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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Engineering and the Environment

Doctor of Philosophy

A NUMERICAL STUDY OF SOME VORTEX RING PHENOMENA USING
DIRECT NUMERICAL SIMULATION (DNS)

by Shankar Kumar Balakrishnan

Direct numerical simulation (DNS) is used to study some aspects of the dynamics of
vortex rings in viscous, incompressible flow at Reynolds numbers (defined as the ratio

of the initial circulation to the kinematic viscosity) in the range of 103 to 10%.

Firstly, the effect of the particular initial core azimuthal vorticity profile of a vortex
ring on its subsequent evolution in unbounded flow is studied. Vortex rings with a wide
range of initial core vorticity profiles are shown to relax to a common equilibrium state.
Additionally the behaviour of the equilibrium vortex ring at large times is studied. When
the slenderness ratio of the vortex rings increases beyond a particular limit, the vortex
rings diverge from the common equilibrium state and follow paths determined by the

viscosity of the fluid.

Secondly, the interaction of a laminar vortex ring with a non-deformable, free-slip sur-
face at an oblique angle of incidence leading to the phenomenon of vortex reconnection
is investigated. Specifically the effect of Reynolds number on the dynamics of the recon-
nection process is studied. The scaling of the reconnection timescale with the Reynolds
number is obtained. At high Reynolds numbers the reconnection process leads to a
breakdown of the entire vortex ring structure to a turbulent-like flow. This phenomenon

is shown to be related to the mechanics of the reconnection process.

Finally, the dynamics of vortex rings with swirl in unbounded flow is studied. Two
different types of vortex rings with swirl were considered: i) Vortex rings with Gaussian
distributions of core azimuthal vorticity and core azimuthal velocity and ii) Steady state
solutions of the Euler equations for vortex rings with swirl. Both types of vortex rings
develop an elongated axial vortex after initialisation. The existence of a maximum limit
for the swirl on a vortex ring is shown above which the vortex rings undergo a rapid
de-swirling readjustment. A helical instability occurring in vortex rings due to swirl at
high Reynolds numbers is presented. A relation is shown to exist between one of the

modes of the helical instability and the geometric parameters of the vortex ring.
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Chapter 1

Introduction

Vortex rings are ubiquitous in nature and their dynamics include a range of interesting
phenomena which have been investigated for more than a century through experimen-
tal and numerical studies and theoretical analysis. Apart from its importance in several
engineering and environmental flows, vortex ring dynamics also provides simpler, canon-
ical instances of the various vortical interactions that occur in more complex turbulent
flows. Direct numerical simulation (DNS) has been increasingly used to gain a bet-
ter understanding of these phenomena. The present work uses DNS to focus primarily
on three aspects of vortex rings in viscous, incompressible flow: i) The evolution of
vortex rings without swirl (‘classical’ vortex rings) in unbounded flow ii) The oblique
angle interaction of a vortex ring with a non-deformable free-slip surface resulting in
vortex reconnection with the surface and iii) The dynamics of vortex rings with swirl in

unbounded flow.

1.1 Classical vortex rings

In numerical simulations of vortex ring dynamics we need to consider the issue of the
initialisation of the vortex ring. The initialisation involves the selection of a profile that
represents the variation of azimuthal vorticity within the finite core of the vortex ring.
A standard practice used in numerical simulations of vortex rings is to use a circular
core with a Gaussian distribution of vorticity. However, the Gaussian profile is only an
exact solution for the Navier-Stokes equations in the limit of a vanishingly thin core.
A Gaussian-initialised vortex ring with a finite core size would undergo a readjustment
to a different vorticity profile. Such a rapid initial readjustment involving changes in
the structure of the vortex core is seen in both experiments (Dabiri and Gharib, 2004)
and numerical simulations (Stanaway et al., 1988; Archer et al., 2008). After this initial

transient phase, the vortex rings reach a quasi-steady state (referred to in this report
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as an ‘equilibrium state’) wherein changes in the vortex ring structure are slow and

predominantly due to viscous diffusion.

In experiments, the dynamics of the vortex rings formed after the initial readjustment
appears to be independent of the different techniques used to generate them. In this
report, numerical simulations are used to study the issue of whether the structure of the
equilibrium vortex ring formed after the initial readjustment depends upon the initial
vorticity profile. Additionally the issue of the continuation of the common equilibrium

state, if it exists, up to large times is investigated.

1.2 Oblique interaction of vortex ring with free surface

Research in understanding the interaction of a vorticity field with a free surface is rele-
vant to a variety of geophysical flows. One area of particular importance is the interaction
of the wakes of partially or completely submerged moving bodies with a free surface.
The aspect of this interaction focussed upon in the present study is the phenomenon
of vortex reconnection wherein the vortex filaments at a free surface disconnect from
themselves and connect with the surface. Apart from the interaction of vortices with a
free surface the vortex reconnection phenomenon also occurs when a pair of vortex rings
or line vortices undergo a collision leading to disconnection and reconnection with each
other resulting in a linked pair. A couple of examples of geophysical flows where vortex
reconnection occurs are (i) the vortex ring emitted by a submarine performing a diving
manoeuvre which travels towards the surface and collides with it and (ii) the collision of
the growing sinusoidal perturbations of a vortex pair in the wake of an aircraft undergo-
ing a Crow instability. Vortex reconnection has been studied in these various contexts

through experiments and numerical simulations.

The key non-dimensional parameters which characterise a vortex ring — surface interac-
tion are the Reynolds number and the Froude number. The Reynolds number is defined
as the ratio between the initial circulation of the ring and the kinematic viscosity (I'g/v).
The Froude number is defined using the initial circulation, initial radius of the ring and

the acceleration due to gravity as T'o/(gR3)"/?

and is a measure of the displacement
amplitude of the surface. In the present work, interactions in the limit of zero Froude
number viz. interactions of a vortex ring with a non-deformable, free-slip surface are con-
sidered. Specifically vortex reconnection occurring due to the impingement of a vortex
ring on a non-deformable, free-slip surface at an oblique angle of incidence is investi-
gated. This problem is equivalent to an oblique-angle collision of two vortex rings with
the interaction plane coinciding with the surface. As the vortex ring impinges upon the

surface, vortex filaments in the interaction region are disconnected via viscous diffusion
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towards the surface (or equivalently diffusion towards the oppositely-signed image vor-
tex filaments) and thereby link normally with the disconnected image filaments across

the surface.

The primary focus of this study is the effect of the Reynolds number on the reconnection.
The scaling of the rate of the reconnection process (characterised by a reconnection time
Tr) with Re is obtained. An instability occurring during reconnection at high Re is
identified and explained in light of the effect of Reynolds number on the reconnection
process. A new phenomenon is presented wherein the reconnection of a vortex ring with
a free-slip surface at a high Reynolds number leads to a breakdown of the entire vortex

ring structure to a turbulent-like flow.

1.3 Vortex rings with swirl

A vortex ring with swirl consists of an axisymmetric, compact distribution of azimuthal
vorticity with non-zero azimuthal velocity. While classical vortex rings have been anal-
ysed extensively over decades, vortex rings with swirl have not been studied in great
detail. The existence of inviscid, steady solutions for vortex rings with swirl have been
shown by Moffatt (1988) and Turkington (1986). In this report the properties of vortex
rings initialised with swirl in viscous, unbounded flow were studied. The issue of whether

a limit exists for the maximum amount of swirl on a vortex ring is investigated.

The non-swirling vortex ring is known to be unstable to azimuthal perturbations which
lead to the Widnall instability (Widnall et al., 1974). In this work a helical instabil-
ity occurring in vortex rings due to swirl at high Reynolds numbers is introduced. A
method for identifying the modal structure of the helical instability is presented and the
dependence of one of the instability modes on the geometric properties of the vortex

ring is shown.

The thesis is organised into the following chapters. In Chapter 2, a review of the liter-
ature relevant to the three aspects of vortex ring dynamics discussed in this report is
presented. The numerical method and approach used in the DNS computations of vortex
ring dynamics is described in Chapter 3. In Chapters 4, 5, 6, 7 and 8 the results of the
study of (i) Classical vortex rings in unbounded flow (Chapter 4) (ii) The interaction of
a vortex ring with a free-slip surface leading to the phenomenon of vortex reconnection
(Chapters 5 and 6) and (iii) Vortex rings with swirl in unbounded flow (Chapters 7 and
8) are presented and discussed. A summary of all the findings and suggestions for future

work are provided in Chapter 9.






Chapter 2
Literature Review

The vortex ring is defined in section 2.1. The reviews of the literature relevant to the

main topics of investigation in this report are presented in sections 2.2, 2.3 and 2.4.

2.1 Definitions

A vortex ring is a bounded, toroidal distribution of vorticity. The bounded region of
vorticity is referred to as the core of the vortex ring. The vortex ring is represented in a
cylindrical coordinate system (r, 6, z) with its origin at the centre of the vortex ring (as
shown in 2.1) and translating along with the ring. The axis of the vortex ring is aligned
with the z-axis. The components of the velocity and vorticity fields are (u,,ug, u,) and

(wr, wg,w,) respectively.

The radius of the vortex ring, R, is the distance between the center of the ring and the
centre of the core. The core radius, d, is the radius of the toroid. The ratio of the core
radius to the ring radius is the slenderness ratio, e. The exact mathematical definitions

of R and § are introduced in section 4.2. The vortex ring has a circulation, I" defined as

I = //wgdrdz

with the integration performed on a radial plane. An axisymmetric vortex ring is defined
by the circulation, ring radius, core radius and the shape of the vorticity distribution

within the vortex core.
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Figure 2.1: Schematic of a vortex ring.

2.2 Classical vortex rings without swirl

2.2.1 Inviscid dynamics

The equation for azimuthal vorticity in axisymmetric, inviscid flow is given by

D(wy/r)

=0
Dt

(Batchelor, 1967) where D/Dt is the material derivative. For steady flow,

where ¢ is an arbitrary function and 1 is the Stokes streamfunction with
10vy 10y
Up = ————, Uy = ———
" rdz’ ° ror

For g(1) =constant, Norbury (1973) computed a solution family of vortex rings ranging

from thin-cored vortex rings to the Hill’s spherical vortex.

Helmholtz (1858) derived the following expression for the self-induced propagation ve-

locity of a vortex ring

R L o3
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Kelvin (1867) determined the value of the constant, C' to be —0.25 for a thin, steady

vortex ring in inviscid flow.

2.2.2 Vortex rings in viscous flow

Saffman (1970) generalised the equation for the propagation velocity by deriving an
expression for the translation parameter C' for an arbitrary vorticity profile within the
core. Saffman (1970) assumed a Gaussian distribution of vorticity within the vortex ring

core for a thin cored vortex ring in viscous flow given by

wolp) = 1 exp (~p/7) (2.3

and showed that its propagation velocity is given by

r S8R
U= R [log <5> —0.558 + O(eloge) (2.4)

Stanaway et al. (1988) performed Navier-Stokes simulations of laminar vortex rings
initialised with a Gaussian core and found that the propagation velocity with C' = —0.558

was accurate to within an error of the order of €2loge.

Stanaway et al. (1988) observed that for a thick-cored vortex ring, the initially circular
core underwent a readjustment to an elliptical shape (figure 2.2). An experimental study
of vortex ring formation and subsequent evolution was performed by Dabiri and Gharib
(2004). The core of the post-formation vortex ring visualised using digital particle image
velocimetry (DPIV) was also found to be elongated along the axial direction and non-
symmetric along the radial direction. Archer et al. (2008) performed direct numerical
simulation of Gaussian initialised vortex rings and found that the amount of vorticity
shed into the wake during the initial readjustment and the skewness of the vorticity

distribution of the readjusted vortex ring increased with the initial slenderness ratio.

The vortex ring is surrounded by a co-moving mass of rotational fluid known as an
entrainment bubble. As the vortex ring propagates, irrotational fluid is entrained into
the bubble. Additionally the vortex ring also sheds fluid with vorticity into a trailing
wake. Therefore the vortex ring properties such as impulse, circulation, radius etc. ..
vary with time. Archer et al. (2008) calculated the velocity of the vortex rings and
determined the value of the translational parameter C' according to (2.2) using the
instantaneous values of circulation, ring radius and core radius. They showed that the
plots of C vs. € for Gaussian initialised vortex rings with different initial slenderness
ratios and at differing Reynolds numbers, converged to a common curve after the initial

readjustment (figure 2.3), represented by
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Figure 2.2: Contours of azimuthal vorticity from Stanaway et al. (1988) showing
the skewed vorticity profile of a vortex ring after the initial readjustment.

C = —1.12¢% — 5.0¢* — 0.558.

The equation is asymptotic in the thin core limit of ¢ — 0 to the value for a Gaus-
sian profile of —0.558. Since C' is a function of the shape of the core vorticity profile,
this showed that the Gaussian initialised vortex rings readjusted to a common equilib-
rium state in which the shape of the core vorticity profile was dependent only on the

slenderness ratio.

2.2.3 Large time behaviour of vortex rings in viscous flow

Kambe and Oshima (1975) found that the propagation velocity of vortex rings at large
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Figure 2.3: Translational parameter C' vs. € from Archer et al. (2008),- - - -
C = —1.12¢2 —5¢* —0.558, the symbols correspond to Gaussian initialised vortex
rings with different initial slenderness ratios and different Reynolds numbers
after their initial readjustment.

times in experiments decayed as t~1°. Cantwell and Rott (1988) provided an analytical
solution for the asymptotic drift velocity as ¢ — oo dependent only on the initial impulse

of the vortex ring I and the kinematic viscosity of the fluid:

I
U = k=(wt)™®
p( )

= 3.7038 x 1073

The asymptotic state corresponds to a slowly decaying, self-similar, fat vortex ring
governed by the Stokes equations. Stanaway et al. (1988) used Stokes dipoles as the
initial condition in their numerical simulations and verified the asymptotic drift velocity
given by Cantwell and Rott (1988) obtaining an excellent match for the value of the

proportionality constant k.

Weigand and Gharib (1997) generated vortex rings in a water tank using a piston-
cylinder mechanism at different Reynolds numbers and tracked their propagation ve-
locities from their formation up to large times. The measured propagation velocities
were in good agreement with the data from the numerical simulations of Stanaway et al.
(1988). They also showed that at large times, the propagation velocity approached the
exact asymptotic solution for the drift velocity given by Cantwell and Rott (1988).
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2.3 Vortex ring reconnection with a non-deformable, free-

slip surface

2.3.1 Vortex ring and vortex pair collision
2.3.1.1 Experimental studies

The earliest experimental studies of vortex ring collisions (Kambe and Takao, 1971; Fohl
and Turner, 1975; Oshima and Asaka, 1975, 1977) used flow-visualization techniques with
smoke (in air) and dye (in water) to mark the rings. The Reynolds number for these
experimental studies was defined based on the diameter and the initial velocity of the
vortex rings. Oshima and Asaka (1975) used a water tank apparatus to simultaneously
generate a pair of vortex rings travelling along parallel axes in the same direction at a
Reynolds number of 400. The inner portions of the rings, under mutual induction, were
decelerated and the rings turned towards each other. As the ring cores with oppositely
signed vorticity came into contact the vortex filaments got delinked and cross-linked with
the respective filaments from the other ring. Thus a new deformed ring was formed with
halves of its fluid material from both the original rings. This was visualised by using
differently coloured dyes for the two rings (figure 2.4). The newly connected ends moved
away from each other and the outer portions of the ring began to approach the collision
plane. If the rings were initially imparted an impulse higher than a particular level, the
outer portions also came into contact and the filaments de-linked and cross-linked again
creating two separate rings each consisting of fluid material from both the original rings.
If the initial impulse was lower the deformed ring underwent oscillations similar to an
elliptic vortex ring with the major and minor axes switching with each other in addition
to an out of plane distortion. Kambe and Takao (1971) had also reported this ‘fusion’
and subsequent ‘fission’ phenomenon using smoke vortex rings. They had also observed

a similar dependence of the second reconnection on the initial impulse.

Fohl and Turner (1975) studied the motion of the distorted vortex ring formed from the
merging of two colliding vortex rings as the n = 2 mode of free vibration of a circular
ring. They proposed that the condition for the merged ring to further split up was
that the component of the velocity of the approaching vortex rings towards the collision
plane had to be comparable to the maximum transverse velocity of the oscillations
of the filaments of the distorted vortex ring. This gave a condition of the half-angle
between the initial trajectories of the rings to be roughly 16° above which successive
reconnections occurred in almost all the cases. This was supported by experiments of
vortex ring collisions at a Reynolds number of 4000 studying the percentage of collisions
leading to two successive reconnections at varying angles of approach. Oshima and Asaka
(1977) however, demonstrated that even parallel vortex rings undergo reconnection and

suggested that the low percentage in the case of Fohl and Turner might be due to low
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Figure 2.4: Series of photographs from Oshima and Asaka (1975) of the first
(top) and second (bottom) reconnection events during a collision of two vortex
rings visualised using different dyes

reproducibility and inaccuracy in vortex formation at high Reynolds numbers due to the
high initial speeds involved. In their experiments, they varied the Reynolds number by
modifying the initial speed. They found that for Re < 230 there was no reconnection,
for 230 < Re < 300 a single reconnection event occurred, for 300 < Re < 420 two
reconnection events occurred and for 420 < Re < 650 the two rings formed by the
previous reconnections once again underwent a third reconnection to yield a deformed
ring which oscillated and diffused away. Greater initial velocities resulted in an initially

turbulent ring which diffused away before any reconnection.

Oshima and Asaka also studied the variation of the time up to the first reconnection
which showed an exponential variation with Reynolds number. Kida et al. (1989) pointed
out that the change in topology of a passive scalar used to mark the flow such as
smoke or dye would not necessarily track the changes in the vorticity field. While
vorticity magnitude intensifies when vortex lines undergo stretching, scalar markers

would decrease in density.

Experimental studies involving quantitative measurements of the flow-field were car-
ried out by Oshima and Izutsu (1988) and Izutsu and Oshima (1991) using hot-wire
anemometry and Schatzle (1987) using Laser Doppler velocimetry. Schatzle plotted (see
figure 2.5 for their initial configuration) contour maps of, apart from vorticity, velocity
gradients on the symmetry plane as the vortex rings interacted. The vortex cores upon
collision were observed to be stretched and flattened into a shape with an elongated
tail referred to as a ‘head-tail’ structure (figure 2.6). During this process, the out-of-

plane strain dv/dy (where the symmetry plane is defined by y = 0) was observed to be
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Figure 2.5: Schematic from Schatzle (1987) showing the flow configuration

significantly large in the region. The in-plane strain du/0x was negative implying the

compression of the fluid between the two cores.

Schatzle observed that the reconnection process occurred over a timescale much smaller
than would be predicted by a purely viscous cancellation process. He proposed the
following sequence of events emphasizing the role played by the out-of-plane strain which
was observed to increase simultaneous with the reconnection process. Initially as the two
rings approach each other along their axes, the in-plane strains (Ju/0z and dw/0z) are
oppositely signed with the fluid being compressed laterally between the two cores (in the
x-direction) and stretched along the z-axis direction. As the oppositely signed vortex
filaments from the two rings come into contact, cancel out each other and reconnect,
they induce a flow opposite to that due to the unconnected filaments in the z-direction.
Now both the in-plane velocity gradients are negative contributing to the growth of the
out-of-plane strain (0v/0dy) which stretches the vortex filaments and thereby increases
the vorticity gradient across the vortex cores which aids the cancellation of vorticity by

viscosity.

Based on the importance of viscosity and the strain rate, Schatzle considered two ex-

1/2 where d is the

pressions for the reconnection time: Tg ~ d/(av) and Ty ~ d?/(I'v)
diameter of the vortex cores and « is an average measure of the out-of-plane strain
rate during the connection process. Also based on a one-dimensional model he derived
another expression for the reconnection time: Tk ~ (1/2¢)log(d?¢’/v) where € is the

in-plane strain. His measurements were insufficient to decide between the timescales.

Oshima and Izutsu (1988) plotted the vorticity isosurfaces and the variation of circula-
tion on both the symmetry and collision planes and showed the simultaneous depletion

of vorticity on the symmetry plane and appearance of new cross-links on the collision
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Figure 2.6: Head-Tail structure from Kida et al. (1991) vorticity contours on
the symmetry plane. Solid and broken lines represent vorticity of opposite signs

plane. They identified that the disconnection and reconnection did not occur at one
location or instantaneously but rather gradually with the vortex cores depleting over a
finite time. The new cross-links coalesced to form two ‘bridges’ which then moved apart

owing to their strong curvature.

2.3.1.2 Numerical simulations

Melander and Hussain (1989) performed a direct numerical simulation of reconnection
of an anti-parallel vortex pair at a Reynolds number (Ip/v) of 1000 using a pseudo-
spectral method. The vortex pair were initialised with a sinusoidal perturbation which
grew and brought the vortices into contact initiating the vortex reconnection process.

They proposed a bridging mechanism for the reconnection process (described below).

Kida et al. (1991) performed a numerical simulation of the collision of two vortex rings
at an oblique angle using a spectral method on a grid with 643 points. The rings were
initialised with a Gaussian distribution of vorticity in the cores and aligned along axes
subtending an angle 26 between them. Simulations were performed for varying values
of Re and . Plotting the vorticity contours on the symmetry and collision planes, they
outlined the deformation of the vortex cores upon collision into dipole-like structures

with a head containing the vorticity peak and an elongated tail (figure 2.6).

The interaction process was described in terms of the ‘bridging’ mechanism proposed by

Melander and Hussain (1989) involving three phases:

1. An inviscid advection phase wherein, due to the induced velocity field of the vortex
rings, the rings tilt towards each other and come into contact stretching and flat-
tening their respective cores into a head-tail structure (figure 2.6) which advects

towards the direction of the head.

2. A bridging phase involving the mutual cancellation of oppositely signed vortex fil-

aments through viscous diffusion and simultaneous reconnection along the normal
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Figure 2.7: Vorticity iso-surface from Kida et al. (1991) illustrating the bridges
and threads formed during vortex reconnection

Figure 2.8: History of circulation of interacting vortex core during the different
phases of reconnection from Melander and Hussain (1989).

to the collision plane at the site of two ‘bridges’ (figure 2.7). The circulation is

transferred from the initial direction to the orthogonal direction (figure 2.8).

. A threading phase involving the movement of the unconnected vortex filaments,

termed ‘threads’ (figure 2.7) away from each other and the termination of the
reconnection process before completion. The incompleteness of the reconnection
was attributed to the reversal of curvature of the threads due to the induced
velocity of the bridges and the non-interacting parts of the vortex rings. The
self-induced velocity of the threads after the curvature reversal would lead their
separation to increase slowing the rate of reconnection. As a consequence of this
mechanism it was predicted that an entanglement of vortex lines would occur close
to the bridges due to both the reconnected and uncancelled vortex lines rotating

about the vortex core.

The history of the circulation of the interacting vortex core during these three phases is

shown in figure 2.8.
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A second reconnection occurred as observed in experiments with the previously non-
interacting ends of the rings approaching each other. The mechanism was seen to be
similar to the first reconnection. The rate of decline of the circulation of the vortex
core was found to be slower than during the first reconnection. Also the reconnection
process left behind a greater amount of uncancelled vorticity than in the first. These
were attributed to the absence of a background flow pushing the vortex cores together
as was present in the case of the first reconnection as a result of the non-interacting

parts of the vortex rings.

From the kinetic energy, dissipation rate and enstrophy fields the regions where high
energy dissipation prevailed were found to be very localized, occurring predominantly
at the interaction zone, the bridges and the threads. Tracking the time evolution of a
passive scalar, they demonstrated that the iso-surfaces of scalar markers and vorticity
magnitude do not develop in the same way. This had implications for using smoke, dye

visualisation to study quantitative aspects such as the reconnection time.

Chen (1991) performed direct numerical simulations of vortex ring collisions at vary-
ing Reynolds numbers. The vortex rings were initialised by simulating the ejection of
fluid through circular openings (the generation process for vortex rings used in experi-
ments). The core deformation due to the interaction was found to be minimal for the low
Reynolds number simulation. The maximum dissipation rate in the flow field increased
with time when the reconnection began attaining a peak value (figure 2.9) before de-
creasing. The peak value was found to increase with Reynolds number. The dissipation
process was hence identified to be critical to the reconnection process. Chen reasoned
that reconnection would occur even in the limit of v — 0 since the energy dissipation
rate (2ve where € is the square of the strain-rate tensor) would remain finite since e

would tend to infinity.

All the studies in the literature investigating the scaling of reconnection time with Re

pertain to the reconnection of anti-parallel vortex pair.

Shelley et al. (1993) used a pseudo-spectral method on a uniform grid to simulate the
interaction of two perturbed counter-rotating vortex tubes at Reynolds numbers varying
from 500 to 1500. An adaptive spectral method on a stretched grid was used to perform
the simulation at higher Reynolds numbers (1500 to 3500). The vortices collided and
were flattened against each other. The vortex stretching process began as the regions of
high vorticity and strain rate on the symmetry plane became aligned. The cores were
flattened into ribbons along the length of which the viscous dissipation was strong. The
flattening of the vortex core during reconnection increased with Reynolds number. The
vorticity maximum attained during the reconnection increased with Reynolds number
and at Re = 3500, the vorticity was found to stretch to nearly seven times its initial value

(figure 2.10). The reconnection time, defined as the time to halve the circulation on the
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Figure 2.9: Maximum energy dissipation rate vs. Time at Reynolds numbers of
a) 1000 b) 600 from Chen (1991)
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Figure 2.10: Vorticity maximum on the symmetry plane for Re = 1000, 1500,
2000, 2500, 3000 and 3500 from Shelley et al. (1993)

symmetry plane, was found to vary with Reynolds number slower than a logarithmic

variation.

Garten et al. (2001) performed a direct numerical simulation of a vortex pair undergoing
the Crow instability and subsequent vortex reconnection in stratified and unstratified
fluid at varying Reynolds numbers. The reconnection time, defined as the inverse of
the rate of decay of the circulation of the interacting vortex core when the circulation
decreases to half its initial value, decreased with increasing Reynolds number as 1/Re.
Melander and Hussain (1989) had attributed the incompleteness of the reconnection to
the curvature reversal of the threads due to the induced velocity of the bridges and

the consequent self-induced velocity away from the collision plane. Garten et al. (2001)



Chapter 2 Literature Review 17

(c)t* =1.84 (d)t* =2.07

(e)t* = 2.30 (f)t* =2.77

Figure 2.11: Vorticity magnitude isosurfaces showing typical reconnection of
an anti-parallel vortex pair at Re = 2000 from Hussain and Duraisamy (2011).

found that the curvature reduced without undergoing a complete reversal. Apart from
the curvature reduction they showed that viscous diffusion also played an important

part in increasing the thread separation during the late stages of reconnection.

Hussain and Duraisamy (2011) performed direct numerical simulation of the reconnec-
tion of an anti-parallel pair using a pseudospectral method for Reynolds numbers ranging
from 250 to 9000.

They reported that the maximum rate of change of circulation scaled as Re™ with
n = 1.0. At high Reynolds numbers they found that the vortex core was flattened into
a vortex sheet. The ‘head’ of the vortex sheet split away from the remaining part. This
was attributed to a Kelvin-Helmholtz instability. The reconnection at high Reynolds
numbers was also accompanied by the appearance of anti-symmetric features and found

to lead to a rapid development of small scale structures (figure 2.12).

Rees et al. (2012) performed a simulation of a reconnecting vortex pair at a Reynolds
number of 10000. The energy spectrum during the reconnection of two vortex tubes
without axial flow was shown to follow a slope of -5/3. A subsequent second reconnection
due to the reconnection of the oscillating elliptic vortex ring formed at the end of the

first reconnection had an energy spectrum with a -7/3 slope. As in the case of Hussain
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Figure 2.12: Vorticity magnitude isosurfaces showing development of small-
scale features during reconnection of an anti-parallel vortex pair at Re = 7500
from Hussain and Duraisamy (2011).

and Duraisamy (2011), they also found a rapid generation of small-scale structure along
with the reconnection at high Re (figure 2.13).

2.3.1.3 Analytical models for vortex pair reconnection

Shelley et al. (1993) discussed some analytical models proposed for vortex pair recon-
nection and performed a numerical simulation of the reconnection of two anti-parallel
vortex tubes to assess these models. Pumir and Siggia (1987) modelled the vortex re-
connection phenomenon in inviscid Euler flow using vortex filaments to represent the
vorticity field. The core of the vortex filaments was constrained to be circular through-
out the interaction. Also the model did not take into account the effect of axial flows
along the vortex tube. Shelley et al. (1993) showed that the Siggia-Pumir model, if
viscous effects are included leads to a variation of reconnection time (defined as the time
taken for the circulation on the symmetry plane to be halved) with Reynolds number

as Tp = t« + O(1/Re) where t, is the singularity time in the inviscid case.

Kambe (1983) had modelled the reconnection of two vortex layers under the influence
of an in-plane two-dimensional strain and obtained the reconnection time to be T ~
log(Re/2a) where « is the strain rate in the limit of large Reynolds numbers. Buntine
and Pullin (1989) modified Kambes model by specifying an out-of-plane strain. However
the strain rate was not affected by the evolution of the vorticity field and the same

timescale for the reconnection time as Kambe was obtained.

Saffman (1990) proposed an analytical model consisting of a set of equations describing
the time evolution of the circulation, core deformation, distance between the interacting
cores and the velocity component normal to the symmetry plane (involving the out-of-

plane pressure gradient). Based on the model, Saffman presented a couple of timescales
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Figure 2.13: Vorticity isosurfaces (at two levels) from Rees et al. (2012) showing
generation of small scale structures during vortex reconnection at Re=10000.

for the duration of the reconnection process. Shelley et al. computed the numerical
solution of Saffmans model and showed that it predicts an increase of the reconnection

time with the Reynolds number according to tg ~ log(Re/2a).

2.3.2 Vortex ring reconnection with a deformable free surface

A free surface boundary is characterised by zero tangential stress and constant pressure
along the surface. An interface where the density and viscosity of one of the fluids is
negligible compared to that of the other fluid (as in the case of a water-air interface) can
hence be approximated as a free surface. A deformable free surface introduces additional
dynamics. Unlike a flat surface, surface parallel vorticity can exist over a deformable

surface.

Experimental studies of vortex ring reconnection with a free surface have been performed
by Bernal and Kwon (1989), Weigand and Gharib (1995) and Gharib and Weigand
(1996). As the vortex ring approaches a free surface surface, it induces a changing

velocity field at the surface. The surface gains elevation appropriate to the velocity and
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Figure 2.14: Vortex ring reconnection with a linearised free surface from Zhang
et al. (1999).

acceleration (at each point on the surface). The curvature and the tangential variation of
the surface normal velocity lead to regions of positive and negative vorticity (same as the
upper tip of the vortex ring). The negative vorticity rolls up to form a secondary vortex.
The secondary vortex interacts with the primary vortex and influences the reconnection

process.

Zhang et al. (1999) performed a direct numerical simulation of an oblique vortex ring
interacting with a deformable surface. They used linearised free-surface boundary con-
ditions assuming small free-surface elevation. The different stages of the reconnection

of the vortex ring with the linearised free surface are shown in figure 2.14.

To explain the mechanism of vortex connection they presented a model of two layers
below the surface: An inner viscous layer immediately below the surface and an outer

blockage layer. The blockage layer facilitates the variation of the flow velocities to satisfy
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the kinematic boundary condition at the free surface. Its thickness is dependent on the
flow length scale. The viscous layer facilitates the dynamics stress boundary conditions
at the surface by the viscous effects. Hence, its thickness is dependent on the Reynolds

number.

During the surface connection period it was found that the blockage layer involved
mainly vortex stretching and tilting wherein the surface parallel vorticity was converted
into surface normal vorticity. This reached a maximum at the inner edge of blockage layer
and diminished within the viscous layer. Within the viscous layer, vorticity diffusion
caused flux of the surface parallel vorticity to the surface and transport of surface normal

vorticity towards the surface.

2.4 Vortex rings with swirl

Vortex rings with swirl or angular momentum have not been investigated as extensively
as classical vortex rings. The earliest literature on vortex rings with swirl is concerned

with the existence of axisymmetric, steady solutions to the Euler equations.

The Euler equations for axisymmetric, inviscid, incompressible flow with non-zero az-
imuthal velocity can be expressed in terms of the Stokes streamfunction (Batchelor,
1967) as

rug = f(¥) (2.5)
where h(¢) = % + %(uf +uf 4 u?).

f and h are arbitrary functions of the streamfunction. In vortex rings without swirl a
streamline is confined to a radial plane. In the presence of swirl, the streamlines are
helical.

Turkington (1986) showed the existence of steady solutions using a variational method.
The solution is a two-parameter family of vortex rings. One parameter specifies the
swirl with the extreme cases of a vortex ring without swirl and a Beltrami vortex ring in
which the vorticity field is parallel to the velocity field everywhere in the flow. The other
parameter specifies the size of the cross-section of the vortex ring with the extreme cases
of a thin cored vortex ring and a spherical vortex ring. Moffatt (1988) used an analogy

between the Euler equations and the equations governing magnetostatic equilibrium in a



22 Chapter 2 Literature Review

Figure 2.15: Vortex line geometry of a polarized vortex ring from Virk et al.
(1994).

viscous perfectly conducting fluid and obtained the exact solutions of the Euler equations

using a method of magnetic relaxation.

Eydeland and Turkington (1988) presented an iterative, numerical method to obtain
the exact solutions found by Turkington (1986). Lifschitz et al. (1996) eliminated the
requirement for a large computational domain in this method by using non-reflective
boundary conditions ensuring smooth variation of the computed streamfunction at the
boundary. They performed a short-wavelength analysis and predicted the growth rates
of localised instabilities. They also used a three-dimensional vortex particle method
to perform Fuler simulations with perturbed vortex rings and compared the observed

growth rates with the predictions.

Virk et al. (1994) performed axisymmetric Navier-Stokes simulations of initially po-
larized isolated viscous vortex rings containing swirl using helical wave decomposition
(HWD). They described the coupling of the swirl and meridional flow and showed that
it lead to destruction of azimuthal vorticity in the front of the ring (as defined by the
propagation direction) and generation in the rear. They found that the polarized vortex
ring developed an axial vortex on the axis of symmetry. Figure 2.15 shows the vor-
tex line geometry after the development of the axial vortex. They also found that the

propagation velocity of the vortex ring decreased with increasing polarization.

Hu et al. (2001) performed Navier-Stokes simulations of vortex rings with swirl using
exact solutions of the steady Euler equations obtained using the method of Lifschitz
et al. (1996) as the initial condition. They introduced azimuthal perturbations and
studied their growth. The azimuthal perturbation modes initially grew linearly and two

bands of growing waves were observed.
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Cheng et al. (2010) used a Lattice Boltzmann method to study vortex rings with swirl in
viscous fluid. They initialised the vortex rings with a Gaussian distribution of azimuthal
vorticity and an additional swirl velocity profile. Due to swirl, the vortex ring developed
a region of negative azimuthal vorticity. At high swirl, the negative azimuthal vorticity
rolled up to form a secondary vortex ring. The secondary vortex ring interacted with

the primary ring leading to intertwining vortex filaments (figure 2.16).
Time —

Figure 2.16: Evolution of vortex rings with swirl visualised using isosurfaces of
vorticity from Cheng et al. (2010). Each row represents the evolution of a single
vortex ring. The amount of initial swirl in the ring increases from the top row
to the bottom.






Chapter 3

Numerical method

The direct numerical simulation (DNS) studies performed in this work utilised the par-
allelised finite-difference numerical solver CGLES. The code has been written in C/C++
and uses Message Passing Interface (MPI) libraries to implement the parallelisation. It
was initially used in large-eddy simulations (LES) and DNS of flow over complex ge-
ometries (Thomas and Williams (1997),Yao et al. (2001)). CGLES was recently used
in DNS studies of vortex rings in unbounded fluid (Archer et al., 2008) and vortex ring

collision with a free-slip, non-deformable surface (Archer et al., 2010).

The incompressible mass conservation equation and the incompressible, viscous Navier-

Stokes momentum equations are solved in a Cartesian coordinate system.

aui

oz, 0 (3.1)
ou; ou; 1 0p 0%u;

) - __ 2
ot U 0 p 0x; + V@:L‘j&z:j (3:2)

p and v are the density and the kinematic viscosity of the fluid respectively. p is the
kinematic pressure and u; = (u, v, w) is the fluid velocity at point z; = (z,y, z) at time
t.

The code uses a staggered grid to implement a second-order central difference scheme
for spatial discretisation conserving momentum and energy. The computational domain
with N, x N, x N, uniformly spaced grid points is partitioned into N; blocks with
ng X ny X n. points in each block. The N; blocks are mapped to IV, < N;, processors.
In addition to the points within its boundary, each block maintains an overlap region
consisting of a layer of grid points extending beyond the block boundary. The message
passing interface is used to transmit information about changes in the flow data within

each block to the overlap regions of the neighbouring blocks.

25
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The computation is initiated with an initial velocity field and the boundary conditions.
The projection method and a second order, explicit Adams-Bashforth scheme is used
for the time advancement. Using the velocity and pressure field data from the (n — 1)t

and n'™ timesteps, the velocity field at the (n + 1) timestep is given by

3AtL op™ At op™ 1
ntl _ . n o=y n _ = n 1
u; ' =u; + 5 <HZ Z) 5 <HZ i (3.3)

where At is the time step and H; is defined as

8u,~ 82 U;

Hy = —uj— :
! Ui &%]‘ + V@xjal’j

(3.4)

In the projection method, an intermediate velocity u; is computed, neglecting the pres-

sure gradient at the n'! timestep from (3.3).

e o B3At . At Op!
3At Op™
n+l * _ O=r

By enforcing continuity (equation 3.1) at the (n 4 1) timestep, a Poisson equation for

the pressure at the n'? timestep is obtained.

o*p" 2 Ouj
89526351 - 3AL 8901

(3.7)

Finally after solving for the pressure field at the n'" timestep, the velocity field at the

(n 4 1)t timestep is obtained from equation 3.6.

The Poisson equation for the pressure field is solved using a parallel, multigrid method.
Within each block a hierarchy of grids with different mesh sizes is constructed by binary
subdivision. Beginning from the finest grid with (n,ny,n.) gridpoints, each successive
subdivision results in a coarser grid with half the number of grid points along each
direction. The values of n,,n, and n. are therefore chosen such that the number of
possible subdivisions is maximised. At each level of subdivision, the grids have overlap
regions and the message passing interface is used to transmit information about changes

in the flow data.

The algorithm of the multigrid method consists of the following steps:

1. At the finest grid level, two iterations of the Gauss-Seidel method are performed

and the residual of the Poisson equation is computed (Pre-Smoothing).
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2. The residual is transferred to a coarser grid by a ‘restriction’ operator. The residual
value at a gridpoint on the coarser grid is computed as a linear combination of the
values of the residual at neighbouring gridpoints on the finer grid. Two iterations

of the Gauss-Seidel method are performed at the coarser grid.

3. Step 2 is repeated until the coarsest grid level is reached. At the coarsest grid
level, a Red-Black successive over-relaxation scheme is used to solve the Poisson
equation. Iterations of the scheme are performed until the error norm is reduced

below a defined tolerance level.

4. The corrected pressure field is transferred to the next finer grid level using a
‘prolongation’ operator which interpolates the values from the coarser grid level.
Two iterations of the Gauss-Seidel method are performed at the finer grid (Post-

Smoothing).

5. Step 4 is repeated until the finest grid level (the initial grid) is reached. Two final
Gauss-Seidel iterations are performed at the initial grid level. If the error norm
at the initial grid level is higher than a defined tolerance level, the entire cycle is

repeated.

With a sufficiently high level of subdivision, the computational time spent at the coarsest

grid level (step 3) is negligible compared to the time spent in performing the other steps.

The simulations in this report have been performed at Reynolds numbers of up to ~ 104
using up to ~ 1.0 x 10? cells. The numerical code is highly parallelised and large-scale
computations have been performed using up to 4096 processors. The simulations were
run on the University of Southampton Iridis 3 cluster and HECToR, the UK’s high-end

computing resource.






Chapter 4

Classical vortex rings in

unbounded flow

The velocity of a vortex ring given by (2.2)

r 8R

provides a sensitive measure of the vortex core structure since the translation parameter
C' is purely a function of the shape of the core vorticity profile. Archer et al. (2008)
used this property to show that Gaussian initialised vortex rings with different initial
slenderness ratios and at different Reynolds numbers, after undergoing an initial adjust-
ment, relaxed into a common equilibrium state. Using plots of the translation parameter
against the slenderness ratio, they showed that this equilibrium state constitutes a single
parameter family wherein the shape of the core vorticity profile is uniquely determined

by the slenderness ratio.

In this chapter, a DNS study of classical vortex rings with a wide range of initial core
azimuthal vorticity profiles is presented. They are shown to readjust to the common
equilibrium state identified by Archer et al. (2008). The structure of the equilibrium
state vortex rings is described. The issue of whether the common equilibrium state

continues up to large times is also studied.

The numerical approach used for the simulations discussed in this chapter is outlined in
section 4.1. The method used to track the structure of the vortex ring core is described
in section 4.2. An assessment of the numerical approach is provided in section 4.3. The
study of vortex rings with various initial core vorticity profiles is presented in section
4.4. The structure of the equilibrium state vortex rings is described in section 4.5. The
behaviour of the vortex rings at large times is investigated in section 4.6. Finally, the

conclusions of the study are summarised in section 4.7.

29
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Figure 4.1: Schematic of a section of the computational domain (y = 0) for
the study of the classical vortex rings. The shaded region corresponds to the
logging domain.

4.1 Numerical approach

The simulations were carried out in a cubic domain with dimensions L, x L, x L along
the Cartesian coordinate directions x, y, and z respectively. The initial setup consisted
of a vortex ring of radius Ry and circulation Iy with its centre located at (0,0,0) and

its axis aligned with the z-axis (Figure 4.1).

Periodic boundary conditions were used along the x and y directions. This effectively
simulates a periodic square array of vortex rings. Therefore the domain size needs to be

large enough that the effect of the array on the evolution of a single ring is negligible.

4.1.1 Comoving reference frame

During the propagation of a vortex ring in viscous flow, a narrow trailing wake is formed.
If the simulation of vortex ring dynamics is performed in a triply periodic domain,
the vortex ring would encounter and interact with its own wake. To avoid this, the

computation was performed with respect to a reference frame which moved in the z
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direction along with the vortex ring. Inflow and outflow boundary conditions were used
at the z = L,/2 and z = —L,/2 boundaries.

An integral-proportional controller was used to determine the velocity of the reference
frame at each timestep (W,..f(t)) required to maintain the vortex ring close to the centre
of the reference frame. The location of the vortex ring along the z-axis with respect to

the origin of the comoving reference frame was calculated as
Z(t) ! / 2qv (4.1)
=— [ 2w .
2Q
v

where 2 = % f w2dV is the total enstrophy. The integral-proportional controller was
\4

used to maintain Z(t¢) close to the target location Z. = 0, ensuring that the vortex
ring remained close to the center of the comoving reference frame. The time-dependent

velocity of the co-moving frame is given by

Wyer(t) = 201(Z(t) = Z0) + & / (Z(t) — Z.)dt, (4.2)
0

where ¢; and ¢y are damping and oscillation timescales. The values adopted for the
damping and oscillation timescales in the integral-proportional controller are
c1 = 2Iy/R3 and ¢y = 41/ R2 as used in Archer et al. (2008).

Since the calculations were performed with respect to the reference frame, the inflow
boundary condition at the inlet boundary was given by w(x,y, L./2) = —W,¢¢(t) (as-
suming L, is large enough that the velocity induced by the vortex ring at the inlet
boundary is negligible). Irrotationality of the inlet flow was enforced by applying the
boundary conditions Ou/0z = 0v/Jdz = 0 at the inlet z = L,/2. At the outlet boundary
z = —L,/2, linear gradient conditions, du/0z = dv/dz = dw/dz = 0 were imposed.

The numerical approach described above is the same as that used by Archer (2008).
4.1.2 Vortex ring initialisation
For a chosen initial core azimuthal vorticity profile the axisymmetric vorticity field was

used to obtain the initial velocity field using the vector stream function method outlined

below.

For a given initial vorticity field w;, the velocity stream function W is obtained by solving

VI = -3, (4.3)
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and the velocity field is given by

@=VxU. (4.4)

If the initial vorticity field is not exactly divergence-free, then it differs from the final
divergence-free vorticity field &y = V x 4. The initialisation method effectively applies

a correction that renders the vorticity field divergence-free.

4.1.3 Simulation details

For all the simulations in this chapter, a domain size of L, = L, = L., = 8Rgy was
used with N, = 512, N, = 512, N, = 512 uniformly spaced grid points along the z,y, z
directions respectively. The timestep was chosen such that the maximum value across the
domain of the Courant-Freidrichs-Lewy (CFL) number based on the local velocity and

grid size remained below 0.20 throughout the simulation to ensure numerical stability.

Archer (2008) who had used the same numerical approach, showed that increasing the
domain size beyond 8 Ry x 8 Ry x 8 Ry had a negligible effect on the evolution of the char-
acteristics of a vortex ring with an initial radius of Ry. The adequacy of the numerical

resolution is demonstrated in section 4.3.

Simulations of vortex rings with a range of different initial azimuthal vorticity profiles
were performed. In addition, the Reynolds number at which the simulations were per-
formed was also varied. Table 4.1 lists the different profiles used and the values of the
parameters used. In addition to the analytically defined profiles, a solution to the steady
state, axisymmetric Euler equations was used as the initial condition for case ES. The
solution satisfies the condition wg/r = g()) where 1 is the Stokes streamfunction in a
reference frame in which the vortex ring is steady. The solution was computed using the
numerical Euler solver described in appendix A. The swirl free vortex rings computed

using this method are solutions for the functional form wy/r = ,B@bi /2.

4.2 Tracking vortex core structure

The shape of the core vorticity profile was tracked using the instantaneous values of the

translation parameter C' given by

4T RU S8R

The velocity of the vortex ring in the simulation with respect to a stationary reference

frame is Wier(t) + dZ/dt where Wie(t) is the velocity of the comoving reference frame.
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Archer (2008) determined that the axial velocity induced by the infinite periodic square

array of vortex rings with L, = L, = X is given by

_ I'R?
W~ _9'032W ) (4.6)

Therefore the velocity of the vortex ring in unbounded fluid, U, is given by

U =Wyes(t) +dZ/dt — @ . (4.7)

The parameters of the vortex ring in (4.5) were defined as integral quantities on a radial

plane as in Archer et al. (2008). The circulation is defined as

r— [ wdraz. (4.8)

The first and second radial moments of the azimuthal vorticity,

1
R, = F// rwpdrdz
R = l // rlwedrdz
2 T 0 )

are used to define the ring radius R and core radius ¢ with

R = R, (4.9)
§ = /2(R:-R?). (4.10)

If the integration is performed over the entire computational domain, the presence of
a trailing wake affects the tracking of the vortex ring characteristics. Therefore the
integration is only performed over a logging domain attached to the comoving frame
defined by —2Ry < z < 2Ry (Shaded region in figure 4.1).

4.3 Assessment of numerical approach

The accuracy of the results obtained using the numerical approach is demonstrated in

this section.
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Case | Core profile wy(r, 2) Parameters
I p? 8o/ Ro = 0.14,
G1 | Gaussian 775% exp <5§> To/v = 3000
G2 | Gaussian ;5“0//]30 :1262007
0 =
G3 | Gaussian ig// 150 :4(5)'0302a
0 prm—
G4 | Gaussian ;59//150 :1264007
0 =
So/Ro = 0.3
T _ 2 /.2 2 b2 0 0 5
El | Elliptical % exp (— (r = Ro) g;‘ +7/ ) a=1.0,b= 0.6,
Tand 0 Io/v = 1500
8o/ Ro = 0.3,
E2 | Elliptical a=0.6,b=1.0,
Io/v = 1500
I p
. % <0.9
So/Ro = 0.3
Smoothed I's (1—cos(10m(1—p/do)) p B
P _
0 1< — I'y/v = 1500
do
Steady @wc ? = 350,
SE | Euler 2 "t = 1.5,
solution ¥4 =max(1, 0) I'y/v = 1500

Table 4.1: Initial core azimuthal vorticity profiles. The radial distance from the
circumferential core axis is p = \/(r — Rp)? + 22.
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4.3.1 Grid resolution test

The adequacy of the spatial resolution was checked by tracking the volume integrated
kinetic energy per unit mass with respect to the co-moving reference frame (K) given
by

1
K= 2///(u2+v2+w2—wfef)dv. (4.11)
\%4

The integration was performed over the entire computational domain. In the absence
of spatial discretisation error, the rate of change of K would be exactly balanced by the
volume integrated rate of kinetic energy dissipation (ex ) after accounting for the volume

integrated kinetic energy flux out of the domain (Fk). The energy balance is given by

dK
The difference between the left and right hand sides of this equation is a measure of the

spatial discretisation error in computing the flow.

Figure 4.2 shows the histories of the left and right hand sides of the energy balance
equation for the simulation of case G3 which was performed at Re = 4500. The difference
between the two sides of the energy balance equation remains less than 1 x 107°I3 /Ry
throughout the simulation. This shows that the error due to the spatial discretisation

remains negligibly small throughout the entire simulation.

4.3.2 Comparison with case from Archer et al. (2008)

Case G1 was defined using the same initial parameters as case C1 from Archer et al.
(2008). The values of the integral ring parameters for this case are available at t =
15R2 /T from their study. The values of the integral parameters at t = 15R3 /I for case
G1 from the present work are listed in table 4.2 and found to match the corresponding
values from Archer et al. (2008) nearly exactly. This further demonstrates the accuracy

of the present simulations.

4.4 Effect of initial vorticity profile

In this section, the evolution of the vortex rings from table 4.1 with a wide range of
initial core vorticity profiles is discussed. The changing structure of the vortex core

was tracked using the method described in section 4.2. The instantaneous values of the
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Figure 4.2: Comparison of histories of Rate of decrease of volume-
integrated kinetic energy (—dK/dt) and - - - - Sum of volume-integrated rate of
dissipation and energy flux (ex + F) for case G3. The two curves are practically
overlapping.
Case tF()/Rg F(t)/ro R(t)/Ro (5(t)/R0
G1 from present study 15.0 0.9995 0.996 0.202

C1 from Archer et al. (2008) | 15.0 0.999 0.995 0.203

Table 4.2: Comparison of integral ring parameters at t = 15R% /Ty for the cases
G1 from the present study and C1 from Archer et al. (2008) defined using the
same initial parameters.

translation parameter C' were computed from (4.5) and plotted against the corresponding

slenderness ratio e.

Figure 4.3 shows the variation of C with € for the Gaussian initialised vortex rings. In all
cases, the vortex rings undergo a rapid readjustment after initialisation, shedding some
amount of circulation into the wake. The plots of C vs. € are attracted onto and collapse
into a single curve. Table 4.3 shows the approximate time at which the vortex rings join
the single-parameter family (¢.,) and the values of the integral parameters at that time.

The loss of circulation associated with the readjustment of Gaussian initialised vortex
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Figure 4.3: Translation parameter C' plotted against the slenderness ratio e for
cases G1, G2, G3 and G4 involving Gaussian initialised vortex rings (identified
by the initial slenderness ratios). The dashed line corresponds to equation (4.13)
from Archer et al. (2008).

rings increases with initial core size as noted by Archer et al. (2008). Archer et al. (2008)

used the equation

C = —1.12¢% — 5.0¢* — 0.558 (4.13)

to represent the variation of C for the equilibrium vortex rings in their study in which
the slenderness ratio varied up to approximately 0.38. The equation is seen to closely
match the common C' vs. € curve from the present work (within the same range of

slenderness ratios).

Figure 4.4 shows the variation of C' with ¢ for the vortex rings initialised with the
different non-Gaussian profiles, which are also found to readjust to the equilibrium state
identified by Archer et al. (2008). Both the elliptical profiles relax to the equilibrium
state within ¢ ~ 26R(2) /Tp. The smoothed top-hat vortex ring reaches the equilibrium

state after a substantially longer time period of readjustment of approximately 63R3/I5.

The initial location of the C' vs. € plot for case SE, initialised with an inviscid steady
Euler solution, is found to be close to the curve defined by (4.13). The vortex ring
undergoes readjustment within ¢ ~ 24R(2) /Iy shedding only 0.2% of its initial circulation.
Figure 4.4 indicates that the core vorticity profile for the inviscid solution generated
using the power law function wy/r = 1751#_%_’5 is close to the vorticity profile of a viscous

equilibrium state vortex ring with the same slenderness ratio.

Vortex rings with a range of initial core vorticity profiles are thus seen to readjust into
a common equilibrium state. The shape of the core vorticity profile of the readjusted

vortex rings is determined by the slenderness ratio alone. Since the slenderness ratio
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Figure 4.4: Translation parameter C plotted against the slenderness ratio €
for cases E1, E2, ST and SE involving non-Gaussian vortex rings. The black
dashed line corresponds to equation (4.13) from Archer et al. (2008).

Case teqFO/Rg I'eg/To | Req/Ro | deq/Ro

G1 15.0 0.9995 | 0.996 0.202

G2 20.0 0.991 0.991 0.302

G3 32.0 0.952 1.016 0.330

G4 40.0 0.887 1.035 0.420

El 26.0 0.960 1.010 0.329

E2 22.0 0.987 0.989 0.316

ST 63.0 0.971 0.993 0.350

SE 24.0 0.998 0.985 0.298

Table 4.3: Approximate time taken for the different vortex rings to relax to the
equilibrium state and the values of the integral ring parameters at that time.
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changes during the evolution of the vortex ring, the equilibrium state is not strictly

self-similar.

4.5 Structure of the equilibrium vortex rings

An axisymmetric, steady vortex ring (in a co-moving reference frame) in inviscid flow
satisfies the condition that the quantity wyg/r is a function of the streamfunction alone.
At high Reynolds numbers, the core vorticity profile of an equilibrium vortex ring in

viscous flow should nearly satisfy this condition.

The Stokes streamfunction () field was obtained for a readjusted equilibrium vortex
ring in a reference frame translating with the ring. Figure 4.5a shows that the contours of
1 and wy /7 are nearly overlapping. The scatter plot of wy/r vs. 1 for points on a radial
plane is found to collapse onto a single curve (Figure 4.5b). The function g(¢) = wp /7 is
well represented by a power-law 7/1§r with ¢ = 1.8 except for values of ¢ close to 0 where

the viscous diffusion effects are important.

Figure 4.6 shows scatter plots of wg/r vs. 1 for equilibrium vortex rings at different
slenderness ratios and the exponents of the power law ( used to represent them. The
exponent ( is found to decrease with increasing slenderness ratio of the equilibrium
vortex ring. The extent of the regions where the power law does not hold well (near

1 = 0) increases with the slenderness ratio.

Archer et al. (2008) described the process of detrainment of vorticity into the wake in
viscous flow. Fluid with vorticity is diffused across the 1) = 0 streamline (the ¢» = 0
stream-surface is the entrainment bubble) and a part of it passes into the wake. The
diffusion of vorticity across the ¢ = 0 streamline increases with the slenderness ratio.
For the thick-cored vortex ring in figure 4.6 with ¢ = 0.42, the azimuthal vorticity is
non-zero for —0.2 < ¢» < 0. The width of the scatter plots also increases with ¢ and
for the thick-cored equilibrium vortex ring at € = 0.42, the scatter plot is considerably
wide. Figure 4.7 shows that the contours of ¥ and wy/r for this ring do not overlap very

well away from the center of the core.

These results indicate the possibility of a core size limit above which the behaviour of

the equilibrium vortex rings is qualitatively different.

4.6 Vortex ring evolution at large times

In this section the continuation of the common equilibrium state at large times and the

existence of a core size limit is investigated. Simulations were performed using Gaussian
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Figure 4.5: (a) Overlapping contours of ¢ (blue) and wy/r (red) on a radial

plane (b) Plot of wy/r vs. 1 for all points on a radial plane for a readjusted
vortex ring with € = 0.30. Red dashed line corresponds to kwig.

initialised vortex rings with initial slenderness ratios of ¢ = 0.2, 0.3, 0.3 and 0.4 at
Reynolds numbers /v = 1500, 1150, 1500 and 1850 respectively.

Figure 4.8 shows plots of C vs. € for the four cases. All the vortex rings underwent a
readjustment to the equilibrium state. As described in section 4.4, the plots of C vs.
€ attract onto a common curve. As the vortex rings propagate their slenderness ratios
increase with time due to core diffusion. The equation 4.13 from Archer et al. (2008)
was used to represent equilibrium vortex rings with € < 0.38. As € increases above ~0.4,

the common attractor curve shifts slightly away from this equation.

The different equilibrium rings continue to follow a common path up to a turning point

at € ~ 0.47. As indicated by the results in section 4.5, above € ~ 0.47 equilibrium
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Figure 4.6: Plots of wy/r vs. 1) for all points on a radial plane for equilibrium
vortex rings with differing slenderness ratios. The values of ¢ for the best-fit
power laws for each case are as indicated.
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Figure 4.7:  Contours of ¢ (blue) and wg/r (red) on a radial plane for thick
cored vortex ring with e = 0.42,( = 1.2.



42 Chapter 4 Classical vortex rings in unbounded flow

_O.” ;

oa- —8/R;=0.2,T Jv=1500| |
—8/R =0.3,7 Jv=1150

-0.4- = =1500 | |
—8/R;=0.3,T /v=1500

-05- —5/R=0.4,T Jv=1850| |

-0~ Tl Re i

O -0.7- ™ i

0.8 i

-0.9- i

-1f i

.
-1af . i
—-1.2! 1 1 1 1 1 1
0 01 0.2 0.3 0.4 05 0.6 0.7

Figure 4.8: Core profile parameter C' plotted against the slenderness ratio € for
Gaussian initialised vortex rings with initial slenderness ratios of ¢ = 0.2, 0.3,
0.3 and 0.4 at Reynolds numbers I'y/v = 1500, 1150, 1500 and 1850 respectively.
The dotted line corresponds to equation (4.13) from Archer et al. (2008).

vortex rings at different Reynolds numbers do not continue to follow a common path.
For greater values of € the paths instead, diverge dependent on Reynolds number. In
figure 4.8, the two vortex rings at Re = 1500 are seen to continue to follow a common
path for e > 0.47.

4.6.1 Comparison with experiment

An analytical solution is known for the asymptotic drift velocity of a vortex ring at large
times (Cantwell and Rott (1988)).

_ s
U= k) (4.14)

k = 3.7038 x 1073

The asymptotic state corresponds to a slowly decaying, fat vortex ring governed by the
Stokes equations. In this section, the departure of the equilibrium vortex rings from the
common path is understood in the context of the known behaviour of vortex rings at

large times.

Weigand and Gharib (1997) generated vortex rings in a water tank using a piston-
cylinder mechanism at different Reynolds numbers and tracked their propagation speeds
from their formation up to large times and showed that the propagation velocity ap-

proached the exact asymptotic solution for the drift velocity given by Cantwell and Rott
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(1988). A comparison is performed with one of the vortex rings from their experimental

study.

Weigand and Gharib (1997) used Laser Doppler Anemometry (LDA) and Digital Particle
Image Velocimetry (DPIV) to map the vorticity field at a location where the vortex
rings had completed the formation process and reached a fully developed state. The
case for which the Reynolds number based on the circulation at the mapping location
was 1150 was chosen for the comparison simulation. They fit a Gaussian profile to the
core vorticity profiles of the vortex rings and the slenderness ratio at this location for
the chosen case was 0.338. The present simulation used a readjusted vortex ring with

the same parameters as the chosen case as the initial condition.

A preliminary DNS was performed using a Gaussian initialised vortex ring with a radius
Ry, circulation Iy and an initial slenderness ratio of 0.2 at a Reynolds number of I'y /v =
1150. The vortex ring was allowed to evolve in time until a readjusted vortex ring with
the target slenderness ratio of 0.338 was obtained. This readjusted vortex ring was used
as the initial condition for the main DNS of the comparison case from the experimental
study. A subscript ¢ is used to refer to the parameters defining the vortex ring at this
new initial condition. The kinematic viscosity was reset such that the Reynolds number

based on the circulation of the readjusted vortex ring (I5/v) was 1150.

Weigand and Gharib (1997) used Saffman’s (1970) model for the propagation velocity

of the vortex rings

1
U = %(Rg + )2, (4.15)

where Uy, = 4nUR;/T;, t* = vt/(16R?).

The best fit for the model was obtained with their data for kK = 14.4 and k¥’ = 7.8. The
value of t* in the experiment at the initial condition for this simulation is 1.79 x 1073.
Figure 4.9a shows the plot from Weigand and Gharib (1997) comparing the best-fit
model of Uy vs. t* with the numerical simulation of Stanaway et al. (1988). At large
times, the model tends to the exact asymptotic solution (¢t — oo) for the drift velocity
given by Cantwell and Rott (1988), which is dependent only on the initial impulse of

the vortex ring and the kinematic viscosity of the fluid.

Figure 4.9b shows that the data from the present simulation matches the best-fit model
very well both at moderate values of the slenderness ratio and at large times when the
slenderness ratio is large. Figure 4.10 shows the variation of C' vs. € for this simulation.

The turning point € ~ 0.47 occurs at t* ~ 1.18 x 1072, From figure 4.9b it is seen that
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this time approximately corresponds to the time period in which the vortex ring velocity

begins to approach the large time asymptotic solution.
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Figure 4.9: (a) Plot of Uy, vs. t* from Weigand and Gharib (1997) (b) Com-
parison of plots of Uy, vs. t* from the present simulation, - - - - Best

fit model (4.15) from Weigand and Gharib (1997) and - . - . - the asymptotic
solution (4.14) from Cantwell and Rott (1988).

The divergence of the vortex rings from the common path described in section 4.4
can now be explained. As the slenderness ratio of the vortex ring grows with time, a
turning point is reached (e ~ 0.47) at which the growth of the vortex core begins to be

constrained by the entrainment bubble and significant amounts of circulation are shed
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Figure 4.10: Core profile parameter C' plotted against the slenderness ratio e
for the numerical simulation of the case from Weigand and Gharib (1997). The
dotted line corresponds to equation (4.13) from Archer et al. (2008).

into the wake. The vortex ring slows down rapidly and the viscous terms in the Navier-
Stokes equations become dominant. The shape of the core vorticity profile begins to be
influenced by the viscosity and the paths of the vortex rings on the C' vs. € plot begin
to diverge into separate paths based on the viscosity. At large times, the velocity of
the vortex ring can be expected to asymptotically decay as (Vt)_3/ 2

solution given by Cantwell and Rott (1988) (see figure 4.9b).

according to the

4.7 Conclusions

Vortex rings with different initial core vorticity profiles undergo a readjustment, shedding
circulation and relaxing to a common equilibrium state. This equilibrium state is a single
parameter family in which the shape of the core vorticity profile is uniquely determined
by the slenderness ratio of the vortex ring. The structure of the equilibrium vortex rings
was found to be close to a solution of the inviscid, steady, Euler equations with the

quantity wy/r represented by a power law wi.

A turning point is reached by the equilibrium vortex rings when the slenderness ratio
grows to ~0.47. After the turning point is reached, viscosity begins to determine the
shape of the core vorticity profile. The common path followed by the equilibrium vortex
rings diverges into multiple paths dependent on Reynolds number. The velocity of the
vortex rings after the turning point begins to approach the behaviour of the large time

asymptotic solution given by Cantwell and Rott (1988).






Chapter 5

Vortex reconnection: Preliminary

simulations

The problem of a vortex ring impinging on a non-deformable, free-slip surface at an
oblique angle of incidence is equivalent to an oblique-angle collision of two vortex rings
with the interaction plane coinciding with the surface. To validate the numerical ap-
proach used in this report for studying vortex ring reconnection, a comparison is per-
formed with the numerical simulation of colliding vortex rings performed by Kida et al.
(1991).

Kida et al. (1991) used a spectral method on a grid with 642 collocation points in a cubic
domain. They performed numerical simulations for varying values of Reynolds number
and angle of collision. This study was chosen for the validation of the numerical method
since the quantitative history of the maximum vorticity in the interacting vortex cores
is available. During vortex reconnection, the vortex cores undergo significant stretching.
So the evolution of the maximum vorticity within the cores provides an ideal sensitive

measure for performing a comparison.

In section 5.1, the initial setup used for the simulations discussed in this chapter is
outlined. In section 5.2 the results of the validation study are presented. The conclusions

from the chapter are summarised in section 5.3.

5.1 Simulation setup

The initial setup consists of two vortex rings of radius Ry and circulation I'y in a cubic

d d
domain of dimensions L3 with their centres located at (2 cos(m/4), 3 sin(w/4), O> and

d d
(—2 cos(m/4), —3 sin(m/4), 0> with respect to the Cartesian coordinates (z,y, z) where

47
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d is the initial separation between the ring centres. The axes of the vortex rings are

aligned with the z-axis direction (figure 5.1).

The plane at which the vortex rings collide, x = —y is referred to as the ‘collision plane’

and the plane x = y as the ‘symmetry plane’.

Case I from Kida et al. (1991) was chosen for the validation study. The parameter values
for the selected case are: §/Ry = 0.399,d/Ry = 1.86, Re = I'y/v = 1153. The length
of the sides of the cubic domain is L = 6.40Ry. Periodic boundary conditions are used
along all three co-ordinate directions. The core of the vortex ring was initialised with
a Gaussian distribution of vorticity. The initial velocity field was obtained using the

procedure outlined in section 4.1.2.

The plots of the evolution of the maximum vorticity on the symmetry and collision
planes with time were found to be nearly overlapping for flows computed using 3842 and
5123 uniformly spaced grid points. The difference remained less than 3% even at the
peak values of the maximum vorticity proving the adequacy of the numerical resolution
with 3842 grid points. A constant timestep was chosen such that the maximum value
across the domain of the Courant-Freidrichs-Lewy (CFL) number based on the local

velocity and grid size remained below 0.20 throughout the simulation.

5.2 Results

5.2.1 Comparison with Kida et al. (1991)

The evolution of the vortex rings in the present simulation is qualitatively similar to
the results of Kida et al. (1991). The vortex rings initially travelled along the z-axis
due to their self-induced velocity. Due to the mutually induced velocity, the inner
parts of the vortex rings are retarded leading the rings to turn towards each other
resulting in a collision. The initially nearly circular vortex cores are flattened along the
direction normal to the collision plane, stretched along the z-axis direction and deformed
into a head-tail shape. The vortex filaments are stretched in the direction normal to
the symmetry plane leading to a rapid growth of maximum vorticity on the symmetry
plane. The oppositely signed vortex lines from the two rings undergo cancellation due
to viscous decay. Simultaneously the disconnected vortex filaments from the two rings
undergo cross-linking. This is accompanied by creation of vorticity on the collision plane.

This process is described in detail in section 6.3.

For a quantitative comparison, the histories of the maximum vorticity on the symmetry
plane and the collision plane are compared with the results of Kida et al. (1991) in figure
5.2.
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a)

 Symmetry plane

 Collision plane

Figure 5.1: a) Schematic of the computational domain b) Section of the com-
putational domain z = 0 for the validation study at initial time.

The maximum vorticity on the symmetry plane initially increases during the initial
readjustment of the vortex ring. Subsequently it decreases due to viscous diffusion
until the rings collide initiating the reconnection process at t ~ 30R3/I. During the
reconnection the vorticity on the symmetry plane increases sharply due to the stretching
of the vortex filaments and vorticity is created on the collision plane (along the direction

normal to the collision plane) due to the cross-linking between the vortex rings.

There are significant differences between the maximum vorticity histories from the
present simulation and from Kida et al. (1991). The plots of maximum vorticity on
the symmetry plane roughly overlap until ¢ ~ 40R3 /I at which the peak value of ~ wy
is reached for the case from Kida et al. (1991). The maximum vorticity continues to rise
and reaches a higher peak value of ~ 1.3wg in the CGLES simulation. The evolution of

maximum vorticity on the collision plane is similar for both cases except for a shift in
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Figure 5.2: Comparison of the histories of maximum vorticity on the symmetry
and collision planes (normal to the planes) normalized by the initial maximum
on the symmetry plane from the present simulation (solid) and from Kida et al.
(1991) (dashed).

time with the creation of vorticity on the collision plane beginning earlier for the case
from Kida et al. (1991).

Due to the differences in the quantitative results in the two cases, an alternate method
was used for the validation study. A simulation of the same problem was performed using
a spectral DNS code and the results were compared with the results of the simulation
performed with the finite difference code CGLES.

5.2.2 Comparison with the spectral DNS code simulation of vortex
ring collision

The spectral DNS code has been previously used in other numerical studies (Redford
et al., 2012). It uses a standard fully spectral Fourier spatial discretisation. The viscous
terms are advanced in time using an analytic integration factor and the non-linear terms

by a low-storage third-order Runge-Kutta method.

The same simulation setup described in section 5.1 was used for the spectral DNS. The
plots of the evolution of the maximum vorticity on the symmetry and collision planes

with time were found to be nearly overlapping for flows computed with the spectral
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Figure 5.3: Histories of maximum vorticity on the symmetry and collision planes
(normal to the planes) normalized by the initial maximum on the symmetry
plane using the finite-difference code CGLES and the spectral DNS code.

code using 256 and 3843 collocation points with the magnitude difference remaining
less than 3% even at the peak values. The converged results obtained using the grid
with 256 points were then compared with the results from the simulation performed
with CGLES. The maximum vorticity evolution plots on the symmetry and collision
planes from the two computed flows were found to overlap nearly exactly (figure 5.3).
The strong agreement between the results of the simulations performed with different
numerical codes based on a spectral method and a finite-difference method provides a
strong validation of the numerical approach used for simulating vortex ring reconnection

in this report.

5.2.3 Investigation of discrepancy with Kida et al. (1991)

The discrepancy between the histories of the maximum vorticity from Kida et al. (1991)
and from the simulations performed with CGLES and the alternate spectral DNS code
is investigated further. The fully resolved simulation using the alternate spectral DNS
code used 256 collocation points. However, the simulation from Kida et al. (1991)
was performed with a spectral method using 643 collocation points. This indicates the
possibility that the simulation from Kida et al. (1991) was under-resolved with respect to

the spatial discretisation. To test this possibility, an under-resolved simulation with 643
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Figure 5.4: Histories of maximum vorticity on the symmetry and collision planes
(normal to the planes) normalized by the initial maximum on the symmetry

plane using the alternate spectral DNS code and from the results of Kida et al.
(1991).

collocation points was also performed for the same problem using the alternate spectral
DNS code.

Figure 5.4 shows that the maximum vorticity evolution plots obtained from the under-
resolved simulation and from Kida et al. (1991) are roughly similar. The peak value
attained by the maximum vorticity on the symmetry plane during the reconnection is
lower for the under-resolved simulation compared to the fully resolved simulation and
approximately same as that for the case from Kida et al. (1991). However a shift in time

between the two plots still remains.

Contour plots of vorticity magnitude on the symmetry plane at various times from Kida
et al. (top) and the under-resolved simulation using the spectral code (bottom) are
presented in figure 5.5. Up to figure 5.5(c) the contour plots from both the results
match closely. After this time the contour plots from the two simulations, although
qualitatively similar begin to differ slightly from each other. In 5.5(e) the contour plot
from Kida et al. (1991) contains some jagged contour lines and spurious vorticity away

from the vortex rings indicating possible aliasing errors.
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Figure 5.5: (g) t = 89.67R3 /T

Figure 5.5: Contours of vorticity on the symmetry plane from Kida et al. (1991)
(top, solid and dashed lines are used to denote positive and negative vorticity)
and the under-resolved alternate spectral code simulation (bottom, black and
blue lines are used to denote positive and negative vorticity) at different times.
The contour levels used are 5, 10, 20, 40 and 80 % of the maximum vorticity at
the time.

5.3 Conclusions

The numerical study of vortex ring collision and reconnection performed by Kida et al.
(1991) was used for a validation study. Although qualitatively similar, there are quan-
titative differences between the simulation performed using the finite difference code
CGLES and Kida et al. (1991).

A simulation of the same vortex ring collision problem was performed using a spectral
DNS code. The histories of the maximum vorticity on the symmetry and collision planes
were found to be in excellent agreement with the simulation performed using CGLES
proving a strong validation of the numerical approach used for simulating vortex ring

reconnection.

A spatially under-resolved simulation using the same number of collocation points as
in Kida et al. (1991) was performed using the spectral DNS code. The histories of the
maximum vorticity on the symmetry and collision planes were in reasonable agreement
with Kida et al. (1991). The main reason for the discrepancy between Kida et al. (1991)
and the fully resolved simulations using CGLES and the spectral DNS code was therefore

shown to be the under-resolution of the former set of simulations.



Chapter 6

Vortex ring reconnection with

non-deformable surface

DNS of impingement of a vortex ring on a non-deformable, free-slip surface at an oblique
angle of incidence leading to vortex reconnection is presented in this chapter. In section
6.1, the numerical approach used and the initial setup used in this chapter is outlined.
In section 6.2 an assessment of the numerical approach is provided. In section 6.3,
the results of the simulation of a vortex ring reconnection at Re = 2000 capturing the
characteristic features discussed in the literature are presented. The effect of viscosity
on the reconnection process is investigated in section 6.4. The special features of vortex
reconnection occurring at high Reynolds numbers are described in section 6.5. In section
6.6, a simulation of vortex ring interaction with a free-slip surface at Re = 7500 leading
to reconnection and subsequent breakdown of the reconnected vortex ring structure into
a turbulent-like flow is presented. The conclusions from the chapter are summarised in

section 6.7.

6.1 Numerical approach

The simulations were carried out in a cuboidal domain with dimensions L, x L, x L,
along the Cartesian coordinate directions z, y, and z respectively. The initial setup
consisted of a vortex ring of radius Ry and circulation [y with its centre located at
(0,0, —h) where h is the initial depth of the vortex ring below the surface, z = 0 (Figure
6.1). The axis of the vortex ring was initially directed at an angle v to the horizontal.
It moves under its self-induced velocity towards the surface and interacts with it at an
oblique angle of incidence. A free-slip boundary condition was imposed on the z = 0

and z = —L, surfaces. A periodic boundary condition was used in the y-axis direction.

o7
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Using a periodic boundary condition in the x direction would lead the vortex ring to
encounter its own wake. To avoid this the numerical approach used in the study of
classical vortex rings in unbounded flow (section 4.1), of performing the computations
with respect to a comoving reference frame, is used here as well. In the present case
however, the reference frame moves only along the x direction along with the vortex

ring.

The location of the vortex ring along the x-axis with respect to the comoving reference

frame was calculated as

X(t) = 219/:au2dV (6.1)
14

where 0 is the total enstrophy. The integral-proportional controller described in section
4.1.1 was used to compute the time-dependent velocity of the comoving reference frame
required to maintain X (t) close to the target location X. = 0, ensuring that the vortex
ring remained close to the center of the reference frame. The velocity of the reference

frame was used to set uniform inflow boundary condition at the z = L, /2 boundary.

Irrotationality of the inlet flow was enforced by applying the boundary conditions dv/0z
= Ow/Jx = 0 at the inlet x = L, /2. At the outlet boundary x = —L,/2, linear gradient
conditions, du/dx = Ov/dx = Ow/IJx = 0 were imposed.

The core of the vortex ring was initialised with a Gaussian distribution of vorticity and
the initial velocity field was obtained using the vector stream function method outlined

in section 4.1.2.

6.1.1 Simulation parameters

Three sets of numerical simulations of the reconnection of vortex rings with a free-slip

surface were performed using the initial setup outlined in section 6.1.

In set I, the reconnection of a thin cored, Gaussian initialised vortex ring with an initial
slenderness ratio dg/Rp = 0.2, an initial inclination v = 5° and located at an initial
depth of h = 2.0Ry was considered. A thin cored vortex ring propagating at a shallow
angle of inclination towards the surface was chosen so that the initial readjustment of
the ring is complete before the interaction with the surface begins. The simulations were
performed at varying Reynolds numbers 500, 1000, 2000, 3000, 4000, 5000, 6000, 8000
and 10000 in order to study the effect of viscosity on reconnection. The domain side
lengths were L, = 8Ry, Ly, = 8Rp and L. = 4Ry. The numerical resolution of the grids
in which the simulations at each Reynolds number were performed are listed in table

6.1. At Re = 3000 and 6000, the simulations were performed on two different grids.
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Figure 6.1: Schematic of the computational domain with the initial setup for
the simulation of vortex ring reconnection with the surface (z = 0).

In set II, simulations of three Gaussian initialised rings initially located at an initial
depth of h/Ry = 2.0 with an initial inclination v = 5° with different initial slenderness
ratios §/Rp =0.2, 0.3 and 0.4 were performed at Re = 3000. The results from this set
were used to obtain the dependence of the rate of the circulation transfer process that
occurs during the reconnection (described in section 6.3) on the core size of the vortex

ring at a constant Reynolds number. This defined the scaling for the reconnection time.

In set III, the simulation of a Gaussian initialised vortex ring with an initial slenderness
ratio dg/Rp = 0.3, located at an initial depth h/Ry = 3.0 and initial inclination of
v = 7° was performed at Re = 7500. The purpose of this simulation was to study the
long time evolution of the flow after the completion of the initial reconnection of the
vortex ring with the surface. The bridges of surface-normal vorticity formed during the
first reconnection (described in section 6.3) propagate away from the symmetry plane.
So in order to allow the flow evolution for a long time after the first reconnection, the
width of the computational domain along the y—axis direction needs to be large enough
that the vortex ring is sufficiently far away from the periodic boundaries throughout the
simulation. Therefore a domain size of 12Ry x 12Rg X 6 Ry (along x,y, z directions) was
used for this simulation with 1152 x 1152 x 576 grid points.

For all the simulations discussed in this chapter, the timestep was chosen, such that the
maximum value of the Courant-Freidrichs-Lewy (CFL) number across the grid remained
below 0.20 throughout.
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Number of cells
Re Grid 1 Grid 2

500 768 x 768 x 384 —

1000 768 x 768 x 384 —

2000 768 x 768 x 384 —

3000 768 x 768 x 384 | 1024 x 1024 x 512

4000 | 1024 x 1024 x 512 —

5000 | 1024 x 1024 x 512 —

6000 | 1024 x 1024 x 512 | 1280 x 1280 x 640

8000 | 1280 x 1280 x 640 —

10000 | 1280 x 1280 x 640 —

Table 6.1: Grid resolutions used for the simulations at different Reynolds num-
bers from set I.

6.2 Assessment of numerical approach

6.2.1 Domain size

To study the influence of the periodic side boundaries at y = +L, /2 and the free slip
boundary at z = —L,, additional simulations for the case from set I at Re = 3000 were
performed in two different domains with dimensions 8 Ry x 12Ry x 4Ry (wider along y
direction) and 8RRy x 8Ry x 6Ry (deeper).

For the wider domain, the trajectory of the vortex ring (measured by the enstrophy
averaged location of the vortex ring on the z-axis) and the history of the circulation of
the interacting vortex core were nearly identical to the standard domain. However the
vortex ring in the deeper domain simulation had a slightly different trajectory reaching
the surface earlier (figure 6.2a). This is due to the fact that the surface at z = —4Ry
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Domain depth (L,) | t11o/R3 | I./Io | 6;/Ro | AmaxR3/1¢ Ty
4Ry 23.08 0.993 | 0.268 0.240 1.449
6R 19.92 0.993 | 0.260 0.254 1.455

Table 6.2: Vortex ring parameters at the beginning of circulation transfer and
non-dimensional reconnection time (7%) for Re = 3000 from set I at the two
different domain depths. The two values of T}, differ by less than 0.4%.

in the standard domain influences the early trajectory of the vortex ring causing it to

propagate towards the surface at a shallower angle.

The focus of the present work is the rate of transfer of the circulation of the interacting
vortex core to a direction normal to the surface during vortex reconnection (section 6.5,
figure 6.6). Specifically the effect of Reynolds number on the reconnection timescale
(defined based on the inverse of the peak value of the circulation transfer rate) is inves-
tigated in section 6.4. The decay of the circulation of the interacting vortex core during
reconnection for the two domains is seen in figure 6.2(b). Since the vortex ring reaches
the surface earlier in the deeper domain, the circulation transfer begins earlier for that
case. As a result the vortex ring parameters at the beginning of the circulation transfer

is slightly different for the two domains.

In section 6.4.1, a non-dimensional reconnection time 7% (6.9) which accounts for the
variable ring geometry at the beginning of the circulation transfer is introduced. In
table 6.2 the times at which the circulation transfer begins (¢1), the circulation (I7)
and core radius (d,) at t; and the peak values of the circulation transfer rate (Amax)
for the simulations using the two domain sizes are listed (see section 6.4.1 for details
on determining these quantities). The values of the non-dimensional reconnection times
(Tf) computed using these values for the two domains are also listed and found to differ
by less than 0.4%.

Thus it is shown that increasing the domain depth has a negligible effect on the non-

dimensional reconnection time which is the quantity of interest for this study.

6.2.2 Numerical resolution

The adequacy of the numerical resolution was checked for the case from set I with
Re = 5000 by tracking the energy balance between the volume integrated kinetic energy
per unit mass with respect to the co-moving reference frame K, the volume integrated
rate of kinetic energy dissipation ex and the total volume integrated kinetic energy flux

out of the domain F (see section 4.3.1 for details) given by

dK
o F
a €x +I'g
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Figure 6.2: (a) Trajectories of the vortex rings (b) History of the magnitude
of the circulation of the interacting vortex core on the symmetry plane y = 0
for the case from set I with Re = 3000 in the standard domain (solid) and deep
domain (dashed).
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Figure 6.3: Comparison of histories of - - - - Rate of decrease of volume-
integrated kinetic energy (—dK/dt) and —— Sum of volume-integrated rate

of dissipation and energy flux (ex + Fi) for the case from set I with Re = 5000.

The volume integrated enstrophy, €2, given by

Q:;//|M%V (6.2)
|4

is related to the dissipation according to 2vQ) ~ e¢x (Bobyleff-Forsythe formula, Serrin
1959). The peaks of € correspond to times when intense stretching of vortex filaments
occurs leading to a rapid growth of enstrophy and dissipation and generation of fine
scale structures testing the spatial resolution of the grid. Therefore the resolution needs
to be sufficiently fine to keep the difference between the two sides of the energy balance

equation negligibly small at the enstrophy peaks.

Figure 6.3 compares the histories of the quantities represented by left and right hand
sides of (6.2) for the case from set I with Re = 5000. The difference between the two
sides is less than 8 x 107°I /Ry over the entire simulation reaching the maximum value
at the dissipation peak demonstrating that the spatial discretisation error is negligible
throughout. For all the simulations in this chapter, the difference between the two sides
of the energy balance equation remained at most 4% at the dissipation peaks but usually

significantly less.

The simulations from set I at Re = 3000 and 6000 were performed on two different grids.
As an additional test of the spatial resolution, the histories of the maximum vorticity on

the symmetry plane (y = 0) associated with the interacting vortex core obtained from
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Figure 6.4: Comparison of the histories of the maximum vorticity on the sym-
metry plane (W) max) normalised by the maximum value at ¢ = 0 (wp) for the
case from set I with Re = 6000 obtained using grids with 1024 x 1024 x 512
(solid) and 1280 x 1280 x 640 (dashed) points.

simulations performed on the two grids were compared (at both Reynolds numbers).
Figure 6.4 shows the comparison for Re = 6000. The intensification of vorticity occurs
due to the out-of-plane stretching of the vortex core during reconnection. The histories
of the maximum vorticity nearly overlap until the peak of the vortex stretching process
is reached on the coarser grid. On the finer grid, the stretching proceeds slightly longer
before the peak value is reached. The difference between the peak values on the two grids
is approximately 1.2% of the value on the finer grid. The difference between the peak
values for the two grids on which the case with Re = 3000 was performed is less than
1%. Note that the maximum vorticity on the symmetry plane is a sensitive measure of

the grid resolution.

6.3 Vortex ring reconnection at Re=2000

The simulation of the case from set I with Re = 2000 is used to describe the characteristic

features of vortex ring reconnection.

After initialisation, the vortex ring translates under its self-induced velocity towards the
surface (figure 6.5(a)). Since a Gaussian vorticity profile is used as the initial condition,
the vortex ring undergoes a readjustment. For the Gaussian initialised vortex ring with

an initial slenderness ratio of dyp/ Ry = 0.2 in unbounded flow, the time required for the
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completion of the initial readjustment was determined to be approximately 18R8 /Tp in

a separate simulation using the numerical approach outlined in chapter 4.

The ring reaches close to the surface at t ~ 25R3 /T and begins to be influenced by
the image vortex ring implied by the free-slip boundary condition. The influence of the
image vortex ring causes the section of the vortex ring close to the surface to bend back.
As the vortex ring collides with the surface, the vortex core is flattened against it (figures
6.5(b),(c)). The near-surface vortex filaments disconnect from each other and simultane-
ously reconnect with the surface. The reconnected vortex filaments accumulate to form
two vortices on either side of the symmetry plane, y = 0 (see figure 6.5(d)) referred to as
‘bridges’ (Melander and Hussain, 1989). The non-reconnected vortex filaments directed
along the y-axis direction are referred to as ‘threads’ (see figure 6.5(d)). The bridges
of surface-normal vorticity move parallel to the surface away from the symmetry plane
due to their self-induced velocity (figure 6.5(e)). The threads are continuously wound

at either end around the bridges.

Within ¢ ~ 45R2/I0, 95% of the circulation of the upper limb of the vortex ring is
transferred to the surface normal direction. However, the reconnection process does not
go to completion and a small remnant of the original circulation is present in the form
of a vortex sheet even in the late stage of the reconnection. Simultaneously the bottom
part of the vortex ring also advects towards the surface and when it collides with the
surface a second vortex reconnection begins. In this section the first reconnection is the

focus of the discussion.

The interaction of the vortex ring with the non-deformable free-slip surface can be under-
stood as an interaction with an image vortex ring leading to reconnection. The topology
of this reconnection process is depicted in figure 6.6(a). As the filaments of the vortex
ring and its image with oppositely-signed vorticity overlap in the region of interaction,
viscous diffusion leads to their annihilation. The disconnected filaments simultaneously
reconnect with the disconnected filaments from the image vortex ring. The evolution
of the circulation of the filaments from the vortex ring undergoing disconnection which
are directed parallel to the surface (I)) and the circulation of the reconnected filaments
directed normal to the surface (I} ) is shown in figure 6.6(b). The magnitude of the
former decreases with time and the latter increases with time while the sum is con-
served (neglecting the small amount of circulation shed into the wake). This circulation
transfer to an orthogonal direction is the key characteristic of the phenomenon of vortex

reconnection.

n+I. =1Ij (6.3)

where I is the circulation (absolute value) associated with the interacting vortex core

on the symmetry plane y = 0, I'| the circulation (absolute value) at the surface (z = 0)
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Figure 6.5: Isosurfaces of vorticity magnitude (Jw| = 0.3|wmax|) showing the
different stages of vortex reconnection for the case from set I with Re = 2000
at t = (a) 15.0 (b) 25.5 (¢) 27.0 and (d) 30.0 (e) 32.0 (f) 34.0 R2/T}.
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on the half-plane y > 0 and I}j the circulation of the vortex ring after its readjustment
after initialisation. The evolution of I'| and I', with time during the reconnection is

shown in figure 6.6(c). The rate of transfer of circulation can be derived as follows.

The Helmholtz equation for the surface-parallel vorticity on the symmetry plane

wy(z,y =0, 2) is written as (since w, = w, = 0 on the symmetry plane)

Owy Owy Owy Ow, 87 9
BN +u8m +v8y +w82 = 8 +vViw
Owy  O(uwy)  O(vwy)  O(wwy) v 2 _
o + o + 5 + 52 = wya +vViwy (. V.au =0)
Owy — O(uwy) 3% O(wwy) 2 . .. _
st o T T = YV (o =0)

Integrating over the entire symmetry plane z : —octooo, z: —L, to0

/ / Yoy oz + / / 8(gwy)da:dz+ / / a(gwy)dmdz - / / V20w, dzdz
A z

drj % 0 2
— = + /(uw dz+/(ww dr = // vViwy,dxdz
—0o0 *Lz

dr // <82wy ) 0w
—_ — = dzdz | - d =0
dt Ox? 9Y? |,=o

dr, o 0
:>—” = V/@wy dz—i—u/awy dx
dt o 0z |_p.
dr]
= 1 = 1// oy dx (" ring away from z = —L,)
dt 0z y=0,2=0
Also,
dr / d*u dw |
dt 0z y=0,2=0 —00

dx (6.4)

o, / 0%u
dt 022 |0 .—0

Similarly by writing the Helmholtz equation for the surface-normal vorticity on the free-

slip surface w,(z,y, 2z = 0) and integrating over the half-plane = : —o0o to oo,
y:0to Ly/2,z =0 it can be shown that
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dFJ_ @sz
— = dxd
I = I
dr 0?
— L = 1// —Z dx (6.5)
dt 0z y=0,2=0

Therefore from (6.4) and (6.5) the absolute rate of change of the two circulation quan-
tities is shown to be equal. The rate of transfer of circulation is given by a line-integral

along the projection of the symmetry plane (y = 0) at the surface (z = 0).

drj dr,
—=—A ——=A
dt Todt
ow
A= — d 6.6
v 0z 2=0,y=0 v (6.6)

The contours of w, (vorticity along surface-parallel direction) on the symmetry plane
y = 0 (figures 6.7(a)-6.7(d)) show the evolution of the interacting vortex core during
reconnection. Figure 6.8 shows the evolution of the maximum vorticity on the symmetry
plane. The simultaneous evolution of the rate of transfer of circulation, A is shown in
figure 6.9.

The vorticity maximum decreases during the translation of the vortex ring towards the
surface due to the diffusion of the vortex core. When the vortex ring encounters the
surface, the interacting vortex core gets deformed. The vorticity gradient exposed at
the surface causes the beginning of the circulation transfer (figure 6.7(b)). Due to the
induced velocity of the image vortex ring, the interacting vortex core propagates in the
—x direction as the upper part of vortex ring bends backwards. The strain-field acting
on the vortex core due to the influence of the vortex ring and its image compresses
it along the z-direction and extends it along the z-direction. During this process, the
vortex core deforms into the ‘head-tail” structure described in the literature (Kida et al.,
1991). The in-plane strains along the x and z directions (Ou/dx, Ow/dz) are balanced
by an out-of-plane strain normal to the symmetry plane (0v/dy) stretching the vortex
filaments (directed along the y-direction) and intensifying the vorticity within the vortex

core.

Due to the flattening of the vortex core and the stretching of the vortex filaments,
the vorticity gradient at the surface and consequently the circulation transfer rate rise
sharply. The vorticity maximum on the symmetry plane and the circulation transfer rate

reach peak values at ¢ ~ 28.0Rg /Tp. Subsequently, viscous diffusion becomes dominant
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Figure 6.6: (a) Topology of the reconnection due to the collision of a vortex
ring with its image. (b) Symmetry plane (y = 0) and half-plane at the surface
(z = 0,y > 0) showing the two measured circulations. (c¢) Evolution of the
surface-parallel and surface-normal circulations (normalized by Iy) with non-
dimensional time for the case from set I with Re = 2000.
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limiting the flattening of the vortex core and the vorticity maximum and the circulation
transfer rates begin to decline. It is due to this process of flattening and stretching
that the circulation transfer occurs within a time period much shorter than a viscous
timescale (62 /v). It also indicates the possibility that, as the Reynolds number increases,
the core stretching and flattening process could intensify, effectively keeping the recon-
nection timescale roughly constant. The dependence of the reconnection timescale on

the Reynolds number is investigated in section 6.4.

The period of rapid enstrophy growth in figure 6.3 (corresponding to the rapid growth of
dissipation) is associated with this process of vortex core stretching. In the present case,
the maximum vorticity within the core increases to nearly 1.6 times its initial maximum
(figure 6.8). The peak value attained by the vorticity maximum on the symmetry plane
provides a measure of the fineness of the vortex core at the peak of the vortex core
flattening. Therefore the convergence of the peak value provides a sensitive measure for

the adequacy of the grid resolution (as used in section 6.2).

6.4 Effect of viscosity on vortex ring reconnection

Viscous diffusion plays an essential part in effecting the circulation transfer during vortex
reconnection. In this section, all the simulations from set I (section 6.1.1), with Reynolds
number varying from 500 to 10000, are considered to investigate the effect of viscosity

on the rate of the circulation transfer.

The reconnection time is a representative timescale within which the circulation transfer
occurs. A reconnection time based on the inverse of the maximum value attained by the

circulation transfer rate (Amax) can be defined as

Tro = (6.7)

Amax
However, since the vortex rings need to propagate over some distance before the interac-
tion with the surface begins, both the circulation and the core size at the time when the
reconnection begins are different from their initial values. Therefore the ring parameters
at the beginning of the reconnection would be different for the different simulations in
set I performed at varying Reynolds numbers. To study the variation of the reconnection
time with Reynolds number alone its dependence on the changing ring parameters needs
to be determined. The results of the simulations from set II (section 6.1.1) are used to

determine this.



Chapter 6 Vortex ring reconnection with non-deformable surface 71

(a) (0)

0 : : : : : 0
-0.5 -05
N N
= -1
=15 -1  -05 0 0.5 1 1.5 s 1 os 0 05 1 1.5
X X

0 R ————
-0.5 -0.5
N N
-1 -1
_1 I~ _1 |~
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
X X
(e) (f)
0 - — O e
-0.5 -0.5
N N
-1} -1
-1.5 : : : : : -1.5 : : : —
-1.5 -1 -0.5 0 0.5 1 1.5 -15 -1 -0.5 0 0.5 1 1.5
X X

Figure 6.7: Contours of vorticity (Jwy|) on the symmetry plane (y = 0) for the
case from set I with Re = 2000 at t = (a) 20.0 (b) 23.0 (¢) 25.5 (d) 27.0 (e) 28.5
and (f) 30.0 R3/I,. A lowest contour level of |wy|max/40 and an equal spacing
of |wy|max/20 was used.

6.4.1 Effect of ring parameters on reconnection time at constant Re

All the simulations in set II were performed at a constant Reynolds number, Re = 3000.
The vortex rings had different initial core sizes and would therefore also have different
ring parameters at the beginning of the reconnection process. To account for this, the

basic scaling law for the reconnection time is determined.

To determine the ring parameters appropriate for the beginning of reconnection the
following method was used. For each simulation, an approximate beginning time for
the circulation transfer process t = t; was defined as the time at which I'} reaches
an arbitrary value of 0.0001/5. The circulation, I, and core radius, J, of the vortex

ring at t = t; were obtained for a simulation of a vortex ring with the same initial
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Figure 6.8: Evolution of the maximum vorticity on the symmetry plane (w) mqz)

normalised by the maximum value at ¢ = 0 (wp) with non-dimensional time for
the case from set I with Re = 2000.
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Figure 6.9: Evolution of the rate of change of circulation (A) with non-
dimensional time for the case from set I with Re = 2000.
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parameters translating in unbounded flow at the same Reynolds number. The numerical
approach from chapter 4 was used for this simulation in unbounded flow. These values
of circulation and core radius were used as the ring parameters at the beginning of the
circulation transfer. Although the presence of the surface would affect the evolution of

the vortex rings, I3 and J, provide reasonable estimates of the actual values.

The basic scaling law for the reconnection time is determined in the following way. For
the three simulations in set II, the reconnection timescale I./Apnax is plotted against
an inviscid timescale 47252 /T, based on the circulation and core radius. This inviscid
timescale is the approximate time taken for the vortex ring core to rotate about its

centre. From figure 6.10 it is seen that the scaling is approximately linear according to

Fr 4 252
— 147 ( 7}5> : (6.8)

Amax T

showing that the reconnection time scales on 62/I.. This result is used to control the
effect of different ring parameters at the beginning of reconnection and hence define a

non-dimensional reconnection time

1 I?
{! * T .
B Amax <47r253> ’ (6.9)

appropriate for the ring geometry at the time of reconnection.
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Figure 6.11: Evolution of the surface-parallel circulation on the symmetry plane
(normalized by Ip) at Re = 500, 1000, 2000, 3000, 40000, 5000 for set I.

6.4.2 Effect of Re on reconnection time

The simulations from set I performed at varying Reynolds numbers are now considered.
Figure 6.11 shows the variation of the circulation of the interacting vortex core on the
symmetry plane for Re = 500, 1000, 2000, 3000, 4000, 5000. At lower Reynolds numbers
the core size of the vortex ring grows faster due to viscous diffusion. Although this results
in a slightly smaller propagation speed, the diffused core interacts with the surface
earlier. The time at which the circulation transfer begins, increases with Reynolds

number. The circulation transfer curves appear to nearly saturate for Re 2 2000.

To study the effect of Reynolds number on the circulation transfer rate, the non-
dimensional reconnection time 77 was computed for each case using the procedure
outlined in section 6.4.1. Table 6.3 lists the values of ¢1, I} and ¢, for the cases at

the different Reynolds numbers.

Since the time before reconnection is different for the different cases in set I, the in-
clination of the vortex ring axis to the surface at the beginning of reconnection is also
slightly different. The scaling (6.8) does not account for the effect of the inclination of
the vortex ring axis to the surface. But since the initial inclination of the vortex rings is
the same (y = 5°) for all the cases in set I, the variation in inclination at the beginning
of reconnection would be small, especially for the cases with Re 2 1000 for which the

values of ¢; vary little.
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Re tll_b/R(Q) FT/I‘O (57«/R0

500 14.62 0.989 | 0.368
1000 20.12 0.988 | 0.335
2000 22.51 0.991 | 0.291
3000 23.08 0.993 | 0.268
4000 23.40 0.993 | 0.254
5000 23.52 0.993 | 0.244
6000 23.59 0.993 | 0.238
8000 23.67 0.993 | 0.229
10000 23.67 0.993 | 0.229

Table 6.3: Vortex ring parameters at the beginning of reconnection at different
Re for set 1.

Figure 6.12 shows the variation of the normalised reconnection time with Reynolds
number. 7% decreases with Re at the low Reynolds numbers and reaches a minimum
value for Re ~ 2000. For Re 2 2000, the normalised reconnection time increases very
slowly with increasing Reynolds number remaining nearly constant. The variation of the
reconnection time Tgg, obtained from (6.7) without correcting for the ring parameters
at the beginning of reconnection, is also shown for comparison. The effect of the non-
dimensionalisation with respect to the ring parameters is to reduce the variation of
the reconnection time at low Reynolds numbers. At high Reynolds numbers, since the
values of I, and 9, do not vary much (from table 6.3), the correction does not alter the
scaling greatly. The trend of the reconnection time remaining nearly constant at high

Re obtains independent of whether the correction is applied.

The values of the non-dimensional reconnection time are O(1) at all the Reynolds num-
bers showing that the reconnection time is of the order of the time taken for the inter-

acting vortex core to perform a rotation about its centre.

The near-saturation of the maximum of circulation transfer rate with increasing

Reynolds number for Re 2 2000 implies that for high Reynolds numbers,

(6.10)

R

Therefore at high Re for increasing Reynolds numbers, the vortex core flattening and

filament stretching process intensifies such that 0w, /0z remains roughly constant.
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Figure 6.12: Variation with Re of Normalised reconnection time T’
which accounts for the variable circulation and core radius at the beginning of
reconnection using scaling rule (6.8) and - - - - Reconnection time Ty given by
(6.7) normalised by initial parameters of the vortex ring.

The contours of vorticity on the symmetry plane at the time of maximum rate of circula-
tion transfer Re =500, 1000, 2000 and 3000 in figure 6.13 shows the intensification of the
vortex core flattening with increasing Reynolds number. The histories of the maximum
vorticity on the symmetry plane at different Reynolds numbers in figure 6.14 shows the

intensification of the vortex stretching with Reynolds number.

6.4.3 Comparison with reconnection of vortex tubes

The previous studies in the literature on the variation of the reconnection time with
Reynolds number pertain to studies of the reconnection of two vortex tubes, a differ-
ent problem but one that is nevertheless very similar. Hussain and Duraisamy (2011)
performed numerical simulations of two antiparallel vortex tubes with sinusoidal per-
turbations which grow in time leading to collision and reconnection (see figure 2.11 for
a typical case at Re = 2000). As in the present work, they also considered a set of fixed
initial parameters and varied the Reynolds number alone from 250 to 9000. The scaling

of the reconnection time with Reynolds number is compared with their results.

Hussain and Duraisamy (2011) used an initial configuration in which the separation
between the interacting vortex cores is of the order of the core size. Therefore the time
before the initiation of the circulation transfer does not vary much for the cases at the
different Reynolds numbers in their study. Therefore their results need not be corrected
for changes in core size due to Re as in the present case. Figure 6.15 shows the variation

of the peak value of the circulation transfer rate (which is proportional to the inverse of
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Figure 6.13: Cogtours of vorticity (Jw,|) on the symmetry pﬁane (y = 0) at
the time of maximum circulation transfer rate for the vortex rings from set I
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Figure 6.14: Evolution of the maximum vorticity on the symmetry plane nor-
malised by the maximum value at ¢ = 0 with non-dimensional time for the

vortex rings in set I at Re = 500, 1000, 2000, 3000, 4000.
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Figure 6.15: Variation of maximum circulation transfer rate from Hussain and
Duraisamy (2011) (H-D) and 1/T}, from present work with Reynolds number.

T},) with Reynolds number from their study (data obtained from figure 4a from Hussain
and Duraisamy (2011)) and compares it with the variation of 1/T% from the present

work. In this figure there is an arbitrary scaling constant before the two sets of results.

Although figure 6.15 shows distinct regions at different Re, Hussain and Duraisamy
(2011) fitted a single curve over the entire range of Reynolds numbers and reported a
Re™ power variation with n = 1.0. However different trends can be observed within their
data. In both cases, peak circulation transfer rates increase with Re at low Reynolds
numbers. At moderate Reynolds numbers the peak circulation rates remain nearly
constant. The values for the peak transfer rates is noted to be nearly constant in the
range 2000 < Re < 4000 in the data from Hussain and Duraisamy (2011). At high
Reynolds numbers, the peak transfer rates continue to remain nearly constant in the
present work. However, in the case of the reconnecting vortex pair, they begin to rise

sharply with Re.

In section 6.5, the effects of high Reynolds number on vortex ring reconnection with a

free-slip surface is investigated and the results are compared with Hussain and Duraisamy
(2011).
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6.5 High Reynolds number effects

In this section the simulation from set I with Re = 8000 is considered in order to study

the effect of high Reynolds number on vortex ring reconnection.

The contours of w, (vorticity along surface-parallel direction) on the symmetry plane
y = 0 (figure 6.16) show the evolution of the interacting vortex core during reconnection.
Figure 6.17 shows the evolution of the maximum vorticity on the symmetry plane. The
vortex core is flattened against the surface and transforms into a head-tail structure as
described in section 6.3 (figure 6.16(b)). The flattened vortex core, then splits into two
with the head detaching from the tail (figure 6.16(d)).

In section 6.4, the effect of increasing Reynolds number was found to be an intensification
of the vortex stretching and flattening process such that the quantity vow,/0z|.—0y—0
remains roughly constant. In the present Re = 8000 simulation, due to the high Reynolds
number the vortex core is flattened significantly and the maximum vorticity on the
symmetry plane increases to ~ 7wqg at the peak of the vortex core flattening. As a result,
the vortex core behaves like a strong vortex sheet and the splitting can be understood
as occurring due to the tendency of a vortex sheet to roll-up at its edge. Subsequent to
the detachment of the head, the vortex sheet-like core rolls up again at its head edge
(figure 6.16(e),(f)). The rolling up process can occur only on one of the edges due to

the presence of the surface.

Figure 6.18 from Hussain and Duraisamy (2011) shows the evolution of the interacting
vortex cores during the reconnection of two antiparallel vortex tubes at a high Reynolds
number, Re = 6000. The vortex cores are initially flattened and stretched into head-tail
shaped structures and subsequently, the head detaches from the tail. The vortex sheet-
like structure rolls up on its end again and splits up. Hussain and Duraisamy (2011)
described the phenomenon as a Kelvin-Helmholtz instability. Unlike in the present case

however, their flow develops antisymmetric features.

Therefore both in the case of the reconnection of a vortex ring with a free-slip surface
and the reconnection of two colliding vortex tubes at high Reynolds numbers, due to the
intense flattening and stretching the vortex core behaves like a vortex sheet and rolls
up at its head edge and detaches to form vortex tubes (pairs of vortex tubes in the case
of the reconnecting vortex pair). In the latter case, this instability occurs along with

antisymmetric features.

The antisymmetric mode of the instability cannot occur in the present case of vortex
ring reconnection due to the constraint imposed by the free-slip surface. To test whether
the antisymmetric mode occurs in the absence of the surface, simulations of the collision
of the vortex ring from set I with its image was performed without the presence of a
free-slip surface. The initial setup used for this simulation of colliding vortex rings is a

linear combination of the setup from figure 6.1 and its image about the z = 0 plane.
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Figure 6.16: Contours of vorticity (Jwy|) on the symmetry plane y = 0 for
Re = 8000 from set I at ¢t = (a) 25.5 (b) 26.0 (¢) 26.5 (d) 27.5 (e) 28.5 and
(f) 29.0 R3/I,. A lowest contour level of |wy|max/40 and an equal spacing of
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Figure 6.17:  Evolution of the maximum vorticity on the symmetry plane

(W]max) normalised by the maximum value at ¢ = 0 (wp) with non-dimensional
time for Re = 8000 from set I.
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Figure 6.18: Evolution (from left to right) of contours of vorticity on the
symmetry plane during the reconnection of two colliding vortex tubes at Re =
6000 from Hussain and Duraisamy (2011).
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Figure 6.19: Isosurface of vorticity magnitude (Jw| = 0.04|w|max) showing a late
stage of the reconnection for the case from set I with Re = 8000 at t = 32R2/Ty.

The analogous vortex ring collision problems to the cases from set I at Re = 6000 and
Re = 8000 were performed. The results of the simulations were found to be identical to
the results of the simulations of free-slip surface interactions at both Reynolds numbers.
The antisymmetric mode of the instability did not occur even at Re = 8000. This may
be due to the stabilising influence of the lower part of the vortex ring which advects the

interacting vortex sheet away from the surface.

6.5.1 Late stages of reconnection at high Re

Figure 6.19 shows an isosurface of vorticity at the late stage of the reconnection at
Re = 8000, showing the detached head-tail structure of the surface sheet. The detached
head is visible in the form of a rolled-up vortex and the tail as a thin vortex sheet. Both
become wrapped around the two bridges of reconnected surface-normal vorticity. As the
bridges rotate under their self-induced velocity, the vortex sheet gets further stretched

and wrapped around the bridges.

As the thin vortex sheet and the rolled up vortex tubes get wrapped around the bridges,
they are able to contact the surface away from the symmetry plane and undergo addi-
tional disconnection and reconnection events. The main type of reconnection discussed
in this chapter and in the literature involves disconnection of vortex filaments at the
symmetry plane and simultaneous reconnection to the surface on either side of the

symmetry plane (figure 6.6a). Figure 6.20(a) shows a schematic of vortex filaments
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undergoing these additional reconnections occurring at high Reynolds numbers. The re-
sulting reconnected vortex filaments with opposing signs of surface-normal vorticity lie
on the same side of the symmetry plane and interact with each other adding to the flow
complexity at high Reynolds numbers. The circulation associated with this additional
reconnection is denoted by I'| 9) and plotted in figure 6.20(b) for the high Reynolds num-
ber case Re =8000. The maximum value attained by I'|5) during the reconnection is
less than 0.01 Iy at Re = 2000. The maximum value increases with increasing Reynolds
number and reaches up to ~ 0.2 at Re =8000 (figure 6.20(b)).

6.6 Breakdown of bridges after reconnection at high

Reynolds numbers

In this section, the evolution of the flow after the first reconnection of a vortex ring with
a free-slip surface at a high Reynolds number is studied. The results of the simulation
from set III with initial slenderness ratio 69/Rp = 0.3, initial depth h/Ry = 3.0 and

initial inclination of v = 7° at Re = 7500 is presented.

Figure 6.21 shows the variation of the total enstrophy, 2, with time for this case. The
first local peak at t ~ 60R3/I} corresponds to the vortex stretching during the first
reconnection. As in the case of the simulations from set I at high Reynolds numbers,
the thin vortex sheet and the rolled up vortex tube are both wrapped around the two
bridges of reconnected vorticity (figure 6.22(a)). The vortex sheet and the vortex tube
are progressively wrapped around the bridges. This destabilises the flow around the site
of the bridges and leads to a rapid generation of small-scale vortical structures (figure
6.22(b)). At the end of the first reconnection there is a rapid rise in the total enstrophy

associated with this small-scale structure generation mechanism.

Simultaneous with the first reconnection, the lower part of the vortex ring continues to
advect towards the surface under its self-induced velocity and begins a second reconnec-
tion with the surface. The interacting vortex core again gets deformed into a head-tail
structure (oriented in the opposite direction to the first reconnection). The disconnec-
tion of vortex filaments, reconnection with the surface and accumulation of reconnected

vortex filaments in the form of two bridges occurs similar to the first reconnection.

The vortex core flattened into a thin sheet rolls up at its edge forming a vortex which
splits away. This process repeats twice leading to three distinct vortex tubes wrapped
around the reconnected bridges at their ends. The distinct co-rotating vortices roll-up
together and merge into a single vortex. The remnant vorticity in the tail also rolls up
into a separate vortex tube (Figures 6.23 (a),(b),(c),(d)).

The repeated roll-up and detachment of the newly formed heads of the vortex sheet

generating multiple vortex strands during the second reconnection is visualised using an
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Figure 6.20: (a) Schematic of the additional reconnection at high Reynolds
number (b) Evolution of the surface-parallel, surface-normal circulations and
the circulation associated with the additional reconnection (normalized by Ij)
with time for the case from set I at Re = 8000.
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Figure 6.21: Evolution of total enstrophy €2 with time for the case from set III.

isosurface of the second invariant of the velocity gradient tensor
Q = —(1/2)(0u;/0z;)(0uj/0x;) in figure 6.24. Since () represents the balance between
the rotation and shear strain rates, an isosurface of ) is a useful marker of vortical

structure (J. Jeong and Hussain, 1995).

At the end of the second reconnection, the flow is dominated by several thin vortex
tubes. These are progressively stretched and wrapped around the two pairs of bridges
formed as a result of the two reconnections. This process leads to a rapid generation of
smaller scale vortical structures from the entire doubly-connected vortex ring structure
extending into its wake. Figure 6.25 uses isosurfaces of the second invariant of the
velocity gradient tensor to highlight the vortical structure of the flow at the late stages

of the second reconnection.

Figure 6.26 shows the circulations of the interacting vortex core (along the surface-
parallel direction) and the reconnected vortex filaments (along the surface-normal direc-
tion) during the second reconnection. The circulation transfer proceeds until I'j ~ 0.4T'¢

before it is interrupted by the roll-up of the vortex sheet.

A local peak in the total enstrophy, occurs at t ~ QORg /I due to the second recon-
nection. The enstrophy continues to rise after the second reconnection as well reaching
a maximum at ¢ ~ 110R%/Iy. Therefore the small-scale structure generation mecha-
nism is sufficiently strong to produce an approximately four-fold increase in the overall

enstrophy of the flow compared to the state at the end of the first reconnection.
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Figure 6.22: Isosurfaces of vorticity magnitude (Jw| = 0.1|w|max) showing late
stages of the first reconnection for the case in set IIT at ¢ = (a) 68 and (b) 76
R%/Ty.

6.6.1 Small-scale structure generation mechanism

Thus the following is the description of the mechanism of small-scale structure gen-
eration: The vortex core interacting with the surface is flattened into a vortex sheet
whose thickness decreases and strength increases with increasing Re. The vortex sheet
is wrapped around the bridges of reconnected vortex filaments on either side, and is
continuously stretched and wound by them. The head edge of the vortex sheet rolls up
and detaches itself from the sheet, creating a new edge which can then undergo the same
process again ultimately producing multiple strands of vorticity. Both the vortex sheet
and the rolled up vortex tubes are progressively wound around the bridges of reconnected

vorticity. This leads eventually to a rapid production of small-scale structures around
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Figure 6.23: Contours of vorticity (wy) on the symmetry plane y =0 at t = (a)
82 (b) 84 (c) 86 and (d) 88 R3/I} for the case in set IIL

Figure 6.24: Close-up view from above the free-slip surface of isosurface of Q
(QRY/IZ = —0.025) showing the multiple roll-ups of the newly formed heads
of the vortex sheet during the second reconnection for the case in set III at
t = 84R3/I}. The entire vortex ring structure is seen in figure 6.25(a).
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Figure 6.25: (a)—(b) See following page for caption.

the bridges. These strands of vorticity also roll-up together and become intertwined.
The flowfield is dominated by a profusion of tangled vortex tubes which develops into a

more substantial breakdown of the remaining ring structure.

6.6.2 Energy spectrum

The flow after the breakdown of the vortex ring closely resembles a typical turbulent

flow showing irregularity, intermittency and high rates of dissipation and enstrophy.
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Figure 6.25: Isosurfaces of Q (QRE/I'? = —0.025) highlighting the vortical
structure at t = (a) 84 (b) 96 (c) 104 and (d) 140 R3/Ty.
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Figure 6.26: Evolution of the surface-parallel and surface-normal circulations
associated with the (normalized by Ip) with non-dimensional time.
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Figure 6.27: Log-log plot of wavenumber and energy present at that wavenumber
at t = (a) 80 and (b) 140 R3/Iy for the case from set III with v = 7°. Dashed
line corresponds to k~%/3 behaviour.

The energy spectrum for this complex flow was computed and compared with the —5/3

power law.

The energy spectrum in a windowed three-dimensional region enclosing the reconnected
vortex ring is plotted at t =80 R3 /I (figure 6.27a) and t =140 R3/I} (figure 6.27b). As

expected the energy distribution shifts with time towards the higher wavenumbers (k)

and begins to approximate the —5/3 inertial range behaviour at the lower wavenumbers.

At high k it falls off under the influence of viscous dissipation.
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6.7 Conclusions

Numerical simulations of the interaction of a vortex ring with a free-slip surface were
performed capturing the characteristic features of vortex reconnection described in the
literature. The effect of viscosity on the circulation transfer rate was investigated. The
reconnection time was normalised by an appropriate inviscid timescale to account for
the variable parameters of the vortex ring at the beginning of the circulation transfer.
The normalised reconnection time decreases with increasing Reynolds number at low
Reynolds numbers before reaching a minimum value at Re ~ 2000. For greater values of
Reynolds number the reconnection time almost remains constant, only increasing very
slowly with Reynolds number. The near-saturation of reconnection time implies that the
vorticity gradient at the surface varies as O(1/v). This is achieved by an intensification
of the vortex core flattening and filament stretching process with increasing Reynolds

number.

The scaling of the peak circulation transfer rates with Reynolds number was compared
to the scaling in the case of the reconnection of a pair of anti-parallel vortex tubes
investigated by Hussain and Duraisamy (2011). In both cases the peak rates increased
with Re at low Reynolds numbers and remained nearly constant at moderate Reynolds
numbers. The scaling behaviour is different at high Reynolds numbers with the peak
rates rising sharply with Re for the reconnecting vortex tubes but not for the colliding

vortex rings.

At high Reynolds numbers the vortex core interacting with the surface is flattened and
stretched into a thin, intense vortex sheet. The head edge of the vortex sheet rolls up
and detaches creating a new edge which can then undergo the same process, ultimately
producing several strands of vorticity which become intertwined. An anti-symmetric
mode of the same instability occurs in the case of the reconnecting vortex tubes. The
anti-symmetric mode did not occur in the case of colliding vortex rings despite the

absence of the constraint imposed by the surface.

At high Reynolds numbers the thin vortex sheet and the multiple vortex tubes (generated
by the roll-up of the vortex sheet) are wrapped around the bridges of reconnected surface-
normal vorticity. As the bridges rotate under their self-induced velocity the vortex sheet
and the vortex tubes get further stretched and wrapped around the bridges. This leads
to a rapid generation of small-scale vortical structure at the site of the bridges. The
flow becomes increasingly complex and is dominated by a profusion of vortex tubes and

small-scale structure.

Unlike the well-known Widnall instability (Widnall et al., 1974) associated with wavy
displacement of the vortex core, the breakdown studied in this work occurs solely due
to the mechanics of the reconnection process and provides a means of producing small-

scale structure from the reconnected vortex ring. The mechanism involves two processes:
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(i) The flattening of the reconnecting vortex ring core into a thin sheet which repeat-
edly splits up into strands of vorticity and (ii) The wrapping up of the vortex strands
around the two bridges of reconnected surface-normal vorticity destabilising them and

generating fine-scale complex structure.



Chapter 7

Vortex rings with swirl in

unbounded flow

In this chapter DNS of vortex rings with swirl in unbounded flow is presented. The
numerical approach and initial setup (figure 7.1) used here is the same as used in section

4.1 to study classical vortex rings in unbounded flow.

The details of the simulation including the initialisation of the vortex rings with swirl
are presented in section 7.1. The method used to track the amount of swirl in the vortex
ring is introduced in section 7.2. The adequacy of the spatial resolution is demonstrated
in section 7.3. The formation of an axial vortex and the structure of the vortex ring with
the developed axial vortex are discussed in section 7.4. The existence of a maximum
limit for the swirl in a vortex ring is shown in section 7.6. The final conclusions are

summarised in section 7.7.

7.1 Simulation details

All the simulations discussed in this chapter were performed in a cubic domain with
dimensions 8 Ry x 8Ry x 8 Ry with 512 x 512 x 512 uniformly spaced grid points. The
timestep was chosen such that the Courant-Freidrichs-Lewy (CFL) number remained

below 0.20 throughout the simulation to ensure numerical stability.

7.1.1 Vortex ring initialisation
Two different types of vortex rings with swirl were used as the initial condition in this

study. This provided a means of verifying the independence of the observed character-

istics of the vortex rings in the simulations from the particular method of initialisation.

93
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Figure 7.1: Schematic of the computational domain for the study of vortex rings
with swirl in unbounded flow. The shaded region corresponds to the logging
domain.

7.1.1.1 Gaussian profile

The core of the vortex ring was initialised with a Gaussian distribution of vorticity

o= L (T2 (1)

3

2 = 22 + 42 and §y defines the core thickness. The velocity field corresponding

where r
to this vorticity distribution was computed using the vector stream function method

outlined in section 4.1.2.

An azimuthal (swirl) velocity field directly proportional to the Gaussian vorticity dis-
tribution was added to obtain the complete initial velocity field used for the DNS, so
that

(7.2)
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where S is the swirl parameter. It should be noted that for this initialisation the max-
imum azimuthal velocity is (SI/Rp) and the angular momentum in the vortex rings
(measured as described in section 7.2) depends on both the swirl parameter and the core

radius.

7.1.1.2 Steady-state Euler solution

Eydeland and Turkington (1988) developed a variational method to find exact steady
solutions of the Euler equations for inviscid, incompressible, axisymmetric flow with
a compact vorticity distribution confined to a toroidal region. These solutions form
a two-parameter family. Lifschitz et al. (1996) provided a method of obtaining these

steady-state solutions for a finite computational domain enclosing the vortex ring.

The solutions are expressed in terms of the Stokes stream-function, ¢ for axisymmetric,

inviscid flows:

181/1 10y
r oz’ 77"87”

Up = —

where u,., ug, u, are the cylindrical velocity components.

The solution is given by

w = - f) (73)
wo = R )+ fW) )

where wy is the azimuthal vorticity component. The structure functions f () and h(%))

are given by

— (C+1)/
1) = gt (7.4)

where ¥, = max(1,0). «,,( and hy are positive constants. The value of hg is not
important. A value of 1.5 was used for the exponent ¢ as in Lifschitz et al. (1996).
Thus we have a two-parameter family of vortex rings. For a = 0 swirl-free vortex rings
are obtained for which S determines the slenderness ratio. The core azimuthal vorticity

profile for these swirl-free vortex rings given by wy/r = (8/ 2)¢§r, was shown to be close



96 Chapter 7 Vortex rings with swirl in unbounded flow

. Ring characteristics

Vortex ring Type Parameters 5o/Ro | AJ(ToRS)
EU1 Euler solution | a=50,8=0 0.29 1.54
EU2 Euler solution | a = 60,8 =35 0.23 1.05
EU3 Euler solution | a = 150,58 =60 | 0.16 0.71
GS1 Gaussian S =0.30 0.30 0.56
GS2 Gaussian S =0.40 0.30 0.74
GS3 Gaussian S =0.60 0.30 1.11
GS4 Gaussian S =1.00 0.30 1.85

Table 7.1: Vortex rings used in study of vortex rings with swirl in unbounded
flow.

to that of an equilibrium vortex ring without swirl in chapter 4. For 8 = 0 Beltrami

vortex rings in which the vorticity vector is parallel to the velocity vector are obtained.

The method described by Lifschitz et al. (1996) was altered slightly to obtain vortex
rings with radius R = Ry and circulation I' = Iy (R and I" as defined in equations 4.9
and 4.8 respectively). The numerical method is described in detail in Appendix A.

The vorticity field solution obtained using the Euler solver is used to compute the cor-
responding initial velocity field using the vector stream function method outlined in
section 4.1.2. Table 7.1 lists the different Euler solution initialised and Gaussian ini-
tialised vortex rings used in this chapter along with the defining parameters and the

ring characteristics.

Simulations of all the vortex rings were performed at Re = 1500. For the Gaussian

initialised vortex rings an additional simulation was performed at Re = 3000.

7.2 Tracking the vortex ring swirl

The linear impulse is an integral quantity defined as

I:g///FxcUdV (7.5)
1%

where 7 is the position vector and & is the vorticity vector. Linear impulse can be
interpreted as the total impulsive force required to generate a flow from rest (Saffman,
1992).

To measure the swirl the integral quantity angular impulse defined as

A—’;///FX(FXQ)CZV, (7.6)
%
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was used. Angular impulse can be interpreted as the total moment of the impulsive
force system that generated the flow from rest (Saffman, 1992) and is zero for swirl-free
vortex rings. For an axisymmetric vortex ring, the angular impulse is directed purely

along the axial direction.

The angular impulse is invariant in unbounded flow in the absence of any moment due
to external non-conservative forces. As the vortex ring translates along its axis it sheds
fluid with angular momentum into the wake. In order to track the swirl present in
the vortex ring alone, the angular impulse was computed by performing the integration
within a logging domain attached to the vortex ring defined by —2Ry < z < 2Ry (shaded

region in figure 7.1).

7.3 Adequacy of spatial resolution

The adequacy of the spatial resolution is demonstrated for the highest swirl case at
Re = 3000. The energy balance between the volume integrated kinetic energy per unit
mass with respect to the co-moving reference frame K, the volume integrated rate of
kinetic energy dissipation ex and the total volume integrated kinetic energy flux out of

the domain Fi (see section 4.3.1 for details) given by

- % =ex + Fk,
was tracked with time. Figure 7.2 compares the histories of the quantities represented
by left and right hand sides of this equation for this case. A period of rapid enstrophy
growth occurs immediately after initialisation for this flow (see section 7.6 for details
of the flow). The difference between the two sides of (7.7) remains less than 4% at the
enstrophy peak demonstrating that the spatial discretisation is sufficient to accurately

compute the flow.

For all the other simulations performed in this chapter, the error remains less than 1%

throughout.

7.4 Formation of an axial vortex

In this section the early period of evolution of the vortex rings with swirl after initialisa-
tion is studied. Both Gaussian initialised and Euler solution initialised vortex rings are
shown to develop an axial vortex during this period. The mechanism for the formation

of the axial vortex is explained.
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Figure 7.2: Comparison of histories of - - - - Rate of decrease of volume-
integrated kinetic energy (—dK/dt) and —— Sum of volume-integrated rate

of dissipation and energy flux (ex + Fx) for the simulation of vortex ring EU4
at Re = 3000.

7.4.1 Vortex ring initialised with Gaussian profile

The simulation of the Gaussian initialised vortex ring GS1 at Re = 1500 is considered
in this section. Figure 7.3 shows the contours of azimuthal vorticity (wg) and azimuthal
velocity (ug) on the radial plane § = 0 at different times after the vortex ring initialisa-
tion. Fluid with azimuthal velocity is initially located within the core of the vortex ring.
After initialisation the distribution of azimuthal velocity begins to relocate towards the
axis of the vortex ring. However the azimuthal velocity is zero on the vortex ring axis.

The axial vorticity (w,) in axisymmetric flow is given by

Oug  ug
w, = —+—
N or r
The centreline vorticity is
au@
—0 = 2lim —
wrlmo = 2],

Consequently the axial vorticity initially present only within the core is also present on
the axis as well. Within ¢t = 35R2/I7, fluid with azimuthal velocity extends from the
core up to the axis. The vortex ring with a well-developed axial vortex is shown in
figures 7.4(a) and (b).
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Since the Gaussian profile is not an exact solution of the steady axisymmetric Navier
Stokes equations, immediately after initialisation a rapid transient must occur as in
the swirl-free case. In this readjustment, the vortex ring sheds fluid from the core with
circulation and swirl as seen in figure 7.3(b). In order to determine if the development of
the axial vortex is independent of the strong transient associated with this readjustment,
a simulation was performed using a vortex ring initialised with a steady-state Euler
solution which does satisfy axisymmetric Navier Stokes equations if viscous effects are

neglected.

7.4.2 Vortex ring initialised with Euler solver

The simulation of the Euler solution initialised vortex ring EU2 at Re = 1500 is now
considered. Figure 7.5 shows the contours of azimuthal vorticity and azimuthal velocity
on the radial plane § = 0 during the initial stages after the vortex ring initialisation.
Since the vortex ring was initialised with a solution of the steady-state Euler equations,
the strong transient that occurs in the case of the Gaussian ring is not present. As in the
case of the Gaussian ring the azimuthal velocity distribution expands towards the axis
and an axial vortex develops by ¢t = 30R3/I}. The vortex ring with the well-developed
axial vortex is shown in figures 7.6(a) and (b). The structure is seen to be qualitatively

similar to the Gaussian initialised ring after the formation of the axial vortex.

Therefore both Gaussian initialised and Euler-solution initialised vortex rings with swirl
are seen to undergo a transfer of azimuthal velocity from the core to the axis of the
vortex ring and the development of a strong, elongated, axial vortex. The formation of
the axial vortex can now be explained. Due to viscous diffusion, azimuthal velocity is
diffused across the entrainment bubble and transported to the rear stagnation point. A
part of the fluid carrying azimuthal velocity re-enters the bubble and the rest is lost into
the wake. The angular momentum of a fluid particle (rug) is approximately conserved
in a high Re axisymmetric flow. Therefore as the fluid particles move nearer to the
axis of the vortex ring, their azimuthal velocity increases as 1/r. But at r = 0 the
azimuthal velocity must become zero. This is enforced by viscous diffusion generating
an axial vortex. The axial velocity gradient dw/dz is positive in the vicinity of the rear

stagnation point and hence stretches the axial vortex in this region.

Apart from the axial vortex, another feature of vortex ring with swirl with a developed
axial vortex is the region of negative azimuthal vorticity (opposite sign to that of the
core) at the head of the vortex ring and close to the axis as seen in figure 7.3 (e). The
total circulation of this region of negative azimuthal vorticity increases in magnitude

along with the development of the axial vortex and reaches a maximum value.

Both the development of an axial vortex and the region of negative azimuthal vorticity

were also observed in the axisymmetric numerical simulations of polarised vortex rings
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Figure 7.3: (a)—(c) See following page for caption.
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Figure 7.3: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane § = 0 at t = (a) 0 (b) 5 (¢) 10 (d) 15 and (e) 35 R3/I}
for ring GS1. Lowest contour levels of |wg|max/20 and |ug|max/20 and equal
spacings of |wp|max/10 and |ug|max/10 respectively were used.
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Figure 7.4: (a) Contours of axial vorticity (w,) on the plane y = 0. Contour
levels are as indicated normalised by I/R2 (b) Isosurface of second invariant
of velocity gradient tensor, QR3/I'# = —0.005 at t = 35R3 /I for ring GS1.

(which contain non-zero swirl) by Virk et al. (1994) and the formation of a vortex ring
with swirl by Ooi et al. (2001). Virk et al. (1994) showed that the coupling between
the swirl and meridional flow leads to the generation and destruction of wy/r due to the
twisting of vortex lines. Ooi et al. (2001) explained the generation of negative azimuthal

vorticity as due to the tilting of the filaments of the axial vortex.

The Helmholtz equation for the azimuthal component of vorticity in axisymmetric flow

is
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Figure 7.5: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane § = 0 at t = (a) 0 (b) 10 (¢) 20 (d) 25 and (e) 30 R3/I}
for ring EU2. Lowest contour levels of |wg|max/40 and |ug|max/40 and equal
spacings of |wp|max/20 and |ug|max/20 respectively were used.
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Figure 7.8(a) shows the contours of the sum of the vortex tilting terms (the first two terms
on the right hand side). The vortex lines are tilted to generate negative and positive
azimuthal vorticity at the front and rear halves of the vortex core respectively. In the
region ahead of the vortex ring core near the axis, due to the negative axial gradient

of the azimuthal velocity, the vortex filaments in the axial vortex are tilted towards



Chapter 7 Vortex rings with swirl in unbounded flow

105

(a)

1

0.5f

ot

-2

2

Figure 7.6: (a) Contours of axial vorticity (w.) on the plane y = 0. Contour
levels are as indicated normalised by I/ R% (b) Isosurface of second invariant
of velocity gradient tensor, QR% JT¢ = —0.005 at t = 35R3/I} for ring EU2.
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the negative azimuthal direction, generating negative azimuthal vorticity. Similarly the

radial vortex filaments ahead of the vortex ring core extending from the axis to the

outer edge of the core are also tilted towards the negative azimuthal direction due to a

negative radial gradient of azimuthal velocity.

Figure 7.8(b) shows the vortex filament structure of a vortex ring with swirl with an

axial vortex illustrating the tilting of the vortex lines generating negative azimuthal

vorticity.

Once established, the axial vortex is a persistent and robust feature of the vortex ring

with swirl.
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Figure 7.7: Contours of azimuthal vorticity on the radial plane § = 0 at

t = TOR2/I, for the Gaussian initialised vortex ring GS1 (left) and the Eu-
ler solution initialised ring EU2 (right). The contour levels are normalised by
Iy/R2.

7.5 Evolution of angular impulse

Figure 7.9 shows the histories of the angular impulse (.A) for all the vortex rings listed in
table 7.1 at Re = 1500. The total angular impulse in the flow field must be conserved.
However, as the vortex ring propagates fluid with angular momentum is shed into the
wake. Consequently the angular impulse associated with the vortex ring alone as mea-
sured by using a logging domain as described in section 7.2 must decrease. The loss of
fluid with angular momentum begins to be logged only after the initial wake leaves the
logging domain. Therefore for a small initial period the angular impulse is indicated
as constant (as seen in figure 7.9), but falls rapidly as the initial wake passes out of
the logging domain. The length of this time period depends on the propagation speed
of the vortex ring and the step down in angular impulse indicates the strength of the
wake. For the Gaussian initialised vortex rings, the initial rate of decrease of angular
impulse when the initial wake leaves the logging domain is higher compared to the Euler
solution initialised vortex rings. This is due to the fact that the Gaussian initialised
rings undergo a strong initial readjustment shedding fluid with azimuthal vorticity and
azimuthal velocity (as described in section 7.4) unlike the Euler rings. After the fluid
shed during the readjustment exits the logging domain, the rate of change of A is more
gradual. For the Gaussian initialised vortex ring with S = 1.0, a significantly large
reduction in angular impulse occurs at a rapid rate of decrease at ¢ ~ 15R(2) /Ty when

the wake begins to exit the logging domain. The flow field associated with this ring is
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Figure 7.8: (a) Contours of the sum of the vortex tilting terms from 7.7 for
ring GS1 at ¢ = 40R3/Ip. The contour levels are normalised by Iy/RZ. (b)
Vortex filament structure of a vortex ring with swirl after the formation of the
axial vortex. The filaments with a starting location within the axial vortex are
coloured blue and the filaments located close to the centre of the vortex core
are coloured red. The direction of vorticity within the axial vortex is along the
+z direction.
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Figure 7.9: Evolution of the angular impulse with time for the different Euler

solution initialised vortex rings (solid) and the Gaussian initialised (dashed)
vortex rings with swirl at Re = 1500.

investigated separately in section 7.6. The subsequent gradual decay of angular impulse

is due to continuing loss to the wake.

Although figure 7.9 suggests that it might be possible to collapse the curves by finding a
suitable scaling law, initial attempts did not find a convincing collapse, but did not rule
one out either. It was decided to redirect efforts towards investigation of the instabilities

and breakdown of swirling vortex rings.

7.6 Swirl limit

In this section the existence of a maximum limit for the amount of swirl on a vortex
ring is investigated. The numerical Euler solver imposes an implicit limit on the angular
impulse of the vortex rings that can be generated as steady solutions to the Euler
equations. Among the vortex rings obtained for a given value of the parameter «, the
Beltrami vortex ring with 8 = 0 has the maximum swirl. But for the Gaussian initialised
vortex rings, by varying the swirl parameter S the initial angular impulse can be varied
independently and without limit. This provides a means of testing for the existence of
a maximum limit for the swirl by initialising with successively higher values of swirl
and looking for a rapid readjustment to a lower swirl level. Gaussian initialised vortex
rings with swirl with initial slenderness ratio, d9/Ro = 0.3 and swirl parameters S = 0.3
(GS1), S =0.4 (GS2), S =0.6 (GS3) and S = 1.0 (GS4) are used in this study.

In section 7.5 the histories of the angular impulse A of the Euler solution initialised and

Gaussian initialised vortex rings at Re = 1500 are presented. The Gaussian initialised
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Figure 7.10: Evolution of the angular impulse with time for the Gaussian
initialised vortex rings with swirl parameter S = 0.3,0.4,0.6, 1.0 at Re = 3000.

rings (except GS4) exhibit small steps at ¢ ~ 10R2 /I as discussed in section 7.5. A large
step decrease in angular impulse is observed for the vortex ring GS4 with the highest
swirl. Corresponding histories of the angular impulse at Re = 3000 for the Gaussian
initialised vortex rings are shown in figure 7.10. As in the case at the lower Reynolds
number, a large, rapid decrease in angular impulse occurs for the high swirl ring GS4
as its wake and adjustment products initially exit the logging domain. The reason for
this large step is investigated below. In the following the Re = 3000 results alone are

considered although the Re = 1500 results are qualitatively similar.

The evolution of the vortex ring is visualised using isosurfaces of the second invariant
of the velocity gradient tensor and contours of azimuthal vorticity on a radial plane
(figure 7.11). The observed flow can be explained as follows: Fluid with an azimuthal
component of velocity is subject to a centrifugal acceleration which must be balanced by
a radial pressure gradient. If we suppose that for vortex rings with swirl a limit exists
for the maximum amount of swirl for a particular geometry, then for values of swirl
above the limiting value the radial pressure gradient would be insufficient to balance
the centrifugal acceleration of the swirling flow. This would result in rapid ejections of
fluid with azimuthal velocity from the vortex ring as seen in figures 7.11(a),(b),(c) in
the form of a jet-like flow directed radially outwards and downstream of the vortex ring.
The swirl within the vortex ring (tracked by the angular impulse) is thereby reduced
to a value below the maximum limit. The de-swirling phase naturally stops when A is
below the upper limit. But there may be an overshoot and the final value may be below
the upper limit. The drop of angular impulse of ring GS4 at t ~ 15R3/I} (seen in figure
7.10) corresponds to the exit of the ejected fluid carrying azimuthal velocity from the

logging domain at the z = —2Ry plane. The shape of the ejected wake at this time is
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shown in figure 7.11(e). The size of the drop indicates the amount of angular momentum
ejected by the swirl readjustment. Subsequently the decay rate of angular impulse is
significantly slower and similar to the case of the other vortex rings thus confirming that

the drop in angular impulse corresponds to a de-swirl below an upper limit swirl.

At t ~ 12R3 /To, new features begin to develop. The cross-section of the core of the
vortex ring (visualised by the contours of azimuthal vorticity) is deformed into a shape
with three lobes. The toroid of the vortex ring also begins to twist about the core
centreline with the amplitude of the twist increasing along the azimuth of the ring. Due
to the simultaneous deformation and twisting of the vortex ring, strands of vorticity
begin to detach from the surface. When the strands of vorticity extend beyond the
entrainment bubble, they are advected downstream in the form of hairpin vortices (figure
7.11(e)).

The vortical structure on the remaining ring is suggestive of an instability with a helical
shape and is likely to depend on the level of swirl and/or the Reynolds number. The

possibility of instabilities due to swirl is investigated in detail in chapter 8.

The evolution of the vortex ring and the vortical structures formed are similar to one of
the vortex rings from the results of Cheng et al. (2010) (third row in their figure 2.16)
who had also performed simulations of vortex rings with swirl initialised with Gaussian
distributions of vorticity and velocity. Nearly all the vortex rings with swirl presented
in their study underwent a similar evolution. Based on the present work, we can infer
that nearly all the vortex rings in their study have angular impulse above the maximum
limit. Therefore rather than representing the properties of a typical vortex ring with

swirl, the flows in their study can be interpreted as rapid de-swirling readjustments.

7.7 Conclusions

After initialisation, both Euler solution initialised vortex rings with swirl and vortex
rings with Gaussian distributions of azimuthal vorticity and azimuthal velocity, with
angular impulse below an upper limit, develop an axial vortex and an associated region

of negative azimuthal vorticity at the head of the vortex ring near the axis.

The formation of the axial vortex occurs as follows. Azimuthal velocity is diffused across
the entrainment bubble and a part of the fluid carrying azimuthal velocity re-enters the
bubble near the rear stagnation point. The azimuthal velocity increases as 1/r, but must
become zero at r = 0. This is enforced by viscous diffusion generating the axial vortex.
The axial vortex, after its development is a persistent and robust feature of the vortex
ring with swirl. As the vortex ring propagates, it gradually sheds angular momentum

into the wake.
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Figure 7.11: Contours of azimuthal vorticity on the radial plane § = 0 (left,
contour levels normalised by Ip/R2) and isosurface of Q (right, QR3/I? =
—0.005) at ¢t = (a) 2 (b) 4 (c) 8 R2/T} (d) 12 (e) 18 (f) 24 R2/T for ring GS4.
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An upper limit exists for the amount of swirl on a vortex ring. A vortex ring initialised
with swirl above this limit undergoes a rapid de-swirling readjustment ejecting fluid with
azimuthal velocity. The angular impulse of the vortex ring reduces to a level below the

limit and subsequently decays slowly.






Chapter 8

Vortex rings with swirl:
Instability

In this chapter DNS of a helical instability occurring in vortex rings due to swirl is
presented. The instability appears at high Reynolds numbers. The modal structure of
the instability is identified for different vortex rings and shown to be determined by the
slenderness ratio. The numerical approach and initial setup (figure 8.1) used here is the

same as in section 4.1 to study classical vortex rings in unbounded flow.

The details of the simulations are presented in section 8.1. The adequacy of the numerical
resolution is demonstrated in section 8.2. In section 8.3 the evolution of a vortex ring
with swirl at two different Reynolds numbers is discussed. The fully developed helical
instability is shown to occur at the higher Reynolds number. In section 8.4 a numerical
analysis is developed to determine the exact modal structure of the instability. In section
8.5 helical instabilities with different mode shapes are presented. The dependence of the
mode shape of the instability on the geometric parameters of the vortex ring is shown

in section 8.6. The final conclusions are summarised in section &.7.

8.1 Simulation details

In all the simulations discussed in this chapter, the cubic domain size was 8 Ry X 8 Ry X8 Ry
(along x,y, z directions). The timestep was chosen such that the Courant-Freidrichs-
Lewy (CFL) number remained below 0.20 throughout the simulation to ensure numerical
stability.

The Euler solution initialised vortex rings with swirl and Gaussian initialised vortex
rings with swirl used in this chapter are listed in table 8.1 along with the defining

parameters. The details of the initialisation methods are provided in section 7.1.1. Both

115
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Figure 8.1: Schematic of the computational domain for the study of instability
in vortex rings due to swirl. The shaded region corresponds to the logging

domain.

. . Ring characteristics
Vortex ring Type Parameters 50/ R0 | A/ Rg)

EU4 Euler solution | @ =100, =0 | 0.21 1.06

EU5 Euler solution | a=40,8=0 0.32 1.73

EU2 Euler solution | a =60,8=35| 0.23 1.05

GS3 Gaussian S =10.60 0.30 1.11

GS5 Gaussian S =1.00 0.20 0.81

Table 8.1: Vortex rings used to study instability due to swirl.

Euler solution and Gaussian initialised vortex rings are shown to develop the helical

instability.

Table 8.2 lists the simulations discussed in this chapter along with the Reynolds number
and grid resolution used in each case. Simulations S1 and S2 performed using the same
vortex ring EU4 are used to show the effect of the Reynolds number on the development
of the instability. A fully developed instability occurs in all the cases excepting S1. The
parameters of the vortex rings at the time of the instability are used to investigate their

relation to the modal structure of the instability.

An initial random noise level was defined on the flow in order to equally excite all possible
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Simulation | Vortex ring | Reynolds number Grid
1 EU4 1500 512 x 512 x 512
2 EU4 3000 768 x 768 x 768
3 EU5 3000 768 x 768 x 768
4 GS3 3000 768 x 768 x 768
5 GS5 3000 768 x 768 x 768
6 EU2 4500 768 x 768 x 768

Table 8.2: Vortex ring, Reynolds number and grid resolution used for the sim-
ulations of instability due to swirl.

modes before allowing them to grow. An initial perturbation was imposed in the form
of small local, radial displacements of the vortex core. The radial displacement applied
is a sum of 32 Fourier modes, each with amplitude n = 0.0005Ry and random phase

given by

32
AR(0) = 1) (Aysin(nd) + By cos(nf))
n=1
R() = Ro+AR (8.1)

where A2 + B2 = 1.

This is imposed following Archer et al. (2008) in which the ring geometry is perturbed.

8.2 Adequacy of numerical resolution

The adequacy of the numerical resolution for the simulations of flow instability in this
chapter is demonstrated for an example case of vortex ring EU4 at Re = 3000 performed
on a grid with 768 x 768 x 768 points.

The energy balance between the volume integrated kinetic energy per unit mass with
respect to the co-moving reference frame K, the volume integrated rate of kinetic energy
dissipation ex and the total volume integrated kinetic energy flux out of the domain F

(see section 4.3.1 for details) given by

dK
- — = Fy, 8.2
q KK (8.2)
was tracked with time. Figure 8.2 compares the histories of the quantities represented
by left and right hand sides of this equation for this case. A period of rapid enstrophy
growth occurs at ¢ ~ 10R3/I. The difference between the two sides remains less than

1 x 107°I3 /Ry up to t = 10R3 /I and less than 1 x 10743 /Ry throughout the entire
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Figure 8.2: Comparison of histories of - - - - Rate of decrease of volume-
integrated kinetic energy (—dK/dt) and —— Sum of volume-integrated rate

of dissipation and energy flux (ex + Fx) for the simulation of vortex ring EU4
at Re = 3000.

simulation reaching the maximum value at the enstrophy peak demonstrating that the

spatial discretisation error is negligible throughout.

8.3 Euler solution initialised vortex ring EU4 at different

Reynolds numbers

8.3.1 Re=1500

Firstly, the simulation of the Euler solution initialised vortex ring EU4 (a = 100, 8 = 0)
at the lower Reynolds number Re = 1500 is considered. Figure 8.3 shows the contours of
azimuthal vorticity and velocity on a radial plane at different times during the simulation.
The evolution up to ¢ ~ 10R3/ I} appears similar to the Euler solution initialised vortex
ring described in chapter 7 (figure 7.5). However a deformation of the vortex core cross-
section begins to be seen at t ~ 15R3/F0. At t = 20R3/F0, the vortex core cross-section
is significantly deformed into a near-elliptical shape and sheds fluid with azimuthal
velocity towards the ring axis aiding the formation of the axial vortex. The strong
deformation of the vortex core indicates the possible growth of an instability. However
within ¢ = 40R2/I} the deformation is attenuated and the core cross-section regains a

near-circular shape and the instability dies out.
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Figure 8.3: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane # = 0 at t = (a) 5 (b) 10 (¢) 15 (d) 20 and (e) 25 (f) 40
R3 /T for ring EU4 at Re = 1500.
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8.3.2 Re=3000

Now the simulation of the vortex ring EU4 (o = 100, 5 = 0) at a higher Reynolds number
of Re = 3000 is considered. At this Reynolds number a fully developed instability is

found to occur.

Figure 8.4 shows the contours of azimuthal vorticity and velocity on a radial plane
during the evolution of the vortex ring. As in the simulation at Re = 1500, the vortex
core cross-section begins to appear deformed at ¢t = 9R(2) /To. In the present simulation
however, the deformation becomes stronger and a distinct shape begins to emerge with

three lobes along the core azimuth.

The isosurfaces of the second invariant of the velocity gradient tensor (@) in figure
8.5 show that, apart from the deformation of the cross-section, the vortex core is also
twisted about its centre along the ring azimuthal direction. Due to the twisting, the
deformed vortex ring is no longer axisymmetric and instead acquires a helical structure.
Figure 8.6 provides a front-on view of the helical structure of the deformed vortex ring
at t = 12R3/I.

The stretching of the vortex filaments during the vortex ring deformation leads to fine
scale lobe structure and consequently in rapid enstrophy growth and a corresponding
growth in the volume-integrated dissipation at ¢t = 10R3 /I as seen in figure 8.2. The

rapid enstrophy growth is an indicator of the occurrence of an instability.

At later times, due to the simultaneous deformation of the core cross-section into a three
lobed shape and the progressive twisting of the vortex ring, individual vortex tubes begin
to detach from the surface of the vortex ring. The shape of the instability is similar to
the flow behaviour observed in the case of the Gaussian initialised vortex ring with high

swirl discussed in section 7.6. The structure of the instability is analysed in section 8.4.

8.4 Structure of the instability

In this section a simplified model of the geometric structure of the instability is presented
as a helical wave with modes along both the core azimuthal and ring azimuthal directions.
A numerical analysis of the flow field is performed to verify the model and determine
the exact modal structure of the instability for the case of ring EU4 at Re = 3000.

The instability is described within a toroidal coordinate system whose schematic is
provided in figure 8.7. The origin of the coordinate system is located at (R, 0,0) where
R is the radius of the vortex ring. The coordinates are the radial distance from the

centreline of the torus o, the ring azimuth 6 and the core azimuth ¢.
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Figure 8.4: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane § = 0 at t = (a) 9 (b) 10 (¢) 11 R%/I} for ring EU4 at
Re = 3000.
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1 1
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Figure 8.5: Isosurfaces of Q (QR§/I'? = —0.005) showing the growth of the
helical instability for ring EU4 at Re = 3000 at t = (a) 9 (b) 10 (¢) 11 (d) 12
and (e) 14 (f) 16 R3/T.
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Figure 8.6: Isosurface of @ (QR3/I'¢ = —0.005) showing the helical structure
of the instability for ring EU4 at Re = 3000 at t = 12 R3/I%.

Figure 8.7: Schematic of the toroidal coordinate system.

The amplitude of the deformation of the vortex core £(0, 6, ¢) at the ring azimuth § = 0

can be given by

5(0-7 0, ¢) ~ f(O') exp(ind’(d) + ¢0)) )

where ny is the ‘shaping mode’ associated with the deformation of the core cross-section.
The instability occurring in ring EU4 at Re = 3000 appears to deform the core cross-
section into a shape with ny = 3 (figure 8.4).

The effect of the twisting of the core is to introduce a phase shift in ¢ with the shift
increasing along the ring azimuth. By including the phase shift due to the twist, the

entire deformation field can be given by
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£(0,0,¢) ~ f(o)exp(ing(d + ¢o + ngb))
~  f(o)exp(ing(¢ + ¢o)) exp(ingngt) , (8.3)

where ny is the ‘twisting mode’ or the number of ’twists’ along the circumference of
the vortex ring. The periodicity of the deformation along the ring azimuthal direction
(&(0,0,¢) = £(0,0+ 27, ¢)) requires that the product ngng should be an integer. There-
fore although the shaping mode n4 should necessarily be an integer, the twisting mode
ng can assume fractional values if the product ngng is an integer. The number of twists
along the circumference can be fractional due to the fact that the vortex core cross-
section is symmetric with respect to a rotation in ¢ by 27 /ng. Therefore the vortex core

cross-sections at ¢ = 0 and ¢ = 27_ can match despite a fractional twist.

If a two-dimensional Fourier transform of the velocity field is performed along the ring
and core azimuthal directions to obtain the modal energy spectrum, the Fourier mode
along the core azimuthal direction is ny and along the ring azimuthal direction is ny =

ngng.

A numerical analysis of the flowfield was performed at different times during the growth
of the instability for the ring EU4 at Re = 3000. The radius of the toroid was measured

as the enstrophy weighted average,

0= oo / (8.4)
\%4

The velocity field within the toroidal region with a centreline r = R, z = 0 and radius of
rior = 0.5 Rq is interpolated onto the toroidal coordinate system with its origin located
at (r = Rg,y = 0,z = 0). A two-dimensional Fourier transform was performed along
the ring azimuthal and core azimuthal directions to obtain the energy spectrum. Figure
8.8 shows bar charts of the modal energy spectrum at each of the sampling times with

the axes corresponding to the Fourier modes ny and ny,.

The (ng = 2,np = 2) mode grows initially followed by the (3,7/3) and (3,8/3) modes.
After t = 5R3/ T} the (3,7/3) and (3,8/3) modes become the fastest growing and are the
dominant ones at t = 13R3/I%.

The distribution of energy over a few isolated modes confirms the helical structure of
the instability. The dominant shaping and twisting modes identified by the numerical
analysis are consistent with the observed vortical structure of the instability. The shape
of the deformed vortex core was seen to be a three-lobed structure in figure 8.4. In the
front-on view of the instability in figure 8.6, the interference between the twisting modes

7/3 and 8/3 can be seen in the 7/2 < § < 7 quadrant.
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After the amplitudes of these modes become significant, the instability enters the non-
linear phase during which the modes begin to interact generating higher order harmonics

and lower order intermodulation products (nj = 11,n4 =4 at t = 15R3/I).

The numerical analysis was also performed for the evolution of ring EU4 at the lower
Reynolds number (Re = 1500). The deformation of the vortex ring at Re = 1500 was
found to be associated with the (ng = 2,n4 = 2) mode. The (7/3,3) and (8/3,3) which
are the dominant modes at t = 13R3/Ip at Re = 3000 are not significant at Re = 1500.
The difference between the growth rates of these modes at the two Reynolds numbers

is explained in section 8.6.

8.5 Helical instabilities with varying twisting and shaping

modes

In this section, the helical instabilities occurring in the other vortex rings with swirl
used in this work (simulations 3,4,5 and 6 from table 8.2) are presented. Both Gaussian
and Euler solution initialised vortex rings with swirl are shown to develop the helical
instability. The dominant instability modes in each case are determined by numerical
analysis of the flowfield. The simulations in this chapter provide a set of instances of
the helical instability with varying mode shapes. The relation between the parameters

of the vortex ring and the mode shapes of the instability is investigated in section 8.6.

8.5.1 Euler solution initialised vortex ring EU5 at Re=3000

The simulation of the Euler solution initialised vortex ring EU5 (o = 40,5 = 0) at
Re = 3000 is now presented. As in the case of ring EU4 at Re = 3000, a helical
instability develops within ¢t = 40R3 /I deforming the vortex core cross-section and
twisting the vortex core about the core centreline. Figure 8.9 shows the deformation of
the vortex core cross-section into a three-lobed structure at t = 38 R3 /I, similar to ring
EU4 at Re = 3000. The helical structure of the instability is seen in figure 8.10. The
modal energy spectrum shows that at t = 38R3 /I, a single dominant mode is present
with (ng = 5/3,n4 = 3) (figure 8.11).

8.5.2 (Gaussian initialised vortex ring GS3 at Re=3000

Figures 8.12 and 8.13 show the structure of the helical instability occurring in the case
of the Gaussian initialised vortex ring GS3 (S = 0.6, 0/ Ro = 0.3) at Re = 3000 and the
corresponding modal energy spectrum respectively. Due to the strong initial readjust-

ment from the Gaussian profile, fluid with azimuthal velocity is shed towards the axis
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Figure 8.9: Contours of azimuthal vorticity (left) and azimuthal velocity (right)
on the radial plane 6§ = 0 at t = 38R3/I} for ring EU5 at Re = 3000.

aiding the formation of the axial vortex as in the case of the Gaussian initialised vortex
ring described in section 7.4.1. As a result an axial vortex is present in addition to the
helical instability at t = 22R2/T}.

The helical instability is thus shown to occur in both Euler solution initialised and

Gaussian initialised vortex rings with swirl.

8.5.3 Gaussian initialised vortex ring GS5 at Re=3000

The simulation of the Gaussian initialised vortex ring GS5 (S = 0.8,d9/Rp = 0.2) at
Re = 3000 resulted in a helical instability. At t = 7TR2/I} a few different modes centred
about the strongest (ng = 3,74 = 2) mode are present. Unlike in the case of the Gaussian
ring GS2 at Re = 3000, an axial vortex is not present along with the instability (figure
8.14). The development of the instability occurs earlier than the formation of the axial

vortex in this case.

8.5.4 Euler solution initialised vortex ring EU2 at Re=4500

The Euler solution initialised vortex ring EU2 (o = 60, 8 = 35) at Re = 4500 develops
a helical instability with (ng = 7/3,n4 = 3) as seen in figure 8.15.
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Figure 8.10: Isosurface of Q (QR3/I'2 = —0.5) showing the helical structure of
the instability for ring EU5 at Re = 3000 at ¢t = 38R(2) /To.
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Figure 8.11: Modal energy spectrum for ring EU5 at Re = 3000 at ¢t = 38
R% /To. The shaping and twisting modes are ng and ng respectively.
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Figure 8.12: Isosurface of Q (QR4/I? = —0.5) showing the helical instability
for ring GS3 at Re = 3000 at t = 22 R2/T.

Epg/R3TE

Figure 8.13: Modal energy spectrum for ring GS3 at Re = 3000 at t = 22
R% /To. The shaping and twisting modes are ng and ng respectively.
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Figure 8.14: Isosurface of Q (QRE/I¢ = —0.1) showing the helical instability
for ring GS5 at Re = 3000 at t = 7R3/ 1.
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Figure 8.15: Isosurface of Q (QR3/I? = —0.1) showing the helical instability
for ring EU2 at Re = 4500 at t = 17R3/I.

8.6 Dependence of twisting mode on slenderness ratio

In this section, the dependence of the modes of the helical instability on the geometric
parameters of the vortex ring is investigated. If the pitch of the helical instability A is

assumed to scale linearly with the core radius of the vortex ring according to

A=ad, (8.5)

then the number of wavelengths (or ‘twists’) along the circumference of the vortex ring

i.e. the twisting mode is given by
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Vortex ring | Reynolds number | njy | ng | ng | tpnlo/RE | €(tn)
GS5H 3000 6 2 | 3.00 5.50 0.208
EU4 3000 781 3 | 2.50 10.0 0.231
EU2 4500 7 3 | 2.33 15.0 0.255
GS3 3000 4 2 |2.00 15.0 0.321
EU5 3000 5 3 | 1.66 34.0 0.389

Table 8.3: Modes of the helical instability occurring for each vortex ring. A
representative slenderness ratio during the growth of the instability is also pro-
vided.

ny — 2t
- <2;r>1 (8.6)

The data from the present work is used to investigate whether the twisting mode scales
linearly with the inverse of the slenderness ratio in accordance with (8.6). The values
of the dominant twisting mode of the helical instabilities presented in this chapter are
plotted against the inverse of the slenderness ratio at a representative time (t5,) at which

the instability occurs in each case.

Table 8.3 lists the dominant shaping and twisting modes for all the instances of the helical
instability presented in this chapter along with the values of ¢;, and the slenderness ratio
at tj, in each case. The representative time t;, was chosen as the approximate time at
which the period of rapid enstrophy growth associated with the instability begins. The

slenderness ratios at which the instability occurs ranges from 0.2 up to nearly 0.4.

The plot of the variation of the twisting mode with the inverse of the representative
slenderness ratio is presented in figure 8.16. For ring EU4, since the (7/3,3) and (8/3,3)
modes are of nearly equal strength, the value of the twisting mode was taken as 2.5.
The twisting mode is seen to approximately scale linearly with the slenderness ratio in

agreement with (8.6) with the slope given by

.61
ng = 0.61 . (8.7)
€
Hence the pitch of the helical instability is given by (8.5) with a = 10.30, so that
A =10.306. (8.8)

The scaling relation (8.7) indicates that small values of ng (< 1) are not permissible

since they correspond to very large values of the slenderness ratio.



134 Chapter 8 Vortex rings with swirl: Instability

N

Twisting mode (ng)
= N w
PN G w O
\
\
\
3
A
AY
A Y
A
%
w
\
AY

©

ol

\
\

1/e
Figure 8.16: Scaling of the twisting mode ngy with the inverse of the slenderness
ratio 1/e. Dashed line corresponds to ng = 0.61/e.

Therefore the core size of the vortex ring determines the pitch of the instability. The
number of wavelengths of the helix within the circumference of the vortex ring is the
twisting mode ng. If an integral number of wavelengths can be fitted within a single
turn around the circumference of the vortex ring, then the twisting mode is an integer.
But if an integral number of wavelengths cannot be fit within the circumference, then
the twisting mode is a fraction. As mentioned in section 8.4, the number of twists along
the circumference can be fractional due to the fact that the vortex core cross-section is

symmetric with respect to rotation in ¢ by 27 /ng.

An alternate explanation for the structure of the instability that accounts for the rota-
tional symmetry of the core cross-section and the fractional twisting mode is as follows.
If an integral number of wavelengths cannot be fitted within the circumference, then
multiple turns around the circumference are required. The ‘shaping mode’ of the in-
stability ng is actually the number of turns of the helix around the circumference. In
this alternate view, the cross-sectional mode shape of the instability is a result of the

superposition of ny interlacing, small amplitude helices.

With a single helix (ngy = 1), twisting modes of 1,2,3... can occur. With two interlacing
helices (ng = 2) twisting modes of 1,3/2,2,5/2. .. can occur. The number of interlacing
helices could be limited by the Reynolds number since at low Reynolds numbers the
viscosity might prevent a high degree of interlacing by smoothing over the individual

helical strands.

An explanation can now be offered for the difference between the growth of the different
modes of the helical instability at Re=1500 and 3000 for ring EU4. As mentioned in
section 8.4 the ng = 7/3,8/3 modes grow rapidly only at Re = 3000. At Re = 1500
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the core size of the vortex ring grows faster than at Re = 3000 due to viscous diffusion.
As a result the ng = 7/3,8/3 modes which correspond to a thinner core size than the
ng = 2 mode might not be present within the window of the most amplified modes
at Re = 1500. Based on the alternate view of the structure of the helical instability
presented above, the low growth rates of the ng = 7/3,8/3 modes at Re = 1500 might
also be due to the fact that an interlacing with degree 3 (ng) might be prevented at

lower Reynolds numbers.

8.7 Conclusions

An instability with a helical structure occurring in vortex rings due to swirl was de-
scribed. The instability is simultaneously deforms the vortex core cross-section and
twists the vortex core about its centreline along the circumference of the vortex ring. A
numerical analysis method was developed to determine the exact modal structure of the
instability. Using the numerical analysis method the twisting and shaping modes (ngy

and ng respectively) characterising the instability can be obtained.

The instability was found to appear only at high Reynolds numbers. The helical in-
stability was shown to occur in both Euler solution initialised and Gaussian initialised
vortex rings with swirl. Vortex rings with different initial parameters were used to ob-
tain instances of the helical instability with a range of mode shapes. The data from the
simulations of helical instability was used to show that the pitch of the helical instabil-
ity scales linearly with the core size of the vortex ring. This implies that the twisting
mode is determined by the slenderness ratio of the vortex ring. Based on this result,
an alternate explanation for the structure of the instability was proposed. According
to this explanation the deformation of the vortex core cross-section is a result of the
superposition of interlacing helices. The number of interlacing helices is the shaping

mode of the instability.
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Summary and Future work

9.1 Classical vortex rings in unbounded flow

9.1.1 Summary

The study of classical vortex rings in unbounded flow showed that the structure of the
equilibrium vortex ring formed after a rapid initial readjustment is independent of the
particular core azimuthal vorticity profile characterising the initial state of the vortex
ring. The study was an extension of the work of Archer et al. (2008) who had identified
a common equilibrium state for Gaussian initialised vortex rings. The present work
showed that vortex rings with a variety of initial core vorticity profiles readjust to the

common equilibrium state identified by Archer et al. (2008).

The equilibrium state is a single parameter family of vortex rings in which the structure
of the core is dependent on the slenderness ratio alone. The shape of the core vorticity
profile of the equilibrium vortex ring is well approximated by that of the steady state
inviscid Euler solution with wy/r = A%Z)i- The exponent of the power law is determined
by the slenderness ratio of the equilibrium vortex ring. The extent of the regions in
the flow where the inviscid steady state condition is not satisfied increases with the

slenderness ratio.

This led to an investigation of the issue of whether the common equilibrium state extends
up to large times. It was found that as the slenderness ratio of the equilibrium vortex
rings increased beyond ~ 0.47, they no longer followed a common path on the C' vs. €
plot and instead diverged into multiple paths dependent on the viscosity. At this stage
the growth of the vortex ring core is constrained by the entrainment bubble and the
vortex ring sheds large amounts of circulation into the wake. The shape of the core

vorticity profile begins to be influenced by viscosity.

137
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By a comparison with the study of Weigand and Gharib (1997) it was shown that the
behaviour of the vortex rings in the present work matched the experimental results very
well both for moderate slenderness ratios at which the common equilibrium state is
present and for large slenderness ratios (e 2 0.47) when the vortex rings follow different
paths dependent on viscosity. The velocity of the vortex rings at large times was found
to approach the known asymptotic solution for an axisymmetric vortex ring at large

times.

9.1.2 Future work

In future work, the structure of the vortex ring at the asymptotic large time limit can be
further investigated. The issue of the existence of a maximum slenderness ratio limit for
a vortex ring and its relation to the large time asymptotic solution can be explored. The
path of the vortex rings on the C' vs. € plot can also be extended upto the asymptotic

limit.

9.2 Vortex ring reconnection with free-slip surface

9.2.1 Summary

The focus of the study of vortex ring reconnection with a free-slip surface was the effect
of Reynolds number on reconnection. The simulation of a vortex ring starting from an
initial depth below the surface and interacting with the surface at a shallow angle of

incidence was performed at Reynolds numbers ranging from 500 to 10000.

Firstly the effect of Reynolds number on the reconnection timescale was investigated.
Using an appropriate scaling rule to account for the variable ring geometry at the be-
ginning of the circulation transfer, it was found that the normalised reconnection time
decreases with Re at low Reynolds numbers, reaches a minimum value at Re ~ 2000 and
remains nearly constant with increasing Reynolds number for Re 2 2000. This near con-
stant reconnection time at moderate and high Re is of the order of the inviscid timescale
associated with a rotation of the vortex core about its centre. The reconnection time
is maintained constant by an intensification of the process of vortex core flattening and

out-of-plane stretching during reconnection with increasing Re.

At high Re due to the intense flattening, the interacting vortex core behaves like a thin,
intense vortex sheet and undergoes an instability in which the head edge rolls up and
detaches itself from the remaining sheet. The newly formed edge of the vortex sheet

undergoes the same process again.

The problem of vortex ring reconnection with a free-slip surface was compared with

the problem of a reconnecting anti-parallel vortex pair using the study of Hussain and
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Duraisamy (2011). A similar trend of flattening peak circulation transfer rates with
Re over a range of moderate Reynolds numbers is found in their results. At high Re,
the instability occurring in the case of the vortex ring reconnection occurs during the
reconnection of the anti-parallel vortex pair as well. But in the case of the latter,
the antisymmetric mode of the same instability was found to occur. Along with the
appearance of antisymmetric features at high Re, the peak circulation transfer rates rise
sharply with Re unlike in the present case of vortex ring reconnection with a surface. A
simulation of colliding vortex rings showed that the difference between the two problems
at high Re persists despite the absence of the limit imposed by a free-slip surface. The
antisymmetric mode of the instability does not occur during vortex ring reconnection

even at high Re.

At the end of a vortex ring reconnection with a free-slip surface at high Re, the entire
reconnected vortex ring structure undergoes a breakdown to a turbulent-like flow with a
profusion of interlinked vortex tubes and small-scale vortical structure. The breakdown
occurs as an allied effect of two phenomena: (i) Reconnection at high Re generating a
thin vortex sheet and multiple vortex strands and (ii) The progressive wrapping up of the
vortex strands around the bridges of reconnected surface-normal vorticity destabilising

the flow and generating complex fine-scale vortical structure.

9.2.2 Future work

In the present work the effect of the inclination angle on the reconnection time has not

been considered. This could be investigated in future work.

In the present work, vortex ring interactions with a non-deformable free-slip surface was
studied. The work can be extended by considering reconnection of a vortex ring with
a linearised free-surface with small deformation or a full free-surface. Surface parallel
vorticity can be non-zero on a deformable free surface. The vorticity at the free surface

interacts with the vortex ring and introduces additional dynamics.

9.3 Vortex rings with swirl in unbounded flow

9.3.1 Summary

The investigation of vortex rings with swirl was aimed at identifying characteristics of

the vortex rings with swirl independent of the particular method of initialisation.

One of the defining features of a vortex ring with swirl in viscous flow was found to be
the development of an elongated axial vortex. The formation of the axial vortex is the

result of the following three aspects of the flow: (i) Transport of azimuthal velocity from
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the core towards the axis of the vortex ring (ii) The growth of azimuthal velocity as 1/r
as the fluid particles move closer to the axis and (iii) Annihilation of azimuthal velocity
near the axis due to viscous diffusion generating an axial vortex. After its development

the axial vortex is a robust and persistent feature of the flow.

An upper limit was shown to exist for the amount of swirl on a vortex ring. Vortex rings
initialised with swirl above the limit undergo a rapid de-swirling readjustment ejecting
fluid carrying angular momentum such that the swirl reduces to a level below the upper

limit.

A helical instability occurring in vortex rings due to swirl and appearing at high Reynolds
numbers was described. The helical instability simultaneously deforms the vortex core
cross-section and twists the core about its centreline along the circumference of the
vortex ring. The instability was shown to occur in both Euler solution initialised and

Gaussian initialised vortex rings with swirl.

A numerical analysis method was developed that can identify a shaping mode and a
twisting mode to characterise a particular instance of the helical instability. An investi-
gation of the geometric parameters of the vortex rings at the time of the rapid growth
of the instability found a linear scaling relationship between the pitch of the helical
instability and the core size of the vortex ring. This scaling implies that the twisting

mode of the instability is determined by the slenderness ratio of the vortex ring.

This finding led to an alternate explanation according to which the structure of the
helical instability is due to a superposition of multiple turns of a helix whose pitch is
determined by the core size of the vortex ring. According to this explanation the shape
of the vortex core cross-section is a result of the superposition and the shaping mode is

actually the number of turns of the helix.

9.3.2 Future work

As mentioned in section 7.5 the initial attempts at finding a scaling law for collapsing
the histories of the decay of angular impulse for the different vortex rings with swirl

were unsuccessful. This can be pursued further in future work.

Equilibrium vortex rings without swirl in viscous flow form a single parameter family
whose core structure is determined by the slenderness ratio. It might be possible to
identify a similar equilibrium family for vortex rings with swirl with additional param-
eters defining the angular impulse of the vortex ring and/or the strength of the axial

vortex.

The possible effect of the angular impulse of the vortex rings on the growth rates of the
modes of the helical instability has not been explored in the present work. This can be

investigated in future work.
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The well known Widnall instability occurs in vortex rings without swirl. The mode of
the Widnall instability also depends on the slenderness ratio of the vortex ring similar
to the twisting mode of the helical instability. The present work leads to the following
question — Is the helical instability a modification of the Widnall instability due to swirl

or does it represents a new kind of instability?






Appendix A

Numerical Euler solver

Eydeland and Turkington (1988) developed a numerical variational method to obtain
exact steady solutions of the Euler equations for inviscid, incompressible, axisymmetric
flow with a compact vorticity distribution confined to a toroidal region. These solutions
form a two-parameter family. Lifschitz et al. (1996) provided a way of accurately com-
puting the steady state solution within a truncated domain enclosing the vortex ring
by imposing non-reflective boundary conditions. Their method was used in the present
work to obtain vortex rings with and without swirl which are exact, steady, inviscid
solutions. The method was slightly altered to obtain vortex rings with a specified radius
Ry and circulation Ij. The outline of the method from Lifschitz et al. (1996) is presented

below.

The modified cylindrical coordinate system (y, 6, z) with y = r2/2 was used. The velocity

and vorticity components in terms of the Stokes stream function ¥(y, z) are given by

1 9y,

o

= ——— = g + —¢€, Al
mazey+u969+aye (A.1)

w1, 0/,

w = Eey Eﬁw@@ + T@Z N
where L is the linear elliptic operator
2 2

4 g (A.2)

From the Euler equations in the modified cylindrical coordinates, the following equations

for ug and wy can be obtained

143
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w.V(y/2yug) =0 (A.3)
wp \ L Ouf _
uv (@) 2y 0z

Based on these equations the azimuthal velocity and azimuthal vorticity can be expressed

as

1
/ 1 !/
wo = =V W)+ ST (). (A.5)

The equilibrium equation for v is given by

L =2yh () = fF() f'(¥). (A.6)

Lifschitz et al. (1996) used the adjusted streamfunction 1& =Y + u+ ky. To determine
the values of the constants p and s two additional conditions are required. Lifschitz
et al. (1996) used conditions which effectively specified the circulation and the axial
component of the linear impulse of the vortex ring. In the present work the initial
setup for the computations consisted of a vortex ring with circulation Iy and radius
Ry. Therefore the additional conditions used to determine p and x in the present work

specified the circulation and the radius of the vortex ring as follows

/ / 2i 2yl — ff)dydz = Iy
_ / / E(th’— Ff)dyd: = Roly

Lifschitz et al. (1996) introduced the structure functions

FW) = V2a/(C+ Dyl (A7)

B B (¢+1)
g(¥) = ho— SC 11 )T/} (A.8)

where 1, =max(1,0). The value of the positive constant hg is not important. Lifschitz

et al. (1996) used a value of the exponent ¢ as 1.5 to ensure a reasonably smooth
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variation of 1 on the boundary of the compact region within which non-zero vorticity is
present. The same value was adopted in the present work as well. Therefore the positive
constants « and 3 are the parameters that determine the geometric parameters and the

swirl present in the vortex ring.

The equilibrium equation reduces to

L= —(a+ By)(d — p— ky)S . (A.9)

The additional conditions reduce to

// ;y(oz +BY) (W — p— ky)idydz = 1 (A.10)
//Jz—y(aJrﬁy)(%Z—u—ﬁy)idydz = 1. (A-11)

Since all the flow quantities are normalized with respect to Ry and Iy in the present
work, the right hand sides of (A.10) and (A.11) are taken to be unity.

Lifschitz et al. (1996) used the following non-reflective boundary conditions on the
boundary of the truncated domain D = (y,2)[0 <y <Y,-Z < z< Z,

by, £2) = ®(y,£2), $(0,2) = 0, $(Y, z) = (Y, 2) (A.12)
where

B(y,z) = - / / Gy, 77 2)(a + BR)D — u— v)S.dgdz. (A.13)

G is the Green’s function for the operator £ in free space given by

1/4
G(y,5,2,%) = —% gz;w Kz - k) K(k) - % (k:)} (A.14)

where K (k) and E(k) are complete elliptical integrals of the first and second kind of

modulus £ and

4(2y) M2 (29)1/2
(2y)' 2+ 29)1/2)2 + (2 — 2)*

k? =
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A.1 TIterative method

The equilibrium equation (A.9) and the additional constraints (A.10),(A.11) need to be
solved to obtain the quantities ¥, and & satisfying the boundary conditions given by
(A.12). Lifschitz et al. (1996) used the following iterative method.

Let the values of the required quantities at the end of the n"* iterative step be denoted

by ™ 1™ and k(™. The following steps are performed
1. Using ¥™ (™ and ™, compute

X™ = —(a+ By) (" — @™ — My (A.15)

and

o) = / Gx™dydz (A.16)

2. The boundary value problem
Lt = ) in p (A.17)
Pt = ™ on 9D .

is solved to obtain (™. In the present work the solution was obtained using

the successive over-relaxation method.

3. The quantities (") and £t are obtained from the additional constraints

1 ~
// @(a + By) (@) — D D qyde = 1 (A.18)

1 -
[ e+ @ =0 -z = 1. (a9
using Newton’s method.

The iteration procedure is initiated with y(©) (y, z) satisfying

1
_ — /(0 =
// ny dydz 1 (A.20)
(0)
X
— S—=dydz = 1.
// V2y
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Iterations of the steps outlined above are performed until convergence is reached. The
converged adjusted streamfunction field is used to obtain the vorticity field satisfying

the steady state inviscid Euler equations.
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