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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Engineering and the Environment

Doctor of Philosophy

A NUMERICAL STUDY OF SOME VORTEX RING PHENOMENA USING

DIRECT NUMERICAL SIMULATION (DNS)

by Shankar Kumar Balakrishnan

Direct numerical simulation (DNS) is used to study some aspects of the dynamics of

vortex rings in viscous, incompressible flow at Reynolds numbers (defined as the ratio

of the initial circulation to the kinematic viscosity) in the range of 103 to 104.

Firstly, the effect of the particular initial core azimuthal vorticity profile of a vortex

ring on its subsequent evolution in unbounded flow is studied. Vortex rings with a wide

range of initial core vorticity profiles are shown to relax to a common equilibrium state.

Additionally the behaviour of the equilibrium vortex ring at large times is studied. When

the slenderness ratio of the vortex rings increases beyond a particular limit, the vortex

rings diverge from the common equilibrium state and follow paths determined by the

viscosity of the fluid.

Secondly, the interaction of a laminar vortex ring with a non-deformable, free-slip sur-

face at an oblique angle of incidence leading to the phenomenon of vortex reconnection

is investigated. Specifically the effect of Reynolds number on the dynamics of the recon-

nection process is studied. The scaling of the reconnection timescale with the Reynolds

number is obtained. At high Reynolds numbers the reconnection process leads to a

breakdown of the entire vortex ring structure to a turbulent-like flow. This phenomenon

is shown to be related to the mechanics of the reconnection process.

Finally, the dynamics of vortex rings with swirl in unbounded flow is studied. Two

different types of vortex rings with swirl were considered: i) Vortex rings with Gaussian

distributions of core azimuthal vorticity and core azimuthal velocity and ii) Steady state

solutions of the Euler equations for vortex rings with swirl. Both types of vortex rings

develop an elongated axial vortex after initialisation. The existence of a maximum limit

for the swirl on a vortex ring is shown above which the vortex rings undergo a rapid

de-swirling readjustment. A helical instability occurring in vortex rings due to swirl at

high Reynolds numbers is presented. A relation is shown to exist between one of the

modes of the helical instability and the geometric parameters of the vortex ring.
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Roman symbols

A circulation transfer rate

A axial component of angular impulse

c celerity

C translation parameter

E energy
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u, v, w Cartesian velocity components

ur, uθ, uz cylindrical velocity components

u∗ provisional velocity

w̃ velocity induced by periodic image rings

Wref Speed of the comoving reference frame

X location of vortex ring along x-axis with respect to
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xxii NOMENCLATURE

comoving reference frame

x, y, z Cartesian coordinates

Z axial location of vortex ring with respect to

comoving reference frame

Greek symbols

α, β parameters defining Euler solution initialised vortex ring

γ initial inclination of vortex ring axis to surface

δ core radius

ε slenderness ratio

εK dissipation

ζ exponent of power law representing vorticity density

η perturbation amplitude

θ ring azimuthal coordinate

λ wavelength of helical instability

ν kinematic viscosity

ρ density

σ radial distance from toroid centreline

φ core azimuthal coordinate

ψ Stokes stream function

ω vorticity

Γ circulation

Ψ vector stream function

Ω enstrophy

Subscripts

0 initial condition

max maximum value

i,j,k indices for Cartesian tensor notation

r quantity value at beginning of circulation transfer
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Chapter 1

Introduction

Vortex rings are ubiquitous in nature and their dynamics include a range of interesting

phenomena which have been investigated for more than a century through experimen-

tal and numerical studies and theoretical analysis. Apart from its importance in several

engineering and environmental flows, vortex ring dynamics also provides simpler, canon-

ical instances of the various vortical interactions that occur in more complex turbulent

flows. Direct numerical simulation (DNS) has been increasingly used to gain a bet-

ter understanding of these phenomena. The present work uses DNS to focus primarily

on three aspects of vortex rings in viscous, incompressible flow: i) The evolution of

vortex rings without swirl (‘classical’ vortex rings) in unbounded flow ii) The oblique

angle interaction of a vortex ring with a non-deformable free-slip surface resulting in

vortex reconnection with the surface and iii) The dynamics of vortex rings with swirl in

unbounded flow.

1.1 Classical vortex rings

In numerical simulations of vortex ring dynamics we need to consider the issue of the

initialisation of the vortex ring. The initialisation involves the selection of a profile that

represents the variation of azimuthal vorticity within the finite core of the vortex ring.

A standard practice used in numerical simulations of vortex rings is to use a circular

core with a Gaussian distribution of vorticity. However, the Gaussian profile is only an

exact solution for the Navier-Stokes equations in the limit of a vanishingly thin core.

A Gaussian-initialised vortex ring with a finite core size would undergo a readjustment

to a different vorticity profile. Such a rapid initial readjustment involving changes in

the structure of the vortex core is seen in both experiments (Dabiri and Gharib, 2004)

and numerical simulations (Stanaway et al., 1988; Archer et al., 2008). After this initial

transient phase, the vortex rings reach a quasi-steady state (referred to in this report

1
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as an ‘equilibrium state’) wherein changes in the vortex ring structure are slow and

predominantly due to viscous diffusion.

In experiments, the dynamics of the vortex rings formed after the initial readjustment

appears to be independent of the different techniques used to generate them. In this

report, numerical simulations are used to study the issue of whether the structure of the

equilibrium vortex ring formed after the initial readjustment depends upon the initial

vorticity profile. Additionally the issue of the continuation of the common equilibrium

state, if it exists, up to large times is investigated.

1.2 Oblique interaction of vortex ring with free surface

Research in understanding the interaction of a vorticity field with a free surface is rele-

vant to a variety of geophysical flows. One area of particular importance is the interaction

of the wakes of partially or completely submerged moving bodies with a free surface.

The aspect of this interaction focussed upon in the present study is the phenomenon

of vortex reconnection wherein the vortex filaments at a free surface disconnect from

themselves and connect with the surface. Apart from the interaction of vortices with a

free surface the vortex reconnection phenomenon also occurs when a pair of vortex rings

or line vortices undergo a collision leading to disconnection and reconnection with each

other resulting in a linked pair. A couple of examples of geophysical flows where vortex

reconnection occurs are (i) the vortex ring emitted by a submarine performing a diving

manoeuvre which travels towards the surface and collides with it and (ii) the collision of

the growing sinusoidal perturbations of a vortex pair in the wake of an aircraft undergo-

ing a Crow instability. Vortex reconnection has been studied in these various contexts

through experiments and numerical simulations.

The key non-dimensional parameters which characterise a vortex ring – surface interac-

tion are the Reynolds number and the Froude number. The Reynolds number is defined

as the ratio between the initial circulation of the ring and the kinematic viscosity (Γ0/ν).

The Froude number is defined using the initial circulation, initial radius of the ring and

the acceleration due to gravity as Γ0/(gR
3
0)1/2 and is a measure of the displacement

amplitude of the surface. In the present work, interactions in the limit of zero Froude

number viz. interactions of a vortex ring with a non-deformable, free-slip surface are con-

sidered. Specifically vortex reconnection occurring due to the impingement of a vortex

ring on a non-deformable, free-slip surface at an oblique angle of incidence is investi-

gated. This problem is equivalent to an oblique-angle collision of two vortex rings with

the interaction plane coinciding with the surface. As the vortex ring impinges upon the

surface, vortex filaments in the interaction region are disconnected via viscous diffusion
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towards the surface (or equivalently diffusion towards the oppositely-signed image vor-

tex filaments) and thereby link normally with the disconnected image filaments across

the surface.

The primary focus of this study is the effect of the Reynolds number on the reconnection.

The scaling of the rate of the reconnection process (characterised by a reconnection time

TR) with Re is obtained. An instability occurring during reconnection at high Re is

identified and explained in light of the effect of Reynolds number on the reconnection

process. A new phenomenon is presented wherein the reconnection of a vortex ring with

a free-slip surface at a high Reynolds number leads to a breakdown of the entire vortex

ring structure to a turbulent-like flow.

1.3 Vortex rings with swirl

A vortex ring with swirl consists of an axisymmetric, compact distribution of azimuthal

vorticity with non-zero azimuthal velocity. While classical vortex rings have been anal-

ysed extensively over decades, vortex rings with swirl have not been studied in great

detail. The existence of inviscid, steady solutions for vortex rings with swirl have been

shown by Moffatt (1988) and Turkington (1986). In this report the properties of vortex

rings initialised with swirl in viscous, unbounded flow were studied. The issue of whether

a limit exists for the maximum amount of swirl on a vortex ring is investigated.

The non-swirling vortex ring is known to be unstable to azimuthal perturbations which

lead to the Widnall instability (Widnall et al., 1974). In this work a helical instabil-

ity occurring in vortex rings due to swirl at high Reynolds numbers is introduced. A

method for identifying the modal structure of the helical instability is presented and the

dependence of one of the instability modes on the geometric properties of the vortex

ring is shown.

The thesis is organised into the following chapters. In Chapter 2, a review of the liter-

ature relevant to the three aspects of vortex ring dynamics discussed in this report is

presented. The numerical method and approach used in the DNS computations of vortex

ring dynamics is described in Chapter 3. In Chapters 4, 5, 6, 7 and 8 the results of the

study of (i) Classical vortex rings in unbounded flow (Chapter 4) (ii) The interaction of

a vortex ring with a free-slip surface leading to the phenomenon of vortex reconnection

(Chapters 5 and 6) and (iii) Vortex rings with swirl in unbounded flow (Chapters 7 and

8) are presented and discussed. A summary of all the findings and suggestions for future

work are provided in Chapter 9.





Chapter 2

Literature Review

The vortex ring is defined in section 2.1. The reviews of the literature relevant to the

main topics of investigation in this report are presented in sections 2.2, 2.3 and 2.4.

2.1 Definitions

A vortex ring is a bounded, toroidal distribution of vorticity. The bounded region of

vorticity is referred to as the core of the vortex ring. The vortex ring is represented in a

cylindrical coordinate system (r, θ, z) with its origin at the centre of the vortex ring (as

shown in 2.1) and translating along with the ring. The axis of the vortex ring is aligned

with the z-axis. The components of the velocity and vorticity fields are (ur, uθ, uz) and

(ωr, ωθ, ωz) respectively.

The radius of the vortex ring, R, is the distance between the center of the ring and the

centre of the core. The core radius, δ, is the radius of the toroid. The ratio of the core

radius to the ring radius is the slenderness ratio, ε. The exact mathematical definitions

of R and δ are introduced in section 4.2. The vortex ring has a circulation, Γ defined as

Γ =

∫∫
ωθdrdz

with the integration performed on a radial plane. An axisymmetric vortex ring is defined

by the circulation, ring radius, core radius and the shape of the vorticity distribution

within the vortex core.

5
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R δ

Γ

x

y

z

rθ

Figure 2.1: Schematic of a vortex ring.

2.2 Classical vortex rings without swirl

2.2.1 Inviscid dynamics

The equation for azimuthal vorticity in axisymmetric, inviscid flow is given by

D(ωθ/r)

Dt
= 0

(Batchelor, 1967) where D/Dt is the material derivative. For steady flow,

ωθ
r

= g(ψ) (2.1)

where g is an arbitrary function and ψ is the Stokes streamfunction with

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r

For g(ψ) =constant, Norbury (1973) computed a solution family of vortex rings ranging

from thin-cored vortex rings to the Hill’s spherical vortex.

Helmholtz (1858) derived the following expression for the self-induced propagation ve-

locity of a vortex ring

U =
Γ

4πR

[
log

(
8R

δ

)
+ C

]
(2.2)
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Kelvin (1867) determined the value of the constant, C to be −0.25 for a thin, steady

vortex ring in inviscid flow.

2.2.2 Vortex rings in viscous flow

Saffman (1970) generalised the equation for the propagation velocity by deriving an

expression for the translation parameter C for an arbitrary vorticity profile within the

core. Saffman (1970) assumed a Gaussian distribution of vorticity within the vortex ring

core for a thin cored vortex ring in viscous flow given by

ωθ(ρ) =
Γ0

πδ2
exp

(
−ρ2/δ2

)
(2.3)

and showed that its propagation velocity is given by

U =
Γ

4πR

[
log

(
8R

δ

)
− 0.558 +O(ε log ε)

]
(2.4)

Stanaway et al. (1988) performed Navier-Stokes simulations of laminar vortex rings

initialised with a Gaussian core and found that the propagation velocity with C = −0.558

was accurate to within an error of the order of ε2 log ε.

Stanaway et al. (1988) observed that for a thick-cored vortex ring, the initially circular

core underwent a readjustment to an elliptical shape (figure 2.2). An experimental study

of vortex ring formation and subsequent evolution was performed by Dabiri and Gharib

(2004). The core of the post-formation vortex ring visualised using digital particle image

velocimetry (DPIV) was also found to be elongated along the axial direction and non-

symmetric along the radial direction. Archer et al. (2008) performed direct numerical

simulation of Gaussian initialised vortex rings and found that the amount of vorticity

shed into the wake during the initial readjustment and the skewness of the vorticity

distribution of the readjusted vortex ring increased with the initial slenderness ratio.

The vortex ring is surrounded by a co-moving mass of rotational fluid known as an

entrainment bubble. As the vortex ring propagates, irrotational fluid is entrained into

the bubble. Additionally the vortex ring also sheds fluid with vorticity into a trailing

wake. Therefore the vortex ring properties such as impulse, circulation, radius etc. . .

vary with time. Archer et al. (2008) calculated the velocity of the vortex rings and

determined the value of the translational parameter C according to (2.2) using the

instantaneous values of circulation, ring radius and core radius. They showed that the

plots of C vs. ε for Gaussian initialised vortex rings with different initial slenderness

ratios and at differing Reynolds numbers, converged to a common curve after the initial

readjustment (figure 2.3), represented by
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Figure 2.2: Contours of azimuthal vorticity from Stanaway et al. (1988) showing
the skewed vorticity profile of a vortex ring after the initial readjustment.

C = −1.12ε2 − 5.0ε4 − 0.558.

The equation is asymptotic in the thin core limit of ε → 0 to the value for a Gaus-

sian profile of −0.558. Since C is a function of the shape of the core vorticity profile,

this showed that the Gaussian initialised vortex rings readjusted to a common equilib-

rium state in which the shape of the core vorticity profile was dependent only on the

slenderness ratio.

2.2.3 Large time behaviour of vortex rings in viscous flow

Kambe and Oshima (1975) found that the propagation velocity of vortex rings at large
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Figure 2.3: Translational parameter C vs. ε from Archer et al. (2008),- - - -
C = −1.12ε2−5ε4−0.558, the symbols correspond to Gaussian initialised vortex
rings with different initial slenderness ratios and different Reynolds numbers
after their initial readjustment.

times in experiments decayed as t−1.5. Cantwell and Rott (1988) provided an analytical

solution for the asymptotic drift velocity as t→∞ dependent only on the initial impulse

of the vortex ring I and the kinematic viscosity of the fluid:

U = k
I

ρ
(νt)−1.5

k = 3.7038× 10−3

The asymptotic state corresponds to a slowly decaying, self-similar, fat vortex ring

governed by the Stokes equations. Stanaway et al. (1988) used Stokes dipoles as the

initial condition in their numerical simulations and verified the asymptotic drift velocity

given by Cantwell and Rott (1988) obtaining an excellent match for the value of the

proportionality constant k.

Weigand and Gharib (1997) generated vortex rings in a water tank using a piston-

cylinder mechanism at different Reynolds numbers and tracked their propagation ve-

locities from their formation up to large times. The measured propagation velocities

were in good agreement with the data from the numerical simulations of Stanaway et al.

(1988). They also showed that at large times, the propagation velocity approached the

exact asymptotic solution for the drift velocity given by Cantwell and Rott (1988).
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2.3 Vortex ring reconnection with a non-deformable, free-

slip surface

2.3.1 Vortex ring and vortex pair collision

2.3.1.1 Experimental studies

The earliest experimental studies of vortex ring collisions (Kambe and Takao, 1971; Fohl

and Turner, 1975; Oshima and Asaka, 1975, 1977) used flow-visualization techniques with

smoke (in air) and dye (in water) to mark the rings. The Reynolds number for these

experimental studies was defined based on the diameter and the initial velocity of the

vortex rings. Oshima and Asaka (1975) used a water tank apparatus to simultaneously

generate a pair of vortex rings travelling along parallel axes in the same direction at a

Reynolds number of 400. The inner portions of the rings, under mutual induction, were

decelerated and the rings turned towards each other. As the ring cores with oppositely

signed vorticity came into contact the vortex filaments got delinked and cross-linked with

the respective filaments from the other ring. Thus a new deformed ring was formed with

halves of its fluid material from both the original rings. This was visualised by using

differently coloured dyes for the two rings (figure 2.4). The newly connected ends moved

away from each other and the outer portions of the ring began to approach the collision

plane. If the rings were initially imparted an impulse higher than a particular level, the

outer portions also came into contact and the filaments de-linked and cross-linked again

creating two separate rings each consisting of fluid material from both the original rings.

If the initial impulse was lower the deformed ring underwent oscillations similar to an

elliptic vortex ring with the major and minor axes switching with each other in addition

to an out of plane distortion. Kambe and Takao (1971) had also reported this ‘fusion’

and subsequent ‘fission’ phenomenon using smoke vortex rings. They had also observed

a similar dependence of the second reconnection on the initial impulse.

Fohl and Turner (1975) studied the motion of the distorted vortex ring formed from the

merging of two colliding vortex rings as the n = 2 mode of free vibration of a circular

ring. They proposed that the condition for the merged ring to further split up was

that the component of the velocity of the approaching vortex rings towards the collision

plane had to be comparable to the maximum transverse velocity of the oscillations

of the filaments of the distorted vortex ring. This gave a condition of the half-angle

between the initial trajectories of the rings to be roughly 16◦ above which successive

reconnections occurred in almost all the cases. This was supported by experiments of

vortex ring collisions at a Reynolds number of 4000 studying the percentage of collisions

leading to two successive reconnections at varying angles of approach. Oshima and Asaka

(1977) however, demonstrated that even parallel vortex rings undergo reconnection and

suggested that the low percentage in the case of Fohl and Turner might be due to low
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Figure 2.4: Series of photographs from Oshima and Asaka (1975) of the first
(top) and second (bottom) reconnection events during a collision of two vortex
rings visualised using different dyes

reproducibility and inaccuracy in vortex formation at high Reynolds numbers due to the

high initial speeds involved. In their experiments, they varied the Reynolds number by

modifying the initial speed. They found that for Re < 230 there was no reconnection,

for 230 < Re < 300 a single reconnection event occurred, for 300 < Re < 420 two

reconnection events occurred and for 420 < Re < 650 the two rings formed by the

previous reconnections once again underwent a third reconnection to yield a deformed

ring which oscillated and diffused away. Greater initial velocities resulted in an initially

turbulent ring which diffused away before any reconnection.

Oshima and Asaka also studied the variation of the time up to the first reconnection

which showed an exponential variation with Reynolds number. Kida et al. (1989) pointed

out that the change in topology of a passive scalar used to mark the flow such as

smoke or dye would not necessarily track the changes in the vorticity field. While

vorticity magnitude intensifies when vortex lines undergo stretching, scalar markers

would decrease in density.

Experimental studies involving quantitative measurements of the flow-field were car-

ried out by Oshima and Izutsu (1988) and Izutsu and Oshima (1991) using hot-wire

anemometry and Schatzle (1987) using Laser Doppler velocimetry. Schatzle plotted (see

figure 2.5 for their initial configuration) contour maps of, apart from vorticity, velocity

gradients on the symmetry plane as the vortex rings interacted. The vortex cores upon

collision were observed to be stretched and flattened into a shape with an elongated

tail referred to as a ‘head-tail’ structure (figure 2.6). During this process, the out-of-

plane strain ∂v/∂y (where the symmetry plane is defined by y = 0) was observed to be
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Figure 2.5: Schematic from Schatzle (1987) showing the flow configuration

significantly large in the region. The in-plane strain ∂u/∂x was negative implying the

compression of the fluid between the two cores.

Schatzle observed that the reconnection process occurred over a timescale much smaller

than would be predicted by a purely viscous cancellation process. He proposed the

following sequence of events emphasizing the role played by the out-of-plane strain which

was observed to increase simultaneous with the reconnection process. Initially as the two

rings approach each other along their axes, the in-plane strains (∂u/∂x and ∂w/∂z) are

oppositely signed with the fluid being compressed laterally between the two cores (in the

x-direction) and stretched along the z-axis direction. As the oppositely signed vortex

filaments from the two rings come into contact, cancel out each other and reconnect,

they induce a flow opposite to that due to the unconnected filaments in the z-direction.

Now both the in-plane velocity gradients are negative contributing to the growth of the

out-of-plane strain (∂v/∂y) which stretches the vortex filaments and thereby increases

the vorticity gradient across the vortex cores which aids the cancellation of vorticity by

viscosity.

Based on the importance of viscosity and the strain rate, Schatzle considered two ex-

pressions for the reconnection time: TR ∼ d/(αν) and TR ∼ d2/(Γν)1/2 where d is the

diameter of the vortex cores and α is an average measure of the out-of-plane strain

rate during the connection process. Also based on a one-dimensional model he derived

another expression for the reconnection time: TR ∼ (1/2ε) log(d2ε′/ν) where ε′ is the

in-plane strain. His measurements were insufficient to decide between the timescales.

Oshima and Izutsu (1988) plotted the vorticity isosurfaces and the variation of circula-

tion on both the symmetry and collision planes and showed the simultaneous depletion

of vorticity on the symmetry plane and appearance of new cross-links on the collision
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Figure 2.6: Head-Tail structure from Kida et al. (1991) vorticity contours on
the symmetry plane. Solid and broken lines represent vorticity of opposite signs

plane. They identified that the disconnection and reconnection did not occur at one

location or instantaneously but rather gradually with the vortex cores depleting over a

finite time. The new cross-links coalesced to form two ‘bridges’ which then moved apart

owing to their strong curvature.

2.3.1.2 Numerical simulations

Melander and Hussain (1989) performed a direct numerical simulation of reconnection

of an anti-parallel vortex pair at a Reynolds number (Γ0/ν) of 1000 using a pseudo-

spectral method. The vortex pair were initialised with a sinusoidal perturbation which

grew and brought the vortices into contact initiating the vortex reconnection process.

They proposed a bridging mechanism for the reconnection process (described below).

Kida et al. (1991) performed a numerical simulation of the collision of two vortex rings

at an oblique angle using a spectral method on a grid with 643 points. The rings were

initialised with a Gaussian distribution of vorticity in the cores and aligned along axes

subtending an angle 2θ between them. Simulations were performed for varying values

of Re and θ. Plotting the vorticity contours on the symmetry and collision planes, they

outlined the deformation of the vortex cores upon collision into dipole-like structures

with a head containing the vorticity peak and an elongated tail (figure 2.6).

The interaction process was described in terms of the ‘bridging’ mechanism proposed by

Melander and Hussain (1989) involving three phases:

1. An inviscid advection phase wherein, due to the induced velocity field of the vortex

rings, the rings tilt towards each other and come into contact stretching and flat-

tening their respective cores into a head-tail structure (figure 2.6) which advects

towards the direction of the head.

2. A bridging phase involving the mutual cancellation of oppositely signed vortex fil-

aments through viscous diffusion and simultaneous reconnection along the normal
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Figure 2.7: Vorticity iso-surface from Kida et al. (1991) illustrating the bridges
and threads formed during vortex reconnection

Figure 2.8: History of circulation of interacting vortex core during the different
phases of reconnection from Melander and Hussain (1989).

to the collision plane at the site of two ‘bridges’ (figure 2.7). The circulation is

transferred from the initial direction to the orthogonal direction (figure 2.8).

3. A threading phase involving the movement of the unconnected vortex filaments,

termed ‘threads’ (figure 2.7) away from each other and the termination of the

reconnection process before completion. The incompleteness of the reconnection

was attributed to the reversal of curvature of the threads due to the induced

velocity of the bridges and the non-interacting parts of the vortex rings. The

self-induced velocity of the threads after the curvature reversal would lead their

separation to increase slowing the rate of reconnection. As a consequence of this

mechanism it was predicted that an entanglement of vortex lines would occur close

to the bridges due to both the reconnected and uncancelled vortex lines rotating

about the vortex core.

The history of the circulation of the interacting vortex core during these three phases is

shown in figure 2.8.
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A second reconnection occurred as observed in experiments with the previously non-

interacting ends of the rings approaching each other. The mechanism was seen to be

similar to the first reconnection. The rate of decline of the circulation of the vortex

core was found to be slower than during the first reconnection. Also the reconnection

process left behind a greater amount of uncancelled vorticity than in the first. These

were attributed to the absence of a background flow pushing the vortex cores together

as was present in the case of the first reconnection as a result of the non-interacting

parts of the vortex rings.

From the kinetic energy, dissipation rate and enstrophy fields the regions where high

energy dissipation prevailed were found to be very localized, occurring predominantly

at the interaction zone, the bridges and the threads. Tracking the time evolution of a

passive scalar, they demonstrated that the iso-surfaces of scalar markers and vorticity

magnitude do not develop in the same way. This had implications for using smoke, dye

visualisation to study quantitative aspects such as the reconnection time.

Chen (1991) performed direct numerical simulations of vortex ring collisions at vary-

ing Reynolds numbers. The vortex rings were initialised by simulating the ejection of

fluid through circular openings (the generation process for vortex rings used in experi-

ments). The core deformation due to the interaction was found to be minimal for the low

Reynolds number simulation. The maximum dissipation rate in the flow field increased

with time when the reconnection began attaining a peak value (figure 2.9) before de-

creasing. The peak value was found to increase with Reynolds number. The dissipation

process was hence identified to be critical to the reconnection process. Chen reasoned

that reconnection would occur even in the limit of ν → 0 since the energy dissipation

rate (2νε where ε is the square of the strain-rate tensor) would remain finite since ε

would tend to infinity.

All the studies in the literature investigating the scaling of reconnection time with Re

pertain to the reconnection of anti-parallel vortex pair.

Shelley et al. (1993) used a pseudo-spectral method on a uniform grid to simulate the

interaction of two perturbed counter-rotating vortex tubes at Reynolds numbers varying

from 500 to 1500. An adaptive spectral method on a stretched grid was used to perform

the simulation at higher Reynolds numbers (1500 to 3500). The vortices collided and

were flattened against each other. The vortex stretching process began as the regions of

high vorticity and strain rate on the symmetry plane became aligned. The cores were

flattened into ribbons along the length of which the viscous dissipation was strong. The

flattening of the vortex core during reconnection increased with Reynolds number. The

vorticity maximum attained during the reconnection increased with Reynolds number

and at Re = 3500, the vorticity was found to stretch to nearly seven times its initial value

(figure 2.10). The reconnection time, defined as the time to halve the circulation on the
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Figure 2.9: Maximum energy dissipation rate vs. Time at Reynolds numbers of
a) 1000 b) 600 from Chen (1991)

Figure 2.10: Vorticity maximum on the symmetry plane for Re = 1000, 1500,
2000, 2500, 3000 and 3500 from Shelley et al. (1993)

symmetry plane, was found to vary with Reynolds number slower than a logarithmic

variation.

Garten et al. (2001) performed a direct numerical simulation of a vortex pair undergoing

the Crow instability and subsequent vortex reconnection in stratified and unstratified

fluid at varying Reynolds numbers. The reconnection time, defined as the inverse of

the rate of decay of the circulation of the interacting vortex core when the circulation

decreases to half its initial value, decreased with increasing Reynolds number as 1/Re.

Melander and Hussain (1989) had attributed the incompleteness of the reconnection to

the curvature reversal of the threads due to the induced velocity of the bridges and

the consequent self-induced velocity away from the collision plane. Garten et al. (2001)
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Figure 2.11: Vorticity magnitude isosurfaces showing typical reconnection of
an anti-parallel vortex pair at Re = 2000 from Hussain and Duraisamy (2011).

found that the curvature reduced without undergoing a complete reversal. Apart from

the curvature reduction they showed that viscous diffusion also played an important

part in increasing the thread separation during the late stages of reconnection.

Hussain and Duraisamy (2011) performed direct numerical simulation of the reconnec-

tion of an anti-parallel pair using a pseudospectral method for Reynolds numbers ranging

from 250 to 9000.

They reported that the maximum rate of change of circulation scaled as Ren with

n = 1.0. At high Reynolds numbers they found that the vortex core was flattened into

a vortex sheet. The ‘head’ of the vortex sheet split away from the remaining part. This

was attributed to a Kelvin-Helmholtz instability. The reconnection at high Reynolds

numbers was also accompanied by the appearance of anti-symmetric features and found

to lead to a rapid development of small scale structures (figure 2.12).

Rees et al. (2012) performed a simulation of a reconnecting vortex pair at a Reynolds

number of 10000. The energy spectrum during the reconnection of two vortex tubes

without axial flow was shown to follow a slope of -5/3. A subsequent second reconnection

due to the reconnection of the oscillating elliptic vortex ring formed at the end of the

first reconnection had an energy spectrum with a -7/3 slope. As in the case of Hussain
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Figure 2.12: Vorticity magnitude isosurfaces showing development of small-
scale features during reconnection of an anti-parallel vortex pair at Re = 7500
from Hussain and Duraisamy (2011).

and Duraisamy (2011), they also found a rapid generation of small-scale structure along

with the reconnection at high Re (figure 2.13).

2.3.1.3 Analytical models for vortex pair reconnection

Shelley et al. (1993) discussed some analytical models proposed for vortex pair recon-

nection and performed a numerical simulation of the reconnection of two anti-parallel

vortex tubes to assess these models. Pumir and Siggia (1987) modelled the vortex re-

connection phenomenon in inviscid Euler flow using vortex filaments to represent the

vorticity field. The core of the vortex filaments was constrained to be circular through-

out the interaction. Also the model did not take into account the effect of axial flows

along the vortex tube. Shelley et al. (1993) showed that the Siggia-Pumir model, if

viscous effects are included leads to a variation of reconnection time (defined as the time

taken for the circulation on the symmetry plane to be halved) with Reynolds number

as TR = t∗ +O(1/Re) where t∗ is the singularity time in the inviscid case.

Kambe (1983) had modelled the reconnection of two vortex layers under the influence

of an in-plane two-dimensional strain and obtained the reconnection time to be TR ∼
log(Re/2α) where α is the strain rate in the limit of large Reynolds numbers. Buntine

and Pullin (1989) modified Kambes model by specifying an out-of-plane strain. However

the strain rate was not affected by the evolution of the vorticity field and the same

timescale for the reconnection time as Kambe was obtained.

Saffman (1990) proposed an analytical model consisting of a set of equations describing

the time evolution of the circulation, core deformation, distance between the interacting

cores and the velocity component normal to the symmetry plane (involving the out-of-

plane pressure gradient). Based on the model, Saffman presented a couple of timescales
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Figure 2.13: Vorticity isosurfaces (at two levels) from Rees et al. (2012) showing
generation of small scale structures during vortex reconnection at Re=10000.

for the duration of the reconnection process. Shelley et al. computed the numerical

solution of Saffmans model and showed that it predicts an increase of the reconnection

time with the Reynolds number according to tR ∼ log(Re/2α).

2.3.2 Vortex ring reconnection with a deformable free surface

A free surface boundary is characterised by zero tangential stress and constant pressure

along the surface. An interface where the density and viscosity of one of the fluids is

negligible compared to that of the other fluid (as in the case of a water-air interface) can

hence be approximated as a free surface. A deformable free surface introduces additional

dynamics. Unlike a flat surface, surface parallel vorticity can exist over a deformable

surface.

Experimental studies of vortex ring reconnection with a free surface have been performed

by Bernal and Kwon (1989), Weigand and Gharib (1995) and Gharib and Weigand

(1996). As the vortex ring approaches a free surface surface, it induces a changing

velocity field at the surface. The surface gains elevation appropriate to the velocity and
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Figure 2.14: Vortex ring reconnection with a linearised free surface from Zhang
et al. (1999).

acceleration (at each point on the surface). The curvature and the tangential variation of

the surface normal velocity lead to regions of positive and negative vorticity (same as the

upper tip of the vortex ring). The negative vorticity rolls up to form a secondary vortex.

The secondary vortex interacts with the primary vortex and influences the reconnection

process.

Zhang et al. (1999) performed a direct numerical simulation of an oblique vortex ring

interacting with a deformable surface. They used linearised free-surface boundary con-

ditions assuming small free-surface elevation. The different stages of the reconnection

of the vortex ring with the linearised free surface are shown in figure 2.14.

To explain the mechanism of vortex connection they presented a model of two layers

below the surface: An inner viscous layer immediately below the surface and an outer

blockage layer. The blockage layer facilitates the variation of the flow velocities to satisfy
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the kinematic boundary condition at the free surface. Its thickness is dependent on the

flow length scale. The viscous layer facilitates the dynamics stress boundary conditions

at the surface by the viscous effects. Hence, its thickness is dependent on the Reynolds

number.

During the surface connection period it was found that the blockage layer involved

mainly vortex stretching and tilting wherein the surface parallel vorticity was converted

into surface normal vorticity. This reached a maximum at the inner edge of blockage layer

and diminished within the viscous layer. Within the viscous layer, vorticity diffusion

caused flux of the surface parallel vorticity to the surface and transport of surface normal

vorticity towards the surface.

2.4 Vortex rings with swirl

Vortex rings with swirl or angular momentum have not been investigated as extensively

as classical vortex rings. The earliest literature on vortex rings with swirl is concerned

with the existence of axisymmetric, steady solutions to the Euler equations.

The Euler equations for axisymmetric, inviscid, incompressible flow with non-zero az-

imuthal velocity can be expressed in terms of the Stokes streamfunction (Batchelor,

1967) as

ruθ = f(ψ) (2.5)

ωθ
r

= −h′(ψ) +
f(ψ)f ′(ψ)

r2
(2.6)

where h(ψ) =
p

ρ
+

1

2
(u2
r + u2

θ + u2
z).

f and h are arbitrary functions of the streamfunction. In vortex rings without swirl a

streamline is confined to a radial plane. In the presence of swirl, the streamlines are

helical.

Turkington (1986) showed the existence of steady solutions using a variational method.

The solution is a two-parameter family of vortex rings. One parameter specifies the

swirl with the extreme cases of a vortex ring without swirl and a Beltrami vortex ring in

which the vorticity field is parallel to the velocity field everywhere in the flow. The other

parameter specifies the size of the cross-section of the vortex ring with the extreme cases

of a thin cored vortex ring and a spherical vortex ring. Moffatt (1988) used an analogy

between the Euler equations and the equations governing magnetostatic equilibrium in a
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Figure 2.15: Vortex line geometry of a polarized vortex ring from Virk et al.
(1994).

viscous perfectly conducting fluid and obtained the exact solutions of the Euler equations

using a method of magnetic relaxation.

Eydeland and Turkington (1988) presented an iterative, numerical method to obtain

the exact solutions found by Turkington (1986). Lifschitz et al. (1996) eliminated the

requirement for a large computational domain in this method by using non-reflective

boundary conditions ensuring smooth variation of the computed streamfunction at the

boundary. They performed a short-wavelength analysis and predicted the growth rates

of localised instabilities. They also used a three-dimensional vortex particle method

to perform Euler simulations with perturbed vortex rings and compared the observed

growth rates with the predictions.

Virk et al. (1994) performed axisymmetric Navier-Stokes simulations of initially po-

larized isolated viscous vortex rings containing swirl using helical wave decomposition

(HWD). They described the coupling of the swirl and meridional flow and showed that

it lead to destruction of azimuthal vorticity in the front of the ring (as defined by the

propagation direction) and generation in the rear. They found that the polarized vortex

ring developed an axial vortex on the axis of symmetry. Figure 2.15 shows the vor-

tex line geometry after the development of the axial vortex. They also found that the

propagation velocity of the vortex ring decreased with increasing polarization.

Hu et al. (2001) performed Navier-Stokes simulations of vortex rings with swirl using

exact solutions of the steady Euler equations obtained using the method of Lifschitz

et al. (1996) as the initial condition. They introduced azimuthal perturbations and

studied their growth. The azimuthal perturbation modes initially grew linearly and two

bands of growing waves were observed.
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Cheng et al. (2010) used a Lattice Boltzmann method to study vortex rings with swirl in

viscous fluid. They initialised the vortex rings with a Gaussian distribution of azimuthal

vorticity and an additional swirl velocity profile. Due to swirl, the vortex ring developed

a region of negative azimuthal vorticity. At high swirl, the negative azimuthal vorticity

rolled up to form a secondary vortex ring. The secondary vortex ring interacted with

the primary ring leading to intertwining vortex filaments (figure 2.16).
Time−→

Swirl−→

Figure 2.16: Evolution of vortex rings with swirl visualised using isosurfaces of
vorticity from Cheng et al. (2010). Each row represents the evolution of a single
vortex ring. The amount of initial swirl in the ring increases from the top row
to the bottom.





Chapter 3

Numerical method

The direct numerical simulation (DNS) studies performed in this work utilised the par-

allelised finite-difference numerical solver CGLES. The code has been written in C/C++

and uses Message Passing Interface (MPI) libraries to implement the parallelisation. It

was initially used in large-eddy simulations (LES) and DNS of flow over complex ge-

ometries (Thomas and Williams (1997),Yao et al. (2001)). CGLES was recently used

in DNS studies of vortex rings in unbounded fluid (Archer et al., 2008) and vortex ring

collision with a free-slip, non-deformable surface (Archer et al., 2010).

The incompressible mass conservation equation and the incompressible, viscous Navier-

Stokes momentum equations are solved in a Cartesian coordinate system.

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.2)

ρ and ν are the density and the kinematic viscosity of the fluid respectively. p is the

kinematic pressure and ui = (u, v, w) is the fluid velocity at point xi = (x, y, z) at time

t.

The code uses a staggered grid to implement a second-order central difference scheme

for spatial discretisation conserving momentum and energy. The computational domain

with Nx × Ny × Nz uniformly spaced grid points is partitioned into Nb blocks with

nx × ny × nz points in each block. The Nb blocks are mapped to Np ≤ Nb processors.

In addition to the points within its boundary, each block maintains an overlap region

consisting of a layer of grid points extending beyond the block boundary. The message

passing interface is used to transmit information about changes in the flow data within

each block to the overlap regions of the neighbouring blocks.

25
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The computation is initiated with an initial velocity field and the boundary conditions.

The projection method and a second order, explicit Adams-Bashforth scheme is used

for the time advancement. Using the velocity and pressure field data from the (n− 1)th

and nth timesteps, the velocity field at the (n+ 1)th timestep is given by

un+1
i = uni +

3∆t

2

(
Hn
i −

∂pn

∂xi

)
− ∆t

2

(
Hn−1
i − ∂pn−1

∂xi

)
(3.3)

where ∆t is the time step and Hi is defined as

Hi = −uj
∂ui
∂xj

+ ν
∂2ui
∂xj∂xj

. (3.4)

In the projection method, an intermediate velocity u∗i is computed, neglecting the pres-

sure gradient at the nth timestep from (3.3).

u∗i = uni +
3∆t

2
Hn
i −

∆t

2

(
Hn−1
i − ∂pn−1

∂xi

)
(3.5)

=⇒ un+1
i = u∗i −

3∆t

2

∂pn

∂xi
(3.6)

By enforcing continuity (equation 3.1) at the (n+ 1)th timestep, a Poisson equation for

the pressure at the nth timestep is obtained.

∂2pn

∂xi∂xi
=

2

3∆t

∂u∗i
∂xi

(3.7)

Finally after solving for the pressure field at the nth timestep, the velocity field at the

(n+ 1)th timestep is obtained from equation 3.6.

The Poisson equation for the pressure field is solved using a parallel, multigrid method.

Within each block a hierarchy of grids with different mesh sizes is constructed by binary

subdivision. Beginning from the finest grid with (nx, ny, nz) gridpoints, each successive

subdivision results in a coarser grid with half the number of grid points along each

direction. The values of nx, ny and nz are therefore chosen such that the number of

possible subdivisions is maximised. At each level of subdivision, the grids have overlap

regions and the message passing interface is used to transmit information about changes

in the flow data.

The algorithm of the multigrid method consists of the following steps:

1. At the finest grid level, two iterations of the Gauss-Seidel method are performed

and the residual of the Poisson equation is computed (Pre-Smoothing).
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2. The residual is transferred to a coarser grid by a ‘restriction’ operator. The residual

value at a gridpoint on the coarser grid is computed as a linear combination of the

values of the residual at neighbouring gridpoints on the finer grid. Two iterations

of the Gauss-Seidel method are performed at the coarser grid.

3. Step 2 is repeated until the coarsest grid level is reached. At the coarsest grid

level, a Red-Black successive over-relaxation scheme is used to solve the Poisson

equation. Iterations of the scheme are performed until the error norm is reduced

below a defined tolerance level.

4. The corrected pressure field is transferred to the next finer grid level using a

‘prolongation’ operator which interpolates the values from the coarser grid level.

Two iterations of the Gauss-Seidel method are performed at the finer grid (Post-

Smoothing).

5. Step 4 is repeated until the finest grid level (the initial grid) is reached. Two final

Gauss-Seidel iterations are performed at the initial grid level. If the error norm

at the initial grid level is higher than a defined tolerance level, the entire cycle is

repeated.

With a sufficiently high level of subdivision, the computational time spent at the coarsest

grid level (step 3) is negligible compared to the time spent in performing the other steps.

The simulations in this report have been performed at Reynolds numbers of up to ∼ 104

using up to ∼ 1.0 × 109 cells. The numerical code is highly parallelised and large-scale

computations have been performed using up to 4096 processors. The simulations were

run on the University of Southampton Iridis 3 cluster and HECToR, the UK’s high-end

computing resource.





Chapter 4

Classical vortex rings in

unbounded flow

The velocity of a vortex ring given by (2.2)

U =
Γ

4πR

[
log

(
8R

δ

)
+ C

]
,

provides a sensitive measure of the vortex core structure since the translation parameter

C is purely a function of the shape of the core vorticity profile. Archer et al. (2008)

used this property to show that Gaussian initialised vortex rings with different initial

slenderness ratios and at different Reynolds numbers, after undergoing an initial adjust-

ment, relaxed into a common equilibrium state. Using plots of the translation parameter

against the slenderness ratio, they showed that this equilibrium state constitutes a single

parameter family wherein the shape of the core vorticity profile is uniquely determined

by the slenderness ratio.

In this chapter, a DNS study of classical vortex rings with a wide range of initial core

azimuthal vorticity profiles is presented. They are shown to readjust to the common

equilibrium state identified by Archer et al. (2008). The structure of the equilibrium

state vortex rings is described. The issue of whether the common equilibrium state

continues up to large times is also studied.

The numerical approach used for the simulations discussed in this chapter is outlined in

section 4.1. The method used to track the structure of the vortex ring core is described

in section 4.2. An assessment of the numerical approach is provided in section 4.3. The

study of vortex rings with various initial core vorticity profiles is presented in section

4.4. The structure of the equilibrium state vortex rings is described in section 4.5. The

behaviour of the vortex rings at large times is investigated in section 4.6. Finally, the

conclusions of the study are summarised in section 4.7.

29
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Figure 4.1: Schematic of a section of the computational domain (y = 0) for
the study of the classical vortex rings. The shaded region corresponds to the
logging domain.

4.1 Numerical approach

The simulations were carried out in a cubic domain with dimensions Lx×Ly×Lz along

the Cartesian coordinate directions x, y, and z respectively. The initial setup consisted

of a vortex ring of radius R0 and circulation Γ0 with its centre located at (0, 0, 0) and

its axis aligned with the z-axis (Figure 4.1).

Periodic boundary conditions were used along the x and y directions. This effectively

simulates a periodic square array of vortex rings. Therefore the domain size needs to be

large enough that the effect of the array on the evolution of a single ring is negligible.

4.1.1 Comoving reference frame

During the propagation of a vortex ring in viscous flow, a narrow trailing wake is formed.

If the simulation of vortex ring dynamics is performed in a triply periodic domain,

the vortex ring would encounter and interact with its own wake. To avoid this, the

computation was performed with respect to a reference frame which moved in the z
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direction along with the vortex ring. Inflow and outflow boundary conditions were used

at the z = Lz/2 and z = −Lz/2 boundaries.

An integral-proportional controller was used to determine the velocity of the reference

frame at each timestep (Wref (t)) required to maintain the vortex ring close to the centre

of the reference frame. The location of the vortex ring along the z-axis with respect to

the origin of the comoving reference frame was calculated as

Z(t) =
1

2Ω

∫
V

zω2dV (4.1)

where Ω = 1
2

∫
V

ω2dV is the total enstrophy. The integral-proportional controller was

used to maintain Z(t) close to the target location Zc = 0, ensuring that the vortex

ring remained close to the center of the comoving reference frame. The time-dependent

velocity of the co-moving frame is given by

Wref (t) = 2c1(Z(t)− Zc) + c2
2

t∫
0

(Z(t′)− Zc)dt′, (4.2)

where c1 and c2 are damping and oscillation timescales. The values adopted for the

damping and oscillation timescales in the integral-proportional controller are

c1 = 2Γ0/R
2
0 and c2 = 4Γ0/R

2
0 as used in Archer et al. (2008).

Since the calculations were performed with respect to the reference frame, the inflow

boundary condition at the inlet boundary was given by w(x, y, Lz/2) = −Wref (t) (as-

suming Lz is large enough that the velocity induced by the vortex ring at the inlet

boundary is negligible). Irrotationality of the inlet flow was enforced by applying the

boundary conditions ∂u/∂z = ∂v/∂z = 0 at the inlet z = Lz/2. At the outlet boundary

z = −Lz/2, linear gradient conditions, ∂u/∂z = ∂v/∂z = ∂w/∂z = 0 were imposed.

The numerical approach described above is the same as that used by Archer (2008).

4.1.2 Vortex ring initialisation

For a chosen initial core azimuthal vorticity profile the axisymmetric vorticity field was

used to obtain the initial velocity field using the vector stream function method outlined

below.

For a given initial vorticity field ωi, the velocity stream function Ψ is obtained by solving

∇2~Ψ = −~ωi (4.3)
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and the velocity field is given by

~u = ∇× ~Ψ. (4.4)

If the initial vorticity field is not exactly divergence-free, then it differs from the final

divergence-free vorticity field ~ωf = ∇× ~u. The initialisation method effectively applies

a correction that renders the vorticity field divergence-free.

4.1.3 Simulation details

For all the simulations in this chapter, a domain size of Lx = Ly = Lz = 8R0 was

used with Nx = 512, Ny = 512, Nz = 512 uniformly spaced grid points along the x, y, z

directions respectively. The timestep was chosen such that the maximum value across the

domain of the Courant-Freidrichs-Lewy (CFL) number based on the local velocity and

grid size remained below 0.20 throughout the simulation to ensure numerical stability.

Archer (2008) who had used the same numerical approach, showed that increasing the

domain size beyond 8R0×8R0×8R0 had a negligible effect on the evolution of the char-

acteristics of a vortex ring with an initial radius of R0. The adequacy of the numerical

resolution is demonstrated in section 4.3.

Simulations of vortex rings with a range of different initial azimuthal vorticity profiles

were performed. In addition, the Reynolds number at which the simulations were per-

formed was also varied. Table 4.1 lists the different profiles used and the values of the

parameters used. In addition to the analytically defined profiles, a solution to the steady

state, axisymmetric Euler equations was used as the initial condition for case ES. The

solution satisfies the condition ωθ/r = g(ψ) where ψ is the Stokes streamfunction in a

reference frame in which the vortex ring is steady. The solution was computed using the

numerical Euler solver described in appendix A. The swirl free vortex rings computed

using this method are solutions for the functional form ωθ/r = βψζ+/2.

4.2 Tracking vortex core structure

The shape of the core vorticity profile was tracked using the instantaneous values of the

translation parameter C given by

C =
4πRU

Γ
− log

(
8R

δ

)
. (4.5)

The velocity of the vortex ring in the simulation with respect to a stationary reference

frame is Wref(t) + dZ/dt where Wref(t) is the velocity of the comoving reference frame.
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Archer (2008) determined that the axial velocity induced by the infinite periodic square

array of vortex rings with Lx = Ly = λ is given by

w̃ ≈ −9.032
ΓR2

4λ3
. (4.6)

Therefore the velocity of the vortex ring in unbounded fluid, U , is given by

U = Wref (t) + dZ/dt− w̃ . (4.7)

The parameters of the vortex ring in (4.5) were defined as integral quantities on a radial

plane as in Archer et al. (2008). The circulation is defined as

Γ =

∫∫
ωθdrdz . (4.8)

The first and second radial moments of the azimuthal vorticity,

R1 =
1

Γ

∫∫
rωθdrdz

R2
2 =

1

Γ

∫∫
r2ωθdrdz ,

are used to define the ring radius R and core radius δ with

R = R1 (4.9)

δ =
√

2(R2
2 −R2) . (4.10)

If the integration is performed over the entire computational domain, the presence of

a trailing wake affects the tracking of the vortex ring characteristics. Therefore the

integration is only performed over a logging domain attached to the comoving frame

defined by −2R0 < z < 2R0 (Shaded region in figure 4.1).

4.3 Assessment of numerical approach

The accuracy of the results obtained using the numerical approach is demonstrated in

this section.
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Case Core profile ωθ(r, z) Parameters

G1 Gaussian
Γ0

πδ2
0

exp

(
−ρ

2

δ2
0

)
δ0/R0 = 0.14,
Γ0/ν = 3000

G2 Gaussian
δ0/R0 = 0.20,
Γ0/ν = 1500

G3 Gaussian
δ0/R0 = 0.32,
Γ0/ν = 4500

G4 Gaussian
δ0/R0 = 0.40,
Γ0/ν = 1500

E1 Elliptical
Γ0

πabδ2
0

exp

(
−(r −R0)2/a2 + z2/b2

δ2
0

) δ0/R0 = 0.3,
a = 1.0, b = 0.6,
Γ0/ν = 1500

E2 Elliptical
δ0/R0 = 0.3,
a = 0.6, b = 1.0,
Γ0/ν = 1500

Γs
πδ2

0

ρ

δ0
< 0.9

δ0/R0 = 0.3

ST
Smoothed
top-hat

Γs
πδ2

0

(
1− cos(10π(1− ρ/δ0))

2

)
0.9 <

ρ

δ0
< 1 Γs/Γ0 = 1.108

0 1 <
ρ

δ0
Γ0/ν = 1500

SE
Steady
Euler
solution

βr

2
ψζ+

ψ+ =max(ψ, 0)

β = 350,
ζ = 1.5,
Γ0/ν = 1500

Table 4.1: Initial core azimuthal vorticity profiles. The radial distance from the
circumferential core axis is ρ =

√
(r −R0)2 + z2.
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4.3.1 Grid resolution test

The adequacy of the spatial resolution was checked by tracking the volume integrated

kinetic energy per unit mass with respect to the co-moving reference frame (K) given

by

K =
1

2

∫∫∫
V

(u2 + v2 + w2 −W 2
ref )dV . (4.11)

The integration was performed over the entire computational domain. In the absence

of spatial discretisation error, the rate of change of K would be exactly balanced by the

volume integrated rate of kinetic energy dissipation (εK) after accounting for the volume

integrated kinetic energy flux out of the domain (FK). The energy balance is given by

− dK

dt
= εK + FK (4.12)

The difference between the left and right hand sides of this equation is a measure of the

spatial discretisation error in computing the flow.

Figure 4.2 shows the histories of the left and right hand sides of the energy balance

equation for the simulation of case G3 which was performed at Re = 4500. The difference

between the two sides of the energy balance equation remains less than 1× 10−5Γ 3
0 /R0

throughout the simulation. This shows that the error due to the spatial discretisation

remains negligibly small throughout the entire simulation.

4.3.2 Comparison with case from Archer et al. (2008)

Case G1 was defined using the same initial parameters as case C1 from Archer et al.

(2008). The values of the integral ring parameters for this case are available at t =

15R2
0/Γ0 from their study. The values of the integral parameters at t = 15R2

0/Γ0 for case

G1 from the present work are listed in table 4.2 and found to match the corresponding

values from Archer et al. (2008) nearly exactly. This further demonstrates the accuracy

of the present simulations.

4.4 Effect of initial vorticity profile

In this section, the evolution of the vortex rings from table 4.1 with a wide range of

initial core vorticity profiles is discussed. The changing structure of the vortex core

was tracked using the method described in section 4.2. The instantaneous values of the
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Figure 4.2: Comparison of histories of Rate of decrease of volume-
integrated kinetic energy (−dK/dt) and - - - - Sum of volume-integrated rate of
dissipation and energy flux (εK+FK) for case G3. The two curves are practically
overlapping.

Case tΓ0/R
2
0 Γ (t)/Γ0 R(t)/R0 δ(t)/R0

G1 from present study 15.0 0.9995 0.996 0.202

C1 from Archer et al. (2008) 15.0 0.999 0.995 0.203

Table 4.2: Comparison of integral ring parameters at t = 15R2
0/Γ0 for the cases

G1 from the present study and C1 from Archer et al. (2008) defined using the
same initial parameters.

translation parameter C were computed from (4.5) and plotted against the corresponding

slenderness ratio ε.

Figure 4.3 shows the variation of C with ε for the Gaussian initialised vortex rings. In all

cases, the vortex rings undergo a rapid readjustment after initialisation, shedding some

amount of circulation into the wake. The plots of C vs. ε are attracted onto and collapse

into a single curve. Table 4.3 shows the approximate time at which the vortex rings join

the single-parameter family (teq) and the values of the integral parameters at that time.

The loss of circulation associated with the readjustment of Gaussian initialised vortex
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Figure 4.3: Translation parameter C plotted against the slenderness ratio ε for
cases G1, G2, G3 and G4 involving Gaussian initialised vortex rings (identified
by the initial slenderness ratios). The dashed line corresponds to equation (4.13)
from Archer et al. (2008).

rings increases with initial core size as noted by Archer et al. (2008). Archer et al. (2008)

used the equation

C = −1.12ε2 − 5.0ε4 − 0.558 (4.13)

to represent the variation of C for the equilibrium vortex rings in their study in which

the slenderness ratio varied up to approximately 0.38. The equation is seen to closely

match the common C vs. ε curve from the present work (within the same range of

slenderness ratios).

Figure 4.4 shows the variation of C with ε for the vortex rings initialised with the

different non-Gaussian profiles, which are also found to readjust to the equilibrium state

identified by Archer et al. (2008). Both the elliptical profiles relax to the equilibrium

state within t ' 26R2
0/Γ0. The smoothed top-hat vortex ring reaches the equilibrium

state after a substantially longer time period of readjustment of approximately 63R2
0/Γ0.

The initial location of the C vs. ε plot for case SE, initialised with an inviscid steady

Euler solution, is found to be close to the curve defined by (4.13). The vortex ring

undergoes readjustment within t ' 24R2
0/Γ0 shedding only 0.2% of its initial circulation.

Figure 4.4 indicates that the core vorticity profile for the inviscid solution generated

using the power law function ωθ/r = 175ψ1.5
+ is close to the vorticity profile of a viscous

equilibrium state vortex ring with the same slenderness ratio.

Vortex rings with a range of initial core vorticity profiles are thus seen to readjust into

a common equilibrium state. The shape of the core vorticity profile of the readjusted

vortex rings is determined by the slenderness ratio alone. Since the slenderness ratio
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Figure 4.4: Translation parameter C plotted against the slenderness ratio ε
for cases E1, E2, ST and SE involving non-Gaussian vortex rings. The black
dashed line corresponds to equation (4.13) from Archer et al. (2008).

Case teqΓ0/R
2
0 Γeq/Γ0 Req/R0 δeq/R0

G1 15.0 0.9995 0.996 0.202

G2 20.0 0.991 0.991 0.302

G3 32.0 0.952 1.016 0.330

G4 40.0 0.887 1.035 0.420

E1 26.0 0.960 1.010 0.329

E2 22.0 0.987 0.989 0.316

ST 63.0 0.971 0.993 0.350

SE 24.0 0.998 0.985 0.298

Table 4.3: Approximate time taken for the different vortex rings to relax to the
equilibrium state and the values of the integral ring parameters at that time.
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changes during the evolution of the vortex ring, the equilibrium state is not strictly

self-similar.

4.5 Structure of the equilibrium vortex rings

An axisymmetric, steady vortex ring (in a co-moving reference frame) in inviscid flow

satisfies the condition that the quantity ωθ/r is a function of the streamfunction alone.

At high Reynolds numbers, the core vorticity profile of an equilibrium vortex ring in

viscous flow should nearly satisfy this condition.

The Stokes streamfunction (ψ) field was obtained for a readjusted equilibrium vortex

ring in a reference frame translating with the ring. Figure 4.5a shows that the contours of

ψ and ωθ/r are nearly overlapping. The scatter plot of ωθ/r vs. ψ for points on a radial

plane is found to collapse onto a single curve (Figure 4.5b). The function g(ψ) = ωθ/r is

well represented by a power-law ψζ+ with ζ = 1.8 except for values of ψ close to 0 where

the viscous diffusion effects are important.

Figure 4.6 shows scatter plots of ωθ/r vs. ψ for equilibrium vortex rings at different

slenderness ratios and the exponents of the power law ζ used to represent them. The

exponent ζ is found to decrease with increasing slenderness ratio of the equilibrium

vortex ring. The extent of the regions where the power law does not hold well (near

ψ = 0) increases with the slenderness ratio.

Archer et al. (2008) described the process of detrainment of vorticity into the wake in

viscous flow. Fluid with vorticity is diffused across the ψ = 0 streamline (the ψ = 0

stream-surface is the entrainment bubble) and a part of it passes into the wake. The

diffusion of vorticity across the ψ = 0 streamline increases with the slenderness ratio.

For the thick-cored vortex ring in figure 4.6 with ε = 0.42, the azimuthal vorticity is

non-zero for −0.2 . ψ < 0. The width of the scatter plots also increases with ε and

for the thick-cored equilibrium vortex ring at ε = 0.42, the scatter plot is considerably

wide. Figure 4.7 shows that the contours of ψ and ωθ/r for this ring do not overlap very

well away from the center of the core.

These results indicate the possibility of a core size limit above which the behaviour of

the equilibrium vortex rings is qualitatively different.

4.6 Vortex ring evolution at large times

In this section the continuation of the common equilibrium state at large times and the

existence of a core size limit is investigated. Simulations were performed using Gaussian
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Figure 4.5: (a) Overlapping contours of ψ (blue) and ωθ/r (red) on a radial
plane (b) Plot of ωθ/r vs. ψ for all points on a radial plane for a readjusted
vortex ring with ε = 0.30. Red dashed line corresponds to kψ1.8

+ .

initialised vortex rings with initial slenderness ratios of ε = 0.2, 0.3, 0.3 and 0.4 at

Reynolds numbers Γ0/ν = 1500, 1150, 1500 and 1850 respectively.

Figure 4.8 shows plots of C vs. ε for the four cases. All the vortex rings underwent a

readjustment to the equilibrium state. As described in section 4.4, the plots of C vs.

ε attract onto a common curve. As the vortex rings propagate their slenderness ratios

increase with time due to core diffusion. The equation 4.13 from Archer et al. (2008)

was used to represent equilibrium vortex rings with ε . 0.38. As ε increases above '0.4,

the common attractor curve shifts slightly away from this equation.

The different equilibrium rings continue to follow a common path up to a turning point

at ε ' 0.47. As indicated by the results in section 4.5, above ε ' 0.47 equilibrium
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Figure 4.6: Plots of ωθ/r vs. ψ for all points on a radial plane for equilibrium
vortex rings with differing slenderness ratios. The values of ζ for the best-fit
power laws for each case are as indicated.
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Figure 4.7: Contours of ψ (blue) and ωθ/r (red) on a radial plane for thick
cored vortex ring with ε = 0.42, ζ = 1.2.
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Figure 4.8: Core profile parameter C plotted against the slenderness ratio ε for
Gaussian initialised vortex rings with initial slenderness ratios of ε = 0.2, 0.3,
0.3 and 0.4 at Reynolds numbers Γ0/ν = 1500, 1150, 1500 and 1850 respectively.
The dotted line corresponds to equation (4.13) from Archer et al. (2008).

vortex rings at different Reynolds numbers do not continue to follow a common path.

For greater values of ε the paths instead, diverge dependent on Reynolds number. In

figure 4.8, the two vortex rings at Re = 1500 are seen to continue to follow a common

path for ε > 0.47.

4.6.1 Comparison with experiment

An analytical solution is known for the asymptotic drift velocity of a vortex ring at large

times (Cantwell and Rott (1988)).

U = k
I

ρ
(νt)−1.5 (4.14)

k = 3.7038× 10−3

The asymptotic state corresponds to a slowly decaying, fat vortex ring governed by the

Stokes equations. In this section, the departure of the equilibrium vortex rings from the

common path is understood in the context of the known behaviour of vortex rings at

large times.

Weigand and Gharib (1997) generated vortex rings in a water tank using a piston-

cylinder mechanism at different Reynolds numbers and tracked their propagation speeds

from their formation up to large times and showed that the propagation velocity ap-

proached the exact asymptotic solution for the drift velocity given by Cantwell and Rott
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(1988). A comparison is performed with one of the vortex rings from their experimental

study.

Weigand and Gharib (1997) used Laser Doppler Anemometry (LDA) and Digital Particle

Image Velocimetry (DPIV) to map the vorticity field at a location where the vortex

rings had completed the formation process and reached a fully developed state. The

case for which the Reynolds number based on the circulation at the mapping location

was 1150 was chosen for the comparison simulation. They fit a Gaussian profile to the

core vorticity profiles of the vortex rings and the slenderness ratio at this location for

the chosen case was 0.338. The present simulation used a readjusted vortex ring with

the same parameters as the chosen case as the initial condition.

A preliminary DNS was performed using a Gaussian initialised vortex ring with a radius

R0, circulation Γ0 and an initial slenderness ratio of 0.2 at a Reynolds number of Γ0/ν =

1150. The vortex ring was allowed to evolve in time until a readjusted vortex ring with

the target slenderness ratio of 0.338 was obtained. This readjusted vortex ring was used

as the initial condition for the main DNS of the comparison case from the experimental

study. A subscript i is used to refer to the parameters defining the vortex ring at this

new initial condition. The kinematic viscosity was reset such that the Reynolds number

based on the circulation of the readjusted vortex ring (Γi/ν) was 1150.

Weigand and Gharib (1997) used Saffman’s (1970) model for the propagation velocity

of the vortex rings

U∗V =
16π

k
(R2

0 + k′t∗)−3/2, (4.15)

where U∗V = 4πURi/Γi, t
∗ = νt/(16R2

i ) .

The best fit for the model was obtained with their data for k = 14.4 and k′ = 7.8. The

value of t∗ in the experiment at the initial condition for this simulation is 1.79 × 10−3.

Figure 4.9a shows the plot from Weigand and Gharib (1997) comparing the best-fit

model of U∗V vs. t∗ with the numerical simulation of Stanaway et al. (1988). At large

times, the model tends to the exact asymptotic solution (t → ∞) for the drift velocity

given by Cantwell and Rott (1988), which is dependent only on the initial impulse of

the vortex ring and the kinematic viscosity of the fluid.

Figure 4.9b shows that the data from the present simulation matches the best-fit model

very well both at moderate values of the slenderness ratio and at large times when the

slenderness ratio is large. Figure 4.10 shows the variation of C vs. ε for this simulation.

The turning point ε ' 0.47 occurs at t∗ ' 1.18× 10−2. From figure 4.9b it is seen that
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this time approximately corresponds to the time period in which the vortex ring velocity

begins to approach the large time asymptotic solution.
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Figure 4.9: (a) Plot of U∗V vs. t∗ from Weigand and Gharib (1997) (b) Com-
parison of plots of U∗V vs. t∗ from the present simulation, - - - - Best
fit model (4.15) from Weigand and Gharib (1997) and - . - . - the asymptotic
solution (4.14) from Cantwell and Rott (1988).

The divergence of the vortex rings from the common path described in section 4.4

can now be explained. As the slenderness ratio of the vortex ring grows with time, a

turning point is reached (ε ' 0.47) at which the growth of the vortex core begins to be

constrained by the entrainment bubble and significant amounts of circulation are shed
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Figure 4.10: Core profile parameter C plotted against the slenderness ratio ε
for the numerical simulation of the case from Weigand and Gharib (1997). The
dotted line corresponds to equation (4.13) from Archer et al. (2008).

into the wake. The vortex ring slows down rapidly and the viscous terms in the Navier-

Stokes equations become dominant. The shape of the core vorticity profile begins to be

influenced by the viscosity and the paths of the vortex rings on the C vs. ε plot begin

to diverge into separate paths based on the viscosity. At large times, the velocity of

the vortex ring can be expected to asymptotically decay as (νt)−3/2 according to the

solution given by Cantwell and Rott (1988) (see figure 4.9b).

4.7 Conclusions

Vortex rings with different initial core vorticity profiles undergo a readjustment, shedding

circulation and relaxing to a common equilibrium state. This equilibrium state is a single

parameter family in which the shape of the core vorticity profile is uniquely determined

by the slenderness ratio of the vortex ring. The structure of the equilibrium vortex rings

was found to be close to a solution of the inviscid, steady, Euler equations with the

quantity ωθ/r represented by a power law ψζ+.

A turning point is reached by the equilibrium vortex rings when the slenderness ratio

grows to ∼0.47. After the turning point is reached, viscosity begins to determine the

shape of the core vorticity profile. The common path followed by the equilibrium vortex

rings diverges into multiple paths dependent on Reynolds number. The velocity of the

vortex rings after the turning point begins to approach the behaviour of the large time

asymptotic solution given by Cantwell and Rott (1988).





Chapter 5

Vortex reconnection: Preliminary

simulations

The problem of a vortex ring impinging on a non-deformable, free-slip surface at an

oblique angle of incidence is equivalent to an oblique-angle collision of two vortex rings

with the interaction plane coinciding with the surface. To validate the numerical ap-

proach used in this report for studying vortex ring reconnection, a comparison is per-

formed with the numerical simulation of colliding vortex rings performed by Kida et al.

(1991).

Kida et al. (1991) used a spectral method on a grid with 643 collocation points in a cubic

domain. They performed numerical simulations for varying values of Reynolds number

and angle of collision. This study was chosen for the validation of the numerical method

since the quantitative history of the maximum vorticity in the interacting vortex cores

is available. During vortex reconnection, the vortex cores undergo significant stretching.

So the evolution of the maximum vorticity within the cores provides an ideal sensitive

measure for performing a comparison.

In section 5.1, the initial setup used for the simulations discussed in this chapter is

outlined. In section 5.2 the results of the validation study are presented. The conclusions

from the chapter are summarised in section 5.3.

5.1 Simulation setup

The initial setup consists of two vortex rings of radius R0 and circulation Γ0 in a cubic

domain of dimensions L3 with their centres located at

(
d

2
cos(π/4),

d

2
sin(π/4), 0

)
and(

−d
2

cos(π/4),−d
2

sin(π/4), 0

)
with respect to the Cartesian coordinates (x, y, z) where
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d is the initial separation between the ring centres. The axes of the vortex rings are

aligned with the z-axis direction (figure 5.1).

The plane at which the vortex rings collide, x = −y is referred to as the ‘collision plane’

and the plane x = y as the ‘symmetry plane’.

Case I from Kida et al. (1991) was chosen for the validation study. The parameter values

for the selected case are: δ/R0 = 0.399, d/R0 = 1.86, Re = Γ0/ν = 1153. The length

of the sides of the cubic domain is L = 6.40R0. Periodic boundary conditions are used

along all three co-ordinate directions. The core of the vortex ring was initialised with

a Gaussian distribution of vorticity. The initial velocity field was obtained using the

procedure outlined in section 4.1.2.

The plots of the evolution of the maximum vorticity on the symmetry and collision

planes with time were found to be nearly overlapping for flows computed using 3843 and

5123 uniformly spaced grid points. The difference remained less than 3% even at the

peak values of the maximum vorticity proving the adequacy of the numerical resolution

with 3843 grid points. A constant timestep was chosen such that the maximum value

across the domain of the Courant-Freidrichs-Lewy (CFL) number based on the local

velocity and grid size remained below 0.20 throughout the simulation.

5.2 Results

5.2.1 Comparison with Kida et al. (1991)

The evolution of the vortex rings in the present simulation is qualitatively similar to

the results of Kida et al. (1991). The vortex rings initially travelled along the z-axis

due to their self-induced velocity. Due to the mutually induced velocity, the inner

parts of the vortex rings are retarded leading the rings to turn towards each other

resulting in a collision. The initially nearly circular vortex cores are flattened along the

direction normal to the collision plane, stretched along the z-axis direction and deformed

into a head-tail shape. The vortex filaments are stretched in the direction normal to

the symmetry plane leading to a rapid growth of maximum vorticity on the symmetry

plane. The oppositely signed vortex lines from the two rings undergo cancellation due

to viscous decay. Simultaneously the disconnected vortex filaments from the two rings

undergo cross-linking. This is accompanied by creation of vorticity on the collision plane.

This process is described in detail in section 6.3.

For a quantitative comparison, the histories of the maximum vorticity on the symmetry

plane and the collision plane are compared with the results of Kida et al. (1991) in figure

5.2.
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Figure 5.1: a) Schematic of the computational domain b) Section of the com-
putational domain z = 0 for the validation study at initial time.

The maximum vorticity on the symmetry plane initially increases during the initial

readjustment of the vortex ring. Subsequently it decreases due to viscous diffusion

until the rings collide initiating the reconnection process at t ' 30R2
0/Γ0. During the

reconnection the vorticity on the symmetry plane increases sharply due to the stretching

of the vortex filaments and vorticity is created on the collision plane (along the direction

normal to the collision plane) due to the cross-linking between the vortex rings.

There are significant differences between the maximum vorticity histories from the

present simulation and from Kida et al. (1991). The plots of maximum vorticity on

the symmetry plane roughly overlap until t ∼ 40R2
0/Γ0 at which the peak value of ∼ ω0

is reached for the case from Kida et al. (1991). The maximum vorticity continues to rise

and reaches a higher peak value of ∼ 1.3ω0 in the CGLES simulation. The evolution of

maximum vorticity on the collision plane is similar for both cases except for a shift in
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Figure 5.2: Comparison of the histories of maximum vorticity on the symmetry
and collision planes (normal to the planes) normalized by the initial maximum
on the symmetry plane from the present simulation (solid) and from Kida et al.
(1991) (dashed).

time with the creation of vorticity on the collision plane beginning earlier for the case

from Kida et al. (1991).

Due to the differences in the quantitative results in the two cases, an alternate method

was used for the validation study. A simulation of the same problem was performed using

a spectral DNS code and the results were compared with the results of the simulation

performed with the finite difference code CGLES.

5.2.2 Comparison with the spectral DNS code simulation of vortex

ring collision

The spectral DNS code has been previously used in other numerical studies (Redford

et al., 2012). It uses a standard fully spectral Fourier spatial discretisation. The viscous

terms are advanced in time using an analytic integration factor and the non-linear terms

by a low-storage third-order Runge-Kutta method.

The same simulation setup described in section 5.1 was used for the spectral DNS. The

plots of the evolution of the maximum vorticity on the symmetry and collision planes

with time were found to be nearly overlapping for flows computed with the spectral



Chapter 5 Vortex reconnection: Preliminary simulations 51

tΓ0/R
2
0

ω
m
a
x
/
ω

0

Figure 5.3: Histories of maximum vorticity on the symmetry and collision planes
(normal to the planes) normalized by the initial maximum on the symmetry
plane using the finite-difference code CGLES and the spectral DNS code.

code using 2563 and 3843 collocation points with the magnitude difference remaining

less than 3% even at the peak values. The converged results obtained using the grid

with 2563 points were then compared with the results from the simulation performed

with CGLES. The maximum vorticity evolution plots on the symmetry and collision

planes from the two computed flows were found to overlap nearly exactly (figure 5.3).

The strong agreement between the results of the simulations performed with different

numerical codes based on a spectral method and a finite-difference method provides a

strong validation of the numerical approach used for simulating vortex ring reconnection

in this report.

5.2.3 Investigation of discrepancy with Kida et al. (1991)

The discrepancy between the histories of the maximum vorticity from Kida et al. (1991)

and from the simulations performed with CGLES and the alternate spectral DNS code

is investigated further. The fully resolved simulation using the alternate spectral DNS

code used 2563 collocation points. However, the simulation from Kida et al. (1991)

was performed with a spectral method using 643 collocation points. This indicates the

possibility that the simulation from Kida et al. (1991) was under-resolved with respect to

the spatial discretisation. To test this possibility, an under-resolved simulation with 643
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Figure 5.4: Histories of maximum vorticity on the symmetry and collision planes
(normal to the planes) normalized by the initial maximum on the symmetry
plane using the alternate spectral DNS code and from the results of Kida et al.
(1991).

collocation points was also performed for the same problem using the alternate spectral

DNS code.

Figure 5.4 shows that the maximum vorticity evolution plots obtained from the under-

resolved simulation and from Kida et al. (1991) are roughly similar. The peak value

attained by the maximum vorticity on the symmetry plane during the reconnection is

lower for the under-resolved simulation compared to the fully resolved simulation and

approximately same as that for the case from Kida et al. (1991). However a shift in time

between the two plots still remains.

Contour plots of vorticity magnitude on the symmetry plane at various times from Kida

et al. (top) and the under-resolved simulation using the spectral code (bottom) are

presented in figure 5.5. Up to figure 5.5(c) the contour plots from both the results

match closely. After this time the contour plots from the two simulations, although

qualitatively similar begin to differ slightly from each other. In 5.5(e) the contour plot

from Kida et al. (1991) contains some jagged contour lines and spurious vorticity away

from the vortex rings indicating possible aliasing errors.
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Figure 5.5: (a) t = 0.0R2
0/Γ0

Figure 5.5: (b) t = 11.96R2
0/Γ0
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Figure 5.5: (c) t = 35.87R2
0/Γ0

Figure 5.5: (d) t = 41.85R2
0/Γ0
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Figure 5.5: (e) t = 47.83R2
0/Γ0

Figure 5.5: (f) t = 71.74R2
0/Γ0
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Figure 5.5: (g) t = 89.67R2
0/Γ0

Figure 5.5: Contours of vorticity on the symmetry plane from Kida et al. (1991)
(top, solid and dashed lines are used to denote positive and negative vorticity)
and the under-resolved alternate spectral code simulation (bottom, black and
blue lines are used to denote positive and negative vorticity) at different times.
The contour levels used are 5, 10, 20, 40 and 80 % of the maximum vorticity at
the time.

5.3 Conclusions

The numerical study of vortex ring collision and reconnection performed by Kida et al.

(1991) was used for a validation study. Although qualitatively similar, there are quan-

titative differences between the simulation performed using the finite difference code

CGLES and Kida et al. (1991).

A simulation of the same vortex ring collision problem was performed using a spectral

DNS code. The histories of the maximum vorticity on the symmetry and collision planes

were found to be in excellent agreement with the simulation performed using CGLES

proving a strong validation of the numerical approach used for simulating vortex ring

reconnection.

A spatially under-resolved simulation using the same number of collocation points as

in Kida et al. (1991) was performed using the spectral DNS code. The histories of the

maximum vorticity on the symmetry and collision planes were in reasonable agreement

with Kida et al. (1991). The main reason for the discrepancy between Kida et al. (1991)

and the fully resolved simulations using CGLES and the spectral DNS code was therefore

shown to be the under-resolution of the former set of simulations.



Chapter 6

Vortex ring reconnection with

non-deformable surface

DNS of impingement of a vortex ring on a non-deformable, free-slip surface at an oblique

angle of incidence leading to vortex reconnection is presented in this chapter. In section

6.1, the numerical approach used and the initial setup used in this chapter is outlined.

In section 6.2 an assessment of the numerical approach is provided. In section 6.3,

the results of the simulation of a vortex ring reconnection at Re = 2000 capturing the

characteristic features discussed in the literature are presented. The effect of viscosity

on the reconnection process is investigated in section 6.4. The special features of vortex

reconnection occurring at high Reynolds numbers are described in section 6.5. In section

6.6, a simulation of vortex ring interaction with a free-slip surface at Re = 7500 leading

to reconnection and subsequent breakdown of the reconnected vortex ring structure into

a turbulent-like flow is presented. The conclusions from the chapter are summarised in

section 6.7.

6.1 Numerical approach

The simulations were carried out in a cuboidal domain with dimensions Lx × Ly × Lz
along the Cartesian coordinate directions x, y, and z respectively. The initial setup

consisted of a vortex ring of radius R0 and circulation Γ0 with its centre located at

(0, 0,−h) where h is the initial depth of the vortex ring below the surface, z = 0 (Figure

6.1). The axis of the vortex ring was initially directed at an angle γ to the horizontal.

It moves under its self-induced velocity towards the surface and interacts with it at an

oblique angle of incidence. A free-slip boundary condition was imposed on the z = 0

and z = −Lz surfaces. A periodic boundary condition was used in the y-axis direction.

57
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Using a periodic boundary condition in the x direction would lead the vortex ring to

encounter its own wake. To avoid this the numerical approach used in the study of

classical vortex rings in unbounded flow (section 4.1), of performing the computations

with respect to a comoving reference frame, is used here as well. In the present case

however, the reference frame moves only along the x direction along with the vortex

ring.

The location of the vortex ring along the x-axis with respect to the comoving reference

frame was calculated as

X(t) =
1

2Ω

∫
V

xω2dV (6.1)

where Ω is the total enstrophy. The integral-proportional controller described in section

4.1.1 was used to compute the time-dependent velocity of the comoving reference frame

required to maintain X(t) close to the target location Xc = 0, ensuring that the vortex

ring remained close to the center of the reference frame. The velocity of the reference

frame was used to set uniform inflow boundary condition at the x = Lx/2 boundary.

Irrotationality of the inlet flow was enforced by applying the boundary conditions ∂v/∂x

= ∂w/∂x = 0 at the inlet x = Lx/2. At the outlet boundary x = −Lx/2, linear gradient

conditions, ∂u/∂x = ∂v/∂x = ∂w/∂x = 0 were imposed.

The core of the vortex ring was initialised with a Gaussian distribution of vorticity and

the initial velocity field was obtained using the vector stream function method outlined

in section 4.1.2.

6.1.1 Simulation parameters

Three sets of numerical simulations of the reconnection of vortex rings with a free-slip

surface were performed using the initial setup outlined in section 6.1.

In set I, the reconnection of a thin cored, Gaussian initialised vortex ring with an initial

slenderness ratio δ0/R0 = 0.2, an initial inclination γ = 5◦ and located at an initial

depth of h = 2.0R0 was considered. A thin cored vortex ring propagating at a shallow

angle of inclination towards the surface was chosen so that the initial readjustment of

the ring is complete before the interaction with the surface begins. The simulations were

performed at varying Reynolds numbers 500, 1000, 2000, 3000, 4000, 5000, 6000, 8000

and 10000 in order to study the effect of viscosity on reconnection. The domain side

lengths were Lx = 8R0, Ly = 8R0 and Lz = 4R0. The numerical resolution of the grids

in which the simulations at each Reynolds number were performed are listed in table

6.1. At Re = 3000 and 6000, the simulations were performed on two different grids.
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Figure 6.1: Schematic of the computational domain with the initial setup for
the simulation of vortex ring reconnection with the surface (z = 0).

In set II, simulations of three Gaussian initialised rings initially located at an initial

depth of h/R0 = 2.0 with an initial inclination γ = 5◦ with different initial slenderness

ratios δ/R0 =0.2, 0.3 and 0.4 were performed at Re = 3000. The results from this set

were used to obtain the dependence of the rate of the circulation transfer process that

occurs during the reconnection (described in section 6.3) on the core size of the vortex

ring at a constant Reynolds number. This defined the scaling for the reconnection time.

In set III, the simulation of a Gaussian initialised vortex ring with an initial slenderness

ratio δ0/R0 = 0.3, located at an initial depth h/R0 = 3.0 and initial inclination of

γ = 7◦ was performed at Re = 7500. The purpose of this simulation was to study the

long time evolution of the flow after the completion of the initial reconnection of the

vortex ring with the surface. The bridges of surface-normal vorticity formed during the

first reconnection (described in section 6.3) propagate away from the symmetry plane.

So in order to allow the flow evolution for a long time after the first reconnection, the

width of the computational domain along the y−axis direction needs to be large enough

that the vortex ring is sufficiently far away from the periodic boundaries throughout the

simulation. Therefore a domain size of 12R0× 12R0× 6R0 (along x, y, z directions) was

used for this simulation with 1152× 1152× 576 grid points.

For all the simulations discussed in this chapter, the timestep was chosen, such that the

maximum value of the Courant-Freidrichs-Lewy (CFL) number across the grid remained

below 0.20 throughout.
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Number of cells

Re Grid 1 Grid 2

500 768× 768× 384 −

1000 768× 768× 384 −

2000 768× 768× 384 −

3000 768× 768× 384 1024× 1024× 512

4000 1024× 1024× 512 −

5000 1024× 1024× 512 −

6000 1024× 1024× 512 1280× 1280× 640

8000 1280× 1280× 640 −

10000 1280× 1280× 640 −

Table 6.1: Grid resolutions used for the simulations at different Reynolds num-
bers from set I.

6.2 Assessment of numerical approach

6.2.1 Domain size

To study the influence of the periodic side boundaries at y = ±Ly/2 and the free slip

boundary at z = −Lz, additional simulations for the case from set I at Re = 3000 were

performed in two different domains with dimensions 8R0 × 12R0 × 4R0 (wider along y

direction) and 8R0 × 8R0 × 6R0 (deeper).

For the wider domain, the trajectory of the vortex ring (measured by the enstrophy

averaged location of the vortex ring on the z-axis) and the history of the circulation of

the interacting vortex core were nearly identical to the standard domain. However the

vortex ring in the deeper domain simulation had a slightly different trajectory reaching

the surface earlier (figure 6.2a). This is due to the fact that the surface at z = −4R0
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Domain depth (Lz) t1Γ0/R
2
0 Γr/Γ0 δr/R0 AmaxR

2
0/Γ

2
0 T ∗R

4R0 23.08 0.993 0.268 0.240 1.449
6R0 19.92 0.993 0.260 0.254 1.455

Table 6.2: Vortex ring parameters at the beginning of circulation transfer and
non-dimensional reconnection time (T ∗R) for Re = 3000 from set I at the two
different domain depths. The two values of T ∗R differ by less than 0.4%.

in the standard domain influences the early trajectory of the vortex ring causing it to

propagate towards the surface at a shallower angle.

The focus of the present work is the rate of transfer of the circulation of the interacting

vortex core to a direction normal to the surface during vortex reconnection (section 6.5,

figure 6.6). Specifically the effect of Reynolds number on the reconnection timescale

(defined based on the inverse of the peak value of the circulation transfer rate) is inves-

tigated in section 6.4. The decay of the circulation of the interacting vortex core during

reconnection for the two domains is seen in figure 6.2(b). Since the vortex ring reaches

the surface earlier in the deeper domain, the circulation transfer begins earlier for that

case. As a result the vortex ring parameters at the beginning of the circulation transfer

is slightly different for the two domains.

In section 6.4.1, a non-dimensional reconnection time T ∗R (6.9) which accounts for the

variable ring geometry at the beginning of the circulation transfer is introduced. In

table 6.2 the times at which the circulation transfer begins (t1), the circulation (Γr)

and core radius (δr) at t1 and the peak values of the circulation transfer rate (Amax)

for the simulations using the two domain sizes are listed (see section 6.4.1 for details

on determining these quantities). The values of the non-dimensional reconnection times

(T ∗R) computed using these values for the two domains are also listed and found to differ

by less than 0.4%.

Thus it is shown that increasing the domain depth has a negligible effect on the non-

dimensional reconnection time which is the quantity of interest for this study.

6.2.2 Numerical resolution

The adequacy of the numerical resolution was checked for the case from set I with

Re = 5000 by tracking the energy balance between the volume integrated kinetic energy

per unit mass with respect to the co-moving reference frame K, the volume integrated

rate of kinetic energy dissipation εK and the total volume integrated kinetic energy flux

out of the domain FK (see section 4.3.1 for details) given by

− dK

dt
= εK + FK
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Figure 6.2: (a) Trajectories of the vortex rings (b) History of the magnitude
of the circulation of the interacting vortex core on the symmetry plane y = 0
for the case from set I with Re = 3000 in the standard domain (solid) and deep
domain (dashed).
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Figure 6.3: Comparison of histories of - - - - Rate of decrease of volume-
integrated kinetic energy (−dK/dt) and Sum of volume-integrated rate
of dissipation and energy flux (εK +FK) for the case from set I with Re = 5000.

The volume integrated enstrophy, Ω, given by

Ω =
1

2

∫∫∫
V

|ω|2dV (6.2)

is related to the dissipation according to 2νΩ ' εK (Bobyleff-Forsythe formula, Serrin

1959). The peaks of εK correspond to times when intense stretching of vortex filaments

occurs leading to a rapid growth of enstrophy and dissipation and generation of fine

scale structures testing the spatial resolution of the grid. Therefore the resolution needs

to be sufficiently fine to keep the difference between the two sides of the energy balance

equation negligibly small at the enstrophy peaks.

Figure 6.3 compares the histories of the quantities represented by left and right hand

sides of (6.2) for the case from set I with Re = 5000. The difference between the two

sides is less than 8×10−5Γ 3
0 /R0 over the entire simulation reaching the maximum value

at the dissipation peak demonstrating that the spatial discretisation error is negligible

throughout. For all the simulations in this chapter, the difference between the two sides

of the energy balance equation remained at most 4% at the dissipation peaks but usually

significantly less.

The simulations from set I at Re = 3000 and 6000 were performed on two different grids.

As an additional test of the spatial resolution, the histories of the maximum vorticity on

the symmetry plane (y = 0) associated with the interacting vortex core obtained from
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Figure 6.4: Comparison of the histories of the maximum vorticity on the sym-
metry plane (ω‖,max) normalised by the maximum value at t = 0 (ω0) for the
case from set I with Re = 6000 obtained using grids with 1024 × 1024 × 512
(solid) and 1280× 1280× 640 (dashed) points.

simulations performed on the two grids were compared (at both Reynolds numbers).

Figure 6.4 shows the comparison for Re = 6000. The intensification of vorticity occurs

due to the out-of-plane stretching of the vortex core during reconnection. The histories

of the maximum vorticity nearly overlap until the peak of the vortex stretching process

is reached on the coarser grid. On the finer grid, the stretching proceeds slightly longer

before the peak value is reached. The difference between the peak values on the two grids

is approximately 1.2% of the value on the finer grid. The difference between the peak

values for the two grids on which the case with Re = 3000 was performed is less than

1%. Note that the maximum vorticity on the symmetry plane is a sensitive measure of

the grid resolution.

6.3 Vortex ring reconnection at Re=2000

The simulation of the case from set I with Re = 2000 is used to describe the characteristic

features of vortex ring reconnection.

After initialisation, the vortex ring translates under its self-induced velocity towards the

surface (figure 6.5(a)). Since a Gaussian vorticity profile is used as the initial condition,

the vortex ring undergoes a readjustment. For the Gaussian initialised vortex ring with

an initial slenderness ratio of δ0/R0 = 0.2 in unbounded flow, the time required for the
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completion of the initial readjustment was determined to be approximately 18R2
0/Γ0 in

a separate simulation using the numerical approach outlined in chapter 4.

The ring reaches close to the surface at t ' 25R2
0/Γ0 and begins to be influenced by

the image vortex ring implied by the free-slip boundary condition. The influence of the

image vortex ring causes the section of the vortex ring close to the surface to bend back.

As the vortex ring collides with the surface, the vortex core is flattened against it (figures

6.5(b),(c)). The near-surface vortex filaments disconnect from each other and simultane-

ously reconnect with the surface. The reconnected vortex filaments accumulate to form

two vortices on either side of the symmetry plane, y = 0 (see figure 6.5(d)) referred to as

‘bridges’ (Melander and Hussain, 1989). The non-reconnected vortex filaments directed

along the y-axis direction are referred to as ‘threads’ (see figure 6.5(d)). The bridges

of surface-normal vorticity move parallel to the surface away from the symmetry plane

due to their self-induced velocity (figure 6.5(e)). The threads are continuously wound

at either end around the bridges.

Within t ' 45R2
0/Γ0, 95% of the circulation of the upper limb of the vortex ring is

transferred to the surface normal direction. However, the reconnection process does not

go to completion and a small remnant of the original circulation is present in the form

of a vortex sheet even in the late stage of the reconnection. Simultaneously the bottom

part of the vortex ring also advects towards the surface and when it collides with the

surface a second vortex reconnection begins. In this section the first reconnection is the

focus of the discussion.

The interaction of the vortex ring with the non-deformable free-slip surface can be under-

stood as an interaction with an image vortex ring leading to reconnection. The topology

of this reconnection process is depicted in figure 6.6(a). As the filaments of the vortex

ring and its image with oppositely-signed vorticity overlap in the region of interaction,

viscous diffusion leads to their annihilation. The disconnected filaments simultaneously

reconnect with the disconnected filaments from the image vortex ring. The evolution

of the circulation of the filaments from the vortex ring undergoing disconnection which

are directed parallel to the surface (Γ‖) and the circulation of the reconnected filaments

directed normal to the surface (Γ⊥) is shown in figure 6.6(b). The magnitude of the

former decreases with time and the latter increases with time while the sum is con-

served (neglecting the small amount of circulation shed into the wake). This circulation

transfer to an orthogonal direction is the key characteristic of the phenomenon of vortex

reconnection.

Γ‖ + Γ⊥ = Γ ′0 (6.3)

where Γ‖ is the circulation (absolute value) associated with the interacting vortex core

on the symmetry plane y = 0, Γ⊥ the circulation (absolute value) at the surface (z = 0)
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Figure 6.5: Isosurfaces of vorticity magnitude (|ω| = 0.3|ωmax|) showing the
different stages of vortex reconnection for the case from set I with Re = 2000
at t = (a) 15.0 (b) 25.5 (c) 27.0 and (d) 30.0 (e) 32.0 (f ) 34.0 R2

0/Γ0.
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on the half-plane y > 0 and Γ ′0 the circulation of the vortex ring after its readjustment

after initialisation. The evolution of Γ‖ and Γ⊥ with time during the reconnection is

shown in figure 6.6(c). The rate of transfer of circulation can be derived as follows.

The Helmholtz equation for the surface-parallel vorticity on the symmetry plane

ωy(x, y = 0, z) is written as (since ωx = ωz = 0 on the symmetry plane)

∂ωy
∂t

+ u
∂ωy
∂x

+ v
∂ωy
∂y

+ w
∂ωy
∂z

= ωy
∂v

∂y
+ ν∇2ωy

=⇒ ∂ωy
∂t

+
∂(uωy)

∂x
+
∂(vωy)

∂y
+
∂(wωy)

∂z
= ωy

∂v

∂y
+ ν∇2ωy (∵ ∇.u = 0)

=⇒ ∂ωy
∂t

+
∂(uωy)

∂x
+
�

�
�

v
∂ωy
∂y

+
∂(wωy)

∂z
= ν∇2ωy (∵ v|y=0 = 0)

Integrating over the entire symmetry plane x : −∞ to∞, z : −Lz to 0

∫∫
∂ωy
∂t

dxdz +

∫∫
∂(uωy)

∂x
dxdz +

∫∫
∂(wωy)

∂z
dxdz =
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dΓ‖
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= ν

∫
∂2u

∂z2
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y=0,z=0

dx (6.4)

Similarly by writing the Helmholtz equation for the surface-normal vorticity on the free-

slip surface ωz(x, y, z = 0) and integrating over the half-plane x : −∞ to∞,

y : 0 to Ly/2, z = 0 it can be shown that
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dΓ⊥
dt

= ν

∫∫
∂2ωz
∂z2

∣∣∣∣
z=0

dxdy

=⇒ dΓ⊥
dt

= ν

∫
∂2u

∂z2

∣∣∣∣
y=0,z=0

dx (6.5)

Therefore from (6.4) and (6.5) the absolute rate of change of the two circulation quan-

tities is shown to be equal. The rate of transfer of circulation is given by a line-integral

along the projection of the symmetry plane (y = 0) at the surface (z = 0).

dΓ‖

dt
= −A, dΓ⊥

dt
= A

A = ν

∫
x

∂ωy
∂z z=0,y=0

dx (6.6)

The contours of ωy (vorticity along surface-parallel direction) on the symmetry plane

y = 0 (figures 6.7(a)–6.7(d)) show the evolution of the interacting vortex core during

reconnection. Figure 6.8 shows the evolution of the maximum vorticity on the symmetry

plane. The simultaneous evolution of the rate of transfer of circulation, A is shown in

figure 6.9.

The vorticity maximum decreases during the translation of the vortex ring towards the

surface due to the diffusion of the vortex core. When the vortex ring encounters the

surface, the interacting vortex core gets deformed. The vorticity gradient exposed at

the surface causes the beginning of the circulation transfer (figure 6.7(b)). Due to the

induced velocity of the image vortex ring, the interacting vortex core propagates in the

−x direction as the upper part of vortex ring bends backwards. The strain-field acting

on the vortex core due to the influence of the vortex ring and its image compresses

it along the z-direction and extends it along the x-direction. During this process, the

vortex core deforms into the ‘head-tail’ structure described in the literature (Kida et al.,

1991). The in-plane strains along the x and z directions (∂u/∂x, ∂w/∂z) are balanced

by an out-of-plane strain normal to the symmetry plane (∂v/∂y) stretching the vortex

filaments (directed along the y-direction) and intensifying the vorticity within the vortex

core.

Due to the flattening of the vortex core and the stretching of the vortex filaments,

the vorticity gradient at the surface and consequently the circulation transfer rate rise

sharply. The vorticity maximum on the symmetry plane and the circulation transfer rate

reach peak values at t ' 28.0R2
0/Γ0. Subsequently, viscous diffusion becomes dominant
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Figure 6.6: (a) Topology of the reconnection due to the collision of a vortex
ring with its image. (b) Symmetry plane (y = 0) and half-plane at the surface
(z = 0, y > 0) showing the two measured circulations. (c) Evolution of the
surface-parallel and surface-normal circulations (normalized by Γ0) with non-
dimensional time for the case from set I with Re = 2000.
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limiting the flattening of the vortex core and the vorticity maximum and the circulation

transfer rates begin to decline. It is due to this process of flattening and stretching

that the circulation transfer occurs within a time period much shorter than a viscous

timescale (δ2/ν). It also indicates the possibility that, as the Reynolds number increases,

the core stretching and flattening process could intensify, effectively keeping the recon-

nection timescale roughly constant. The dependence of the reconnection timescale on

the Reynolds number is investigated in section 6.4.

The period of rapid enstrophy growth in figure 6.3 (corresponding to the rapid growth of

dissipation) is associated with this process of vortex core stretching. In the present case,

the maximum vorticity within the core increases to nearly 1.6 times its initial maximum

(figure 6.8). The peak value attained by the vorticity maximum on the symmetry plane

provides a measure of the fineness of the vortex core at the peak of the vortex core

flattening. Therefore the convergence of the peak value provides a sensitive measure for

the adequacy of the grid resolution (as used in section 6.2).

6.4 Effect of viscosity on vortex ring reconnection

Viscous diffusion plays an essential part in effecting the circulation transfer during vortex

reconnection. In this section, all the simulations from set I (section 6.1.1), with Reynolds

number varying from 500 to 10000, are considered to investigate the effect of viscosity

on the rate of the circulation transfer.

The reconnection time is a representative timescale within which the circulation transfer

occurs. A reconnection time based on the inverse of the maximum value attained by the

circulation transfer rate (Amax) can be defined as

TR0 =
Γ0

Amax
. (6.7)

However, since the vortex rings need to propagate over some distance before the interac-

tion with the surface begins, both the circulation and the core size at the time when the

reconnection begins are different from their initial values. Therefore the ring parameters

at the beginning of the reconnection would be different for the different simulations in

set I performed at varying Reynolds numbers. To study the variation of the reconnection

time with Reynolds number alone its dependence on the changing ring parameters needs

to be determined. The results of the simulations from set II (section 6.1.1) are used to

determine this.
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Figure 6.7: Contours of vorticity (|ωy|) on the symmetry plane (y = 0) for the
case from set I with Re = 2000 at t = (a) 20.0 (b) 23.0 (c) 25.5 (d) 27.0 (e) 28.5
and (f ) 30.0 R2

0/Γ0. A lowest contour level of |ωy|max/40 and an equal spacing
of |ωy|max/20 was used.

6.4.1 Effect of ring parameters on reconnection time at constant Re

All the simulations in set II were performed at a constant Reynolds number, Re = 3000.

The vortex rings had different initial core sizes and would therefore also have different

ring parameters at the beginning of the reconnection process. To account for this, the

basic scaling law for the reconnection time is determined.

To determine the ring parameters appropriate for the beginning of reconnection the

following method was used. For each simulation, an approximate beginning time for

the circulation transfer process t = t1 was defined as the time at which Γ⊥ reaches

an arbitrary value of 0.0001Γ0. The circulation, Γr and core radius, δr of the vortex

ring at t = t1 were obtained for a simulation of a vortex ring with the same initial
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Figure 6.8: Evolution of the maximum vorticity on the symmetry plane (ω‖,max)
normalised by the maximum value at t = 0 (ω0) with non-dimensional time for
the case from set I with Re = 2000.
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Figure 6.9: Evolution of the rate of change of circulation (A) with non-
dimensional time for the case from set I with Re = 2000.
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Figure 6.10: Scaling of reconnection time with inviscid timescale based on core
radius and circulation. Red dashed line corresponds to the scaling Γr/Amax =
1.47(4π2δ2

r/Γr)

parameters translating in unbounded flow at the same Reynolds number. The numerical

approach from chapter 4 was used for this simulation in unbounded flow. These values

of circulation and core radius were used as the ring parameters at the beginning of the

circulation transfer. Although the presence of the surface would affect the evolution of

the vortex rings, Γr and δr provide reasonable estimates of the actual values.

The basic scaling law for the reconnection time is determined in the following way. For

the three simulations in set II, the reconnection timescale Γr/Amax is plotted against

an inviscid timescale 4π2δ2
r/Γr, based on the circulation and core radius. This inviscid

timescale is the approximate time taken for the vortex ring core to rotate about its

centre. From figure 6.10 it is seen that the scaling is approximately linear according to

Γr
Amax

= 1.47

(
4π2δ2

r

Γr

)
, (6.8)

showing that the reconnection time scales on δ2
r/Γr. This result is used to control the

effect of different ring parameters at the beginning of reconnection and hence define a

non-dimensional reconnection time

T ∗R =
1

Amax

(
Γ 2
r

4π2δ2
r

)
, (6.9)

appropriate for the ring geometry at the time of reconnection.
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Figure 6.11: Evolution of the surface-parallel circulation on the symmetry plane
(normalized by Γ0) at Re = 500, 1000, 2000, 3000, 40000, 5000 for set I.

6.4.2 Effect of Re on reconnection time

The simulations from set I performed at varying Reynolds numbers are now considered.

Figure 6.11 shows the variation of the circulation of the interacting vortex core on the

symmetry plane for Re = 500, 1000, 2000, 3000, 4000, 5000. At lower Reynolds numbers

the core size of the vortex ring grows faster due to viscous diffusion. Although this results

in a slightly smaller propagation speed, the diffused core interacts with the surface

earlier. The time at which the circulation transfer begins, increases with Reynolds

number. The circulation transfer curves appear to nearly saturate for Re & 2000.

To study the effect of Reynolds number on the circulation transfer rate, the non-

dimensional reconnection time T ∗R was computed for each case using the procedure

outlined in section 6.4.1. Table 6.3 lists the values of t1, Γr and δr for the cases at

the different Reynolds numbers.

Since the time before reconnection is different for the different cases in set I, the in-

clination of the vortex ring axis to the surface at the beginning of reconnection is also

slightly different. The scaling (6.8) does not account for the effect of the inclination of

the vortex ring axis to the surface. But since the initial inclination of the vortex rings is

the same (γ = 5◦) for all the cases in set I, the variation in inclination at the beginning

of reconnection would be small, especially for the cases with Re & 1000 for which the

values of t1 vary little.
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Re t1Γ0/R
2
0 Γr/Γ0 δr/R0

500 14.62 0.989 0.368
1000 20.12 0.988 0.335
2000 22.51 0.991 0.291
3000 23.08 0.993 0.268
4000 23.40 0.993 0.254
5000 23.52 0.993 0.244
6000 23.59 0.993 0.238
8000 23.67 0.993 0.229
10000 23.67 0.993 0.229

Table 6.3: Vortex ring parameters at the beginning of reconnection at different
Re for set I.

Figure 6.12 shows the variation of the normalised reconnection time with Reynolds

number. T ∗R decreases with Re at the low Reynolds numbers and reaches a minimum

value for Re ' 2000. For Re & 2000, the normalised reconnection time increases very

slowly with increasing Reynolds number remaining nearly constant. The variation of the

reconnection time TR0, obtained from (6.7) without correcting for the ring parameters

at the beginning of reconnection, is also shown for comparison. The effect of the non-

dimensionalisation with respect to the ring parameters is to reduce the variation of

the reconnection time at low Reynolds numbers. At high Reynolds numbers, since the

values of Γr and δr do not vary much (from table 6.3), the correction does not alter the

scaling greatly. The trend of the reconnection time remaining nearly constant at high

Re obtains independent of whether the correction is applied.

The values of the non-dimensional reconnection time are O(1) at all the Reynolds num-

bers showing that the reconnection time is of the order of the time taken for the inter-

acting vortex core to perform a rotation about its centre.

The near-saturation of the maximum of circulation transfer rate with increasing

Reynolds number for Re & 2000 implies that for high Reynolds numbers,

T ∗R ∼ O(1)

=⇒ A = ν

∫
x

(
∂ωy
∂z

∣∣∣∣
z=0,y=0

dx

)
∼ O(1)

=⇒
∫
x

(
∂ωy
∂z

∣∣∣∣
z=0,y=0

dx

)
∼ 1

ν

=⇒ ∂ωy
∂z

∣∣∣∣
z=0,y=0

∼ 1

ν
(6.10)

Therefore at high Re for increasing Reynolds numbers, the vortex core flattening and

filament stretching process intensifies such that ν∂ωy/∂z remains roughly constant.
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Figure 6.12: Variation with Re of Normalised reconnection time T ∗R
which accounts for the variable circulation and core radius at the beginning of
reconnection using scaling rule (6.8) and - - - - Reconnection time TR0 given by
(6.7) normalised by initial parameters of the vortex ring.

The contours of vorticity on the symmetry plane at the time of maximum rate of circula-

tion transfer Re =500, 1000, 2000 and 3000 in figure 6.13 shows the intensification of the

vortex core flattening with increasing Reynolds number. The histories of the maximum

vorticity on the symmetry plane at different Reynolds numbers in figure 6.14 shows the

intensification of the vortex stretching with Reynolds number.

6.4.3 Comparison with reconnection of vortex tubes

The previous studies in the literature on the variation of the reconnection time with

Reynolds number pertain to studies of the reconnection of two vortex tubes, a differ-

ent problem but one that is nevertheless very similar. Hussain and Duraisamy (2011)

performed numerical simulations of two antiparallel vortex tubes with sinusoidal per-

turbations which grow in time leading to collision and reconnection (see figure 2.11 for

a typical case at Re = 2000). As in the present work, they also considered a set of fixed

initial parameters and varied the Reynolds number alone from 250 to 9000. The scaling

of the reconnection time with Reynolds number is compared with their results.

Hussain and Duraisamy (2011) used an initial configuration in which the separation

between the interacting vortex cores is of the order of the core size. Therefore the time

before the initiation of the circulation transfer does not vary much for the cases at the

different Reynolds numbers in their study. Therefore their results need not be corrected

for changes in core size due to Re as in the present case. Figure 6.15 shows the variation

of the peak value of the circulation transfer rate (which is proportional to the inverse of
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vortex rings in set I at Re = 500, 1000, 2000, 3000, 4000.
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Figure 6.15: Variation of maximum circulation transfer rate from Hussain and
Duraisamy (2011) (H-D) and 1/T ∗R from present work with Reynolds number.

T ∗R) with Reynolds number from their study (data obtained from figure 4a from Hussain

and Duraisamy (2011)) and compares it with the variation of 1/T ∗R from the present

work. In this figure there is an arbitrary scaling constant before the two sets of results.

Although figure 6.15 shows distinct regions at different Re, Hussain and Duraisamy

(2011) fitted a single curve over the entire range of Reynolds numbers and reported a

Ren power variation with n = 1.0. However different trends can be observed within their

data. In both cases, peak circulation transfer rates increase with Re at low Reynolds

numbers. At moderate Reynolds numbers the peak circulation rates remain nearly

constant. The values for the peak transfer rates is noted to be nearly constant in the

range 2000 . Re . 4000 in the data from Hussain and Duraisamy (2011). At high

Reynolds numbers, the peak transfer rates continue to remain nearly constant in the

present work. However, in the case of the reconnecting vortex pair, they begin to rise

sharply with Re.

In section 6.5, the effects of high Reynolds number on vortex ring reconnection with a

free-slip surface is investigated and the results are compared with Hussain and Duraisamy

(2011).
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6.5 High Reynolds number effects

In this section the simulation from set I with Re = 8000 is considered in order to study

the effect of high Reynolds number on vortex ring reconnection.

The contours of ωy (vorticity along surface-parallel direction) on the symmetry plane

y = 0 (figure 6.16) show the evolution of the interacting vortex core during reconnection.

Figure 6.17 shows the evolution of the maximum vorticity on the symmetry plane. The

vortex core is flattened against the surface and transforms into a head-tail structure as

described in section 6.3 (figure 6.16(b)). The flattened vortex core, then splits into two

with the head detaching from the tail (figure 6.16(d)).

In section 6.4, the effect of increasing Reynolds number was found to be an intensification

of the vortex stretching and flattening process such that the quantity ν∂ωy/∂z|z=0,y=0

remains roughly constant. In the presentRe = 8000 simulation, due to the high Reynolds

number the vortex core is flattened significantly and the maximum vorticity on the

symmetry plane increases to ' 7ω0 at the peak of the vortex core flattening. As a result,

the vortex core behaves like a strong vortex sheet and the splitting can be understood

as occurring due to the tendency of a vortex sheet to roll-up at its edge. Subsequent to

the detachment of the head, the vortex sheet-like core rolls up again at its head edge

(figure 6.16(e),(f)). The rolling up process can occur only on one of the edges due to

the presence of the surface.

Figure 6.18 from Hussain and Duraisamy (2011) shows the evolution of the interacting

vortex cores during the reconnection of two antiparallel vortex tubes at a high Reynolds

number, Re = 6000. The vortex cores are initially flattened and stretched into head-tail

shaped structures and subsequently, the head detaches from the tail. The vortex sheet-

like structure rolls up on its end again and splits up. Hussain and Duraisamy (2011)

described the phenomenon as a Kelvin-Helmholtz instability. Unlike in the present case

however, their flow develops antisymmetric features.

Therefore both in the case of the reconnection of a vortex ring with a free-slip surface

and the reconnection of two colliding vortex tubes at high Reynolds numbers, due to the

intense flattening and stretching the vortex core behaves like a vortex sheet and rolls

up at its head edge and detaches to form vortex tubes (pairs of vortex tubes in the case

of the reconnecting vortex pair). In the latter case, this instability occurs along with

antisymmetric features.

The antisymmetric mode of the instability cannot occur in the present case of vortex

ring reconnection due to the constraint imposed by the free-slip surface. To test whether

the antisymmetric mode occurs in the absence of the surface, simulations of the collision

of the vortex ring from set I with its image was performed without the presence of a

free-slip surface. The initial setup used for this simulation of colliding vortex rings is a

linear combination of the setup from figure 6.1 and its image about the z = 0 plane.
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Figure 6.16: Contours of vorticity (|ωy|) on the symmetry plane y = 0 for
Re = 8000 from set I at t = (a) 25.5 (b) 26.0 (c) 26.5 (d) 27.5 (e) 28.5 and
(f ) 29.0 R2

0/Γ0. A lowest contour level of |ωy|max/40 and an equal spacing of
|ωy|max/20 was used.
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Figure 6.17: Evolution of the maximum vorticity on the symmetry plane
(ω‖max) normalised by the maximum value at t = 0 (ω0) with non-dimensional
time for Re = 8000 from set I.

(a) t
∗ = 1.37 (b) t

∗ = 1.61 (c) t
∗ = 1.84

Figure 6.18: Evolution (from left to right) of contours of vorticity on the
symmetry plane during the reconnection of two colliding vortex tubes at Re =
6000 from Hussain and Duraisamy (2011).
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Figure 6.19: Isosurface of vorticity magnitude (|ω| = 0.04|ω|max) showing a late
stage of the reconnection for the case from set I with Re = 8000 at t = 32R2

0/Γ0.

The analogous vortex ring collision problems to the cases from set I at Re = 6000 and

Re = 8000 were performed. The results of the simulations were found to be identical to

the results of the simulations of free-slip surface interactions at both Reynolds numbers.

The antisymmetric mode of the instability did not occur even at Re = 8000. This may

be due to the stabilising influence of the lower part of the vortex ring which advects the

interacting vortex sheet away from the surface.

6.5.1 Late stages of reconnection at high Re

Figure 6.19 shows an isosurface of vorticity at the late stage of the reconnection at

Re = 8000, showing the detached head-tail structure of the surface sheet. The detached

head is visible in the form of a rolled-up vortex and the tail as a thin vortex sheet. Both

become wrapped around the two bridges of reconnected surface-normal vorticity. As the

bridges rotate under their self-induced velocity, the vortex sheet gets further stretched

and wrapped around the bridges.

As the thin vortex sheet and the rolled up vortex tubes get wrapped around the bridges,

they are able to contact the surface away from the symmetry plane and undergo addi-

tional disconnection and reconnection events. The main type of reconnection discussed

in this chapter and in the literature involves disconnection of vortex filaments at the

symmetry plane and simultaneous reconnection to the surface on either side of the

symmetry plane (figure 6.6a). Figure 6.20(a) shows a schematic of vortex filaments
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undergoing these additional reconnections occurring at high Reynolds numbers. The re-

sulting reconnected vortex filaments with opposing signs of surface-normal vorticity lie

on the same side of the symmetry plane and interact with each other adding to the flow

complexity at high Reynolds numbers. The circulation associated with this additional

reconnection is denoted by Γ⊥2) and plotted in figure 6.20(b) for the high Reynolds num-

ber case Re =8000. The maximum value attained by Γ⊥2) during the reconnection is

less than 0.01 Γ0 at Re = 2000. The maximum value increases with increasing Reynolds

number and reaches up to ' 0.2Γ0 at Re =8000 (figure 6.20(b)).

6.6 Breakdown of bridges after reconnection at high

Reynolds numbers

In this section, the evolution of the flow after the first reconnection of a vortex ring with

a free-slip surface at a high Reynolds number is studied. The results of the simulation

from set III with initial slenderness ratio δ0/R0 = 0.3, initial depth h/R0 = 3.0 and

initial inclination of γ = 7◦ at Re = 7500 is presented.

Figure 6.21 shows the variation of the total enstrophy, Ω, with time for this case. The

first local peak at t ' 60R2
0/Γ0 corresponds to the vortex stretching during the first

reconnection. As in the case of the simulations from set I at high Reynolds numbers,

the thin vortex sheet and the rolled up vortex tube are both wrapped around the two

bridges of reconnected vorticity (figure 6.22(a)). The vortex sheet and the vortex tube

are progressively wrapped around the bridges. This destabilises the flow around the site

of the bridges and leads to a rapid generation of small-scale vortical structures (figure

6.22(b)). At the end of the first reconnection there is a rapid rise in the total enstrophy

associated with this small-scale structure generation mechanism.

Simultaneous with the first reconnection, the lower part of the vortex ring continues to

advect towards the surface under its self-induced velocity and begins a second reconnec-

tion with the surface. The interacting vortex core again gets deformed into a head-tail

structure (oriented in the opposite direction to the first reconnection). The disconnec-

tion of vortex filaments, reconnection with the surface and accumulation of reconnected

vortex filaments in the form of two bridges occurs similar to the first reconnection.

The vortex core flattened into a thin sheet rolls up at its edge forming a vortex which

splits away. This process repeats twice leading to three distinct vortex tubes wrapped

around the reconnected bridges at their ends. The distinct co-rotating vortices roll-up

together and merge into a single vortex. The remnant vorticity in the tail also rolls up

into a separate vortex tube (Figures 6.23 (a),(b),(c),(d)).

The repeated roll-up and detachment of the newly formed heads of the vortex sheet

generating multiple vortex strands during the second reconnection is visualised using an
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Figure 6.20: (a) Schematic of the additional reconnection at high Reynolds
number (b) Evolution of the surface-parallel, surface-normal circulations and
the circulation associated with the additional reconnection (normalized by Γ0)
with time for the case from set I at Re = 8000.
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Figure 6.21: Evolution of total enstrophy Ω with time for the case from set III.

isosurface of the second invariant of the velocity gradient tensor

Q = −(1/2)(∂ui/∂xj)(∂uj/∂xi) in figure 6.24. Since Q represents the balance between

the rotation and shear strain rates, an isosurface of Q is a useful marker of vortical

structure (J. Jeong and Hussain, 1995).

At the end of the second reconnection, the flow is dominated by several thin vortex

tubes. These are progressively stretched and wrapped around the two pairs of bridges

formed as a result of the two reconnections. This process leads to a rapid generation of

smaller scale vortical structures from the entire doubly-connected vortex ring structure

extending into its wake. Figure 6.25 uses isosurfaces of the second invariant of the

velocity gradient tensor to highlight the vortical structure of the flow at the late stages

of the second reconnection.

Figure 6.26 shows the circulations of the interacting vortex core (along the surface-

parallel direction) and the reconnected vortex filaments (along the surface-normal direc-

tion) during the second reconnection. The circulation transfer proceeds until Γ‖ ' 0.4Γ0

before it is interrupted by the roll-up of the vortex sheet.

A local peak in the total enstrophy, occurs at t ' 90R2
0/Γ0 due to the second recon-

nection. The enstrophy continues to rise after the second reconnection as well reaching

a maximum at t ∼ 110R2
0/Γ0. Therefore the small-scale structure generation mecha-

nism is sufficiently strong to produce an approximately four-fold increase in the overall

enstrophy of the flow compared to the state at the end of the first reconnection.
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(a)

(b)

Figure 6.22: Isosurfaces of vorticity magnitude (|ω| = 0.1|ω|max) showing late
stages of the first reconnection for the case in set III at t = (a) 68 and (b) 76
R2

0/Γ0.

6.6.1 Small-scale structure generation mechanism

Thus the following is the description of the mechanism of small-scale structure gen-

eration: The vortex core interacting with the surface is flattened into a vortex sheet

whose thickness decreases and strength increases with increasing Re. The vortex sheet

is wrapped around the bridges of reconnected vortex filaments on either side, and is

continuously stretched and wound by them. The head edge of the vortex sheet rolls up

and detaches itself from the sheet, creating a new edge which can then undergo the same

process again ultimately producing multiple strands of vorticity. Both the vortex sheet

and the rolled up vortex tubes are progressively wound around the bridges of reconnected

vorticity. This leads eventually to a rapid production of small-scale structures around
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(a) (b)

(c) (d)

Figure 6.23: Contours of vorticity (ωy) on the symmetry plane y = 0 at t = (a)
82 (b) 84 (c) 86 and (d) 88 R2

0/Γ0 for the case in set III.

Figure 6.24: Close-up view from above the free-slip surface of isosurface of Q
(QR4

0/Γ
2
0 = −0.025) showing the multiple roll-ups of the newly formed heads

of the vortex sheet during the second reconnection for the case in set III at
t = 84R2

0/Γ0. The entire vortex ring structure is seen in figure 6.25(a).
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(a)

(b)

Figure 6.25: (a)–(b) See following page for caption.

the bridges. These strands of vorticity also roll-up together and become intertwined.

The flowfield is dominated by a profusion of tangled vortex tubes which develops into a

more substantial breakdown of the remaining ring structure.

6.6.2 Energy spectrum

The flow after the breakdown of the vortex ring closely resembles a typical turbulent

flow showing irregularity, intermittency and high rates of dissipation and enstrophy.



Chapter 6 Vortex ring reconnection with non-deformable surface 89

(c)

(d)

Figure 6.25: Isosurfaces of Q (QR4
0/Γ

2
0 = −0.025) highlighting the vortical

structure at t = (a) 84 (b) 96 (c) 104 and (d) 140 R2
0/Γ0.
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10
0

10
1

10
2

10
3

10     

10     

10     

10     

k R
0

E
(k

)/
R

0Γ 02

(a)

−18

−12

−6

0

10
0

10
1

10
2

10
3

10     

10     

10     

10     

k R
0

E
(k

)/
R

0Γ 02

(b)

−18

−12

−6

0

Figure 6.27: Log-log plot of wavenumber and energy present at that wavenumber
at t = (a) 80 and (b) 140 R2

0/Γ0 for the case from set III with γ = 7◦. Dashed
line corresponds to k−5/3 behaviour.

The energy spectrum for this complex flow was computed and compared with the −5/3

power law.

The energy spectrum in a windowed three-dimensional region enclosing the reconnected

vortex ring is plotted at t =80 R2
0/Γ0 (figure 6.27a) and t =140 R2

0/Γ0 (figure 6.27b). As

expected the energy distribution shifts with time towards the higher wavenumbers (k)

and begins to approximate the −5/3 inertial range behaviour at the lower wavenumbers.

At high k it falls off under the influence of viscous dissipation.
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6.7 Conclusions

Numerical simulations of the interaction of a vortex ring with a free-slip surface were

performed capturing the characteristic features of vortex reconnection described in the

literature. The effect of viscosity on the circulation transfer rate was investigated. The

reconnection time was normalised by an appropriate inviscid timescale to account for

the variable parameters of the vortex ring at the beginning of the circulation transfer.

The normalised reconnection time decreases with increasing Reynolds number at low

Reynolds numbers before reaching a minimum value at Re ' 2000. For greater values of

Reynolds number the reconnection time almost remains constant, only increasing very

slowly with Reynolds number. The near-saturation of reconnection time implies that the

vorticity gradient at the surface varies as O(1/ν). This is achieved by an intensification

of the vortex core flattening and filament stretching process with increasing Reynolds

number.

The scaling of the peak circulation transfer rates with Reynolds number was compared

to the scaling in the case of the reconnection of a pair of anti-parallel vortex tubes

investigated by Hussain and Duraisamy (2011). In both cases the peak rates increased

with Re at low Reynolds numbers and remained nearly constant at moderate Reynolds

numbers. The scaling behaviour is different at high Reynolds numbers with the peak

rates rising sharply with Re for the reconnecting vortex tubes but not for the colliding

vortex rings.

At high Reynolds numbers the vortex core interacting with the surface is flattened and

stretched into a thin, intense vortex sheet. The head edge of the vortex sheet rolls up

and detaches creating a new edge which can then undergo the same process, ultimately

producing several strands of vorticity which become intertwined. An anti-symmetric

mode of the same instability occurs in the case of the reconnecting vortex tubes. The

anti-symmetric mode did not occur in the case of colliding vortex rings despite the

absence of the constraint imposed by the surface.

At high Reynolds numbers the thin vortex sheet and the multiple vortex tubes (generated

by the roll-up of the vortex sheet) are wrapped around the bridges of reconnected surface-

normal vorticity. As the bridges rotate under their self-induced velocity the vortex sheet

and the vortex tubes get further stretched and wrapped around the bridges. This leads

to a rapid generation of small-scale vortical structure at the site of the bridges. The

flow becomes increasingly complex and is dominated by a profusion of vortex tubes and

small-scale structure.

Unlike the well-known Widnall instability (Widnall et al., 1974) associated with wavy

displacement of the vortex core, the breakdown studied in this work occurs solely due

to the mechanics of the reconnection process and provides a means of producing small-

scale structure from the reconnected vortex ring. The mechanism involves two processes:
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(i) The flattening of the reconnecting vortex ring core into a thin sheet which repeat-

edly splits up into strands of vorticity and (ii) The wrapping up of the vortex strands

around the two bridges of reconnected surface-normal vorticity destabilising them and

generating fine-scale complex structure.



Chapter 7

Vortex rings with swirl in

unbounded flow

In this chapter DNS of vortex rings with swirl in unbounded flow is presented. The

numerical approach and initial setup (figure 7.1) used here is the same as used in section

4.1 to study classical vortex rings in unbounded flow.

The details of the simulation including the initialisation of the vortex rings with swirl

are presented in section 7.1. The method used to track the amount of swirl in the vortex

ring is introduced in section 7.2. The adequacy of the spatial resolution is demonstrated

in section 7.3. The formation of an axial vortex and the structure of the vortex ring with

the developed axial vortex are discussed in section 7.4. The existence of a maximum

limit for the swirl in a vortex ring is shown in section 7.6. The final conclusions are

summarised in section 7.7.

7.1 Simulation details

All the simulations discussed in this chapter were performed in a cubic domain with

dimensions 8R0 × 8R0 × 8R0 with 512 × 512 × 512 uniformly spaced grid points. The

timestep was chosen such that the Courant-Freidrichs-Lewy (CFL) number remained

below 0.20 throughout the simulation to ensure numerical stability.

7.1.1 Vortex ring initialisation

Two different types of vortex rings with swirl were used as the initial condition in this

study. This provided a means of verifying the independence of the observed character-

istics of the vortex rings in the simulations from the particular method of initialisation.

93
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Figure 7.1: Schematic of the computational domain for the study of vortex rings
with swirl in unbounded flow. The shaded region corresponds to the logging
domain.

7.1.1.1 Gaussian profile

The core of the vortex ring was initialised with a Gaussian distribution of vorticity

ωθ =
Γ0

πδ2
0

exp

(
−(r −R0)2 + z2

δ2
0

)
(7.1)

where r2 = x2 + y2 and δ0 defines the core thickness. The velocity field corresponding

to this vorticity distribution was computed using the vector stream function method

outlined in section 4.1.2.

An azimuthal (swirl) velocity field directly proportional to the Gaussian vorticity dis-

tribution was added to obtain the complete initial velocity field used for the DNS, so

that

uθ =
SΓ0

R0
exp

(
−(r −R0)2 + z2

δ2
0

)
(7.2)
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where S is the swirl parameter. It should be noted that for this initialisation the max-

imum azimuthal velocity is (SΓ0/R0) and the angular momentum in the vortex rings

(measured as described in section 7.2) depends on both the swirl parameter and the core

radius.

7.1.1.2 Steady-state Euler solution

Eydeland and Turkington (1988) developed a variational method to find exact steady

solutions of the Euler equations for inviscid, incompressible, axisymmetric flow with

a compact vorticity distribution confined to a toroidal region. These solutions form

a two-parameter family. Lifschitz et al. (1996) provided a method of obtaining these

steady-state solutions for a finite computational domain enclosing the vortex ring.

The solutions are expressed in terms of the Stokes stream-function, ψ for axisymmetric,

inviscid flows:

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r

where ur, uθ, uz are the cylindrical velocity components.

The solution is given by

uθ =
1

r
f(ψ) (7.3)

ωθ = −rh′(ψ) +
1

r
f(ψ)f ′(ψ)

where ωθ is the azimuthal vorticity component. The structure functions f(ψ) and h(ψ)

are given by

f(ψ) =

√
2α

ζ + 1
ψ

(ζ+1)/2
+ (7.4)

h(ψ) = h0 −
β

2(ζ + 1)
ψζ+1

+

where ψ+ = max(ψ, 0). α, β, ζ and h0 are positive constants. The value of h0 is not

important. A value of 1.5 was used for the exponent ζ as in Lifschitz et al. (1996).

Thus we have a two-parameter family of vortex rings. For α = 0 swirl-free vortex rings

are obtained for which β determines the slenderness ratio. The core azimuthal vorticity

profile for these swirl-free vortex rings given by ωθ/r = (β/2)ψζ+, was shown to be close
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Vortex ring Type Parameters
Ring characteristics
δ0/R0 A/(Γ0R

3
0)

EU1 Euler solution α = 50, β = 0 0.29 1.54
EU2 Euler solution α = 60, β = 35 0.23 1.05
EU3 Euler solution α = 150, β = 60 0.16 0.71
GS1 Gaussian S = 0.30 0.30 0.56
GS2 Gaussian S = 0.40 0.30 0.74
GS3 Gaussian S = 0.60 0.30 1.11
GS4 Gaussian S = 1.00 0.30 1.85

Table 7.1: Vortex rings used in study of vortex rings with swirl in unbounded
flow.

to that of an equilibrium vortex ring without swirl in chapter 4. For β = 0 Beltrami

vortex rings in which the vorticity vector is parallel to the velocity vector are obtained.

The method described by Lifschitz et al. (1996) was altered slightly to obtain vortex

rings with radius R = R0 and circulation Γ = Γ0 (R and Γ as defined in equations 4.9

and 4.8 respectively). The numerical method is described in detail in Appendix A.

The vorticity field solution obtained using the Euler solver is used to compute the cor-

responding initial velocity field using the vector stream function method outlined in

section 4.1.2. Table 7.1 lists the different Euler solution initialised and Gaussian ini-

tialised vortex rings used in this chapter along with the defining parameters and the

ring characteristics.

Simulations of all the vortex rings were performed at Re = 1500. For the Gaussian

initialised vortex rings an additional simulation was performed at Re = 3000.

7.2 Tracking the vortex ring swirl

The linear impulse is an integral quantity defined as

I =
ρ

2

∫∫∫
V

~r × ~ωdV (7.5)

where ~r is the position vector and ~ω is the vorticity vector. Linear impulse can be

interpreted as the total impulsive force required to generate a flow from rest (Saffman,

1992).

To measure the swirl the integral quantity angular impulse defined as

A =
ρ

3

∫∫∫
V

~r × (~r × ~ω)dV , (7.6)
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was used. Angular impulse can be interpreted as the total moment of the impulsive

force system that generated the flow from rest (Saffman, 1992) and is zero for swirl-free

vortex rings. For an axisymmetric vortex ring, the angular impulse is directed purely

along the axial direction.

The angular impulse is invariant in unbounded flow in the absence of any moment due

to external non-conservative forces. As the vortex ring translates along its axis it sheds

fluid with angular momentum into the wake. In order to track the swirl present in

the vortex ring alone, the angular impulse was computed by performing the integration

within a logging domain attached to the vortex ring defined by −2R0 < z < 2R0 (shaded

region in figure 7.1).

7.3 Adequacy of spatial resolution

The adequacy of the spatial resolution is demonstrated for the highest swirl case at

Re = 3000. The energy balance between the volume integrated kinetic energy per unit

mass with respect to the co-moving reference frame K, the volume integrated rate of

kinetic energy dissipation εK and the total volume integrated kinetic energy flux out of

the domain FK (see section 4.3.1 for details) given by

− dK

dt
= εK + FK ,

was tracked with time. Figure 7.2 compares the histories of the quantities represented

by left and right hand sides of this equation for this case. A period of rapid enstrophy

growth occurs immediately after initialisation for this flow (see section 7.6 for details

of the flow). The difference between the two sides of (7.7) remains less than 4% at the

enstrophy peak demonstrating that the spatial discretisation is sufficient to accurately

compute the flow.

For all the other simulations performed in this chapter, the error remains less than 1%

throughout.

7.4 Formation of an axial vortex

In this section the early period of evolution of the vortex rings with swirl after initialisa-

tion is studied. Both Gaussian initialised and Euler solution initialised vortex rings are

shown to develop an axial vortex during this period. The mechanism for the formation

of the axial vortex is explained.
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Figure 7.2: Comparison of histories of - - - - Rate of decrease of volume-
integrated kinetic energy (−dK/dt) and Sum of volume-integrated rate
of dissipation and energy flux (εK + FK) for the simulation of vortex ring EU4
at Re = 3000.

7.4.1 Vortex ring initialised with Gaussian profile

The simulation of the Gaussian initialised vortex ring GS1 at Re = 1500 is considered

in this section. Figure 7.3 shows the contours of azimuthal vorticity (ωθ) and azimuthal

velocity (uθ) on the radial plane θ = 0 at different times after the vortex ring initialisa-

tion. Fluid with azimuthal velocity is initially located within the core of the vortex ring.

After initialisation the distribution of azimuthal velocity begins to relocate towards the

axis of the vortex ring. However the azimuthal velocity is zero on the vortex ring axis.

The axial vorticity (ωz) in axisymmetric flow is given by

ωz =
∂uθ
∂r

+
uθ
r

The centreline vorticity is

ωz|r=0 = 2 lim
r→0

∂uθ
∂r

Consequently the axial vorticity initially present only within the core is also present on

the axis as well. Within t = 35R2
0/Γ0, fluid with azimuthal velocity extends from the

core up to the axis. The vortex ring with a well-developed axial vortex is shown in

figures 7.4(a) and (b).
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Since the Gaussian profile is not an exact solution of the steady axisymmetric Navier

Stokes equations, immediately after initialisation a rapid transient must occur as in

the swirl-free case. In this readjustment, the vortex ring sheds fluid from the core with

circulation and swirl as seen in figure 7.3(b). In order to determine if the development of

the axial vortex is independent of the strong transient associated with this readjustment,

a simulation was performed using a vortex ring initialised with a steady-state Euler

solution which does satisfy axisymmetric Navier Stokes equations if viscous effects are

neglected.

7.4.2 Vortex ring initialised with Euler solver

The simulation of the Euler solution initialised vortex ring EU2 at Re = 1500 is now

considered. Figure 7.5 shows the contours of azimuthal vorticity and azimuthal velocity

on the radial plane θ = 0 during the initial stages after the vortex ring initialisation.

Since the vortex ring was initialised with a solution of the steady-state Euler equations,

the strong transient that occurs in the case of the Gaussian ring is not present. As in the

case of the Gaussian ring the azimuthal velocity distribution expands towards the axis

and an axial vortex develops by t = 30R2
0/Γ0. The vortex ring with the well-developed

axial vortex is shown in figures 7.6(a) and (b). The structure is seen to be qualitatively

similar to the Gaussian initialised ring after the formation of the axial vortex.

Therefore both Gaussian initialised and Euler-solution initialised vortex rings with swirl

are seen to undergo a transfer of azimuthal velocity from the core to the axis of the

vortex ring and the development of a strong, elongated, axial vortex. The formation of

the axial vortex can now be explained. Due to viscous diffusion, azimuthal velocity is

diffused across the entrainment bubble and transported to the rear stagnation point. A

part of the fluid carrying azimuthal velocity re-enters the bubble and the rest is lost into

the wake. The angular momentum of a fluid particle (ruθ) is approximately conserved

in a high Re axisymmetric flow. Therefore as the fluid particles move nearer to the

axis of the vortex ring, their azimuthal velocity increases as 1/r. But at r = 0 the

azimuthal velocity must become zero. This is enforced by viscous diffusion generating

an axial vortex. The axial velocity gradient dw/dz is positive in the vicinity of the rear

stagnation point and hence stretches the axial vortex in this region.

Apart from the axial vortex, another feature of vortex ring with swirl with a developed

axial vortex is the region of negative azimuthal vorticity (opposite sign to that of the

core) at the head of the vortex ring and close to the axis as seen in figure 7.3 (e). The

total circulation of this region of negative azimuthal vorticity increases in magnitude

along with the development of the axial vortex and reaches a maximum value.

Both the development of an axial vortex and the region of negative azimuthal vorticity

were also observed in the axisymmetric numerical simulations of polarised vortex rings
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Figure 7.3: (a)–(c) See following page for caption.



Chapter 7 Vortex rings with swirl in unbounded flow 101

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
(d)

r

z

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

r

z

0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
(e)

r

z

0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

r

z

Figure 7.3: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane θ = 0 at t = (a) 0 (b) 5 (c) 10 (d) 15 and (e) 35 R2

0/Γ0

for ring GS1. Lowest contour levels of |ωθ|max/20 and |uθ|max/20 and equal
spacings of |ωθ|max/10 and |uθ|max/10 respectively were used.
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Figure 7.4: (a) Contours of axial vorticity (ωz) on the plane y = 0. Contour
levels are as indicated normalised by Γ0/R
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of velocity gradient tensor, QR4
0/Γ

2
0 = −0.005 at t = 35R2

0/Γ0 for ring GS1.

(which contain non-zero swirl) by Virk et al. (1994) and the formation of a vortex ring

with swirl by Ooi et al. (2001). Virk et al. (1994) showed that the coupling between

the swirl and meridional flow leads to the generation and destruction of ωθ/r due to the

twisting of vortex lines. Ooi et al. (2001) explained the generation of negative azimuthal

vorticity as due to the tilting of the filaments of the axial vortex.

The Helmholtz equation for the azimuthal component of vorticity in axisymmetric flow

is
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Figure 7.5: (a)–(c) See following page for caption.
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Figure 7.5: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane θ = 0 at t = (a) 0 (b) 10 (c) 20 (d) 25 and (e) 30 R2

0/Γ0

for ring EU2. Lowest contour levels of |ωθ|max/40 and |uθ|max/40 and equal
spacings of |ωθ|max/20 and |uθ|max/20 respectively were used.
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(
∇2ωθ −

ωθ
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)
(7.7)

Figure 7.8(a) shows the contours of the sum of the vortex tilting terms (the first two terms

on the right hand side). The vortex lines are tilted to generate negative and positive

azimuthal vorticity at the front and rear halves of the vortex core respectively. In the

region ahead of the vortex ring core near the axis, due to the negative axial gradient

of the azimuthal velocity, the vortex filaments in the axial vortex are tilted towards
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Figure 7.6: (a) Contours of axial vorticity (ωz) on the plane y = 0. Contour
levels are as indicated normalised by Γ0/R
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of velocity gradient tensor, QR4
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0 = −0.005 at t = 35R2

0/Γ0 for ring EU2.

the negative azimuthal direction, generating negative azimuthal vorticity. Similarly the

radial vortex filaments ahead of the vortex ring core extending from the axis to the

outer edge of the core are also tilted towards the negative azimuthal direction due to a

negative radial gradient of azimuthal velocity.

Figure 7.8(b) shows the vortex filament structure of a vortex ring with swirl with an

axial vortex illustrating the tilting of the vortex lines generating negative azimuthal

vorticity.

Once established, the axial vortex is a persistent and robust feature of the vortex ring

with swirl.
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Figure 7.7: Contours of azimuthal vorticity on the radial plane θ = 0 at
t = 70R2

0/Γ0 for the Gaussian initialised vortex ring GS1 (left) and the Eu-
ler solution initialised ring EU2 (right). The contour levels are normalised by
Γ0/R

2
0.

7.5 Evolution of angular impulse

Figure 7.9 shows the histories of the angular impulse (A) for all the vortex rings listed in

table 7.1 at Re = 1500. The total angular impulse in the flow field must be conserved.

However, as the vortex ring propagates fluid with angular momentum is shed into the

wake. Consequently the angular impulse associated with the vortex ring alone as mea-

sured by using a logging domain as described in section 7.2 must decrease. The loss of

fluid with angular momentum begins to be logged only after the initial wake leaves the

logging domain. Therefore for a small initial period the angular impulse is indicated

as constant (as seen in figure 7.9), but falls rapidly as the initial wake passes out of

the logging domain. The length of this time period depends on the propagation speed

of the vortex ring and the step down in angular impulse indicates the strength of the

wake. For the Gaussian initialised vortex rings, the initial rate of decrease of angular

impulse when the initial wake leaves the logging domain is higher compared to the Euler

solution initialised vortex rings. This is due to the fact that the Gaussian initialised

rings undergo a strong initial readjustment shedding fluid with azimuthal vorticity and

azimuthal velocity (as described in section 7.4) unlike the Euler rings. After the fluid

shed during the readjustment exits the logging domain, the rate of change of A is more

gradual. For the Gaussian initialised vortex ring with S = 1.0, a significantly large

reduction in angular impulse occurs at a rapid rate of decrease at t ' 15R2
0/Γ0 when

the wake begins to exit the logging domain. The flow field associated with this ring is
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Vortex filament structure of a vortex ring with swirl after the formation of the
axial vortex. The filaments with a starting location within the axial vortex are
coloured blue and the filaments located close to the centre of the vortex core
are coloured red. The direction of vorticity within the axial vortex is along the
+z direction.
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Figure 7.9: Evolution of the angular impulse with time for the different Euler
solution initialised vortex rings (solid) and the Gaussian initialised (dashed)
vortex rings with swirl at Re = 1500.

investigated separately in section 7.6. The subsequent gradual decay of angular impulse

is due to continuing loss to the wake.

Although figure 7.9 suggests that it might be possible to collapse the curves by finding a

suitable scaling law, initial attempts did not find a convincing collapse, but did not rule

one out either. It was decided to redirect efforts towards investigation of the instabilities

and breakdown of swirling vortex rings.

7.6 Swirl limit

In this section the existence of a maximum limit for the amount of swirl on a vortex

ring is investigated. The numerical Euler solver imposes an implicit limit on the angular

impulse of the vortex rings that can be generated as steady solutions to the Euler

equations. Among the vortex rings obtained for a given value of the parameter α, the

Beltrami vortex ring with β = 0 has the maximum swirl. But for the Gaussian initialised

vortex rings, by varying the swirl parameter S the initial angular impulse can be varied

independently and without limit. This provides a means of testing for the existence of

a maximum limit for the swirl by initialising with successively higher values of swirl

and looking for a rapid readjustment to a lower swirl level. Gaussian initialised vortex

rings with swirl with initial slenderness ratio, δ0/R0 = 0.3 and swirl parameters S = 0.3

(GS1), S = 0.4 (GS2), S = 0.6 (GS3) and S = 1.0 (GS4) are used in this study.

In section 7.5 the histories of the angular impulse A of the Euler solution initialised and

Gaussian initialised vortex rings at Re = 1500 are presented. The Gaussian initialised
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Figure 7.10: Evolution of the angular impulse with time for the Gaussian
initialised vortex rings with swirl parameter S = 0.3, 0.4, 0.6, 1.0 at Re = 3000.

rings (except GS4) exhibit small steps at t ∼ 10R2
0/Γ0 as discussed in section 7.5. A large

step decrease in angular impulse is observed for the vortex ring GS4 with the highest

swirl. Corresponding histories of the angular impulse at Re = 3000 for the Gaussian

initialised vortex rings are shown in figure 7.10. As in the case at the lower Reynolds

number, a large, rapid decrease in angular impulse occurs for the high swirl ring GS4

as its wake and adjustment products initially exit the logging domain. The reason for

this large step is investigated below. In the following the Re = 3000 results alone are

considered although the Re = 1500 results are qualitatively similar.

The evolution of the vortex ring is visualised using isosurfaces of the second invariant

of the velocity gradient tensor and contours of azimuthal vorticity on a radial plane

(figure 7.11). The observed flow can be explained as follows: Fluid with an azimuthal

component of velocity is subject to a centrifugal acceleration which must be balanced by

a radial pressure gradient. If we suppose that for vortex rings with swirl a limit exists

for the maximum amount of swirl for a particular geometry, then for values of swirl

above the limiting value the radial pressure gradient would be insufficient to balance

the centrifugal acceleration of the swirling flow. This would result in rapid ejections of

fluid with azimuthal velocity from the vortex ring as seen in figures 7.11(a),(b),(c) in

the form of a jet-like flow directed radially outwards and downstream of the vortex ring.

The swirl within the vortex ring (tracked by the angular impulse) is thereby reduced

to a value below the maximum limit. The de-swirling phase naturally stops when A is

below the upper limit. But there may be an overshoot and the final value may be below

the upper limit. The drop of angular impulse of ring GS4 at t ∼ 15R2
0/Γ0 (seen in figure

7.10) corresponds to the exit of the ejected fluid carrying azimuthal velocity from the

logging domain at the z = −2R0 plane. The shape of the ejected wake at this time is
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shown in figure 7.11(e). The size of the drop indicates the amount of angular momentum

ejected by the swirl readjustment. Subsequently the decay rate of angular impulse is

significantly slower and similar to the case of the other vortex rings thus confirming that

the drop in angular impulse corresponds to a de-swirl below an upper limit swirl.

At t ' 12R2
0/Γ0, new features begin to develop. The cross-section of the core of the

vortex ring (visualised by the contours of azimuthal vorticity) is deformed into a shape

with three lobes. The toroid of the vortex ring also begins to twist about the core

centreline with the amplitude of the twist increasing along the azimuth of the ring. Due

to the simultaneous deformation and twisting of the vortex ring, strands of vorticity

begin to detach from the surface. When the strands of vorticity extend beyond the

entrainment bubble, they are advected downstream in the form of hairpin vortices (figure

7.11(e)).

The vortical structure on the remaining ring is suggestive of an instability with a helical

shape and is likely to depend on the level of swirl and/or the Reynolds number. The

possibility of instabilities due to swirl is investigated in detail in chapter 8.

The evolution of the vortex ring and the vortical structures formed are similar to one of

the vortex rings from the results of Cheng et al. (2010) (third row in their figure 2.16)

who had also performed simulations of vortex rings with swirl initialised with Gaussian

distributions of vorticity and velocity. Nearly all the vortex rings with swirl presented

in their study underwent a similar evolution. Based on the present work, we can infer

that nearly all the vortex rings in their study have angular impulse above the maximum

limit. Therefore rather than representing the properties of a typical vortex ring with

swirl, the flows in their study can be interpreted as rapid de-swirling readjustments.

7.7 Conclusions

After initialisation, both Euler solution initialised vortex rings with swirl and vortex

rings with Gaussian distributions of azimuthal vorticity and azimuthal velocity, with

angular impulse below an upper limit, develop an axial vortex and an associated region

of negative azimuthal vorticity at the head of the vortex ring near the axis.

The formation of the axial vortex occurs as follows. Azimuthal velocity is diffused across

the entrainment bubble and a part of the fluid carrying azimuthal velocity re-enters the

bubble near the rear stagnation point. The azimuthal velocity increases as 1/r, but must

become zero at r = 0. This is enforced by viscous diffusion generating the axial vortex.

The axial vortex, after its development is a persistent and robust feature of the vortex

ring with swirl. As the vortex ring propagates, it gradually sheds angular momentum

into the wake.
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Figure 7.11: (a)–(c) See following page for caption.
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contour levels normalised by Γ0/R
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An upper limit exists for the amount of swirl on a vortex ring. A vortex ring initialised

with swirl above this limit undergoes a rapid de-swirling readjustment ejecting fluid with

azimuthal velocity. The angular impulse of the vortex ring reduces to a level below the

limit and subsequently decays slowly.





Chapter 8

Vortex rings with swirl:

Instability

In this chapter DNS of a helical instability occurring in vortex rings due to swirl is

presented. The instability appears at high Reynolds numbers. The modal structure of

the instability is identified for different vortex rings and shown to be determined by the

slenderness ratio. The numerical approach and initial setup (figure 8.1) used here is the

same as in section 4.1 to study classical vortex rings in unbounded flow.

The details of the simulations are presented in section 8.1. The adequacy of the numerical

resolution is demonstrated in section 8.2. In section 8.3 the evolution of a vortex ring

with swirl at two different Reynolds numbers is discussed. The fully developed helical

instability is shown to occur at the higher Reynolds number. In section 8.4 a numerical

analysis is developed to determine the exact modal structure of the instability. In section

8.5 helical instabilities with different mode shapes are presented. The dependence of the

mode shape of the instability on the geometric parameters of the vortex ring is shown

in section 8.6. The final conclusions are summarised in section 8.7.

8.1 Simulation details

In all the simulations discussed in this chapter, the cubic domain size was 8R0×8R0×8R0

(along x, y, z directions). The timestep was chosen such that the Courant-Freidrichs-

Lewy (CFL) number remained below 0.20 throughout the simulation to ensure numerical

stability.

The Euler solution initialised vortex rings with swirl and Gaussian initialised vortex

rings with swirl used in this chapter are listed in table 8.1 along with the defining

parameters. The details of the initialisation methods are provided in section 7.1.1. Both

115
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Figure 8.1: Schematic of the computational domain for the study of instability
in vortex rings due to swirl. The shaded region corresponds to the logging
domain.

Vortex ring Type Parameters
Ring characteristics
δ0/R0 A/(Γ0R

3
0)

EU4 Euler solution α = 100, β = 0 0.21 1.06
EU5 Euler solution α = 40, β = 0 0.32 1.73
EU2 Euler solution α = 60, β = 35 0.23 1.05
GS3 Gaussian S = 0.60 0.30 1.11
GS5 Gaussian S = 1.00 0.20 0.81

Table 8.1: Vortex rings used to study instability due to swirl.

Euler solution and Gaussian initialised vortex rings are shown to develop the helical

instability.

Table 8.2 lists the simulations discussed in this chapter along with the Reynolds number

and grid resolution used in each case. Simulations S1 and S2 performed using the same

vortex ring EU4 are used to show the effect of the Reynolds number on the development

of the instability. A fully developed instability occurs in all the cases excepting S1. The

parameters of the vortex rings at the time of the instability are used to investigate their

relation to the modal structure of the instability.

An initial random noise level was defined on the flow in order to equally excite all possible
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Simulation Vortex ring Reynolds number Grid

1 EU4 1500 512× 512× 512
2 EU4 3000 768× 768× 768
3 EU5 3000 768× 768× 768
4 GS3 3000 768× 768× 768
5 GS5 3000 768× 768× 768
6 EU2 4500 768× 768× 768

Table 8.2: Vortex ring, Reynolds number and grid resolution used for the sim-
ulations of instability due to swirl.

modes before allowing them to grow. An initial perturbation was imposed in the form

of small local, radial displacements of the vortex core. The radial displacement applied

is a sum of 32 Fourier modes, each with amplitude η = 0.0005R0 and random phase

given by

∆R(θ) = η
32∑
n=1

(An sin(nθ) +Bn cos(nθ))

R(θ) = R0 + ∆R (8.1)

where A2
n +B2

n = 1.

This is imposed following Archer et al. (2008) in which the ring geometry is perturbed.

8.2 Adequacy of numerical resolution

The adequacy of the numerical resolution for the simulations of flow instability in this

chapter is demonstrated for an example case of vortex ring EU4 at Re = 3000 performed

on a grid with 768× 768× 768 points.

The energy balance between the volume integrated kinetic energy per unit mass with

respect to the co-moving reference frame K, the volume integrated rate of kinetic energy

dissipation εK and the total volume integrated kinetic energy flux out of the domain FK

(see section 4.3.1 for details) given by

− dK

dt
= εK + FK , (8.2)

was tracked with time. Figure 8.2 compares the histories of the quantities represented

by left and right hand sides of this equation for this case. A period of rapid enstrophy

growth occurs at t ' 10R2
0/Γ0. The difference between the two sides remains less than

1× 10−5Γ 3
0 /R0 up to t = 10R2

0/Γ0 and less than 1× 10−4Γ 3
0 /R0 throughout the entire
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of dissipation and energy flux (εK + FK) for the simulation of vortex ring EU4
at Re = 3000.

simulation reaching the maximum value at the enstrophy peak demonstrating that the

spatial discretisation error is negligible throughout.

8.3 Euler solution initialised vortex ring EU4 at different

Reynolds numbers

8.3.1 Re=1500

Firstly, the simulation of the Euler solution initialised vortex ring EU4 (α = 100, β = 0)

at the lower Reynolds number Re = 1500 is considered. Figure 8.3 shows the contours of

azimuthal vorticity and velocity on a radial plane at different times during the simulation.

The evolution up to t ' 10R2
0/Γ0 appears similar to the Euler solution initialised vortex

ring described in chapter 7 (figure 7.5). However a deformation of the vortex core cross-

section begins to be seen at t ' 15R2
0/Γ0. At t = 20R2

0/Γ0, the vortex core cross-section

is significantly deformed into a near-elliptical shape and sheds fluid with azimuthal

velocity towards the ring axis aiding the formation of the axial vortex. The strong

deformation of the vortex core indicates the possible growth of an instability. However

within t = 40R2
0/Γ0 the deformation is attenuated and the core cross-section regains a

near-circular shape and the instability dies out.
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Figure 8.3: (a)–(c) See following page for caption.
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Figure 8.3: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane θ = 0 at t = (a) 5 (b) 10 (c) 15 (d) 20 and (e) 25 (f ) 40
R2

0/Γ0 for ring EU4 at Re = 1500.
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8.3.2 Re=3000

Now the simulation of the vortex ring EU4 (α = 100, β = 0) at a higher Reynolds number

of Re = 3000 is considered. At this Reynolds number a fully developed instability is

found to occur.

Figure 8.4 shows the contours of azimuthal vorticity and velocity on a radial plane

during the evolution of the vortex ring. As in the simulation at Re = 1500, the vortex

core cross-section begins to appear deformed at t = 9R2
0/Γ0. In the present simulation

however, the deformation becomes stronger and a distinct shape begins to emerge with

three lobes along the core azimuth.

The isosurfaces of the second invariant of the velocity gradient tensor (Q) in figure

8.5 show that, apart from the deformation of the cross-section, the vortex core is also

twisted about its centre along the ring azimuthal direction. Due to the twisting, the

deformed vortex ring is no longer axisymmetric and instead acquires a helical structure.

Figure 8.6 provides a front-on view of the helical structure of the deformed vortex ring

at t = 12R2
0/Γ0.

The stretching of the vortex filaments during the vortex ring deformation leads to fine

scale lobe structure and consequently in rapid enstrophy growth and a corresponding

growth in the volume-integrated dissipation at t = 10R2
0/Γ0 as seen in figure 8.2. The

rapid enstrophy growth is an indicator of the occurrence of an instability.

At later times, due to the simultaneous deformation of the core cross-section into a three

lobed shape and the progressive twisting of the vortex ring, individual vortex tubes begin

to detach from the surface of the vortex ring. The shape of the instability is similar to

the flow behaviour observed in the case of the Gaussian initialised vortex ring with high

swirl discussed in section 7.6. The structure of the instability is analysed in section 8.4.

8.4 Structure of the instability

In this section a simplified model of the geometric structure of the instability is presented

as a helical wave with modes along both the core azimuthal and ring azimuthal directions.

A numerical analysis of the flow field is performed to verify the model and determine

the exact modal structure of the instability for the case of ring EU4 at Re = 3000.

The instability is described within a toroidal coordinate system whose schematic is

provided in figure 8.7. The origin of the coordinate system is located at (R, 0, 0) where

R is the radius of the vortex ring. The coordinates are the radial distance from the

centreline of the torus σ, the ring azimuth θ and the core azimuth φ.



122 Chapter 8 Vortex rings with swirl: Instability

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
(a)

r

z

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

r

z

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
(b)

r

z

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

r

z

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
(c)

r

z

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

r

z

Figure 8.4: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane θ = 0 at t = (a) 9 (b) 10 (c) 11 R2

0/Γ0 for ring EU4 at
Re = 3000.
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0 = −0.005) showing the helical structure

of the instability for ring EU4 at Re = 3000 at t = 12 R2
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Figure 8.7: Schematic of the toroidal coordinate system.

The amplitude of the deformation of the vortex core ξ(σ, θ, φ) at the ring azimuth θ = 0

can be given by

ξ(σ, 0, φ) ∼ f(σ) exp(inφ(φ+ φ0)) ,

where nφ is the ‘shaping mode’ associated with the deformation of the core cross-section.

The instability occurring in ring EU4 at Re = 3000 appears to deform the core cross-

section into a shape with nφ = 3 (figure 8.4).

The effect of the twisting of the core is to introduce a phase shift in φ with the shift

increasing along the ring azimuth. By including the phase shift due to the twist, the

entire deformation field can be given by
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ξ(σ, θ, φ) ∼ f(σ) exp(inφ(φ+ φ0 + nθθ))

∼ f(σ) exp(inφ(φ+ φ0)) exp(inφnθθ) , (8.3)

where nθ is the ‘twisting mode’ or the number of ’twists’ along the circumference of

the vortex ring. The periodicity of the deformation along the ring azimuthal direction

(ξ(σ, θ, φ) = ξ(σ, θ+2π, φ)) requires that the product nφnθ should be an integer. There-

fore although the shaping mode nφ should necessarily be an integer, the twisting mode

nθ can assume fractional values if the product nφnθ is an integer. The number of twists

along the circumference can be fractional due to the fact that the vortex core cross-

section is symmetric with respect to a rotation in φ by 2π/nφ. Therefore the vortex core

cross-sections at φ = 0 and φ = 2π− can match despite a fractional twist.

If a two-dimensional Fourier transform of the velocity field is performed along the ring

and core azimuthal directions to obtain the modal energy spectrum, the Fourier mode

along the core azimuthal direction is nφ and along the ring azimuthal direction is n′θ =

nφnθ.

A numerical analysis of the flowfield was performed at different times during the growth

of the instability for the ring EU4 at Re = 3000. The radius of the toroid was measured

as the enstrophy weighted average,

RΩ =
1

2Ω

∫
V

rω2dV . (8.4)

The velocity field within the toroidal region with a centreline r = R, z = 0 and radius of

rtor = 0.5RΩ is interpolated onto the toroidal coordinate system with its origin located

at (x = RΩ, y = 0, z = 0). A two-dimensional Fourier transform was performed along

the ring azimuthal and core azimuthal directions to obtain the energy spectrum. Figure

8.8 shows bar charts of the modal energy spectrum at each of the sampling times with

the axes corresponding to the Fourier modes nφ and n′θ.

The (nφ = 2, nθ = 2) mode grows initially followed by the (3,7/3) and (3,8/3) modes.

After t = 5R2
0/Γ0 the (3,7/3) and (3,8/3) modes become the fastest growing and are the

dominant ones at t = 13R2
0/Γ0.

The distribution of energy over a few isolated modes confirms the helical structure of

the instability. The dominant shaping and twisting modes identified by the numerical

analysis are consistent with the observed vortical structure of the instability. The shape

of the deformed vortex core was seen to be a three-lobed structure in figure 8.4. In the

front-on view of the instability in figure 8.6, the interference between the twisting modes

7/3 and 8/3 can be seen in the π/2 < θ < π quadrant.
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After the amplitudes of these modes become significant, the instability enters the non-

linear phase during which the modes begin to interact generating higher order harmonics

and lower order intermodulation products (n′θ = 11, nφ = 4 at t = 15R2
0/Γ0).

The numerical analysis was also performed for the evolution of ring EU4 at the lower

Reynolds number (Re = 1500). The deformation of the vortex ring at Re = 1500 was

found to be associated with the (nθ = 2, nφ = 2) mode. The (7/3,3) and (8/3,3) which

are the dominant modes at t = 13R2
0/Γ0 at Re = 3000 are not significant at Re = 1500.

The difference between the growth rates of these modes at the two Reynolds numbers

is explained in section 8.6.

8.5 Helical instabilities with varying twisting and shaping

modes

In this section, the helical instabilities occurring in the other vortex rings with swirl

used in this work (simulations 3,4,5 and 6 from table 8.2) are presented. Both Gaussian

and Euler solution initialised vortex rings with swirl are shown to develop the helical

instability. The dominant instability modes in each case are determined by numerical

analysis of the flowfield. The simulations in this chapter provide a set of instances of

the helical instability with varying mode shapes. The relation between the parameters

of the vortex ring and the mode shapes of the instability is investigated in section 8.6.

8.5.1 Euler solution initialised vortex ring EU5 at Re=3000

The simulation of the Euler solution initialised vortex ring EU5 (α = 40, β = 0) at

Re = 3000 is now presented. As in the case of ring EU4 at Re = 3000, a helical

instability develops within t = 40R2
0/Γ0 deforming the vortex core cross-section and

twisting the vortex core about the core centreline. Figure 8.9 shows the deformation of

the vortex core cross-section into a three-lobed structure at t = 38R2
0/Γ0, similar to ring

EU4 at Re = 3000. The helical structure of the instability is seen in figure 8.10. The

modal energy spectrum shows that at t = 38R2
0/Γ0, a single dominant mode is present

with (nθ = 5/3, nφ = 3) (figure 8.11).

8.5.2 Gaussian initialised vortex ring GS3 at Re=3000

Figures 8.12 and 8.13 show the structure of the helical instability occurring in the case

of the Gaussian initialised vortex ring GS3 (S = 0.6, δ0/R0 = 0.3) at Re = 3000 and the

corresponding modal energy spectrum respectively. Due to the strong initial readjust-

ment from the Gaussian profile, fluid with azimuthal velocity is shed towards the axis
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Figure 8.9: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane θ = 0 at t = 38R2

0/Γ0 for ring EU5 at Re = 3000.

aiding the formation of the axial vortex as in the case of the Gaussian initialised vortex

ring described in section 7.4.1. As a result an axial vortex is present in addition to the

helical instability at t = 22R2
0/Γ0.

The helical instability is thus shown to occur in both Euler solution initialised and

Gaussian initialised vortex rings with swirl.

8.5.3 Gaussian initialised vortex ring GS5 at Re=3000

The simulation of the Gaussian initialised vortex ring GS5 (S = 0.8, δ0/R0 = 0.2) at

Re = 3000 resulted in a helical instability. At t = 7R2
0/Γ0 a few different modes centred

about the strongest (nθ = 3, nφ = 2) mode are present. Unlike in the case of the Gaussian

ring GS2 at Re = 3000, an axial vortex is not present along with the instability (figure

8.14). The development of the instability occurs earlier than the formation of the axial

vortex in this case.

8.5.4 Euler solution initialised vortex ring EU2 at Re=4500

The Euler solution initialised vortex ring EU2 (α = 60, β = 35) at Re = 4500 develops

a helical instability with (nθ = 7/3, nφ = 3) as seen in figure 8.15.
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for ring GS3 at Re = 3000 at t = 22 R2
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0/Γ

2
0 = −0.1) showing the helical instability

for ring EU2 at Re = 4500 at t = 17R2
0/Γ0.

8.6 Dependence of twisting mode on slenderness ratio

In this section, the dependence of the modes of the helical instability on the geometric

parameters of the vortex ring is investigated. If the pitch of the helical instability λ is

assumed to scale linearly with the core radius of the vortex ring according to

λ = aδ , (8.5)

then the number of wavelengths (or ‘twists’) along the circumference of the vortex ring

i.e. the twisting mode is given by
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Vortex ring Reynolds number n′θ nφ nθ thΓ0/R
2
0 ε(th)

GS5 3000 6 2 3.00 5.50 0.208
EU4 3000 7,8 3 2.50 10.0 0.231
EU2 4500 7 3 2.33 15.0 0.255
GS3 3000 4 2 2.00 15.0 0.321
EU5 3000 5 3 1.66 34.0 0.389

Table 8.3: Modes of the helical instability occurring for each vortex ring. A
representative slenderness ratio during the growth of the instability is also pro-
vided.

nθ =
2πR

λ

=

(
2π

a

)
1

ε
(8.6)

The data from the present work is used to investigate whether the twisting mode scales

linearly with the inverse of the slenderness ratio in accordance with (8.6). The values

of the dominant twisting mode of the helical instabilities presented in this chapter are

plotted against the inverse of the slenderness ratio at a representative time (th) at which

the instability occurs in each case.

Table 8.3 lists the dominant shaping and twisting modes for all the instances of the helical

instability presented in this chapter along with the values of th and the slenderness ratio

at th in each case. The representative time th was chosen as the approximate time at

which the period of rapid enstrophy growth associated with the instability begins. The

slenderness ratios at which the instability occurs ranges from 0.2 up to nearly 0.4.

The plot of the variation of the twisting mode with the inverse of the representative

slenderness ratio is presented in figure 8.16. For ring EU4, since the (7/3,3) and (8/3,3)

modes are of nearly equal strength, the value of the twisting mode was taken as 2.5.

The twisting mode is seen to approximately scale linearly with the slenderness ratio in

agreement with (8.6) with the slope given by

nθ =
0.61

ε
. (8.7)

Hence the pitch of the helical instability is given by (8.5) with a = 10.30, so that

λ = 10.30 δ . (8.8)

The scaling relation (8.7) indicates that small values of nθ (. 1) are not permissible

since they correspond to very large values of the slenderness ratio.
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Figure 8.16: Scaling of the twisting mode nθ with the inverse of the slenderness
ratio 1/ε. Dashed line corresponds to nθ = 0.61/ε.

Therefore the core size of the vortex ring determines the pitch of the instability. The

number of wavelengths of the helix within the circumference of the vortex ring is the

twisting mode nθ. If an integral number of wavelengths can be fitted within a single

turn around the circumference of the vortex ring, then the twisting mode is an integer.

But if an integral number of wavelengths cannot be fit within the circumference, then

the twisting mode is a fraction. As mentioned in section 8.4, the number of twists along

the circumference can be fractional due to the fact that the vortex core cross-section is

symmetric with respect to rotation in φ by 2π/nφ.

An alternate explanation for the structure of the instability that accounts for the rota-

tional symmetry of the core cross-section and the fractional twisting mode is as follows.

If an integral number of wavelengths cannot be fitted within the circumference, then

multiple turns around the circumference are required. The ‘shaping mode’ of the in-

stability nφ is actually the number of turns of the helix around the circumference. In

this alternate view, the cross-sectional mode shape of the instability is a result of the

superposition of nφ interlacing, small amplitude helices.

With a single helix (nφ = 1), twisting modes of 1, 2, 3 . . . can occur. With two interlacing

helices (nφ = 2) twisting modes of 1, 3/2, 2, 5/2 . . . can occur. The number of interlacing

helices could be limited by the Reynolds number since at low Reynolds numbers the

viscosity might prevent a high degree of interlacing by smoothing over the individual

helical strands.

An explanation can now be offered for the difference between the growth of the different

modes of the helical instability at Re=1500 and 3000 for ring EU4. As mentioned in

section 8.4 the nθ = 7/3, 8/3 modes grow rapidly only at Re = 3000. At Re = 1500
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the core size of the vortex ring grows faster than at Re = 3000 due to viscous diffusion.

As a result the nθ = 7/3, 8/3 modes which correspond to a thinner core size than the

nθ = 2 mode might not be present within the window of the most amplified modes

at Re = 1500. Based on the alternate view of the structure of the helical instability

presented above, the low growth rates of the nθ = 7/3, 8/3 modes at Re = 1500 might

also be due to the fact that an interlacing with degree 3 (nφ) might be prevented at

lower Reynolds numbers.

8.7 Conclusions

An instability with a helical structure occurring in vortex rings due to swirl was de-

scribed. The instability is simultaneously deforms the vortex core cross-section and

twists the vortex core about its centreline along the circumference of the vortex ring. A

numerical analysis method was developed to determine the exact modal structure of the

instability. Using the numerical analysis method the twisting and shaping modes (nθ

and nφ respectively) characterising the instability can be obtained.

The instability was found to appear only at high Reynolds numbers. The helical in-

stability was shown to occur in both Euler solution initialised and Gaussian initialised

vortex rings with swirl. Vortex rings with different initial parameters were used to ob-

tain instances of the helical instability with a range of mode shapes. The data from the

simulations of helical instability was used to show that the pitch of the helical instabil-

ity scales linearly with the core size of the vortex ring. This implies that the twisting

mode is determined by the slenderness ratio of the vortex ring. Based on this result,

an alternate explanation for the structure of the instability was proposed. According

to this explanation the deformation of the vortex core cross-section is a result of the

superposition of interlacing helices. The number of interlacing helices is the shaping

mode of the instability.
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Summary and Future work

9.1 Classical vortex rings in unbounded flow

9.1.1 Summary

The study of classical vortex rings in unbounded flow showed that the structure of the

equilibrium vortex ring formed after a rapid initial readjustment is independent of the

particular core azimuthal vorticity profile characterising the initial state of the vortex

ring. The study was an extension of the work of Archer et al. (2008) who had identified

a common equilibrium state for Gaussian initialised vortex rings. The present work

showed that vortex rings with a variety of initial core vorticity profiles readjust to the

common equilibrium state identified by Archer et al. (2008).

The equilibrium state is a single parameter family of vortex rings in which the structure

of the core is dependent on the slenderness ratio alone. The shape of the core vorticity

profile of the equilibrium vortex ring is well approximated by that of the steady state

inviscid Euler solution with ωθ/r = Aψζ+. The exponent of the power law is determined

by the slenderness ratio of the equilibrium vortex ring. The extent of the regions in

the flow where the inviscid steady state condition is not satisfied increases with the

slenderness ratio.

This led to an investigation of the issue of whether the common equilibrium state extends

up to large times. It was found that as the slenderness ratio of the equilibrium vortex

rings increased beyond ∼ 0.47, they no longer followed a common path on the C vs. ε

plot and instead diverged into multiple paths dependent on the viscosity. At this stage

the growth of the vortex ring core is constrained by the entrainment bubble and the

vortex ring sheds large amounts of circulation into the wake. The shape of the core

vorticity profile begins to be influenced by viscosity.

137
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By a comparison with the study of Weigand and Gharib (1997) it was shown that the

behaviour of the vortex rings in the present work matched the experimental results very

well both for moderate slenderness ratios at which the common equilibrium state is

present and for large slenderness ratios (ε & 0.47) when the vortex rings follow different

paths dependent on viscosity. The velocity of the vortex rings at large times was found

to approach the known asymptotic solution for an axisymmetric vortex ring at large

times.

9.1.2 Future work

In future work, the structure of the vortex ring at the asymptotic large time limit can be

further investigated. The issue of the existence of a maximum slenderness ratio limit for

a vortex ring and its relation to the large time asymptotic solution can be explored. The

path of the vortex rings on the C vs. ε plot can also be extended upto the asymptotic

limit.

9.2 Vortex ring reconnection with free-slip surface

9.2.1 Summary

The focus of the study of vortex ring reconnection with a free-slip surface was the effect

of Reynolds number on reconnection. The simulation of a vortex ring starting from an

initial depth below the surface and interacting with the surface at a shallow angle of

incidence was performed at Reynolds numbers ranging from 500 to 10000.

Firstly the effect of Reynolds number on the reconnection timescale was investigated.

Using an appropriate scaling rule to account for the variable ring geometry at the be-

ginning of the circulation transfer, it was found that the normalised reconnection time

decreases with Re at low Reynolds numbers, reaches a minimum value at Re ' 2000 and

remains nearly constant with increasing Reynolds number for Re & 2000. This near con-

stant reconnection time at moderate and high Re is of the order of the inviscid timescale

associated with a rotation of the vortex core about its centre. The reconnection time

is maintained constant by an intensification of the process of vortex core flattening and

out-of-plane stretching during reconnection with increasing Re.

At high Re due to the intense flattening, the interacting vortex core behaves like a thin,

intense vortex sheet and undergoes an instability in which the head edge rolls up and

detaches itself from the remaining sheet. The newly formed edge of the vortex sheet

undergoes the same process again.

The problem of vortex ring reconnection with a free-slip surface was compared with

the problem of a reconnecting anti-parallel vortex pair using the study of Hussain and
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Duraisamy (2011). A similar trend of flattening peak circulation transfer rates with

Re over a range of moderate Reynolds numbers is found in their results. At high Re,

the instability occurring in the case of the vortex ring reconnection occurs during the

reconnection of the anti-parallel vortex pair as well. But in the case of the latter,

the antisymmetric mode of the same instability was found to occur. Along with the

appearance of antisymmetric features at high Re, the peak circulation transfer rates rise

sharply with Re unlike in the present case of vortex ring reconnection with a surface. A

simulation of colliding vortex rings showed that the difference between the two problems

at high Re persists despite the absence of the limit imposed by a free-slip surface. The

antisymmetric mode of the instability does not occur during vortex ring reconnection

even at high Re.

At the end of a vortex ring reconnection with a free-slip surface at high Re, the entire

reconnected vortex ring structure undergoes a breakdown to a turbulent-like flow with a

profusion of interlinked vortex tubes and small-scale vortical structure. The breakdown

occurs as an allied effect of two phenomena: (i) Reconnection at high Re generating a

thin vortex sheet and multiple vortex strands and (ii) The progressive wrapping up of the

vortex strands around the bridges of reconnected surface-normal vorticity destabilising

the flow and generating complex fine-scale vortical structure.

9.2.2 Future work

In the present work the effect of the inclination angle on the reconnection time has not

been considered. This could be investigated in future work.

In the present work, vortex ring interactions with a non-deformable free-slip surface was

studied. The work can be extended by considering reconnection of a vortex ring with

a linearised free-surface with small deformation or a full free-surface. Surface parallel

vorticity can be non-zero on a deformable free surface. The vorticity at the free surface

interacts with the vortex ring and introduces additional dynamics.

9.3 Vortex rings with swirl in unbounded flow

9.3.1 Summary

The investigation of vortex rings with swirl was aimed at identifying characteristics of

the vortex rings with swirl independent of the particular method of initialisation.

One of the defining features of a vortex ring with swirl in viscous flow was found to be

the development of an elongated axial vortex. The formation of the axial vortex is the

result of the following three aspects of the flow: (i) Transport of azimuthal velocity from
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the core towards the axis of the vortex ring (ii) The growth of azimuthal velocity as 1/r

as the fluid particles move closer to the axis and (iii) Annihilation of azimuthal velocity

near the axis due to viscous diffusion generating an axial vortex. After its development

the axial vortex is a robust and persistent feature of the flow.

An upper limit was shown to exist for the amount of swirl on a vortex ring. Vortex rings

initialised with swirl above the limit undergo a rapid de-swirling readjustment ejecting

fluid carrying angular momentum such that the swirl reduces to a level below the upper

limit.

A helical instability occurring in vortex rings due to swirl and appearing at high Reynolds

numbers was described. The helical instability simultaneously deforms the vortex core

cross-section and twists the core about its centreline along the circumference of the

vortex ring. The instability was shown to occur in both Euler solution initialised and

Gaussian initialised vortex rings with swirl.

A numerical analysis method was developed that can identify a shaping mode and a

twisting mode to characterise a particular instance of the helical instability. An investi-

gation of the geometric parameters of the vortex rings at the time of the rapid growth

of the instability found a linear scaling relationship between the pitch of the helical

instability and the core size of the vortex ring. This scaling implies that the twisting

mode of the instability is determined by the slenderness ratio of the vortex ring.

This finding led to an alternate explanation according to which the structure of the

helical instability is due to a superposition of multiple turns of a helix whose pitch is

determined by the core size of the vortex ring. According to this explanation the shape

of the vortex core cross-section is a result of the superposition and the shaping mode is

actually the number of turns of the helix.

9.3.2 Future work

As mentioned in section 7.5 the initial attempts at finding a scaling law for collapsing

the histories of the decay of angular impulse for the different vortex rings with swirl

were unsuccessful. This can be pursued further in future work.

Equilibrium vortex rings without swirl in viscous flow form a single parameter family

whose core structure is determined by the slenderness ratio. It might be possible to

identify a similar equilibrium family for vortex rings with swirl with additional param-

eters defining the angular impulse of the vortex ring and/or the strength of the axial

vortex.

The possible effect of the angular impulse of the vortex rings on the growth rates of the

modes of the helical instability has not been explored in the present work. This can be

investigated in future work.
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The well known Widnall instability occurs in vortex rings without swirl. The mode of

the Widnall instability also depends on the slenderness ratio of the vortex ring similar

to the twisting mode of the helical instability. The present work leads to the following

question – Is the helical instability a modification of the Widnall instability due to swirl

or does it represents a new kind of instability?





Appendix A

Numerical Euler solver

Eydeland and Turkington (1988) developed a numerical variational method to obtain

exact steady solutions of the Euler equations for inviscid, incompressible, axisymmetric

flow with a compact vorticity distribution confined to a toroidal region. These solutions

form a two-parameter family. Lifschitz et al. (1996) provided a way of accurately com-

puting the steady state solution within a truncated domain enclosing the vortex ring

by imposing non-reflective boundary conditions. Their method was used in the present

work to obtain vortex rings with and without swirl which are exact, steady, inviscid

solutions. The method was slightly altered to obtain vortex rings with a specified radius

R0 and circulation Γ0. The outline of the method from Lifschitz et al. (1996) is presented

below.

The modified cylindrical coordinate system (y, θ, z) with y = r2/2 was used. The velocity

and vorticity components in terms of the Stokes stream function ψ(y, z) are given by

u = − 1√
2y

∂ψ

∂z
êy + uθêθ +

∂ψ

∂y
êz (A.1)

ω = −∂uθ
∂z

êy −
1√
2y
Lψêθ +

∂(
√

2yuθ)

∂y
êz ,

where L is the linear elliptic operator

L = 2y
∂2

∂y2
+

∂2

∂z2
(A.2)

From the Euler equations in the modified cylindrical coordinates, the following equations

for uθ and ωθ can be obtained
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u.∇(
√

2yuθ) = 0 (A.3)

u.∇
(
ωθ√
2y

)
− 1

2y

∂u2
θ

∂z
= 0 .

Based on these equations the azimuthal velocity and azimuthal vorticity can be expressed

as

uθ =
1√
2y
f(ψ) , (A.4)

ωθ = −
√

2yh′(ψ) +
1√
2y
f(ψ)f ′(ψ) . (A.5)

The equilibrium equation for ψ is given by

Lψ = 2yh′(ψ)− f(ψ)f ′(ψ) . (A.6)

Lifschitz et al. (1996) used the adjusted streamfunction ψ̃ = ψ + µ+ κy. To determine

the values of the constants µ and κ two additional conditions are required. Lifschitz

et al. (1996) used conditions which effectively specified the circulation and the axial

component of the linear impulse of the vortex ring. In the present work the initial

setup for the computations consisted of a vortex ring with circulation Γ0 and radius

R0. Therefore the additional conditions used to determine µ and κ in the present work

specified the circulation and the radius of the vortex ring as follows

−
∫∫

1

2y
(2yh′ − ff ′)dydz = Γ0

−
∫∫

1√
2y

(2yh′ − ff ′)dydz = R0Γ0

Lifschitz et al. (1996) introduced the structure functions

f(ψ) =
√

2α/(ζ + 1)ψ
(ζ+1)/2
+ (A.7)

g(ψ) = h0 −
β

2(ζ + 1)
ψ

(ζ+1)
+ (A.8)

where ψ+ =max(ψ, 0). The value of the positive constant h0 is not important. Lifschitz

et al. (1996) used a value of the exponent ζ as 1.5 to ensure a reasonably smooth
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variation of ψ on the boundary of the compact region within which non-zero vorticity is

present. The same value was adopted in the present work as well. Therefore the positive

constants α and β are the parameters that determine the geometric parameters and the

swirl present in the vortex ring.

The equilibrium equation reduces to

Lψ̃ = −(α+ βy)(ψ̃ − µ− κy)ζ+ . (A.9)

The additional conditions reduce to

∫∫
1

2y
(α+ βy)(ψ̃ − µ− κy)ζ+dydz = 1 (A.10)∫∫

1√
2y

(α+ βy)(ψ̃ − µ− κy)ζ+dydz = 1 . (A.11)

Since all the flow quantities are normalized with respect to R0 and Γ0 in the present

work, the right hand sides of (A.10) and (A.11) are taken to be unity.

Lifschitz et al. (1996) used the following non-reflective boundary conditions on the

boundary of the truncated domain D = (y, z)|0 ≤ y ≤ Y,−Z ≤ z ≤ Z,

ψ̃(y,±Z) = Φ(y,±Z), ψ̃(0, z) = 0, ψ̃(Y, z) = Φ(Y, z) (A.12)

where

Φ(y, z) = −
∫∫
G(y, ȳ, z, z̄)(α+ βȳ)(ψ̃ − µ− κȳ)ζ+dȳdz̄ . (A.13)

G is the Green’s function for the operator L in free space given by

G(y, ȳ, z, z̄) = − 1

2π

(2y)1/4

(2ȳ)3/4

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
(A.14)

where K(k) and E(k) are complete elliptical integrals of the first and second kind of

modulus k and

k2 =
4(2y)1/2(2ȳ)1/2

((2y)1/2 + (2ȳ)1/2)2 + (z − z̄)2
.
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A.1 Iterative method

The equilibrium equation (A.9) and the additional constraints (A.10),(A.11) need to be

solved to obtain the quantities ψ̃,µ and κ satisfying the boundary conditions given by

(A.12). Lifschitz et al. (1996) used the following iterative method.

Let the values of the required quantities at the end of the nth iterative step be denoted

by ψ̃(n),µ(n) and κ(n). The following steps are performed

1. Using ψ̃(n),µ(n) and κ(n), compute

χ(n) = −(α+ βy)(ψ̃(n) − µ(n) − κ(n)y)ζ+ (A.15)

and

Φ(n) =

∫∫
Gχ(n)dydz (A.16)

2. The boundary value problem

Lψ̃(n+1) = χ(n) in D (A.17)

ψ̃(n+1) = φ(n) on ∂D .

is solved to obtain ψ̃(n+1). In the present work the solution was obtained using

the successive over-relaxation method.

3. The quantities µ(n+1) and κ(n+1) are obtained from the additional constraints

∫∫
1

2y
(α+ βy)(ψ̃(n+1) − µ(n+1) − κ(n+1)y)ζ+dydz = 1 (A.18)∫∫

1√
2y

(α+ βy)(ψ̃(n+1) − µ(n+1) − κ(n+1)y)ζ+dydz = 1 . (A.19)

using Newton’s method.

The iteration procedure is initiated with χ(0)(y, z) satisfying

−
∫∫

1

2y
χ(0)dydz = 1 (A.20)

−
∫∫

χ(0)

√
2y

dydz = 1 .
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Iterations of the steps outlined above are performed until convergence is reached. The

converged adjusted streamfunction field is used to obtain the vorticity field satisfying

the steady state inviscid Euler equations.
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