0, (5.22a)

α(q2 + ωpẑ1) = 0, (5.22b)

(β − 9ω2
p)ẑ5 + α(q5 − 3ωpẑ6) = 0, (5.22c)

(β − 9ω2
p)ẑ6 + α(q6 + 3ωpẑ5) = 0. (5.22d)

Once the values of α and β are set, a Newton-Raphson method (see, for example, Press

et al. (1992)) may be employed to solve the nonlinear algebraic equations (5.22). The
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natural frequency, amplitudes of the first harmonic term ρ1(= ẑ1) and the third ρ3(=√
ẑ25 + ẑ26) can be obtained. The results for β = 1 shown in Figure 5.4 indicate that the

natural frequency of the unforced system decreases as the nonlinear damping parameter

α increases. On the contrary, the amplitudes of the first and the third harmonic terms

both increase with α.
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Figure 5.4: Second-order HB approximations of the unforced response. (a) Natural
frequency, (b) ρ1 and (c) ρ3.
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Figure 5.5: HB approximations of the (a) dissipated power and (b) kinetic energy.
Solid line: second-order approximation and dashed line: first-order approximation.

Once the approximate solution to the displacement and velocity of the system is ob-

tained, power flow variables, such as the instantaneous dissipated power and kinetic

energy, can be calculated using Eqs. (5.5), (5.7) and (5.8). For the previously studied

unforced system with α = 0.5, β = 1, the natural frequency of the system is found to be

ωp = 0.9846 and the steady-state displacement is approximated by

x(t) = 2.0041 cos(0.9849t)− 0.02391 cos(2.9547t)− 0.1236 sin(2.9547t).



Chapter 5 Power flow analysis of the Van der Pol oscillator 69

The variations of dissipated power and kinetic energy are shown in Figure 5.5(a) and (b),

respectively. Compared with Figure 5.3(a), it can be seen that the second-order harmonic

balance model provides a good approximation of the dissipated power as the predicted

magnitude, periodic and variation patterns are close to the numerical simulation results.

Figure 5.5(b) provides the analytical approximations of the time histories of kinetic

energy, which shows the second-order HB model predicts a larger peak in kinetic energy

than the first-order approximation.

5.3 Power flow characteristics of the forced system

5.3.1 Effects of bifurcations
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Figure 5.6: Effects of bifurcation on power flows. (a) Bifurcation diagram, (b) sam-
plings of input power ps and (c) time-averaged input power. Parameters are set as

α = 0.5, β = 1, f = 1.
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To examine the power flow characteristics of the forced system over a large range of

excitation frequencies, useful tools such as bifurcation diagrams can be used. Again,

plotting such a diagram with ω as the bifurcation parameter requires numerical simula-

tions at each interested excitation frequency. Sampling displacement xs at sampling time

ts = ti+(n−1)T, n = 1, 2, · · · , are recorded, where ti is the starting time while T = 2π/ω

is the sampling interval. In this way, by examining the number of sampling points that

are shown at each excitation frequency, the frequency ranges of periodic/non-periodic

motions can be identified. Bifurcation occurs at critical frequencies where the number of

shown sampling points changes. Correspondingly, the associated power flow behaviour

arising from bifurcation can be identified by plotting the samplings of the instantaneous

input power ps and the time-averaged input power against the bifurcation parameter ω.
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Figure 5.7: Time histories and spectra of power flows of the system (α = 0.5, β =
1.0, f = 1.0): (a-c) ω = 0.2; (d-f) ω = 0.8 and (g-i) ω = 2. (a,d,g) Instantaneous input

power; (b,e,g) frequency spectra of pin ; (c,f,i) frequency spectra of displacements.
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For a system with parameters set as α = 0.5, β = 1, f = 1, Figures 5.6(a)-(c) show a

bifurcation diagram, the samplings of instantaneous input power and the variations of

the time-averaged input power with the excitation frequency, respectively. It’s shown

that the system bifurcates from periodic to non-periodic motions when the excitation

frequency is located at 0.54 or 1.28. In between these two critical frequencies, the

system exhibits periodic motion. The peak value of the time-averaged input power is

also encountered in this frequency range. It is also observed that the value of p̄in may

become negative at some excitation frequencies.

For more detailed information of the periodic/non-periodic responses of the system with

α = 0.5, β = 1, f = 1, Figure 5.7 shows the frequency spectra of the input power and

the displacement at three locations of excitation frequencies. When ω = 0.8, Figures

5.7(d)-(f) show that the system displays periodic motion with the frequency components

commensurate with each other. However, for non-periodic motions, the displacement

response contains frequency components that are not commensurate with the excitation

frequency. For example, when the system is excited at a low excitation frequency of

ω = 0.2, the steady-state displacement contains a large component at ωr1 = 0.955,

apart from the one at ωr2 = ω, as shown in Figure 5.7(c). As a result, the input

power pin contains large signatures at ωr = mωr1 ± nωr2 (m and n are integer) and

its time-histories become non-periodic, as suggested in Figure 5.7(a) and (b). Similarly,

with a larger excitation frequency of ω = 2, the displacement response is dominated

by components at ωr1 = ω and ωr2 = 0.984. These figures indicates the quasi-periodic

responses contain a forced vibration component with the excitation frequency ω and a

free vibration component with the natural frequency ωp.

To analytically approximate the power flow variables when the system displays periodic

motions, the response can be assumed to be with the same frequency as the excitation.

In contrast, for analytical approximations of power flows associated with non-periodic

motions, the free vibration limit cycle oscillation component should also be included in

the analytical model. In the following content, approximations of power flows will be

made separately for these two types of motions.

5.3.2 Periodic motions

For periodic motions of the forced system, the displacement and velocity responses are

assumed to be harmonic with the same frequency as that of the excitation, i.e.,

x = r1 cos(ωt+ φ), (5.23a)

y = −ωr1 sin(ωt+ φ). (5.23b)

The method of averaging is employed herein to find the relationship between the response

amplitude and system parameters such that the stability of solutions can be easily
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assessed (Guckenheimer and Holmes (1983)). To implement the method, Eqs. (5.9) are

firstly transformed into(
cos(ωt+ φ) −r1 sin(ωt+ φ)

−ω sin(ωt+ φ) −r1ω cos(ωt+ φ)

)(
ṙ1

φ̇

)
=

(
0

f1

)
, (5.24)

where

f1 = f cosωt+ αωr1 sin(ωt+ φ)(r21 cos2(ωt+ φ)− 1) + r1(ω
2 − β) cos(ωt+ φ). (5.25)

A manipulation of Eq. (5.24) yields the following expressions of the derivatives of the

amplitude and phase angle:

ṙ1 = −f1
ω

sin(ωt+ φ), (5.26a)

φ̇ = − f1
r1ω

cos(ωt+ φ). (5.26b)

Based on the assumptions of the averaging method, the right hand sides of Eqs. (5.26)

are approximated by their average values over an excitation cycle:

ṙ1 = − ω

2π

∫ 2π
ω

0

f1
ω

sin(ωt+ φ) dt, (5.27a)

φ̇ = − ω

2π

∫ 2π
ω

0

f1
r1ω

cos(ωt+ φ) dt. (5.27b)

Completing the integrations in Eqs. (5.27) with reference to Eq. (5.25) leads to

ṙ1 = − 1

2ω
(f sinφ+ αωr1(

r21
4
− 1)), (5.28a)

φ̇ = − 1

2ωr1
(f cosφ+ r1(ω

2 − β)). (5.28b)

In steady-state motion, we have ṙ1 = φ̇ = 0 so that

f sinφ+ αωr1(
r21
4
− 1) = 0, (5.29a)

f cosφ+ r1(ω
2 − β) = 0. (5.29b)

A further simplification of Eqs. (5.29) to eliminate the sine and cosine terms yields

f2 = (αωr1)
2(
r21
4
− 1)2 + r21(ω2 − β)2. (5.30)

It should be noted that a solution to the nonlinear algebraic Eq. (5.30) may not be

stable. To examine its stability, the corresponding Jacobian matrix A of Eqs. (5.28) can
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be studied:

A =

α2 (1− 3
4r

2
1) −f cosφ

2ω

β − ω2

2ωr1
f sinφ
2ωr1

 =

α2 (1− 3
4r

2
1) −r1(β − ω

2)
2ω

β − ω2

2ωr1
α
2 (1− 1

4r
2
1)

 , (5.31)

where Eqs. (5.29) were used to replace the trigonometric functions. For a stable solution,

the real part of the eigenvalues of the corresponding matrix A must be negative, i.e., a

negative trace and a positive determinant of A are required:

Tr(A) =
α

2
(1− 3

4
r21) +

α

2
(1− 1

4
r21) = α(1− 1

2
r21) < 0, (5.32a)

det(A) =
α2

4
(1− 3

4
r21)(1− 1

4
r21) +

(β − ω2)2

4ω2
> 0. (5.32b)

The inequality (5.32a) suggests that a stable solution requires that r1 >
√

2 when α > 0.

Using Eq. (5.30), the expression (5.32b) can be transformed to

det(A) =
α2

4
(1− 3

4
r21)(1− 1

4
r21) +

f2 − (αωr1)
2(1− r2

1
4 )2

4ω2r21
= −α

2r21
8

(1− r21
4

) +
f2

4ω2r21
,

(5.33)

which indicates that a solution with r1 ≥ 2 will always be stable.

Using Eqs. (5.8) and (5.23), first-order approximations of the time-averaged input power

(TAIP) and the time-averaged dissipated power (TADP) of the system over an excitation

cycle (T = 2π/ω) are formulated as

p̄in = − 1

T

∫ T

0
ωr1f cosωt sin(ωt+ φ) dt = −ωr1f

2
sinφ, (5.34a)

p̄d =
1

T

∫ T

0
αω2r21(r21 cos2(ωt+ φ)− 1) sin2(ωt+ φ) dt =

1

8
αω2r21(r21 − 4), (5.34b)

respectively. With reference to Eq. (5.29a), the time-averaged input power is expressed

by

p̄in =
1

8
αω2r21(r21 − 4), (5.35)

which is identical with the expression (5.34b) for the time-averaged dissipated power, in

accordance with the principle of power balance. It also shows that when r21 < 4, i.e., the

amplitude r1 is smaller than 2, both time-averaged input and dissipated powers become

negative.

The maximum kinetic energy Kmax of the system corresponds to the maximum velocity

of ẋmax = ωr1 and is given by

Kmax =
1

2
ω2r21. (5.36)
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5.3.3 Quasi-periodic responses

In the above approximation of the system’s power flows associated with periodic motions,

only the response component with the same frequency as the excitation is considered.

However, as shown in Figures 5.6 and 5.7, the system can display quasi-periodic motion

over a large frequency range. For analytical approximations of the corresponding power

flows, the displacement and velocity responses are assumed to contain both the natural

frequency ωp for the free vibration component and the excitation frequency ω for the

forced vibration component:

x(t) = ẑ1 cosωpt+ ẑ2 sinωpt+ x̂1 cosωt+ x̂2 sinωt, (5.37a)

ẋ(t) = −ωpẑ1 sinωpt+ ωpẑ2 cosωpt− ωx̂1 sinωt+ ωx̂2 cosωt. (5.37b)

The nonlinear term is expressed in a truncated Fourier form. Inserting the resultant

expression as well as Eqs. (5.37) to the governing equation (5.1) and applying the

harmonic balancing conditions yield the following equations

(β − ω2
p)ẑ1 − αωpẑ2 +

1

4
αωpẑ2(ẑ

2
1 + ẑ22 + 2x̂21 + 2x̂22) = 0, (5.38a)

(β − ω2
p)ẑ2 + αωpẑ1 −

1

4
αωpẑ1(ẑ

2
1 + ẑ22 + 2x̂21 + 2x̂22) = 0, (5.38b)

(β − ω2)x̂1 − αωx̂2 +
1

4
αωx̂2(2ẑ

2
1 + 2ẑ22 + x̂21 + x̂22) = f, (5.38c)

(β − ω2)x̂2 + αωx̂1 −
1

4
αωx̂1(2ẑ

2
1 + 2ẑ22 + x̂21 + x̂22) = 0. (5.38d)

Letting ρ1 =
√
ẑ21 + ẑ22 and r1 =

√
x̂21 + x̂22 and simplifying Eqs. (5.38a) and (5.38b)

leads to

(β − ω2
p)ρ

2
1 = 0, (5.39a)

1

4
αωpρ

2
1(4− ρ21 − 2r21) = 0. (5.39b)

Also, a manipulation of Eqs. (5.38c) and (5.38d) yields

(β − ω2)r21 = fx̂1, (5.40a)

1

4
αωr21(2ρ21 + r21 − 4) = fx̂2. (5.40b)

When r21 > 2, Eq. (5.39b) requires that ρ21 = 0, i.e., the response contains no free

vibration component and the motion will be periodic with the same frequency as the ex-

citation. This case has been analysed earlier and the time-averaged power flow variables

are formulated in Eqs. (5.34) and (5.35).

When r21 < 2, previous analysis has shown that the periodic motion will be unstable and
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consequently there will be positive solutions of ωp and ρ21 to Eqs. (5.39a) and (5.39b),

i.e.,

ωp =
√
β, (5.41a)

ρ21 = 4− 2r21. (5.41b)

In this situation, the system will exhibit quasi-periodic motion containing both the

free vibration component with a fixed frequency of ωp =
√
β and the forced vibration

component with frequency ω. Note that Eqs. (5.40) and (5.41) can be simplified further

by eliminating x̂1, x̂2 and ρ21 into the form:

(β − ω2)2r21 +
α2ω2r21

16
(4− 3r21)2 = f2. (5.42)

Setting parameters as α = 0.5, β = 1, f = 1.0 and solving Eqs. (5.30) and (5.42), the

periodic as well as quasi-periodic responses are shown in Figure 5.8. The figure shows

that there will be no free vibration limit cycle oscillation component when the excitation

frequency is closed to the natural frequency of the linearised system, which agrees with

the numerical results shown in Figure 5.6. Away from the resonant peak, it is shown

that the value of r1 changes little using either the frequency response relation (5.30) for

periodic motion or Eq. (5.42) for quasi-periodic motions. In contrast, the magnitude ρ1

of free vibration component decreases with the excitation frequency at low frequencies

but increases to approach 2 at high excitation frequencies.
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(α = 0.5, β = 1, f = 1). (a) Forced vibration component and (b) free vibration limit
cycle oscillation component. Solid line: periodic motions; dashed line: quasi-periodic

motions.
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Using Eqs. (5.5d) and (5.37b), the instantaneous input power corresponding to quasi-

periodic responses can be approximated by

pin = f cosωt(−ωpẑ1 sinωpt+ ωpẑ2 cosωpt− ωx̂1 sinωt+ ωx̂2 cosωt), (5.43)

which contains frequency components at ω ± ωp, 0 and 2ω. When the averaging time

is set much larger than the periods of the response components, only the stationary

component of pin will contribute to the time-averaged input power. Thus

p̄in ≈
ωx̂2f

2
=

1

8
αω2r21(4− 3r21). (5.44)

where Eqs. (5.40b) and (5.41b) were used for simplifications.

For a system with α = 0.5, β = 1, f = 1.0, Figure 5.9 shows the corresponding time-

averaged input power obtained by using analytical approximations and numerical sim-

ulations. For the latter, the averaging time is taken as 240 excitation cycles, which is

found to be sufficiently large. It shows that the numerical results agree well with analyt-

ical approximations for periodic motion when the excitation frequency ω is close to the

peak frequency. Away from the resonant frequency range, analytical formulations for

quasi-periodic motion provide better estimations of power flows. It shows that the ana-

lytical approximation curves for periodic and quasi-periodic motions intersect at points

A′′ and B′′, corresponding to points A and B in Figure 5.8. This is because at these

points, r1 equals
√

2, so that derived value of p̄in is the same using either Eq. (5.34) or

Eq. (5.44).
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Figure 5.9: Verifications of the time-averaged input power (α = 0.5, β = 1, f = 1.0).
Solid line represents analytical approximation of periodic motions; dashed lines denote
analytical approximations of quasi-periodic motions; circles indicate numerical results.
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5.3.4 On negative time-averaged input power

Due to the damping nonlinearity in the oscillator, it has been shown previously in

Section 5.1 that the instantaneous dissipated power of the system may become negative

when the displacement is small. Similarly, for time-averaged power flows, Figures 5.6

and 5.9 as well as Eq. (5.34b) suggest that the time-averaged dissipated power p̄d may

become negative at some excitation frequencies. It would be of interest to investigate

the frequency ranges where p̄in = p̄d < 0 using the analytical formulations. Note that

from Eqs. (5.34b), (5.35) and (5.44), for negative values of p̄in and p̄d, it requires

2 < r21 < 4 (5.45)

for stable periodic motions, and
3

4
< r21 ≤ 2 (5.46)

for quasi-periodic motions. When the corresponding frequency-response relations de-

scribed by Eqs. (5.30) and (5.42) are used, expressions (5.45) and (5.46) are transformed

into
f2

4
< (ω2 − β)2 <

3f2

4
, (5.47)

which is equivalent to

β −
√

3f

2
< ω2 < β − f

2
or β +

f

2
< ω2 < β +

√
3f

2
. (5.48)

It indicates that the location of frequency range for negative time-averaged input/dissi-

pated power is only a function of the excitation amplitude f and stiffness parameter β,

independent of damping parameter α.

The inequalities (5.45) and (5.46) also suggest the value of p̄in will be negative at the

bifurcation point (with r21 = 2) where the system response bifurcates from periodic to

quasi-periodic motions. For both types of the motions, the power flow variables at the

bifurcation frequency are calculated as

p̄in = p̄d = −1

2
αω2. (5.49)

where Eq. (5.34b), (5.35) and (5.44) are used. Clearly when a first-order analytical

approximation is used, the variations of p̄in and p̄d at the bifurcation point will be

smooth without jumps.

5.3.5 Effects of different parameters

Using the derived analytical formulations and numerical simulations, the effects of pa-

rameters β, f and α on the time-averaged input power (TAIP) are examined in this



78 Chapter 5 Power flow analysis of the Van der Pol oscillator

section. For clarity, the unstable branches of analytical approximation of periodic mo-

tions with r21 < 2 are not shown in the figures. For a system with α = 0.5, f = 1.0,

Figure 5.10 shows an increase in the stiffness coefficient β shifts the peak in each curve

to the higher-frequency range. Also, the peak value of p̄in increases with β while the

minimum value decreases with an increasing β. A growing difference between analyti-

cal and numerical results is observed as β increases. In the high-frequency range, the

time-averaged input power becomes less sensitive to variations of β.
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Figure 5.10: Effects of parameter β on time-averaged input power (α = 0.5, f = 1.0).
HB approximations: solid line (β = 0.5), dashed line (β = 1) and dash-dot line (β = 2).
Numerical simulation results: circles (β = 0.5), triangles (β = 1) and squares (β = 2).

Figure 5.11 investigates the effects of the excitation amplitude f on time-averaged input

power. It shows that a larger f leads to a higher peak of TAIP. However, the minimum

value of TAIP becomes smaller with the increase of amplitude f . As the excitation

frequency increases to be larger than 2, the curves become flatter.

The effects of damping parameter α on time-averaged input power of the system are

investigated and the results are shown in Figure 5.12. It shows that the peak in the

curve of p̄in is suppressed by increasing α. However, in the high-frequency range, there

is a larger amount of input power when α is large. Also, as α increases, there is an

increasing discrepancy between the first-order HB approximations and the numerical

simulation results. The reason is that natural frequency of the system decreases with α,

as shown in Figure 5.4(a). As a result, a first-order HB approximation of quasi-periodic

motion by assuming the natural frequency as a constant, as indicated in Eq. (5.41a), is

not suitable when α becomes large and the nonlinearity is strong.
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Figure 5.11: Effects of excitation amplitude f on time-averaged input power (α =
0.5, β = 1.0). HB approximations: solid line (f = 0.5), dashed line (f = 1) and dash-
dot line (f = 2). Numerical simulation results: circles (f = 0.5), triangles (f = 1) and

squares (f = 2).
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Figure 5.12: Effects of nonlinear parameter α on time-averaged input power (β =
1, f = 1). HB approximations: solid line (α = 0.1), dashed line (α = 0.2) and dash-dot
line (α = 0.5). Numerical simulation results: circles (α = 0.1), triangles (α = 0.2) and

squares (α = 0.5).

5.4 Conclusions

This chapter studied the power flow characteristics of unforced and forced Van der Pol

oscillator to address the effects of nonlinearity in damping on power flows. The system

was investigated using both analytical approximations and numerical simulations. For
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the former, the method of harmonic balance and the method of averaging were employed

while the latter was based on the fourth-order Runge-Kutta method. The influences of

different system parameters on time-averaged input power of the system were examined.

Based on this study, it was found that

• The dissipated power is negative at small deflections and positive when the dis-

placement is large;

• The limit cycle oscillations of the unforced system are associated with the balance

of vibration energy input and dissipation by the damping force. The method of

harmonic balance of different orders can be used to estimate the instantaneous

dissipated power and kinetic energy of the unforced system;

• The forced system may either exhibit periodic motion when the excitation fre-

quency ω is close to the natural frequency of the corresponding linear system, or

quasi-periodic motion when ω is located in the high or low frequency ranges. It

was shown that the associated time-averaged input and dissipated powers can be

formulated analytically using the method of harmonic balance or the method of

averaging;

• Analytical results suggested that time-averaged input power can become negative

in a band of excitation frequencies. Analytical formulation showed that the band

is only a function of the excitation amplitude f and the stiffness parameter β.

independent of the damping parameter α;

• It was also analytically and numerically shown that bifurcations from periodic to

quasi-periodic motions may not lead to jumps in time-averaged input/dissipated

power curves at some bifurcation points.



Chapter 6

Power flow analysis of a two-DOF

nonlinear system for vibration

isolation

In this chapter, the power flow behaviour of a two degrees-of-freedom nonlinear system

with a nonlinear vibration isolator is investigated. Single degree-of-freedom (SDOF)

models are usually used to assess the performance of passive/active/hybrid isolators in

attenuating vibration transmission from an excited source to a receiving structure (see,

for example, Den Hartog (1934); Rivin (2003)). Such simplified models assume a rigid

foundation on which a mass is mounted. However, many practical mounting bases, such

as those commonly encountered in automobiles, aeroplanes and ships, are not rigid but

flexible, and there exist strong coupling effects between the isolator and the base struc-

ture (see Sciulli and Inman (1999); Xiong et al. (2005a)). Under these circumstances,

research findings using the rigid base assumption may not be valid. In addition, to

improve the effectiveness of linear vibration isolators, different configurations of nonlin-

ear vibration isolation systems have been proposed by introducing nonlinear stiffness

or damping elements (see, for example, Ibrahim (2008)). To evaluate their isolation

efficiency, force or displacement transmissibility is often used as the performance indi-

cator, which may not reflect the actual vibration transmission. Investigations on power

flow characteristics of coupled nonlinear vibration isolation systems are very limited. To

addresses these issues, a two degrees-of-freedom (2DOF) nonlinear dynamical system is

studied in this chapter from a viewpoint of vibrational power flows. The vibration power

generation, transmission and dissipation behaviour arising from damping and stiffness

nonlinearities in the isolator will be studied and revealed for better designs of nonlinear

vibration isolators.

81
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6.1 Mathematical model

As shown in Figure 6.1, a coupled two-DOF nonlinear vibration isolation system con-

tains a one-DOF base of a mass m1, a linear spring with stiffness coefficient k1 and a

linear viscous damper with coefficient c1, to model a mode of an elastic structure. A

machine with mass m2 is mounted on the base structure via a nonlinear isolator with

nonlinearities in both damping and stiffness. The oscillating mass m2 is subjected to a

harmonic excitation of amplitude f and frequency ω. The static equilibrium position,

where the dynamic deflections x1 = x2 = 0, is taken as the reference position where

the dynamic restoring forces of the springs vanish. It is assumed that the damping

force G(δ̇) of the isolator is a cubic function of the relative velocity of the mass m2 and

m1, while the restoring force F (δ) of the isolator is a nonlinear function of the relative

displacement:

G(δ̇) = c2δ̇(1 + αδ̇2), (6.1a)

F (δ) = k2δ(1 + βδ2), (6.1b)

where δ = x2 − x1 is the dynamic deflection of the isolator; α is the nonlinear damp-

ing parameter; β is the nonlinear stiffness parameter with β = 0, β > 0 and β <

corresponding to linear, hardening and softening springs, respectively.

Figure 6.1: A schematic representation of a two-DOF nonlinear system with a non-
linear isolator and a linear one-DOF base.

Using the Newton’s law of motion, the dynamic governing equations of the system are

obtained as

m1ẍ1 + c1ẋ1 + k1x1 − c2δ̇(1 + αδ̇2)− k2δ(1 + βδ2) = 0, (6.2)

m2ẍ2 + c2δ̇(1 + αδ̇2) + k2δ(1 + βδ2) = f cosωt. (6.3)
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Introducing the following non-dimensional parameters:

x0 =
m1g

k1
, µ =

m2

m1
, ω1 =

√
k1
m1

, ω2 =

√
k2
m2

,

γ =
ω2

ω1
, ξ1 =

c1
2m1ω1

, ξ2 =
c2

2m2ω2
, η = αω2

1x
2
0, ε = βx20,

f0 =
f

k1x0
, y =

δ

x0
, x =

x1
x0
, Ω =

ω

ω1
, τ = ω1t,

the governing equations (6.2) and (6.3) are transformed into a non-dimensional form

x′′ + 2ξ1x
′ + x− µγ

(
2ξ2y

′(1 + ηy′2) + γy + εγy3
)

= 0, (6.4)

µy′′ + µγ
(
2ξ2y

′(1 + ηy′2) + µγy + εγy3
)

= −µx′′ + f0 cos Ωτ, (6.5)

where the primes denote differentiations with respect to the non-dimensional time τ .

To assist further analysis, these non-dimensional equations are written in a form of phase

space representation, i.e.,
x′

z′

y′

u′

 =


z

−2ξ1z − x+ µγ
(
2ξ2u(1 + ηu2) + γy + εγy3

)
u

f0
µ cos Ωτ + 2ξ1z + x− (µ+ 1)γ

(
2ξ2u(1 + ηu2) + γy + εγy3

)

 . (6.6)

In order to reveal the vibration power flow characteristics of the system, it is essential

to solve the nonlinear equations (6.6) so that the dynamic response can be obtained.

There is no accurate analytical solution to these equations, but tools are available for

approximations either by adopting analytical methods or by numerical simulations. The

former usually consider a few discrete frequencies in the response and have the advan-

tages of less computational cost and the ability to address both stable and unstable

solutions. In comparison, the latter predict the response more accurately incorporating

many more response frequency components, but cost more computational power. In this

chapter, the method of averaging will be used to find the relationship between power

flow variables and the parameters. Direct numerical solutions based on the fourth-order

Runge-Kutta method will also be employed to verify the analytical approximations.

6.2 Analytical approximations

6.2.1 Frequency-response relations

The method of averaging has been widely used for first-order approximations of the

periodic responses of nonlinear vibrating systems (see, Nayfeh and Mook (1979)). For
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the current system in steady-state motions, the displacement and velocity responses of

mass m1 and the isolator may be assumed to be harmonic with the same frequency as

that of the excitation, i.e,

x = a cos(Ωτ + φ), (6.7a)

x′ = −aΩ sin(Ωτ + φ), (6.7b)

y = b cos(Ωτ + θ), (6.7c)

y′ = −bΩ sin(Ωτ + θ), (6.7d)

where a and b represent response amplitudes while φ and θ are phase angles. Using the

averaging formulations outlined in Section 3.2.2 with references to Eqs. (6.6) and (6.7),

we have

a′ cos(Ωτ + φ)− aφ′ sin(Ωτ + φ) = 0, (6.8a)

−a′Ω sin(Ωτ + φ)− aΩφ′ cos(Ωτ + φ) = f1, (6.8b)

b′ cos(Ωτ + θ)− bθ′ sin(Ωτ + θ) = 0, (6.8c)

−b′Ω sin(Ωτ + θ)− bΩθ′ cos(Ωτ + θ) = f2, (6.8d)

where

f1 = a(Ω2 − 1) cos(Ωτ + φ) + 2ξ1aΩ sin(Ωτ + φ) + µγ∆, (6.9a)

f2 =
f0
µ

cos Ωτ + bΩ2 cos(Ωτ + θ) + a′Ω sin(Ωτ + φ) + (aΩ2 + aΩφ′) cos(Ωτ + φ)− γ∆,

(6.9b)

∆ = −2ξ2bΩ sin(Ωτ + θ)
(
1 + ηb2Ω2 sin2(Ωτ + θ)

)
+ γb cos(Ωτ + θ) + εγb3 cos3(Ωτ + θ).

(6.9c)

Solutions of Eqs. (6.8) yield the following expressions of the time change rates of

response amplitudes and phase angles, i.e.,

a′ = − 1

Ω
f1 sin(Ωτ + φ), (6.10a)

φ′ = − 1

aΩ
f1 cos(Ωτ + φ), (6.10b)

b′ = − 1

Ω
f2 sin(Ωτ + θ), (6.10c)

θ′ = − 1

bΩ
f2 cos(Ωτ + θ). (6.10d)
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According to the averaging method, the derivatives of amplitudes and phase angles can

be approximated by their average values over a cycle of the excitation:

a′ ≈ − 1

2π

∫ 2π
Ω

0
f1 sin(Ωτ + φ) dτ, (6.11a)

φ′ ≈ − 1

2πa

∫ 2π
Ω

0
f1 cos(Ωτ + φ) dτ, (6.11b)

b′ ≈ − 1

2π

∫ 2π
Ω

0
f2 sin(Ωτ + θ) dτ, (6.11c)

θ′ ≈ − 1

2πb

∫ 2π
Ω

0
f2 cos(Ωτ + θ) dτ. (6.11d)

Using Eqs. (6.9) to substitute f1 and f2 and then completing the integrations in Eqs.

(6.11), it follows that

a′ = − 1

Ω

(
ξ1aΩ + µγb

(
− ξ2Ω(1 +

3

4
ηb2Ω2) cos(φ− θ) +

γ

2
(1 +

3

4
εb2) sin(φ− θ)

))
,

(6.12a)

φ′ = − 1

aΩ

(1

2
a(Ω2 − 1) + µγb

(
ξ2Ω(1 +

3

4
ηb2Ω2) sin(φ− θ) +

γ

2
(1 +

3

4
εb2) cos(φ− θ)

))
,

(6.12b)

b′ = − 1

Ω

( f0
2µ

sinφ+
a′Ω

2
cos(φ− θ)− aΩ2 + aΩφ′

2
sin(φ− θ) + γξ2bΩ(1 +

3

4
ηb2Ω2)

)
,

(6.12c)

θ′ = − 1

bΩ

( f0
2µ

cosφ+
bΩ2

2
+
a′Ω

2
sin(φ− θ) +

aΩ2 + aΩφ′

2
cos(φ− θ)− γ2b

2
(1 +

3

4
εb2)

)
.

(6.12d)

Note that in steady-state motion, the changes in response amplitudes and phase angles

vanish, i.e., a′ = φ′ = b′ = θ′ = 0, using which Eqs. (6.12) are transformed into

2ξ1aΩ + µγb
(
− 2ξ2Ω(1 +

3

4
ηb2Ω2) cos(φ− θ) + γ(1 +

3

4
εb2) sin(φ− θ)

)
= 0, (6.13a)

a(Ω2 − 1)+µγb
(
2ξ2Ω(1 +

3

4
ηb2Ω2) sin(φ− θ) + γ(1 +

3

4
εb2) cos(φ− θ)

)
= 0, (6.13b)

f0
2µ

sinφ− aΩ2

2
sin(φ− θ) + γξ2bΩ(1 +

3

4
ηb2Ω2) = 0, (6.13c)

f0
2µ

cosφ+
aΩ2

2
cos(φ− θ) +

b

2

(
Ω2 − γ2(1 +

3

4
εb2)

)
= 0. (6.13d)
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From Eqs. (6.13a) and (6.13b), we have

cos(φ− θ) =
4ξ1ξ2aΩ2(1 +

3

4
ηb2Ω2)− γa(Ω2 − 1)(1 +

3

4
εb2)

µγb
(
γ2(1 +

3

4
εb2)2 + (2ξ2Ω)2(1 +

3

4
ηb2Ω2)2

) , (6.14a)

sin(φ− θ) =
−2ξ2aΩ(Ω2 − 1)(1 +

3

4
ηb2Ω2)− 2ξ1γaΩ(1 +

3

4
εb2)

µγb
(
γ2(1 +

3

4
εb2)2 + (2ξ2Ω)2(1 +

3

4
ηb2Ω2)2

) . (6.14b)

Substituting Eqs. (6.14a) and (6.14b) back into Eqs. (6.13a) and (6.13b) and simplifying

the resultant expressions, it follows that

a2
(
(Ω2 − 1)2 + (2ξ1Ω)2

)
= (µγb)2

(
γ2(1 +

3

4
εb2)2 + (2ξ2Ω)2(1 +

3

4
ηb2Ω2)2

)
. (6.15)

Similarly, using Eqs. (6.14a) and (6.14b) to eliminate the trigonometric functions sin(φ−
θ) and cos(φ− θ) in Eqs. (6.13c) and (6.13d), we obtain

f20
4µ2

= (γξ2bΩ)2(1 + 3
4ηb

2Ω2) +
a2Ω2

(
(µ+ 2)Ω2 − 2

)
4µ + b2

4

(
Ω2 − γ2(1 + 3

4εb
2)
)2

+
a2Ω4

(
4ξ1ξ2Ω

2(1 +
3

4
ηb2Ω2)− γ(Ω2 − 1)(1 +

3

4
εb2)

)
2µγ

(
γ2(1 +

3

4
εb2)2 + (2ξ2Ω)2(1 +

3

4
ηb2Ω2)2

) . (6.16)

Eqs. (6.15) and (6.16) provide the relationship between steady-state response amplitudes

and the system parameters. It should be noted that in these equations, the nonlinear

stiffness parameter ε and the nonlinear damping parameter η only appear in the terms

1 + 3
4εb

2 and 1 + 3
4ηb

2Ω2, respectively. If the absolute values of 3
4εb

2 and 3
4ηb

2Ω2 are

much smaller than unity, the effects of the stiffness and damping nonlinearities on the

solutions of these two equations, i.e., response amplitudes, may be small.

It should be noted that a manipulation of Eq. (6.15) can lead to an expression for a2 as

a function of b2 and other parameters. A substitution of this function into Eq. (6.16)

to replace a2 yields an equation of b2, which can be solved using a bisection algorithm

(see, Press et al. (1992)). Subsequently, the response amplitude a2 as well as the phase

angles is obtained using equations (6.13), (6.14) and (6.15). For a nonlinear system with

parameters set as ξ1 = ξ2 = 0.01, µ = 0.5, γ = 1, ε = 0.5, η = 0.5, f0 = 0.1, Figure

6.2 shows that the analytical approximations of response amplitudes (denoted by solid

lines) agree well with those obtained using numerical simulations (represented by dots),

verifying the averaging formulations. The figure also shows different response branches,

the stability of which is assessed using the stability analysis to be discussed in the next

section.
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Figure 6.2: Verification of averaging formulations. Solid and dashed lines represent
stable and unstable analytical solutions, respectively; dots denote numerical results

6.2.2 Stability analysis

Figure 6.2 shows that in the frequency range near the second resonance peak, there exist

multiple solutions of a and b at a single frequency Ω. As they correspond to either stable

or unstable responses, it is useful to assess the associated stability as only the stable

ones are physically realisable. For the clarity of the derivation process, Eqs. (6.12) are

rewritten as

a′ = u′1 = g1(a, φ, b, θ), (6.17a)

φ′ = u′2 = g2(a, φ, b, θ), (6.17b)

b′ = u′3 = g3(a, φ, b, θ), (6.17c)

θ′ = u′4 = g4(a, φ, b, θ), (6.17d)

where

g1 = − 1

Ω

(
ξ1aΩ + µγb

(
− ξ2Ω(1 +

3

4
ηb2Ω2) cos(φ− θ) +

γ

2
(1 +

3

4
εb2) sin(φ− θ)

))
,

g2 = − 1

aΩ

(1

2
a(Ω2 − 1) + µγb

(
ξ2Ω(1 +

3

4
ηb2Ω2) sin(φ− θ) +

γ

2
(1 +

3

4
εb2) cos(φ− θ)

))
,

g3 = − 1

Ω

( f0
2µ

sinφ+
g1Ω

2
cos(φ− θ)− aΩ2 + aΩg2

2
sin(φ− θ) + γξ2bΩ(1 +

3

4
ηb2Ω2)

)
,

g4 = − 1

bΩ

( f0
2µ

cosφ+
bΩ2

2
+
g1Ω

2
sin(φ− θ) +

aΩ2 + ag2Ω

2
cos(φ− θ)− γ2b

2
(1 +

3

4
εb2)

)
.
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The stability of a solution (a0, b0, φ0, θ0) can be assessed by examining the real parts of

the corresponding eigenvalues of the characteristic matrix, which is

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (6.18)

where aij = ∂gi
∂uj

, (i, j = 1, 2, 3, 4) for which the detailed expressions not provided here.

In the derivations of aij , it may be noted that at each solution point (a0, b0, φ0, θ0)

of a response curve, we have gi = 0, (i = 1, 2, 3, 4). If a solution which is stable, the

corresponding eigenvalues of A must all have negative real parts. On the other hand,

if one or more eigenvalues of A has a positive real part, the corresponding solution will

be unstable. Based on the criteria, the stability of a solution can be determined. Based

on the criteria, the stability of different response curves of the system with ξ1 = ξ2 =

0.01, µ = 0.5, γ = 1, ε = 0.5, η = 0.5, f0 = 0.1 was examined and indicated in Figure 6.2

by solid or dashed lines.

6.3 Power flow formulations

6.3.1 Input power

The non-dimensional instantaneous input power into the system is the product of exci-

tation with the corresponding velocity. In this system, there is only one external force

acting on the mass m2, so that the total instantaneous input power is

pin = f0v2 cos Ωτ, (6.19)

where v2 = x′ + y′ is the non-dimensional velocity of mass m2. When a first-order

approximation is sought, the velocity can be formulated as

v2 = x′ + y′ = −aΩ sin(Ωτ + φ)− bΩ cos(Ωτ + θ), (6.20)

and the time-averaged input power over an excitation cycle T = 2π/Ω becomes

p̄in(Ω) =
1

T

∫ T

0
pin dτ = −f0aΩ

2
sinφ− f0bΩ

2
sin θ. (6.21)

Using the relations in Eqs. (6.13) and (6.14) to replace the trigonometric functions in

Eq. (6.21), a first-order approximation of the time-averaged input power is obtained as

p̄in(Ω) = ξ1a
2Ω2 + µγξ2b

2Ω2(1 +
3

4
ηb2Ω2). (6.22)
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6.3.2 Dissipated power

In the system, vibration energy is dissipated by the damping in the isolator as well as

that in the base. Power dissipated by each damper is the product of the damping force

with the corresponding velocity. Therefore, the total instantaneous dissipated power is

expressed by

pd = fd1x
′ + fd2y

′, (6.23)

where fd1 = 2ξ1x
′ and fd2 = 2µγξ2y

′ are the damping forces in the base structure and

in the isolator, respectively.

The time-averaged value of the dissipated power using an excitation cycle as the aver-

aging time is formulated by

p̄t(Ω) =
1

T

∫ T

0
pd dτ. (6.24)

Expressing pd with a first-order approximation and evaluating Eq. (6.24), it follows that

p̄d(Ω) = ξ1a
2Ω2 + µγξ2b

2Ω2(1 +
3

4
ηb2Ω2). (6.25)

Comparing this equation with Eq. (6.22), it is clearly seen that the expressions of p̄in

and p̄d are identical, i.e., the input power is all dissipated by damping over an oscillation

cycle. This is in accordance with the principle of energy balance, as correspondingly for

periodic motions, the net change in the kinetic and potential energies of the system will

vanish over a cycle of oscillation.

6.3.3 Transmitted power

Transmitted power between sub-systems provides a valuable measure of the flow of

vibration energy in dynamical systems and thus is of interest in vibration isolation.

The instantaneous power transmitted from the excited mass m2, through the nonlinear

isolator to the base is the product of the corresponding transmitted force to the mass

m1 and its velocity, i.e.,

pt = ftx
′, (6.26)

where ft = µγ
(
2ξ2y

′(1+ηy′2)+γy+ εγy3
)

is the transmitted force and x′ is the velocity

of the primary mass m1.

The time-averaged transmitted power over an excitation period T is

p̄t(Ω) =
1

T

∫ T

0
pt dτ. (6.27)
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Again, using a first-order approximation of pt and completing the integration in Eq.

(6.27) leads to

p̄t(Ω) = µγaΩ
(
ξ2bΩ(1 +

3

4
ηb2Ω2) cos(φ− θ)− γb

2
(1 +

3

4
εb2) sin(φ− θ)

)
, (6.28)

which is further simplified using Eq. (6.13a) into

p̄t(Ω) = ξ1a
2Ω2. (6.29)

It shows that the time-averaged transmitted power to the base equals the time-averaged

dissipated power by damper c1. It is reasonable, as the kinetic and potential energies

of the base structure will remain the same after an oscillation cycle and the energy

transmitted must all be dissipated by damper c1.

6.3.4 Maximum kinetic energies

In the applications of vibration control devices, the squared values of velocity amplitudes

or the kinetic energy of a structure are often used as cost functions to measure the

control effectiveness (see, for example, Jenkins et al. (1993); Xiong et al. (2003)). For

the current system in steady-state motion, the maximum kinetic energy of the mass m1

is represented as

K1 =
1

2
(|x′|max)2 ≈ 1

2
a2Ω2, (6.30)

where a first-order approximation of the velocity x′ = −aΩ sin(Ωτ + φ) was used, so

that its amplitude |x′|max = aΩ. Comparing this equation with Eq. (6.29), it is seen

that the kinetic energy of base is proportional to the time-averaged power transmitted

to the base if there is a positive and fixed damping coefficient ξ1.

For the kinetic energy of the excited mass, note that from Eq. (6.20), the amplitude of

the velocity of mass m2 is

|v2|max = Ω
√

(a2 + b2) + 2ab cos(φ− θ). (6.31)

Using Eq. (6.14a) to replace cos(φ−θ), the maximum kinetic energy of the excited mass

m2 is

K2 =
1

2
µ(a2 + b2)Ω2 + a2Ω2

4ξ1ξ2Ω
2(1 +

3

4
ηb2Ω2)− γ(Ω2 − 1)(1 +

3

4
εb2)

γ
(
γ2(1 +

3

4
εb2)2 + (2ξ2Ω)2(1 +

3

4
ηb2Ω2)2

) . (6.32)
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6.4 Case studies for the isolator performance

6.4.1 The isolator with stiffness nonlinearity

Here, a special case of a nonlinear isolator with nonlinear stiffness (ε 6= 0) but linear

viscous damping (η = 0) is considered. The response amplitudes and power flow vari-

ables of the system are obtained using the analytical approximation as well as numerical

simulations. The dB reference for the power flow variables is set as 10−12 throughout

this chapter. In the following figures of this chapter, the lines represent analytical ap-

proximate solutions while the symbols denote numerical solutions using the fourth-order

Runge-Kutta method.
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Figure 6.3: Time-averaged (a) input and (b) transmitted powers of the systems with
different nonlinear stiffness coefficient. Solid line: ε = 0, linear isolator; dotted line or
squares: ε = −0.01; dash-dot line or circles: ε = 0.1; dashed line or triangles: ε = 0.5.

Figures 6.3 and 6.4 show the effects of nonlinear stiffness parameter ε of the isolator

on power flows as well as the kinetic energies of the system with ξ1 = ξ2 = 0.01, µ =

0.5, γ = 0.5, η = 0, f0 = 0.1. The value of ε changes from ε = −0.01 indicating a

softening stiffness isolator, to ε = 0, corresponding to a linear isolator, and then to

0.1 and 0.5 for hardening stiffness isolators. The figures show numerical and analytical

approximate results agree well with each other over a large frequency range, verifying

the averaging formulations of power flow variables.

By comparing with the results of the linear case ε = 0, some power flow characteristics

due to the stiffness nonlinearity in the isolator are observed:

• A softening stiffness of ε = −0.01 bends the first peak in the curve of time-averaged

input/transmitted powers to the low-frequency band with significant reductions of
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the corresponding peak value. In comparison, a hardening stiffness with ε = 0.1

bends the first peak to the higher frequencies while the second peaks in p̄in and

p̄t curves remain almost unchanged. When the nonlinear parameter ε increases

to 0.5, the hardening stiffness becomes stronger and both peaks in each power

flow curve are twisted significantly to the higher frequencies. For the hardening

stiffness cases, the first peak in p̄in is reduced slightly by adding the nonlinearity,

but the second peak value in p̄in and both peaks in transmitted power p̄t may

become higher than those of the linear case.

• Associated with the twisting of curves due to the stiffness nonlinearity, non-unique

solution branches of power flows, indicating different power flow paths, are encoun-

tered in the low-frequency range for the softening stiffness isolator and in the high-

frequency range for the hardening stiffness isolator. In these frequency ranges, the

time-averaged power flow of the system will be dependent on the initial conditions.

• When the excitation frequency is far away from the peak frequencies, the power

flow variables of the system are not sensitive to the stiffness parameter ε as the

curves of different examined cases coincide.
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Figure 6.4: Kinetic energies (a) K1 and (b) K2 of the systems with different nonlinear
stiffness coefficient. Solid line: ε = 0, linear isolator; dotted line or squares: ε = −0.01;

dash-dot line or circles: ε = 0.1; dashed line or triangles: ε = 0.5.

Similar with the variations of power flow variables, Figure 6.4 shows the curves of kinetic

energies of the masses bend to a lower-frequency range when the isolator is of a softening

stiffness and to the high frequencies when there is a hardening stiffness. It shows that

introducing a softening stiffness can greatly reduce the first peak values. A hardening

stiffness, in contrast, results in an increase in the first peak value of the kinetic energy

K1 of the base structure, but a reduction in that of K2. The second peak value in the
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kinetic energy curves remains almost unchanged when ε = −0.01, 0 or 0.1, but increases

significantly when ε = 0.5.
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Figure 6.5: Response amplitudes (a) a and (b) b of the systems with different nonlinear
stiffness coefficient. Solid line: ε = 0, linear isolator; dotted line or squares: ε = −0.01;

dash-dot line or circles: ε = 0.1; dashed line or triangles: ε = 0.5.

To understand the underlying cause of the insensitivity of power flows to the stiffness

nonlinearity of the isolator in the non-resonant region, Figure 6.5 shows the variations

of response amplitudes against the excitation frequency. It is observed that the stiffness

nonlinearity mainly affects response amplitudes locally when Ω is close to the resonant

peak frequencies and the value of b is larger than unity. As mentioned previously, for

a significant influence of the nonlinear stiffness on the response amplitudes, the value

of b has to be sufficiently large such that the contribution of the nonlinear parameter ε

to the term 1 + 3
4εb

2 in Eqs. (6.15) and (6.16) cannot be ignored. When the excitation

frequency is far away from the peaks, b is so small that 3
4εb

2 � 1. Correspondingly, the

response amplitudes, time-averaged power flows and kinetic energies of the system are

little affected by the variations of the stiffness nonlinearity.

6.4.2 The isolator with damping nonlinearity

The effects of nonlinear damping in the isolator on vibration power flows are investigated

here by assuming a linear stiffness. With some parameters fixed as ξ1 = ξ2 = 0.01, µ =

0.5, γ = 0.5, f0 = 0.1, ε = 0, the nonlinear damping coefficient η changes from zero for a

isolator with linear viscous damping to 0.1 and then 1, both suggesting a combination

of linear and cubic damping forces. The variations of time-averaged power flows, kinetic

energies as well as response amplitudes with the excitation frequency are shown in

Figures 6.6, 6.7 and 6.8 respectively. It is observed that:



94 Chapter 6 PFA of a two-DOF nonlinear system for vibration isolation

• The nonlinear damping may have large influences on the peak values of time-

averaged power flows as well as the kinetic energies. As seen in Figures 6.6 and 6.7,

increasing the nonlinear damping parameter η from 0 to 0.1 and then to 1 results

in substantial reductions in the first peak values of the curves. In comparison,

there is much smaller change in the second peak values;

• Unlike the influences of the nonlinear stiffness, there is no bending or twisting of

the peaks and the time-averaged power flow variables remain single-valued at a

single excitation frequency;

• When the excitation frequency Ω is away from the peaks, the power flow quantities

shown in these figures are not sensitive to the variations of the nonlinear damping

parameter η.
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Figure 6.6: Time-averaged (a) input and (b) transmitted powers of the systems with
different nonlinear damping coefficient. Solid line: η = 0; dashed line: η = 0.1 and

dotted line: η = 1.

These power flow characteristics show that adding the cubic damping nonlinearity to

the isolator provides benefits for vibration isolation as the peak values are reduced while

at the same time multiple solutions are avoided. For more detailed information of the

nonlinear damping effects on power flows, Figure 6.8 shows the corresponding curves of

the response amplitudes for different η values. When the excitation frequency is close

to the first peak, the value of b is large. Consequently, the changes of η from 0 to 1 yield

large variations of the term 1 + 3
4ηb

2Ω2 so that the response amplitudes governed by

Eqs. (6.15) and (6.16) are greatly affected. In contrast, when Ω moves away from the

first resonant frequency, the value b is small so that the responses amplitudes are not

sensitive to η as 3
4ηb

2Ω2 � 1 and 1 + 3
4ηb

2Ω2 ≈ 1. As a result, the kinetic energies as

well as time-averaged power flow quantities p̄in and p̄t are not sensitive to the nonlinear

damping when away from the resonance frequencies.
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Figure 6.7: Kinetic energies (a) K1 and (b) K2 of the systems with different nonlinear
damping coefficient. Solid line: η = 0; dashed line: η = 0.1 and dotted line: η = 1.
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Figure 6.8: Response amplitudes (a) a and (b) b of the systems with different nonlinear
damping coefficient. Solid line: η = 0; dashed line: η = 0.1 and dotted line: η = 1.

6.4.3 The isolator with stiffness and damping nonlinearities

In previous sections, the nonlinearity only exists in the stiffness or the damping of the

isolator. Here, both damping and stiffness nonlinearities in the isolator are considered.

The nonlinear stiffness coefficient ε is fixed as 0.5 while the nonlinear damping coefficient

η changes from 0 to 0.1 and then to 0.5. Other parameters are set as ξ1 = ξ2 = 0.01, µ =

0.5, γ = 0.5, f0 = 0.1. The variations of time-averaged power flows and kinetic energies of

the system with the excitation frequency are shown in Figures 6.9 and 6.10, respectively.

The effects of the hardening nonlinear stiffness are again demonstrated by the bending

of the peaks in the curves to the high-frequency range. Similar to the nonlinear stiffness
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system studied in Section 6.4.1, multiple solution branches of power flow variables are

encountered. An increase in the nonlinear damping parameter η from 0 to 0.5 results in

a narrower frequency band for non-unique power flows. Also, introducing the damping

nonlinearity in the isolator assists in a reduction of the second peak value of the time-

averaged power flow curve.
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Figure 6.9: Time-averaged (a) input and (b) transmitted powers of the systems with
a fixed nonlinear stiffness coefficient but different nonlinear damping coefficient. Solid

line: η = 0.5; dashed line: η = 0.1 and dotted line: η = 0.
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Figure 6.10: Kinetic energies (a) K1 and (b) K2 of the systems with fixed a nonlinear
stiffness coefficient but different nonlinear damping coefficient. Solid line: η = 0.5;

dashed line: η = 0.1 and dotted line: η = 0.

Figure 6.11 examines the corresponding response characteristics of the system. It is

shown that introducing nonlinear damping in the hardening stiffness isolator lowers the
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Figure 6.11: Response amplitudes (a) a and (b) b of the systems with fixed a nonlinear
stiffness coefficient but different nonlinear damping coefficient. Solid line: η = 0.5;

dashed line: η = 0.1 and dotted line: η = 0.

second resonance peak. However, the values of power flow variables at other excitation

frequencies are little affected. This is again due to the fact that the value of 3
4ηb

2Ω2 is

much smaller than 1 in the frequency range away from the second resonance. Conse-

quently, 1+ 3
4b

2ηΩ2 ≈ 1 in the frequency response relations and the response amplitudes

and time-averaged power flows vary little with η in a wide frequency range.

6.4.4 Effects of other parameters

In this section, the effects of other parameters, including the mass ratio µ, the frequency

ratio γ, damping parameters ξ1 and ξ2, as well as the excitation magnitude f0 on the

power flows and kinetic energies of the system are examined. For brevity, the isolator

is considered to be with hardening stiffness. Systems with softening isolators can be

investigated in a similar way and thus the results are not provided here.

For a system with ξ1 = ξ2 = 0.01, γ = 1, ε = 1, η = 1, f0 = 0.1, Figures 6.12 shows the

effects of mass ratio µ on time-averaged input and transmitted powers, kinetic energies

and the response amplitudes, respectively. It shows that the mass ratio µ influences

the time-averaged input power significantly over a wide frequency range, whereas the

time-averaged transmitted power varies substantially only when the excitation frequency

locates close to or in between two resonant peak frequencies. It is observed that a

small mass ratio of µ = 0.2 leads to larger amount of input power in a wide range

of excitation frequencies. Also, as the value of µ decreases from 1 to 0.5 and then

to 0.2, the second peak value of p̄in increases whereas the peak values of p̄t remain

almost unchanged. A large difference between the analytical and numerical results is

observed at point B (and B′) in Figure 6.12 with the excitation frequency Ω being
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approximately 0.27. Further examination of the corresponding response suggests the

existence of large super-harmonic components at Ωr = 3Ω and Ωr = 5Ω, as shown in

Figure 6.13. Clearly, super-harmonic resonance occurs and thus the first-order averaging

approximation underestimated time-averaged power flow levels.
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Figure 6.12: Time-averaged (a) input and (b) transmitted powers of the systems with
different mass ratio µ. Solid line or circles: µ = 1; dashed line or triangles: µ = 0.5;

dotted line or squares: µ = 0.2.
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Figure 6.13: Occurrence of super-harmonic resonances (ξ1 = ξ2 = 0.01, γ = 1, µ =
0.2, ε = 1, η = 1, f0 = 0.1,Ω = 0.27). (a) Frequency spectrum and (b) time histories.

Figure 6.14(a) shows that the influences of µ on the kinetic energy K1 of the base are

similar to those on the time-averaged transmitted power shown in Figure 6.12(b). In

the low-frequency range, the maximum kinetic energy of the excited mass m2 is not

sensitive to the mass ratio µ, but in the high-frequency range, K2 increases significantly

as µ reduces from 1 to 0.2. It shows that that the first peak in the curves of K2 increases
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with µ, but the second peak value of K2 is suppressed by increasing µ. Figure 6.15 shows

the response amplitude a of the base structure is sensitive to variations of µ when the

excitation frequency Ω is close to or locates in between two peak frequencies, but not

sensitive to it in other frequency ranges. In comparison, the relative deflection b of the

isolator generally decreases when mass ratio µ increases.
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Figure 6.14: Kinetic energies (a) K1 and (b) K2 of the systems with different mass
ratio µ. Solid line or circles: µ = 1; dashed line or triangles: µ = 0.5; dotted line or

squares: µ = 0.2.
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Figure 6.15: Response amplitudes (a) a and (b) b of the systems with different mass
ratio µ. Solid line or circles: µ = 1; dashed line or triangles: µ = 0.5; dotted line or

squares: µ = 0.2.

Figure 6.16, 6.17 and 6.18 show the influences of the frequency ratio γ on system’s power

flows, kinetic energies and response amplitudes, respectively. When the parameters are
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set as ξ1 = ξ2 = 0.01, µ = 1, ε = 0.5, η = 0.1, f0 = 0.1, Figure 6.16 shows that an

increase in γ shifts both peaks in each power flow curve towards the high-frequency

range. The first peak frequency increases slightly, but the second one grows significantly.

The amount of time-averaged input power p̄in increases with γ in the high-frequency

range. In contrast, in the low-frequency range, there is less power input as γ increases

from 0.5 to 2 . The time-averaged transmitted power shows a similar dependence on γ

in the high-frequency range, but is less sensitive to it when Ω is small.
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Figure 6.16: Time-averaged (a) input and (b) transmitted powers of the systems with
different frequency ratio γ. Solid line or circles: γ = 2; dashed line or triangles: γ = 1;

dotted line or squares: γ = 0.5.
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Figure 6.17: Kinetic energies (a) K1 and (b) K2 of the systems with different fre-
quency ratio γ. Solid line or circles: γ = 2; dashed line or triangles: γ = 1; dotted line

or squares: γ = 0.5.
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Figure 6.18: Response amplitudes (a) a and (b) b of the systems with different fre-
quency ratio γ. Solid line or circles: γ = 2; dashed line or triangles: γ = 1; dotted line

or squares: γ = 0.5.
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Figure 6.19: Time-averaged (a) input and (b) transmitted powers of the systems with
different linear damping in the isolator. Solid line or circles: ξ2 = 0.005; dashed line or

triangles: ξ2 = 0.01; dotted line or squares: ξ2 = 0.02.

The patterns of kinetic energy curves shown in Figure 6.17(a) are similar to those shown

in Figure 6.16(b) as the transmitted power p̄t and the kinetic energy of the base K1

is proportional when the damping parameter ξ1 is fixed. In comparison, the kinetic

energy K2 of mass m2 shows its strong dependence on γ at low excitation frequencies.

However, when the excitation frequency becomes large, the value of K2 becomes less

sensitive to the frequency ratio γ. The variations of the response amplitudes are shown

in Figure 6.18, which suggests the response amplitude of the base structure is sensitive

to frequency ratio γ at high excitation frequencies with its value increasing with γ. As
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Ω reduces to lower frequencies, the curves of amplitude a tend to merge with each other.

On the contrary, the dynamic deflection of the isolator b depends more on γ in the

low-frequency range, but changes less with it in the high-frequency range.
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Figure 6.20: Kinetic energies (a) K1 and (b) K2 of the systems with different linear
damping in the isolator. Solid line or circles: ξ2 = 0.005; dashed line or triangles:

ξ2 = 0.01; dotted line or squares: ξ2 = 0.02.

0.1 1 10
10-4

10-3

10-2

10-1

100

101

102

2 3
0

1

2

(a)

 

 

a Enlarged

0.1 1 10
0

1

2

3

4

2 3
0.6

1.1

1.6
(b)

 

 

b

Enlarged

Figure 6.21: Response amplitudes (a) a and (b) b of the systems with different linear
damping in the isolator. Solid line or circles: ξ2 = 0.005; dashed line or triangles:

ξ2 = 0.01; dotted line or squares: ξ2 = 0.02.

In Figures 6.19, 6.20 and 6.21, the effects of damping parameter ξ2 of the isolator on

power flows, kinetic energies as well as response amplitudes are investigated. For the

considered system with ξ1 = 0.01, µ = 1, γ = 1, ε = 1, η = 1, f0 = 1, Figures 6.19(b) and

6.20 show that the second peak in the time-averaged transmitted power as well as the
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kinetic energies curves is suppressed by increasing ξ2. When Ω locates far away from

the second peak frequency, there is little change in the values of transmitted power and

kinetic energies as ξ2 varies. In comparison, the change in input power is more significant

due to variations of ξ2. Its value increases with ξ2 in the low/high-frequency range when

Ω is away from the peak frequencies. Figure 6.21 shows that the second resonance peak

is also reduced by increasing damping. As ξ2 increases, the peak bends less to the high-

frequency range and there is a smaller frequency band for multiple solutions. Away from

the peak frequencies, the values of a and b remain almost unchanged when the value of

ξ2 changes from 0.005, to 0.01 and then to 0.02.
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Figure 6.22: Time-averaged (a) input and (b) transmitted powers of the systems with
different damping in the base structure. Solid line or circles: ξ1 = 0.005; dashed line or

triangles: ξ1 = 0.01; dotted line or squares: ξ1 = 0.02.
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Figure 6.23: Kinetic energies (a) K1 and (b) K2 of the systems with different damping
in the base structure. Solid line or circles: ξ1 = 0.005; dashed line or triangles: ξ1 =

0.01; dotted line or squares: ξ1 = 0.02.
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Figure 6.24: Response amplitudes (a) a and (b) b of the systems with different damp-
ing in the base structure. Solid line or circles: ξ1 = 0.005; dashed line or triangles:

ξ1 = 0.01; dotted line or squares: ξ1 = 0.02.
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Figure 6.25: Time-averaged (a) input and (b) transmitted powers of the systems
under different force amplitude f0. Solid line or circles: f0 = 0.2; dashed line or

triangles: f0 = 0.5; dotted line or squares: f0 = 1.

Figures 6.22, 6.23 and 6.24 show the influences of damping in the base structure on

power transmission, kinetic energies and response amplitudes, respectively. It is shown

that a change in ξ1 causes large variations of time-averaged input power when the exci-

tation frequency Ω locates in the low-frequency range, with its value increasing with ξ1.

However, in the high-frequency range, the amount of time-averaged input power changes

little when varying ξ1. In contrast, the time-averaged power transmission is sensitive

to the damping in the base over the examined region of frequencies. It is shown that

heavier damping in the base can result in more power to be transmitted and dissipated.
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Figure 6.22 also shows that the first peak values of p̄in and p̄t are moderately suppressed

by damping as their values decrease with an increasing ξ1. Similarly, Figure 6.23 and

6.24 show the first resonant peaks in the curves of the kinetic energies and response

amplitudes are greatly attenuated by adding a heavier damping in the base structure.

At other frequencies, the variable values show a small dependence on ξ1.
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Figure 6.26: Kinetic energies (a) K1 and (b) K2 of the systems under different force
amplitude f0. Solid line or circles: f0 = 0.2; dashed line or triangles: f0 = 0.5; dotted

line or squares: f0 = 1.
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Figure 6.27: Response amplitudes (a) a and (b) b of the systems under different force
amplitude f0. Solid line or circles: f0 = 0.2; dashed line or triangles: f0 = 0.5; dotted

line or squares: f0 = 1.

Figures 6.25,6.26 and 6.27 show the effects of the excitation amplitude f0 on the power

flows, kinetic energies as well as response amplitude, respectively. The figures suggest

that a larger excitation amplitude generally results in larger amount of time-averaged
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power flows as well as increases in kinetic energies. Moreover, as f0 increases from 0.2, to

0.5 and then to 1, the response amplitudes a and b also increase. The nonlinear stiffness

effects of the isolator become stronger and consequently the second peak in the curves

of power flows and kinetic energies bends further towards the high-frequency range.

6.5 Conclusions

This chapter studied the vibrational power flow behaviour of a two degrees-of-freedom

nonlinear vibration isolation system. The model consisted of an excited mass, mounted

on a linear SDOF base structure via a nonlinear isolator with nonlinearities in both

damping and stiffness. The coupling effects between the isolator and the flexible base

were examined from the power flow perspective. The performance of the isolator with

different nonlinearities was assessed by investigating the levels time-averaged power flows

as well as kinetic energies. As a first-order approximation, the averaging method was

used to formulate power flow quantities. Numerical simulations based on the Runge-

Kutta method were also carried out for verification of the analytical approximations.

Based on the investigation, the following conclusions may be drawn.

• Introducing softening stiffness in the isolator can provide benefits for vibration

isolation by bending the peaks in the curves of time-averaged power flows as well

as kinetic energies to the low-frequency range and reducing the peak values. In

contrast, adding hardening stiffness in the isolator bends the peaks to the high-

frequency range and can result in higher peaks in power transmission, which are

not desirable for vibration isolation.

• Introduction of a cubic nonlinear damping force in the isolator is beneficial in

suppressing the peak values of time-averaged power flows while narrowing the

frequency band of multiple solutions.

• Analytical approximation showed that the time-averaged transmitted power is

proportional to the maximum kinetic energy of the base if its damping coefficient

is fixed. Moreover, the time-averaged transmitted power is found to be identical

to the averaged dissipated power by base damping.

• Parameter study showed that variations of the mass ratio µ results in significant

changes in the time-averaged transmitted power when the excitation frequency

located between the peak frequencies. In comparison, the amount of transmitted

power is more sensitive to the frequency ratio γ in the high-frequency range.

• The time-averaged transmitted power exhibits strong dependence on the linear

damping coefficient ξ1 of the base structure over a large range of excitation fre-

quencies. In contrast, it is sensitive to the linear damping coefficient ξ2 of the

isolator only when the excitation frequency Ω is close to the peak frequencies.



Chapter 7

Power flow analysis of a two-DOF

nonlinear system for vibration

absorption

In this chapter, the power flow characteristics of a two degrees-of-freedom (DOF) non-

linear system with a linear/nonlinear absorber attached to a linear/nonlinear primary

structure are investigated. The use of linear dynamic vibration absorbers for vibration

mitigation of linear structures has been extensively investigated. Early such studies were

reported by Frahm (1911) as well as Den Hartog (1934) who proposed the addition of

a linear attachment to a linear oscillator to suppress its vibration. It was shown that if

the natural frequency of the absorber is tuned to that of the primary system, effective

vibration attenuation can be achieved when the excitation frequency is the same as the

natural frequency of the primary system. To widen the frequency band for effective

functioning of vibration absorbers, the feasibility of using nonlinear vibration absorbers

have been explored (see, Roberson (1952); Pipes (1953); Arnold (1955); Hunt and Nis-

sen (1982)). More recently, some researchers adopted the concepts of passive targeted

energy transfer in vibration absorption and qualitatively studied the functioning form of

nonlinear vibration absorbers when the primary structure is subject to impact load (see,

for example, Viguié and Kerschen (2009, 2010)). Xiong and Cao (2011) investigated

the power flows in a two-DOF system with a nonlinear absorber attached to a linear

oscillator. The possibility of using a linear vibration absorber to reduce the primary

resonance of a nonlinear system was considered by Ji and Zhang (2010). However, the

displacement response, instead of power flow quantities, was usually used as performance

index of vibration absorbers. This chapter addresses the issue by studying a system with

a nonlinear primary structure and a nonlinear absorber from the vibrational power flow

perspective. Time-averaged power flows, as well as kinetic energies will be investigated

to examine the effectiveness of nonlinear absorbers.

107
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7.1 Mathematical model

Figure 7.1 shows a schematic representation of a two-DOF vibration absorption system,

in which a vibrating primary structure, subject to a harmonic excitation of amplitude

f and frequency ω, is modelled by a single DOF system consisting of a mass m1, a

linear/nonlinear spring with restoring force G(x1) and a linear viscous damper with

damping coefficient c1. To attenuate its vibration, a light-weight mass m2 is attached

to the main structure through a linear/nonlinear spring with restoring force F (δ) and a

linear viscous damper with damping coefficient c2. It is assumed that the masses only

have vertical displacement and their static equilibrium positions where the dynamical

deflections x1 = x2 = 0, are taken as the reference. The relationships between restoring

forces and the corresponding dynamic deflections of the linear/nonlinear springs are

described by

G(x1) = k1x1(1 + αx21), (7.1a)

F (δ) = k2δ(1 + βδ2), (7.1b)

respectively, where k1 and k2 are positive, representing the linear stiffness; α and β are

the nonlinear stiffness parameters; x1 and δ = x2 − x1 denote the dynamic deflections

of the springs of the primary structure and the absorber, respectively. A positive α

(or β) corresponds to a hardening spring with the stiffness increasing with the deflec-

tion whereas a negative α (or β) denotes a softening spring with its stiffness being a

monotonically decreasing function of the corresponding deflection.

Figure 7.1: A schematic representation of a two-DOF system with a nonlinear vibra-
tion absorber and a nonlinear primary structure.

The governing equations of motion of the system are obtained as

m1ẍ1 + c1ẋ1 + k1x1(1 + αx21)− c2δ̇ − k2δ(1 + βδ2) = f cosωt, (7.2)
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m2ẍ2 + c2δ̇ + k2δ(1 + βδ2) = 0. (7.3)

By introducing the following non-dimensional parameters:

x0 =
m1g

k1
, µ =

m2

m1
, ω1 =

√
k1
m1

, ω2 =

√
k2
m2

,

γ =
ω2

ω1
, ξ1 =

c1
2m1ω1

, ξ2 =
c2

2m2ω2
, η = αx20, ε = βx20,

f0 =
f

k1x0
, y =

δ

x0
, x =

x1
x0
, Ω =

ω

ω1
, τ = ω1t,

the governing equations are written in a non-dimensional form

x′′ + 2ξ1x
′ + x+ ηx3 − µγ(2ξ2y

′ + γy + εγy3) = f0 cos Ωτ, (7.4)

y′′ + γ(2ξ2y
′ + γy + εγy3) = −x′′, (7.5)

where the primes denote differentiations with respect to the non-dimensional time τ .

To facilitate further numerical and analytical investigations of power flow characteristics,

Eqs. (7.4) and (7.5) are transformed into a set of four first-order differential equations
x′

z′

y′

u′

 =


z

f0 cos Ωτ − 2ξ1z − x− ηx3 + µγ(2ξ2u+ γy + εγy3)

u

−f0 cos Ωτ + 2ξ1z + x+ ηx3 − (µ+ 1)γ(2ξ2u+ γy + εγy3)

 . (7.6)

For performance assessment of nonlinear dynamic absorbers based on vibrational power

flows, it is essential to solve Eqs. (7.6) so that the response and power flow characteristics

can be obtained. However, they are a set of nonlinear equations when η 6= 0 and/or ε 6= 0,

for which exact analytical solutions are not available. As an alternative, approximate

solutions are sought using analytical methods or numerical simulations. In this chapter,

the averaging method will be used for first-order analytical approximations of power flow

variables while at the same time numerical results are also provided for verifications.

7.2 Analytical solutions

7.2.1 Frequency-response relations

The averaging method (see, for example, Nayfeh and Mook (1979)) is used herein for a

first-order approximation of the displacement responses and power flow quantities. For

its implementation, the steady-state responses of the primary structure and the absorber
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are assumed to be harmonic with the same frequency as the excitation, i.e.,

x = a cos(Ωτ + φ), (7.7a)

x′ = −aΩ sin(Ωτ + φ), (7.7b)

y = b cos(Ωτ + θ), (7.7c)

y′ = −bΩ sin(Ωτ + θ), (7.7d)

where a, b, φ and θ are unknown response amplitudes or phase angles. Using the

assumptions of the averaging method, Eqs. (7.6) are transformed into

a′ cos(Ωτ + φ)− aφ′ sin(Ωτ + φ) = 0, (7.8a)

−a′ sin(Ωτ + φ)− aφ′ cos(Ωτ + φ) =
f1
Ω
, (7.8b)

b′ cos(Ωτ + θ)− bθ′ sin(Ωτ + θ) = 0, (7.8c)

−b′ sin(Ωτ + θ)− bθ′ cos(Ωτ + θ) =
f2
Ω
, (7.8d)

where

f1 = a(Ω2 − 1) cos(Ωτ + φ)− ηa3 cos3(Ωτ + φ) + f0 cos Ωτ + 2ξ1aΩ sin(Ωτ + φ) + µγ∆,

(7.9a)

f2 = bΩ2 cos(Ωτ + θ) + a′Ω sin(Ωτ + φ) + (aΩ2 + aΩφ′) cos(Ωτ + φ)− γ∆, (7.9b)

∆ = −2ξ2bΩ sin(Ωτ + θ) + γb cos(Ωτ + θ) + εγb3 cos3(Ωτ + θ). (7.9c)

The expressions of time change-rates of response amplitudes and phase angles are found

by solving Eqs. (7.8), i.e.,

a′ = − 1

Ω
f1 sin(Ωτ + φ), (7.10a)

φ′ = − 1

aΩ
f1 cos(Ωτ + φ), (7.10b)

b′ = − 1

Ω
f2 sin(Ωτ + θ), (7.10c)

θ′ = − 1

bΩ
f2 cos(Ωτ + θ). (7.10d)

Assuming that the response amplitudes and phase angles are slowing-varying variables

of time, the left hand sides of Eqs. (7.10) can be approximated by their average value
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over an excitation cycle, i.e.,

a′ ≈ − 1

2π

∫ 2π
Ω

0
f1 sin(Ωτ + φ) dτ, (7.11a)

φ′ ≈ − 1

2πa

∫ 2π
Ω

0
f1 cos(Ωτ + φ) dτ, (7.11b)

b′ ≈ − 1

2π

∫ 2π
Ω

0
f2 sin(Ωτ + θ) dτ, (7.11c)

θ′ ≈ − 1

2πb

∫ 2π
Ω

0
f2 cos(Ωτ + θ) dτ. (7.11d)

Replacing f1 and f2 using expressions (7.9a), (7.9b) and (7.9c), then evaluations of the

integrations in Eqs. (7.11) lead to

a′ = − 1

Ω

(f0
2

sinφ+ ξ1aΩ + µγb
(
− ξ2Ω cos(φ− θ) +

γ

2
(1 +

3

4
εb2) sin(φ− θ)

))
,

(7.12a)

φ′ = − 1

aΩ

(f0
2

cosφ+
1

2
a(Ω2 − 1− 3

4
ηa2) + µγb

(
ξ2Ω sin(φ− θ) +

γ

2
(1 +

3

4
εb2) cos(φ− θ)

))
,

(7.12b)

b′ = − 1

Ω

(a′Ω
2

cos(φ− θ)− aΩ2 + aΩφ′

2
sin(φ− θ) + γξ2bΩ

)
, (7.12c)

θ′ =− 1

bΩ

(bΩ2

2
+
a′Ω

2
sin(φ− θ) +

aΩ2 + aΩφ′

2
cos(φ− θ)− γ2b

2
(1 +

3

4
εb2)

)
.

(7.12d)

In steady-state motion, the derivatives of response amplitudes and phase angles vanish,

i.e., a′ = φ′ = b′ = θ′ = 0, so that Eqs. (7.12) are transformed into

f0
2

sinφ+ ξ1aΩ + µγb
(
− ξ2Ω cos(φ− θ) +

γ

2
(1 +

3

4
εb2) sin(φ− θ)

)
= 0, (7.13a)

f0
2

cosφ+
1

2
a(Ω2−1− 3

4
ηa2) + µγb(ξ2Ω sin(φ− θ) +

γ

2
(1 +

3

4
εb2) cos(φ− θ)) = 0,

(7.13b)

− aΩ2

2
sin(φ− θ) + γξ2bΩ = 0, (7.13c)

aΩ2

2
cos(φ− θ) +

bΩ2

2
− γ2b

2
(1 +

3

4
εb2) = 0. (7.13d)

Simplifying (7.13c) and (7.13d) to eliminate the phase angles, we obtain

a2Ω4 = (2γξ2bΩ)2 + b2(γ2 − Ω2 +
3

4
εγ2b2)2. (7.14)



112 Chapter 7 PFA of a two-DOF nonlinear system for vibration absorption

Similarly, substituting the terms with phase angles in Eqs. (7.13a) and (7.13b) by using

Eqs. (7.13c) and (7.13d), we have

f20a
2 = 4Ω2(γµξ2b

2+ξ1a
2)2+

(
a2(Ω2+µΩ2−1− 3

4
ηa2)+µb2(γ2+

3

4
εγ2b2−Ω2)

)2
. (7.15)

Thus, the relationship between steady-state response amplitudes of the systems and dif-

ferent parameters is governed by Eqs. (7.14) and (7.15), which are nonlinear algebraic

equations. Note that the unknown a2 can be expressed in terms of b2 and other pa-

rameters using Eq. (7.14). A substitution of the resultant expression into Eq. (7.15)

to replace a2 yields a nonlinear equation of b2, which can be solved by using a bisec-

tion algorithm (see, for example, Press et al. (1992)). The solutions provide first-order

approximations of the response amplitudes.

For a nonlinear system with parameters set as ξ1 = ξ2 = 0.01, η = 0.01, ε = 0.1, f =

0.2, µ = 0.1, γ = 1.0, Figure 7.2 compares the fourth-order Runge-Kutta numerical

results of the response amplitudes with those obtained using the averaging method. A

good agreement of these results is shown, which verifies the averaging formulations. In

the figure, the stability of different solution branches is also shown. The procedure for

stability analysis is provided in the following section.
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Figure 7.2: Verification of averaging formulations. Solid and dashed lines represent
stable and unstable analytical solutions, respectively; dots denote numerical results.

7.2.2 Stability analysis

As shown in Figure 7.2, at some excitation frequencies, there may be more than one

solution to Eqs. (7.14) and (7.15), i.e., non-unique steady-state responses may be en-

countered. In this situation, it is useful to perform stability analysis of the solutions as
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only the stable ones are physically realisable and generally of more interest to engineering

applications. To show the analysing process, Eqs. (7.12) are rewritten as

a′ = u′1 = g1(a, φ, b, θ), (7.16a)

φ′ = u′2 = g2(a, φ, b, θ), (7.16b)

b′ = u′3 = g3(a, φ, b, θ), (7.16c)

θ′ = u′4 = g4(a, φ, b, θ), (7.16d)

where

g1 = − 1

Ω

(f0
2

sinφ+ ξ1aΩ + µγb
(
− ξ2Ω cos(φ− θ) +

γ

2
(1 +

3

4
εb2) sin(φ− θ)

))
,

(7.17a)

g2 = − 1

aΩ

(f0
2

cosφ+
1

2
a(Ω2 − 1− 3

4
ηa2) + µγb

(
ξ2Ω sin(φ− θ) +

γ

2
(1 +

3

4
εb2) cos(φ− θ)

))
,

(7.17b)

g3 = − 1

Ω

(g1Ω
2

cos(φ− θ)− aΩ2 + ag2Ω

2
sin(φ− θ) + γξ2bΩ

)
, (7.17c)

g4 =− 1

bΩ

(bΩ2

2
+
g1Ω

2
sin(φ− θ) +

aΩ2 + ag2Ω

2
cos(φ− θ)− γ2b

2
(1 +

3

4
εb2)

)
.

(7.17d)

Then the corresponding characteristic matrix of a solution (as, φs, bs, θs) to the frequency

response relations (7.14) and (7.15) is

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (7.18)

where aij =
∂gi
∂uj

, (i, j = 1, 2, 3, 4). In the derivation process, the property that for

any solution point (as, φs, bs, θs) the value of gi = 0(i = 1, 2, 3, 4) can be used. The

stability of the solution is then identified by examining the corresponding eigenvalues of

the matrix A. If the eigenvalues all have negative real part, the solution will be stable.

On the other hand, one of the eigenvalues is with a positive real part, the corresponding

solution becomes unstable. Based on these, the stability of different solution branches

for the system with ξ1 = ξ2 = 0.01, η = 0.01, ε = 0.1, f = 0.2, µ = 0.1, γ = 1.0 was

assessed and indicated by different lines in Figure 7.2.
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7.3 Power flow formulations

To assess the vibration absorption performance, the effects of the stiffness nonlinearity

in the primary structure as well as in the absorber on the vibration power generation,

dissipation, transmission and absorption should be clarified. In the following content,

power flow variables as well kinetic energies of the system will be formulated using the

previous averaging formulations.

7.3.1 Input power

The non-dimensional instantaneous input power into the system is the product of ex-

citation with the corresponding velocity. In this system, there is only one excitation

acting on mass m1, so that we have

pin = f0v1 cos Ωτ, (7.19)

where v1 is instantaneous velocity of the primary structure. When a first-order harmonic

response is assumed, we have v1 = −aΩ sin(Ωτ + φ) . Consequently, the time-averaged

input power is formulated by

p̄in(Ω) =
1

T

∫ T

0
pin dτ ≈ −f0aΩ

2
sinφ, (7.20)

where the averaging time T was taken as 2π/Ω, a cycle of excitation. Replacing the

trigonometric function sinφ in Eq. (7.20) using the relations in Eqs. (7.13) and further

simplifying, the time-averaged input power is expressed by

p̄in(Ω) = ξ1a
2Ω2 + µγξ2b

2Ω2. (7.21)

7.3.2 Transmitted power

It is useful to clarify the power transmission paths in the system. The power injected by

the external excitation is partly transmitted downwards and dissipated by the damper

c1, while the rest is transmitted upwards through the nonlinear spring and damper c2

to mass m2. The instantaneous power transmitted to mass m2 is product of the force

acting upon it and the corresponding velocity, i.e.,

pt = ftv2, (7.22)

where ft = µγ(2ξ2y
′+γy+ εγy3) is the transmitted force and v2 = x′+y′ is the velocity

of mass m2. The time-averaged transmitted power to mass m2 over an excitation cycle
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is formulated by

p̄t(Ω) =
1

T

∫ T

0
pt dτ. (7.23)

Replacing the variables in the expressions of ft and v2 with their first-order analytical

approximations and evaluating the integration in Eq. (7.23) yields

p̄t(Ω) = µγ(ξ2abΩ
2 cos(φ− θ)− γabΩ

2
(1 +

3

4
εb2) sin(φ− θ) + ξ2b

2Ω2). (7.24)

Using the relationships given by Eqs. (7.13) to eliminate the trigonometric functions, it

can be shown that

p̄t(Ω) = 0. (7.25)

This expression indicates that there will be no net time-averaged power transmission

to mass m2 over a period of motion. This is accounted for by the fact that the mass

is considered as a rigid body with no internal damping. Also, over an oscillation cycle,

there will be no net change in its kinetic energy. According to the principle of energy

balance, the total transmitted energy into mass m2 should be zero in the time span.

7.3.3 Dissipated power

The dissipated power refers to the rate change of energy that turned into heat by damp-

ing. For the system under investigation, the total instantaneous dissipated power is

pd = fd1x
′ + fd2y

′, (7.26)

where fd1 = 2ξ1x
′ and fd2 = 2µγξ2y

′ are the damping forces of dampers c1 and c2,

respectively. The first term in the equation represents power dissipated by the primary

structure while the second denotes power dissipated by the absorber.

The time-averaged dissipated power over an excitation cycle is

p̄d(Ω) =
1

T

∫ T

0
pd dτ. (7.27)

Replacing velocities x′ and y′ with their first-order approximations described by Eqs.

(7.7b) and (7.7d), the instantaneous dissipated power can be expressed in a first-order

form, using which to complete the integration in Eq. (7.27) leads to

p̄d(Ω) = ξ1a
2Ω2 + µγξ2b

2Ω2. (7.28)

Comparing this equation with Eq. (7.21), it is clear that the expressions for p̄in and p̄d

are exactly the same. This agrees with the principle of energy balance, i.e., over a cycle

of oscillation, the input energy by the external excitation is all dissipated by damping

while the system’s kinetic and potential energies keep unchanged.
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7.3.4 Absorbed power

The power absorbed by the dynamic vibration absorber equals the power dissipated by

its damper c2, and thus can be expressed by

pa = fd2y
′. (7.29)

Using averaging approximations, the time-averaged absorbed power over a cycle of os-

cillation is

p̄a(Ω) =
1

T

∫ T

0
pa dτ = µγξ2b

2Ω2. (7.30)

For efficient vibration absorption, the value of p̄a(Ω) needs to be large, compared the

time-averaged input power.

7.3.5 Maximum kinetic energies

In steady-state motion, the maximum kinetic energy of mass m1 corresponds to the

maximum velocity

K1 =
1

2
(|v1|max)2 ≈ 1

2
a2Ω2. (7.31)

where a first-order approximation of the velocity v1 = −aΩ sin(Ωτ + φ) was used with

its amplitude being |v1|max = aΩ.

Referring to Eqs. (7.7b) and (7.7d), the velocity of the absorber mass m2 is expressed

as

v2 = x′ + y′ = −aΩ sin(Ωτ + φ)− bΩ sin(Ωτ + θ), (7.32)

and its amplitude is

|v2|max = Ω
√

(a2 + b2) + 2ab cos(φ− θ). (7.33)

The trigonometric term cos(φ− θ) in Eq. (7.33) may be replaced using relations in Eq.

(7.13d), by which the expression for the maximum kinetic energy of mass m2 is found

to be

K2 =
1

2
µ(|v2|max)2 =

1

2
µ(a2 − b2)Ω2 + µγ2b2(1 +

3

4
εb2). (7.34)

As its fundamental role of a vibration absorber is to reduce the steady-state response of

the primary structure, its kinetic energy K1 may be used as a criteria for performance

assessment of the nonlinear vibration absorbers.
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7.4 Case studies for the absorber performance

7.4.1 A nonlinear absorber attached to a linear primary structure

Here, vibration mitigation of a harmonically-excited linear primary structure (η = 0)

by using a nonlinear absorber with ε 6= 0 is considered. To examine the effects of the

stiffness nonlinearity in the dynamic absorber on vibration power input and absorption,

the nonlinear coefficient ε varies from −0.01 indicating softening stiffness, to 0.5, for a

hardening stiffness absorber. The results for the linear absorber case of ε = 0 are also

provided for comparison. Other system parameters are set as ξ1 = 0.01, ξ2 = 0.01, η =

0, µ = 0.1, γ = 1.0, f0 = 0.2 and power flow quantities are shown in a decibel scale with

the dB reference set as 10−12 throughout this chapter. Also, in the remaining figures of

this chapter, the lines represent analytical approximate results while the symbols denote

numerical solutions based on the fourth-order Runge-Kutta method. Figures 7.3, 7.4

and 7.5 show the variations of time-averaged input and absorbed powers, the kinetic

energies as well as the response amplitudes. Some influences of the introduced stiffness

nonlinearity in the absorber on power flows of the system are observed:

• Nonlinear stiffness in the absorber results in bending of the peaks in the curves of

time-averaged power flows as well as kinetic energies. As shown in Figures 7.3 and

7.4, the peaks are bent either towards the low-frequency range when the absorber

processes a softening stiffness with ε < 0, or towards the high frequencies when

the stiffness is of a hardening type (ε > 0). This characteristic may reduce the

effectiveness of vibration absorbers as the amount of time-averaged power flow at

the expected functioning frequency Ω = 1 of the absorber may become multiple-

valued and large.

• Associated with the bending of the curves, there are changes in the peak values of

time-averaged power flows as well as kinetic energies. For the softening absorber

case of ε = −0.01, the second peak encountered at a high excitation frequency in

time-averaged input power p̄in and in the kinetic energy K1 becomes much higher

than that of corresponding linear system. However, the other peaks in the curves

are suppressed. For the hardening absorber case of ε = 0.5, the first peak values in

the curves of p̄in and K1 are larger than those of the corresponding linear system.

In contrast, the second peak values in p̄in and K1 and both the peaks in p̄a and

K2 are reduced from the linear case.

• The twisting of curves also results in non-unique branches in some frequency

ranges, indicating possible multiple solutions of power flows at a single excitation

frequency.



118 Chapter 7 PFA of a two-DOF nonlinear system for vibration absorption

• When the excitation frequency is away from the peak regions, the curves that

correspond to different types of absorbers coincide with each other and the time-

averaged power flows are not sensitive to variations of ε. It indicates that the

stiffness nonlinearity has local but not global effects on the system’s power flows.

• Adding a strong hardening stiffness of ε = 0.5 can shift the local minimum point

in the curves of p̄in and K1 to higher frequency range, which need to be taken into

consideration in the application of nonlinear absorbers.
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Figure 7.3: Time-averaged (a) input and (b) absorbed powers for system with a linear
primary structure and an absorber with different nonlinear stiffness. Solid line: ε = 0;

dash line or triangles: ε = −0.01; dotted line or squares: ε = 0.5.
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Figure 7.4: Kinetic energies (a) K1 and (b) K2 of systems with a linear primary
structure and an absorber with different nonlinear stiffness. Solid line: ε = 0; dash line

or triangles: ε = −0.01; dotted line or squares: ε = 0.5.
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Figure 7.5: Response amplitudes (a) a and (b) b of systems with a linear primary
structure and an absorber with different nonlinear stiffness. Solid line: ε = 0; dash line

or triangles: ε = −0.01; dotted line or squares: ε = 0.5.

Figure 7.5 shows that the response peaks are also bent towards either low or high

frequencies, depending on the type of stiffness nonlinearities in the absorber. It shows

that the addition of the softening stiffness absorber suppresses the first resonant peak of

the primary structure. However, it leads to a higher second peak at a higher excitation

frequency. A hardening stiffness of ε = 0.5 reduces the second response peak of the

primary structure, but its first peak value becomes larger than that of the corresponding

linear system. Away from the peak regions, the response amplitudes are not sensitive

to the variations of ε. This may arise from the fact that the response amplitudes are

small in the non-resonant frequency ranges, so that the value of 3
4εb

2 is much smaller

than unity and can be neglected in Eqs. (7.14) and (7.15).

7.4.2 A linear absorber attached to a nonlinear primary structure

In engineering practice, vibrating devices are usually assumed to be functioning in the

linear region, and on this basis linear vibration absorbers are designed and attached.

Problems may arise from this design methodology when the primary structure actually

contains significant nonlinearity. To address this, a special case of attaching a linear

absorber with ε = 0 to a nonlinear primary system is studied herein to reveal the

effectiveness of the former when different types of stiffness nonlinearity exists in the

primary structure. In Figures 7.6, 7.7 and 7.8, the nonlinear stiffness parameter of the

base varies from η = −0.05 indicating a softening characteristic, to zero for a linear

structure and then becomes η = 0.1 suggesting a structure of a hardening stiffness. The

other parameters of the system are set as ξ1 = ξ2 = 0.01, µ = 0.1, γ = 1, f0 = 0.2.
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Compared with the previous case of adding a nonlinear absorber to a linear primary

structure, Figures 7.6 and 7.7 show that:
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Figure 7.6: Time-averaged (a) input and (b) absorbed powers for systems with a
linear absorber and a primary structure with different nonlinear stiffness. Solid line:

η = 0; dashed line or triangles: η = 0.1; dotted line or squares: η = −0.05.
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Figure 7.7: Kinetic energies (a) K1 and (b) K2 of systems with a linear absorber and
a primary structure with different nonlinear stiffness. Solid line: η = 0; dashed line or

triangles: η = 0.1; dotted line or squares: η = −0.05.

• Both peaks in each curve of time-averaged power flows and kinetic energies bend

towards the same direction, either to the low or to the high frequency ranges,

similar with the previous case shown in Figures 7.3 and 7.4.
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Figure 7.8: Response amplitudes (a) a and (b) b of systems with a linear absorber
and a primary structure with different nonlinear stiffness. Solid line: η = 0; dashed

line or triangles: η = 0.1; dotted line or squares: η = −0.05.

• In the low-frequency range, a softening stiffness in the primary structure can

greatly reduce the first peaks in power flow and kinetic energy curves. A hardening

stiffness can assist in attenuations of the first peaks, but may lead to higher second

peak values in p̄in and K1.

• When the excitation frequency is far away from the peak regions, the time-averaged

power flows and kinetic energies vary little with η.

• The bending of curves results in multiple solutions. More importantly, if nonlin-

earity is strong enough, at the desired function frequency Ω = 1 of the absorber,

there may be non-unique and potentially high levels of power flows. This will

jeopardize effective vibration absorption of the primary structure.

The variations of response amplitudes are shown in Figure 7.8. It’s seen that the response

amplitudes near the peak frequencies are significantly altered by the nonlinearity, but

remain almost unchanged for different values of η in other frequency ranges. Again, this

is due to small-amplitude oscillations in these frequency ranges, as the corresponding

terms with the nonlinear stiffness parameter η can be neglected in the frequency-response

relations, described by Eqs. (7.14) and (7.15).

7.4.3 Nonlinear absorbers attached to a softening primary structure

The previous two cases in Sections 7.4.1 and 7.4.2 considered existence of stiffness nonlin-

earity either in the primary system or the absorber. Since the motions of the two masses

are coupled, it is necessary to examine the interaction effects of stiffness nonlinearity
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in the absorber and that in the primary structure. The outcome of such investigations

may provide guidance for a proper design of the absorber’s nonlinearity, with respect

to the existing nonlinearity in the primary structure. For clarity, this section considers

a softening primary structure attached with a hardening/softening nonlinear absorber,

while the next section will focus on vibration absorption of a hardening stiffness primary

structure using nonlinear absorbers.

Figures 7.9, 7.10 and 7.11 show the variations of time-averaged power flows, kinetic en-

ergies and response amplitudes of a system with ξ1 = ξ2 = 0.01, µ = 0.1, γ = 1, f0 =

0.2, η = −0.02. The primary structure is of softening stiffness while the absorber pos-

sesses softening stiffness when ε = −0.01 or hardening stiffness when ε = 0.1. The results

for a linear absorber case with ε = 0 are also provided for comparison.

0.1 1 10
120

160

200

240
 

 

p i
n(d

B
)

(a)

0.1 1 10
40

80

120

160

200

240

 

 
p a
(d
B
)

(b)

Figure 7.9: Time-averaged (a) input and (b) absorbed powers for systems with a
softening primary structure and a nonlinear absorber. Solid line or circles: ε = 0;

dashed line or triangles: ε = −0.01; dotted line or squares: ε = 0.1.

The figures show that the first peak in each curve of the linear absorber case bends

significantly to the low-frequency range. Compared with that, attaching the softening

stiffness absorber of ε = −0.01 to the softening stiffness primary structure strengthens

the overall softening nonlinearity of the system, demonstrated by the further twisting

of both peaks to the low-frequency range. This also results in multiple solutions of

power flow variables over a larger range of excitation frequencies, including the original

tuning frequency Ω = 1 of a linear absorber. Thus, for reducing the vibrations of a

softening primary structure, the use of softening stiffness absorbers may be undesirable.

In contrast, adding a hardening stiffness absorber of ε = 0.1 to the softening primary

structure bends the second peak in the power flow curves to the high-frequency range

while keeping the first peak extended to the low-frequency range. The second peak values

in time-averaged power flows and kinetic energies are greatly reduced. Also, the power
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Figure 7.10: Kinetic energies (a) K1 and (b) K2 of systems with a softening primary
structure and a nonlinear absorber. Solid line or circles: ε = 0; dashed line or triangles:

ε = −0.01; dotted line or squares: ε = 0.1.
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Figure 7.11: Response amplitudes (a) a and (b) b of systems with a softening primary
structure and a nonlinear absorber. Solid line or circles: ε = 0; dashed line or triangles:

ε = −0.01; dotted line or squares: ε = 0.1.

flow variables and kinetic energies are single-valued and small at the tuning frequency

Ω = 1. Thus, hardening stiffness absorbers may be used for vibration absorption of

softening primary structures.

Figure 7.11 shows the corresponding variations of response amplitudes. It is observed

that adding a softening absorber to the softening primary structure can deteriorate

vibration absorption by introducing multiple solutions at Ω = 1. A hardening stiffness

absorber, however, greatly reduces the second response peak of the primary structure.
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7.4.4 Nonlinear absorbers attached to a hardening primary structure

In this section, the performance of different types of nonlinear absorbers in suppressing

the vibrations of a hardening primary structure is investigated. For a system with

ξ1 = ξ2 = 0.01, µ = 0.1, γ = 1, f0 = 0.2, η = 0.05, the nonlinear stiffness parameter ε of

the absorber is set as −0.01 for a softening stiffness absorber and 0.1 for a hardening

stiffness absorber. The variations of power flow variables, kinetic energies and response

amplitudes are shown in Figures 7.12, 7.13 and 7.14, respectively. For comparison, the

results for the system with a linear absorber with ε = 0 attached to the hardening

primary structure are also provided in the figures.
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Figure 7.12: Time-averaged (a) input and (b) absorbed powers for systems with a
hardening primary structure and a nonlinear absorber. Solid line or circles: ε = 0;

dashed line or triangles: ε = −0.01; dotted line or squares: ε = 0.1.

The figures show that the peaks in the corresponding curves of the linear absorber

case bend slightly to the high-frequency range. In comparison, an introduction of a

hardening stiffness absorber to the hardening primary structure yields further bending

of the peaks to the higher frequencies. The figures show that multiple solutions exist

in a larger range of excitation frequencies, including the tuning frequency Ω = 1 of the

corresponding linear absorber. This characteristic is not desirable for the application of

vibration absorbers. It’s shown that the first peaks in time-averaged input power p̄in

and kinetic energy K1 curves are much higher than those of the linear absorber case.

The second peaks values in the curves become lower.

The use of the softening stiffness absorber to the hardening primary structure, however,

bends first peaks towards the low-frequency range. The second peaks remain bent to the

high frequencies. In this way, the dynamic responses of the system, including power flow

variables and kinetic energies, remain single-valued at the tuning frequency of Ω = 1.
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Figure 7.13: Kinetic energies (a) K1 and (b) K2 of systems with a hardening primary
structure and a nonlinear absorber. Solid line or circles: ε = 0; dashed line or triangles:

ε = −0.01; dotted line or squares: ε = 0.1.
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Figure 7.14: Response amplitudes (a) a and (b) b of systems with a hardening primary
structure and a nonlinear absorber. Solid line or circles: ε = 0; dashed line or triangles:

ε = −0.01; dotted line or squares: ε = 0.1.

It is also observed that the first peaks of the curves are suppressed, creating a larger

frequency band of effective vibration absorption. These characteristics clearly demon-

strate the benefits of using a softening stiffness absorber when the primary structure is

of a hardening stiffness.

Figure 7.14 provides the corresponding variations of the response amplitudes, subject to

changes of the nonlinear stiffness parameter of the absorber. It shows that a hardening

stiffness absorber can assist in suppression of the second response peak, while a softening

stiffness absorber significantly alleviates the first response peak value.
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7.4.5 Effects of other parameters

In this section, the influences of different parameters including the mass ration µ, fre-

quency ratio γ and the linear damping coefficient ξ2 of the absorber, on power flow

characteristics of the two-DOF vibration absorption system are investigated.
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Figure 7.15: Time-averaged (a) input and (b) absorbed powers for systems with
different mass ratio µ. Solid line or circles: µ = 0.01; dashed line or triangles: µ = 0.05;

dotted line or squares: µ = 0.1.

For a system with parameters set as ξ1 = ξ2 = 0.01, ε = 0.1, η = −0.02, γ = 1, f0 = 0.2,

i.e., a softening primary structure attached with a hardening absorber, Figures 7.15,

7.16 and 7.17 show the influences of mass ratio µ on power flows, kinetic energies as

well as the response amplitudes. It is observed that as µ increases from 0.01 to 0.05

and then to 0.1, the time-averaged input power is mainly affected in a small band of

excitation frequencies close to the second peak with the peak value increasing with µ.

However, there are large variations of the time-averaged absorbed power over a large

range of excitation frequencies, with its value increasing with µ.

Figure 7.16(a) shows that there are substantial changes in kinetic energy K1 of the

primary structure when the excitation frequency locates in between the first and the

second peak frequencies. Its second peak value increases with the mass ratio µ. Figure

7.16(b) shows that the variations of the absorber’s kinetic energy K2 are of a similar

pattern with the time-averaged power absorption, with the kinetic energy increasing

with µ over a large frequency range.

Figure 7.17 shows the response amplitudes are also affected by the mass ratio in a small

range of excitation frequencies close to or in between the resonant peaks. It is seen

that the second response peak of the primary structure increases with µ. When the
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excitation frequency is close to unity, the response amplitudes increase as the mass ratio

µ decreases.
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Figure 7.16: Kinetic energies (a) K1 and (b) K2 of systems with different mass ratio
µ. Solid line or circles: µ = 0.01; dashed line or triangles: µ = 0.05; dotted line or

squares: µ = 0.1.
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Figure 7.17: Response amplitudes (a) a and (b) b of systems with different mass ratio
µ. Solid line or circles: µ = 0.01; dashed line or triangles: µ = 0.05; dotted line or

squares: µ = 0.1.

Figures 7.18, 7.19 and 7.20 examine the effects of the frequency ratio γ by setting the

other parameters as ξ1 = ξ2 = 0.01, µ = 0.1, η = −0.02, ε = 0.1, f0 = 0.2 for a system

with a softening stiffness primary structure and a hardening stiffness absorber. The

results show that decreasing the frequency ratio γ can shift the local minimum point

in the curves of time-averaged power flows and kinetic energies to lower frequencies. It
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Figure 7.18: Time-averaged (a) input and (b) absorbed powers for systems with
different frequency ratio γ. Solid line or circles: γ = 0.5; dashed line or triangles:

γ = 1; dotted line or squares: γ = 2.
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Figure 7.19: Kinetic energies (a) K1 and (b) K2 of systems with different frequency
ratio γ. Solid line or circles: γ = 0.5; dashed line or triangles: γ = 1; dotted line or

squares: γ = 2.

is observed that the variations in γ have a strong influence on p̄in and K1 when the

excitation frequency is close to the peak frequencies. It’s seen that the second peak

values of time-averaged power flows and kinetic energies decrease with an increasing

γ. The level of power absorption changes significantly over the examined frequency

range. At high excitation frequencies, the value of p̄a increases with the frequency ratio.

However, in the low-frequency range, it decreases with as γ changes from 0.5 to 1, and

then to 2. Figure 7.19 (b) shows that the kinetic energy K2 of the absorber increases

with γ, but becomes not sensitive to its variation in the low-frequency range.
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Figure 7.20: Response amplitudes (a) a and (b) b of systems with different frequency
ratio γ. Solid line or circles: γ = 0.5; dashed line or triangles: γ = 1; dotted line or

squares: γ = 2.
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Figure 7.21: Time-averaged (a) input and (b) absorbed powers for systems with
different absorber linear damping. Solid line or circles: ξ2 = 0.01; dashed line or

triangles: ξ2 = 0.05; dotted line or squares: ξ2 = 0.1.

Figure 7.20(a) shows that the response amplitude a of the primary structure is sen-

sitive to the frequency ratio when the excitation frequency Ω is close to the resonant

frequencies. In the high or low frequency range, its value changes little irrespective of

the variations in γ. In comparison, Figure 7.20(b) shows that the relative response am-

plitude b of the absorber changes significantly in the low-frequency range. When the

excitation frequency is large, the value of b becomes much less sensitive to γ, as the

curves for different cases tend to emerge.

In Figures 7.21,7.22 and 7.23, the influences of the damping coefficient ξ2 of the absorber
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on time-averaged power flows, kinetic energies as well as response amplitudes are investi-

gated. The examined system with ξ1 = 0.01, ε = 0.1, η = −0.02, µ = 0.1, γ = 1, f0 = 0.2

possesses softening stiffness in the primary structure but hardening stiffness in the ab-

sorber. The results show that although the second peak in p̄in curve is suppressed by

increasing the absorber’s damping, the amount of time-averaged input power increases

with ξ2 over a wide band of frequencies. Similarly, Figure 7.21(b) suggests that there will

generally be more power absorption if heavier damping exists in the nonlinear absorber.
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Figure 7.22: Kinetic energies (a) K1 and (b) K2 of systems with different absorber
linear damping. Solid line or circles: ξ2 = 0.01; dashed line or triangles: ξ2 = 0.05;

dotted line or squares: ξ2 = 0.1.
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Figure 7.23: Response amplitudes (a) a and (b) b of systems with different absorber
linear damping. Solid line or circles: ξ2 = 0.01; dashed line or triangles: ξ2 = 0.05;

dotted line or squares: ξ2 = 0.1.
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For the effects of ξ2 on kinetic energies of the system, it is shown in Figure 7.22 that the

second peaks in the curves of kinetic energies K1 and K2 are suppressed by increasing the

absorber’s damping. However, between the peak frequencies, an increase in the damping

also leads to larger kinetic energy K1 of the primary structure, which is undesirable for

vibration absorption. Figure 7.23 shows that there are large changes in the response

amplitude a of the primary structure and relative response amplitude b of the absorber

when Ω is close to the second resonant frequency. In the high or low frequency ranges

away from the peak frequencies, the response amplitudes are not sensitive to the linear

damping coefficient ξ2 of the absorber.

7.5 Conclusions

The power flow behaviour of a two degrees-of-freedom nonlinear vibration absorption

system has been investigated. Stiffness nonlinearity was considered to exist in the ab-

sorber and/or in the primary structure. The method of averaging was used to derive

analytical approximate formulations of time-averaged power flow variables as well as

kinetic energies of the system. Numerical simulations were carried out to verify the

averaging approximations. Different combinations of the stiffness nonlinearity in the

absorber and primary structure were investigated to examine the effectiveness of the

nonlinear vibration absorbers. It was found that

• If the stiffness nonlinearity only exists either in the absorber or in the primary

structure, the peaks in each time-averaged power flow curve bend towards the

same frequency ranges. This behaviour may undermine the capacity of vibration

absorption as there may be non-unique time-averaged power flow levels at a desired

functioning frequency of the absorber;

• Adding a softening stiffness absorber to a softening stiffness primary structure may

worsen the vibration absorption performance as it can result in multiple solution

branches in a large band of frequencies. In comparison, attaching a hardening

absorber provides benefits by creating a wide frequency range where the time-

averaged power flows remain low and single-valued at each excitation frequency;

• Similarly, introducing a hardening stiffness absorber to a hardening stiffness pri-

mary structure can also create a large frequency band of multiple solutions. In

contrast, a softening stiffness absorber assists in vibration mitigation by bend-

ing the peaks in time-averaged power flows towards different frequency ranges, so

that effective vibration absorption can be achieved in a wider range of excitation

frequencies;
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• Variations of the mass ratio µ or the frequency ratio γ can result in substantial

changes in the time-averaged input power over a large range of excitation frequen-

cies. In comparison, the kinetic energy K1 of the primary structure is sensitive to

µ and γ only when the excitation frequency Ω locates close to or in between the

peak frequencies.



Chapter 8

Power flow analysis of a nonlinear

flapping foil energy harvesting

system

As demonstrated in Chapter 5, the unforced Van der Pol oscillator is able to extract ex-

ternal energy at small oscillation amplitudes and dissipate energy when the displacement

is large to sustain a stable limit cycle oscillation. The power flow characteristic of this

nonlinear oscillator provides insights for designs of energy harvesting devices by using

flow-induced vibrations. In this chapter, a nonlinear flapping foil system is proposed

to harness energy from air flows. With two coupled equations governing its dynam-

ics in heave and pitch motions, this system can absorb the flow energy to generate a

bending-torsion flutter when the flow velocity exceeds a critical speed (see, for example,

Bisplinghoff et al. (1955); Fung (1969)). Nonlinear stiffness models are introduced in

both degrees-of-freedom of the system to avoid divergence when the flow velocity ex-

ceeds the critical speed. An electro-magnetic power generation unit is used to convert

the mechanical energy imported from the air flows into electricity. To assess the energy

harvesting capacity, it is necessary to clarify the associated energy input, transmission,

generation and dissipation behaviour of the system. Power flow analysis provides a useful

tool for the purpose and thus is performed to study this energy harvesting system.

8.1 Application background

In view of a pressing demand to deal with climate issues such as global warming, there

have been a growing interest in renewable energy harvesting (see, for example, Xing et al.

(2011). Flutter phenomenon, which corresponds to limit cycle oscillations of elastic bod-

ies in flows, suggests the possibility of energy harvesting using flow-induced vibrations.

Several studies on this have been reported. Wu et al. (1972) showed that an oscillating

133
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wing in the water is capable of harvesting energy from waves. McKinney and DeLaurier

(1981) presented a similar device for wind energy extraction and suggested that the effi-

ciency of this type of energy harvesting device was comparable to the conventional wind

mills. Jones and Platzer (1997) and Jones et al. (1999) used a panel method to examine

the power exchange between a uniform flow and a foil undergoing prescribed pitching

and heaving motions. It was shown that vibration energy can be extracted from cou-

pled pitch-heave motions with particular phase angles. Bernitsas et al. (2008) proposed

a so-called vortex induced vibration aquatic clean energy converter to harness energy

from ocean or other water resources and showed that the device can extract energy with

high power conversion ratio. Zhu et al. (2009) and Zhu and Peng (2009) modelled a foil

energy harvester with linear supporting springs and examined its harvesting capability.

The results suggested a lower energy generation efficiency of flapping foil than the con-

ventional rotary turbines. To improve the efficiency, Shimizu et al. (2008) conducted a

multi-objective parameter optimization of a flapping wing power generator and showed

that the power generation can be increased up to 30%.

However, in the publications mentioned above, the supporting springs of the foils were

assumed to be linear. Under this configuration, the system motion will be divergent when

the flow velocity exceeds the critical flutter speed. To avoid divergence, the pitching

motions were prescribed in the studies, which in turn require extra energy for motion

control in a practical design. Moreover, no actual electrical generation unit was included

in the designs, and thus the mechanical-electric coupling was omitted. Furthermore, the

quantity used to measure the harvested power was either the input power into the foil by

aerodynamic loads (see, for example, McKinney and DeLaurier (1981)), or the dissipated

power by a damper (see, Zhu et al. (2009); Zhu and Peng (2009); Peng and Zhu (2009);

Shimizu et al. (2008)), which may not reflect the actual energy harnessed.

In this chapter, we intend to address these issues by investigating an integrated nonlinear

energy harvesting system consisting of a flapping foil and an electro-magnetic generator

using the power flow analysis approach. A nonlinear energy harvesting device with a two

degrees-of-freedom flapping foil supported by nonlinear springs and an electro-magnetic

generator is investigated from a viewpoint of power flow. Due to the nonlinearity in stiff-

ness in both degrees-of-freedom, possible limit cycle oscillations exist, which correspond

to stable periodic oscillations that can be used for energy harvesting. Hence, there is no

need to control the pitch motion and operational cost can be reduced.

The following content presents the details of the theory and methods used in the analysis.

Following a description of the model for the foil-electromagnetic generator interaction

system, the governing equations are derived. The aerodynamic lift and moment applied

on the foil were approximated analytically based on a quasi-steady aerodynamic the-

ory. A fourth-order Runge-Kutta method is adopted to numerically solve the obtained

equations. The input, transmitted and dissipated powers are calculated using the de-

rived power flow formulations to measure the effects of nonlinear parameters on energy
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generation. The developed model and analysis procedure provide a useful approach for

examining similar energy harvesting systems for applications.

8.2 Mathematical model

8.2.1 Dynamic governing equations of the foil

Figure 8.1: A schematic model of a nonlinear flapping foil energy harvesting device.

As shown in Figure 8.1, the energy harvesting system under investigation consists of

a flat foil placed in a uniform air flow of velocity V and an electro-magnetic electric

generator. The foil is supported at an elastic axis by nonlinear springs in both heave

and pitch degrees-of-freedom, of which the stiffness are described by

kh(h) = kh1 + kh2h
2, (8.1a)

kα(α) = kα1 + kα2α
2, (8.1b)

respectively. In both degrees-of-freedom, there exists linear viscous damping. It is

assumed that the heaving displacement h of the foil is positive when moving downwards,

whereas the pitching angle α is positive when nose up. The moving coil, located in a

magnetic field, is rigidly connected to the foil at the elastic axis through a rigid, massless

bar. In this way, electricity can be generated when the coil moves up and down and

cuts lines of magnetic flux, according to the electromagnetic induction mechanism (see,

Kittel (1967)). The location of the elastic axis, when the foil is in static equilibrium, is

taken as the reference position with h = 0. In the figure, b denotes the half chord length;
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ah represents the non-dimensional distance from airfoil mid-chord to the elastic axis; xα

is the non-dimensional distance from elastic axis to centre of mass. In the following

analysis, a foil of a unit span is considered.

The governing equations of motion of the foil are written as (see, Fung (1969))

mḧ+ Sα̈+ chḣ+ hkh(h) = F − FM , (8.2)

Sḧ+ Iαα̈+ cαα̇+ αkα(α) = M, (8.3)

where m is total mass of the foil and the coil; S is the mass static moment; Iα is the mass

moment of inertia; ch and cα are the viscous damping coefficients for heave and pitch

motions, respectively; F and M are aerodynamic lift and pitching moment, respectively;

FM is an electro-magnetic force.

To simplify the model, some non-dimensional parameters are defined as

ξ =
h

b
, V ∗ =

V

bωα
, τ =

V t

b
, ωξ =

√
kh1
m
, ωα =

√
kα1
Iα

,

ω̄ =
ωξ
ωα
, ζξ =

ch
2mωξ

, ζα =
cα

2Iαωα
, µ =

m

πρb2
,

xα =
S

mb
, rα =

√
Iα

mb2
, βξ =

kh2b
2

kh1
, βα =

kα2
kα1

.

Using those, the governing equations (8.2) and (8.3) are written in a non-dimensional

form

ξ′′ + xαα
′′ + 2ζξ

ω̄

V ∗
ξ′ + (

ω̄

V ∗
)2(ξ + βξξ

3) = − 1

πµ
Cl(τ) +

FMb

mV 2
, (8.4)

xα
r2α
ξ′′ + α′′ + 2

ζα
V ∗

α′ +
1

V ∗2
(α+ βαα

3) =
2

πµr2α
Cm(τ), (8.5)

where a prime ′ denotes differentiation with respect to τ ; the lift force and moment

were approximated by adopting a quasi-steady aerodynamic theory (see, Fung (1969)):

F = −ρbV 2Cl(τ), (8.6)

M = 2ρbV 2Cm(τ), (8.7)

where Cl(τ) and Cm(τ) are non-dimensional coefficients for the lift and the pitching

moment, respectively. For incompressible flows, they can be expressed by:

Cl(τ) = 2π
(
α(0) + ξ′(0) + (

1

2
− ah)α′(0)

)
φ(τ) + π(ξ′′ − ahα′′ + α′)

+ 2π

∫ τ

0
φ(τ − σ)

(
α′(σ) + ξ′′(σ) + (

1

2
− ah)α′′(σ)

)
dσ,

(8.8)
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Cm(τ) =
π

2
ah(ξ′′ − ahα′′)− (

1

2
− ah)

π

2
α′ − π

16
α′′

+ π(
1

2
+ ah)

(
α(0) + ξ′(0) + (

1

2
− ah)α′(0)

)
φ(τ)

+ π(
1

2
+ ah)

∫ τ

0
φ(τ − σ)

(
α′(σ) + ξ′′(σ) + (

1

2
− ah)α′′(σ)

)
dσ,

(8.9)

where φ(τ) is the Wagner function. For a flat foil, it may be expressed as (see, Fung

(1969))

φ(τ) = 1−Ψ1e
−ε1τ −Ψ2e

−ε2τ , (8.10)

where the constants φ1 = 0.165, φ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3 were determined

by Jones (1940).

8.2.2 Electro-magnetic equations of the generator

Assuming that the electric power generation obeys Laplace theorem describing electro-

magnetic phenomenon (see, Kittel (1967)), voltage will be induced by the moving coil

in the magnetic field of flux density B. Suppose the effective length of the coil is l, then

the induced voltage is obtained as

e(t) = Blḣ. (8.11)

When the electric coil is in an electric circuit with resistance R, inductance L, a dynamic

current i is introduced. By applying the Kirchhoff’s voltage law, an equation governing

the dynamic current is obtained

L
di(t)

dt
+Ri(t)− e = 0. (8.12)

where it was assumed that no electric capacitors exist in the circuit. Substituting Eq.

(8.11) into Eq. (8.12), we obtain the following non-dimensional differential equation:

i′ +
Rb

LV
i− Blb

L
ξ′ = 0. (8.13)

When there is electric current flowing through the moving coil, an electro-magnetic force

will be produced

FM = iBl. (8.14)
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8.3 Power flow formulations

The equations of power balance are derived by multiplying Eqs. (8.2), (8.3) and (8.12)

by ḣ, α̇ and i, respectively:

mḧḣ+ Sα̈ḣ+ chḣḣ+ hkh(h)ḣ = Fḣ− FM ḣ, (8.15)

Sḧα̇+ Iαα̈α̇+ cαα̇α̇+ αkα(α)α̇ = Mα̇, (8.16)

Li
di

dt
+Ri2 − ei = 0. (8.17)

A summation of Eqs. (8.15), (8.16) and (8.17) with references to Eqs. (8.11) and (8.14)

leads to

mḧḣ+Iαα̈α̇+Sα̈ḣ+Sḧα̇+chḣḣ+cαα̇α̇+hkh(h)ḣ+αkα(α)α̇+Li
di

dt
+Ri2 = Fḣ+Mα̇.

(8.18)

Alternatively, it may be written as

K̇ + pd + U̇ + pc + pg = pin, (8.19)

where

K̇ = mḧḣ+ Iαα̈α̇+ Sα̈ḣ+ Sḧα̇, (8.20a)

U̇ = hkh(h)ḣ+ αkα(α)α̇ (8.20b)

represent the rate of change of kinetic and potential energies, respectively;

pd = chḣḣ+ cαα̇α̇ (8.21)

denotes the instantaneous power dissipation by mechanical damping;

pc = Li
di

dt
(8.22)

is rate of change of energy stored in the electric inductor;

pg = Ri2 (8.23)

is the power consumed by the electric resistor R;

pin = Fḣ+Mα̇ (8.24)

denotes the instantaneous input power, i.e., the rate of work done by the flow on the foil.

Transmitted power from the mechanical to electro-magnetic system equals the product
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of the electro-magnetic force and the heaving velocity, i.e.

pt = FM ḣ. (8.25)

Integrating Eq. (8.19) from t = ti to t = ti + tp leads to an equation of energy balance

in the time span

∆K + Ed + ∆U + Ec + Eg = Ein. (8.26)

where ∆K and ∆U are the net changes in kinetic and potential energies,

Ed =

∫ ti+tp

ti

pd dt, Ec =

∫ ti+tp

ti

pc dt,

Eg =

∫ ti+tp

ti

pg, dt and Ein =

∫ ti+tp

ti

pin dt

are the total dissipated energy, the change in the energy that is stored in the electric

inductor, the energy generated (consumed by the resistor) and total work done by the

aerodynamic force and moment to the foil, respectively. Dividing these energy quantities

by the time span tp results in time-averaged power flow variables, which can be used to

assess energy harvesting performance.

8.4 Simulation method

The integral terms in Eqs. (8.8) and (8.9) make it difficult to study the system’s dy-

namical behaviour analytically. To assist investigations, new variables are introduced as

(see, for example, Lee et al. (1999))

w1 =

∫ τ

0
e−ε1(τ−σ)α(σ) dσ, (8.27a)

w2 =

∫ τ

0
e−ε2(τ−σ)α(σ) dσ, (8.27b)

w3 =

∫ τ

0
e−ε1(τ−σ)ξ(σ) dσ, (8.27c)

w4 =

∫ τ

0
e−ε2(τ−σ)ξ(σ) dσ. (8.27d)

Using these expressions and Eq. (8.14), we transform Eqs. (8.4), (8.5) and (8.13) into

the following form of differential equations

c0ξ
′′+c1α

′′+c2ξ
′+c3α

′+c4ξ+c5ξ
3+c6α+c7w1+c8w2+c9w3+c10w4+c11i = f(τ), (8.28)

d0ξ
′′+d1α

′′+d2α
′+d3α+d4α

3+d5ξ
′+d6ξ+d7w1+d8w2+d9w3+d10w4 = g(τ), (8.29)

n1ξ
′ + n2i

′ + n3i = 0, (8.30)
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where

f(τ) =
2

µ

(
(
1

2
− ah)α(0) + ξ(0)

)
(Ψ1ε1e

−ε1τ + Ψ2ε2e
−ε2τ ), (8.31)

g(τ) = −(1 + 2ah)f(τ)

2r2α
. (8.32)

The detailed expressions for coefficients in Eqs. (8.28), (8.29) and (8.30) are

c0 = 1 +
1

µ
, c1 = xα −

ah
µ
, c2 = 2ζξ

ω̄

V ∗
+

2

µ
(1−Ψ1 −Ψ2),

c3 =
1

µ

(
1 + (1− 2ah)(1−Ψ1 −Ψ2)

)
, c4 =

( ω̄
V ∗
)2

+
2

µ
(ε1Ψ1 + ε2Ψ2),

c5 =
( ω̄
V ∗
)2
βξ, c6 =

2

µ

(
(1−Ψ1 −Ψ2) + (

1

2
− ah)(ε1Ψ1 + ε2Ψ2)

)
,

c7 =
2

µ
ε1Ψ1

(
1− ε1(

1

2
− ah)

)
, c8 =

2

µ
ε2Ψ2

(
1− ε2(

1

2
− ah)

)
,

c9 = −2ε21Ψ1

µ
, c10 = −2ε22Ψ2

µ
, c11 = − Bl

µπρb3ω2
αV
∗2 ,

d0 =
xα
r2α
− ah
µr2α

, d1 = 1 +
8a2h + 1

8µr2α
,

d2 = 2
ζα
V ∗

+
1− 2ah

2µr2a
− (1− 2ah)(1 + 2ah)(1−Ψ1 −Ψ2)

2µr2α
,

d3 =
1

V ∗
− 1 + 2ah

2µr2α
− (1− 2ah)(1 + 2ah)(Ψ1ε1 + Ψ2ε2)

2µr2α
,

d4 =
βα
V ∗2

, d5 = −(1−Ψ1 −Ψ2)(1 + 2ah)

µr2α
,

d6 = −(ε1Ψ1 + ε2Ψ2)(1 + 2ah)

µr2α
, d7 = −

ε1Ψ1(1 + 2ah)
(
1− ε1(12 − ah)

)
µr2α

,

d8 = −
ε2Ψ2(1 + 2ah)

(
1− ε2(12 − ah)

)
µr2α

, d9 =
ε21Ψ1(1 + 2ah)

µr2α
, d10 =

ε22Ψ1(1 + 2ah)

µr2α
,

n1 = −Blb
L
, n2 = 1, n3 =

Rb

LV
.

Introducing nine new variables

x1 = α, x2 = α′, x3 = ξ,

x4 = ξ′, x5 = w1, x6 = w2,

x7 = w3, x8 = w4, x9 = i,
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equations (8.28), (8.29) and (8.30) are transformed into a set of nine first-order differ-

ential equations 

x′1
x′2
x′3
x′4
x′5
x′6
x′7
x′8
x′9


=



x2

(c0H − d0P )/(d0c1 − c0d1)
x4

−(c1H + d1P )/(d0c1 − c0d1)
x1 − ε1x5
x1 − ε2x6
x3 − ε1x7
x3 − ε2x8

−(n1x4 + n3x9)/n2


, (8.33)

where

P = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 + c11x9 − f(τ),

H = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ).

Once the initial conditions of the system are set, these first-order equations can be solved

using a fourth-order Runge-Kutta method. This operation yields the time histories of

non-dimensional displacements and the dynamic current. Instantaneous / time-averaged

power flow variables are then obtained using the formulations in Section 8.3.

8.5 Energy harvesting performance

Using the above formulations and simulation approach, the energy harvesting perfor-

mance of the system is assessed in this section. When the electric generator is not

included in the model, the non-dimensional flutter velocity of a system with ω̄ = 0.2,

ωα = 3, ζξ = ζα = 0.01, µ = 100, xα = 0.25, rα = 0.5, ah = −0.5, βξ = 1, βα = 1.5, is

calculated to be approximately 6.3. When V ∗ = 6, below the critical speed, an initial

motion of the system will decay and then vanish, as shown in Figure 8.2(a) and (b).

However, when the flow velocity V ∗ = 6.5, which is above the flutter speed, the system

will display stable periodic oscillations shown in Figure 8.2(c) and (d).

Figure 8.3 represents the motions of the foil shown in Figure 8.2 as trajectories in the

phase plane. Clearly, when below flutter velocity, the foil evolves to the static equilibrium

position of α = α′ = ξ = ξ′ = 0. In comparison, with a larger flow velocity of V ∗ = 6.5,

it exhibits limit cycle oscillations in steady state,similar to the behaviour of the unforced

Van der Pol oscillator discussed in Chapter 5.

To investigate the coupling effects between the generator and the foil, Figure 8.4 com-

pares the time histories of the displacement response, obtained with or without con-

siderations of the electro-magnetic generator. For the former case, parameter values
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Figure 8.2: Time histories of the displacements. (a) and (b): V ∗ = 6, below the
critical flutter velocity; (c) and (d): V ∗ = 6.5, above the critical flutter velocity. Initial

conditions are set as α = α′ = ξ′ = 0, ξ = 0.1.

are set as B = 0.5T, l = 20m, R = 1Ω, L = 0.05H, b = 1m, ρ = 1.293kg/m3, while

the others kept the same as those used in Figure 8.2. The figure shows that the incor-

poration of electric generator in the model results in decreases of response amplitudes

in both degrees-of-freedom. While the pitching amplitude reduces slightly, the heaving

amplitude decreases significantly. The reason may be that the electro-magnetic force

created by the coil introduces extra resistance in the heave motion. The large differ-

ences in results between modelling with and without considering the electrical-magnetic

unit demonstrate a necessity to consider interactions between electric and mechanical

subsystems for effective simulations of the energy harvesting system.

With parameters set the same as those used in Figure 8.4, the time series of the dynamic

current in the circuit is shown in Figure 8.5. In steady state, it varies with a constant

amplitude of about 8.63 Amp. Using Eq. (8.23), the maximum instantaneous power



Chapter 8 PFA of a nonlinear flapping foil energy harvesting system 143

-1.0 -0.5 0.0 0.5 1.0
-100

-50

0

50

100(d)

 

 

h 
(m

/s
)

h (m)

-0.10 -0.05 0.00 0.05 0.10 0.15
-6

-4

-2

0

2

4(b)

 

 

h 
(m

/s
)

h (m)

-30 -20 -10 0 10 20 30
-40

-30

-20

-10

0

10

20

30

40(c)

 

 

 (deg)

-1.0 -0.5 0.0 0.5 1.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5(a)

 

 

 (deg)

Figure 8.3: Phase trajectories. (a) and (b) below flutter velocity V ∗ = 6, (c) and (d)
above flutter velocity V ∗ = 6.5. Other parameters are set the same as in Figure 8.2.

generation is calculated to be approximately 75.58 Watts. Correspondingly, the time-

averaged generated power over an oscillation cycle is 37.79 Watts. Note that in the

above simulations, a foil of a unit span is considered. If its span increases to 5 meters,

the average power generation will be about 188.95 Watts.

Again, considering the same parameters values as those used for Figure 8.4, the time-

averaged power flow variables over a period of oscillation of the model with generator and

that without the generator are listed in Table 8.1. For the former case, the averaged rate

of work done on the foil, i.e., time-averaged input power, equals the sum of time-averaged

dissipated and transmitted powers. For the latter case, the time-averaged input power

balances the power dissipated by mechanical damping. It is found that the average input

power of the system with a generator is much larger than that without considering the

electro-magnetic generator. The reason is that the electric circuit functions as a power

dissipation mechanism so that more power is needed to drive the system, compared with
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Figure 8.4: Comparison of displacement with (denoted by solid lines) /without (rep-
resented by dashed lines) considering the generator. (a) pitch motion and (b) heave
motion. Parameters are set as V ∗ = 6.5, ω̄ = 0.2, ωα = 3, ζξ = ζα = 0.01, µ = 100,
xα = 0.25, rα = 0.5, ah = −0.5, βξ = 1, βα = 1.5, B = 0.5T, l = 20m, R = 1Ω,

L = 0.05H, b = 1m, ρ = 1.293kg/m3.
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Figure 8.5: The time histories of dynamic current. Parameters are set the same as in
Figure 8.4.

the model with no generator. Moreover, for the case with consideration of the generator,

input power into the foil is largely transmitted into the electric circuit with only a small

portion being dissipated by mechanical damping.

In Figure 8.6, the influence of electric resistance on the generated power is examined for

the system with different configurations of stiffness nonlinearities. The peak values of the

curves indicate an impedance matching, which occurs when resistance is approximately

0.065Ω. Comparing the solid line with the dashed line, it’s seen that an increase in βξ
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Table 8.1: Averaged power exchange (in Watts) in steady-state motion

Powers With generator without generator

Averaged rate of work done on the foil 40.14 5.20

Averaged dissipated power 2.90 5.20

Averaged transmitted power 37.24 Not applicable

Averaged generated power 37.24 Not applicable
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Figure 8.6: The effects of the electric resistance on maximum power generation under
different nonlinear stiffness configurations. Solid line: βξ = 0, βα = 2, dashed line:
βξ = 2, βα = 2 and dash-dot line: βξ = 0, βα = 3. Other parameters are set the same

as in Figure 8.4.

is beneficial for improving power generation. With the considered parameter values, a

smaller value of βα is preferable for a larger power generation. However, the amplitude of

pitching motion will increase accordingly with a decreasing βα. To ensure the accuracy

of the simulations results, the amplitude of the pitch motion should remain lower than a

limit so that the assumptions of the adopted quasi-aerodynamic theory can be satisfied.

8.6 Conclusions

In this chapter, a nonlinear flapping foil vibration energy harvesting system was proposed

to extract external energy. The foil was placed in air flows and supported by nonlinear

springs in both heave and pitch degrees-of-freedom. The quasi-steady aerodynamic
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theory was used for approximations of the lift force and moment. The fourth-order

Runge-Kutta method was employed for numerical simulations of power transmission

and generation in the system. Based on the investigation, the following conclusions can

be drawn:

• Adding hardening stiffness nonlinearities with cubic restoring force in both the

pitch and the heave degrees-of-freedom of the foil, its motion may be characterised

by stable limit cycle oscillations (LCOs) that are similar to those exhibited by the

Van der Pol oscillator;

• When the flow velocity is above the critical flutter speed, the stable LCOs can be

used to extract energy from the air-flows without extra cost to control the stability

of the system;

• Power flow analysis provides an effective way to quantitatively reveal the amount

of power generation, dissipation and transmission in the system. It was shown

that modelling the system without considering the coupling effects between the

electro-magnetic generator and the foil can lead to significant inaccuracies in the

predicted values of time-averaged power flows;

• Changing the coefficients of cubic restoring forces terms of the nonlinear sup-

porting springs, the amplitude of the dynamic current and the amount of power

generation will be substantially affected. For the considered cases, a larger non-

linear stiffness coefficient in the pitch motion benefited power generation, whereas

smaller nonlinear stiffness in the heave motion was desirable for the same purpose.



Chapter 9

Power flow analysis of a nonlinear

vibration isolation system with a

negative stiffness mechanism

The needs for high-performance low-frequency vibration isolation systems arise in many

scientific and industrial fields, ranging from the design of seat suspension systems for

vehicles to motion isolations of optical instruments for gravitational wave detections (see,

for example, Winterflood (2001); Lee et al. (2007a)). For an effective isolation using a

conventional isolator, low spring stiffness is required so as to reduce its natural frequency

Ωn to be much smaller than the excitation frequency Ω. However, this leads to a large

static deflection, which is not desirable in many practical designs. To solve this paradox,

a negative stiffness mechanism (NSM) can be configured in parallel with a linear isolator

so that a low dynamic stiffness can be achieved while ensuring a large static stiffness

(see, for example, Platus (1991)). However, many NSMs are inherently nonlinear and

strong nonlinearity can be introduced to the overall system (see, for example, Cao et al.

(2008)). As a result, frequencies other than the excitation frequency may emerge in

the dynamic response. Therefore, the traditional isolation performance index, such as

force or displacement transmissibility considering only the response component at the

excitation frequency, is not really suitable. Vibrational power flow variables provide

better indications of the isolation performance as they can incorporate the effects of

many other frequency components. In this chapter, power flow analysis is performed

on a nonlinear vibration isolation system with a NSM, which is created by a pair of

bars under compression forces. Both analytical and numerical approaches will be used

to reveal its dynamics and power flow behaviour. Suggestions will also be provided for

more effective vibration isolations using the device.

147
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9.1 Mathematical model

As shown in Figure 9.1, the system model consists of a conventional linear mass-spring-

damper system and a nonlinear negative-stiffness mechanism (NSM). The linear part

is made up of a mass m subject to a harmonic excitation, a vertical linear spring of

stiffness k and a viscous damper with a damping coefficient c. The NSM is created

by two rigid massless bars of fixed length l, hinged together at one end with the mass

while the other ends, subject to two equivalent compression forces P , are allowed to

move freely in frictionless horizontal channels. It is assumed that the bars are horizontal

when the unforced mass is in its static equilibrium position of x = 0. The motion of the

system is restricted to be in the two dimensional plane. As the system is symmetric, the

mass only has vertical movement.

Figure 9.1: A schematic representation of a vibration isolation system with a negative
stiffness mechanism.

If the mass reaches x = ±l, the bars will be vertical and the motion cannot be maintained

so that situation should be avoided. When −l < x < l, the equation of motion is

mẍ+ cẋ+ kx− 2P
x√

l2 − x2
= f cosωt, (9.1)

where f and ω are the amplitude and frequency of the harmonic excitation force, re-

spectively. Letting

ω0 =

√
k

m
, τ = ω0t, ξ =

c

2mω0
, α =

2P

kl
, X =

x

l
, f0 =

f

kl
, Ω =

ω

ω0
,

we obtain a non-dimensional equation of motion

X ′′ + 2ξX ′ +X(1− α√
1−X2

) = f0 cos Ωτ, |X| < 1, (9.2)

where a prime denotes a differentiation with respect to τ .
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Figure 9.2: The variations of (a) nonlinear restoring force and (b) stiffness charac-
teristics of the system. Solid, dashed, dash-dotted and dotted lines represent α=0, 0.2,

0.5 and 1, respectively.

The total non-dimensional restoring force from both the linear spring and the NSM is

given by

G(X) = X(1− α√
1−X2

), |X| < 1. (9.3)

A differentiation of G(X) with respect to X leads to the following expression of the

non-dimensional stiffness of the system:

H(X) = 1− α

(1−X2)
√

1−X2
, |X| < 1. (9.4)

This equation shows that nonlinear stiffness is affected by a positive α and the displace-

ment X through a negative nonlinear term −α/(1−X2)
−3/2

. Its value decreases with

the increase of α and deflection |X|. Figures 9.2(a) and (b) respectively present the vari-

ations of G(X) and H(X) with displacement X, for different values of α (0 < α < 1).

It is seen that when α 6= 0, the largest stiffness is found at point X = 0. For a fixed

value of α (0 < α < 1), the dynamic stiffness reduces from positive to zero, and then

becomes negative with increasing deflection. The position X = 0 is a static equilibrium

position, around which, for a small amplitude vibration, Eq. (9.3) can be expanded

using a Taylor series

G(X) = X(1− α√
1−X2

) = X(1− α)− α

2
X3 +O(X4), (9.5)

where O(X4) represents the higher-order terms. The linearised stiffness of the system

is 1− α (0 < α < 1), and thus the linearised natural frequency of the system about the

static equilibrium is given by

Ωn =
√

1− α. (9.6)
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When α is set close to 1, this frequency will be approximately zero. Linear vibration

isolation theory would suggest a wider frequency range of effective vibration isolation.

However, it may not be necessarily true for the cases with NSM, since the NSM is

inherently nonlinear and undesirable nonlinear effects may arise from it. A more detailed

study is presented in the following sections.
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Figure 9.3: Bifurcation diagram of the unforced system. Solid line: stable equilibria;
dashed line: unstable equilibria.

To design this isolation system, it is necessary to determine the static equilibrium points

of the damped system and investigate their corresponding stabilities to choose a suitable

supporting position. These can be completed by using fundamental nonlinear dynamics

theories, and therefore the details are neglected in this chapter. Such investigation

reveals a pitchfork bifurcation, as shown in Figure 9.3. When 0 < α < 1 there are two

unstable equilibrium points (±
√

1− α2, 0) and a stable one at (0, 0). However, when

α ≤ 1 there exists only an unstable one at (0, 0). As a result, the value range of 0 < α < 1

is used and the point (0, 0) should be employed as the static supporting point for the

nonlinear isolation system studied herein.

9.2 Forced system

9.2.1 Primary resonances

Eq. (9.2) has the following form in the phase space

(
X ′

Y ′

)
=

 Y

f0 cos Ωτ − 2ξY −X(1− α√
1−X2

)

 . (9.7)
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Using an averaging method, we assume that X = r cos(Ωτ+φ) and Y = −rΩ sin(Ωτ+φ),

where r and φ are functions of time, so that Eq. (9.7) is transformed into(
cos(Ωτ + φ) −r sin(Ωτ + φ)

−Ω sin(Ωτ + φ) −rΩ cos(Ωτ + φ)

)(
r′

φ′

)
=

(
0

f1

)
, (9.8)

where

f1 = f0 cos Ωτ + 2rξΩ sin(Ωτ + φ) + rΩ2 cos(Ωτ + φ)− r cos(Ωτ + φ)∆, (9.9a)

∆ = 1− α√
1− r2 cos2(Ωτ + φ)

. (9.9b)

The determinant of the coefficient matrix of Eq. (9.8) is not zero, so that by using

Cramer’s rule we obtain its solution

r′ = − 1

Ω
f1 sin(Ωτ + φ), (9.10a)

φ′ = − 1

rΩ
f1 cos(Ωτ + φ). (9.10b)

The right hand sides of Eqs. (9.10a) and (9.10b) may be approximated by their average

values over a period of the excitation load, which leads to

r′ = − Ω

2π

∫ 2π
Ω

0

1

Ω
f1 sin(Ωτ + φ) dτ, (9.11a)

φ′ = − Ω

2π

∫ 2π
Ω

0

1

Ωr
f1 cos(Ωτ + φ) dτ. (9.11b)
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Figure 9.4: Elliptical integral curves. Solid line: K(r)−E(r), dashed line: K(r), and
dash-dotted line: E(r).
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After completing the integrations in Eqs. (9.11), we obtain

r′ = − 1

2Ω
f0 sinφ− rξ, (9.12a)

rφ′ = − 1

Ω
f0 cosφ− rΩ

2
+

r

2Ω
− 2α

πΩr

(
K(r)− E(r)

)
, (9.12b)

where K(r) and E(r), shown by the curves in Figure 9.4, denote the first and second

complete elliptic integrals, respectively (see, Abramowitz and Stegun (1965)).

Letting r′ = φ′ = 0, which physically implies that the time-averaged rates of change of

the response amplitude and phase angle vanish, we obtain

− 1

2Ω
f0 sinφ− rξ = 0, (9.13a)

− 1

Ω
f0 cosφ− rΩ

2
+

r

2Ω
− 2α

πΩr

(
K(r)− E(r)

)
= 0, (9.13b)

from which an averaged approximate relationship between the excitation frequency and

the system response can be derived

f20 = r2
(

(2ξΩ)2 +
(
Ω2 − 1 + β(r, α)

)2)
, (9.14)

where

β(r, α) =
4α

πr2
(
K(r)− E(r)

)
.
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Figure 9.5: Variations of the nonlinear function β(r, α) with r and α.

Here, a nonlinear function β(r, α) is introduced to denote the effect of the system non-

linearity. Figure 9.5 shows a surface plot of β(r, α) as the function of the response

magnitude r and the nonlinear parameter α. For a given r, its value is proportional to

the parameter α. Larger values of these two variables produce a stronger nonlinearity.
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A further manipulation of Eq. (9.14) gives

r/f0 =
1√

(2ξΩ)2 +
(
Ω2 − 1 + β(r, α)

)2 . (9.15)

The ratio r/f0 may be defined as the nonlinear receptance function developed from

the linear system, since by setting β(r, α) = 0 it would give the corresponding linear

receptance. It represents the response amplitude per unit amplitude of the external

excitation force. However, it should be noted that this ratio varies with the response

amplitude for a nonlinear system (α 6= 0), as shown in Figure 9.6, which is different

from that of the linear isolator. Note that the expression inside the square root of the

denominator on the right hand side of Eq. (9.15) is a quadratic function of Ω2. For a

fixed r and α, the maximum value of r/f0 can be found at

Ω2 = 1− β − 2ξ2, when 1− β − 2ξ2 > 0, (9.16a)

Ω2 = 0, when 1− β − 2ξ2 ≤ 0. (9.16b)

Eq. (9.15) takes special forms for some given parameters. For linear (α = β = 0),

un-damped (ξ = 0) and static force (Ω = 0) cases, the corresponding expressions are

r/f0 =
1√

(2ξΩ)2 + (Ω2 − 1)2
, r/f0 =

1

|Ω2 − 1 + β(r, α)|
, r/f0 =

1

|β(r, α)− 1|
.

Figure 9.6 shows three curved surfaces of the defined receptance for different nonlinear

parameter values. In each surface, there exist a peak receptance curve, which can be

formulated mathematically by Eqs. (9.16a) and (9.16b). For the nonlinear isolator

(α 6= 0), an increase in the response amplitude r would bend this curve to the low

frequency range. The figure shows that the nonlinear receptance (α 6= 0) depends on

response amplitude, which is in contrast to the linear case (α = 0). When α increases

to 0.7 and then 0.9, the nonlinearity becomes stronger and the peak curve would shift

toward a lower-frequency range. Also, by increasing α, the value of r/f0 increases in the

lower-frequency range but decreases near the resonance frequency of the linear system.

However, at excitation frequencies much larger than unity, r/f0 is not sensitive to α.

In order to verify the averaging formulations, Figures 9.7(a) and (b) compare the static

and dynamic solutions obtained by the averaging method (solid line) and those by nu-

merical approaches (circles), respectively. The numerical solutions of the static system

in Figure 9.7(a) are obtained by using a bisection method to solve the governing equation

X(1− α√
1−X2

) = f0. (9.17)

Figure 9.7(a) shows three solution branches, namely upper, middle and lower branches

for the static case when f0 is smaller than 0.0379. In particular, the equilibrium points
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Figure 9.7: Verifications of the derived frequency response relationship (α = 0.85),
solid line indicates the results from the averaging method while circles mark the nu-
merical method results: (a) static solution under constant force (ξ = 0,Ω = 0); (b)

dynamic solution (ξ = 0.01, f0 = 0.001).

are at X1 = 0, X2,3 = ±
√

1− 0.852 ≈ ±0.53 when f0 = 0. Increasing f0 from 0 to 0.06,

the upper and middle branch curves move towards each other, merge and then disappear

at f0 = 0.0379. It is observed that with α = 0.85, ξ = 0,Ω = 0, the middle branch results

obtained by both methods agree relatively well. The differences in solutions of the upper

and lower branches may arise from the inefficiency of the averaging method in dealing

with static systems. For the dynamic case with α = 0.85, ξ = 0.01, f0 = 0.001, Figure
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9.7(b) compares the averaging results with those obtained using a Runge-Kutta method.

The results agree well with each other and thus verify the averaging formulations.

It should be noted that the averaging method using a first-order approximation cannot

provide information on frequency components other than the excitation frequency, such

as sub-harmonic components in a higher frequency range. For this reason, we will further

investigate the system by using a Runge-Kutta method in Section 9.2.3. This implies

that the averaging formulations may be directly used in designs when the excitation

frequency is close to the primary resonance frequency, but in other frequency ranges a

numerical approach may be used to incorporate more response frequency components.
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Figure 9.8: Frequency response curves for primary resonances. (a) The effect of
damping (α = 0.95, f0 = 0.001): solid line, dash line, dash-dotted line and dotted line
refer to ξ = 0, 0.01, 0.02 and 0.05, respectively; (b) the effect of parameter α (ξ =
0.01, f0 = 0.001): solid line, dash line and dotted line represent the cases α = 0.95, 0.90
and 0.85, respectively (c) the effect of excitation amplitude (ξ = 0.01, α = 0.85): solid

line, dash line and dotted line denote f0 = 0.0005, 0.001 and 0.002 respectively.

To examine the influences of different parameters on the dynamic response amplitude,

Figure 9.8 shows two dimensional plots. It is shown that the frequency response patterns

of the nonlinear isolation system are similar to those of the Duffing oscillator with soft-

ening stiffness (see, Nayfeh and Mook (1979)). Two inherently nonlinear characteristics

are shown: 1) the response curves bend to the lower frequency range with increasing
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response amplitude; 2) multiple solutions exist in the low-frequency range. In Figure

9.8(a), the nonlinear parameter and the force amplitude are kept the same to show

the effect of damping. Increasing the damping parameter ξ, the response amplitude

decreases, which is similar to its effects on responses of linear systems. Figure 9.8(b)

examines the effect of parameter α, and shows that negative stiffness by NSM increases

with this parameter, so that the resonance frequency is reduced. Similarly, Figure 9.8(c)

plots the influences of the force magnitude which indicates that an increase in f0 results

in a larger response amplitude.

9.2.2 Stability analysis

The stability of the approximate solutions obtained above can be studied by investigating

the corresponding characteristic matrix of Eqs. (9.12), that is

A =

 −ξ − 1
2Ωf0 cosφ

1
r

(
− Ω

2 + 1
2Ω + 2α

πΩr2
(
K(r)− E(r)

1− r2
)) 1

2Ωrf0 sinφ

 , (9.18)

where the following derivatives of elliptical integrals K(r) and E(r) were used (see,

Whittaker and Watson (1996)), i.e.,

dK(r)

dr
=

E(r)

r(1− r2)
− K(r)

r
,

dE(r)

dr
=
E(r)−K(r)

r
.

Replacing the trigonometric functions in Eq. (9.18) using Eqs. (9.13), the characteristic

matrix is rewritten as

A =

 −ξ Ωr
2 −

r
2Ω + 2α

πΩr

(
K(r)− E(r)

)
− Ω

2r + 1
2Ωr + 2α

πΩr3
(
K(r)− E(r)

1− r2
)

−ξ

 .

(9.19)

The characteristic equation is

λ2 + 2ξλ+ b = 0, (9.20)

where

b =
(Ωr

2
− r

2Ω
+

2α

πΩr

(
K(r)− E(r)

))( Ω

2r
− 1

2Ωr
− 2α

πΩr3
(
K(r)− E(r)

1− r2
))

+ ξ2.

For a stable response, the corresponding solutions of Eq. (9.20) must have negative real

parts. Since ξ > 0 generally holds true for a physical system, it requires b > 0.

The stabilities of responses of the system for α = 0.90 and 0.85 are identified and shown

in Figure 9.9. In the figure, the dashed lines correspond to a negative value of b, which

denote unstable solutions, while the solid lines represent stable solutions with positive
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Figure 9.9: Stabilities of the solutions obtained by using averaging method (ξ =
0.01, f0 = 0.002). Solid lines represent stable solutions; dashed lines denote unstable

solutions.

b. At points A, B, C and D, the value of b is zero. These points are the critical points

between the stable and unstable solutions. It can be seen that for α=0.90, there is

a continuous branch of unstable solutions and two stable solution branches. However,

the solution branches become discontinuous when α = 0.85. The stabilities of solutions

shown in Figure 9.8 can also be determined in a similar way.

9.2.3 Nonlinear transmissibility

To address this important issue involving the performance of a designed isolation system,

we have to understand the main differences of this nonlinear isolator from its linear

counterparts in the following aspects.

The first is that the configuration of the system is different from a conventional linear

isolator. As shown in Figure 9.1 and mentioned in Section 9.1, the investigated nonlinear

isolator consists of a linear spring-damper (k, c) unit and a NSM made up of two bars

under compression forces P . The former is connected to the base point C where only

a vertical reaction force is created. The bars subject to two constant forces are allowed

to move freely only in the horizontal direction. Therefore, at each bar end point (A or

B), a vertical reaction force and a horizontal motion are produced. Since the horizontal

motions at point A or B of the bars are restricted by the length l of the rigid bars, its

calculation is not necessary in practical designs. However, for an expected performance

of the design, we have to investigate force transmission to the base points separately.

There are also inherent nonlinear characteristics introduced by adding NSM. Due to

the nonlinearity, the response of the system does not vary linearly with excitation force
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magnitude. Also, multiple frequency components exist in the steady-state response and

thus the response as well as transmitted force is not time-harmonic. To reveal the force

transmission behaviour accurately, detailed information on the frequency components,

their magnitudes and relative phase angles in the response are needed. It is usually

too complex to obtain. However, as discussed in Section 9.2.1, the averaging method

provides a very good first-order approximation neglecting the effects of other response

components. The derived nonlinear equation (9.15) can be directly used to estimate

force transmissibility (see, Virgin et al. (2008)).

Based on the above discussions as well as the derived averaged solution (9.15), we study

the force transmission to base points C and A, B in this section, but leave the study of

sub-harmonic resonances to Section 9.2.4.

Force transmissibility at the vertical spring base point C

The non-dimensional transmitted force to the base point C consists of the vertical spring

force and damping force, and is given by

ft1 = 2ξX ′ +X. (9.21)

When the solution X = r cos(ΩT + φ) is introduced, the magnitude of ft1 becomes

|ft1| = r
√

(2ξΩ)2 + 1. (9.22)

Thus the force transmissibility at the vertical spring base point may be defined as

TR1 =
|ft1|
f0

=
r

f0

√
(2ξΩ)2 + 1 =

√
(2ξΩ)2 + 1√

(2ξΩ)2 +
(
Ω2 − 1 + β(r, α)

)2 . (9.23)

This equation indicates that the force transmissibility at the base point C relates to the

receptance function shown in Eq. (9.15) by a factor
√

(2ξΩ)2 + 1, which is the transfer

function of the linear vertical spring-damper unit. The variations of force transmissibility

TR1 with the excitation frequency Ω and amplitude r are shown in Figure 9.10. Under

the same Ω and r, the force transmissibility grows with α in the lower-frequency range,

but remains almost the same at higher frequencies (Ω > 3) where the three surfaces

merge with each other. However, when the excitation frequency is near the resonant

frequency Ωn = 1 of the linear isolator, TR1 reduces significantly, which shows the

benefits of introducing NSM.

Eq. (9.23) also shows that the force transmissibility TR1 is a function of the response

amplitude r when β 6= 0. Since the response amplitude depends on the force amplitude

f0, TR1 also depends on f0, which is of concern in the applications of nonlinear isolators.

Figure 9.11(a) shows the influence of force amplitude on TR1 by setting the parameters

of the nonlinear system as α = 0.01, β = 0.95 while changing f0 from 0.001, 0.002 to
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0.005, and comparing the transmissibility TR1 with that of the corresponding linear

system of f0 = 0.001, ξ = 0.01, α = 0. With other parameters fixed, the result suggests

that the excitation magnitude affects the force transmissibility at point C only when

the excitation frequency is close to or smaller than the linearised fundamental frequency

Ωn. At larger frequencies than Ωn =
√

1− α where the isolator is designed to function,

the force transmissibility is not sensitive to the magnitude of the excitation force.
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Figure 9.10: Force transmission to base point C (ξ = 0.01). The yellow, magenta and
blue surfaces correspond to α = 0.9, α = 0.7 and α = 0 respectively.

With prescribed excitation magnitude and damping coefficient, Figure 9.11(b) plots the

influence of the nonlinear parameter α on TR1. As α increases from 0 to 0.95, the

corresponding peaks in the transmissibility TR1 curves move to lower frequencies and

the frequency range where TR1 < 1 is enlarged, which is beneficial to vibration isolations.

It shows multiple branches of transmissibility, corresponding to different solutions, in

the low-frequency range where the value of TR1 might be large. These large values

of transmissibility are not desirable and should be avoided. This can be realised by

choosing a suitable working frequency range in the isolation design.

Vertical force transmissibility at bar base points A and B

The total non-dimensional vertical force transmitted to these base points is

ft2 = −α X√
1−X2

. (9.24)
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Figure 9.11: Influences of parameters on TR1. (a) Varying f0 with ξ = 0.01; solid
line f0 = 0.001, α = 0, i.e., linear case; dash-dotted line, dash line and dotted line
for α = 0.95 while f0 = 0.001, 0.002 and 0.005, respectively. (b) Varying α with
f0 = 0.001, ξ = 0.01: solid line α = 0, i.e., linear case; dash-dotted, dashed and dotted

lines for α = 0.60, 0.85 and 0.95, respectively.

When α > 0, ft2 is an odd function of X monotonically decreasing with X. Thus its

absolute value becomes the largest when X = ±r, which is

|ft2|max = α
r√

1− r2
. (9.25)

For a given value of f0, the maximum force transmissibility from the mass to the ends

of bars is

TR2 =
|ft2|max
f0

=
α√

1− r2
· r
f0
. (9.26)

TR2 is thus α/
√

1− r2 times the nonlinear receptance given by Eq. (9.15). Its variations

with the excitation frequency and response amplitude are shown in Figure 9.12, which is

of a similar pattern with Figure 9.6. One difference is that at higher frequencies, a larger

nonlinear parameter would correspondingly induce slightly larger force transmissibility

TR2 and the surfaces do not merge with each other.

9.2.4 Sub-harmonic resonances

For a linear system with one degree of freedom, there is only one resonance frequency

in its dynamic response. However, this is not valid for a nonlinear system. Because of

nonlinearity, resonances may happen even when the excitation frequency is away from

the natural frequency of the linearised system. For an effective isolation of vibrations, of

special interest are sub-harmonic resonances that may occur even when the excitation

frequency is well above
√

2Ωn.
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Figure 9.12: The variation of TR2 with excitation frequency Ω and amplitude r
(ξ = 0.01). The yellow, magenta and blue surfaces correspond to α = 0.9, α = 0.75 and

α = 0.6, respectively.

To reveal the sub-harmonic resonances of this nonlinear system, Eq. (9.7) was numer-

ically integrated using a fourth-order Runge-Kutta method with initial conditions of

(X0, Y0) = (0, 0). In Figure 9.13(a), the non-dimensional displacement Xs(τs) of the

mass at sampling time τs = τ0 + 2π(n− 1)/Ω, (n = 1, 2, · · · ) with τ0 = 1000, is recorded

for each value of Ω. In this way, if the period of the steady state motion equals the

sampling time interval 2π/Ω, Xs will remain the same for all samplings, so that there

will only be a single sampling point shown in the figure for a given Ω. This is the case

when 0.75 < Ω < 0.81 or 1.05 < Ω < 1.2 in Figure 9.13(a). However, when Ω lies

between 0.81 and 1.05, where there are three different sampling points, which suggests

occurrence of sub-harmonic resonances with the period of motion being 6π/Ω. Figure

9.13(b) plots the variations of the maximum displacement of the mass in steady state

motion against the excitation frequency. It shows the maximum displacement increases

significantly in the frequency band where sub-harmonic resonances occur.

Figure 9.13(c) and (d) provide detailed information of a response with a large sub-

harmonic frequency component in the time domain and frequency domain, respectively.

A time history of the steady-state displacement is shown in Figure 9.13(c). It is then

Fourier transformed to obtain its frequency components (ωr) in Figure 9.13(d). Clearly,

a sub-harmonic resonance occurs as one of the response components is one third of the

excitation frequency ωr = Ω/3. It should be noted that in this particular case, the

excitation frequency Ω lies in the functioning frequency range of the linearised system.

The sub-harmonic resonances are unwanted as it reduces the effective isolation capacity.

More discussion on avoiding such resonances will be given in Section 9.4.
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Figure 9.13: Sub-harmonic resonances (ξ = 0.01, α = 0.85, f0 = 0.2). (a) Sampling
displacement; (b) maximum displacement; (c) time history of displacement (Ω = 1.0)

and (d) frequency components in the response (Ω = 1.0).

9.3 Power flow characteristics of the system

9.3.1 Instantaneous power

The power flow equation of the system can be obtained by multiplying both sides of Eq.

(9.2) by the velocity X ′, that is

X ′X ′′ + 2ξX ′X ′ +X ′X(1− α√
1−X2

) = X ′f0 cos Ωτ, (9.27)

which may be further written as

K ′ + pd + U ′ = pin, (9.28)
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where

K ′ = X ′X ′′, pd = 2ξX ′2,

U ′ = X ′X(1− α√
1−X2

), pin = X ′f0 cos Ωτ

are the rate of change of kinetic energy, dissipated power, the rate of change potential

energy and instantaneous input power, respectively. The rate of change of system me-

chanical energy can be obtained by summing K ′ and U ′. Integrating these variables

with respect to τ , we obtain

∆K =
X ′2

2
, (9.29a)

Ed =

∫ τi+τp

τi

2ξX ′2 dτ, (9.29b)

∆U =

∫ τi+τp

τi

X ′X(1− α√
1−X2

) dτ =
X2

2
+ α

√
1−X2, (9.29c)

Ein =

∫ τi+τp

τi

X ′f0 cos Ωτ dτ, (9.29d)

where ∆K and ∆U stand for the net changes in kinetic and potential energies, respec-

tively; Ed and Ein are the total dissipated energy and input energy, respectively; τp is the

time span for the integration and the system was assumed to start from (X0, X
′
0) = (0, 0)

at τ = τi. The nonlinearity of the system is demonstrated by the last term in Eq. (9.29c).

For a linear isolation system, the maximum potential energy corresponds to the largest

deflection. However, it is not true for the current nonlinear system as U does not in-

crease linearly with |X|2. When 0 < α < 1, it is shown in Figure 9.14 that two local

maximums exist at X = ±
√

1− α2, which correspond to unstable equilibrium points of

the unforced system.
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Figure 9.14: Variations of the potential energy with displacement (α = 0.6).
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The power flow characteristics of the system with multiple solutions are of interest.

Figure 9.15 shows a time series of instantaneous input power into the system, which

indicates the sensitivity of the input power to the initial conditions for a nonlinear

system.
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Figure 9.15: Sensitivity of input power to initial conditions (ξ = 0.01, α = 0.8, f0 =
0.003,Ω = 0.4). Solid line for (X0, Y0) = (0, 0.15) and dashed line for (X0, Y0) = (0, 0).

9.3.2 Time-averaged power

Here we consider the time-averaged power flow behaviour of the nonlinear system. If the

steady-state motion of the system is periodic with a period of τp, its maximum kinetic

energy is

Kmax =
Y 2
max

2
, (9.30)

where Ymax is the maximum velocity. There will be no net changes in both kinetic and

potential energy over a period of oscillation. The time-averaged input power equals the

time-averaged dissipated power, and can be calculated by the integrals

p̄in =
1

τp

∫ τi+τp

τi

X ′f0 cos Ωτ dτ, (9.31)

p̄d =
1

τp

∫ τi+τp

τi

2ξX ′2 dτ, (9.32)

respectively, where τ0 is a chosen starting time and τp is the averaging time. For a

nonlinear system, when the system or excitation parameters vary, the period of steady-

state motions might also change. For instance, as discussed in Section 9.2.4, a sub-

harmonic resonance may occur. Then the period of steady-state motion of the system

would be three times that of excitation force so that τp = 6π/Ω. For vibration isolation

designs, we aim to reduce the input energy to the system. Therefore, the time-averaged

input power may be adopted as a vibration isolation performance indicator.
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When a first-order approximation is applied, the relationship shown by Eq. (9.13a)

might be used to derive the power flow variables. As for this case X ′ = −r sin(Ωτ + φ),

the averaged input power is expressed as

p̄in = − 1

τp

∫ τi+τp

τi

rΩ sin(Ωτ + φ)f0 cos Ωτ dτ = −1

2
rΩf0 sinφ, (9.33)

where the averaging time τp is taken as 2π/Ω. Using Eq. (9.13a), the expression for

averaged input power can be transformed to

p̄in = ξr2Ω2. (9.34)

The maximum kinetic energy of the mass in the steady state motion is written as

Kmax =
Y 2
max

2
=
r2Ω2

2
. (9.35)

Comparing the above two equations, it can be found that p̄in and Kmax are propor-

tional when a first-order approximation of the response is considered and the damping

coefficient ξ is fixed. Figures 9.16, 9.17 and 9.18 show that the results obtained from

analytical solutions (indicated by the different lines) agree very well with those from nu-

merical simulations (represented by the symbols). The power flow spectra are shown in

decibel scale (dB reference:10−12). There are no numerical simulation results available

for unstable solutions.

In Figure 9.16, the time-averaged input power and the maximum kinetic energies for

three different damping levels are plotted against the non-dimensional excitation fre-

quency. It is shown that their peak values are found around the linearised natural

frequency Ωn. The figure indicates that a lighter damping of ξ = 0.01 would give a

larger peak in both averaged input power and kinetic energy than the systems with

ξ = 0.02 or ξ = 0.05. However, when the excitation frequency is away from resonances,

the effects of damping on the two quantities are quite different. In these frequency

ranges, the time-averaged input power would increase with damping while in contrast

the system’s maximum kinetic energy is not sensitive to it.

Figure 9.17 presents the influences of the nonlinear parameter α on time-averaged input

power as well as maximum kinetic energy of the mass. It shows that with the increase

of α from zero towards unity, the peaks of the curves shift to the left with possible

multiple solutions at frequencies smaller than 0.1. However, the peak values remain

approximately the same for different α with the considered damping and excitation

magnitude. This characteristic is different from that of the force transmissibility whose

peak values increase with nonlinearity, as discussed in the previous section. It also

suggests that in the low-frequency range, a larger value of α will induce a higher level of

power input into the system and a larger kinetic energy. In contrast, when the excitation

frequency range is close to unity, which is the original natural frequency without using
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NSM, the addition of NSM can greatly reduce the time averaged input power and kinetic

energy. At much higher frequencies, adding NSM is shown to have only a small influence

on pin and Kmax . As natural frequencies of isolators are usually designed to be lower

than the excitation frequency, a large value of α is beneficial for decreasing the power

input into the system and also system’s kinetic energy.
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Figure 9.16: Influences of damping on (a) averaged input power and (b) maximum
kinetic energy (α = 0.95, f0 = 0.001). Solid line, dash line and dotted line represent
the cases ξ = 0.01, 0.02 and 0.05, respectively. Circles (ξ = 0.01), squares (ξ = 0.02)

and triangles (ξ = 0.05) are the results from numerical simulations.
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Figure 9.17: Influences of nonlinear parameter α on (a) averaged input power and (b)
maximum kinetic energy (ξ = 0.01, f0 = 0.001). Solid line, dash line, dash-dotted and
dotted line refer to α = 0, 0.80, 0.90 and 0.95 respectively. Circles (α = 0.95), squares

(α = 0.90) and triangles (α = 0.80) are the results from numerical simulations.
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Figure 9.18: Influences of excitation amplitude on (a) averaged input power and
(b) maximum kinetic energy (ξ = 0.01, α = 0.95). Solid line, dashed line and dotted
line refer to f0 = 0.0005, 0.001 and 0.002 respectively. Circles (f0 = 0.0005), squares

(f0 = 0.001) and triangles (f0 = 0.002) are the results from numerical simulations.
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Figure 9.19: The plot of (a) time-averaged input power and (b) maximum kinetic
energy of the system with possible sub-harmonic resonances (ξ = 0.005, α = 0.52, f0 =

0.8).

In Figure 9.18, the influence of the excitation magnitude on power flow is examined. It

shows that with the frequency and the damping coefficient values fixed, averaged input

power and kinetic energy would increase with the excitation magnitude. It is also found

that an increase in excitation amplitude results in a larger maximum input power value.

Moreover, with the increase of excitation amplitude, the power flow curves bend to the

lower-frequency band.

Figure 9.19 shows the changes of the maximum kinetic energy and time-averaged input
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power with excitation frequency when sub-harmonic resonances occur. The results are

obtained by numerical simulations only as the averaging approximation is no longer

valid. As stated earlier, under sub-harmonic resonances, the period of the steady-state

response would be three times that of the excitation. Thus, the time span for averaging

is chosen to be 6π/Ω. The plot clearly indicates a sudden jump up in both the kinetic

energy and averaged input power curves when Ω = 1.91 and a jump down at the higher

frequency of 2.03. It can be shown that in the frequency range between the two critical

frequencies, there exist sub-harmonic resonances. Obviously, in terms of minimizing

kinetic energy and averaged input power, the occurrence of sub-harmonic resonances is

undesirable for vibration isolation.

9.4 Suggestions for engineering applications

9.4.1 Restriction on maximum deflection
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Figure 9.20: Variations of |X|max and Ωn with respect to parameter α. Solid line
|X|max and dashed line Ωn.

For practical applications, it is necessary to consider the maximum allowable deflection

|X|max of the mass from the stable equilibrium to avoid reaching X = ±1. The restric-

tion on |X|max can be determined by ensuring that the restoring force always points to

the static equilibrium X = 0, which leads to

|X| <
√

1− α2. (9.36)

Thus |X|max should be
√

1− α2 , which indicates the mass should not deflect beyond

the two unstable equilibriums (±
√

1− α2) of the unforced system. In Figure 9.20,

|X|max and Ωn are plotted with respect to parameter α. It is observed that an increase
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in α reduces both |X|max and Ωn. As stated earlier, a low fundamental frequency

Ωn is expected for a larger frequency band of effective vibration isolation, but it will

also restrict the allowable maximum deflection. Thus the value of parameter α should

be properly chosen with consideration of both lowering the natural frequency of the

linearised system and ensuring sufficient tolerable deflection.

9.4.2 Suppressing sub-harmonic resonances
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Figure 9.21: Diagrams to demonstrate the suppression of sub-harmonic resonances
(α = 0.5, f0 = 1.0). For (a), (b), (c) and (d) ξ was set as 0.0050, 0.0054, 0.0058 and

0.0060, respectively.

For a more robust isolation of vibration, the sub-harmonic resonances should be avoided.

Note that for small deflections of X4 � 1, the higher order terms in Eq. (9.5) may be

neglected, so that we have

X ′′ + 2ξX ′ +X(1− α)− α

2
X3 = f0 cos Ωτ. (9.37)
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This equation corresponds to a Duffing system with a softening stiffness. Its sub-

harmonic resonances were studied by using a multi-scaled method (see Nayfeh and Mook

(1979)). It was shown that sub-harmonic resonances of a softening Duffing system only

happen when the excitation frequency is less than three times the natural frequency

of the linearized system. Hence, for the current nonlinear system, α may be chosen

such that 3Ωn is still smaller than Ω. When the excitation frequency Ω is around 3Ωn,

the following condition has to be satisfied for a nontrivial solution of the sub-harmonic

response (see Nayfeh and Mook (1979)).

(
−63αΛ2

8
√

1− α
+ σ)2 < σ2 − 63ξ2, (9.38)

where Λ = 0.5f0/(Ω
2 − Ω2

n) and σ = Ω− 3Ωn. With an increase in damping coefficient

ξ, the value of f0 will be confined to a smaller range for the occurrence of sub-harmonic

resonances. Moreover, when f0 is fixed, the frequency band for sub-harmonic resonances

will become narrower and eventually disappear. This is shown by Figure 9.21, which is

obtained by using the similar sampling method as used for the data in Figure 9.13(a).

It clearly suggests that an increase in damping can reduce the frequency band for sub-

harmonic resonances, which disappear when ξ = 0.0060.

9.5 Conclusions

A nonlinear vibration isolation system with a negative stiffness mechanism has been

investigated with emphasis on its intrinsic nonlinear dynamic behaviour and power flow

characteristics. The responses of the forced system were obtained analytically and nu-

merically. Nonlinear transmissibility for this system was defined based on the averaging

method. Power flow behaviour of the system was examined to for a better evaluation

of the vibration isolation performance. It was shown that a negative stiffness mecha-

nism provides benefits for low vibration isolation by enlarging the frequency range where

there is low power input. It was also shown that time-averaged input power provides

a good index of isolation performance by incorporating the effects of many frequency

components in the response.

Adding NSM to the original linear isolator is beneficial for low-frequency vibration iso-

lation. This is successfully demonstrated by the following findings: (1) a much lower

natural frequency is achieved than the corresponding linear isolation system; (2) the

effective isolation frequency range is enlarged, as shown by transmissibility curves; (3)

power input into the system is reduced when the natural frequency is close to the reso-

nance frequency range of the corresponding linear isolator. However, adding NSM also

introduces a restriction on maximum deflection, which should be taken into consideration

in the design stage.
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The investigation reveals the dynamical and power flow characteristics of this nonlinear

system as follows. (1) Multiple static equilibria with a pitchfork bifurcation exist for the

unforced system. (2) The primary resonance curves bend to the low-frequency range

which is beneficial to isolation. (3) Non-uniqueness of time-averaged input power might

be encountered in the steady state and the power flow is sensitive to initial conditions.

(4) The system exhibits sub-harmonic resonances which can considerably increase the

averaged input power as well as maximum kinetic energy. Increasing damping can assist

the suppression of sub-harmonic responses. (5) The peak values of averaged input power

increase as damping decreases and/or as excitation amplitude increases. (6) The peak

values of maximum kinetic energy and averaged input power are not sensitive to the

nonlinear parameter α.





Chapter 10

Conclusions and future work

Power flow behaviour of linear dynamical systems has been widely investigated using

established theoretical and numerical approaches. However, in spite of the potential

scientific and engineering benefits, the fundamental principles governing the flow of vi-

bration energy in nonlinear dynamical systems remain unclear. This thesis focuses on

developing the power flow analysis approach for nonlinear dynamical systems, investi-

gating their power flow behaviour arising from different kinds of damping/stiffness non-

linearities, and demonstrating applications for energy harvesting and passive vibration

control.

Following a review of basic concepts and approaches in power flow analysis as well as

fundamentals in nonlinear dynamics in Chapter 2, methods for power flow analysis of

nonlinear dynamical systems were discussed in Chapter 3. Then two typical nonlinear

systems, the Duffing and the Van der Pol oscillators, were investigated in Chapters 4

and 5 using the developed approach to reveal and understand their power flow behaviour

due to nonlinear stiffness and nonlinear damping, respectively. Based on analytical

approximations as well as numerical simulations, the thesis re-examined the nonlinear

phenomena, such as multiple responses, limit cycle oscillations, bifurcation and chaos,

from the viewpoint of vibrational power flows. Chapter 6 and 7 continued to study

the power flows in two degrees-of-freedom nonlinear vibration systems with nonlinear

isolators and nonlinear dynamic absorbers, respectively. Their effectiveness in vibration

control was assessed using time-averaged power flows as well as system kinetic energies

as performance indicators. These investigations provide insights for better designs of

engineering dynamical systems, the performance of which can be analysed and assessed

by the developed PFA approach. Inspired by the behaviour of the unforced Van der Pol

oscillator, a nonlinear flapping foil system was proposed for vibration energy harvesting

in Chapter 8. A nonlinear system with a negative stiffness mechanism for vibration

isolation was presented in Chapter 9, with its effectiveness measured by the amount of

time-averaged input power.

173



174 Chapter 10 Conclusions and future work

10.1 Conclusions

The investigations of the power flow behaviour of these nonlinear systems yield the fol-

lowing findings and observations, which contribute to a better understanding of power

flow mechanisms in nonlinear dynamical systems and provide useful guidance for dy-

namical designs of engineering systems.

(1) The power flow characteristics of a nonlinear system in steady-state motion are

dependent on the type of response it exhibits. Based on the categories of responses, we

have:

• For equilibrium solutions, there may be transient power flows before reaching the

steady-state motion, but no power input or exchange in the steady state;

• For periodic solutions, the instantaneous power flow variables will also be periodic.

It was shown in Chapter 4 that only the in-phase velocity component with the same

frequency as the harmonic excitation will contribute to the time-averaged input

power;

• For quasi-periodic motions of the Van der Pol oscillator, the instantaneous input

power in the steady state contains frequency components which are not commen-

surate with each other. However, it was shown in Chapter 5 that only the velocity

component in-phase and with the same frequency as the harmonic excitation con-

tributes to the time-averaged input power if the averaging time is large enough;

• For a chaotic response of the Duffing oscillator, it was shown in Chapter 4 that

the associated time-averaged input power is insensitive to the initial conditions

but tends to an asymptotic value as the averaging time increases.

(2) The associated power flow behaviour of nonlinear systems when they exhibit non-

linear phenomena was investigated in different Chapters. It was shown that

• When there are multiple solutions, instantaneous and time-averaged power flows

may change significantly with initial conditions, as shown in Chapters 4 and 9.

Basins of attraction can be examined to identify different regions of initial condi-

tions with varying time-averaged power flow levels;

• When sub- or super- harmonic resonances occur, the instantaneous power flow vari-

ables may contain large sub-/super- harmonic components, and the time-averaged

power flows can increase significantly, as studied in Chapters 4 and 9;

• For limit cycle oscillations of the unforced Van der Pol oscillator, the associated

instantaneous dissipated power is positive when its displacement is large, but be-

comes negative for small deflections. The time-averaged dissipated power will be

zero over an oscillation cycle;
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• When bifurcation occurs, there may be substantial changes in instantaneous power

flow characteristics. However, the influence on time-averaged power flows varies

with the type of bifurcation, as shown in Chapters 4 and 5. For systems with

nonlinear springs characterised by cubic restoring forces, bifurcation can lead to

large jumps in time-averaged power flow curves (Chapters 4, 6 and 7). For the Van

der Pol oscillator, however, it was analytically shown that there may be continuous

variation of time-averaged power flows at a critical frequency where the system

bifurcates from periodic to quasi-periodic motions;

• The associated power flow behaviour of a system with chaotic responses is discussed

in Chapter 4, with the findings listed in point (1).

(3) The effects of nonlinear stiffness on power flows were examined in Chapters 4, 6, 7

and 9, while the influences of nonlinear damping were shown in Chapter 5 and 6. It was

observed that

• Hardening or softening stiffness has a strong influence on time-averaged power

flows when the excitation frequency is close to resonance frequencies by bending

the peaks to higher or lower frequency ranges. The stiffness nonlinearity may also

lead to non-unique values of time-averaged power flows. Away from the resonant

regions, time-averaged input powers are not sensitive to the stiffness nonlinearity;

• Because of the stiffness nonlinearity, the double-well potential Duffing oscillator

can display chaotic motions over a large range of excitation frequencies. The corre-

sponding time-averaged power flow behaviour was examined and was summarised

previously in point (1);

• The damping term in the VDP oscillator can lead to negative instantaneous/time-

averaged input power, as shown in Chapter 5. Cubic damping may be beneficial

for vibration isolations by reducing the local peaks in time-averaged power flow

curves, as shown in Chapter 6. At excitation frequencies far away from resonant

frequencies, the effects of cubic damping on time-averaged power flows are small.

(4) Investigations of the power flow behaviour of two-DOF nonlinear systems showed

that introductions of softening stiffness or nonlinear cubic damping in an isolator can

provide benefits for nonlinear vibration isolation. For a softening (or hardening) stiffness

primary structure, hardening (or softening) nonlinear stiffness absorbers, instead of their

linear counterparts, may be attached for better vibration absorption performance.

(5) Adding hardening stiffness in the supporting springs of a flapping foil can assist

in stable energy harvesting using the device. In comparison, introducing a negative-

stiffness-mechanism with a softening stiffness characteristic benefits low-frequency vi-

bration isolation by reducing time-averaged input powr as well as the maximum kinetic

energy over a large range of excitation frequencies.
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To summarise, this thesis developed methods for power flow analysis of nonlinear systems

and revealed their power flow characteristics. The findings enhanced the understanding

of power flow behaviour in nonlinear dynamical systems. The knowledge created in the

research can be employed for better designs and applications of nonlinear devices, as

demonstrated by the studies on a nonlinear flapping foil energy harvesting system as

well as on a nonlinear vibration isolation system with a negative stiffness mechanism.

10.2 Future research

Because of the complex nature of power flow problems associated with nonlinearities,

much work is still required to analyse the vibration power flows in more complicated

systems. A number of recommendations for further research are provided below.

• Power flow analysis of other single degree-of-freedom nonlinear dynamical systems,

such as the parametrically excited systems is needed. Typical nonlinear systems

subject to multiple-term excitations or random excitations should be examined to

explore their power flow characteristics.

• More detailed investigations on power flow characteristics of two degrees-of-freedom

nonlinear dynamical systems are also desirable. The power flow behaviour due to

occurrences of complicated nonlinear phenomena, such as saturation and internal

resonances, should be clarified.

• Power flow problems of complex multiple degrees-of-freedom systems or continuous

sub-systems connected by nonlinear springs/dampers are challenging and need

exploration.

• Work on the engineering applications of nonlinear PFA should also be empha-

sised. For example, parameter optimisation of the flapping foil nonlinear energy

harvesting device could be conducted to enhance its efficiency. Experimental work

is needed to validate the results obtained using numerical simulations. New con-

figurations of nonlinear devices could be introduced for efficient energy harvesting

from the environment. Novel configurations of nonlinear vibration isolators or

absorbers may be proposed for vibration control.
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