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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
AERODYNAMICS AND FLIGHT MECHANICS RESEARCH GROUP

Doctor of Philosophy

TOWARD A PHYSICS BASED ENTRAINMENT MODEL FOR SIMULATION OF HELICOPTER
BROWNOUT

by Gregory Teofil Jasion

Brownout is the name given to the degraded visual environment that can develop around a
helicopter as it operates in dusty conditions. The dust cloud produced reduces visibility and
makes landing the helicopter extremely difficult, there is potential for damage to the aircraft or
even loss of life. This thesis works towards understanding the physical processes occurring in
the generation of the dust cloud and the application of this understanding in a computational
model for dust entrainment.

Current brownout simulations use empirical entrainment models originally developed for
aeolian sand movement. These models use parameters fitted to experimental evidence, whilst
they may recreate the dust conditions of certain scenarios there is need for a physical model that
can produce accurate results for prospective aircraft or scenarios.

The physical brownout system is a multiphase system made up of particle dynamics of the
scales less than a millimetre and fluid scales as large as metres. In this thesis computational
modelling of particle systems, fluid systems and multiphase flow systems are used to
understand how the rotor wake entrains particles.

A model scale 3D unsteady rotor simulation was performed both in and out of ground effect.
The flow compares well with experimental results. The ground vortex interaction is quantified.
The model scale analysis is complemented by a full scale but steady, 2D, axisymmetric rotor flow
analysis. The steady flow is demonstrated to provide sufficient aerodynamic force to lift
typically medium sized particles from the ground.

The Discrete Element Method is a Lagrangian particle simulation method, in this thesis it is
investigated numerically and then the physical behaviour is assessed in a simulation of a probe
indentation experiment. The dynamic behaviour matched the experiment well. The Discrete
Element Method is recommended as a particle modelling method for a brownout modelling
solution.

Modelling brownout is extremely difficult due to the range of scales involved. This thesis
provides an in depth understanding of the helicopter flow field at small and large scales and the
aerodynamic forces and entrainment mechanisms of particles on the ground in the wake of a
helicopter.
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Chapter 1

Introduction

This chapter gives a brief overview of the problem of helicopter dust entrainment, the physical
processes involved and the necessity for further understanding in this topic. The aims of the
thesis are stated and the structure of the thesis is explained.
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Chapter 1. Introduction

1.1 Context

Brownout is the name given to the occurrence of thick clouds of dust generated by helicopters
during landing and take off in dusty conditions. If the dust envelopes the helicopter the
visibility of the pilot is degraded to the extent that only brown dust can be seen; the
phenomenon is therefore likened to redout and blackout effects associated with high g-force
manoeuvres. Whiteout is the name for the snow equivalent of brownout. Pilots attempting to
land rotor craft in this degraded visual environment take a large risk; without visual cues the
craft is likely to drift which could result in roll-over and the loss of the aircraft and crew. The
United States Air Force reported [8] that brownout had claimed more helicopters than any other
threat. It is claimed that the phenomenon cost the US military $100 million in 2006 [9]. The
condition has a variety of impacts on operations including formation flying and troop insertion
and generally poses an increased mission risk [10]. Brownout also has an impact on civil
operations, several brownout incidents have been reported over the last few years [11].

The underlying process by which brownout occurs can be summarised as:

1. The air flow from the helicopter down wash spreads out across the ground surface.

2. The particles on the surface experience aerodynamic forces from the near ground flow.

3. The aerodynamic force on each particle must first overcome the cohesive forces and
gravity that keep the particle stationary before motion begins.

4. The particle is lifted into the flow by one of several hypotheses proposed: either by an
unsteady ejection event in the flow [12], by rolling and bouncing the particle off of an
asperity on the surface [13] or through resonance [14].

5. The liberated particle is now acted upon by the aerodynamic forces and gravity. For larger
particles saltation will probably result; that is the particle will fall back down to the surface
and collide with other particles on the ground.

6. This collision can liberate further particles via two means; the first is ballistic [15], the
direct transfer of kinetic energy through collision, the second is the wake of the incident
particle entraining finer particles [16]. The indirect effect of displacing the larger particles
is that this may expose smaller particles that were previously hidden from the flow.

7. The particle described in stage 5 will be entrained if it is small and follows the flow. The
particle will still be influenced by gravity and so will drop out of the cloud if the
aerodynamic forces are not strong enough to keep it entrained. The size of the particle will
dictate how long it takes to fall, small particles will linger for much longer, these particles
make up the majority of the visual obscuration.

The process enumerated above highlights the large range of scales involved. In this problem
there are flow features defined by the rotor diameter of the order of several meters and there are
particles of the order of microns reacting to the flow. Similarly modelling the mechanics of
saltation and brownout inception requires the tracking of many thousands of interacting
particles. Combining knowledge from the different length and time scales of the problem is one
of the primary challenges of this research area.

A complete brownout simulation is one that incorporates a flow solver, to reproduce the
wake from the helicopter, with a dust entrainment or flux model, to calculate how much dust
leaves the ground, and a particle motion routine to calculate the progress of the particles over
time. There have been a small number of complete simulations developed and they are
discussed in detail in Chapter 2. These simulations use a variety of flow solving methods to
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1.2. Aims

calculate the rotor wake but for the entrainment model they all use a derivative of the aeolian
mass flux model developed by Bagnold [17]. Bagnold developed the model to describe the
aeolian motion of desert sand with the assumptions of steady parallel flow, these assumptions
are not entirely valid for a helicopter wake. The entrainment models based on this method are
somewhat empirical with parameters tuned for the cases required. Whilst they may produce
good results for the cases they are tuned to models of this nature cannot be relied on for a priori
brownout assessment of speculative craft or scenarios. The current gap in the knowledge is a
physics based deterministic brownout model. Creating a physics based deterministic brownout
model would provide a unique research tool that is not just capable of recreating the dust clouds
that are witnessed; it would enable the capacity to assess brownout behaviour at the design
stage and investigate design modifications for mitigation on existing aircraft. A model of this
kind would also be invaluable in simulation based training of pilots.

1.2 Aims

This study is an investigation of the brownout phenomenon and a foundation for the
development of a computational model to simulate particle entrainment in helicopter flows. The
project aims to:

• Approach the problem from multiple scales, ranging from the full scale helicopter flows of
the order of meters to the particle-particle interactions of the order of microns.

• Investigate the fluid-particle forces and discover, for the scales of the near ground rotor
wash, the dominant forces.

• Identify characteristic features of the rotor flow, how they pertain to entrainment, how they
relate to the rotor that generated them and thereby create a relationship between the rotor
and entrainment.

• Develop particle modelling methods to be able to simulate large systems of particles and
assess their suitability for simulating the dynamics of the particle bed.

1.3 Thesis structure

This thesis investigates Brownout entrainment at several different scales and the thesis is
organised to reflect this.

Chapter 2 is a comprehensive literature review. Previous studies, both experimental and
numeric, attempting to understand the brownout phenomena are presented. Current
state-of-the-art brownout simulations are described and their entrainment models reviewed.
Entrainment models from other disciplines are also described highlighting possible features that
can be utilised in the rotorwash context. At a smaller scale literature of the entrainment
mechanisms of a single particle are presented followed by an overview of the current
understanding of the saltation transport mechanism and how it relates to this work.

Chapter 3 explains the numerical tools that will be used throughout the fluid-dynamics
chapters of this work, primarily Chapters 4, 5 and 6. The forces a particle is subjected to when
moving through a fluid are gathered from the literature. The Navier Stokes (NS) equations used
by numerical flow solvers are given and Reynolds Averaged NS (RANS) equations are presented
for the simulations in Chapter 6. Basic flow scales are taken from a full scale helicopter
experiment and used to assess the particle-fluid forces nondimensionally.
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Chapter 1. Introduction

Brownout is the result of low level flight of rotorcraft and fittingly the investigation starts
there with two rotorcraft flow field simulations. Chapter 4 presents the first: an unsteady 3D
simulation demonstrating all the flow features and rotor tip vortices but at a reduced scale. A
rotor is modelled using an actuator line method producing the classic helical wake. A further 4
simulations are conducted at different rotor heights from the ground. Features of the near wall
flow field are discussed qualitatively and compared with experimental results from the
literature. Quantitative assessments of the near wall flow features are made in Chapter 5 and
related to entrainment. Statistical analysis of the vortex paths and wall shear stresses are
performed and the decay of coherent structures in the flow is assessed. The mechanism by
which vortices throw particles upwards is identified and explained in this chapter.

A second rotor flow field simulation is performed in Chapter 6 at full scale but time averaged
and 2D axisymmetric. This simulation is calibrated against published experimental results of a
full scale helicopter. The results provide us with real world velocity and length scales for a
helicopter downwash. The particle fluid forces are applied to this flow field utilising the real
world scales.

Brownout is a multiphase problem; the rotor wake discussed in detail in the previous
chapters is responsible for entraining sand particles, modelling these sand particles is the subject
of Chapter 7 and Appendices A & C. A common modelling method for granular systems is the
Discrete Element Method (DEM) and this is defined in Chapter 3. DEM is a Lagrangian particle
model, it uses numerical integrators to progress the positions of the particles. The performance
of that numerical system is evaluated in Appendix A.

Before entrainment the sand particles lie in a vast bed with each particle resting in contact
with a number of peers; Appendix C applies the Discrete Element Method to a similarly large
system of particles. DEM practitioners calibrate the model parameters in a number of different
ways commonly as bulk properties or on the scale of single particle interactions. The simulation
here attempts to bridge the gap between these calibration scales by modelling a powder
penetrometry experiment performed by Danby [6]. The experiment consisted of a probe driven
into a pot of powder at a constant speed, the resistive forces on the probe were recorded. The
force trace on the experimental probe is compared with that in the simulation. The meso-scale
behaviour of particle rearrangement due to the probe has similar complexity to the process of
saltation bombardment from a large bed.

The final chapter summarises the conclusions of the work presented in this thesis. Further
work is suggested combining and advancing the success of simulation Chapters 4, 5, 6 and
Appendix C.
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Chapter 2

Review of Helicopter Brownout
Modelling

Modelling brownout is difficult because it requires understanding of several physical processes
over a wide scale range. This review starts with the early comprehensive models of wind blown
sand, then walks through the attempts over the last 50 years to understand and model the
entrainment of dust into rotor wakes. The final sections discuss entrainment models with
additional features and the use of Lagrangian particles.
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Chapter 2. Review of Helicopter Brownout Modelling

2.1 Why is brownout such a problem?

Helicopters have been in production for over 50 years, during this time they have been used in a
number of military and civilian roles. Helicopters are inherently useful in a roles that require
vertical take-off or landing (VTOL), low speed flight or hover, and landing at unprepared sites.
Helicopters find use in urban transport, off-shore transport, search and rescue as well as troop
deployment and attack roles. All of these operations cause an effect seldom experienced by fixed
wing aircraft - the aircraft interacts with wake it has itself generated. Through training a
helicopter pilot learns how to avoid hazardous situations like the vortex ring state - descending
at a specific rate that results in the tip vortices in the vicinity of the blades. Brownout and
whiteout, however, are environmentally dependent and somewhat unavoidable. Brownout
occurs during landing and take off when fine sand or dust is entrained in the rotor wash
reducing the visibility of the pilot, whiteout is caused by the entrainment of snow.

Pilots can attempt to keep ahead of the developing dust cloud by approaching the landing
zone with significant forward velocity, a technique called roll-on landing, but just before the final
touchdown the helicopter is enveloped in the dust. In standard landing or roll-on landing the
final moment before touchdown is a dangerous moment. It is imperative that the pilot maintains
heading and does not allow the aircraft to translate laterally. To be able to achieve the desired
level of control the pilot will rely on visual clues such as a mark on the tarmac or a tuft of grass.
During brownout, however, the visibility is greatly reduced to the point that all visual cues are
obscured making landing a difficult and dangerous task.

If the dust cloud could be controlled to allow the pilot some visibility of the ground then this
would make landing in dusty environments safer. Additionally, controlling the dust cloud could
be used to reduce dust ingestion into engine air intakes. The capacity to model the development
of a dust cloud in a brownout scenario enables the evaluation of the brownout characteristics of
a device or design prior to production. The tool could also be used to: design retro-fit devices for
brownout mitigation, train pilots, develop optimum landing manoeuvres or provide dust cloud
data for the simulation of novel radar systems that aim to see through dust.

2.2 Wind blown sand

To begin to understand the brownout problem we look first at wind blown sand, a subject
explored by Bagnold [17] during time in the Libyan desert in the 1940’s and 50’s. Wind
transports sand using three mechanisms illustrated in Fig. 2.1:

• large particles creep ( 5 mm) - they are pushed along the bed by the wind and collisions
from smaller airborne particles.

• medium sized particles saltate ( 0.5 mm) - a skipping mechanism. Sand particles leave the
surface, through collision or aerodynamic forces, then are blown some distance before they
collide with the bed at speed causing further saltation or creep. This process can be
sustained in an equilibrium causing massive sand transport.

• small particles become suspended ( 5µm). They are light enough to be carried a
considerable height and distance by the flow, these particles can be ejected from the
ground by saltating particles or by the flow. Suspended particles are responsible for visual
obscuration during brownout.

Bagnold [17] was by no means the first to observe the movement of sand by wind, however,
he was the first to attempt to identify underlying principles of the process. Bagnold identified
many of the challenges that still exist when studying the problem of sand entrainment, namely

6



2.2. Wind blown sand

CREEP

SALTATION

SUSPENSION

WINDWIND

Figure 2.1: The 3 different aeolian transport mechanisms: creep, saltation and suspension. Saltat-
ing particles tend to leave the surface at a very steep angle and collide with a much shallower one
[17].

the effect on the flow from carrying heavy particles in high concentration and the effect of the
deformable bed surface that must affect the flow. Nevertheless Bagnold defines a series of
expressions to find the transport rate of sand by wind, expressions that are still used in studies of
wind blow sand in 2011 [18].

Bagnold [17] conducted observations in the natural desert and experiments in a laboratory
wind tunnel observing the motion of sand grains in wind. Bagnold made several interesting
observations: a static-threshold velocity exists at which sand motion begins, this is followed by a
lower dynamic-threshold velocity which is the velocity required to maintain the saltation. That
is to say, at wind speeds insufficient to disturb sand grains on the surface saltation is maintained
by the impacts of falling particles. Bagnold discovered that the velocity profile of the air is
dramatically altered by the motion of sand grains as momentum is transferred from the fluid
phase to the solid phase.

Inception of sand particles by the aerodynamic forces alone, Bagnold observed, first occurs
by inducing the particles to roll along the surface. Once the particles have gathered sufficient
speed they then start to bounce along the surface causing saltation and a sand cloud to emerge.
Particles released by saltation have a near vertical trajectory upwards and make impact at a
shallow angle, illustrated in Fig. 2.1.

Sand motion was quantified by Bagnold [17]. The methodology was used by Wachspress
et al. [19] and is included later in Section 2.6.

Iversen et al. [20] took the relations of Bagnold and others and sought to apply them to
Martian aeolian sand transport. The dynamics of Martian sand are of little interest in this thesis,
however, to relate the expressions of Bagnold to the lower density Martian atmosphere Iversen
expands the expressions of Bagnold to change the significance of inter-particle forces. Iversen
found that the trends Bagnold identified, relating threshold velocity to friction velocity and
particle size, were not as universal as Bagnold believed. Iversen et al. found that the mass flux
varied with particle size distribution, particle shape, and the different manifestations of
inter-particle forces explored in detail in Chapter 3.

Wachspress [21] describes the difficulty of using an entrainment model from literature in a
brownout context given that most aeolian entrainment models are based on 3 assumptions: 1)
flat ground, 2) parallel flow, 3) steady flow. Wachspress [21] argues that helicopters always land
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on flat ground and the flow nearest the wall will be parallel but the rotor wash will definitely be
unsteady and full of strong vortex structures. This author believes that the flat ground
assumption mentioned previously is akin to the zero pressure gradient condition familiar in flat
plate boundary layers, however, an impinging jet with radial wall jet flow must have a strong
pressure gradient.

2.3 Early studies of helicopter dust entrainment

An early published study by Leese of the US Army looked at helicopter ‘Blast Effects’ a term
referring to dust cloud creation from the near ground rotor wash [22]. The study was conducted
to get a better understanding of how dust, snow and foreign objects are blown into the air by the
helicopter downwash.Leese [22] hoped to find a relationship between the full-scale helicopters
tested and model-scale rotors used in more controlled tests, but was unable to identify scaling
properties with confidence. Leese also examined using ground sheeting to prevent the dust
pick-up. Leese identified the region of peak particle pick-up as one rotor diameter away from the
hub.

Shortly after Rodgers [23] conducted a full scale experimental study on the dust cloud
generated by helicopter down wash. Dust samplers were mounted on the fuselage of several
helicopters to determine the size distribution of airborne particles for different heights of hover.
The result indicate that the stronger flow, when the helicopter is closer to the ground, is capable
of entraining large and small particles alike, but a weaker down wash can only entrain the
smaller particles. Rodgers [23] also described the dust cloud around a helicopter as seen from
another helicopter above it, he described a doughnut shaped dust cloud with a helicopter clearly
visible from above but shrouded from the sides.

2.4 Impinging jets as a first approach

The time averaged flow beneath a helicopter is not dissimilar to an impinging jet. This section
contains a description of the cases where experiments using jets have been conducted in an effort
to better understand brownout.

Bradshaw and Love [24] conducted an experiment using an impinging jet. The jet was
positioned normal to a smooth surface at a height of approximately 8 jet radii. A stagnation
region forms beneath the jet, the static pressure is at a peak and a hemispherical like region of
increased static pressure forms. The peak skin friction was approximately 1 jet radius from the
jet centre, the edge of the free jet. This is due, Bradshaw explained, to the radial velocity peaking
under the influence of the pressure gradient.

Morse and Newhouse [25] used a ducted fan to investigate the erosive effects of an
impinging jet at heights between zd = R and 6R. The ducted fan used had a very high disk
loading, approximately an order of magnitude higher than a typical helicopter. A variety of soil
conditions were tested for erodibility under the fan; vegetation, hard packed surfaces and wet
soil showed little erosion, loose surfaces eroded rapidly.

Haehnel [26] investigated brownout by experiment using a jet impinging on a bed of loose
sand. The rig used a high speed jet position directly above a large bed of sand or glass beads, the
erosion of the bed was recorded. Haehnel found the mass flux to fit the model described by
Eq. (2.1):

q = C/g(τw − τc) (2.1)
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where g is the gravitational constant, C is a constant with units of m−1, τw is the wall shear stress
and τc is the critical wall shear stress based on experimental observations or on the empirical
relationship described by:

τc = B2
(

∆ρgdp +
C
dp

)
(2.2)

where ∆ρ = ρs − ρ f the difference between particle and fluid densities, B and C are constants
found from experiment to be B = 0.1109 and C = 3× 10−4 N/m for aeolian flows. Haehnel
found, by experiment, critical shear stress for glass beads and sand to be 0.059 m2s−2 and
0.15 m2s−2. Eq. (2.2) is defined for uniform parallel flow and as such is not strictly appropriate.
The results also show a large variance in the results for sand, where size and shape are not as
controlled as they are for glass beads, supporting evidence for saltation through initial
stimulation of large particles. Haehnel concluded that it was possible to model entrainment rates
if models were based on the Reynolds stresses, i.e. the turbulent fluctuations, but not on average
velocity properties. The entrainment function, Eq. (2.1), could be added as the source term to a
particle transport equation. A CFD solver could model the dust as an Eulerian concentration
continuum. Alternatively the mass flux can be discretised to produce a number of particles to be
injected into the near wall flow and then tracked using Lagrangian frame and particle-fluid
forces. The main difference between this experiment and rotor based entrainment is that the
rotor flow has strong vortex-ground interaction as shown by the results of Lee et al. [27], whilst
Haehnel includes the fluctuation flow properties these are still Reynolds averaged and do not
include the peak stresses from vortex events. In this project a deterministic entrainment model is
sought but the results and empirical models presented by Haehnel are useful for validation.

2.5 Qualities of the rotor wake within the context of

entrainment

The driving force behind the brownout condition and the entrainment process is the helicopter
down wash. Here the features of the helicopter flow are described.

The helicopter flow is a 3 dimensional, highly complex, unsteady flow. The main flow
features a strong axial jet and tip vortices shed by each rotor blade that are convected
downwards, additional features include blade-vortex interaction; when a rotor blade travels
through a tip vortex, interactions with the fuselage and flow interactions with the tail rotor [28].
A full scale helicopter tuft study by Wadcock et al. [29] showed that operating close to the
ground adds to the complexity of the flow introducing separation and reversed flow on the
fuselage and ground.

The helical vortex produced by the rotor tips break up over time. Computational work by
Kenny [31] shows a clear break up of the helicopter’s primary vortex filament into a multitude of
smaller secondary-vortices as it interacts with the ground, in agreement with several
experimental studies looking at vortex rings impacting on a wall [32, 33, 16, 34]. In each case the
vortex generates secondary and even tertiary vortices as it approaches the wall and a region of
higher speed flow is visible between the vortices and the ground. This region of high speed flow
could be responsible for the particle entrainment. Figure 2.2 clearly shows the primary vortices
sweeping across the ground, two or three are identifiable as concentric rings in the dust before
the bulk separation. The photo also shows secondary features aligned with the flow, these could
be secondary vortices.

The flow travelling near to the ground will develop a boundary layer. The boundary layer is
host to eddy structures that transport high energy fluid to the surface and low energy fluid into
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Chapter 2. Review of Helicopter Brownout Modelling

Figure 2.2: A Merlin EH101 Helicopter in a dust cloud [30]

the bulk flow. Particles respond to the flow in the boundary layer but the flow will also be
effected by the presence of the particles. Particle resuspension is a result of the particle-fluid
coupling on the ground plane. The boundary layer is described in more detail in Section 3.2.1.

2.5.1 Vortex ground interaction

Lee et al. [27] used Digital Particle Image Velocimetry (PIV) to look at the blade vortex ground
interaction and the near ground velocity profile for a model rotor in ground effect. They
conclude that the flow becomes an unsteady radially expanding wall jet, and that the vortex
filaments shed from the rotors normally diffuse naturally when the rotor is high enough from
the ground. However, when the rotor is close to the ground the filaments spread out across the
surface causing them to spin up before turbulence in the wall jet quickly shears the vortices and
accelerates their diffusion.

Nathan and Green [35] applied PIV to a rotor IGE both hovering and advancing in a series of
wind tunnel experiments, the wind tunnel was equipped with a rolling road. Nathan and Green
[35] found the wake structure results in a large recirculation ahead of the moving rotor,
employing the moving ground causes the recirculation vortex to become more concentrated and
closer move closer to the aircraft. A secondary effect of the tighter vortex is a strong region of
opposed vorticity at the wall ahead of the recirculation zone. This shows that viscous
ground—vortex interaction has a big effect on the vortex behaviour.

2.5.2 Vortex filament straining

Ramasamy and Leishman [36] studied the effects of vortex filament straining and viscous
diffusion. The vortex filaments reside in the vicinity of the wake boundary and are stretched by
the expansion of the wake. The tip vortex is composed of a viscous core of fluid that rotates in a
solid-body like fashion and surrounded by a fluid with a swirl velocity that asymptotically
reduces to zero with distance from the core. The width of the core is measured between to the
two peaks in swirl velocity. Viscous diffusion causes the vortex size to grow over time and the
swirl velocity to reduce, straining the filament causes the vortex to reduce in width and
conservation of momentum causes it to then spin faster. For IGE rotor flows the consequences
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are very interesting, as the tip vortices approach the ground they are stretched and spin faster
potentially increasing entrainment.

Self induced instabilities in helical vortex structures are observed both in and out of ground
effect. Several different instabilities are identified by Widnall [37] in an analytical study on helical
filaments in an axial free stream. Experimental observations of helical vortex wakes in a free
stream are made by Sørensen et al. [38], several modes of breakdown are observed. In the case of
a hovering rotor the wake behaves differently, Lee et al. [27] found vortex pairing within a few
disk diameters down stream. Vortex pairing involves neighbouring filaments moving around
each other and eventually merging. Lee et al. continued the observations to a rotor in ground
effect and found the vortex pairing effect can push some vortices very close to the ground which
could also dramatically increase entrainment, this finding was confirmed by Johnson et al. [39].

2.5.3 Observations of dust entrainment from rotors

Gillies et al. [40] carried out a recent full scale experimental study measuring dust emission from
low level rotor craft flight. Gillies et al. found that the dust emission is reduces as the forward
travel speed increases, it was speculated this is due to reduced residence time over any specific
location and the change in pressure distribution over the rotor as a result of the varying pitch of
the blades, required for controlling the aircraft.

The Sandblaster project [41] gathered data of rotor craft dust emission including particle size
and concentrations. They conclude that larger airframes, with a higher disk loading, generate
the densest dust clouds and are also capable of entraining the largest particles; concentrations of
fine particles are similar for all airframes.

Johnson et al. [39] conducted a multiphase PIV study to quantify the entrainment mechanisms
for an IGE rotor flow. The study captured vortex ground interactions with fascinating results
involving the flow field around the vortices themselves, stagnation bubbles and particle-vortex
trapping. Johnson questions the validity of the threshold velocity dust models used in most
brownout models comparing the upwash sources. The vertical flow in the turbulent boundary
layer, for which the threshold velocity model was designed, is a result of only the turbulence
where as an IGE rotor flow contains significant vertical flow from vortex events.

2.6 Computational models of helicopter dust entrainment

In recent years several numerical models describing the complete brownout process have been
presented. Amongst the work present are models developed by Wachspress et al. of Continuum
Dynamics [19], Phillips and Brown of Glasgow University [42], D’Andrea and Scorcelletti of
Augusta Westland [43] and Syal et al. and Thomas et al. of the University of Maryland
[44]Thomas et al. [45]. The aim of these developments is to create a complete brownout
simulation package by incorporating CFD with a particle motion method and an entrainment
model. A short account of each of the entrainment models used in the simulations of Wachspress
et al. [19], Phillips and Brown [42] and Thomas et al. [45] is given here.

The simulation developed by Wachspress et al. [19] incorporates a Lagrangian tracking model
with a vortex transport CFD model. The objective was to develop a deterministic real time
brownout simulation. Wachspress et al. uses an entrainment criteria based on a threshold friction
velocity, the velocity at a reference height is supplied by the CFD model this is then used to find
the shear stress on the ground via a logarithmic boundary layer profile. If the friction velocity
generated by the flow field is greater than the threshold the particle is put into motion.

Wachspress et al. used an entrainment model based on Bagnold [17] who developed a basic
expression from studying movement of sand dunes. The entrainment flux is found by first
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finding the threshold drag velocity, u∗t, and comparing it with the friction velocity. The friction
velocity, u∗, is found at any point in the flow by comparing a velocity in the flow at a reference
height with a velocity profile, Eq. (2.3):

u(y) = 5.75u∗ log (y/kr) (2.3)

where u(y) is the horizontal flow velocity at a height y, kr is a roughness parameter. Wachspress
et al. use y = 0.3m, kr ' 1/30th of the diameter and the sphericity accounted for with a factor of
0.75. The threshold drag velocity is found using an expression by Shao and Lu [46]:

u∗t = B

√
ρp − ρ f

ρ f
gdp +

C
ρ f dp

(2.4)

Bagnold [17] offered values for B and C based on his observations of sand dunes, Wachspress
et al. offers variation based on the helicopter brownout models and observations but the values
are very much subjective. Bagnold observed that finer particles require a higher threshold
velocity, but studies have shown that if larger particles are mixed with the fine particles then that
threshold lowers significantly. The former concept is confirmed by the studies of Rodgers [23]
discussed above supporting the notion of saltation of large particles as a catalyst to entrainment.

The effects of saltation are incorporated into the Wachspress et al. entrainment model by
addition of the impact threshold, u∗i:

u (y) = 5.75u′∗ log
(
y/k′

)
+ u∗i (2.5)

where u′∗ is the altered drag velocity, k′ is the increased surface roughness and ui∗ is the impact
threshold velocity at y = k′. The impact threshold velocity is the velocity required at height k′ to
maintain saltation.

The mass flux of particles injected into the flow is given as:

Q = C
(

vre f − u∗t
)3

(2.6)

The flux rate, Q, is based on Eulerian models that state the mass flux is proportional to the
cube of the difference between the threshold velocity and the wall tangential fluid velocity, vre f

at the reference height and C is a constant chosen to empirically match observations for rotor
wash flow. The quantity of particles entrained per unit area is found using a particle distribution
function. Once entrained the particles are carried through the flow by the drag force based on
the relative velocity.

The model proposed by Wachspress et al. is empirical and correlates with several different
data sources. This saltation model is driven by an unsteady CFD code such that the velocity
values put into the the model are instantaneous. The entrainment flux expression is a
macroscopic expression based on observation, there is no appreciation of how the flow interacts
with the surface particles and since the expression was defined for aeolian transport the
idiosyncrasies of the vortical rotor down wash are not appreciated.

The second brownout model reviewed was developed by Phillips and Brown [42]. Unlike the
Wachspress et al. model which uses a Lagrangian approach the Phillips and Brown particle
model is Eulerian. The particles are modelled as a continuum in the flow. The entrainment
model is subsequently a source term, Sp, in a particle transport equation, Eq. 2.7:

δ

δt
ρp +

(
v + vg

)
· ∇ρp = Sp + νp∇2ρp + other nonequilibrium terms (2.7)

where v is the local flow velocity, vg is the fallout velocity due to gravity, νp is the particle
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diffusion constant.

The source term, Sp, is a sub-model much like that of Wachspress et al. [19]; Phillips and
Brown used a similar threshold expression to Eq. 2.4 and used wind tunnel data from Lu and
Shao [47] to find values of B and C. The model is simplified to only use one roughness scale, one
particle diameter and therefore has a uniform threshold velocity. A horizontal flux model, Eq.
2.8, from White [48] is used to determine the number of particles that are saltated:

Q = Ecv3 ρ

g

(
1− vt

v

)(
1 +

v2
t

v2

)
(2.8)

where Q is the mass flux, E is the ratio of erodible to total surface area, c = 0.261 is an empirical
constant, vt is the threshold velocity calculated similarly to above, Eq. (2.4). A fraction of those
are fully entrained, that fraction is determined by the clay content of the soil base. An empirical
relationship gives the source term:

SP = Qe13.4 f−6.0

where f = 0.1 is the clay fraction.

This model seems over simplified, it seems that the entrainment flux is solely dependant on
the near ground velocity. The boundary layer profile is estimated using that velocity and steady
parallel turbulent boundary layer theory, this may not hold during the passage of near ground
vortices. The entrainment model is handled in much the same was as a wall function in a CFD
code but this is developed based on the steady parallel flows from aeolian research such as
Bagnold [17]. The flow features that make the rotor flow significant are ignored in the
entrainment model and all saltation is assumed to happen in a fixed near wall region.

The model is validated qualitatively based on flow visualisations and footage of helicopters
operating in dusty conditions and the agreement seems impressive. It is yet to be reported if the
simulation can accurately model other helicopters or phenomena that were not involved in the
parameter tuning process.

Perhaps the most effective simulation is that performed by Thomas et al. [45], the flow is
modelled using a combination of the vortex wake methods and Eulerian methods to achieve
excellent wake simulations. A Bagnold style entrainment mechanism is used to entrain particles
which are then modelled using in the Lagrangian frame with the drag force calculated from the
flow field. The simulation is performed at a model scale replicating the experimental setups of
Lee et al. [27] and Johnson et al. [39], the numerical results were validated against the
experiments and showed good agreement of both flow and particle motion. The ‘vortex
trapping’ phenomenon described by Johnson et al. [39] was recreated by the simulation. While
this method is not a full scale helicopter brownout simulation it includes many of the features
and is perhaps the most validated.

The simulations of Wachspress et al. [19] and Phillips and Brown [42] aim to deliver an
accurate brownout simulation package incorporating flow fields, dust clouds and visualisation.
The parameters are tuned to the results expected such that the behaviour is now correct, the
advantage is computational speed the disadvantage is that the model is probably not valid
outside of the parameter window used to define it. The simulations of Thomas et al. [45] show
great capability, the entrainment matches experiments well but there is still room for a more
comprehensively resolved particle bed and physics based entrainment by fluid forces of particles
from the bed. A physics based deterministic model is capable of predicting results for cases
outside of the parameter fitting window, prediction can then be used in development and testing
of helicopter operations or modifications to reduce the dangers of brownout operations. Further,
the physics based entrainment model would be valid for all manner of industrial dry powder
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multi-phase flows.

2.6.1 Alternative entrainment models

The basic aeolian saltation models do not always capture the unsteady effects or the effect of
near wall vortices. Unsteady aeolian dust entrainment is investigated by Bauer et al.
[49], Butterfield [50], Spies and McEwan [51]. In each study conditional averaging and event
detection are used to consider sweep and ejection events but their results were inconclusive.
Sterk et al. [52] found that the fluctuation events, sweeps and ejections, contribute positively and
negatively to shear stress but only positively to saltation and streamwise velocity, they conclude
that the driving variables are wind speed and fluctuations not shear stress as is commonly
considered in the Bagnold model.

Cao [12] uses the average bursting frequency for parallel, uniform and steady turbulent
flows. A bursting period relationship is related to the friction velocity TB = νT+

B /u2
∗ where TB is

the bursting period and T+
B = 100 is the non-dimensional bursting period found from literature.

The concept of a bursting period could be used, perhaps drawing parallels to the frequency of
rotor tip vortex impacts with the ground or the turnover time of a vortex structure. Aerosols
from reactor explosions were studied by Ardey and Mayinger [53]; entrainment following a
sudden pressure wave is greater than the equivalent steady flow case, this supports the
importance of vortical events in rotor wash entrainment.

Marchioli et al. [54] looked at the power of near wall turbulent events to eject particles from
the surface, the power analysis focused on the boundary layer of a wavy wall. The vortical
structures seen by Marchioli et al. reach into the shear layer and strong sweep and ejection events
occur. The vortices are identified as the principle driver for particle resuspension with Stokes
number being the controlling parameter. The helicopter flow may not have the same structure
but it also features unsteady vortical structures, these structures could cause the particles to be
entrained in like manner.

Marchioli et al. [54] and Cao [12] both produce entrainment functions with agreeable results
in the parallel flow case, but there appears to be an absence of understanding between the single
particle leaving a surface and the surface mass flux approach. A function that is capable of
expressing the entrainment from a finite event whilst maintaining the capacity to integrate with
a full brownout model is a likely solution for an entrainment model in such an inhomogeneous
flow as that of an IGE rotor-wash.

2.6.2 Lagrangian forces acting to entrain particles

The methods described previously have applied a large scale flow system to a bulk entrainment
method. The following section considers the entrainment of discrete particles by flow forces.

Substantial work has been carried out on the subject of entraining particles from surfaces.
Hall [55] conducted experiments on cylinders in a wind tunnel to discover the lift forces on a
wall bounded particle in a turbulent boundary layer. Smaller scales have been experimented
with particles residing in the shear layer by Mollinger et al. [56]. Any particle on a particle bed in
a flow will be affected by aerodynamic forces of lift and drag, inter-particle cohesion forces and
gravity. For the particle to leave the surface the lift force must overcome gravity and adhesion to
a surface or cohesion to the particles in the bed. Ziskind et al. [57] present an analytical solution
to the entrainment of a particle positioned on top of two or three particles, they conclude that the
most likely entrainment mechanism is for the particle to roll due to the drag force as the drag is
much greater than the lift. Particle cohesion and resuspension are explored in more detail in
Chapter 3.
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Ibrahim et al. [58] performed experiments exploring micro particle detachment from a surface
of known roughness. Ibrahim reports the detached fraction of the particles over time as the flow
is accelerated. The particles sit within the viscous sublayer, defined in Chapter 3, and are
sparsely arranged in a monolayer, particle sizes between 30µm and 110µm were tested. The
sample of larger particles was completely detached within 5ms, the smallest sample was 80%
detached by 24ms. The model derived by Ibrahim is not a saltation entrainment as the particles
are sparse but shows that particles beginning the entrainment process require a threshold
velocity and time. Ibrahim refers to Soltani and Ahmadi [59] who found, through direct
numerical simulation, that micro particle detachment is heavily dependent on burst-sweep
events in the boundary layer, these fluctuations provide extra intensity to the flow and help
entrainment.

2.7 Summary

The present literature has made steps into the methods and understanding required to solve the
problem of brownout, but have done so from different starting points and with different
motivations. At present a deterministic physics based brownout entrainment model is not
available. The entrainment model in the brownout simulations reviewed above is too
generalized to support a research and development platform aiming to provide accurate dust
clouds from speculative craft or environments. These entrainment models may lack the capacity
to adapt to varied sand properties and they operate irrespective of the intricacies of how the
rotor flow interacts with the ground plane.

Bridging Lagrangian particle simulations with a rotor flow field simulation allows a
combination of the macroscopic rotor flow field with the microscopic particle bed and
particle-flow forces. Particle-flow forces are reported in Chapter 3, these are applied to a full
scale steady flow in Chapter 6. An unsteady rotor simulation is performed in Chapter 4, the flow
results are applied to a Lagrangian particle model in Chapter 5. Chapter 7 discusses the concept
of particle entrainment from a deterministically modelled particle bed.
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Chapter 3

Fluid and Particle System Modelling

This thesis explores one physical system composed of two phases; the fluid phase and the
solid particulate phase. This chapter explains the governing physics and the techniques used to
model these phases.

The first section describes the Navier-Stokes equations (NS) that describe the fluid flow and
the Lagrangian equations that govern particle motion.

In Section 3.2 the NS equations are expressed in axisymmetric coordinates and the Reynolds
averaged equations that are solved in Chapter 6 are presented. Section 3.2.1 explains the k− ε

turbulence model, this is followed by a description of turbulent boundary layers, both used in
the analysis in Chapter 6.

Expressions for the forces experienced by a particle in a flow are given in Section 3.3. The
inter-particle forces and methods to model particle interaction dynamics are presented in Section
3.4. The Discrete Element Method (DEM) is a technique to model large systems of particles, it is
used in Appendices A and C, the framework of the DEM is defined in Section 3.4.4.

The governing equations for fluids and particles in Sections 3.1, 3.3 and 3.4 are
nondimensionalised in Sections 3.5 and 3.6. Analysis of the nondimensional equations allows
assessment of the importance of terms in the expression. The nondimensionalised equations are
analysed in Chapter 6 in the context of a full scale rotor flow.
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3.1 Governing equations of fluid and particle motion

The motion of fluids is governed by mass conservation and the Navier-Stokes equations. In an
Eulerian Cartesian coordinate system the continuity equation is defined by Eq. (3.1) [60, p. 76]:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 (3.1)

where ρ is the fluid density, t is time, xi is the position vector and vi is the fluid velocity vector. In
an incompressible flow this expression is simplified to

(
∂vi
∂xi

)
= 0. The Navier-Stokes equations

are defined in Eq. 3.2 [60, p. 76]:

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) = ρgi −

∂p
∂xi

+
∂τij

∂xj
+ ρFi (3.2)

with

τij = µ

(
∂vi
∂xj

+
∂vj

∂xi
− 2

3
δij

∂vl
∂xl

)
(3.3)

where gi is the gravity vector, p is pressure and δij is the Kronecker delta. The terms in Eq. 3.2
from left to right are: the temporal, the convection, the gravity body force, the pressure gradient,
the diffusion and the user defined body force, Fi, with units of N/kg.

The particle motion is described in the Lagrangian frame in order that the motion of each
particle can be solved individually. The forces on a particle are the sum of the fluid forces,
gravity and particle interaction forces, Eq. 3.4.

dui
dt

= Ffluid,i + Fgravity,i + Fparticle,i (3.4)

where ui is the particle velocity vector and Fφ,i is a force vector incorporating the mass of the
particle with units of N/kg.

The rotational equation of motion is defined using the angular momentum equation:

dLi
dt

= Mi = eijkFjxk (3.5)

where Li is the angular momentum defined as clockwise positive, Mi is the sum of the moments,
eijk is the permutation symbol and xk is the perpendicular distance from the applied force to the
centre of rotation - typically the particle radius. Then:

Li = Iijωj (3.6)

where Iij is the angular inertia tensor and ωj is the angular velocity. The angular inertia of a
particle is orientation dependent; for a sphere, however, it is not and reduces to the scalar
parameter 2

5 mr2
p:

Isphere,ij = δij
2
5

mr2
p (3.7)

We can then replace Isphere,ij with a single scalar value and treat it similarly to the mass in the
rectilinear momentum equation to yeild:

dωi
dt

= Mi (3.8)

where the units for Mφ,i are N/kgm.
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3.2. Axisymmetric and Reynolds averaged flow equations

3.2 Axisymmetric and Reynolds averaged flow equations

In Chapter 6 a simple flow simulation was implemented to obtain a downwash velocity field, the
simulation performed was incompressible, steady, 2D axisymmetric and non-swirling. The axial,
radial and swirl coordinate directions are indicated by z, r and θ respectively with corresponding
velocities vz, vr and vθ . For 2D steady axisymmetric non-swirling flows the mass continuity
equation is given as [60, p. 76]:

1
r

∂(ρrvr)

∂r
+

∂(ρvz)

∂z
= 0 (3.9)

The instantaneous conservation of momentum equations for 2D steady axisymmetric
geometries, from Schlichting [60, p. 79], are for the axial direction:

ρ

(
vr

∂vz

∂r
+ vz

∂vz

∂z

)
= Fz −

∂p
∂z

+
1
r

∂rτrz

∂r
+

∂τzz

∂z
(3.10)

and in the radial direction:

ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z

)
= Fr −

∂p
∂r

+
1
r

∂rτrr

∂r
+

∂τrz

∂z
− τθθ

r
(3.11)

where the viscous stresses, τij are:

τrr = µ

(
2

∂vr

∂r

)
τθθ = µ

(
2

vr

r

)
τzz = µ

(
2

∂vz

∂z

)
τrz = µ

(
∂vz

∂r
+

∂vr

∂z

)
(3.12)

Reynolds decomposition is a method of representing the instantaneous velocity field, vi, by
separating the mean velocity field, Vi, from the fluctuations: v′i = vi −Vi. The mean of the
fluctuations is zero but the mean of the covariances or Reynolds stresses is not zero, v′iv

′
j 6= 0.

The Reynolds averaged mass continuity equation for the 2D non-swirling axisymmetric flow is
then found through substitution of vi = Vi + v′i into Eq. 3.9 and averaging over time:

∂Vz

∂z
+

1
r

∂

∂r
(
rVr
)
= 0 (3.13)

The Reynolds averaged momentum conservation equations for 2D non-swirling
axisymmetric flows [61, p. 110] are: for the axial direction:

∂

∂z
(ρVz Vz) +

∂

∂z
(ρv′2z ) +

1
r

∂

∂r
(rρVz Vr) +

1
r

∂

∂r

(
rρv′rv′z

)
= −∂P

∂z
+

∂

∂z

[
µ

(
2

∂Vz

∂z

)]
+

1
r

∂

∂r

[
rµ

(
∂Vz

∂r
+

∂Vr

∂z

)]
+ Fz (3.14)

and for the radial direction:
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∂

∂z
(ρVz Vr) +

∂

∂z
(ρv′zv′r) +

1
r

∂

∂r
(rρVz Vz) +

1
r

∂

∂r
(rρv′2r ) = −

∂P
∂r

+
1
r

∂

∂z

[
rµ

(
∂Vr

∂z
+

∂Vz

∂r

)]
+

1
r

∂

∂r

[
rµ

(
2

∂Vr

∂r

)]
− 2µ

Vr

r2 + Fr (3.15)

where Fz, Fr are the external body forces, µ is the dynamic viscosity and P is the average static
pressure.

3.2.1 Turbulence model

Turbulence broadly refers to the unsteady fluctuations in a flow field, these range from very
large scale eddies in the flow down to the smallest scales where fluid viscosity converts the
kinetic energy of these fluctuations into heat. Turbulence is characteristically unsteady but
overall the statistics of the flow can be characterised as stationary if there is a steady mean flow.
The flow can be separated into steady and fluctuating components, as in Reynolds
decomposition, v′i = vi −Vi.

The k− ε model

The k− ε model provides approximations of the turbulent energy, k, and the rate of turbulent
dissipation, ε. If the instantaneous flow velocity is described as vi = Vi + v′i, then the turbulent
kinetic energy is k = 1

2

(
v′iv
′
i

)
. The dissipation rate, ε, is defined as ε = 2νe′ije

′
ij where e′ij is the

fluctuating component of the rate of deformation tensor and ν is the kinematic viscosity. The
model works by accounting for the transfer of energy from the mean flow to the turbulent kinetic
energy and through to viscous dissipation, in words the equation for the transport of k or ε is:

Rate of
change
of k or ε

+
transport

of k or ε by
convection

=
transport

of k or ε by
diffusion

+
Rate of

production
of k or ε

-
Rate of

destruction
of k or ε

The calculated values of k and ε can be used to give velocity and length scales, ε is the
dissipation rate and is therefore associated with the smallest eddies but because energy in largest
eddies is assumed to cascade through to the smallest scales the energy is balanced. Therefore ε

can be used to find the length scale of the larger eddies which extract energy from the mean flow:

vturb = k
1
2 lturb =

k
3
2

ε
(3.16)

The time scale of the larger eddies, the turn over time, can then be defined as:

τ =
k
ε

The characteristic scales of the smallest eddies are the Kolmogorov scales, the Kolmogorov
length scale is:

η ≡
(

ν3

ε

)1/4

(3.17)

the time and velocity scales follow:

τη ≡
(ν

ε

)1/2
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vη ≡ (νη)1/4

The k− ε model is a popular and widely used turbulence model but assumes that the
Reynolds stresses are a function of the mean flow gradients, this is convenient for the calculation
but is not always true in high strain regions and near the stagnation point.

The realizable k− ε model

To model the turbulence in Chapter 6 the two equation realizable k− ε model was chosen.
Unlike the traditional k− ε model the realizable version has noticeable improvements for flows
with vorticity and rotation over the standard k− ε model and performs better where there are
regions of high shear or stagnation. It was anticipated that the jet flow modelled here will have
stagnation and high levels of vorticity. The model is realizable because “the eddy viscosity
formulation is based on the realizability constraints; the positivity of normal Reynolds stresses
and the Schwarz’ inequality for turbulent shear stresses”[62]. Shih [62] originally derived the
model to solve the axisymmetric jet anomaly, a known weakness of the standard k− ε model,
the model has also been validated for a number of other flow cases. The case modelled here
would suffer the same anomaly with the traditional k− ε model.

The k equation in 2D axisymmetric coordinates is:

∂

∂z
(ρkVz) +

1
r

∂

∂r
(rρkVr) =

∂

∂z

[(
µ +

µt

σt

)
∂k
∂z

]
+

1
r

∂

∂r

[(
µ +

µt

σt

)
∂k
∂r

]
+ Gk − ρε + Sk (3.18)

where Sk is the source term and Gk in axisymmetric coordinates is:

Gk = −ρ

[(
v′zv′z

∂Vz

∂z
+ v′zv′r

∂Vr

∂z

)
+

(
v′rv′z

1
r

∂

∂r
(
rVz
)
+ v′rv′r

1
r

∂

∂r
(
rVr
))]

The dissipation rate, ε, in 2D axisymmetric coordinates is modelled as:

∂

∂z
(ρεVz) +

1
r

∂

∂r
(rρεVr) =

∂

∂z

[(
µ +

µt

σt

)
∂ε

∂z

]
+

1
r

∂

∂r

[
r
(

µ +
µt

σt

)
1
r

∂

∂r
(rε)

]
+

ρC1Sε − ρC2
ε2

k +
√

νε
+ Sε (3.19)

where Sε is the dissipation rate source term.

The realizable model uses the same eddy viscosity expression as other k− ε models:

µt = ρCµ
k2

ε

but differs from other k− ε models because Cµ is not constant, instead it is dependant on the rate
of rotation, strain and turbulent fields:

Cµ =
1

A0 + As
kV∗

ε

where
V∗ ≡

√
SijSij + Ω̃ijΩ̃ij

and
Ω̃ij = Ωij
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where Ωij is the mean rate of rotation tensor when viewed in a rotating reference frame with
angular velocity:

Ωij =
1
2

(
∂Vr

∂z
− ∂Vz

∂r

)
The constants A0 and As are:

A0 = 4.04, As =
√

6 cos φ

φ =
1
3

cos−1(
√

6W), W =
SijSjkSki

S̃3
, S̃ =

√
SijSij, Sij =

(
∂vj

∂xi
+

∂vi
∂vj

)
where Sij, mean rate of strain tensor, is expressed in axisymmetric coordinates as:

Sij =
1
2

(
∂Vz

∂z
+

∂Vr

∂z
+

1
r

∂

∂r
(
rVz
)
+

1
r

∂

∂r
(
rVr
))

The model constants used in Eq. 3.18 and 3.19 are:

C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2

The boundary conditions for the k− ε model are:

• outlet or axis: ∂k/∂n = 0 and ∂ε/∂n = 0

• walls: a wall treatment must be used. If the near wall mesh resolution is very good,
y+ ≈ 1, then the standard turbulence models can be applied to this region with good
result. If the nearest mesh cell is somewhat larger, e.g. y+ ≈ 30, then the viscous region is
not resolved and a wall function must be used. The wall function is composed of a mean
velocity formulation functions for the turbulent properties [63].

At the axis boundary the Fluent solver assumes the value in the adjacent cell. The wall
treatment used in this case was the two layer model [64] which is sensitised to the pressure
gradient. The two layer model divides the near wall region into a fully turbulent region and a
viscosity affected region, the boundary between these regions is given by:

Rey ≡
ρy
√

k
µ

= 200

In the viscous-affected region, Rey < 200, k is calculated as normal but the viscosity is
computed from µt = ρCµlmu

√
k where the length scale is computed with

lµ = yC∗l
(

1− e−Rey/Aµ

)
. For ε we use ε = k3/2/lε where the length scale is computed from

lε = yC∗l
(

1− e−Rey/Aε

)
. The constants take the values: C∗l = κC−3/4

µ , Aµ = 70, Aε = 2C∗l
[65].

Turbulent boundary Layers

A simple overview of the turbulent boundary layer is presented. In a viscous flow over a surface
the no-slip condition will cause a boundary layer to be manifest. In a steady uniform flow the
boundary layer will grow and eventually trip from laminar to turbulent, this can occur earlier if
there are roughness elements or an adverse pressure gradient. The fully turbulent boundary
layer has several sublayers, they can be characterised by the nondimensional height parameter
y+, defined as:
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Figure 3.1: Velocity distribution of the turbulent boundary layer, the grey area represents the
experimental error [66].

y+ ≡ v∗y
ν

(3.20)

where y is the normal distance from the wall, ν is the kinematic viscosity and v∗ is the friction
velocity:

v∗ =

√
τw

ρ f
(3.21)

where τw is the wall shear stress, Eq. 3.22.

τw = µ f
δvr

δz wall
(3.22)

where µ f is the viscosity of air, δvr
δz wall is the radial velocity gradient at the wall. A

nondimensional velocity related to y+ in the boundary layer is, in its general form, v+ = V
v∗ ,

where V is the local free stream velocity.

The first sublayer is the viscous sublayer: v+ = y+, this layer is very thin y+ < 5. The flow is
dominated by viscous shear, the flow velocity tends to zero at the wall as do the size of the
eddies. The relationship between the distance from the wall and the velocity is linear. In the
log-law layer: (30 < y+ < 500) both the viscous effects and the inertial effects are important and
the velocity is given by:

v+ =
1
κ

ln y+ + B (3.23)

where κ is the von Karman constant and B = 5.5 . In the buffer layer, (5 < y+ < 30), neither
expression is entirely accurate but a midpoint of y+ = 11 is usually used to divide the buffer
region between the viscous sublayer and the log-law layer.

The outer layer, 0.02 < y
δ < 0.2, is inertia dominated though still within the boundary layer.

Another log relationship Vmax−V
v∗ = 1

κ ln
( y

δ

)
+ C, where C is a constant, takes the velocity

asymptotically to free stream at y = δ.

In three dimensional turbulence eddies exist at scales as large as the characteristic of their
cause for example the width of a bluff body and as small as the Kolmogorov scale, defined by the
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viscous dissipation of turbulence by fluid viscosity. The scales of those eddies are particularly
important when concerned with particle-fluid forces and entrainment, discussed in more detail
in Chapter 6. In a radially expanding flow, such as would be found around an impinging jet, the
developing boundary layer will decelerate as it expands, effectively an adverse pressure
gradient, which can cause early separation. As a result the rate of development of the boundary
layer in the longitudinal direction will be higher than that of a 2D planar boundary layer.

3.3 Particle-fluid forces

In this section the forces experienced by a particle in a fluid with relative velocity are presented.
First the original expressions valid for creeping flow are presented and then each force is
presented in detail with the correction coefficients that extend their usage to faster flows with
higher Rep, Eq. 3.28.

In 1885 Boussinesq [67] detailed an expression for the transient hydrodynamic force on a
sphere in creeping flow conditions (Re� 1). Three years later Basset [68], seemingly
independent of Boussinesq, produced an identical expression. This expression has come to be
known as the ‘Boussinesq Basset equation’ to describe the motion of a sphere in a creeping flow.

F(t) = drag + added mass force + Basset force (3.24)

F(t) = −6πrpµ f |ui − vi| −
1
2

m f
d |ui − vi|

dt
− 6r2

p
√

π µ f ρ f

∫ t

0

d
dτ |ui − vi|√

t− τ
dτ (3.25)

where ui is the velocity of the particle, vi is the velocity of the fluid, m f is the mass of fluid of the
same volume as the sphere, µ f is the dynamic viscosity of the fluid and rp is the radius of the
particle.

The force is composed of three parts, the first is commonly known as Stokes drag, the second
is the added mass term proposed by Poisson [69] and the third term is the history term or ‘Basset
force’, associated with the development of the boundary layer and wake [70].

Since the creation of this expression the terms have been extended to larger ranges of Re,
typical in real world examples, and the additional force expressions due to shear, rotation and
the influence of walls on these forces have been described. Summing all these forces produces
the equation of motion for a particle in a fluid:

dui
dt

= FD,i + FA,i + FB,i + FM,i + FS,i + FG,i (3.26)

where the forces, Fφ,i, are identified by their subscripts; D is drag, A is the added mass, B is the
Basset force, M is the Magnus force, S is the Saffman lift force and G is the gravity force. Forces,
Fφ,i, have the units N/kg .

Of these forces only the Magnus force produces a torque on the particle. The rotational
equation of motion is defined as:

dωi
dt

= MM,i (3.27)

where MM,i is the moment from the Magnus effect, the units of MM,i are N/kgm.

3.3.1 Particle characterisation

Before defining the particle forces it is important to identify the particle characterisation
parameters: Reynolds number, Stokes number and the Froude number. The Reynolds number is
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a familiar flow parameter that indicates the ratio of inertial to viscous flow forces, particle
Reynolds number is defined as:

Rep =
ρ f dp |ui − vi|

µ f
(3.28)

where ρ f is the fluid density, dp is the particle diameter, ui is the particle velocity, vi is the fluid
velocity and µ f is the fluid dynamic viscosity.

The Stokes number parameter is the ratio of characteristic time scales of the particle, τp , to
the time scales of the fluid, τf . The Stokes number indicates how well a particle will follow
specific flow features: a high Stokes number, τp � 1, indicates the particle is unreactive to this
flow and a Stokes number close to unity, τp ≈ 1, or lower predicts the particle will follow the
flow very closely.

St =
τp

τf
(3.29)

where τp is the particle relaxation time given by Eq. 3.30.

τp =
ρpD2

p

18µ f
(3.30)

The Froude number is the ratio of inertia to weight forces and is often used in hydrodynamic
scenarios:

Fr =

√
g0x0

u2
0

(3.31)

These characteristic parameters are used throughout definition and description of the particle
force expressions.

3.3.2 Drag

Drag is the term for the resistive force encountered when a fluid passes around a body, it is
generally expressed as:

FD,i =
1
2

CD Apρ f

mp
(ui − vi) |ui − vi| (3.32)

where CD is the drag coefficient and Ap is the projected area of the particle. The drag coefficient
varies with the particle Reynolds number, Eq. 3.28. The drag coefficient, CD, is first defined for
Stokes flow where Rep � 1:

CD =
24

Rep
(3.33)

Schiller and Neumann [71] proposed a correction for CD that is valid for Rep < 800 this was
later validated by Bagchi [72]:

CD =
24

Rep
(1 + 0.15Re0.687

p ) (3.34)

3.3.3 Basset force

The ‘history term’ or Basset force describes the time taken for a wake and boundary layer to
develop on a particle undergoing relative acceleration. Events such as the particle rapidly
coming to a halt or reversing its direction would cause the particle to travel through its own
wake altering the force on the particle. Particles respond to fluctuations in the fluid in a similar
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way; the Stokes number is the ratio of characteristic time scales of the particle to the fluid,
Eq. 3.29. It is important to note the acceleration term is relative to the fluid, durel/dt, so for
St� 1 in a highly turbulent fluid the accelerations relative to the fluid could be very large
indeed as the flow changes rapidly relative to the particle, but for St� 1 the opposite is true.

In the context of down wash, there are a variety of flow conditions. There are highly
turbulent regions, strong wall jet like regions, stagnation regions, strong velocity and pressure
gradients and vorticity. Attempting to generalise a particle in this entire flow in terms of Rep or
St is not easy, though the following events are significant:

• Full entrainment (from stationary on the wall to moving with the fluid) will see the particle
under go very large accelerations, from rest on the surface to full entrainment into the flow
with velocity of the order of 10ms−1

• Once entrained in the flow field the Stokes number, St, is an indicator of the likely
fluid-relative-accelerations of the particle.

The original Basset force can be expressed as:

FB,i = 6
r2

p

mp

√
πρ f µ f

∫ t

0

1√
t− τ

δ(ui − vi)

δτ
dτ (3.35)

where t− τ is the time since the last acceleration. Modifications have been proposed by Odar
and Hamilton [73] introducing a coefficient to account for acceleration, Eq. 3.36:

CB = 2.88 +
3.12

(0.12 + Ac)3 (3.36)

Ac =
|urel|2

2rp
d|ui−vi |

dt

where AC is the acceleration number. Tsuji et al. [74] confirmed the result by Odar and Hamilton
[73] for Rep < 16000 in an extensive gas-solid experimental study.

Reeks and McKee [75] offer a correction for the case where there is some initial velocity, Eq.
3.37, the Basset history force can then be expressed as:

FB,i = 6
CBr2

p

mp

√
πρ f µ f

[∫ t

0

1√
t− τ

δ(ui − vi)

δτ
dτ +

(ui − vi)0√
t

]
(3.37)

where (ui − vi)0 is the initial relative velocity. Many studies will ignore Basset force using a
justification that it is negligible if the accelerations are small or the density ratio is large. Dorgan
& Loth [76] introduce their work on the history force as only important where particle motion is
dominated by the drag force, and is susceptible to high periods of acceleration. Furthermore
they quote Armenio & Fiorotto [77] who claim that the history force is only significant for
density ratios of order 1 and below. Johnson [78] presents the ratio of Basset force to Stokes drag
and shows that the Basset force is negligible when the fluid density is much lower than the
particle density. In this case the density ratio is large and the drag force is dominant, however,
the turbulent nature of the flow means high accelerations are to be expected.

Integrating the time history can be a strain on computational resources for large systems.
There are several proposed methods to reduce the cost, for example a time truncation system
proposed by Dorgan [76].
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3.3.4 Transverse forces

Shear and rotation in the flow field cause transverse forces on particles in the flow, sometimes
referred to as the Faxen terms. A relative rotation gives rise to the Magnus force and a shear
gradient contributes to the Saffman force.

Magnus Force

Relative rotation gives a force much like swing on a cricket ball, this is due to the relative slip
velocities on opposite sides of the particle producing a pressure difference, an effect known as
the Magnus lift force. The original expression derived by Magnus is given as:

FM,i =
πr3

pρ f

mp
eijkΩj(uk − vk) (3.38)

where Ωj is the relative rotational velocity of the particle with respect to the fluid. The force is
orthogonal to the plane defined by the axis of rotation and the relative velocity.

The effect is said to be significant for Rep � 1, [70, p. 193], but the original expression is only
valid for creeping flows. Work has been carried out on correction factors to give an expression
for the force at larger Rep [70, p. 193], the extended expression is presented here, Eq. 3.39:

FM,i =
1
2

1
mp

CL,Mρ f A |ul − vl |
eijkΩj(vk − uk)

|Ωl |
(3.39)

where CL,M is the Magnus correction coefficient. The correction coefficient is given by Oesterle
and Bui-Dinh [79]:

CL,M = 0.45 +
(

Rerot

Rep
− 0.45

)
exp

(
−0.05684Rerot

0.4Rep
0.3
)

, Rerot < 140 (3.40)

where Rerot is the Reynolds number based on the rotation of the sphere:

Rerot =
ρ f |Ωi| d2

p

µ f

The rotation of the fluid relative to the particle will cause rotation of the particle, the Magnus
effect also describes moments on the particle, White and Schultz [48] expressed this in the 2
dimensional case as:

MM = πµ
D3

p

I

(
ω− 1

2
∂u
∂y

)
(3.41)

Rubinow and Keller [80], calculated the integral of the torque, eijkrjFM,k, over the surface of
the sphere to obtain this expression for the total moment:

MM,i = −8πµ
r3

p

I
Ωi
[
1 + o(Rep)

]
(3.42)

where the symbol o means o
(
Rep

)
/Rep → 0 as Rep → 0 , [79]. Lain et al. [81] used the results of

Dennis et al. [82] to express the torque produced from the Magnus effect with a coefficient to
extend the applicable range:

MM,i =
ρ f

2

r5
p

I
CM |ωrel|

(
ω f ,i −ωp,i

)
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where, urel =
∣∣∣ω f ,i −ωp,i

∣∣∣. Given that, for a sphere:

I =
2mpr2

p

5
(3.43)

this reduces to:

MM,i =
15
16

ρ f

ρp
πCM |ωrel|

(
ω f ,i −ωp,i

)
(3.44)

where the coefficient CM is defined as:

CM = 64πRe−1
rot , Rerot < 32

CM = 12.9Re−0.5
rot + 128.4Re−1

rot , 32 < Rerot < 1000 (3.45)

Saffman force

The Saffman lift force is generated by shear in the flow in much the same way as the Magnus
force, it is expressed as:

FL,i = 6.46CL,s
µ f r2

mp
|urel|

(
∂ui
∂xj

) 1
2

ν−0.5

The original Saffman force expression is only valid for the condition Rep � 1, but the lift
coefficient CL,s extends for higher Rep:

CL,s =
(

1− 0.3314
√

βL

)
exp

(
−

Rep

10

)
+ 0.3314

√
βL, Rep ≤ 40

CL,s = 0.0524
√

βLRep

βL = Rep
|ωrel|
|urel|

, 0.005 < βL < 0.4

Crowe [83] states the Saffman force is actually just a special case of the Magnus force for a
particle in shear flow at the limit Re→ 0. Qualitatively this seems possible since the rotation of
the fluid can be found from shear quantities. Quantitatively this can be explored by looking at
the nondimensional values of the forces as calculated in Section 6.4. Saffman and Magnus forces
appear frequently in the literature but their exact nature and contribution is still very much
debated [83, 84]. The experimental study by Zhou [84] looked at the contribution of Saffman and
Magnus forces on the trajectories of saltating sand in a wind tunnel, the Magnus force was
significant but the Saffman force was not. The nondimensional analysis in Chapter 6 will yield a
result.

3.3.5 Added mass

A particle moving through a fluid will pull a significant volume of the fluid with it, Poisson [69]
found this volume to be half that of the sphere and this was later confirmed by Green [85]. The
added mass force can then be expressed by Eq. 3.46:

FA,i =
dui
dt

1
2

m f

mp
=

2
3

πr3
pρ f

mp

dui
dt

=
1
2

ρ f

ρp

dui
dt

(3.46)
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where m f is the mass of the fluid that would occupy the volume of the particle. The effect of
added mass is dependant on the density ratio between the particle and the fluid. For sand in air
this ratio is about 2200:1 [70] therefore added mass can be neglected.

3.3.6 Pressure force

The pressure force is the force associated with local pressure gradients in the fluid, Eq. 3.47. It is
included in some multiphase simulations [86] and not in others [87]. The second term on the
right simplifies to 1

ρp
which is small for large particle densities, as such the pressure force does

not become significant until the pressure gradient approaches the same order as ρp.

Fp,i = −
dp
dxi

4πr3
p

3mp
= − dp

dxi

1
ρp

(3.47)

where dp
dxi

is the pressure gradient vector at the particle position.

3.3.7 Gravity and buoyancy

The gravity and buoyancy forces are both body forces that can be considered constant through
out all situations. Combining the two expressions of gravitational acceleration and buoyancy
due to differences in fluid and particle density results in:

Fg,i =
1
6

πd3
p

(
ρp − ρ f

)
mp

=

(
1−

ρ f

ρp

)
gi

As with the added mass expression, Section 3.3.5, the sand in air density ratio is 2200:1
therefore the effect of buoyancy can be neglected, this reduces the above equation to the familiar
force of gravity acting on a mass:

Fg,i = gi (3.48)

3.3.8 Near wall effects

In boundary layers the no-slip condition at the wall can cause anisotropic 3D structures to
appear, such as pairs of counter rotating spanwise vortices, or hairpin vortices. Marquille et
al. [88] used DNS to model the channel flow separation over a bump in the wall, the vortices
after separation are described as intense. These near wall structures lead to regions of high and
low shear stress that can trap and eject particles. Particles entrained in turbulence will
accumulate in certain regions of the flow namely those of high strain, low acceleration and low
vorticity [89] [90]. In turbulence at low Reynolds number heavy particles cluster in low vorticity
regions as they are spun out of the vortices. Particles will cluster in regions of low vorticity
relative to their own response time. Goto and Vassilicos [90] show particle clustering becomes
more defined as St→ 1.

The effect of preferential concentration also occurs in wall bounded turbulence with particles
gathering in the regions of low shear stress. The regions of low shear stress are also synonymous
with the so called sweep and ejection events that sweep faster moving fluid toward the wall and
eject slow fluid by the wall into the free stream. The particles will be observed to collect in these
regions, then there is a potential for ejection events to pull these particles out of the boundary
layer and entrain them into the flow.

The presence of entrained particles has been shown to increase the thickness of the boundary
layer through increased diffusion similar to roughness. Wachspress [21] uses a correction factor
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Author p q Range

Saffman[95] 6.46 3 Re∗p � 1
Leighton and Acrivos[96] 9.22 4 Re∗p � 1
Hall[55] 20.9 2.31 Re∗p > 6
Mollinger et al.[91] 56.9 1.87 0.6 < Re∗p < 4

Table 3.1: Coefficients for lift expressions of a particle on a wall, Rabinovich [93]
.

proposed by Bagnold [17] in their entrainment model described in Section 2.6.

Particles in close proximity with a wall will experience an enhanced lift effect. There have
been several studies, both experimental and numerical, for particles in linear shear flow
bounded by a wall, however, for particles in a turbulent boundary that are large enough to not
sit entirely within the sublayer the expression is best defined using the results of Mollinger and
Nieuwstadt [91] for the lower Rep ranges and Hall [55] for the larger Rep ranges.

Particles on a wall

Following Mollinger and Nieuwstadt [91] the nondimensional lift force can be expressed in the
form:

F+
L = p

(
a+
)q (3.49)

where:

F+
L =

F̃L

ρν2

and the nondimensional radius, a+ is:
a+ =

av∗
ν

where v∗ is the shear velocity and a∗ = 0.5Re∗p the shear Reynolds number, Re∗p = Dpu∗/ν. In
recent work by Zeng [92] and Rabinovich [93] values for p and q in different limits of Re∗p were
collected, presented here in Table 3.1. For the low values of Re∗p the chosen expression follows
Leighton and Acrivos [94] as this fits experimental data better in the range Re∗p < 0.6. It is
important to note that the values developed by Hall and Mollinger et al. were for turbulent
boundary layers rather than linear shear layers as was the case for the others. For this reason the
present study will be using these relationships primarily.

The majority of particles will have larger Re∗p and these are governed by the results obtained
by Hall [55] who conducted a series of experiments with a large particle on the floor of a wind
tunnel in the Boundary layer. Hall used a variety of configurations including the probe particle
placed between larger particles as well as resting on top of them. Since in our case the objective
is to model the fluid forces likely occurring on a particle of sand that is part of a bed of sand the
configurations tested by Hall are very relevant.

Particles near the wall

The force expression in Eq. 3.49 is only relevant for a particle sitting on the wall. The effect of the
proximity of the wall have been realised by Zeng [92] for a particle that is up to a distance of
y = 4Dp away from the wall. The expression proposed by Zeng is given as a ratio of lift
coefficients created to fit various models and results, this is especially useful because it saves
using either of the lift coefficients explicitly, simply the influence of the wall:

30



3.4. Particle-particle forces

Figure 3.2: Forces acting on a particle at rest on two particles.

CLs
CLs,w

= exp

(
−0.5δ

(
Re
250

) 4
3
)
[exp

(
α(Re)δβ(Re)

)
− λ(δ, Re)] (3.50)

where CLs and CLs,w are the lift and wall lift coefficients respectively, the nondimensional wall
distance is given by δ = y/Dp − 0.5, Re = Re∗p = 2a+ and α, β and λ are functions below:

α = − exp(−0.3 + 0.05 ∗ 2a+)

β = 0.8 + 0.02a+

λ = (1− exp(−δ))

(
a+

125

) 5
2

3.4 Particle-particle forces

The ground surface in the scenario considered is made up of sand, this surface is a collection of
discrete particles, it is porous, and it is erodible. For the particles to be moved the fluid forces
acting on those particles must first overcome the particle-particle cohesion, for the particle to be
entrained the forces on the particle must then overcome gravity as illustrated in Fig. 3.2. The
cohesive forces consist of electrostatics, mechanical stresses, chemical bonds and van der Waals
forces. Electrostatics and van der Waals forces do not require contact.

3.4.1 Static adhesion

There are a number of well known models for simulating the effects of resuspension with
cohesive forces present. The Derjaguin model [97] developed in the 1970s proposed deformation
on the materials by mechanical stresses, the forces were entirely compressive and within the
Hertzian contact region, the force was based on the van der Waals force. Later in the 1970s
Johnson et al. [98] proposed a popular model that became known as the JKR model, this model
was proposed after Johnson saw that contact radii were significantly larger than those predicted
by Derjaguin et al. [97]. JKR uses the surface energy to account for the adhesive forces, again all
forces exist within the contact zone. Derjaguin et al. proposed a more advanced model that
accounted for tensile stresses but also now assumed the contact shape was Hertzian, this became
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known as the DMT model. The Hertzian shape assumption resulted in the forces being half
located in the contact region and half outside it. Rimai at al. [99] summarised these two models
and then conducted experiments on particles of 1µm and 10µm but the results were unable to
draw distinction between the DMT and JKR models, nevertheless Rimai noted that the JKR
model did a reasonable job of predicting the contact area at separation.

Adhesion forces between particles and between particles and surfaces are of concern to a
number of industries including semiconductors and aerosols. The situation of a bed of particles
was captured by Ziskind, Fichman and Gutfinger (ZFG) [57] with the idea of particles sitting on
one or two asperities, as in Fig. 3.2. ZFG modelled the fluid forces and applied moments to the
particle about the asperity, these moments can liberate the particle provided there is a sufficient
lift force to overcome gravity. This method allows inception by the drag force, which is orders of
magnitude greater than lift. The concept of particle resonance was dismissed by Vainshtein [100]
claiming that the particles are resuspended at much lower frequencies than particle resonance.

The adhesion models used by ZFG include the DMT and JKR model. It is claimed that DMT
is designed for small or hard particles, whilst JKR is suited to large or soft particles.

ZFG includes a van der Waals force, Eq. 3.51, from Israelachvili [101], however, this does not
contribute the majority of the cohesive force:

Fv =
Avrp

6 |ni|2
(3.51)

where Av is the Hamaker constant, ZFG used an approximation of A ' 10−19J, |ni| is the
distance — ZFG uses roughness heights for this distance. Eichenlaub et al. [102] used the same
expression from the DMT approximation, Eichenlaub et al. [102] conducted experiments using
two separate methods and reported the Hamaker constant for SiO2- SiO2 as 65.5× 10−21J and
69.6× 10−21J. Ackler [103] reported Hamaker values of 66× 10−21J, the same result is reported
by French [104].

3.4.2 Adhesion models

The JKR adhesion model:

r3
aEeff
rp

= Fp + 3πσrp +
√

6πσrpFp + (3πσrp)2 (3.52)

where Fp is the pull off force, ra is the contact radius or radius of the asperity, Eeff is the effective
Young’s modulus and σ is the surface energy. Eeff can be found using:

1
Eeff

=
3
4

(
1− σ′2p

E′
+

1− σ2
p

E

)
where σp and σ′p are the Poisson’s ratio of the two bodies. For like bodies:

Eeff =
2
3

(
E

1− σp2

)
The DMT adhesion model is not explicitly given but ZFG employs an approximation from

Maugis [105]:

FP,DMT =
r3

aK
rp
− 2πσrp (3.53)

Equations 3.52 and 3.53 give a relationship between the adhesive force and the contact
radius. Following the analysis of ZFG we can presume that at the point of inception the contact
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radius is reduced to zero and this provides a pull off force, FP0:

FP0,JKR =
3
2

πσ min
(
rp, ra

)
(3.54)

FP0,DMT = 2πσ min
(
rp, ra

)
(3.55)

where min
(
rp, ra

)
is used because the model presumes that the smaller particle adheres to the

larger particle as if the large particle was a smooth surface.

Experimental results by Jones et al. [106] give particle-particle pull of forces for glass ballotini
as 20-40nN for 6µm particles and 10− 20nN for 35µm particles. Using Eq. 3.54 the surface
energy, 1.2× 10−4 < σ < 2.8× 10−3Jm−2. Experimental results for a smooth substrate by
Ibrahim et al. [58] for smooth glass spheres on a substrate gives a force 34nN for 72µm diameter
with a surface energy of 2× 10−4Jm−2. These results agree with each other though it is noted
there will be a large range in the actual surface energies of naturally occurring sand, similar to
that seen in the experiments of Jones et al. [106].

3.4.3 Friction

Tangential motion of two bodies in contact is opposed by friction. Friction is traditionally
expressed as:

FFr = CFrFN (3.56)

where CFr is the friction coefficient and FN is the normal force. This is the maximum, the
frictional force is equal and opposite to the applied tangential force until the Coulomb condition
is met, at which point the particle will slip and the resistive force will equal Eq. 3.56. The
direction of frictional force is tangential to the plane of contact and in the same plane as the
applied force and the distance vector between the two particles:

ti = −eijknjeklmn̂l fm

where fm is the unit vector for the direction of applied force and nl is the unit vector from
particle centre ai to particle centre bi:

n̂i =
bi − ai
|bi − ai|

(3.57)

The frictional force is dependent on the normal force. For a particle on a surface the friction
then becomes:

FFr,i = tiCFr
(

Fg,i + P0,i − FM,i − FS,i
)

(3.58)

Experimental work by Jones [106] using AFM supports the use of linear expressions and a
friction coefficient. Jones found that typically for glass ballotini CFr ' 0.5.

Whether the particles initially roll or slide is determined by the relative strengths of the
adhesion and frictional forces and, to some extent, the arrangement of the particles. This is
discussed in more detail in section 6.4.2 .

The moment generated by frictional forces is simply the frictional force with a moment arm
of the radius:

MFr =
mp

I
eijkriFFr,j
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where ri is the vector from the centre of the particle to the contact point and I is the moment of
inertia of a sphere, Eq. (3.43).

MFr =
5

2r2
p

eijkriFFr,j (3.59)

3.4.4 Introduction to the Discrete Element Method

The Discrete Element Method was originally presented by Cundall and Strack [107] to model soil
mechanics, but since then has been used to model grain silo dynamics [108], powder conveying
[109], aerosol flows [110] and filtration and separation processes [111]. Most current use
involving free motion and oblique impacts is based on work by Maw et al. [112], the assumptions
specified are an essential part of models used in the literature [113, 114, 115, 116]. In each time
step the forces acting on each particle are calculated using the soft-sphere contact model; this
contact model allows two or more particles to overlap with the repulsion force calculated using a
spring-dashpot system, Fig. 3.3. Additional particle interaction forces such as friction, cohesion
and body forces such as gravity are commonly applied as required by the simulation. The forces
are then integrated to calculate the velocity and position for the next time step. Integration of
DEM with a flow solver is a logical step, the additional fluid forces from the flow solver output
are added to the DEM forces (one-way coupled). If relevant the effect of the particles on the flow
can also be accommodated (two-way coupled) by including the particle drag as a source term in
the fluid momentum equations. The DEM is assessed numerically in Appendix A, and used in
Appendix C to model a large system of particles in the simulation of an experiment.

Assumptions of the DEM

The DEM is typically combined with numerical integrators, time discretization results in some
error this error is heavily dependent on time step and choice of numerical integrator. Error
associated with time step and integrator choice is explored in detail in Appendix A.

The DEM is a model and, using the above implementation, assumes all particles are
spherical, stiffness is uniform or follows a uniform model and inter-particle friction is
appreciable using the stick slip model. As these are simply force expression that are included in
the calculation process it is easy to include more advanced models for any of the forces.
Examples of additional complexity include non-spherical shapes [117], rolling resistance [118],
or stochastic surface asperity models as used by Prokopovich et al. [119].

Equations of motion

DEM is based on the soft-sphere approach; each particle is modelled as a sphere of finite mass,
these are allowed to overlap and a repulsive force is calculated using a spring dashpot system
with the overlap as the extent of spring compression, Fig. 3.3. There are two common methods
for calculating the force from the overlap, δn, the linear model and the Hertzian model. The
linear model is simply the product of the overlap and the stiffness, Fn = δnkn, where kn is the
stiffness with units of N/m. The Hertzian model takes account of the volume of the sphere that
is compressed in the overlap, Eq. 3.63. The normal force is then calculated using the linear model
as:

Fn,i = −
ni(

njnj
)1/2

(
δnk− c

dδn

dt

)
(3.60)

where kn is the inter-particle stiffness, ni is the vector from the centre of particle a to particle b, c
is the damping coefficient and δn is the particle overlap:
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Figure 3.3: The soft sphere force model using normal spring-dashpot forces and tangential spring
forces.

Figure 3.4: Definition of symbols during particle collision.
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δn = (ra + rb)−
√

nini (3.61)

where ra and rb are the radii of particles a and b and the normal vector, ni, is calculated as:

ni = (bi − ai) (3.62)

where ai and bi are the position vectors of particles a and b, Fig. 3.4 explains the symbols
graphically. The Hertzian normal force model [7] is defined as:

Fn,i = −
ni(

njnj
)1/2

(
4
3

Eeff
√

reffδ
3
2
n − c

dδn

dt

)
(3.63)

where Eeff is the combined Young’s modulus of the two particles, reff =
rarb

ra+rb
is the effective

radius. If the particles are assumed to have identical properties then Eeff =
E

1−σ2 .

The damping coefficient, c, is found from the coefficient of restitution, e, using a relationship
derived by [120]:

c = 2 ln e

√
kmeff

π2 + ln2 e
(3.64)

where e is the coefficient of restitution and the effective mass, meff, of contacting particles a and b
is:

me f f =
mamb

ma + mb
(3.65)

The frictional force is calculated in the plane normal to ni acting in the opposite direction to
the relative contact velocity, no damping is employed as friction is a dissipative force, this is
typical in DEM simulation. The Coulomb condition distinguishes between sliding and elastic
tangential forces by providing a maximum force, once reached the tangential force is capped to
C f Fn, this is the stick-slip model:

Ft,i = −min
(

C f Fn, ktδt

) ut,i(
ut,jut,j

)1/2 (3.66)

where C f is the friction coefficient, the normal force magnitude is Fn =
√

Fn,iFn,i, kt is the
tangential stiffness, δt is the tangential displacement for this particle pair collision and ut,i is the
relative tangential velocity. δt is the sum of the tangential motion already encountered for this
contact pair:

δt =

t∫
tstart

ut (t)dt (3.67)

where the integral is between the start of the contact, tstart, to present time, t.
Some particle systems experience cohesive forces, a simple cohesion model acts in a similar

manner to the linear stiffness model but uses a larger radius of interaction:

Fcoh,i = −kcohδcoh
ni(

njnj
)1/2 (3.68)

where kcoh is the cohesion stiffness and δcoh is the overlap of some cohesion radius rcoh using
Eq. 3.61. The cohesion radius is typically larger than the particle radius to allow nearby particles
to attract each other.

The simulation time step is calculated using the particle collision time period and a
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resolution, ares, to ensure ares time steps are used over one collision:

∆t =
1

ares

√
m
kn

(3.69)

The stiffness of a particle can be found from the Young’s modulus material parameter by
matching the Hertz force expression Eq. 3.63 with the linear force expression Eq. 3.60. This
results in Eq. 3.70 [6].

kn =

(
4

15

)
E

1− σ2

√
2rδmax (3.70)

where δmax is an estimated maximum compression or overlap between the two particles. For
nominal values of sand and an overlap of 1% this results in a very high value of k ≈ 106N/m,
giving a maximum time step of the order 1× 10−10. Simulating a physical process that takes
several seconds would require a very large number of time steps and for complex systems this
could be prohibitive. Instead a common compromise is to lower the stiffness, it has been shown
that doing so can still yield realistic behaviour [121]. This compromise has been used in the
simulations of Appendix C that involve tens of thousands of particles over time periods of
several seconds.

Wall contact forces are modelled as one sided particle contacts. The force on the particle can
be found using Eq. 3.60 or 3.63 but replacing δn with δwall = ra −

√
(wiai)2 where wi is the

position vector of a point on the wall closest to the particle centre. The linear and Hertzian wall
normal force equations are defined in Eq. 3.71 and 3.72:

Fn,wall,i = −δwallk
(wi − ai)√
(wi − ai)2

− c
dδwall

dt
(3.71)

Fn,wall,i = −
4
3

(wi − ai)√
(wi − ai)2

Eeff
√

raδ
3
2
wall − c

dδwall
dt

(3.72)

The force due to gravity for each particle is given as:

Fg,i = mpgi (3.73)

similarly other forces, such as drag FD,i, can be included in DEM model with relative ease using
Eq. 3.32.

The complete equation of motion for a particle in a DEM system with walls, friction and
cohesion is:

dui
dt

=
1
m
(

Fn,i + Ft,i + Fn,wall,i + Ft,wall,i + Fcoh + Fg,i + Fφ,i
)

(3.74)

where Fφ,i represents optional forces such as drag or buoyancy.

Angular momentum is calculated using the tangential forces:

dωi
dt

2
5

mr2
p = Mi = eijkFt,jxk (3.75)

where ωi is the angular velocity, Mi is the total moment and xk is the vector from particle centre
to centre of force, the contact centre xk = nk − 1/2δn.

In the DEM these force equations are used to find the acceleration of each particle. The
acceleration is integrated using a numerical integration scheme to give velocity and then
position values at the next time step. The application of numerical integration schemes is
discussed in detail in Section A.5. A complete explanation of how the DEM is practically applied
in a many—particle simulation is given in Appendix C in which a dry powder penetrometry
experiment is simulated numerically.

37



Chapter 3. Fluid and Particle System Modelling

description symbol ND

length scale particle diameter d0 d∗0 = x
d0

velocity scale flow speed u0 u∗ = ui
u0

fluid density scale air density ρ f 0 ρ∗f =
ρ f
ρ f 0

particle density scale particle density ρp0 ρ∗p =
ρp
ρp0

viscosity scale viscosity of air µ0 µ∗ = µ
µ0

time scale derived
d0

u0
t∗ = t u0

d0

surface energy scale surface energy of particle σ0 σ∗ = σ
σ0

Reynolds number derived
ρ f 0d0u0

µ f 0
Re0

gravity scale magnitude of gravity g0 g = g0g∗

Froude number derived

√
u2

0
g0d0

Fr0

density ratio fluid to solid density
ρ f0

ρp0

ρ f0

ρp0

Table 3.2: Nondimensional parameters and numbers, their definition, meaning and symbol.

3.5 Nondimensional fluid equations

The equations that govern the fluid flow, namely the continuity and Navier-Stokes equations
Eqs. 3.1 and 3.2, are nondimensionalised in this section. The nondimensional analysis allows the
terms of the expression to be compared for relative importance and identifies familiar
nondimensional numbers that indicate under which conditions the balance of terms change.

Table 3.2 lists nondimensional numbers used in this analysis; the derivations, symbols and
meaning are also given.

The continuity equation, Eq. 3.1, is nondimensionalised to give Eq. 3.76:

[
ρ0u0

x0

]
∂ρ∗

∂t∗
+

[
ρ0u0

x0

]
∂

∂x∗i
(ρ∗u∗i ) = 0

∂ρ∗

∂t∗
+

∂

∂x∗i
(ρ∗u∗i ) = 0 (3.76)

The Navier-Stokes equations, Eq. 3.2, are nondimensionalised for incompressible flows to
give:

∂

∂t∗
(ρ∗u∗i ) +

∂

∂x∗j
(ρ∗u∗i u∗j ) =

[
µ0

x0u0ρ0

]
∂

∂x∗j
(τ∗ij) +

[
g0x0

u2
0

]
ρ∗g∗i −

[
p0

ρ0u2
0

]
∂p∗

∂x∗i
+

[
F0x0

u2
0

]
ρ∗F∗i

(3.77)
where the stress tensor τ∗ij is:

τ∗ij = µ∗
(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i
− 2

3
δij

∂u∗k
∂x∗k

)
(3.78)

Using nondimensional numbers defined in Table 3.2 Eq. 3.77 can be simplified as:
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∂

∂t∗
(ρ∗u∗i ) +

∂

∂x∗j
(ρ∗u∗i u∗j ) =

1
Re0

∂

∂x∗j
(τ∗ij)−

∂p∗

∂x∗i
+ Fr0ρ∗g∗i + Fru0ρ∗F∗i (3.79)

It is clear from Eq. 3.79 that the diffusion term is governed by the inverse of the Reynolds
number. Flows with large Re are inertially dominated and as diffusion is a viscous phenomenon
its influence over the flow diminishes. The relative importance of gravity is governed by the
Froude number, Fr, the ratio of inertia to weight and in kind the external body force F∗i is
governed by the user Froude number,Fru0, the ratio of inertia to external force. Pressure scales
with the convective term, the second term on the LHS in Eq. 3.79.

3.6 Nondimensional particle forces and moments

The particle-fluid forces introduced in Section 3.3 will be nondimensionalised in this section.
nondimensionalising the forces gives an indication to the relative importance of the expressions.

The left hand side of Eq. 3.26 nondimensionalises to:

dui
dt

=
u2

0
d0

du∗i
dt∗

Equation 3.26 becomes:

du∗i
dt∗

=
d0

u2
0
[FD,i + FB,i + FM,i + FL,i + FG,i + FA,i + FFr,i] (3.80)

Likewise for Eq. 3.8:

dωi
dt

=
u2

0
d2

0

dω∗i
dt∗

dω∗i
dt∗

=
d2

0
u2

0
[MM,i + MF,i] (3.81)

We now nondimensionalise the individual force expressions, where the d0/u2
0 scaling term is

incorporated into each nondimensional force reference term Fφ0 to give:

du∗i
dt∗

= FD0F∗D,i + FB0F∗B,i + FM0F∗M,i + FLF∗L,i + FG0F∗G,i + FA0F∗A,i + FFr0F∗Fr,i

likewise for equation 3.81 the term d2
0/u2

0 is included to give:

dω∗i
dt∗

= MM0M∗M,i + MF0M∗F,i

Table 3.2 lists the non dimensional symbols and derivations.

3.6.1 Drag Force

FD,i =
du
dt

=
1
2

CD
m

Aρ f (ui − vi) |urel | (3.82)

where the drag coefficient, CD is:

CD =
24
Rer

fd (3.83)

fd = 1, Rep � 1

fd =
(

1 + 0.15Re0.687
p

)
, Rep < 800 (3.84)
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combining Eqs. 3.28 and 3.83 with 3.82 and expanding gives us the expression:

FD,i =
1
2

6
πd3

pρp

24µ f fd

ρ f D |urel |
πD2

4
ρ f |urel | (ui − vi)

simplifying:

FD,i = 18
µ f fd

ρpD2 (ui − vi)

non dimensionalising and including d0/u2
0 gives:

FD,i = 18
d0

u2
0

µ f 0µ∗f

ρp0ρ∗pd∗2p d2
0

fdu0 (u∗i − v∗i ) = 18 fd
µ f 0

ρp0d0u0

µ∗f
ρ∗pd∗2p

(u∗i − v∗i ) (3.85)

simplifying:

FD,i = FD0F∗D,i =

[
18 fd

ρ f 0

ρp0

1
Re0

] [ µ∗f
ρ∗pd∗2p

(u∗i − v∗i )

]
(3.86)

3.6.2 Basset force

The extended Basset force:

FB,i = 6
CBr2

p

m
√

πρ f µ f

[∫ t

0

1√
t− τ

δ(ui − vi)

δτ
dτ +

(ui − vi)0√
t

]
nondimensionalise;

FB,i =
6
4

CB
d0

u2
0

d2
0D2∗(

1
6 πd3

0D∗3ρp0ρ∗p

)√πρ f 0ρ∗f µ0µ∗

 t∫
0

1√
d0
u0

(t∗ − τ∗)

u2
0

d0

d
(
u∗i − v∗i

)
dτ∗

dτ∗
d0

u0
+

u0
(
u∗i − v∗i

)
0√

d0
u0

t∗



FB,i =
36
4

d0

u2
0

CB

√√√√ u2
0

π2d2
0D2∗ρ2

p0ρ2∗
p

π
u0

d0
ρ f 0ρ∗f µ0µ∗

 t∫
0

1√
(t∗ − τ∗)

d
(
u∗i − v∗i

)
dτ∗

dτ∗ +

(
u∗i − v∗i

)
0√

t∗



FB,i =
36
4

CB

√
1
π

µ0

d0u0ρp0

u∗

D∗
µ∗

D∗u∗ρ∗p

ρ f 0

ρp0 t∫
0

1√
(t∗ − τ∗)
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This can be reduced to:
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3.6.3 Magnus force

FM,i =
CMπr3ρ f
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(3.88)

3.6.4 Saffman force

The original Saffman lift expression can be expressed as:

FS,i = 6.46
µ f r2

m
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Including the correction factor, fs, and extending gives the more general form of:
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3.6.5 Gravity

Fg,i =

(
1−

ρ f

ρp

)
gi

including the effects of buoyancy nondimensionalises to:
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assuming the density ratio is small this expression further reduces to:
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the Froude number, defined as Fr2 = u2

gD , substitutes in to leave;:

Fg,i = Fg0F∗g,i =

[
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0

]
g∗i (3.90)

3.6.6 Adhesion

The pull off force for the JKR and DMT adhesion models are defined as:

P0,JKR =
3
2

πσrp

P0,DMT = 2πσrp

using the previous notation these are rewritten as:

FP,i = fp
πσrp

m
ri (3.91)

where fp depends on whether the JKR or DMT model is used, and given the value 1.5 or 2
respectively and ri is the unit vector from particle centre to the contact point ri =

xcont,i−xp,i

|xcont,i−xp,i| and

is already nondimensional.
nondimensionalising Eq. 3.91:
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and simplifying:
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]
(3.92)

3.6.7 Friction

The friction force is given as:
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FFr,i =
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3.6.8 Moments

Recall the momentum from the Magnus effect described in Eq. 3.44:
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Similarly for the friction expression, Eq. 3.59:
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nondimensionalise, where r∗j is a nondimensional unit vector:
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The friction plays a dominant role in the moment expression, the nondimensional reference
term is a combination of the difference forces at work.

3.6.9 Final forms of the nondimensional particle equation

Equation 3.80 can now be expressed in terms of reference values, and nondimensional variables:

du∗i
dt∗

=
[
FD0F∗D,i + FB0F∗B,i + FM0F∗M,i + FL0F∗L,i + FG0F∗G,i + FP0F∗P,i + FFr0F∗Fr,i

]
(3.97)
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The reference values indicate the relative importance of the forces for the typical scenario.
The nondimensional variables, F∗φ , are typically of order 0. Calculation of the reference terms,
Fφ0 , and substitution into Eq. (3.97) allows the identification of the significant forces for any
given scenario. That analysis is performed in Chapter 6 applied to a full scale helicopter flow.

3.7 Chapter summary

This chapter outlines the numerical tools used throughout the thesis to describe various physical
systems. This chapter described the governing equations of the fluid and particulate phases. The
Navier-Stokes equations used to find the 3D unsteady rotor wake in Chapters 4 and 5 were
defined in Section 3.1. The 2D axisymmetric flow equations and the turbulence model used in
Chapter 6 were given in Section 3.2. The particle-fluid forces were identified from the literature
in Section 3.3. The particle-particle forces were defined and the DEM simulation framework
used in Appendices A and C was outlined in Section 3.4.4. The fluid and particle force
expressions are nondimensionalised and described in Sections 3.6 and 3.6, these
nondimensionalised expressions are analysed further in Chapter 6 using the reference values
from a full scale helicopter flow field and the numerical tools now defined in this chapter.
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Chapter 4

Model Scale Rotor Simulation:
Method, Verification and Mean Flow
Results

In this chapter an unsteady 3D rotor wake modelling method is described, implemented and
verified against experimental results from the literature. This is a prelude to Chapter 5, the flow
field verified in this chapter will be used to investigate particle entrainment mechanisms. The
rotor is modelled using the actuator line method and the wake simulation is performed using an
Eulerian finite volume Navier-Stokes solver within the commercial software package Ansys
Fluent (ver. 12.0.16). Other methods of simulating rotor wakes are discussed in a literature
review. Five rotor heights are considered, 4 heights near the ground and 1 height out of ground
effect. The spatial discretisation error is assessed using Richardson extrapolation. The velocity
field, vortex trajectories and power offset due to ground effect are compared with experimental
data from the literature and found to be a reasonable match.
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4.1 Introduction

This chapter describes the actuator line method used to model a 3D unsteady rotor wake and
presents a number of different validations that are applied to the results. Different methods of
modelling the rotor wake are reported from the literature in Section 4.2, the Actuator Line
Method was chosen and the decision was justified in this section. The implementation of the
Actuator Line Method (ALM) is provided in Section 4.3. The quality of the mesh is assessed
using the Richardson extrapolation to approximate the grid free solution from 3 meshes of
increasing resolution.

The results of the flow are directly compared with experimental data from the literature in
Section 4.4.3. The vortex trajectories of two experiments from the literature using rotors IGE (In
Ground Effect) and OGE (Out of Ground Effect) were used in the comparison. The rotor power
is shown to decrease, while the thrust remains constant, as the rotor approaches the ground; this
is compared with experimental results and analytical predictions. The flow fields are
non-dimensionalised and compared with PIV results from the literature and the vortex
trajectories are compared with two sets of experimental data.

Chapter 5 uses the flow fields generated in this chapter to consider particle entrainment as a
result of the vortex ground interaction.

4.2 Review of rotor wake simulation methods

The rotor wake or downwash is defined as the air that has been affected by the rotor, this can
include the flow around the blades and the flow further downstream. A rotor wake features a
bulk throughput of fluid bound by the wake boundary, a blade tip vortex generated by each
rotor blade, a root vortex generated at the root of each blade and a vortex sheet which is
generally weaker than either the tip or root vortices but spans the length of the blade - the wake
structure is illustrated in Fig. 4.1. The tip vortices are advected with the flow and form a
distinctive helix along the wake boundary, the vortex sheet takes on the appearance of a screw.
Fluid is entrained into the vortices causing them to grow in size and viscous effects diffuse the
vortices over time; eventually the distinctive structures are lost. The smoke visualisations of Lee
et al. [27] and the results produced in these simulations show all these features, Section 4.4.1.

Several methods have been developed for the simulation of flow around a rotor. The
motivations of researchers differ greatly; for some the aim is to understand the flow over a
specific blade geometry [122], for others the interaction between the main wake and fuselage is
the focus. This chapter is concerned with the complex, unsteady, structures of the wake
primarily involving ground — vortex interaction, this requires an IGE rotor wake simulation
that models the Blade Tip Vortices (BTVs) and the viscous interaction with the ground.

There are broadly two categories of rotor wake modelling: first-principles methods and
vortex tracking methods. First-principles or Eulerian methods solve the conservation of mass
and momentum equations on a finite difference or finite volume mesh. Vortex tracking methods
generate a wake structure composed of lifting line vortices. The vortex field is solved to produce
a velocity field. Other means of evaluating the rotor wake include hybrid methods that combine
the vortex wake methods with finite difference methods [123], vorticity embedding or
vortex-lattice methods [28]. Here the two main methods will be described but further methods
can be found in the reviews of Hariharan and Sankar [124], McCroskey [125] or Sanderse et al.
[126].

The choice of method for how the wake is modelled is often closely linked to the way the
rotor blades are modelled, however, it is often the case that only the blades and the near blade
flow are solved.
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This review is presented in 3 sections:

1. vortex methods, including the prescribed and free-wake methods, Section 4.2.1.

2. Eulerian wake methods, finite-volume flow solvers used in combination with a blade
model, Section 4.2.2.

3. methods of modelling the rotor blades, from actuator disk to body fitted meshes on overset
grids, Section 4.2.3.

4.2.1 Vortex methods

There are several different types of vortex method:

• prescribed wake

• free wake

• vortex blob

The simplest of these methods is the prescribed wake, Landgrebe [127]. The prescribed wake
method models each blade as a bound vortex or lifting line, the wake is a finite series of straight
line vortex filaments each with constant circulation. The flow around the blades is assumed to be
two dimensional, radial velocity is neglected. Blade data such as CL, CD and α is used to find the
circulation of the blade. The Biot-Savart law is used to find the velocity induced by each vortex
filament. The method starts with an initial wake geometry which can be theoretical or based on
experimental results, the flow field is calculated and the wake geometry is updated, based on the
flow field.

Griffiths et al. [128] used a free-vortex, or free-wake, method to examine the performance of
rotors IGE. The free vortex method was previously implemented by Brown and Whitehouse
[129], the method used Lagrangian wake markers and the motion of each wake marker is
governed by the velocity field. Each Lagrangian wake marker is periodically released from the
blade and a vortex filament binds it to a neighbour in the past and future generating a string of
discrete wake filaments emerging from each blade of the rotor. The velocity acting on any wake
marker is found through summation of all the velocity induced by each vortex filament found by
application of the Biot-Savart law for each filament. This summation is the most computationally
demanding part of the method. Griffiths used two methods to model the ground, a symmetry or
image condition and a grid of vortex singularities with variable vortex strength; both these
methods are inviscid. The vortices themselves are subject to viscous diffusion and strain, both
can be modelled for each vortex filament using the methods described by Ramasamy and
Leishman [36]. The method assumes wake periodicity, Griffiths claims this a valid assumption
but the instability of rotor wakes described by Widnall [37] mixed with the viscous forces
involved in the vortex ground interaction gives rise to the suspicion that this assumption will
only be valid for an inviscid rotor wake solution.

Bhagwat and Leishman [131] produce a time accurate free-vortex method to predict the wake
through manoeuvres or control changes. The work identifies an important limitation of the
free-vortex method, either an initial wake or a boundary condition is required to start the wake
otherwise the initial vortex may be unstable. Li and Chen [132] make improvements to the
numerical algorithm to halve the computation time. Li and Chen use the same initial vortex
helix as Bagai and Leishman [133].

The work of Pulla [134] uses the free wake method with both a lifting line and a lifting
surface. The lifting line is a line of bound vorticity providing lift, the panel used by Pulla is a 2D
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(a) An illustration of the wake structure slice showing the root and tip vortices, the vortex sheet and wake
boundary for a rotor in hover OGE.
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(b) The OGE rotor wake found using the methods described in this chapter. The 3D vortex structures are visualised using
an iso-surface of vorticity. Coloured according to velocity magnitude from high, red, to low, blue.

Figure 4.1: The wake structure for a rotor in hover OGE.
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grid of horseshoe vortices that distribute the lift over a finite aspect ratio wing. The lifting line
considers only the tip vortex for the modelling of the wake but the lifting surface has several
trailing vortex filaments along the span. A basic helix is used as an initial solution. The positions
of the vortices match the experimental results of Light [135] and Caradonna and Tung [136] for
the OGE case.

The vortex blob method, described by Lee and Na [137], is similar to the free-wake method
but the vortex blobs are not bound to each other though they still represent a section of a vortex
tube. Lee and Na state that the blob method is advantageous as it allows more complex
interactions such as those involving co-axial rotors. However, Griffiths [130] used the free-vortex
method to study a tandem rotor configuration with reasonable success compared with
experimental results. The vortex blob method shares the same limitations for interaction with a
ground plane though Lee and Na do not attempt to apply it to the IGE case.

Vortex methods are well established and used for a variety of helicopter studies, however, the
inherently inviscid nature of the method does not help explore the viscous vortex-ground
interactions.

4.2.2 Eulerian finite volume methods

Eulerian methods are often employed to simulate the flow over a specific blade geometry or
around the complex geometry of the helicopter fuselage. They have the advantage that the full
Navier-Stokes equations can be solved, including viscosity, but they have the disadvantage that
the vorticity can numerically diffuse [138]. They are referred to as first-principles methods
because the vortex generation is not seeded or prescribed as in the vortex solution but is a result
of the forces on the fluid, the flow field is then determined by the rotor model and any boundary
conditions on the grid.

An Eulerian method using a purpose built parallel finite volume code is presented by Allen
[139]. A 4 bladed rotor is simulated through time using a body fitted mesh around each blade.
The tip vortices seems to dissipate very rapidly; if the smoke visualisation experiments of Lee
[27] are compared with the vorticity visualisation of the numerical results by Allen then the
number of distinct vortices in the numerical results are significantly less. Xu and Weng [140]
used the fifth order scheme to find the flow field around a hovering rotor and compare it to the
MUSCL scheme. Details of these schemes can be found in [140]. Xu and Weng used a body fitted
C-H mesh around the rotor blades embedded in a cylindrical background mesh. The results
show a significantly larger number of distinct tip vortices, the evolution of the vortices matches
experiments.

An adaptive grid refinement method is employed during the analysis of a rotor in hover by
Wissink et al. [141]. The Eulerian solution is found using body fitted unstructured blade mesh
overlayed on a structured mesh solved with a high order method to capture the wake. Two rotor
capturing methods are used, the first uses a fused mesh but with a rotating coordinate system
the second moves the body fitted mesh. The results of both these methods are similar to each
other and are within 3% of the experimental result when comparing helicopter rotor efficiency.

Kalra et al. [142] use an overset mesh method for the blade and another that generates a
helical mesh that tracks the BTVs. The overset mesh method enables the blade to have a body
fitted high resolution mesh, '1 million cells, that can move through the relatively coarser main
mesh, '10 million cells. An interpolation scheme is used to transfer data between the two
meshes. The method manages to capture four or more revolutions of the helical BTV. Kalra et al.
also place rotors IGE, with results that capture the trends of the experimental results of Lee et al.
[27].

Advanced simulations by Thomas et al. [143] included an aeroelastic blade dynamics model
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coupled with the solution of the flow. Thomas also used overset body fitted meshes to model the
blade. Vorticity confinement models were developed by Steinhoff and Underhill [138] to help
protect the tip vortices from diffusing too rapidly in finite grid methods. Boelens et al. [144]
attempt to preserve vorticity by using a hybrid CFD-Lagrangian method and adaptive grids, the
results appear to show a tip vortex helix persisting for two revolutions.

Brown and Whitehouse [129] developed the Vortex Transport Method (VTM) designed
specifically to conserve vorticity; the same method is used by Philips and Brown [145] in a
complete brownout simulation. The method uses a finite volume grid and solver to solve the
vorticity transport equation, formulated from the curl of the Navier-Stokes equations. Like the
Lagrangian free-wake models the method requires the vorticity in each cell to calculate the
velocity field using a modified Biot-Savart law, but this computational expense is reduced by use
of a multi-pole method. The VTM manages to preserve the vortex structures far longer than any
other method seen in the literature. The method is incompressible and is inviscid for simplicity
and because the majority of the flow is in the high Reynolds number regime. The viscous and
compressibility effects around the blades are included by use of blade lookup tables. The
method of images is also used to model the ground plane and the ground interaction is again
inviscid as in the free-wake models.

4.2.3 Blade modelling methods

Different methods of modelling the rotor are described here. The actuator methods exert a force
on the flow, they are sometimes referred to as permeable surfaces as the physical presence exerts
a force on the fluid but no surface is modelled. The simplification means that no boundary layer
is created by the blades in these methods making the immediate flow around the blades
inaccurate, however, the method is primarily used by researchers concerned with the larger flow
field and in particular the wake downstream of the rotor. Body fitted meshes, on the other hand,
are possibly the best way to represent the blade allowing for full resolution of the flow over any
specific blade geometry, the computational expense is the cost of this additional detail.

Actuator disk

The actuator disk is based on 1 dimensional momentum theory utilising a disk equivalent to the
disk swept out by the blades and a pressure jump providing the thrust, for hover this is simply
the weight of the helicopter. In finite volume Eulerian methods the force of the disk can be
implemented by using the source term in the Navier-Stokes equation 3.2. The actuator disk
method is used in Chapter 6. Sørensen and Kock [146] use an actuator disk method with a
blade-element approach allowing the use of 2D aerofoil data to be included in the calculation.

Actuator line

The actuator line is an unsteady form of the actuator disk, a line applies thrust to the flow
simulating each blade and each blade rotates around the hub. The actuator line is also
implemented using the momentum source term in the Navier-Stokes equation, but more care
must be taken on how the force is applied to the discretised space to ensure the force is smoothly
applied and there are no jumps associated with the shape of the grid. The actuator line method
(ALM) uses no physical surface to represent the mesh, just the force, for this reason the transonic
effects and the blade pressure profiles are not present. The ALM is used to model the wake not
the blade. Specific data on the blade, such as CL and CD, can be applied in much the same was
the lifting line method used in the free wake methods previously. The ALM is extremely
versatile by nature; since no body fitted blade grid is required the rotor can be easily moved and
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implementation of multiple rotors is easy. Mikkelsen et al. [147] use the actuator line method to
investigate a series of wind turbines positioned behind each other. The ALM is used routinely in
wind turbine flow predictions, [148][149][150][38], though has found little use in helicopter
studies.

Actuator panel

The actuator panel is an extension of the actuator line, instead of applying force to the flow along
a line it is applied over a panel. This requires more computation but gives the opportunity for a
more detailed force profile. Watters and Mason [151] implement the actuator surface through
application of a discontinuity of the pressure and velocity field in the location of a rotor blade
surface, it is stipulated as advantageous because the discontinuity occurs on a cell faces in the
computational grid rather than having to distribute a force throughout computational cell
volumes. Dobrev et al. [152] uses a grid of nodes as a surface and implements a pressure
discontinuity across the surface. The immediate flow around the blade produces promising
results that are a reasonable match with experiments.

Sliding meshes with body fitted rotor panels

Overset or moving meshes are the most popular methods of modelling the rotor blades in
Eulerian helicopter simulations, and offer the chance to truly simulate a blades performance.
The meshed blade models the blade surface as a solid wall with a no-slip condition. The
Eulerian models previously mentioned, [139][140][141], all used body fitted meshed blades and
some form of moving mesh. The body fitted blade mesh method is capable of returning pressure
profiles, stall characteristics, compressibility effects or acoustic responses of a blade. The effect
on the wake from changes to the geometry of the blade can be considered.

The simulation of rotor interaction with the tail rotor and with the fuselage is an important,
albeit secondary, part of the helicopter wake [28]. Several works have added these additional
complexities to their simulations [134] [153]. In this study only the main rotor OGE and IGE will
be considered to first understand the primary flow, the secondary effects of the fuselage
interactions and the tail rotor are left to future consideration.

In this work the primary focus is formulating an unsteady rotor wake simulation to gain
deeper understanding of the vortex ground interaction that occurs and is likely the cause of dust
inception during brownout. A method that includes viscous forces is required to simulate the
boundary layer, the geometry of the rotor or helicopter are of no specific importance. The ALM
method is simple to implement and can operate in a viscous flow.

4.3 Methodology

In this simulation the actuator line method is chosen as it is simple to implement but still capable
of producing all the features of interest. Mikkelsen [148] explained the implementation of the
actuator line method, the explanation is included here with additional details for implementing
in Ansys Fluent. For simplicity no drag force was implemented, though induced drag is
inherently present due to the tip vortices.

4.3.1 Implementation of the ALM

The ALM was implemented in the commercial flow solver Fluent (version 12.0.16) using a
collection of User Defined Functions (UDFs) that provide values for additional source terms, Si,
in the momentum equation, Eq. (3.2). The blade is represented by a line of blade nodes,
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momentum is applied to the cell volumes around each blade node using a Gaussian spreading
function, the momentum vector is normal to the relative velocity and has no radial component.
The SOURCE type of UDF is called for each cell volume in the fluid domain for each iteration in
every time step, each time the UDF is called the following steps occur:

1. The parameters of the UDF are initialised - the radius of the rotor, R, number of blade
nodes, nb, weight of the helicopter, Wh, angular velocity, ω, location of the rotor hub, xhub,i,
and where the root cut-out is, Rcut, defined in Table 4.1. Next the current fluid cell location,
xc,i, and velocity, uc,i, are retrieved from Fluent.

2. A bounding box is defined around the rotor; for efficiency the UDF checks the location of
the current cell, xc,i, and if it is sufficiently outside of the rotor bounding box, such that the
rotor could never apply force to it, the UDF returns zero.

3. If the cell is within the bounding box the locations of the blade nodes, xb,n,i, are found
analytically given the current simulation time t and blade node number n. In Cartesian
coordinates:

xb,n,i = xhub,i +
2
nb

(
n− nb − 1

2

)
R


cos(ωt)

sin(ωt)

0

 (4.1)

4. For this fluid cell the distance to each blade node is found, normalised by the length cw and
processed through a Gaussian PDF with standard deviation of cw.

xrel,n,i = xc,i − xb,n,i

x̂rel,n =

∣∣xrel,n,i
∣∣

cw

G =
nb

∑
n=1

Wb
1√
2π

e

(
−

x̂2
rel,n

2

)
(4.2)

where Wb = Wh/nb is the influence of each blade node, cw is a characteristic cell width
which should be larger than the largest cell width in the vicinity of the rotor to keep a
smooth spreading. The force magnitude that will be applied to this fluid cell, G, has been
found.

5. The momentum vector for this cell is required to be orthogonal to the incident velocity of
the blade. This was found for the arbitrary node by first finding the rotational blade
velocity of that cell, ωrc, and then subtracting the fluid velocity of that cell, uc,i, as shown
in Fig. 4.3 and 4.2:

rc =
∣∣xc,i − xhub,i

∣∣ (4.3)

vrel,j =


ωrc −

(
uc,x cos(θ)− uc,y sin(θ)

)
0

−uc,z

 (4.4)
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Figure 4.2: Cylindrical coordinate definition for the rotor model. Looking down on the rotor disk:
radial distance, rc, is measured from the hub, θ is measured from the x axis. The cell position, xc,i,
and velocity, uc,x and uc,y, are defined in the Cartesian system. The velocity of the rotating blade
is ωrc at that cell position.

v
rel,j
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njˆ
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Figure 4.3: Relative velocity definition for the rotor model. A 2D slice, in the θ-z plane, through
the blade location. The lift force L is reproduced by applying the ALM force in the n̂j direction.

where θ = tan−1
2

xc,y−xhub,y
xc,x−xhub,x

is the absolute angle of the fluid cell position relative to the hub
and the x axis in the r-θ plane, Fig. 4.2, and vrel,j acts only in the θ-z plane, Fig. 4.3.
Subscript i = 1, 2, 3 refers to cartesian directions x, y, z and subscript j = 1, 2, 3 refers to
cylindrical coordinates r, θ, z. Taking the normal unit vector of vrel,j and applying it back to
the original 3D Cartesian coordinate system gives the orthogonality desired:

n̂j =


vrel,z/ |vrel|

0

−vrel,θ/ |vrel|

 (4.5)

The momentum source vector is then:

Sc,i = GCvol


−n̂θCL sin θ

(
|vrel|
ωrc

)2

n̂θCL cos θ
(
|vrel|
ωrc

)2

n̂zCL

(
|vrel|
ωrc

)2

 (4.6)

where CL = f (1/r) is the lift coefficient idealised to provide a near uniform disk loading
and Cvol is a volume factor given in Step 7. The disk loading provides constant circulation
along the blade in the style of the idealised Joukowski rotor [154].

6. The blades of a real helicopter do not extend back to the centre of rotation, the root cut-out
is implemented by reducing CL to zero toward the hub without any discontinuity at the cut
off.
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Figure 4.4: One iteration of the Actuator Line method applied to a uniform orthogonal grid,
contours of vertical velocity - black is a maximum.

Name symbol Description

Disk radius R = 0.5m Distance from root to tip of the rotor
blades.

Cut out radius Rcut = 0.05m Radius of the root cut out region.

Cell width cw = 0.01m
Representative cell width for use
with the Gaussian spreading.

Helicopter weight Wh = 5N Weight of the helicopter.

Hub position xhub,i = [0, 0, zd] where zd is the rotor height, Table 4.2

Number of blade nodes nb = 120
The actuator line applies force
around these points.

Angular velocity ω = 47.1 Rads−1 Angular velocity of the blades.

Table 4.1: Parameters used in the ALM rotor simulation.

CL =


1
rc

, rc > Rcut (4.7)

1
Rcut

rc

Rcut
, rc ≤ Rcut (4.8)

7. The UDF applies the momentum calculated to the volume of the cell, it expects units of
N/m3. The momentum G has units of N, it is scaled by a representative volume:
Cvol = 1/

(
2c3

w
)
.

8. Time step is chosen to ensure the blade tip node does not pass more than one grid cell in a
time step.

The end result is a cylindrically shaped Gaussian spread of momentum source term around a
prescribed rotor location. Running a single iteration of the UDF we can see the virtual blade,
Fig. 4.4 illustrates the ALM applied on a course uniform mesh, practically this is an appropriate
sanity check for the suitability of the UDF with a specific grid. Figure 4.4 shows the force applied
at the tip is larger, however, the residence of the blade on any particular cell is proportional to
1/r — the time averaged result is a near uniform disk.

4.3.2 Solution methods

The characteristics of the simulation dictate the best choice of solution method. The rotor wake
has strong vorticity, strong pressure gradients, mild swirl components, is highly unsteady and is
incompressible. A pressure based transient solver was chosen for this simulation as
compressibility is not an issue and we wish to capture the unsteady phenomenon. The PISO
pressure-velocity coupling scheme is chosen because it is recommended for transient flows [155,

54



4.3. Methodology

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2 3 4 5 6 7 8 9

r/R

z/R

0

0

1

2

3

4

5

6

Figure 4.5: Static pressure contours at t = 90trev for case zd/R = 0.5, contour levels are −1 <
ps < 1 to examine the validity of a 0 total pressure boundary condition.

Ch.26.3.1]. For spatial discretization the PRESTO pressure scheme is noted for solving strong
pressure gradients because it solves the pressure at each cell face rather than interpolating it, the
momentum scheme was second order upwind. Temporal discretization was performed using a
second order implicit method. Computational expense is an important issue; the mesh contained
3× 106 cells and was run for 24000 time steps, computation took approximately 40 days using
parallel processing with up to 36 processes. The simulations were run on the University of
Southampton’s supercomputer Iridis 3.

4.3.3 Boundary Conditions

The boundary conditions for the OGE case were all constant gauge pressure equal to zero, the
constant pressure boundary is implemented by choosing a total gauge pressure, p0 = 0 in this
case, the static pressure at the boundary and the velocity are found from Bernoulli’s equation,
Eq. (4.9).

p0 = ps +
1
2

ρ f |vi|2 (4.9)

where ps is the static pressure, |vi| is the velocity magnitude. The pressure boundary
condition is chosen because there is no free stream and the ambient velocity is near zero but
mass still needs to enter and leave the domain in an undetermined direction. The extent of the
domain was chosen to be far from the rotor and the region of interest, peak wall stress at
r ≈ 1.5R, and sufficiently far radially that the vortices have dissipated. Figure 4.5 shows the
static pressure contours around the gauge pressure of zero, it is clear that near the boundaries
the pressure is already very close to gauge pressure of zero and pressure gradients near the
boundary are also very low. It is therefore shown that the boundary condition and extent are
unlikely to have a significant impact on the flow in the centre of the domain.

The boundary condition for the IGE cases were identical save for the no slip wall condition
on the lower face. The wall applies the condition of zero velocity normal to the wall and zero
velocity parallel to the wall at the surface. For the OGE case the lower boundary is also a
constant pressure boundary.
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4.3.4 Spatial resolution and temporal resolution of the ALM

The first mesh implemented for use with the ALM was a structured uniform mesh with the rotor
hub in the centre. This was a useful way to test and develop the implementation of the ALM as
seen in Fig. 4.4. Since the rotor hub was not moving in this simulation a structured cylindrical
mesh was developed to provide a consistent pattern of fluid cells to be influenced by the ALM.
That is to say the cylindrical mesh reduces the dependence on θ, however, unless the grid is
100% cylindrical and the rotor moves a whole number of cells per time step the output of the
rotor will not be truly independent of θ. The chosen mesh reduces this dependence: it is
composed of a central small rectangular block surrounded by 4 quadrants to make the cylinder,
Fig. 4.6. In the r direction cells are concentrated in region from R/

√
2 to the blade tip, this

annulus of concentrated cells contained the predicted wake boundary and vortex trajectory. In z
cells are concentrated near the wall and at the disk. Cell distribution is uniform in the θ direction
in the quadrants.

Time step, ∆t, and grid spacing in the θ direction are linked by ω such that ω∆t < ∆θ. This
ensures blade nodes do not step more than a cell width in a single time step. Given the
dimensions in Fig. 4.6 and ω, given in Table 4.1, ∆t must be less than 8.3× 10−4s. The time step
must also be smaller than the time scales of the flow. The vortex time scale is estimated using the
vortex width, rvort, measured from peak to peak swirl velocity, vθ , given by Eq. (4.10) [156]:

vθ =
Γ

2πrvort
(4.10)

where Γ is the circulation and for a two bladed helicopter Γ = T/(R2ωρ f ), where T is thrust. The
PIV results of Johnson et al. [39] show the vortex width to be approximately rvort = 3× 10−2R,
this yields a swirl velocity of vvort,θ = 4.5ms−1 and a time scale of τvort = 2πrvort/vvort,θ = 0.02s.
To satisfy the rotor and vortex scales a time step of ∆t = 5× 10−4 was chosen.

Approximation of Kolmogorov scales

The Kolmogorov scales are the scales of the smallest structures in a flow, they are representative
of the smallest scales in the turbulent energy cascade after which the kinetic energy is converted
to heat. The Kolmogorov length scale, η, is dependent on the energy dissipation rate, ε, which is
approximated using Eq. (4.11), where L is the eddy size and u(L) is the characteristic velocity
[61, Ch. 6]. The largest length scale eddies are assumed to be the blade tip vortices, their width is
estimated as above from Johnson et al. [39] to be rvort = 3× 10−2R and vvort,θ = 4.5ms−1 from
Eq 4.10.

ε ' u(L)3

L
(4.11)

η ≡
(

ν3

ε

) 1
4

(4.12)

The Kolmogorov length scale, Eq. (4.12), was estimate to be η = 3× 10−5m, Kolmogorov
velocities and time scales were estimated to be vη ' 0.5ms−1 and τη ' 5× 10−5s respectively.
The average mesh cell size in the region 0.4 > r/R > 1.2 is lcell = 9× 10−3m. The smallest
physical fluid scales are approximately 300 times smaller than the numerical grid spacing. The
Kolmogorov scales are based on the assumption that ReL � 1 and that the turbulence is
isotropic. It is clear that this turbulence is not isotropic as the vortex structures are part of a large
helix with no other vortices of that magnitude departing from that original orientation. The
Reynolds number of the energy containing scale is ReL ' 2× 103, large enough that the scales
are not affected by viscosity indicating that second Kolmogorov Hypothesis applies to this

56



4.3. Methodology

case rotor height, zd domain height zmax

IGE-25 0.50R 3.0R
IGE-34 0.68R 3.0R
IGE-75 1.50R 3.0R
IGE-200 4.00R 6.0R
OGE 4.00R 6.0R

Table 4.2: Rotor simulation cases, rotor disk height from ground and number of cells in the grid.

direction at least. The Kolmogorov time scale, τη , is an order of magnitude smaller than the
chosen time step. Consider the comparison between the structures in Fig. 4.9 – whilst it is clear
that the smallest structures are not resolved numerically, the large structures appear to be well
resolved and the transition from coherent structure to incoherent turbulence happens at a similar
rate.

The objective of these simulations is to understand the evolution of the large structures, the
tip vortices, through time and space. If the smallest scales are not resolved then the energy
cascade is cropped short of the Kolmogorov scale and all the transfer of kinetic energy to heat
energy happens at that scale, the large scales now lose energy more rapidly than they would. In
isotropic turbulence the energy spectra could be compared against the −5/3 gradient to examine
the rate of dissipation [61], here the turbulence is dominated by the rotor tip vortices and is
therefore not isotropic. Presuming that not resolving the smallest scales causes an increase in
dissipation the analysis is made with the understanding that the large scales are diffusing more
rapidly than they should be. However, the following validations show that the level of
resolution is sufficient to produce phenomena seen in experiments and in photographs of full
scale helicopter dust entrainment.

Reference scales for nondimensionalisation

The flow field results are non-dimensionalised for verification in this chapter and analysis in
Chapter 5. Velocities in the rotor wake are non-dimensionalised with the induced velocity, vind,
based on the thrust, T, 4.13 from 1D momentum theory:

vind =
√

T/2ρAdisk (4.13)

where Figure 4.14e shows the mean velocity magnitudes of slices through the flow field. The
non-dimensionalised velocity at the disk in Fig. 4.14e is 1, showing that in the OGE case the
mean flow field through the disk is mostly uniform and approaches the 1D solution. For the IGE
cases: as the rotor approaches the ground the velocity profile from hub to blade tip, r = 0→ R,
shifts from near uniform velocity and becomes more concentrated at the blade tip as the rotor
approaches the ground.

Length and time are nondimensionalised by R, the blade radius, and trev = 2π/ω, the blade
revolution time. Using R/vind for the time scale is not very useful, but trev is associated with the
frequency of vortex creation and helps characterize the vortex intermittency.

4.3.5 Rotor simulation cases

The rotor simulation was carried out using 4 different IGE heights and a single OGE height. In
all cases the rotor was stationary with respect to the ground and the ambient fluid. The case
names and rotor heights are summarised in Table 4.2.
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(a) The structured cylindrical mesh is composed of a small square core and 4 quadrants.
The quadrant dimensions are given in cell number.
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Figure 4.6: The grid shape and dimension, zdisk and zmax are defined in Table 4.2.
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Figure 4.7: The average velocity magnitude of the entire domain over time presented as a per-
centage of the mean of the analysed data 50 < trev < 90, for case zd/R = 0.5.

4.3.6 Data captured during simulation

The 5 simulations performed exported 3 data sets:

1. a complete flow field every ten time steps.

2. a near wall slice in the vertical plane, from the ground to approximately 0.1zd in height and
from the rotor hub, r = 0, to the extent of the domain, r = 9R.

3. a volume encapsulating the rotor recording all the momentum added by the rotor in the
current time step. This data set is recorded every ten time steps.

Additional data can be extracted post-process from the complete flow field in Item 1 as often as
every 10th time step, the majority of analysis in Chapter 5 is performed on full scale slices from
the axis to the edge of the domain extracted every ten time steps.

4.3.7 Statistical stationarity

To be confident of any statistical analysis it must be first established whether the flow is
statistically stationary. The mean velocity magnitude of the entire domain over time for case
zd/R = 0.5 is shown in Fig. 4.7. The velocity increases as the flow field develops and settles once
the wake reaches the edge of the domain. The statistical analysis in this work is performed on
data 50 < trev < 90, in this region there appears to be a slow perturbation acting in the flow, this
could be due to vortex interactions — regardless of the cause the magnitude of the perturbation
is low ±5%.
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4.3.8 Using Richardson extrapolation to quantify the spatial discretisation
error in the unsteady rotor simulations

The Rotor simulations were performed on a middle resolution grid, g2, a higher resolution mesh,
g1, and a lower resolution mesh, g3, were constructed for the zd/R = 0.5 case to assess the error
associated with the grid. The higher resolution mesh took considerably longer to run, as such it
was not run to the extent that the entire flow domain can be considered statistically stationary.
The alternative is to asses a specific quantity, in this case the tip vortex width, at a location
ψ = 0.1Rad where the flow is statistically stationary in a relatively short time. This flow quantity
was chosen as it the tip vortex is in a deterministic location and the width can be extracted of the
vortex throughout time can be reliably found for each grid with relative ease.

The Richardson extrapolation [157][158] is a method that uses the known ratio in the grid
spacing and the solution order to calculate an approximation of a flow quantity in a continuous,
zero grid spacing, solution. In this case there are 3 grids, g1, g2, g3, each with half the grid
spacing, h1, h2, h3, of the previous one. The solution is calculated using second order methods
and should nominally have an order of convergence pc = 2, however the order of convergence
can be found directly from the results using Eq. (4.14):

pc = ln
(

f3 − f2

f2 − f1

)
/ ln (mratio) (4.14)

where f = 2rc is the flow quantity compared - in this case the vortex width for each grid
averaged across time and the spatial zone and mratio = h2/h1 = 2 is the mesh refinement
fraction.

Richardson extrapolation

Richardson extrapolation [158] can be used to find an approximation of the continuum solution
from known solutions with different grid spacings. The estimate of the continuum solution can
also be used to assess the discretisation error associated with a certain grid resolution.

A flow quantity, f , can be considered as the sum of a series, Eq. (4.15):

f = fh=0 + g1h + g2h2 + g3h3 + ...higher order terms (4.15)

where g1,2,3 are functions independent of grid spacing, h is the grid spacing and fh=0 is the
continuum solution of the quantity f . If g1 = 0 the value of f is considered second order. If two
grids, h1 and h2, are used to find the same quantity, f1 and f2, then Eq. (4.15) can be used to
generate two series, solving for fh=0 give:

fh=0
∼= f1 +

f1 − f2

rpc
g − 1

+ higher order terms (4.16)

where rg is the grid refinement ratio, rg = h2/h1, and p is the order of the solution found in
Eq. (4.14). The value fh=0 is now used to assess the discretisation error of the grids. We must not
presume that fh=0 is the exact solution, it only purports to be the continuous grid solution and
the Richardson extrapolation is used to assess the grid discretisation error, not the error that
results from boundary conditions or solution of the governing equations. The extrapolation will
magnify machine rounding errors and incomplete iteration errors and assumes ‘monotone
truncation error in the mesh spacing h’ [159].

The error can be estimated for f1 with:

A1 = E1 +O
(

hpc+1, E2
1

)
(4.17)
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Figure 4.8: The relative error % of the tip vortex width for 3 different resolution grids.

where A1 is the actual fractional error:

A1 =
f1 − fh=0

fh=0
(4.18)

and the estimated fractional error E1 is:

E1 = ε/
(

rpc
g − 1

)
(4.19)

ε = ( f2 − f1) / f1 (4.20)

E1 is a labelled as an ordered error estimator by Roache [159], that is "‘an ordered approximation
to the actual fractional error of the fine grid solution"’. Further a good approximation of the error
is achieved by E1 when E1 � 1. In this work the middle resolution grid is used for the main
analysis, to estimate the error of the h2 grid we first present the Richardson extrapolation:

fh=0
∼= f2 +

( f1 − f2) rpc
g

rpc
g − 1

(4.21)

and the error estimator for the middle resolution grid, E2, is then expressed as:

E2 =
εrpc

g

rpc
g − 1

(4.22)

Given the average of the tip vortex width for each grid, f1,2,3 = rc 1,2,3, the estimated
fractional error was found to be E1 = 1.7% and E2 = 6.2%. The relative error, Eabs, was found for
each grid size n using the Richardson estimated continuum solution rc,h=0,
Eabs,n = (rc,n − rc,h=0)/rc,h=0 and plotted in Fig. 4.8. The relative and fractional error are
reported in Fig. 4.8 and it can be seen that they differ only very slightly. The order of
convergence was found to be pc = 1.94 very close to the 2nd order we expect.

Summary of the spatial discretisation assessment

In this section the Richardson extrapolation method was used to assess the discretisation error of
the finite volume grids used in this rotor flow field. The middle grid resolution was used for the
analysis in the remainder of this chapter; it has been shown that the results of this flow field, in
the near rotor region, suffer from a 7% error due to spatial discretisation. In the remainder of this
flow analysis we wish to understand the dynamics of the tip vortices. These large flow features
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are explored in the next section.

4.4 Validation

In this section the flow field is visually compared with an experimental flow, the near wall mesh
resolution is quantified and several different quantities are validated against experimental data
from the literature.

4.4.1 Flow visualisation: a qualitative comparison

The flow field of the OGE case was visualised by plotting contours of vorticity and compared
with the smoke visualisation of Lee et al. [27] in Fig. 4.9, stream lines were added to the
numerical plot to show were fluid is entrained. A vorticity contour plot will not produce the
same image as smoke visualisation but the vortex structures are highlighted by both methods.
Figure 4.9 is a 2D slice through the 3D structure shown in Fig. 4.1b, but Fig. 4.1b is an iso-surface
and only shows a single value of vorticity - Fig. 4.9 shows a range of vorticity values.

Figure 4.9 shows the same large structures exist in the simulation as in the experiment: a
series of tip vortices define the wake boundary which necks beneath the rotor, vortex pairing is
evident, fluid entrainment causes vortex growth and the coherence structures have largely
dissipated beyond 3R below the disk. Differences in structure can be attributed to the differences
in rotor configuration. The vortices in the experiment are further apart because of a larger ratio
of induced velocity to angular velocity of the blade. Uniform blade loading on the numerical
rotor causes the vortex sheet to stay more aligned with the rotor disk, the experimental rotor has
a tip—heavy blade loading which causes the vortex sheet to angle downward at the tip. The
comparison in Fig. 4.9 shows the smallest scales are not resolved by the simulation.

4.4.2 Near wall mesh resolution

The quality of the near wall mesh resolution was assessed by calculating the non-dimensional
wall normal distance, y+, for the first cell Eq. (3.20). For a fully developed turbulent boundary
layer the mesh should be fine enough for y+ ' 1 at the first cell, this enables the viscous sublayer
to be resolved. In this flow field the boundary layer is not fully turbulent so it is difficult to
assess how close the first cell should be. Nevertheless the first cell y+ is reported in Fig. 4.10,
averaged over time. The peak y+ occurs at the peak wall shear stress, 1 < r/R < 2, in this region
the first wall cell is positioned between 20 and 50 y+, the beginning of the log-law layer. This
spatial resolution is insufficient to correctly resolve the near wall turbulent scales, however, the
purpose of this analysis is to understand the dynamics of the large scale vortices.

4.4.3 Comparisons with experimental data

Before analysing the numerical flow results in the context of brownout three comparisons are
conducted between these results and experimental results in the literature:

• the variation in power required for the rotor at different heights IGE.

• tip vortex trajectory.

• radial velocity profile.

To compare the data a number of parameters need to be defined. The rotor thrust coefficient,
CT , is defined as:
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Figure 4.9: Left: contours of vorticity of a slice through the axis from the OGE case with stream-
lines, Fig. 4.1b shows a 3D image of this flow field. Right: smoke visualisations produced by Lee
et al. [27] reproduced here with permission. The streamlines show entrainment, this is seen as
smoke free air drawn into the vortices in particular the ‘older tip vortices’ indicated.
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Figure 4.10: First near wall cell y+ with r for each case.
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CT =
T

1
2 ρA(ΩR)2

(4.23)

where T is the thrust, A is the disk area and Ω is the angular velocity of the rotor. The thrust is
calculated as the sum of the vertical thrust in each fluid cell. The thrust coefficient, CT is often
normalised by the disk solidity, σ = NbcR

πR2 , the ratio of blade area to disk area. If Eq. (4.13) is
substituted into the expression for the thrust coefficient, Eq. (4.23), it becomes the ratio of the
induced velocity, vind, to the tip velocity, ωR. This is the effective pitch in the vortex helix and
should define the spacing between vortices, however, the blade loading changes the velocity
distribution across the wake which can change the vortex spacing. The power coefficient is
defined in a similar manner to CT :

CP =
P

1
2 ρA(ΩR)3

(4.24)

where P is the power, calculated as shaft power and is found by summing the power
contribution from each fluid cell:

P =
nc

∑
c=1

(rc,iSc,i) •Ωi (4.25)

Where Sc,i is the force vector applied at cell c at radial position rc,i, Eq. (4.6). It should be
noted here that the nominally American system does not include the factor of a half in the
denominator of Eq. (4.23) and 4.24 but the British system does, the latter is employed throughout
this work - data from other works is converted to the British system.

Power required in IGE

It is a well known phenomena that power required to hover with constant thrust in ground
effect is less than out of ground effect. The proximity of the ground heavily influences the wake.
Figure 4.11 shows the power required to maintain constant thrust at different heights IGE as a
ratio to power required to hover OGE, power is calculated using Eq. (4.23). The proximity of the
ground acts to inhibit the incident velocity at the blade this effect is more pronounced the closer
the rotor is to the ground.

The implementation of the ALM, described in Section 4.3.1, is designed to produce constant
vertical thrust. As the ALM implemented here has no explicit drag the power measured is
induced power, but Hayden [161] surmises that ground effect primarily alters the induced
power rather than profile power. Figure 4.11 presents the power reduction at different heights
IGE alongside the experimental results of Lee et al. [27] and the analytical expressions of
Cheeseman and Bennett [160], Eq. (4.26), and Hayden [161], Eq. (4.27).

PIGE

POGE
= 1− 1

16

(
R
zd

)2
(4.26)

PIGE

POGE
=

1

0.9926 + 0.0379 (2R/zd)
2 (4.27)

The rotor modelled using the ALM method does not appear to have such a dramatic power
reduction as found by Lee et al. but more so than that predicted by Cheeseman and Bennett; once
below zd/R = 1.5 the behaviour of this rotor is similar to both. The rotor used by Lee et al. had a
non-uniform blade loading, this is apparent in smoke visualisations [27] as non-horizontal
vortex sheets. The blade is uniformly loaded in this simulation, there is some evidence that blade
loading can alter the IGE performance [162, Ch. 5] and Lee et al. [27] conducted tests with a
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Figure 4.11: Power required to hover IGE: experimental results of Lee et al. [27], analytical predic-
tion of Cheeseman and Bennett [160], Hayden [161] and numerical results from this work.
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Figure 4.12: Vortex trajectories, experimental results of Caradonna and Tung [136] and Light [135]
compared to numerical results from this work. Azimuth is a measure of vortex age measured by
blade rotation since generation, see Fig. 4.1.

range of CT/σ and found higher thrust loadings gave a greater power reduction.

Vortex trajectories

The wake shape and evolution can be compared by considering the position of the tip vortices
over time, non-dimensionalised to azimuthal angle. Figure 4.12a and 4.12c present the position
of the blade tip vortices from this work, Fig. 4.12b and 4.12d present data from Caradonna and
Tung [136] and Light [135]. It is first obvious that the two experimental data sets do not align —
the vortices from the Light rotor descend quicker. This maybe due to the different values of
thrust coefficient, Caradonna and Tung [136] used CT/σ = 0.022 while Light [135] used
CT/σ = 0.091, however, the trends of the two experimental results agree. The experimental
results of Light [135] were not performed at the same rotor heights as the numerical studies but
the trends are comparable. The numerical results do not diverge as early, the gradient indicates
they are descending slower implying that the change in trajectory occurs with a certain
proximity to the ground. A lack of disturbance in the experimental trajectories of Light [135] at
ψ = 180◦deg, the moment when the second blade passes indicates the vortex is outside the
influence of the blade after half a revolution, a disturbance is clearly visible in the results of this
work, Fig. 4.12a, and in the results of Caradonna and Tung [136], Fig. 4.12a.
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Figure 4.13: Radial velocity profiles comparing experimental results of Lee et al. [27] with numer-
ical results of this work.

Radial velocity profile

Lee et al. [27] report time averaged radial velocity profiles, ur(r, z), at 3 radial positions for IGE
heights of zd/r = 0.5, 1.5 from their rotor experiments. The velocity is non-dimensionalised
using the induced velocity Eq. (4.13). The radial velocity from these simulations is presented
with results of Lee et al. [27] in Fig. 4.13. It is seen that the numerical flow is a different shape: the
peak radial velocity is further from the ground plane throughout and the peak velocity is larger
for the more distant radial positions. This again maybe due to the blade loading profile, the
experimental profile shows that necking of the wake boundary extends closer to the ground than
the numerical profile. The trends are repeated in both experimental and numerical profiles: the
velocity is greatest at r = 1.5R, at r = 1.0R the radial profiles are thick and then become thinner.
It can be seen that the numerical results have overestimated the boundary layer thickness and
underestimated the wall shear stress. These results are intended to gives us qualitative
understanding of the unsteady flow behaviour and specifically the intermittency generated by
the vortices.
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4.5 Results

In this section the mean flow field results are presented, the shape of the velocity field helps
consider the effect of the boundary conditions and the change in blade loading as the disk
approaches the ground. The turbulent kinetic energy, k, and enstrophy, ω2, help visualise where
the flow is highly turbulent and indicate where dissipation is active. The wall shear stress is
shown with the mean, standard deviation and skewness to give some indication of
non-Gaussian nature of the wall shear stress fluctuations. Mean quantities depicted in this
section are calculated for each point in space and averaged over the sample time given in Section
4.3.7, as in Eq. (4.28):

φ (xi) =
∫ t=90trev

t=50trev
φ(xi, t)dt (4.28)

4.5.1 Mean velocity field

The mean flow field is given in Fig. 4.14. For clarity the figures have been cropped to the region
of interest, additionally for context Fig. 4.15 gives the full extent of the domain for each case.

The full extent of the domain is given in Fig. 4.15, streamlines have been included in these
plots to show pressure changes. Some boundary effects are visible: in Fig. 4.15b a contour above
the disk has a small kink not present in Fig. 4.15a, likewise in Fig. 4.15c and 4.15d. The contours
closer to the disk, however, are smooth and the streamlines smoothly change shape as they move
away from the boundary indicating no dramatic pressure change. At the eastern edge the
streamlines are parallel in all but the zd/R = 4.0 case where they smoothly spread apart
suggesting the pressure is forced to increase at the boundary. The pressure increase only occurs
after r = 7R giving confidence that the region of interest, typically < 4R, is not affected by the
pressure boundary. The pressure plot in Fig. 4.5 gives another look at how the pressure
boundary might effect the flow.

4.5.2 Turbulent kinetic energy

Turbulent kinetic energy is calculated as the kinetic energy due to the flow fluctuations per unit
mass:

k =
1
2
< v′iv

′
i > (4.29)

where v′i is the fluctuation component of velocity. Figure 4.16 shows the mean turbulent kinetic
energy (TKE) for each case. For all cases the peaks are at the blade root and at the rotor tip both
places of strong vorticity. The path of the tip vortex has strong k and it can be seen that this
kinetic energy spreads out similarly to the vortex paths seen in Fig. 5.14a. There is also strong
TKE around the path of the root vortex; the rotor positions closer to the ground, Fig. 4.16a and
4.16b, have a incoherent region of high TKE beneath the rotor but in Fig. 4.16c the TKE of the
root vortex is very coherent. For the heights of zd/R = 1.5 and 4.0, Fig. 4.16c and 4.16d, the TKE
associated with the root vortex seems to be more present near the ground than the TKE
associated with the tip vortex. In all 4 cases with ground there is a significant amount of TKE in
the boundary layer around 1.5R < r < 3R, in this region the fluid in the boundary layer contains
high energy fluctuations and this will be seen by the particles.

4.5.3 Enstrophy

Enstrophy is the square of vorticity , ω2
f , and it is an indicator of the rotational kinetic energy.

The global average of enstrophy and dissipation are related by the kinematic viscosity as:
< ε >= ν < ω2 >.
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Figure 4.14: The mean flow field, velocities non-dimensionalised with vind. Slice in z− r plane.
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Figure 4.15: The mean flow field of the complete slice for each case. The contour levels of velocity
magnitudes are the same as in Fig. 4.14.
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Mean enstrophy for the slice through each case is given in Fig. 4.17. It is clear that enstrophy
is highest where the tip and root vortices are strongest, there is also strong enstrophy in the
boundary layer at r ' 2R. It is expected that dissipation and therefore enstrophy will be present
where there is large k, comparing Fig, 4.16 with 4.17 we find this to be true, enstrophy is found at
the regions of highest k. The regions of high rotational energy are regions where the flow can
throw particles upwards as will be seen in Section 5.8.

4.5.4 Wall shear stress

Shields [163] described a simple method of determining the onset of sediment transport. The
Shields parameter, τsh, is a non-dimensional shear stress, Eq. (4.30), if the Shields number
exceeds a threshold of τ∗sh = 0.06, for uniform grains or τ∗sh = 0.03 for non-uniform grain sizes,
then sediment transport begins. The wall shear stress was non-dimensionalised by the critical
Shields stress for non-uniform grain sizes for Dp = 10µm: τref = 0.03ρpgDp.

τsh =
τw

ρpgDp
(4.30)

The wall shear stress was analysed statistically; the mean, standard deviation and skewness
are presented in Fig. 4.18. The quantities are found for each point on the wall measured over
time. It can be seen that the mean wall shear stress peaks at r ≈ 1.3R but the standard deviation
peaks later at r ≈ 1.6R indicating that the extreme events are most likely to occur in this region.
The skewness shows that the distribution varies dramatically along the wall, and that it can be
both strongly positively or negatively skewed. To model the wall shear stress using a simple
Gaussian distribution would be incorrect. Looking at the Fig. 4.18a it is seen that at
4.5 < r/R < 6 the distribution is skewed negatively by rare low or negative wall shear stresses
most likely a result of ground vortex interaction seen in more detail in Section 5.8. At r = 0.3R
the distribution is positively skewed indicating a few very high wall shear stress events occur
here. When the skewness appears to be zero, e.g. at r ' 1.5R, there is a balance between flow
stagnation events and close vortex proximity causing both rare, and very large, negative and
positive stresses, this is re-enforced by high standard deviation at that location. With increasing
rotor height the τ̄w peak reduces, widens and moves further away from the axis. The rare peak
stress events are capable of picking up the largest particles, the location of these events are where
there is high values of all three statistics reported in this analysis, i.e. r ' 1.6R.

The change in strength and location of the peak wall shear stress with the rotor height is
given in Fig. 4.19. The peak wall shear is observed to move from r ≈ 1.3R towards the limit of
r ≈ 1.8R as the rotor height increases in height from 0.5 to 4zd/R. Likewise the shear stress
decreases as the rotor gains height, but we would expect the shear stress to continue to reduce to
zero. This has interesting implications for the pilot as the source of dust inception moves closer
to the helicopter as it approaches the ground as well as more dust being entrained.

4.6 Conclusions

A 3D unsteady rotor wake model has been implemented using the actuator line method. The
rotor was simulated both in ground effect and out of ground effect and assessment was made on
the validity of the results.

Spatial discretisation was assessed using the Richardson extrapolation, for the young tip
vortices the error was found to be 7% when compared to the grid free solution. The first cell was
found to have a 20 < y+ < 50, near the base of the boundary layer. A very low frequency
perturbation was found across the sample period but its magnitude was very low and the flow
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Figure 4.17: The mean enstrophy field, ω2
f , of the complete slice for each case nondimensionalised

by t−2
rev. The peak value is artificially limited to show greater contrast.
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Figure 4.18: The wall shear stress statistics for each case, nondimensionalised by τref.

74



4.6. Conclusions

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

rotor height zd/R

τ
w
,m
ax
/τ

re
f

1.2

1.4

1.6

1.8

lo
ca
ti
o
n
o
f
p
ea
k
r/

R

Location of peak
Peak shear stress

Figure 4.19: The value and location of the peak wall shear stress with rotor height, zd/R.

period was considered to be statistically stationary. Boundary conditions and extents were
examined and shown to be adequate to resolve the large scale activity.

The power required for constant thrust IGE reduced with proximity to the ground as in the
literature, the result was not as dramatic as the change in the experiments but the trend was
similar and the result was a close match for an analytical relationship from the literature.

The radial velocity profile and vortex trajectories were compared quantitatively and smoke
visualisations from the literature were used in a qualitative comparison of the structure of the
flow. The numerical results were found to follow the same trends as the experiments and were a
good match for vortex trajectory.

The aim of this chapter was to validate the results of an unsteady 3D rotor wake simulation
that is later used to understand and predict particle entrainment mechanisms. The tip vortices
are the primary feature in this flow and they are the large scale disturbance that is responsible
for particle entrainment. The validation in this chapter shows that the flow behaves reasonably
compared with experimental evidence and that the tip vortex evolution is adequately resolved.
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Chapter 5

Model Scale Rotor Wake Simulation:
Flow Structure and Particle-Flow
Interaction

The previous chapter concentrated on time averaged and statistical quantities in the rotor flow to
validate and understand the anatomy of the flow. The subjects of this chapter are the unsteady
events of the rotor wake, and how those features may influence particle pick-up and trajectory.
The flow structure is dominated by vortices generated at the rotor tips that advect toward the
ground and expand radially. The vortex development is explored through autocorrelation. The
vortices cause peaks in the wall shear stress, vortex pairing and ground interaction causes rare
events of high shear stress. The intermittency of the near wall flow and wall shear stress is
identified and explored with respect to particle entrainment.

The flow is scaled to that of a full-scale helicopter and particle motion simulated by releasing
particles into the flow and applying the particle-fluid forces from Chapter 3. It is shown that the
particles are entrained between the tip-vortex and a separation bubble made from induced
counter rotating fluid at the wall. A region of fast upward fluid is created between these two
features that carry particles upwards. The particle paths are traced and show consistency with
experimental and full scale observations.
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5.1 Introduction

This chapter examines the unsteady vortical nature of the flow and how it pertains to
entrainment. The chapter is structured to first look at the vortex features qualitatively and then
makes several quantitative analyses. Section 5.2 is an overview of the vortical structures in the
3D flow and how they change. Section 5.3 examines the trajectory of the blade tip vortices and
statistically summarises the distribution of vortex proximity to the wall. Autocorrelation is used
to quantify periodicity of the flow in Section 5.4, probe points are placed along the wake
boundary to look at how the vortical flow change with distances from the rotor. The final
sections look at particle forces within the flow field, to do this the flow field is scaled to that of a
full scale helicopter using parameters in Section 5.5. Section 5.6 looks at the wall shear stress, the
driving quantity in aeolian sand transport models, and Section 5.7 looks at the forces seen by a
particle on the wall. Section 5.8 releases particles into the flow to see where they are blown, this
reveals the mechanism that allows particles to be blown upwards, seen experimentally by
Johnson et al. [39].

5.2 Anatomy of the IGE rotor flow

Figure 5.1 shows an iso-surface of the 3D rotor wake structure for Case zd/R = 1.5, defined by
Table 4.2 in Chapter 4. Here we see a typical hovering rotor wake structure with all the usual
components: the tip vortex helix is very stable near the rotor, the wake contracts and then
expands as it approaches the wall, then the vortices start to interact with each other by twisting
and pairing. Compare Fig. 5.1 with the OGE structures seen in Fig. 4.1b; the wake necks beneath
the rotor in both cases and the coherent structures breakdown in a similar fashion but the wall
causes the vortex helix in the the IGE case to expand radially. Near the wall the vortices are less
coherent and the twisting has moved some structures closer and others further away from the
wall. The vortices that are pulled near to the wall create large shear stresses, this occurs
irregularly and gives rise to rare high shear stress events much more capable of entraining
particles than vortices travelling along the wake boundary.

5.3 Vortex trajectories

The vortices do not follow a consistent route through the flow due to the twisting and pairing
seen in Fig. 5.1, since the proximity of the vortices to the ground directly influences particle
entrainment the paths of all the tip vortices have been mapped here. The paths of each tip vortex
were recorded using an algorithm that followed local peaks in vorticity magnitude over time in
the 2D slice. The trajectory of the tip vortices over time were compared with experiments from
the literature in Section 4.4.3 and found to behave well and match the experimental data. The tip
vortices move downwards along the wake boundary, for a hovering rotor their speed is typically
half the induced velocity. The path of each vortex over time for case zd/R = 1.5 was recorded in
the 2D slice presented in Fig. 5.2. If any given vortex position over time is ζi (tvort), where tvort is
the time since that vortex was generated, then the mean vortex path is the ensemble average
ζ̄i (tvort) = 〈ζi (tvort)〉 and the standard deviation and skewness are std(ζi) and γ1(ζi).

The vortices begin to diverge from the mean below the necking region at z ≈ 1.2R, however,
the paths of each vortex are all very similar. The average tip vortex moves horizontally after
r = 1.5R at a height of approximately R/4, standard deviation in z was approximately R/10 .
The centre of the tip vortices tend to not approach the wall closer than R/8. At this distance the
vortex tracking method struggles to distinguish between unique vorticity peaks and vorticity at
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Figure 5.1: An iso-surface of vorticity magnitude at |ω f | = 80s−1 coloured by velocity magnitude,
Case zd/R = 1.5 at t = 89trev.
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the wall but the mean distance from the ground of R/4 is observable in plots of vorticity, such as
Fig. 5.13a.

The statistical properties of the distribution of vortex paths at r = 2R are presented in Table
5.1 to compare the deviation in position and proximity of the vortices to the wall for the different
rotor heights. It is seen that the mean distance of the vortex from the wall is loosely dependent
on zd; if the rotor is too close, as for zd/R = 0.5, the vortex path lifts away from the wall a little.
The standard deviation shows that it is not uncommon for vortices to move considerably closer
to the wall, these vortices will produce the highest shear stresses at the wall and therefore have
the biggest impact on entrainment, this is explored in Section 5.6. Skewness is mild, γ1 ≈ ±0.5 at
r = 2R, but positive in most cases; this would suggest there are rare events of a vortex being far
from the wall - this is common in distributions that have a physical limitation in one direction,
i.e. vortices cannot penetrate the wall. The skewness value varies with r in Fig. 5.2 becoming
positive and negative but never greater than ±1, the mean and standard deviation are more
consistent.

5.4 Temporal flow development along the wake boundary

The development of the tip vortices through the rest of the flow can be assessed by probing
specific locations in the flow and observing how the flow changes over time. The
autocorrelation, one-point two-time correlation, indicates how well the flow is correlated with
itself over time. The autocorrelation function is given by Eq. (5.1), and the normalised
autocorrelation is given in Eq. (5.2). Nine locations were chosen in the flow, highlighted in
Fig. 5.3, these locations were placed along the mean path of the vortices, found in Section 5.3,
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zd/R ζ̄z std(ζz) γ1(ζz)

0.5 0.19R 0.06R −0.58
0.68 0.16R 0.06R 0.32
1.5 0.24R 0.10R 0.49
4.0 0.28R 0.12R 0.53

Table 5.1: Statistics of vortex positions in z at r = 2R for each rotor height. ζ̄z is the ensemble
average vertical position, std(ζz) is the standard deviation of vertical position and γ1(ζz) is the
skewness of the vertical position distribution.
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Figure 5.3: The locations of the points analysed with autocorrelation, superimposed on the mean
flow field, for zdisk/R = 1.5.

this is also the mean wake boundary. The velocity signal for each location was processed using
the normalised autocorrelation, Eq. (5.2), and plotted in Fig. 5.5. In this analysis the vertical
velocity fluctuations were considered to analyse the rotational and vertical velocity changes.

Rij(r, z, τ) =< u′i(r, z, t)u′j(r, z, t + τ) > (5.1)

f (r, z, τ) =
Rij(r, z, τ)

Rij(r, z, 0)
(5.2)

Whilst the mean flow field is shown in Fig. 5.3 it is pertinent to show an instantaneous image
of the velocity field to portray the typical structures that will be analysed by the autocorrelation
approach, such a typical flow field is show in Fig. 5.4. In Fig. 5.4 several vortices are visible, it is
also clear that the vortices are not positioned in an orderly pattern along the wake boundary,
reflected in Fig. 5.2.

The autocorrelation shows the breakdown of flow structures that start with coherence near
the rotor and become more disorganised with r. Figure 5.5a indicates that while every vortex
effects the same velocity change at the blade, r = R, at down stream positions every other vortex
must have been displaced as the correlation is weaker, the consistency of this second mode
implies a stable oscillation in the wake. At r = 1.5 the correlation shows a doubling in
periodicity, further positions, Fig. 5.5b show the vortices are travelling slower and are likely to
be combining as the periods becomes very large, > 10trev, and more complex modes in the
signal emerge and decay with r.

Conducting the FFT of the autocorrelation gives the temporal energy spectrum, a reflection of
the energy contained in each time scale. Figure 5.6 portrays the product of Y and the complex
conjugate, |Y|, where Y = FFT(Rzz). The energy spectra show that energy is located in the large
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Figure 5.4: An instantaneous image of the velocity magnitude field with streamlines and the
probe locations. Case zd/R = 1.5 at t = 50 revolutions. Fluid entrainment and vortex pairing are
visible.
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Figure 5.5: The autocorrelations of the velocity signals, vz(t), at given locations in the flow.
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5.5. From model scales to helicopter scales
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Figure 5.6: The temporal energy spectra at the probe locations of Fig. 5.3.
.

scales, and there are the expected peaks at 2 t−1
rev for the near rotor probe positions. The peak

energy frequency decreases with increasing r showing that the structures have slowed because
of radial expansion and fluid entrainment. At r = 1.5R the dominant frequency becomes 1 t−1

rev,
at this location vortex-vortex interaction or pairing must be a regular occurrence.

The region of particular interest is near the ground at 1 < r/R < 3, this is the region where
the flow is fastest and where the vortices first approach the ground. In this region the vortices go
through the most changes, the autocorrelations in Fig. 5.5a show that the vortices enter the
region with strong periodicity but by r = 2R, Fig. 5.5b, many more modes are visible due to
vortex-ground and vortex-vortex interactions. At r = 3R the vortices have slowed with the
entrainment of more mass, and in many cases vortices have combined again this is revealed in
the autocorrelation as a complex but much lower frequency signal in Fig. 5.5b.

5.5 From model scales to helicopter scales

To be able to describe the forces on sand particles from a full scale helicopter the flow described
in this chapter and Chapter 4 needs to be scaled. To scale this flow correctly the thrust
coefficient, CT Eq. (4.23), is held constant and the parameters of a nominally small and large
helicopter are used as scaling parameters, vind and R. The small helicopter was modelled around
the Bell 47, used in Chapter 6, and the large helicopter was modelled on the Augusta Westland
AW101 Merlin, Fig. 2.2. Table 5.2 provides the details of the aircraft, the values for weight and
rotor radius are aircraft parameters, the remaining quantities were derived using the thrust
coefficient from the model scale simulation defined in Chapter 4.

83



Chapter 5. Model scale rotor simulation: Flow Structure and Particle-Flow Interaction

parameter Small
Helicopter

Large
Helicopter Model

Weight, W 900gN 12500gN 0.6gN
Rotor radius, R 5.66m 9.30m 0.5m
1D induced velocity,vind 6.0ms−1 13.2ms−1 1.8ms−1

Rotor angular velocity, Ω 14.2 rads−1 19.65 rads−1 47.1 rads−1

time scale, trev = 2π/Ω 0.44s 0.32s 0.13s
Modelled thrust coefficient, CT 0.0023 0.0023 0.0023

Table 5.2: Scaling parameters used for full scale analysis.

The near wall flow presents a problem: the boundary layer is not a fully developed turbulent
boundary layer so it cannot be scaled using analytical methods such as those described by
Schlichting et al. [60]. The wall lift force is based on the particle position in the boundary layer, it
is greatly underestimated if the flow field is simply scaled upwards. This is true of shear stress
and all near wall flow properties, however, examining properties like shear stress statistically
allows us to explore the transient nature of the particle forces in time and space. In the following
analysis the wall shear stress and near wall flow has been scaled linearly though it is
acknowledged here that this is an underestimate.

The sections that follow make use of scaled helicopter flow fields to provide full scale shear
stresses and particle forces in the flow. Whilst is is acknowledged that the wall shear stress is not
sufficiently resolved, the wall shear stress analysis adds value to this study through the
intermittency analysis — the availability of particle entrainment in the flow.

5.6 The wall shear stress

The wall shear stress is the dependent quantity in the Bagnold entrainment flux expressions. In
this section it is demonstrated that the wall shear stress, Eq. (3.22), is highly dependent on the
vortices. Equation (3.22) described in Chapter 3 is suitable for the linear sublayer when vr at
y+ = 1 is known. Here the near wall cell is outside of this region, y+ > 10, using Eq. 3.22 will
underestimate the wall shear stress but the qualitative results born from analysing the
intermittency and large scale features are still valuable. The flow simulated here used a no-slip
but smooth wall, if a rough wall had been applied the boundary layer would have been thicker
due to momentum lost to the roughness elements in the wall and increased mixing.

The time-average wall shear stress for case zd/R = 0.5 is presented with the standard
deviation and skewness in Fig. 4.18a. The standard deviation peak is not aligned with the mean
peak suggesting that the near wall flow structure changes from a steadier fast flow, at r ≈ 1.2R,
to become a more intermittent flow as the vortices approach the wall, at r ≈ 1.6R.

The wall shear stress over time at r = 1.6R is shown in Fig. 5.7. The location r = 1.6R was
chosen because the largest fluctuations occurs there, Fig. 4.18. The skewness in Fig. 5.7 is
indicated by the modal average, generally if the mean is more positive than the mode the
distribution is positively skewed, here we see a slightly negative skewed distribution. Figure 5.7
shows that the peak stresses are up to 100% larger than the mean and typical peaks are 50%
larger than the mean, as suggested by Fig. 4.18. Several peaks in the stress are very close
together showing vortices interacting or in the process of pairing. The wall shear stress
frequently reduces to zero and there is also some flow reversal and negative wall shear stress
indicating that at this position the entrainment is governed by the immediate local vortex or
vortices. The changing statistics, in r, shown in Fig. 4.18 and the fluctuations in Fig. 5.7 show that
the fluctuations in shear stress are highly non-Gaussian, and the distribution structure changes
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5.6. The wall shear stress
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Figure 5.7: Wall shear stress at r = 1.6R with mean and mode indicated for case zd = 0.5R. The
mode is presented to show that the distribution is heavily positively skewed. Scaled to a small
helicopter from Table 5.2.

with r and with zd making it very difficult to state apriori.

The Shields number, Eq. (4.30), is indicated on Fig. 5.7; the Bagnold expression [17] described
in Section 2.6 models entrainment flux as a function of τw − τ∗w. Figure 5.7 shows us that the
peaks in shear stress are sudden and of relatively short duration. The particles will respond to
the vortices if the duration of the wall shear stress peaks are larger than the particle response
time, τp. The particle response time is given by Eq. (3.30), it is a characteristic time for a given
particle to respond to changes in the flow. In order for the particles to be entrained into the flow
the duration of the flow features should match or exceed the particle response time. The
duration of the peaks in wall shear stress that exceeded the Shields threshold were measured
and are presented as a PDF in Fig. 5.8. Small particles have a very small response time, for
Dp = 10µm we have τp = 5× 10−3trev while larger particles such as Dp = 100µm have a
response time of τp = 0.5trev. Larger particles encounter fewer occasions when the wall stress is
larger than the threshold and the duration of those events is shorter.

The analysis in this section has been made on the time history at r = 1.6R for the case
zd = 0.5R, the location was chosen because of the large fluctuations. Figure 5.9 shows the
fraction of time the wall shear exceeds the threshold for each radial location and for each case.
For lower rotor heights the shear stress almost continuously exceed the Shields threshold in the
region r ≈ 1.2R; as the rotors increase in height the fraction decreases, the peak region moves
away from the root and the pick-up region broadens.
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Figure 5.8: A PDF of the duration of the wall shear stress peaks that exceed the Shields threshold
for Dp = 10µm, in a small helicopter flow field.
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Figure 5.9: Wall shear stress that exceeds the Shields threshold for Dp = 10µm, for each rotor
height, scaled for a small helicopter.
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5.7. Particle fluid forces in the unsteady flow
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Figure 5.10: The Basset and Drag force for a fixed position at r = 1.5R, z = 0.01R in a small
helicopter scaled unsteady flow field with rp = 5µm.
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Figure 5.11: The simplified scenario of a particle resting on 2 particle asperities.

5.7 Particle fluid forces in the unsteady flow

The particle forces from Chapter 3 will be calculated in the next Section and used to progress the
particle position through time and space. Before doing so the Basset force and the drag force are
reported at a fixed location at r = 1.6R, z = rp. The Basset force is dependent on acceleration
history, Eq. (3.35), here only the radial acceleration is considered for clarity. Figure 5.10a gives
the Basset history for the small scaled helicopter flow field, normalized by particle weight FG,
the fluctuation force is generally 3 orders weaker than the weight. Figure 5.10b shows the drag
and is three orders of magnitude greater than the Basset force and larger but of the same order as
the particle weight, FG.

5.7.1 Particle rocking probability

Consider the simple arrangement of a particle resting on two particles of the same size, Fig. 5.11.
If a large simplification is made and only the forces of drag and gravity act on this particle. The
simplification does not give us the true moments, as forces such as cohesion and wall lift are
omitted, but it does give an indicator to the availability of entrainment potential near the wall.
Taking moments about the down wind asperity ‘A’ gives:

FD,rrp cos(π/6)− 1
2
(FG − FD,z) rp = Mθ (5.3)

Now we find the probability that at any time the drag force will be sufficient to pivot the
particle, P(Mθ > 0), but also that the duration of any pivot event is longer than the particle
relaxation time, τ (Mθ > 0) > τp. Figure 5.12 shows P

(
τ (Mθ > 0) > τp

)
with r. It is interesting
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Figure 5.12: The probability of near wall velocities rocking a particle in a small helicopter scaled
flow, Table 5.2.

to compare this with Fig. 5.9, the peak is centred around the same location in both analyses but
via the rocking mechanism the threshold is relatively much lower than for the shear stress
analysis.

Near wall particle forces are analysed further in Chapter 6, the flow is steady but full scale
and more appropriately resolved at the wall.

5.8 Particle trajectories

The presence of vortices in the flow has been shown to increase the wall shear stress dramatically,
however, the vortices contribute toward entrainment and brownout cloud development in a
further way: carrying the particles upwards. The mean flow is downward from the rotor and
parallel to the ground in the radial wall jet, but, in the unsteady flow the vortices produce large
regions of positive vertical fluid flow, these can be capable of carrying the particle upwards. In
this section the capacity for the IGE rotor flow to carry particles upwards is demonstrated.

To model the particle trajectories particle-fluid forces from Chapter 3 were found at point
locations in the flow field in time and space, the forces were then integrated over time to evolve
the states of the particles. The particle motion simulation was entirely 1-way coupled: the fluid is
unaffected by the particles. The 3D rotor flow field in Chapter 4 was simulated in model scale
and the results presented in non-dimensional terms, for this analysis we use the full scale flow
field found using the reference parameters in Table 5.2. Whilst the particle-forces can be
calculated non-dimensionally, the near wall lift forces depend on boundary layer position - this
is not linearly scalable and, as the boundary layer is not a steady full developed zero pressure
gradient boundary layer, using approximations for the full scale boundary layer was not
appropriate. To continue the analysis particles were released from a series of fixed near ground
positions, θ = 0, 1 < r/R < 4, z = 0.005R. The release time was after t = 50trev but also
conditional upon a time when the flow would accelerate the particle upwards. A basic Euler
integration scheme is used to evolve the particle position, the time step was ∆t = 4× 10−3trev an
order of magnitude smaller than the particle response time, Eq. (3.30), for rp = 5µm the particle
relaxation time is τp = 5× 10−3trev. The flow was scaled using the small helicopter, Table 5.2, in
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r/R

z/
R

1 1.5 2 2.5 3
0

0.1

0.2

0.3

−20

0

20

(a) t = 51.2trevs

r/R

z/
R

1 1.5 2 2.5 3
0

0.1

0.2

0.3

−20

0

20

(b) t = 54.8trevs

Figure 5.13: Particle trajectories over time with vorticity contours and velocity vector arrows for
case zd/R = 0.5. Particle release point shown by© and current position by4. Vorticity range is
limited for clarity and nondimensionalised by t−1

rev. Velocity magnitude is normalized by vind and
shown by arrow length, where 1vind in both r and z directions is defined in the top right of the
figure. The spatial aspect ratio is not 1:1.

the first analysis — the effect of larger particles and a heavier helicopter are considered later in
this section.

The trajectories are shown against contours of vorticity about theta, ω f ,θ , and arrows
indicating velocity vector. Vorticity about theta is positive for clockwise vortices and negative for
anti-clockwise in Figures 5.13a - 5.15. Tip vortices are negative from this perspective and
contribute positively to the radial velocity near the ground, between negative and positive
vorticity features are regions of strong vertical velocity. Each figure shows the velocity field and
vorticity field at a specific time, the particle position and path up to that time is overlayed.

Figures 5.13a and 5.13b indicate that the particles are stimulated into horizontal motion by
vortices passing over them increasing the local radial velocity. The entrainment of particles, that
is their movement away from the surface into the main flow structures, occurs during a
combination of events. The primary tip vortices approach the ground in the vicinity of r ≈ 2R,
this generates stagnation or separation at the wall, this is seen at r = 2.5R in Fig. 5.13a and
r = 3R in Fig. 5.13b as stagnation or flow reversal near the wall. Particles are stimulated into
horizontal motion by the tip vortex, but they are thrown upwards by the vertical velocity jet that
is generated between the primary vortex and the secondary vortex at the wall. Figure 5.14a
shows the region of the flow in detail, a strong velocity region is generated between the positive
and negative vortex structures causing particles caught in this region to be elevated upwards.

Figures 5.13a and 5.13b also show that the particles stay close to the wall for a considerable
distance, 1 < r/R < 2 in Fig. 5.13b until the vortices are close enough to the wall to generate the
vertical flow regions. The particles positioned at r ≈ 2.5R only begin to move when a vortex
moves past as is occurring in Fig. 5.13b.

The time scale of the vortices was measured to be 2πrvort/vvort,θ = τvort = 0.75trev, the
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particle relaxation time for rp = 5µm is τp = 5× 10−3trev, this results in a very low Stokes
number of St = 7× 10−3, Eq. (3.29). In this flow with these small Stokes numbers the particles
react quickly to changes in the flow. Consider the locations of the particles in Fig. 5.13b, marked
by4, the particles can be seen to move with and around the positive vortex associated with
their entrainment in Fig. 5.13a.

Consider the settling velocity, or terminal velocity, this is found simply by equating the drag
force to the weight force, resulting in;

uterm =

√
8ρpgrp

3ρ f CD
(5.4)

For a small particle in free fall the drag coefficient is simply Rep/24, Eq. (3.33), for rp = 5µm
the terminal velocity is uterm = vind/800; the vertical flow around the vortices presented is easily
sufficient to keep the particles aloft as demonstrated in Fig. 5.13b.

A closer look at the fast flow between counter rotating vortices is given in Fig. 5.14 presented
with the wall shear stress and radial velocity for that space and time. A separation bubble forms
on the ground under the positive vortex, r = 2.3R, the positive radial flow is forced to go over
the obstruction. The particles that were initially moved radially by the high radial velocity
caused by the nearby negative vortex are now in a body of air that is moving upward as well as
radially. The separation bubble and other flow features develop in time and space, the separation
region was previously near r = 2.1R seen by the reversal in the particle path at that point. High
shear stress can be seen in Fig. 5.14b beneath the tip vortex and negative shear stress indicates
flow reversal beneath the separation bubble. The movement of the entrainment-responsible flow
feature is clearly visible in the photo shown in Fig. 2.2, dust entrainment is clearly occurring in
spiral patterns as the vortices advance radially away from the helicopter. It is important to stress
that not every blade tip vortex results in a favourable pairing with a positive vortex or
separation bubble, evident when comparing vorticity in Figs. 5.13a and 5.13b.

For the rotor cases with higher rotors the entrainment mechanisms are the same, however,
the point of inception can be considerably further away from the root of the rotor, 2.5R ≤ r ≤ 4R.
The speed of the flow is considerably reduced at this distance where the particles are entrained
but the small particles have a relatively low terminal velocity so even slow upward flow features
can carry the particles upwards. The particles are less inclined to be trapped by vortices for the
higher rotors.

The helicopter used in Chapter 6 is the Bell 47 designated as ‘small’ in Table 5.2, it was chosen
because experimental data is available for the near ground flow in hover, however, it is a
lightweight aircraft and has a low disk loading and as such the entrainment potential is less. The
AW101 or Merlin helicopter, designated as ‘large’, is approximately ten times heavier, it is used
frequently in desert theatres at this time. The Merlin is known to produce a doughnut shaped
dust cloud surrounding the aircraft but the aircraft itself is relatively dust free. Scaling the flow
to the size and weight of the Merlin does not change the trajectories of the particles considerably
because the Stokes number is low for both flows, Fig. 5.15. Increasing the weight of the
helicopter seems to entrain more heavy particles and they seem to spread further out radially.

The experiments by Nathan and Green [164] used high speed photography to capture wave
like bursts of sediment entrainment from a model scale IGE rotor. The wave like nature of the
burst was attributed to the near ground vortices. The experiments by Nathan and Green [164]
used a rotor with different forward velocities, a landing helicopter will approach the landing
zone with forward velocity, noting that this changed the sediment cloud size and formation. The
sediment entrainment experiment performed by Johnson et al. [39] produced very similar
results, the position where particles leave the surface and the height they are transported to are
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Figure 5.14: Particle trajectories over time with vorticity contours, velocity vector arrows and wall
shear stress for case zd/R = 0.5 at t = 50.8.
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Figure 5.15: Particle paths in the flow scaled for the heavy helicopter, Table 5.2. Legend is the
same as Fig. 5.13.

both a good match with the results presented here. Johnson et al. noted the aperiodicity of the
vortices makes analysis and modelling difficult and undermines the justification for using the
traditional aeolian entrainment functions. The results found here agree with those conclusions,
the aperiodicity could be quantified stochastically based on the data presented in Fig. 5.7 but the
vortex-vortex interaction that creates the vertical thrust, Fig. 5.14a, is not as easily identified but
was found here to aperiodic also. The path of the sediment in the experiments of Johnson et al.
showed the particles to be blown outwards and upwards with a only a very few particles
showing recirculation.

The brownout condition brings to mind a helicopter lost in a cloud of dust, as it should, but
photographs of the sediment movement early in the development of the brownout cloud show
that the sand follows the trajectories found in this study and in the experimental work by
Johnson et al. [39] quite well. Doughnut shaped dust clouds were reported by Rodgers [23] and
are seen with the AW101 in Fig. 2.2, taking the trajectories of the dust entrained here and
revolving around the axis would produce a doughnut structure giving further support to the
qualitative results found here and elsewhere in the literature.

5.9 Discussion

Can Lagrangian particle simulations be used to predict brownout? The Lagrangian calculated
particle path has been demonstrated here to produce good results. The viscous flow field
modelled here produced the required flow features that were also observed by Johnson et al. [39]
as the cause of particle transport from the near ground flow to elevated positions. An inviscid
flow calculation could provide the aperiodic peaks in shear stress but would not provide the
juxtaposition of negative tip vortex with induced positive vortex at the ground. Entraining
particles from the ground bed into the flow remains a difficulty, the difficulty is predominantly a
scaling issue in the near wall flow because a model scale unsteady boundary layer is not linearly
scalable. The particle bed needs to be simulated to include the effects of saltation bombardment,
occlusion and to have an appropriate method of knowing how many particles are entrained
from a certain area.

Reingestion of dust back through the rotor blades is seen in many photos and videos of
brownout. However, it can be seen from stream line plots, Fig. 5.4, that no fluid appears to be
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reingested through the rotor, this indicates that the rotor configuration maybe a deciding
parameter for dust reingestion and therefore the difference between the doughnut shaped dust
clouds and complete helicopter immersion. The unsteady simulation is model scaled as are the
experiments of Johnson et al. [39] and Lee et al. [27], and fluid reingestion does not appear to
happen in any significant quantity in those works either. The work of Nathan and Green [164]
indicates that forward velocity, as opposed to static hover as tested here and by Johnson et al.
[39] and Lee et al. [27], causes the required recirculation to induce the envelopment of helicopter,
since this is also more akin to the approach used by helicopter pilots it is an important factor for
future work. The additional factors of the fuselage and tail rotor — which were not included
here or in the studies of Johnson et al. [39] and Lee et al. [27] — may also have more significance
than was first thought. Further work, both experimental and numerical, is needed to include
these components.

5.10 Conclusions

The 3D unsteady rotor flow developed in Chapter 4 was explored to better understand the
mechanisms behind particle entrainment and trajectory. The development of the tip vortex
through space and time showed that the vortex path is irregular with significant variance in
proximity to the ground. Autocorrelations were conducted along the mean vortex path, they
showed that the vortices combine and slow down quickly over the region of interest,
1 < r/R < 3.

The wall shear stress was analysed and found the following conclusions:

• The vortices passing close to the wall increased the local wall shear stress by as much as
two times the mean.

• The distribution of wall shear stress over time at a given point was highly non-Gaussian
and each location had a different distribution shape.

• The passage of vortices enables the Shields threshold to be exceeded to some extent for the
3 lowest rotor heights.

• As the rotor height increased shear stresses were less frequently large enough to exceed the
Shields threshold.

• The duration of the vortices was larger than the response time of the particles, particles
that are entrained into the flow will be carried by the flow.

The unsteady flow field from Chapter 4 and particle forces from Chapter 3 were used to find
the paths of particles released into the flow from near ground positions. The particle trajectory
analysis allowed a more direct understanding of how particles behave at the early stages of their
entrainment and beyond. The flow was scaled linearly to a full scale helicopter flow and
particles were released near to the ground, the fluid forces on each particle were calculated and
integrated to evolve the position of the particles in time.

It was found that on some occasions a tip vortex positively induced a near ground vortex:
effectively a separation bubble caused at the ground by the tip vortex. The results indicated that
this arrangement of tip vortex and separation bubble are required to elevate the particles
upwards. The flow is constantly changing and aperiodic such that not every vortex that passes
interacts with the ground in this way and is capable of causing particles to be entrained. The
particles considered had a very small Stokes number and consequently the entrained particles
maintained association with the vortices that entrained them, often orbiting the positive vortex.
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The particles were entrained into the main flow but propagated away from the rotor radially,
they were not recirculated back through the rotor in the fashion of a typical brownout cloud but
behaved more like the doughnut cloud associated with the Merlin helicopter. It is likely this is
possible to the static hover scenario modelled, introducing a more realistic approach trajectory
for the rotor would be a good future study as would the inclusion of the tail rotor and fuselage.
These trajectories were a good match with those seen in the experimental results of Johnson et al.
[39], performed at a smaller scale and the photographic evidence such as Fig. 2.2.
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Chapter 6

Full Scale RANS Simulation of Near
Wall Helicopter Flow

Particle inception is a critical stage in the development of the brownout dust cloud. In this
chapter near wall Lagrangian particle forces are considered through analysing an approximate
time averaged full-scale rotor flow. This simplified flow does not attempt to predict brownout,
instead it provides scales and velocity data in the near wall region, compares the role of
particle-fluid forces and provides a foundation for Lagrangian entrainment models. The analysis
shows three characteristic particle sizes are exposed to different physics in different boundary
layer zones, a function of the distance from the helicopter. Drag is the dominant aerodynamic
force, cohesion is large for small particles but wall-bounded lift is sufficient to entrain medium
sized particles. A complementary analytical prediction of tip vortices found that both large scale
inviscid features and small scale viscous features of the boundary layer are significant. The
results of the unsteady model scale simulation from Chapter 5 are brought into the discussion to
combine the knowledge from both investigations.

The analysis and results of this chapter are published in the Journal of the American Helicopter
Society [2].
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Chapter 6. Full Scale RANS Simulation of Near Wall Helicopter Flow

6.1 Introduction

This chapter aims to highlight the key aerodynamic forces that act on the particles on the ground
beneath a hovering helicopter and contribute to a multi-scale entrainment model suitable for
simulating the phenomena of brownout. This chapter presents a nondimensional analysis of
particle-fluid forces to assess the significance of each contributing force and then compares those
findings with the forces a particle experiences in a time averaged helicopter downwash flowfield
calibrated against results of Leese [22].

Leese [22] conducted an experiment using full scale hovering helicopters. Leese measured
the near ground radial velocity at several radial locations for a hovering H13 helicopter. The H13
is a small helicopter used by the US military also known as the Bell 47, it was made famous by
the film and television series M*A*S*H.

The simplest Eulerian wake modelling is performed using the 1D actuator disk as in this
chapter. McAlpine et al. [165] performed a steady state full-scale numerical model attempting to
characterize dust emissions for a helicopter travelling forward IGE, they used a steady
Computational Fluid Dynamics (CFD) simulation to find upwash regions associated with dust
entrainment. The flow results recreated measured detachment points of the ground jet but the
simulated vortex deviated from the measured values. The flow field is simulated for the purpose
of understanding the generation of the brownout cloud but with no dust simulated.

The nondimensional analysis starts with the nondimensional particle force expressions
defined in Section 3.6. Scaling values from the H13 helicopter used in the experiments of Leese
[22] are applied to the nondimensional expressions to find the relative importance of each force.

The flow fields in the works by Phillips and Brown [166] and Wachspress et al. [19] are full
scale but are calculated using inviscid methods. In this work we wish to find the aerodynamic
particle forces at the point of inception very close to the ground in the boundary layer, a viscous
feature of the flow. An unsteady rotor flow is modelled with a rotor radius of R = 0.5m in
Chapter 4, but modelling a full scale unsteady rotor flow is extremely computationally
demanding if the flow is modelled down to the particle scales. Instead a full scale axisymmetric
RANS simulation is conducted with a turbulence model and a near wall grid spacing of y+ ≈ 1
to resolve the viscous sublayer of the boundary layer.

The forces are calculated on 3 different particle sizes in the near wall region to discover how
each particle size is stimulated by the flow.

The blade tip vortex contribution is assessed analytically and the impact they have on the
mean flow results is discussed. The vortices in the unsteady simulation performed in Chapter 5
and the analytical calculations are compared.

6.2 The helicopter flow field

The flow field analysis has been split into two parts; the viscous mean flow with turbulent
fluctuations and an inviscid tip vortex analysis. The bulk of the analysis in this study is carried
out using the mean flow results. The tip vortex analysis uses the mean flow field to estimate the
vortex path, lift from the rotor to estimate circulation and an analytical method to calculate the
induced velocity profile around the vortex.

6.2.1 Reynolds Averaged Navier Stokes (RANS) flow field

A full-scale experiment of a helicopter hovering above the ground, performed by Leese [22], was
simulated with Fluent (version 12.0.16) using the Axisymmetric RANS equations from Section
3.1. The horizontal velocities measured by Leese up to 0.1m from the ground at different radial
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6.2. The helicopter flow field

Figure 6.1: Experimental data [22] (solid line) compared with the RANS results (dotted line).

distances from the rotor hub are reported in Fig. 6.1. Since the flow field was measured with a
real full size hovering helicopter above an outdoor dusty landing zone the ground was likely to
be rough, however, since landing zone preparation was unknown it was chosen to model the
wall smoothly and use a mesh with good near wall resolution, y+ ' 1, rather than making
assumptions, though it is understood that modelling the wall smoothly is also an uncertain
assumption. The simple steady 2D axisymmetric domain consisted of a rotor of radius
R = 5.66m hovering at height zd/R = 0.68 above the ground.

Figure 6.2 shows the domain configuration. The axis cut vertically through the rotor hub and
was the west boundary. The south boundary was the ground and had a non-slip wall condition.
The north and east boundaries were modelled as constant gauge pressure boundaries and were
positioned 5R and 9R from the ground and axis boundary respectively, Section 4.3.3. The rotor
was modelled as a momentum source in Eq. (3.13) injected into cells at the rotor position, a
region 0.1m thick. The momentum was applied uniformly across the disk with a linear transition
region reducing the momentum source to 0 at 4.66 ≤ r ≤ 6.66m, the transition region avoided
the discontinuity present at the blade tip.

The mesh contained 400x200 nodes, concentrated near the axis and the wall with the first
node at y+ ' 1 to capture the viscous sublayer. In addition we ensured that the first node
resolved the flow to the scale of the particles. A realizable k− ε turbulence model [62] was used
because of its favourable performance in axisymmetric jets and a two layer non-equilibrium wall
model [64] was chosen because of the strong pressure gradients. In essence it was chosen to
resolve the full range of length scales at the expense of unsteady flow structures.

To find the air velocity through the rotor a 1D momentum balance was conducted for the
hovering helicopter IGE. Assuming the flow to be incompressible, inviscid and steady a simple
momentum balance [28] provides Eq. (6.1):

T = ṁ(v∞ − v0) (6.1)
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Figure 6.2: The 2D axisymmetric domain dimensions and boundary conditions.

where T is the thrust the disk exerts on the fluid, ṁ is the mass flux through the disk, v∞ is the
velocity far downstream and v0 is the velocity far upstream. A control volume is applied around
the disk and the volume of air above the rotor to where the velocity v = v0 = 0 and below the
disk where the velocity is v = v∞. Applying the momentum and energy equations yields
Eq. (6.2):

Tvind =
1
2

ṁv2
∞ (6.2)

with ṁ given in Eq. (6.3):

ṁ = ρvind Adisk (6.3)

where vind is the induced velocity through the disk and Adisk is the area of the rotor disk. The
Bell H13 helicopter empty mass is 858kg and has a maximum take off mass of 1350kg, the craft is
estimated to weigh 8.8kN. The blade radius is R = 5.66m which gives a disk area of 100m2.
These parameters result in an induced disk velocity of vind = −6ms−1 and a mass flux of
ṁ = 725kgs−1.

6.2.2 Flow field results

The RANS flow field results obtained were accurate to within 20% of the full scale experimental
results of Leese [22], however, the experimental flow at the further radial stations is more
detached from the wall than the simulated results — this is likely due to the vortices in the
experimental flow promoting mixing in the boundary layer and in doing so thickening it, the
results of Chapter 4 which included vortices show a thick boundary layer. The general trend and
magnitudes were consistent for the scaling analysis performed in this work. Fig. 6.1 shows the
RANS results directly compared with Leese [22]. Additionally the radial flow field compares
well with the small scale experimental results of Lee et al. [27], scaled with the induced velocity,
vind, at the disk.

It is commonly accepted that the peak velocity not the average is responsible for inception
[26, 52]. The near wall region velocity field and the RMS velocity fluctuations, v′, are shown in
Fig. 6.3 to give indication of the fluid velocity fluctuations the particles will be exposed to. The
fluctuations are approximately 10-20% of the local mean and both the flow speed and turbulent
intensity have a maximum at r/Ddisk ' 1. Compared with the results of Chapter 5 it is seen that
not including the vortices results in an underestimate of fluctuations, the near-wall RMS
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Figure 6.3: RANS results for near wall fluid velocity magnitude field and the RMS turbulent
fluctuations, normalised with vind.

Property Sand (glass) Air units

density 2480 1.19 kg/m3

dynamic viscosity N/A 1.82× 10−5 Ns/m2

surface energy 2× 10−4 N/A N/m

Table 6.1: Physical properties of sand and air (20◦C, 1 bar)a [167, 106].

fluctuations from the unsteady simulation were as much as 300%, Fig. 6.4, we also see that
simulating at model scale and insufficient grid resolution increases the relative thickness of the
boundary layer.

6.3 Sand

Three sand grain sizes were chosen using a sand grain particle distribution function (PDF)
generated from data collected by Rodgers [23] of particles found on the desert floor, recreated
here in Fig. 6.5. It was found that the sand diameter PDF closely followed a Gaussian
distribution with mean 300µm and standard deviation 120µm. The distribution was calculated
as percentage by weight and the maximum and minimum sieve size was 500 and 10µm
respectively. For the following analysis the force expressions for three particle sizes are
evaluated; Dp = 10, 300 and 500 µm diameter, representing a small, medium and large particles
encountered on the surface of the desert. Whilst the smaller particles contribute most to visual
obscuration, as there are more of them and they remain airborne for longer, the other sizes are
investigated here for their role in the entrainment process via saltation.

A summary of the material properties of sand and air are given in Table 6.1. The values have
been used in subsequent analysis.
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6.4. Nondimensional particle-fluid forces

6.4 Nondimensional particle-fluid forces

The particle-fluid forces consist of drag and the Basset force, from the traditional Basset —
Boussinesq equation, and the transverse forces: Magnus and Saffman, Section 3.3. The particle is
also subject to gravity and, when in contact with other particles, friction and cohesion.

The particle-fluid forces were defined in Section 3.3 and nondimensionalised in Section 3.6.
The nondimensionalised equation of motion is expressed in terms of reference forces and
nondimensional forces in Eq. (6.4) in order that each force can be compared for relative
importance.

du∗i
dt∗

=
[
FD0F∗D,i + FB0F∗B,i + FM0F∗M,i + FL0F∗L,i + FG0F∗G,i + FP0F∗P,i + FFr0F∗Fr,i

]
(6.4)

where the forces are: FD = drag, FB = Basset, FM = Magnus, FL = Saffman, FG = gravity, FP =

cohesion and FFr = friction; note each force reference term, Fφ0, has units of N/kg.

Table 6.2 lists the non dimensional reference values and derivations. The velocity scale was
chosen to be the induced disk velocity, vind, and the length scales are the three particle
diameters, Dp, the remaining scales are material properties or derivatives.

The nondimensionalised force expressions are given in Table 6.3. Twice the turbulent velocity
fluctuation from the k− ε turbulence model, 2u′, was added to the mean flow field to give a
peak velocity field [60] and is used in all the force calculations. Cohesion was calculated between
particles in a bed of equal size. Friction is calculated as the product of the friction coefficient and
the normal reaction component.

In addition to the forces in Table 6.3 there is the lift experienced by a particle at rest on a wall
in a flow, described in Section 3.3.8.

6.4.1 nondimensional particle force analysis

The reference values from Table 6.2 were applied to the force expressions in Table 6.3 to find the
relative importance of the forces for the typical scenario. The nondimensional variables, F∗φ , are
typically of order 0. The reference terms, Fφ0, have been evaluated and are given in Table 6.4
with the direction of action of the force. These results present only a general overview due to the
highly inhomogeneous flow, demonstrated by the range of v seen in Fig. 6.3. However, the
nondimensional procedure shows which forces dominate and which forces are completely
negligible.

In the nondimensional analysis the drag force is most significant for smaller particles and
reasonably insignificant for the larger particles when compared with the particle weight. The
Basset force appears to be significant across all particle ranges. Magnus force has some presence
for all particle ranges, as it is a transverse force it is competing with gravity and pull-off forces,
for small particles pull-off is larger but for the large particles Magnus is comparable. The
Saffman force is always very small and can be considered negligible as F∗M � F∗S . The particle
weight is a significant force throughout, the pull off force is stronger than gravity for the smallest
particles, but reduces to similar order for the largest particles. The strength of the Basset force
and the lower value of drag support the notion that the peak fluctuations cause inception, [49].
Among the vertical forces the retarding forces are strongest for the smallest particles but the
Magnus lift force is sufficient to allow larger particles to entrain more readily, this supports the
concept of the initial entrainment of larger particles evidenced by Ibrahim et al. [58]. Friction is
proportional to the normal force, for the smaller particles the lift is small but with increased
particle size the lift exceeds the cohesive and gravitational forces as indicated by negative
friction, the values are still very small therefore fluctuations will be important.
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Table 6.3: Forces and nondimensionalisation.
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Force reference Direction Particle diameter, Dp

10µm 300µm 500µm

FD0 → 2.20× 10−3 f ∗D 7.34× 10−5 f ∗D 4.40× 10−5 f ∗D
FB0 → 5.62× 10−2C∗B 1.03× 10−2C∗B 7.94× 10−3C∗B
FM0 ↑ 3.60× 10−4C∗M 3.60× 10−4C∗M 3.60× 10−4C∗M
FS0 ↑ 1.24× 10−9 f ∗S 6.79× 10−9 f ∗S 8.77× 10−9 f ∗S
FG0 ↓ 2.73× 10−6 8.18× 10−5 1.36× 10−4

FP0 ↓ 8.06×−3 f ∗P 2.69× 10−4 f ∗P 1.61× 10−4 f ∗P
FFr0 ← 7.71× 10−3C∗Fr −9.31× 10−6C∗Fr −6.23× 10−5C∗Fr

Table 6.4: Force reference values for 3 particle sizes.

6.4.2 Analysis of nondimensional forces for inception about an asperity

Inception occurs when the fluid forces acting on the particle are sufficient to exceed the resistive
forces of gravity and cohesion. A sand particle on a bed of sand can be modelled as a sphere
resting on two or more asperities which are themselves spheres, as in Fig. 3.2. This approach,
adopted by Ibrahim et al. [58] and ZFG [57], uses the moments to liberate the particle, ZFG
includes a full analysis of particle detachment from a flat plate as well as rocking about an
asperity, here only the latter will be considered as the dusty ground is composed of particles
upon particles not smooth surfaces. The analysis is as follows; moments are calculated about the
downwind asperity, A, the horizontal fluid force, FH , acts at distance 0.74rp above the centre of
the particle as suggested by Ibrahim et al. [58] due to the shear du

dy . The lift and weight act at the
centre, cohesion acts at the contacts. The distance between asperities A and B is a. Resolving the
moments about asperity A gives Eq. (6.5):

FHrp

0.74 +
(

r2
p −

a2

4

) 1
2

− aFP − (Fg − FL)rp
a
2
= 0 (6.5)

such that the horizontal streamwise force required for motion becomes Eq. (6.6):

FHcrit =
aFP + (Fg − FL)

rpa
2

rp

(
0.74 +

(
r2

p − a2

4

) 1
2
) (6.6)

Once the particle is freed from this stable position it is still reliant on the lift forces to
overcome gravity. As particles tend to occupy stable positions it is the motion of larger particles,
more exposed to the flow and with smaller asperity bases, that precede the suspension of the
finer colloidal particles.

Nondimensionalising Eq. (6.6) results in Eq. (6.7):

FHcrit =
Fp0a∗F∗P + a∗D∗

(
Fg0

D0
4 F∗g − FS0

D0
4 F∗S − FM0

D0
4 F∗M

)
0.74

2 D∗ + D0
4 D∗ (D∗2 − a∗2)

1
2

(6.7)

substituting values from Table 6.4 into Eq. (6.7) and ignoring the insignificant terms, Fg0D0,
FS0D0 and FM0D0, gives Eq. (6.8):

FHcrit =

[
AH

a∗F∗P
D∗

]
(6.8)

where AH,D=10 = 2.18× 10−2, AH,D=300 = 7.27× 10−4 and AH,D=500 = 4.36× 10−4.

FH is the sum of all the fluid forces acting in the direction of the flow, the common force in
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6.5. RANS flow-particle analysis

this case is drag, but as seen in the previous analysis the Basset force is also potentially
significant. Substituting the nondimensionalised drag force and the reference term from Table
6.4 gives Eq. (6.9):

F∗Dcrit
=

[
9.90

a∗

fDD∗
F∗P

]
10µm

=

[
9.90

a∗

fDD∗
F∗P

]
300µm

=

[
9.90

a∗

fDD∗
F∗P

]
500µm

(6.9)

From this analysis it is clear that the moment required by the drag force scales with the pull
off force. For the drag force to be capable of rocking the particle there will need to be fluctuations
to increase drag and a relatively small asperity base. Larger particles are more likely to be resting
on smaller particles, will have a smaller a∗/D∗ and will be easier to rock.

Repeating the above substitution for the Basset force yields Eq. (6.10):

F∗Bcrit ,i =

[
AB

a∗

CBD∗
F∗P

]
(6.10)

where AB,D=10 = 0.388, AB,D=300 = 7.09× 10−2 × 10−4 and AB,D=500 = 5.49× 10−2.
This indicates that the Basset force is much more capable of causing inception than the drag

force; this indirectly supports the rock’n’roll model, described by Reeks and Hall [168], based on
the premise that a particle will oscillate by pivoting backwards and forwards around one of the
asperities. The analysis in both cases agrees with the notion of Ibrahim et al. [58] that larger
particles are suspended more readily than fine particles.

6.5 RANS flow-particle analysis

In this section the RANS flow field is applied to the particles; first their location in the boundary
layer is considered, second the particle-fluid force expressions described earlier are applied to
the near ground region of the flow field and results discussed.

6.5.1 Boundary layer analysis

To see where the particles rest in the turbulent boundary layer Fig. 6.6 shows Dp/y+, where y+

is the nondimensional distance from the wall, Eq. (3.20). The regions of the boundary layer are
defined by their y+ those regions are described in Section 3.2.1. It can be seen that the smallest
particles are well within the viscous sublayer and so are subject to the physics and lift forces
given by Saffman [95], Leighton and Acrivos [96]. Where as the larger particles protrude into the
buffer zone and are subject to the wall lift forces described by Mollinger and Nieuwstadt [91],
and Hall [55]; for these particles inertial effects are significant and the assumption of a linear
shear layer [61] is not entirely valid. The Phillips and Brown [166] model assumes a single
threshold velocity without consideration of where the particle exists in the boundary layer and
the Wachspress et al. [19] model makes no allowances for the change of physics involved
between particles in the viscous and those in the inertial layers.

The Stokes number is the ratio of particle relaxation time to fluid time scales, Eq. (3.29), it is
an indicator of the particles reaction to unsteady flow features such as turbulent eddies. The
time-scales of the larger eddies was found using turbulent kinetic energy and dissipation rate
τf =

k
ε . In this flow we find St10 > 1 for y+/Dp < 1 indicating that a particle on the surface will

not resonate in response to turbulent eddies close to the wall. The larger particles also show they
are unlikely to be stimulated by the near wall fluctuations as St300 � 1 and St500 � 1. However,
the time scale of the turbulent fluctuations is much smaller than the time scales indicated by the
unsteady simulation in Chapter 5. The unsteady analysis indicated the time scale of the large
scales is of the same order as the rotor frequency, and the particle relaxation time is much smaller
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Figure 6.6: The particle diameter D+
P , nondimensionalised by the viscous length scale δν = ν
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,
for three particle diameters computed across the radial extent of the domain.

than that resulting in St < 1 for the smaller particles and St→ 1 for Dp ⇒ 500µm. It must be
iterated, however, that only the large scales were appropriately resolved in the unsteady analysis
of Chapter 5, the scales of this flow are appropriate to a steady full scale flow and are a good
approximation of the scales of a full scale unsteady flow.

It has been suggested in the literature, [100, 14], that the flow can cause particles to resonate
in situ before being ejected. The resonance entrainment model [14] assumes energy from the
turbulent fluctuations causes the particle to resonate within the adhesive potential well, the
particle detaches from the surface when it has acquired enough energy to escape from the well.
The evidence here suggests the drag force is not capable of this concept as St� 1.

6.5.2 Particle forces

The particle forces were calculated for the 3 diameters of Dp = 10, 300 and 500µm in the near
wall region y < 3Dp and nondimensionalised by the sum of cohesion and gravity; Fφ/(Fg + Fp).
In all cases the particle is assumed stationary relative to the ground and not rotating. The value
at a height of y ' 0.5Dp is of particular interest as that is the location of the resting particles
centre of mass. For the regions where y > Dp the particle is unlikely to be stationary so forces in
this region are overestimated, however, it is useful to have an indication of the fluid forces a
particle is likely to encounter should it leave the ground.

The drag forces, Fig. 6.7, are significant for all but the smallest particle sizes, the region
1 < r/R < 3 is of most significance, here the forces are strongest. The horizontal region where
the drag is significant is very large providing a large surface for potential inception. The trends
here agree with those indicated by the nondimensional analysis; for the smallest particles the
drag is very large - but cohesion holds the particles back, for the medium and large particles the
drag is of similar order to the retarding forces.

The Basset force requires relative acceleration history over time. To simulate this from the
RANS results the larger eddy time scale, τf =

k
ε is used as the period and twice the RMS

fluctuation, 2u′, is used as the amplitude. The relative acceleration is; u̇ = u′ 2π
τf

cos(t 2π
τf
), where t

is time. These forces were all insignificant compared to the sum of cohesion and gravity for this
flow field. However, the fluctuations in this flow will not be the same as those in flow with
ground vortex interaction. Recall Fig. 5.5 that showed autocorrelation of velocity over time at a
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Figure 6.7: Drag force field for three particle sizes, nondimensionalised by weight and cohesion.
Plot of the near ground region, y < 3Dp, and radially from hub to r = 6R.

specific location: the velocity was near sinusoidal, however, the frequency of velocity oscillation
was linked to the frequency of the rotor and grew less frequent with increasing r.

The Basset force was calculated for the scaled unsteady flow field in Section 5.7, it was
insignificant compared with the drag force and weight of the particle.

The wall induced lift force is quantified in Fig. 6.8 for the 3 particle diameters. The peak is in
the region of r ' R. The smaller particles are subject to strong lift forces but are dominated by
the cohesive forces; the medium sized particles are capable of being entrained by these flow
conditions but the largest particles are too heavy.

Summing the forces acting on the particle gives a resultant force vector, these have been
plotted for six radial particle locations in Fig. 6.9, a vector length of one radius indicates a
resultant force equal in magnitude to FG + FP. It is clear that the medium particles are the most
likely to be incepted, the region 0.5 < r/R < 2.5 showing the strongest resultant forces.

6.6 Effects of blade tip vortices

It is clear from both the literature noted above and the unsteady simulations performed in
Chapter 4 that the tip vortices present in the rotor wake are a significant factor in the
entrainment process. In this section we follow the approach of Ananthan et al. [156] to estimate
the initial location and strength of tip vortices produced by the rotor IGE and the transport of
these vortices toward and across the ground plane.

The wake boundary is found by following a streamline from the rotor tip, the tip vortices are
known to travel along this streamline [27] and the vortex paths from the unsteady results
confirm this, presented in Fig. 6.11b. As the tip vortices convect downwards two processes act
upon them; diffusion and strain. Diffusion acts to increase the radius of the vortex core whilst
positive strain, stretching the vortex filament, decreases the vortex core radius and conservation
of circulation causes the filament to spin up. As in Ananthan et al. [156] the radius of the vortex
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Figure 6.8: Induced lift force for wall bound particles. Three diameters plotted.

(a) Dp = 10µm

(b) Dp = 300µm

(c) Dp = 500µm

Figure 6.9: Resultant force vectors for wall bounded particles at varying radial positions. Arrow
length of 1 radius indicates FTotal = FG + FP.
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6.6. Effects of blade tip vortices

is defined as the radial distance from zero to the peak swirl velocity. A third process also occurs
due to the influence of other nearby vortices, the induced velocity of one vortex will influence
the position of those around it and vice versa resulting in filaments twisting around each other
and even joining up [39], this was seen in the unsteady results such as in Fig. 5.1 and in the many
other vortex paths shown in Fig. 6.11b. For a near ground vortex the induced velocity would
lower the pressure between the vortex and the ground and suck the vortex downwards. The first
two of these processes are considered in this analysis.

The tip vortices of a helicopter are helical, for the purposes of calculation they are considered
to be discrete rings in this axisymmetric simulation. The vortices follow the wake boundary
therefore the strain at any time can be given as the relative change in the circumference of the
vortex ring, that is ε(ψ) = rv(ψ)−rv0

rv0
where rv(ψ) is the radius of the vortex ring at wake age

ψ = Ωt and rv0 is the radius of the rotor blade. The vortex core radius, rc, following a given
strain can be found using Eq. (6.11) from Ananthan et al. [156]:

rc(ψ) = rc0
1√

1 + ε(ψ)
(6.11)

where rc0 is the vortex core radius at ψ = 0. Diffusion acts to increase the vortex radius as
described by Lamb [169] and modified by Squires [170], defined by Eq. (6.12):

rc(ψ) =

√
r2

c0 +
4αδννψ

Ω
(6.12)

where α is a constant found to be 1.25643 [169], δν is an eddy viscosity parameter
δν = 1 + a1 (Γv/ν) with a1 = 2× 10−4 from Ananthan and Γv is the tip vortex circulation. The
tip vortex circulation can be estimated from the lift, given 2 blades then Γv = L/(R2Ωρ) where
Ω is the blade angular velocity. Combining the effects of diffusion, Eq. (6.12), and filament strain,
Eq. (6.11), gives Eq. (6.13):

rc(ψ) =

√
r2

c0 +
4αδννψ

Ω
1√

1 + ε(ψ)
(6.13)

Using the previously defined lift value, L = 8800kN, using a typical blade rotational speed of
Ω = 340rpm = 35.6rads−1 and estimating the initial vortex core radius using the PIV results of
Johnson et al. [39] to be rc0 = 0.03R we can quantify the vortex initialisation. The inset in Fig. 6.10
compares the size of the vortex radius over time using the diffusion model with the combined
diffusion-strain model. In the combined model rc is larger where negative strain caused by the
contraction of the rotor wake is present and similarly when strain is positive as the wake
expands across the ground rc decreases more rapidly than the expanding process of diffusion.

The mean vortex size in the unsteady simulations performed in Chapter 5 was captured and
is presented in Fig. 6.11a. Clearly the vortices in the unsteady simulation diffuse much more
rapidly than the analytical model, probably due to insufficient grid resolution. The path of the
vortices from Chapter 5, however, is a very close match to the RANS results in this chapter.

Having found rc the swirl velocity around the vortex can be described using the Lamb-Oseen
model [169] in Eq. (6.14):

Vθ(r̄) =
Γv

2πrc

1− e−αr̄2

r̄
(6.14)

where r̄ = rv/rc is the relative radial distance from the vortex core and rv is the radial distance
from the vortex core. This model is for the laminar diffusion, the vortices are large and fast
causing the flow in and around the vortex to become turbulent. Weigand and Gharib [171]
explains that the turbulence will cause the vortices to diffuse more rapidly, and will cause them
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Figure 6.11: Vortex width and path results from unsteady simulations for case zd/R = 0.68 in
Chapter 5.
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6.6. Effects of blade tip vortices

(a) Dp = 10µm

(b) Dp = 300µm

(c) Dp = 500µm

Figure 6.12: Resultant force vectors for wall bounded particles at varying radial positions, the
blue arrow indicates the force vector including the effect of the analytical tip vortices and the
black arrow is from the RANS flow field. Arrow length of 1 radius indicates FTotal = FG + FP.

to lose circulation and propagation speed.

Figure 6.10 indicates the swirl velocity profile for a series of vortex positions, these are
reasonable when compared with the predictions of Ananthan et al. [156] and Ramasamy and
Leishman [36] and compare qualitatively with the smoke visualisations of Lee et al. [27]. The
swirl velocity seen at the ground has a value of Vθ,ground ' 1ms−1 and is fairly invariant to radial
position in contrast with the average flow field. The fluctuations reported by the RANS results
were of the order of 10-20% of the mean flow with the peak beneath the rotor tip. The vortices,
however, represent higher fluctuations as much as 100% of the mean flow for the near ground
distances, this still falls short of the potential 300% RMS values seen in the unsteady results in
Fig. 6.4. The effect of the tip vortices has been included in a resultant force vector analysis in
Fig. 6.12, the calculation assumes an analytical vortex is directly above each particle position on
the path indicated in Fig. 6.10. We can see that the radial force is greatly increased for the
smallest particles but the medium sized particles are still the most lifted, the large particles are
now capable of being lifted in the pick up region 1 < r/R < 3.

The vortex is a highly 2 dimensional flow feature; as the vortex passes a fixed point on the
ground the vortex swirl velocity is first an upwash, then a horizontal flow as the vortex is
directly above and finally when the vortex has passed the flow is directed toward the ground.
The velocity magnitude peaks when the vortex is directly overhead. The increase in horizontal
flow velocity and velocity gradient from the passing vortex will increase the range of particle
sizes stimulated and increase the spatial entrainment region. The vortices also provide the
vertical flow that pulls particles up and away from the ground. In Chapter 5 the process of
vortices lifting particles upwards was found to relate to the interaction between vortices and
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Chapter 6. Full Scale RANS Simulation of Near Wall Helicopter Flow

separation bubbles induced at the wall by those vortices. Standard inviscid models of rotor
flows would not generate those separation bubbles. To capture this effect either an advanced
ground model would need to be introduced to go with the inviscid methods, or a method like
the VTM of Phillips and Brown [166] could be extended to include viscosity.

6.7 Discussion

The aim of the analysis is to discover which forces are capable of causing or contributing to
particle inception within the downwash of a full scale helicopter flow. The nondimensional
analysis gave some indication as to the influence of the different forces acting on the particle but
the influence of the nondimensional term, the deviation from reference values, was not
quantified. There are some differences between the behaviour indicated by the nondimensional
analysis and the forces from the RANS model, this is due to the highly inhomogeneous flow. The
results prove that the flow field cannot be characterized with a single set of scales, and similarly
the RANS results show that the entrainment cannot be characterized by one set of scales either
given that each particle size behaves differently.

The RANS results indicate that of the fluid forces presented only drag and wall-induced lift
contribute significantly. Looking at Fig. 6.9 the drag force would easily be sufficient to induce
movement through rocking about an asperity as proposed by ZFG (Ziskind et al. [57]). There is
experimental evidence that the larger particles are the first to be incepted in parallel flows [58],
correlating here in Fig. 6.9, emphasizing the varying significance of the cohesion force across
particle sizes as the key factor.

Given the boundary layer is spatially developing and a range of particle sizes exist no one
force is dominant but the lift-drag combination are the driving inception forces. For a
Lagrangian entrainment model the cohesion, drag and wall induced lift are critical for
understanding the location and size of the incipient particles. In this flow field the incipient
motion is of the middle sized particles in the region 0.5 < r/R < 1.5, although the vortices in
Chapter 5 show they are able to expand that and the horizontal velocity that the analytical
vortices induce near the ground does not decay as rapidly as the mean flow. The lift and drag
both peak in this region and the force is enough for direct lift off or to initiate motion along the
surface. The larger particles would rush along the surface knocking smaller particles breaking
the cohesive forces enough that they can be entrained. These particles would continue in the
wall jet until they met an upwash, the smaller particles would be taken up but the larger
particles would not be as influenced. The larger particles would continue to saltate along the
ground and cause subsequent fine particle entrainment, if these particles meet an upwash they
will be carried upwards as well. A pattern of particle entrainment peaking around radially
expanding vortices is visible in photographs of brownout and experimental observations of Lee
et al. [27], Johnson et al. [39]. The paths of entraining particles in Fig. 5.13b also indicate the
behaviour of particles being carried radially outward by a vortex and some particles travelling
far along the ground before being blown upward.

The analytical tip vortex assessment looks at what is essentially a large scale inviscid feature;
the turbulent fluctuations discussed in the mean flow field results are a result of the near wall
boundary layer, a viscous flow feature with much smaller scales. Both the near wall boundary
layer and the tip vortices are present in the real-world rotor wake, the vortices provide increase
in horizontal velocity near the wall and upwash in the near wall region and the boundary layer
is where all the particles lie before inception. The location of the particle in the boundary layer is
shown by the RANS results to effect the aerodynamic forces on the particle, the passing vortex
will alter the boundary layer structure. Combining the results of the RANS analysis with the
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analytical tip vortex assessment and the unsteady simulations of Chapter 4 leads to the idea that
the interaction of these two processes, inviscid large scale tip vortices and viscous small scale
fluctuating boundary layer structures, are the key to the deterministic Lagrangian entrainment
model.

Of the entrainment models reviewed it is difficult to say which best corroborate. The wall
induced lift force is based on the friction velocity as are the aeolian mass flux models, this will
give them similar behaviour if the aeolian parameters are tuned appropriately. Only the small
particles are accounted for in the particle tracking models, assuming that saltation is confined to
a near ground region is appropriate as the wall induced lift diminishes as the particle moves
away from the wall so larger particles will not lift very high. However, the flow is highly
inhomogeneous and the size of particles that can be entrained will change with radial position,
this will subsequently change the saltation characteristics as well. The vortex ground interaction
demonstrated in Chapter 5 and the experimental PIV work by Johnson et al. [39] are shown to be
crucial to how the near wall animated particles are carried into the bulk flow.

A higher order unsteady analysis is required to study the evolution of the particle forces
spatially and temporally and to determine how they contribute to entrainment as a whole.

6.8 Conclusion

The aim was to discover which particle forces are crucial to a physics based Lagrangian
entrainment model for use with rotorcraft simulations. Presented here is a scaling analysis for
the common fluid-particle forces with typical particle sizes using nondimensional analysis and
time averaged flow field velocities. The nondimensional analysis indicated that the Saffman
force could be ignored. Comparing the RANS results with the nondimensional analysis
demonstrated that the flow is highly inhomogeneous and that using nondimensional analysis to
find relative importance was difficult to interpret. The flow field showed that the smallest
particles, and those primarily responsible for the visual obscuration, sit within the viscous
boundary layer whereas large particles are well outside it. This analysis has reinforced the
notion that larger particles are excited before small particles, it has highlighted the importance of
wall bounded lift, but dismissed the shear based Saffman lift. Cohesion controls the particle
dynamics at the smallest scale and weight controls them at the largest scale, the medium sized
particles are the ones of most interest as these are the ones that will be first stimulated into
motion and it is speculated that these will drive saltation. The analytical tip vortex assessment
revealed that the vortices will likely increase the entrainment area through the increase in
horizontal flow speed. The vortices will alter the structure of the boundary layer and in doing so
change the aerodynamic forces on the particles, the vortices also provide the vital upwash that
blows the liberated particles upward into the large clouds that cause brownout.

The complexity of the problem is not easily captured, the complex arrangement of the
particle bed, the powerful vortex-ground interaction and the particle saltation are all potentially
significant factors. The union of the Lagrangian forces, inviscid tip vortices and the viscous
boundary layer development on the ground could be the solution to this problem if it could also
capture the separation bubble effect shown to be vital in Chapter 5.
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Chapter 7

Towards Enhanced Bed Modelling

Of vital importance to a deterministic entrainment model is appropriate modelling of the
particle bed. The previous chapters have explored how the flow of a rotorcraft can carry particles
up into the bulk flow but the position of particles on the bed and how the particles on the bed
respond to the flow are both very important. This chapter briefly explores the current literature
on modelling particle beds in flows and methods used. The chapter continues by considering the
eligibility of the Discrete Element Method to model the particle bed in an aeolian flow scenario.
The results of two studies using the Discrete Element Method (DEM), Appendix A and C, show
that the DEM can recreate dynamics appropriately and is recommended as a method to describe
the particle bed.
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7.1 Introduction

A deterministic entrainment model requires that specific flow events cause a corresponding
degree of particle entrainment. But the particle state must not be considered digitally as
entrained or not-entrained, rather that particles must be free to be moved by the flow, to this end
large particles may remain unmoved or creep gently while other particles may roll along the
tops of other particles before being carried away. Particles free to behave in this way will exhibit
the full range of aeolian transport phenomena.

The position of particles in the has been shown to be significant, with regards to entrainment,
by XU et al. [172]. XU et al. [172] examined the particles in a 2D bed and considered variation in
size, shape and protrusion from the bed surface. It is demonstrated that large particles in a bed
of non-uniform particles require a lower incipient velocity and smaller grains in that bed require
a higher incipient velocity and are also dependent on exposure to the flow. The results show that
the arrangement of particles on the mesh and the particle size distribution have an impact on
inception.

A combined fluid and particle simulation was conducted by Yang et al. [173] to attempt to
simulate aeolian saltation. The fluid was simulated using a finite volume method similar to that
used in Chapters 6 and 4 and the particles were simulated using the Discrete Element Method
(DEM) described in Chapter 3 and used in Appendix A. A shear flow was passed over a bed of
particles and the particles were subjected to a drag force from that flow, the flow received the
same drag force distributed over the appropriate fluid cell; the simulation was 2-way coupled.
The mass flux results, and the lift off velocity is a good match for experimental results by Kang
et al. [174]. Similar simulations were performed by Kang and Zou [175] combining so called 2D
and 2.5D fluid methods with 2D and 3D DEM methods. Heald et al. [176] also had success using
3D DEM and a 2.5D uniform flow model. These works are highlighted here because they show
that the combination of computational fluid and particle methods is capable of recreating
experimental results of aeolian saltation. Rotor induced entrainment, on the other hand, is
unsteady - the presence of discrete vortices near the ground means the flow field changes
constantly. In the unsteady scenario it is therefore important to know the time scale of the flow
changes, the time between vortices, and the response time of particle ejection. These concepts
were explored in an unsteady rotor flow simulation in Chapter 5.

DEM has been used to simulate particle entrainment in other industries with success. Sakai
and Koshizuka [177] use a more advanced DEM model to simulate pneumatic conveying. This
DEM method uses a clustering concept to reduce the computation required, very applicable to
the modelling of a particle bed on the helicopter scale.

The DEM is also readily expandable in terms of including more complex features such as non
spherical particles, [117], and different force models [118].

To examine the finer motions of the fluid around each particle a more detailed approach is
required. A fully resolved method will enforce the no-slip wall condition on the surface of each
particle and allow those particles to move will allow a validation of the Lagrangian fluid forces
that are to be applied to the DEM. Furthermore they will allow a validation to the behaviour of
the particle between its initial excitation, when the particle first begins to move, and inception
into the flow. Derksen and Larsen [178] considered layers of fully resolved particles on a surface
in a low Reynolds number flow, the flow was fully resolved and the particles were modelled
using the immersed boundary method. Derksen and Larsen found that from one particle to the
next the forces on the particle changed considerably due to the flow interaction. In multiple
layers Derksen and Larsen found that there was some fluid force on the particles but it decayed
rapidly with depth into the bed. This method is very computationally expensive but gives very
good results. The challenge is to scale the processes upwards to involve more particles and yet
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retain the features that are resolved in the most detailed models.

7.2 Towards an enhanced bed model

The DEM model has been used in other studies to simulate a particle bed in a horizontal flow.
Mathematically the DEM has an interesting characteristic compared with other numerical

models, because particle interactions are modelled the initiation of contacts causes
discontinuous forces to be a regular feature of the system. A separate study was conducted to
assess the impact of these discontinuities on performance of the system, Jasion et al. [1], this
study is included in Appendix A. A single particle collision is carefully modelled so that the
exact point of collision can be controlled between time steps. The study performed here
examines the tangential forces and follows from a similar study that looks at the normal force
model. It was found that the all numerical schemes were reduced to first order behaviour if they
encountered discontinuities at different points during the time step.

It is proposed here that the DEM be used to model the particle bed in this unsteady and
vortically dominated flow. It has been established in literature that the position of particles in the
bed is significant. To be successful the DEM must be capable of recreating the dynamics of
changes in the bed structure, to this end a probe indentation experiment was modelled using the
DEM to see if the DEM was capable of recreating the bed dynamics, Jasion et al. [3]. The probe
indentation experiment consisted of a probe with a ruby sphere tip driven into a die containing a
powder of glass spheres, the largest sample had rp = 250µm. The probe was driven at constant
velocity and the force on the probe was recorded over time and depth. The study is included in
full in Appendix C, the study concluded that while the forces on the probe were not the same as
the experiments the trends were recreated and the dynamics were also recreated. If the force
dynamics of the DEM are recreated then the particles are rearranging themselves appropriately,
this indicates that the DEM could be used to model the particles in the bed as they are perturbed
by the flow.

The next step is to compare the simplified approaches of [175] or Drake and Calantoni [179]
with a fully resolved method that has dynamic particles. Following this unsteady flows need to
be considered, perhaps the simplest to recreate maybe the parallel but accelerating flow that [58]
used in the wind tunnel. Beyond this the vortex ground interactions seen in Chapter 5 can be
recreated and compared with the experimental results of Johnson et al. [39].
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Chapter 8

Conclusions and Further Work

The entrainment of sand and dust into the rotor wash can result in the degraded visual
environment known as brownout. Attempting to land a helicopter during a brownout can be
very hazardous. The aim of this thesis was to gain a better understanding of the physics
involved in the entrainment of sand into a near ground helicopter flow in order that a physics
based model of particle entrainment and helicopter brownout could be developed.

The literature, Chapter 2, highlighted several strong complete brownout simulations and
experimental investigations of the flow field and entrainment. The brownout simulations used
entrainment models based on the aeolian expression derived by Bagnold. The empirical
expressions by Bagnold are derived for steady aeolian environments rather than the unsteady,
vortically dominated flows seen in the wake of a helicopter; a shortcoming highlighted by an
experimentalist in the literature [39]. This thesis aimed to advance the modelling of particle
entrainment by looking to overcome this shortcoming.

A summary of the work conducted and the key findings is provided here:

• An Eulerian finite volume unsteady flow simulation was performed and validated in
Chapter 4 and explored from an entrainment context in Chapter 5. The simulation was
validated against experimental results. It was found that the vortex path varied
considerably and that over the region of interest, 1 < r/R < 3, the vortices undergo
considerable changes due to twisting, pairing and expanding. The vortices created strong
near wall shear stress events which were found to be larger than the relaxation time of
typical sand particles. It was found that an arrangement of a tip vortex and separation
bubble at the wall caused entrained particles to be carried upwards, the particles were
found to follow trajectories similar to those observed in the literature.

• A full scale but steady helicopter IGE flow field simulation was conducted, Chapter 6. The
forces were found for particles at rest on the ground in the flow. The particles were found
to sit in different regions of the boundary layer depending on their size; which strongly
affects the flow physics they are subjected to. The simulation revealed that smaller
particles are bound by cohesion to other particles in the bed, larger particles are bound by
their weight but medium sized particles receive sufficient lift to be entrained. Including an
analytical model of the tip vortices and comparing the results with the unsteady flow field
of Chapters 4 and 5 showed that the boundary layer structure would be greatly altered by
the tip vortices. The analysis and results of this chapter have been published [2].

• The Discrete Element Method, introduced in Chapter 3, was assessed for its numerical
performance in Appendix A. The discontinuities in forces that occur at the start and end of
every particle collision in a DEM simulation were found to reduce the order of the schemes
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tested, it was found that no scheme could maintain above 1st order performance across a
range of scenarios; the recommended scheme is the Simplectic Euler scheme. The work in
Appendix A examines the effect of the discontinuities in the tangential direction, it builds
upon the work of Tuley et al. [4] which assessed the normal direction, the former has been
published [1].

• A large system of particles was simulated using the DEM in Appendix C. A simulation of a
probe indentation experiment was conducted with several different combinations of DEM
parameters. It was found that using higher stiffnesses and including friction came closest
to recreating the trends seen in the experiment. The magnitudes of the force recorded were
much lower than those seen in the experiment for all configurations but the frequency
profiles of the forces were well matched indicating that the dynamics were recreated by the
simulation. The chapter concludes that because the particle rearrangements are well
represented by the simulation the method would be suitable for modelling the sand bed in
a sand entrainment model. The work of this chapter has been accepted for publication
pending acceptance of corrections [3].

The problem of particle entrainment into a rotor flow spans many scales. This thesis has
considered the constituent parts of the problem at several different scales and found that: the tip
vortices and their viscous interaction with the ground is crucial, the Lagrangian fluid-particle
forces are a satisfactory means towards an entrainment model, and the DEM is a good choice to
model a dynamic particle bed. This thesis has built a foundation for the creation of a physics
based entrainment model for helicopter brownout simulations.

8.1 Future work

Application of a vortex dominated flow field to a particle bed would test the DEM and the
Lagrangian fluid-particle forces in a dynamic flow field scenario. The flow would need to
include the ground vortex interaction features described in Chapter 5. A study of this nature
would help test the capability of the DEM during the entrainment phase.

An interesting observation is that the IGE rotor flow fields produced in both this work and
the experimental and numerical work in the literature do not have flow recirculating back
through the blade yet this can be seen in footage of helicopters in the desert. Including the
fuselage, blade loading or control of the helicopter are all parameters that can be explored. An
interesting avenue of investigation would be to see how different fuselage shapes and
configurations alter the paths of the vortices and so the forces seen by the particles and the
trajectories they follow. Literature [164] suggests that simulating the approach of a helicopter to
the landing site would provide the recirculation characteristics more familiar with footage seen
of helicopters in the desert. The viscous evolution of the near ground vortices has been shown to
be crucial to the uplift of particles, simulating a helicopter with forward speed and discovering
how the vortices behave near the moving ground could lead to some very interesting results.

The simulations performed here used a smooth wall; in reality the desert floor is not smooth
therefore advancing the simulations here to consider rough walls would be a fruitful study.

This thesis worked with point particle fluid forces, however, a bed of particles could be
modelled using fully resolved methods by employing Fictitious Boundary or Immersed
Boundary methods. These methods allow for a two way coupled solution, modelling a
fluid-particle bed would give a more detailed explanation of entrainment mechanisms.

The range of scales in this problem will always make solutions difficult, however, if particle
entrainment can be related to large scale flow features, such as the vortices, then a deterministic
solution can be found.
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Appendix A

Performance of Numerical
Integrators in the Discrete Element
Method

The Discrete Element Method (DEM), first present in Chapter 3, is a numerical method that
can be used to simulate a large number of Lagrangian particles. The DEM is considered in this
thesis as a means to model the particles on the ground during inception into the rotor flow.
Before that recommendation can be made the method must be assessed to see if it recreates the
physics and behaviour seen in the laboratory, this assessment is performed in Appendix C. An
important step in any DEM implementation is the integration of forces to update the particle
position, however, unlike other physical simulations the forces acting on the particles are often
discontinuous due to particle collisions. In this chapter the performance of various numerical
integration schemes is quantified in a controlled DEM collision. It was found that all schemes
were limited to 1st order by at least one of the conditions tested. The Symplectic Euler
integration scheme is recommended as it is found to be of generally higher accuracy than other
1st order schemes in these tests. This chapter combines the results of the normal impact
performed by Tuley et al. [4] with a tangential study performed for this chapter. The analysis and
results of the tangential collision study are published in the journal Computers & Chemical
Engineering [1].
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A.1 Introduction

In the process of entrainment that precedes brownout the particle system on the ground must be
understood. The Discrete Element Method (DEM) is a numerical model designed to simulating
granular assemblies by evolving the motion of discrete elements, or particles, in time by means
of a force model in the Lagrangian frame.

This chapter concentrates on the performance of numerical integrators applied to DEM
simulations considering the force discontinuity that occurs during a particle collision. The
process and assumptions of the Discrete Element Method were introduced in Section 3.4.4. There
are numerous numerical integration schemes, in continuous scenarios high order methods offer
more error reduction than low order methods for a given reduction in time step. However, the
force a particle sees in a DEM simulation will contain many discontinuities due to particle
collisions. The study performed in this chapter looks at how those discontinuities affect the
performance of the integration schemes.

In this Chapter two simple collision scenarios are simulated: a normal impact between a
fixed sphere and a free sphere and a sliding impact - a particle collides obliquely with a plane
and continues to slide along it. For these simple scenarios analytical solutions of the DEM
equations of motion exist. Several different numerical integrators are used to integrate the force
expressions. The numerical and analytical solutions are compared to find the error for each
scheme.

This chapter starts with a review of assessments of numerical integrators from the literature.
Following this is a brief summary on the work of Tuley et al. [4] assessing the performance of the
numerical integrators during a normal collision. The chapter follows the work of Tuley et al. [4]
with a simulation to assess the performance of integrators on the tangential component of an
oblique impact, the results of which are published in the journal Computers & Chemical
Engineering [1].

A.2 Review of assessments of numerical integrators in particle

simulations

Rougier et al. [180] conducted a thorough study of accuracy and stability of integration schemes
used in DEM, molecular dynamics and similar systems. The analytical solution for comparison
was a continuous one degree of freedom oscillating mass-spring system. The integration
schemes were compared against the analytical solution for stability and accuracy, a study of CPU
time required to achieve a given error was also performed. They concluded that no scheme is
conditionally stable, and higher order schemes are not necessarily faster in terms of achieving a
certain level of accuracy. Fraige and Langston [181] performed an assessment of the Leap Frog
Verlet (LFV) integration scheme with the Velocity Modified Euler scheme for a normal collision
of a particle with a wall with linear and non-linear damping and a larger simulation of 300
particles in a hopper. They concluded that the LFV scheme was more accurate for the single
collision, and more stable for the hopper simulation. The effect of the discontinuity is only
mentioned with regards to the damping parameter. Kruggel-Emden et al. [114] performed a
thorough analysis of a number of integration schemes used for DEM explicitly looking at
oblique impacts, they compare both the analytical restitution coefficient with the resulting
numerical restitution coefficient and the rebound angle to assess error. Kruggel-Emden et al.
[114] also considers the time grid accuracy, the accuracy associated with identifying the contact
when it occurs.

In situations where there is free normal or tangential motion between contacts, the system
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t1 t2 t3 t4 t5t
i

free-motion

start of collision
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Δt

Figure A.1: Time discretisation leads to late collision detection.

has a force discontinuity at the time of impact. This study is a continuation of work by Tuley
et al. [4] that explored the performance of typical integration methods for continuous systems
used to integrate the linear normal forces. A short account of the method and analysis performed
by Tuley et al. is included here for context.

The original work in this chapter aims to discover the effect on global scheme order over the
discontinuity with the tangential forces, which schemes provide the least error across both normal
and tangential motions and therefore which scheme is the best choice for a DEM simulation.

A.3 Assessing the discontinuity through temporal

discretisation

In a numerical particle simulation the exact impact time is likely to be between time steps, as
illustrated in Fig. A.1. The fraction NFM defines the fraction of the time step difference between
the true collision time and the closest time step in a numerical simulation. In the normal collision
there is only one discontinuity and the time step fraction associated with that is NFM, for the
tangential study there are two events and the time step fraction for those are NFM1 and NFM2

defined below. NFM is defined as:

NFM =
timpact − tnearest

∆t
(A.1)

In the tangential study the collision is detected when the particle is overlapping the plane at
the beginning of a time step. Figure A.3 shows how time discretisation can lead to impact not
being detected at the exact collision point. In Fig. A.3 τ1 is timpact − tnearest as in Eq. (A.1). In the
tangential study NFM1 is the fraction of a time step that occurs after impact before the model
applies any force to that particle, it is equivalent to NFM in the normal impact study.

The normal collision test encounters only one discontinuity and that is at impact. For the
tangential collision there are two key times when a force discontinuity occurs, the first is the
impact the second is a transition time. For the elastic-frictional force regime there is a fraction of
time step that occurs before transition, NFM2 ∝ τ2 in Figure A.3, this is calculated in the same
way as Eq. (A.1).

The different tests in this study use varying values of NFM to explore the effect on error.
Given the initial free motion speed, u0, the required NFM can be achieved by initially positioning
the particle a distance, x0, away from the plane such that x0 = u0(1 + NFM1)∆t. This chapter
starts with a summary of the effect of the impact discontinuity on the performance of integrators
in the normal impact, from the work of Tuley et al. [4]. The chapter then reports in detail the
effect discontinuities in the tangential forces have on the performance on the same numerical
integration schemes.
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qp

u
p

x

Figure A.2: The particle configuration in the normal integration tests performed by Tuley et al. [4].
Particle p has some initial velocity and is travelling toward fixed particle q.

A.4 Time discretisation for normal collision assessments

Tuley et al. [4] assessed the effect of the temporal discretisation around the impact point of two
particles with and without damping and considered the effect of changing the damping
parameters, here only the results of the temporal discretisation are reported. The results present
the change in error based on NFM and the error with varying time step at NFM = 0 and 0.5 to
gauge the scheme order.

The normal collision assessment was performed by Tuley et al. [4]. Two particles were used in
the test, particle p is positioned a set distance from fixed particle q as in Fig. A.2. Particle p has
velocity and is moving towards the centre of stationary particle q resulting in an exclusively
normal collision. The force expression to be integrated and the analytical derivation can be
found in Tuley et al. [4] they are also included in Appendix B.

The schemes evaluated by Tuley et al. [4] are given in Table A.1, these same schemes are later
evaluated in the tangential integration assessment in this chapter.

A.4.1 Test configurations and results of the normal collision assessment

Tuley et al. [4] conducted several tests, two of which will be reported here, the change in error
resulting from changing NFM and the scheme order for NFM = 0 and 0.5 found by calculating
the error produced for different time step sizes. The results are reported along side the results of
the tangential case for comparison in Section A.6.1 and A.6.2.

A.4.2 Summary of the normal spatial discretisation assessment

Tuley et al. [4] used a linear force model and investigated both elastic and damped normal
impacts. It was found that all of the multi-point integrator algorithms tested were limited to 2nd
order accuracy with respect to time step size. Furthermore the single-point RK4 scheme only
achieved 4th order accuracy when an elastic collision began at the start of a time step. When the
time step did not coincide, the 4th order Runge-Kutta scheme also provided 2nd order accuracy.
For integration into a flow solver Tuley et al. recommend the Symplectic Euler method as it
provides best absolute accuracy and can provide global 2nd order accuracy under elastic
conditions, Tuley et al. also claim “For poorly resolved collision events, accuracy is preserved or
improved.”.

The impact of discontinuities on the performance of the integration methods solving the
normal forces is understood. Given that the tangential force has two discontinuities how do the
numerical integrators perform when solving the tangential force? What differences are seen
between sliding and elastic tangential regimes? Do the same schemes that perform well when
solving the normal force also perform well when solving the tangential force?
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u0
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Figure A.3: The numerical system, shown on the plot as (· · · · · · ), the particle experiences free
motion for a number of time steps then, upon first contact, enters the elastic region until the
elastic force exceeds the friction force at which point it transitions to frictional motion. The exact
analytical force, shown on the plot as (- - -), starts at timpact and transitions at ttrans. The time step,
∆t, the time difference between the numerical and analytical collision time, τ1, the time difference
between the numerical and analytical transition time, τ2, and the normal overlap, δy, are shown.

A.5 Performance of numerical integrators on tangential motion

in DEM

This study examines the behaviour of continuous time integration schemes over discontinuities
in the tangential forces typical in an oblique impact within a DEM simulation. High order
schemes are associated with low error and efficient computation, however, for DEM this is not
always the case - as seen in Section A.4. To investigate only the tangential motion this simulation
consists of a particle impacting tangentially with a plane and sliding along it, this makes the
numerical integration independent of errors from the normal force integration. Three possible
force regimes that occur in the tangential motion of an oblique impact are explored; frictional,
elastic and elastic-to-frictional. Tests are conducted to explore the effects of the location of the
discontinuity within the time step and to examine scheme order through varying time step
resolution. For certain scenarios the tangential motion contains elastic and then frictional forces,
this presents a second discontinuity between these force regimes. The effects of this second
discontinuity are also presented.

The physical scenario and the mathematical models both numeric and analytic are described
and explained in this section. In this study only the tangential motion is explored numerically, it
can be likened to a 1D oblique impact with the normal repulsive motion ignored.

The problem is shown in Fig. A.3, a particle is placed a distance away from a plane with
initial velocity toward that plane, the plane is parallel to the motion of the particle but offset
from its centre such that when the particle reaches the plane only a fraction of the particle will
overlap with the plane. Using the soft-sphere force approach this overlap is used to calculate the
force opposing particle motion. The particle experiences zero force during free motion and
elastic and then tangential frictional forces when in contact with the plane. No other forces are
present. The simulation finishes after a characteristic time defined in Section A.5.1. The position
of the particle at this time is compared with the analytical solution to calculate the error. The
analytic solution for the elastic region is presented elsewhere [186, 114], the frictional region
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impact criteria, ψ0 outcome

ψ0 ≤ 1; small Tangential forces are elastic at first,
then transition to frictional toward the
end of the impact.

1 < ψ0 ≤ 2r∗κ − 1; intermediate Frictional mechanism at first, then
elastic and frictional again toward the
end.

ψ0 > 2r∗κ − 1; large Frictional motion is observed through-
out the collision.

Table A.2: Summary of the tangential mechanisms for different oblique impact angles [186].

analytic solution is straightforward and was derived for this test. This situation is a 1D
equivalent of an oblique impact with elastic-frictional mechanisms. The free-motion to
frictional-motion will occur for specific impact angles, in DEM simulations this force would
increase with the normal force and then decrease as the particle is repelled. In this work the
normal force has been fixed to make the results independent of the normal impact errors,
therefore we make the frictional force constant also.

A criteria exists [186] to predict which mechanism will occur during contact in oblique 2D
impacts based on the impact angle of the contact point, α = arctan( us0

uy0
), s being the surface point

coordinate defined in Section A.5.1, and the ratio of normal to tangential stiffness, κ = kx/ky.
The criteria, ψ0 in Eq. (A.3), is used in the analytical solution [186] to determine which equations
to use. Here it illustrates the different mechanisms that can occur and hence justify testing the
different force regimes. The regimes are summarised in Table A.2, where:

r∗ = 1 + (rp/Rg)
2 (A.2)

is the non-dimensional radius, rp is the particle radius and Rg is the radius of gyration and the
criteria, ψ0, is defined as:

ψ0 =
κ

µ

us0

uy0
=

κ

µ
tan(α) (A.3)

This investigation is primarily concerned with the effect of force discontinuities on the
behaviour of continuous integration schemes for tangential impacts. For the purposes of this
numerical investigation three scenarios are considered. The first two scenarios, purely frictional
and purely elastic contain one force discontinuity whilst the elastic-frictional contains two force
discontinuities. Figure A.3 describes the 2-discontinuity model; a period of free motion, elastic
motion occurring after impact then transition into pure frictional motion. The three scenarios
will be evaluated to explore the effect of the discontinuities on global scheme order and the effect
on accuracy when the discontinuity is at different locations within the time step. The
intermediate angle force mechanism described in Table A.2 is not evaluated here as there is no
strict analytical solution for the transition time from frictional to elastic motion. The analytical
solutions provided in the literature all use a numerical method to solve the intermediate
mechanism, [186, 114].

A.5.1 Governing equations

In this study we are isolating the effects of the tangential force by fixing the normal overlap to a
constant fraction of the particle radius, shown in Fig. A.3. In linear DEM the tangential force
acting on a particle during contact is composed of elastic forces from particle deformation and a
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frictional force from sliding. Recent studies, such as [115, 186], tend not to include tangential
dissipative phenomena beyond friction but the seminal paper by Cundall and Strack [107]
includes options for global damping and visco-elastic damping during particle deformation.
Tangential damping is not included in these tests as it is not often used in DEM simulations.

Figure A.3 explains the coordinate system and mathematical setup. The tangential force
acting on a particle in contact with the plane in an entirely elastic collision will be:

Fx = kx(x + rpθ) (A.4)

where kx is the material stiffness in the x direction. The particle centre of mass is governed by
two second order coupled ordinary differential equations (ODEs):

x : mẍ + kx(x + rpθ) = 0 (A.5)

θ : Iθ̈ + rpkx(x + rpθ) = 0 (A.6)

Introducing s = x + rpθ as the surface coordinate and combining with the non-dimensional
radius, r∗ Eq. (A.2), this generates one equation to be solved for x and θ [186]:

s : ms̈ + r∗kxs = 0 (A.7)

These equations are only valid when the tangential force does not exceed the Coulomb limit:

kx|s| > µky|δy| (A.8)

Once this occurs the elastic force, Eq. A.4, in the above ODEs, Eq. (A.5) and A.6, is replaced
by the frictional force µky|δy|. The ODEs for s and x become:

s : ms̈ + r∗kyµδy = 0 (A.9)

x : mẍ + kyµδy = 0 (A.10)

A.5.2 Analytical model

The analytical equations for the elastic case are the exact solutions to Eqs. A.5 and A.7. For the
elastic region the analytic solutions [186] are shown here in Eqs. A.11 and A.12. The initial
conditions for Eqs. A.5 and A.7 to be integrated are:

t = 0 : s(0) = 0, us(0) = ṡ(0) = us0

t = 0 : x(0) = 0, u(0) = ẋ(0) = u0

yielding the analytical solutions for the elastic equations;

s(t) =
us0

ωs
sin (ωst) (A.11)

x(t) =
u0

r∗ωs
sin (ωst) + u0(1−

1
r∗
)t (A.12)

and the analytical solutions for the frictional case;

t = t1 : s(t1) = s1, us(t1) = ṡ(t1) = us1
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t = t1 : x(t1) = x1, u(t1) = ẋ(t1) = u1

s(t) = us1(t− t1) + s1 −
kyr∗µδy(t− t1)

2

2m
(A.13)

x(t) = ux1(t− t1) + x1 −
kyµδy(t− t1)

2

2m
(A.14)

where ωs =
√

r∗kx/m is the natural frequency of the system, u0 is the initial velocity in x, t is the
simulation time and r∗ is the non-dimensional radius described above. During the frictional
region the analytic solutions are simply quadratic equations in time since the force is constant
and independent of tangential state. Eqs. A.13 and A.14 describe the particle position during the
frictional regime, where the subscript 1 denotes the initial condition for these equations based on
either the transition time if transitioning from elastic mode, or simply the initial condition at the
impact time.

The analytic solution is a multi-part solution involving a period of free motion and then
either 1 or 2 in-contact solutions depending on the test configuration. The time at which the
solution changes from one regime to another is decided by analytically calculated times. The first
of these is the impact time, t1, and is trivial to calculate; simply the initial distance from particle
to plane divided by the initial velocity. The second time is the transition time between the elastic
and frictional mechanisms found using the Coulomb condition, Eq. A.8, and the analytical
solution for s during the elastic mechanism, Eq. A.11. The transition time is given in Eq. A.15.

ttrans =
1

ωs
sin−1 µky|δy|ωs

kxu0
(A.15)

Combining the equations for the different regimes gives a single analytic solution for x. The
complete solution for s is not given here, but can be found by combining the s equations in a
similar manner. For elastic-frictional scenarios Eq. A.16 is the complete analytic solution, for
purely frictional Eq. A.17 is the complete analytic solution. A purely elastic solution can be
obtained by evaluating Eq. A.16 for ttotal < ttrans.

xelast−fric =



u0t + x0 t ≤ t1

u1
r∗ωs

sin (ωs(t− t1)) +

u1(1− 1
r )(t− t1) + x1 t1 < t ≤ ttrans

ux trans(t− ttrans)+

xtrans −
kyµδy(t−ttrans)2

2m ttrans < t

(A.16)

xfrictional =

u0t + x0 t ≤ t1

ux1(t− t1) + x1 −
kyµδy(t−t1)

2

2m t1 < t
(A.17)

A.5.3 Numerical schemes

The numerical schemes calculate the tangential position, x, by integrating Eq. (A.5), however, Fx

is dependent on s, Eq. (A.18), thus both Eq. (A.19) and A.20 are integrated by the schemes. The
schemes are validated by running a control test described in the section A.6 to ensure they
produce the order they claim when they integrate without a discontinuity.
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Fs = r∗kxs = r∗Fx (A.18)

ẍm + kx
(

x + rpθ
)
= ẍm + kxs = 0 (A.19)

s̈m + r∗kxs = 0 (A.20)

At each time step the elastic force is compared with the friction force using the Coulomb
condition, Eq. (A.8). When the Coulomb limit is reached the frictional force is used instead,
Eq. (A.21) and A.22, and the numerical schemes integrate in Eqs. A.9 and A.10.

Fx = kyµδy (A.21)

Fs = r∗kyµδy (A.22)

The numerical time integration schemes used are either 1st, 2nd or 4th order and are
summarised in Table A.1. These schemes contain a variety of features including implicit and
explicit, multi-point and single-point, locally 1st, 2nd and 4th order as discussed by Tuley et al.
[4].

A.5.4 Error quantification

The error for each scheme is calculated by comparing the prediction with the exact analytical
solution at a specific time. The specific time chosen is a characteristic of the system: in the purely
frictional case it is the time taken for the particle to come to a stop; the frictional force is constant
Ff r =

∣∣δy
∣∣Kyµ therefore the time taken to stop is calculated as v0 − tc

m
Ff r

= 0, as in Eq. (A.24). In
the elastic case the period of the oscillation is the characteristic time, it is defined as t = π/ωs.
For the elastic-frictional case, the comparison time is different, a characteristic time that involves
both elastic and frictional mechanisms must be used; the transition time from the elastic to
frictional mechanism is based on the analytic solution for elastic displacement Eq. (A.16) and the
Coulomb limit Eq. (A.8). The transition time, Eq. (A.15), is doubled giving both mechanisms the
same number of time steps in the simulation, and then added to the time set aside for the free
motion before impact. The characteristic time for the elastic case was chosen to be tc = 0.8ttrans.
This was sufficiently short to prevent interference from the discontinuity for the lower resolution
tests. These characteristic times maybe summarised as:

tc = 0.8ttrans , elastic (A.23)

tc = v0
m

|δy|Kyµ
, frictional (A.24)

tc = 2ttrans , elastic− frictional (A.25)

The analytical position of the particle is compared with the numerical position at the
comparison time, Eq. (A.26), where tc is the time of comparison. The comparison time, tc, is
divided by the number of time steps to give the time step size, as such the numerical solution
has a result for exactly that time step. The analytical solution is calculate for tc; no interpolation
is needed. The error is thus defined:

130



A.6. Test configurations and results

εx
amp(%) =

∣∣∣x (tc)numeric − x (tc)analytic

∣∣∣
x (tc)analytic

× 100 (A.26)

A.6 Test configurations and results

The 1st, 2nd and 4th order numerical integration schemes listed in Table A.1 were validated
using a control test with no discontinuity. Separate tests were conducted for both elastic and
frictional force regimes. The particle was initialised in contact with the plane with an initial
velocity, any time histories required were populated using a self starting scheme run to a very
high accuracy to limit start-up error. The particle spent the entire simulation in only one
tangential force regime and so there was no force discontinuity of any kind, either from impact
or transition. The results proved the scheme order obtained is consistent with the nominal order
of the scheme listed in Table A.1, note: the Symplectic Euler scheme exhibits second order
behaviour in this test. This finding is in complete agreement with a similar test for normal
impacts considered previously [4].

The numerical schemes were then explored using three different tests.

A.6.1 Test 1: variation of time step fraction prior to impact: NFM1

The first test explores the sensitivity to time step discretisation about the point of initial contact.
There are three possible impact configurations for this test; free motion to frictional motion, free
motion to elastic motion and free motion to elastic and then frictional motion. For each
configuration the numerical schemes are tasked to evaluate the particle motion using the
equations and method described in section A.5.1. Each configuration uses the comparison times
defined in Eqs. A.24, A.23 and A.25, respectively. Before impact the numerical solution is exact
as no forces are applied, therefore NFM1 at impact (∝ τ1 in Fig. A.3) can be controlled exactly for
the numerical schemes. The tests are run with a time step of ∆t = 1× 10−4. The results of the
normal collision study by Tuley et al. [4] are presented and compared at the end of this section.

Free motion to frictional motion (solution of Eq. A.10)

Figure A.4a shows the performance of the first order schemes. All the schemes are fairly
insensitive to NFM1 and there is little performance difference between schemes.

Considering the second order schemes, in Fig. A.4b, the 2nd order Runge Kutta (RK2)
scheme produces lowest error at NFM1 = 0, the error at this point is five orders below the error
for other values of NFM1. The 2nd order Backward Differenced (BD2) and 2nd order Adams
Bahsforth (AB2) schemes give very similar error and are only weakly dependent on NFM1, for
non-zero values of NFM1 the error produced is similar to that of the RK2 scheme.

The 4th order Runge Kutta (RK4) scheme very sensitive to NFM1, Fig. A.4c, with the lowest
error at NFM1 = 0 while across all other values of NFM1 the error is steady. The other 3 schemes
produce identical results that again are only weakly dependent on NFM1. The RK4 scheme
produces the lowest error of any of the ten schemes tested, however, the extremely low error
only occurs at NFM1 = 0, for all other values the error is very similar to all other schemes even
the 1st and 2nd order schemes.

Free motion to elastic motion (solution of Eq. (A.19))

Amongst the first order schemes, Fig. A.5a, the SE method is noted for having a consistently
smaller error than any of the other 1st order schemes but also more sensitive to NFM1. Error
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(b) 2nd order schemes: RK2 ( × ),
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(c) 4th order schemes:
RK4 (−−×−−), AB4 (−−©−−),
ABM (−−5−−), BD4 (· · · 4 · · · )

Figure A.4: Frictional motion with variation in NFM1, ∆t = 1× 10−4.
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(a) 1st order schemes: FE (· · · × · · · ),
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(b) 2nd order schemes: RK2 ( × ),
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(c) 4th order schemes:
RK4 (−−×−−),
AB4 (−−©−−),
ABM (−−5−−),

BD4 (· · · 4 · · · )

Figure A.5: Elastic motion with variation in NFM1, ∆t = 1× 10−4

decreases by 5 orders at NFM1 = 0. The BD1 and FE schemes are largely invariant to NFM1.

The two explicit second order schemes, Fig. A.5b, are very similar, the RK2 and AB2 schemes
show large sensitivity with a reduction in error of 3 orders at NFM1 = 0. They provide a smaller
error throughout than the BD2 scheme which has only a slight variation with NFM1. For this
time step resolution the SE scheme would produce results with the same error as either the RK2
or AB2 despite being nominally first order and computationally less demanding.

Amongst the 4th order schemes, Fig. A.5c, the ABM and AB4 scheme behave identically and
provide the lowest error. Curiously RK4 scheme, however, appears to be independent of NFM1

and the BD4 scheme behaves much like the BD2 scheme with relatively little sensitivity. Whilst
the low error presented by the ABM and AB4 scheme is very low the same low error can be
achieved by the 1st order SE scheme, results for non zero values of NFM1 are very similar for all
schemes.

In both the frictional and elastic case it is clear that only a small region of the NFM1 range
produces very low error for certain schemes, for a large simulation, where NFM1 will be
indeterminable, theses schemes cannot achieve the high accuracies that may occur for specific
NFM1 values, such as NFM1 = 0, throughout the whole simulation.
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Free motion to elastic and then transition to frictional motion (Solving Eq. (A.10) & A.19)

There is very little difference between the results with the transition and the results presented in
Fig. A.5, for solely elastic motion. The results show the same asymmetric tendency and the same
sensitivities. This indicates that the second discontinuity has no great effect on the error. The
second discontinuity is examined in more detail in Test 3.

Effect of temporal discretisation at impact in the normal direction: NFM [4]

In this section we present results from Tuley et al. [4] for each scheme, elastic and damped, with a
fixed time step of ∆t∗ = 3× 10−3 with varying NFM.

Except for the SE scheme, Fig. A.6a - A.6d, the first order schemes for both damped and
elastic cases are only weakly dependent on NFM. The error of the SE scheme is much lower than
the other first order schemes for all NFM but the error spans several orders of magnitude. The SE
scheme was relatively inert in the tangential frictional case, but in the tangential elastic case
produced much lower errors than in the normal collision. The lowest error in the tangential case
was always at NFM = 1.

The second order schemes, Fig. A.6b - A.6e, show more dependence to NFM in the damped
case than in the elastic. The RK2 scheme proving the lowest error in the elastic case throughout,
but in the damped case the BD2 and AB2 schemes produce a lower error at NFM = ±0.5. The
RK2 scheme behaved similarly in the tangential study as in the normal study, but in the
tangential study the BD2 scheme showed a weak dependence to NFM and no scheme produced
lowest error at NFM = ±0.5.

The fourth order schemes, Fig. A.6a - A.6d, show a mixture of behaviours; the RK4 scheme
produces significant error reduction for the elastic case with NFM = 0 but in the damped case is
comparatively less sensitive. The other schemes produce the lowest error when NFM = ±0.5 in
the damped case, and are relatively insensitive to NFM in the elastic case. The elastic tangential
and normal damped cases proved the worse for the RK4 scheme, but the RK4 produced the
lowest error of any scheme in the frictional tangential case.

Overall there does not appear to be a parallel between the normal and tangential behaviours
for any scheme, but the Runge-Kutta family seem to perform well in many cases.

A.6.2 Test 2: variation of time step and scheme order obtained

The test simulates an impact with a number of different time steps sizes in order to determine if
the reduction in error is consistent with the expected scheme order of the numerical integration
scheme. This test is conducted only with the two extremes of NFM1, 0 and 0.5 as shown in test 1.
The test is conducted for frictional, elastic and elastic-frictional cases. The time-step size varies
from the low resolution, 10−1 (i.e. 10 time steps per simulation), to the high resolution 10−4

(i.e. 10000 per simulation). The expected 1st, 2nd or 4th order gradient will be linear when
plotted on a log axis, the results are plotted with the expected gradients to aid the eye. In these
tests the particle moves toward the plane with initial free motion and then after impact moves
tangentially along the surface, three different tangential force regimes are applied to the particle
after it is in contact with the plane. The reduction in scheme order for each tangential force
model will give insight to the obtainable scheme order for the tangential motion of the different
modes of an oblique impact.
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(f) Fourth order damped case

Figure A.6: Error dependent on NFM in normal collision [4], reproduced with permission. Scheme
line styles are given in Table A.1.

Results of test 2: variation of time step and scheme order obtained

Frictional motion (solution of Eq. (A.10))

In Figures A.7, A.8 and A.9, linear trends are visible indicating reduction in error with a
reduction in time step size as is to be expected. The 1st order models can all be expected to
behave globally as 1st order. The results show the SE and BD1 schemes produce near identical
results while the FE scheme produces slightly more error.

Amongst the 2nd order models, Figure A.8, there are none that hold 2nd order behaviour
throughout all circumstances. The BD2 & AB2 schemes give 1st order behaviour for NFM1 = 0
and NFM1 = 0.5, the RK2 on the other hand, gives 1st order behaviour when NFM1 = 0.5, but
2nd order with NFM1 = 0. This is reflected in the results from test 1 in Fig. A.4.

The fourth order schemes, Figure A.9, all provide 1st order performance except the RK4
scheme which provides 2nd order for NFM1 = 0. Considering the performance of the 4th order
schemes over all values of NFM1 shows that no scheme can provide higher than 1st order in all
cases. The RK family of schemes is the only scheme that performed above first order, a result
reflected by Fig. A.4. None of the ten schemes tested could perform above first order for all
values of NFM1 and only the RK2 and RK4 schemes could provide above first order but only for
the exact value of NFM1 = 0.

Elastic motion (solution of Eq. A.19)

Test 1 showed the error some schemes is sensitive to NFM1. As seen in Fig. A.5b the SE scheme is
capable of reduced error during the elastic regime at NFM1 = 0.0, in Fig. A.10a we see the SE
scheme has provided second order performance. The SE scheme produces less error than either
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Figure A.7: Scheme order analysis, frictional motion: 1st order schemes
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(a) NFM1 = 0, RK2 ( × ),
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Figure A.8: Scheme order analysis, frictional motion: 2nd order schemes
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Figure A.9: Scheme order analysis, frictional motion: 4th order schemes
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the BD1 or FE schemes, Fig. A.10, and the latter both show little dependence on NFM1, as was
seen in Fig. A.5.

The BD2 scheme, Fig. A.11, is the only second order scheme not to achieve 2nd order
behaviour with NFM1 = 0, both the AB2 and RK2 schemes give second order behaviour for that
pre-collision fraction. Interestingly they can only match the error of the 1st order SE scheme. The
RK2 scheme performs best overall, but like the other second order schemes is reduced to 1st
order for NFM = 0.5.

The RK4 scheme produces 1st order behaviour at NFM1 = 0, Fig. A.12a, and identical result
for NFM1 = 0.5 as we expected from Fig. A.5. The BD4 scheme is first order like the other
Backward Differenced schemes previously. The AB2 and ABM schemes manage a second order
performance for NFM1 = 0. In Fig. A.12b however all the schemes provide a 1st order
performance, with the BD4 scheme giving a slightly greater error.

Clearly NFM1 makes a large difference to scheme order, looking at the results from the NFM1

tests, Fig. A.5, it can be seen that the “high performance” region of the NFM1 range is very small,
maybe 5% about NFM1 = 0 for the SE RK2 AB2 AB4 and ABM schemes only. Therefore there is
little justification to use anything other than a first order scheme when using these tangential
force models in general problems. The SE scheme is the obvious choice since it surpasses or
matches the other schemes in all circumstances.

Elastic and transition to frictional motion (Solving Eq. (A.10) & A.19)

The results produced by this test are similar to those in the section above, all scheme orders are
the same for NFM1 = 0, all schemes are still limited to first order when NFM1 = 0.5.

Assessment of scheme order for the normal collision

The scheme order over the discontinuity was found for both elastic and damped collisions at
NFM = 0 and NFM = 0.5 by running the simulation with different time steps. The results are
reproduced from Tuley et al. [4] in Figs. A.13-A.15. The first order schemes presented in Fig. A.13
show that all the schemes maintain first order performance except the Symplectic Euler scheme
that produces second order performance for both NFM = 0 and 0.5 in the elastic case, but first
order for the damped case though it produces a consistently lower error than the other tested
schemes across all four plots.

Among the second order schemes, Fig. A.14, not one could maintain second order behaviour
across all tests. The RK2 scheme produced third order behaviour for elastic conditions at
NFM = 0 but first order behaviour in damped collisions at NFM = 0.5. The RK2 scheme was the
only scheme to maintain second order with damped conditions and NFM = 0.

The fourth order schemes mostly achieve first or second order behaviour, Fig. A.15, the RK4
scheme being the only scheme to achieve fourth order and only for the elastic case at NFM = 0,
second or first order is all that can be expected for any of the schemes away from that condition.
The second order schemes produce similar error but with less computational expense.

In the elastic case the discontinuity had some impact, but did not reduce any scheme below
second order. In the damping case no scheme could maintain above first order behaviour for
both values of NFM tested. Tuley et al. [4] confirmed the nominal order of each of the schemes in
a simulation with no discontinuity during in collision motion.

Comparing the normal collision results, Fig. A.13 - A.15, with the tangential results, Fig. A.7 -
A.12, we see the damped results behave similarly to the tangential frictional results with the
majority of the schemes limited to first order. The conclusion that no scheme can maintain
greater than first order performance across all NFM values stands for damped normal collisions
and all tangential collisions.
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(a) NFM1 = 0, FE (· · · × · · · ),
SE (−−♦−−), BD1 (−−4−−)

10
−4

10
−3

10
−2

10
−1

10
−15

10
−10

10
−5

10
0

∆t

ε am
p

x
 (

%
)
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Figure A.10: Scheme order analysis, elastic motion: 1st order scheme behaviour
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(a) NFM1 = 0, RK2 ( × ),
AB2 ( © ), BD2 ( 4 )
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Figure A.11: Scheme order analysis, elastic motion: 2nd order scheme behaviour
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Figure A.12: Scheme order analysis, elastic motion: 4th order scheme behaviour
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(a) Elastic, NFM = 0
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(b) Elastic, NFM = 0.5
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(c) Damped, NFM = 0
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(d) Damped, NFM = 0.5

Figure A.13: Assessment of scheme order for first order schemes [4], reproduced with permission.
Scheme line styles are from Table A.1. Dotted line indicates first order gradient as a guide to the
eye.
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(a) Elastic, NFM = 0
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(b) Elastic, NFM = 0.5
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(c) Damped, NFM = 0
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(d) Damped, NFM = 0.5

Figure A.14: Assessment of scheme order for second order schemes [4], reproduced with permis-
sion. Scheme line styles are from Table A.1. Dotted line indicates second order gradient as a guide
to the eye.
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(b) Elastic, NFM = 0.5
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(c) Damped, NFM = 0
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(d) Damped, NFM = 0.5

Figure A.15: Assessment of scheme order for fourth order schemes [4], reproduced with permis-
sion. Scheme line styles are from Table A.1. Dotted line indicates fourth order gradient as a guide
to the eye.
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(c) 4th order schemes:
RK4 (−−×−−),
AB4 (−−©−−),
ABM (−−5−−),
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Figure A.16: Global scheme order for a continuous elastic then transition to frictional

A.6.3 Test 3: variation of time step fraction prior to transition: NFM2

The third test uses the elastic-frictional model to explore the effect of the transition discontinuity
on scheme order. The simulation is initiated within the elastic motion much like the initial
control test to avoid the impact discontinuity, however, the particle is allowed to transition into
frictional motion. The comparison time is tc = 2ttrans, and the only discontinuity is the transition
from elastic to frictional. Any loss of scheme order in this test can be attributed to the transition
discontinuity.

Before the impact discontinuity the numerical schemes have no force to integrate and
therefore produce exact results, this enables the time step fraction prior to impact, NFM1, to be
prescribed to the system. The transition discontinuity, however, takes place after a period of
elastic motion during which error will be introduced to the system. For this reason the time step
fraction prior to transition, NFM2, cannot be accurately prescribed to the system. A variety of
different time step offsets were implemented to probe the effect of varying NFM2 but the
differences were negligible with no new information obtained.

The results presented in Fig. A.16 are revealing; the first order schemes seem unaffected, with
the SE scheme maintaining 2nd order. The 2nd order schemes all produce second order, the BD2
scheme was unable to produce 2nd order through the impact discontinuity. Among the 4th order
schemes not one could produce 4th order behaviour, although they all provide 2nd order
behaviour and all produce a smaller error than the second order schemes.

The transition discontinuity limits all schemes to 2nd order. For the free motion to frictional
motion case, section A.6.2, all schemes were limited to second order also. Table 1 describes three
different tangential force mechanisms that could occur in an oblique impact; in each of these
scenarios there is either a transition discontinuity or free motion to frictional motion, therefore
the numerical method used will always be limited to second order.

A note on other schemes

Ten common integration schemes were tested here, however, there are many other integration
schemes used in DEM and granular modelling such as Verlet leap frog or velocity method and
Gear’s predictor corrector method. The Verlet and leap-frog Verlet scheme finds velocities
between time steps but acceleration and position on the time step. The Simplectic-Euler scheme
is the most similar to the Verlet scheme in its structure as the SE scheme applies forward
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integration for the velocity and the position is calculated from this updated velocity. Typically
the Verlet method is poor at handling a velocity dependent force but as the force models here are
only dependent on the position it is likely that the Verlet and Simplectic-Euler schemes will have
similar results. Gear’s method was designed to be stable both through choice of coefficients and
the corrector stage will dampen potential instabilities. The Adams Moulton method tested here
is a predictor corrector of sorts, but uses polynomial fitting instead of Taylor series.

A.7 Conclusions

Ten continuous integration schemes were used to solve the motion of a particle during impact in
the soft sphere linear DEM model. The results of the normal impact were included from the work
of Tuley et al. [4] and the tangential study was performed here.

Three tangential force scenarios were identified; free motion to frictional motion, free motion
to elastic motion and free motion to elastic with transition to frictional. The effect on error of the
time step fraction prior to impact, NFM1, was presented. The order of each scheme was assessed
over the force discontinuity at impact and transition and the results discussed.

In the tangential study the extreme variation across the NFM1 range is visible in all schemes
except the Forward Euler scheme and the Backward Differenced family of schemes, as was also
the case in the damped normal study. For a large scale system with many collisions all with
varying values of NFM1 a robust scheme is advantageous. However, the Backward Differenced
schemes, all of which produce first order behaviour, also produce the highest error in most
scenarios. The benefits of an implicit scheme, with no stability constraints on time step size,
coupled with a robust and predictable scheme order should be carefully weighed against those
of a potentially quicker and higher accuracy first order explicit scheme such as the Symplectic
Euler scheme.

It is clear, for the majority of schemes, that controlling NFM1 would greatly help in lowering
the error in predictions of most numerical schemes. Controlling NFM1 in a single particle system
would be trivial but in a many-particle system, e.g. Yu and Xu [187], there would need to be
routines that dynamically alter the time step. With many simultaneous or non-binary collisions
it would not be feasible, or take vast computational effort, to have every collision impact exactly
with NFM1 = 0. For lowest error the alternative to controlling NFM1 is to be aware of the worst
error produced by the chosen scheme, and mitigate that through increased time resolution.

The case of a single particle collision has been assessed here because there are analytical
expressions that can be compared with the numerical results. The conclusions of this work can
be utilised for the case of many particles by considering that higher order schemes are, overall,
reduced to 1st order due to uncontrollable NFM. These schemes demand considerably more
computation without providing lower error therefore a scheme higher than first order is
unnecessary. For a simulation with thousands of particles the computation time is a limiting
factor in simulation size so it is important to be efficient. To measure the accuracy of a large
system bulk quantities, such as flow rate, need to be measured and compared to experimental
data.

The best 1st order scheme is clearly the SE scheme. It produces either 1st or 2nd order results
and the error is always lower than the other 1st order schemes when a discontinuity is involved.
The SE scheme is also the recommended scheme of choice for the normal collision tests by Tuley
et al. [4].

The conclusions of the work by Tuley et al. [4] are not dissimilar to those found here. The
following conclusions are true of normal collision models and tangential collision models:

• Time discretisation about the impact, illustrated in these tests as NFM1 or the pre collision
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time step fraction, causes a change in scheme order.

• Multi-point integrators are limited to 2nd order behaviour, the single-point 4th order
Runge Kutta scheme achieves 4th order results only when the time step starts on the
collision boundary, and in the tangential case only for the free-to-elastic motion force
regime.

The following conclusions are drawn specifically from this work, the results from Tuley et al.
indicate similar effects though not as distinct as the results presented here.

• None of the integrator schemes tested here was able to maintain higher than 1st order
performance for all values of NFM1.

• The transition discontinuity limits 4th order schemes to 2nd order, lower order schemes
appear unaffected.

• The optimum value of NFM1 is such a small portion of the total range that the large benefits
that occur within this range cannot be globally attainable for large systems of particles. The
Backward Differenced family of schemes demonstrate the least sensitivity to NFM1,
although they also produce the largest error.

The recommended solver for any large scale system would be the Symplectic Euler scheme due
to its ability to produce near second order results, its general high accuracy, simple
implementation and low storage requirements.

141



142



Appendix B

Derivation of the Analytical Normal
Collision for Appendix A

The force model for a normal collision was given in Section 3.4.4, it can be split into the elastic,
Fe, and viscous, Fv, terms as:

Fe = −keδn

Fv = −cu
(B.1)

where ke is the elastic stiffness, δn is the overlap between particles given by Eq. 3.61, c is the
damping coefficient and u is the velocity of particle p.

The analytical solution during impact is based on simple harmonic motion, given that at the
start, t = 0, the force on the particle is 0 and the velocity is defined as u(0) = u0 6= 0, the
analytical solution is given as:

x(t) =

 u0t t < ti
u0
ωd

exp (−ξωn( t− ti )) sin (ωd (t− ti)) + x−
(
rp + rq

)
t ≥ ti

(B.2)

where ti is the impact time given by:

ti =
x(0)−

(
rp + rq

)
u0

(B.3)

and the damping ratio, ξ, natural frequency, ωn, and damped frequency, ωd, are given as:

ξ =
c

2
√

kem
, ωn =

√
ke

m
, ωd = ωn

√
1− ξ2 (B.4)

The coefficient of restitution, e, is the ratio of the final velocity after impact, u(∞), to the
initial velocity, e = |u(∞)/u(0)|. The coefficient of restitution is used to find the damping
coefficient, c, given by Eq. 3.64.

The numerical schemes from Table A.1 were used to calculate the position of the sphere p
over time. The error between the analytical and numerical results were found by comparing the
maximum displacement:

εx
amp =

x̂numerical − x̂analytical

δ̂n,analytical
(B.5)

The analytical maximum overlap can be found by equating the analytical velocity expression
to zero and finding the displacement at that time, given by Tuley et al. [4] as:
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δ̂n,analytical = Au(0)
ωd
√

1+A2 exp
(
− arctan(A)

A

)
A = ωd

ξωn

(B.6)

Tuley et al. explain that using the maximum displacement during the collision is a good
choice as it represents a ‘worse case’ value, it requires the force to be integrated twice - once for
velocity and again for position, and is easy to evaluate analytically.
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Numerical Probe Indentation as a
Means of Validating Discrete
Element Method Simulations

Dusty ground that is prone to brownout is made of sand particles. To be able to model particle
inception from a bed of particles interaction of particles in the particle bed must first be
simulated.

The Discrete Element Method (DEM), introduced in Section 3.4, is widely used to model
particulate systems, however, compromises are made in terms of physics and resolved length
and time scales. Model implementations and simulation parameters chosen by researchers are
often based on precedence or computational capacity. The aim of this work is to validate DEM
model parameters by simulating a mesoscale mechanical process that is heavily dependent on
particle interactions. Mesoscale processes bridge the gap between the single particle Atomic
Force Microscopy (AFM) and bulk measurements such as shear cell tests [6].

This chapter describes the experimental process of dry powder penetrometry as performed
by Danby [6], summarises a first attempt by Danby to model the experiment using a 2D DEM
simulation and compares the results with the experiments. Following this the development of a
new 3D code for this work is described and these results are compared with the experiments to
identify which DEM parameters and models yield the most realistic behaviour.

The 2D code produced quantitatively different results to the experiments but the trends shed
insight into the process and the length scales identified by the 2D spectral results were a good
match with the experimental data. It was envisaged that the 3D system developed here would
more closely follow the experimental observations and go further to calibrate DEM models
using mesoscale penetrometry.

The expansion to 3 dimensions required approximately 20 times the number of particles to
occupy the simulated volume; as such significant algorithm enhancements to reduce the
memory footprint and reduce computational cost were required, these improvements enabled
the code to approach O(n) scalability with particle number. The increased number of particles
required in the 3D simulation lengthened the run-time, despite the improvements to the
algorithm the run time required was estimated to be several months. In order that simulations
could be completed in a more practical time several faster probe speeds were used.

Building on the conclusions of the 2D simulations conducted by Danby several variations of
force model and parameters were simulated in the 3D system: linear and Hertzian normal
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forces, 4 different particle stiffness values and a basic friction force. The force magnitudes were
still significantly lower than the experimental results but all the frequency responses gave good
match to the experiments. The frictional model was the best match for the force profile.
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C.1 Outline of the chapter

In this chapter the experimental procedure of Danby [6] is explained and the original data is
replotted in Section C.4. Section C.5 explains the method and parameters of the numerical
simulations. The general simulation process including the necessary enhancements required by
the 3D simulation is outlined in Section C.5.1. The parameters used by Danby in the 2D
simulations are explained and the pertinent results are reproduced from that work [6] in Section
C.5.2 and C.5.3. The results from the 2D simulations are used to define the parameters of the 3D
cases in Section C.5.4. Following this Section C.5.5 presents the 3D results, these are and
compared with the 2D simulations and the experiments. The final discussion in Section C.6
reviews the results and assesses the capability of the DEM to represent systems at the mesoscale.

C.2 Introduction

Calibration of a DEM through assessment of inter-particle behaviour in a large bed is necessary
to accurately model the saltation inception from a particle bed at the root of a brownout
simulation. Inception from non-uniform beds requires a different modelling approach to that of
uniform beds; XU et al. [172] show that larger particles have a lower inception velocity when in a
non-uniform bed compared with a uniform bed, conversely the smaller particles have a higher
inception velocity. Particle protrusion into the flow is identified as a factor by XU et al. [172], it
can be assumed therefore that the arrangement of particles in the bed and the way in which they
rearrange under load will also be significant. The penetrometry experiments help assess the
suitability of the DEM to reproduce particle interaction dynamics.

Typical methods of assessing suitability of granular simulation methods to accurately predict
dynamic powder behaviour concentrate on recreating the results of characterisation experiments
that are used regularly in industry. Granular materials can be tested at three scales:

• Microscopic, would typically involve Atomic Force Microscopy (AFM) to establish particle
stiffness or cohesion for an individual particle [106].

• Macroscopic, testing properties of a large amount of particles together such as the stiffness
using a confined compression test [188], shear using a shear cell [189] or flowability by
measuring the angle of repose, [190].

• Mesoscopic: this test range attempts to capture particle-particle interactions and
rearrangements in a large system of particles that is experimentally represented but small
enough to be modelled directly with DEM.

To bridge the gap between macroscopic and microscopic testing Danby performed
mesoscopic penetrometry experiments with a small probe capturing the inter-particle
rearrangements that occur as a probe pushes through a particle bed. The force recorded by the
probe over time captures each rearrangement as a change in force, the probe moves slowly to
capture quasi-static forces rather than dynamic forces associated with moving particles.

C.3 Literature review – use of DEM to simulate powder

characterising experiments

The DEM was developed to model large systems of particles; of continuing interest are
assessments of the ability of the method to model real world processes such as: hopper flows
[108], powder conveying [109], aerosol flows [110], filtration and separation processes [111] and
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many other scenarios. To model these systems physical and model parameters must be chosen,
physical parameters are those for which there is a direct parallel in the experimental case, such
as material density or particle diameter, model parameters are used in the simulation and do not
have an experimental equivalent, such as time step. Physical parameters are often chosen to
match those of the materials used in the simulation and model parameters are chosen either from
practicality or experience.

Several authors have simulated the powder testing processes enumerated in Section C.2
using DEM and compared the results with experiments. A macroscopic method of testing bulk
shear properties is performed using the Jenike shear cell [189]. A cylindrical pot that contains the
test powder is compressed with a defined load. The cylinder has upper and lower halves, the
lower half is fixed whilst the top half is driven horizontally at a fixed speed shearing the
confined powder within, the load resistance is recorded. Härtl and Ooi [189] conducted Jenike
style shear cell testing both physically and numerically and found that DEM predicts the shear
stress very well. It was also found that increasing the friction coefficient between particles had
only a small effect on the bulk friction coefficient since the friction caused a decreased number of
contacts between particles in the bed. Hartl also found that bulk friction reached an asymptote
as particle friction was increased.

Zhou et al. [190] used a modified DEM to simulate angle of repose experiments. The
simulated powder is held in a long narrow container, the floor at each end is then removed to
allow the powder to pour leaving a pile in the middle. The angle of slope of the powder is the
angle of repose. Zhou et al. [190] modified the DEM to include a rolling friction model and found
friction parameters to have a dramatic effect on the angle produced. With appropriate
parameters chosen the modified DEM was able to reproduce the experimental results.

The mesoscale range explores particle interactions in a large bed of particles undergoing
some dynamic loading. Albert et al. [191] experimentally investigated granular drag, the drag
experienced by an object moving through a granular material, using 0.4 - 0.3 mm diameter
particles. The apparatus consisted of a cylindrical die of particles that rotated at a fixed speed, a
portion of a cylindrical rod was immersed in the particle bed and fixed such that particles were
continuously pushing past it as the die turned. The rod was mounted on a load cell to measure
the drag. The experiment was continuous and could be run for an extended time to give average
results. Albert did not provide spectral results of the drag but the fluctuations reported show
distinctive sawtooth stick-slip particle reorganisation behaviour, linear increases in force
followed by sudden drops. Albert found the drag to be independent of grain size and velocity in
the low velocity regime, < 1.5 mm s−1 , it was however dependent on rod diameter and
immersion depth. A proposed drag expression, Eq.C.1, was developed:

Fd = ηgρH2dc (C.1)

where η is a shape parameter, g is gravitational acceleration, ρ is the density of the individual
particles, H is the depth of the cylindrical rod and dc is the diameter of the rod.

Frenning et al. [192] conducted powder penetration experiments: a conical probe was slowly
driven at a fixed speed into a die containing powders between 1− 20µm in diameter and the
force on the probe was recorded. Lactose powders were tested with varying amounts of the
additive Tween to control cohesion. Frenning et al. [192] looked at the spectral results of the force
fluctuations on the probe; as in the study by Albert these fluctuations are associated with particle
rearrangement. Frenning et al. found that the fluctuations were independent of die geometry and
probe shape, but the dynamics of small cohesive powders are dominated by agglomerate style
behaviour and are very similar to the dynamics of larger cohesionless particles. The power
spectral density was also presented and showed that the peak fluctuations had characteristic
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lengths of 0.2− 1 mm, Frenning et al. associated this with the formation of agglomerate clusters.
The fluctuations Frenning et al. recorded had the same distinct sawtooth pattern seen by Albert
and would appear to be a characteristic of low-speed granular flow.

C.4 Experimental probe indentation

C.4.1 Experimental process

The penetrometry experiment was performed by Danby and has been reported in full detail in
[6], a summary is included here.

Five soda-lime glass powder samples were tested, the size ranges were; 0-50µm, 70-110µm,
100-200µm, 300-400µm, 400-600µm. An HR Texture Analyzer was used to drive a probe and
measure the indentation force. The probe was a 2mm diameter rod tipped with a ruby sphere of
diameter Dprobe = 3mm fitted to a 5kg load cell mounted on the Texture Analyzer.
Manufacturers claim the equipment position measurement was accurate to within ±1 µm and
the force measurement accurate to within ±1 mN. The sampling rate was 500Hz.

A ’blank run’ indentation was performed without powder between runs to measure the
machine noise.

Each powder sample was carefully poured into a cylindrical die, 22.5mm deep and 12 mm in
diameter. A spatula was used to remove any excess powder such that a flat surface of powder,
level with the die, remained. Efforts were made to remove static charge build up using an
anti-static gun, the die was also earthed. To prevent significant changes in packing arrangement
the powder was poured carefully and the die was not agitated, as an additional precaution the
die was weighed to find differences in powder density that would occur if the packing
arrangement was significantly altered.

Each sample was tested 5 times, each at three different probe speeds of 0.5, 0.1 and 0.05
mms−1 all of which are below the fluidisation velocity uprobe <

√
2gDp.

C.4.2 Experimental results

Danby tested several particle sizes and found that the rate of change of force with depth was
dependent on the particle size. The schematic in Fig. C.1, [6], summarises the typical profile
shape of the probe force for particle beds of varying particle diameter. In a particle bed
composed of small particles, < 50µm, the resistance on the probe increases rapidly at first and
then begins to asymptote. The medium sized particle sample, 70− 110µm, produced a linearly
increasing force on the probe. The large particles, 400− 600µm, provided a constantly increasing
rate of probe resistance approximately proportional to y2.

The experimental results of Danby [6] for particle size 400-600µm were reprocessed from the
original data and are shown in Fig. C.2, 5 repeated runs are plotted with the results of the blank
run – the plots are offset for clarity. Each run gave the same qualitative behaviour: the resistance
increased with depth following a near quadratic profile and the magnitude of fluctuations
increased with depth.

Following Frenning et al. [192] each force trace can be considered to have the form
F = F̄ + F′, where F̄ is the mean and F′ is the fluctuating component. A least squares curve
fitting routine was used to fit the mean force with the exponential function:

F̄ = ayp (C.2)

where y is the probe depth and a and p are constants found for each case. As the bed surface is of
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Figure C.1: Typical behaviour profiles of probe force during penetration into beds of different
particle sizes, reproduced from Danby [6]. Solid line represents mean profile, shaded region rep-
resents fluctuation magnitudes.

varying shape the profiles are only considered once the probe is completely immersed. The
average of the five runs gave a = 0.173 and p = 2.06, a near quadratic behaviour as previously
considered. The other particle sizes behaved similarly to the schematic in Fig. C.1: the medium
sized particles provided a value of p ' 1 and the smallest particles gave p ' 0.5.

Danby [6] speculated that for the smaller particles the mean force becomes almost
independent of depth, that is the mean force is approaching an equilibrium state, perhaps if the
particle container was deeper and the probe was driven further the mean force would approach
a steady value as is the case for Albert et al. [191]. However, Albert also showed the dependence
on depth due to a pressure force, we might expect therefore to see a steady linear trend once the
granular drag had reached a constant. The packing density for the different particle sizes was
reported by Danby and are used to explain this behaviour. Fine powders can be strongly affected
by a cohesive force called the van der Waals forces, Danby showed that the particle size for
which the van der Waals force exceeds particle weight is Dp < 20µm. The smallest particles have
the lowest packing densities and therefore the largest void fraction because the van der Waals
forces are stronger than gravity, this causes the particles to adhere to each other rather than
occupying the voids to minimise gravitational potential as is the case for larger particles. Danby
explains that the smaller particles can accommodate the intrusion of the probe by moving into
these voids, so called local rearrangement. The larger particles, however, are already closely
packed so any rearrangement requires further reaching particle motion, this is termed whole-scale
rearrangement. For the smaller particles only the local particles are affected by the probe and we
see the mean force approach some steady state. Large particles, however, have a larger force
network which if it extends to the container walls would cause the force to increase with depth.
The parabolic increase might be explained by densification, a region of the stress-strain curve in
the compression of foam or cellular materials [193, Ch. 5], which occurs once the cells have
collapsed and the cell walls are in contact; this is analogous to the particles rearranging to
occupy the voids, as these are filled the load is more directly transferred to the particles.

Effect of changing probe speed

For the larger particles Danby conducted probe penetration experiments at 3 speeds: 0.05, 0.1
and 0.5 mm s−1. The results of Albert et al. [191] state that for slow speeds, well below the
fluidisation speed, the granular drag is independent of speed. The results presented by Danby
showed similar results, the probe force was independent of speed for the experimental runs.
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Figure C.2: Probe force during indentation – 5 Identical Experimental runs with powder diameter
400-600µm and the machine noise. Run 1 is offset by +30/Wp subsequent results are incremen-
tally offset by +60/Wp. Reproduced using raw data from [6].
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Length Length
Length scale mm Dp

Dprobe 3 6
rprobe 1.5 3
dp−max 0.6 1.2
Dp 0.5 1
dp−min 0.4 0.8

Table C.1: Length scales corresponding to physical bodies in the indentation process.

Spectral results of the experimental force profile

The force recorded by Danby for the 400− 600µm experimental indentations has been
reprocessed here to examine the spectral content as performed by Danby. The force trace was
passed through a Fast Fourier Transform (FFT) the exact process is explained in section C.5.5.
Probe depth, y, was used as the independent variable instead of time providing results in terms
of spatial frequency or wavenumber and therefore independent of probe speed. The
wavenumber was inverted to allow the fluctuations to be directly related to length scales present
in the simulation. Figure C.3 shows the Power Spectral Density (PSD),Φ, against length scale, l,
for the experimental results on log axes. PSD has been nondimensionalised with W2

p D−1
p , where

Wp is average particle weight; length scale, l, is nondimensionalised with average particle
diameter, Dp. Curves are offset and every 30th point is plotted for clarity.

Here the approach of Danby is expanded on: looking more closely at the large length scales
and using linear scales Fig. C.4 identifies a concentration of peaks associated with lengths from
1− 10Dp. The physical bodies associated with length scales in the experiment are given in Table
C.1, it is seen that the peaks in the experimental results correspond to l ' Dp and l ' Dprobe;
Runs 1, 3 and 4 favour the former Run 2 the latter but Run 5 shows peaks corresponding to both
scales. Logically these peaks must correspond to the distance the probe travels between force
fluctuations and therefore the distance the probe travels to build up the force before it slips.
From this we can presume that the particle contacts of most influence slip after a probe motion of
approximately Dp or Dprobe, quicker force changes are weaker seen by the low power in the low
length scales. Run 5 shows significant power distributed across all the large length scales the
greatest of which is the length of the probes path through the particle bed.

In Fig. C.3 for l < 0.5Dp as the length scale decreases the PSD decays steadily, this is
highlighted in Fig. C.5 with two fitted lines. Danby conducted experiments with several
different powder sizes and found a logarithmic relationship between the decay rate, γ, and the
particle size, Dp. The larger particles produced γ = −1.4, similar to behaviour seen by Frenning
et al. [192] who noted γ = −2, but as the powder size reduced γ increased to γ = −0.4 for
Dp = 0− 50µm. Danby speculated that local and whole-scale rearrangements were responsible for
the different behaviours, for small particles local rearrangements would have a relatively low
PSD for the large length scales but the large particles would have a wider reaching effect and
therefore the PSD of those rearrangements would be shifted toward the larger length scales.

The machine noise or ’blank run’ is included in Fig. C.3 as the lowest result. The contribution
of the noise can be seen in the other runs: where the power reduces in the smallest length scales
the steady decay gradient changes to become horizontal, this horizontal region as l → 10−2 is
noise.

The results show the same behaviour seen by Frenning et al. [192], the majority of power is in
the low frequencies, large l, but there are peaks in the high frequencies, small l. Frenning et al.
also observed there is a near linear decay trend as length scale decreases, the decay trend has an
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Figure C.3: Spectral power results of 5 experimental indentations by Danby [6] with powder size
400− 600µm. Results are offset incrementally by ×104 and every 30th point is plotted for clarity.
Reproduced using raw data from [6].
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Figure C.4: Spectral power plotted of 5 experimental indentations by Danby [6] with powder size
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154



C.5. Simulated probe indentation

10
−2

10
−1

10
0

10
1

10
4

10
6

10
8

10
10

Length scale, l/dp

P
S
D
,
Φ
/
W

2 p
d
−
1

p

 

 

Experimental result
Above knee fit
Below knee fit

Figure C.5: Spectral results of a single experimental run from Danby [6] indicating the decay
gradient γ and the ’knee’ where γ changes.

exponent of < −1. Figure C.5 shows one of the spectral results of experimental runs by Danby
and also indicates the two decay gradients, the first is mentioned by Frenning et al.. The two
gradients are separated by a ’knee’ where the gradient changes, this knee appears to be at
l ' 10−1.

C.5 Simulated probe indentation

The 3D simulation presented in this chapter is based on a 2D simulation developed by Danby
[6], the original simulation has been much adapted to accommodate the third dimension and
larger number of particles simulated. This section outlines the processes in the simulation and
how they were adapted from the 2D to the 3D. The results of the 2D simulation are summarised
with respect to the experimental results. Several cases for the 2D results were simulated with
different model parameters, the effects of these parameters are discussed and used to design the
parameter choices for the 3D simulations. Finally the results of the 3D simulations are discussed
and an assessment of the suitability of the DEM to simulate the powder penetration experiment
is made.

C.5.1 The simulation process

The numerical simulation is divided into a number of processes enumerated below:

1. Initialisation of variables and arrays. The physical domain is defined, Fig. C.6, the 3D
simulations use the 2D domain from Danby and set depth equal to width. Material and
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Figure C.6: The coordinate system and domain dimensions.

simulation parameters such as time step size are set. The particle diameters are
log-normally distributed, as the powder in the experiments was found to be, using
Eq. (C.3);

Dp =
1
2

eµ+σN (C.3)

where µ and σ are the mean and standard deviation and N is a randomly chosen variable
from a Gaussian distribution also with mean and standard deviation of µ and σ.

2. Injection of new particles or advancement of the probe. The simulation has two parts:
filling the container and probe indentation once the container is full;

(a) The injection routine injects a number of particles according to a predefined injection
rate. The rate is chosen to give a sparse ’sprinkling effect’ as seen in Fig. C.9. Each
particle is placed using a uniform random position in x and z across the domain and a
uniform random height between 1 and 4 rp above the highest previously existing
particle. Each particle is checked to ensure it does not interact with another particle
that has just been injected. This method was used in the 3D simulation developed in
this work.

(b) Probe advancement: after the fill the simulation of the probe indentation begins. The
probe is modelled as another particle in the system in terms of particle interaction
calculations, however, the velocity of the probe is fixed and the position is updated
from this fixed velocity.

3. Neighbour finding. DEM systems with many particles are in simple terms an N-body
problem, that is every particle could be potentially interacting with every other particle.
However, because the particles have a maximum radius of influence, the particle’s physical
radius, the system need only consider particles that are near each other: so called
’neighbours’. These neighbours can be found using a grid system; the domain is broken
into a uniform orthogonal grid of cell width equal to the largest particle radius, rp,max. A
list of neighbours for each particle is made from all the other particles present in the grid
cell and the 26 cells that surround it. If cohesion is enabled the larger value of rcoh, in
Eq. (3.68), is used as the cell width.

4. Force calculation. There are three types of forces that act on the particles:
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(a) independent forces, such as gravity and drag.

(b) particle-particle forces: elastic repulsion, damping, cohesion.

(c) particle-wall forces: elastic repulsion, damping, cohesion.

The particle-particle forces are calculated by processing the neighbour lists. If we designate
any single contact to be between particle a and b then for each a particle there is a list
consisting of many b particles. Each particle pair is tested for contact, δn > 0 in Eq. (3.61)
then Eq. (3.60) or 3.63 is solved to find the force on a, the force on b is identical but the sign
is reversed, Fn,i,b = −Fn,i,a. To find the total particle-particle force the forces are summed
over all the lists as particles will appear on many lists. The independent forces are applied
without need to consider particle location or neighbours, gravity is found using Eq. (3.48)
and drag is found using Eq. (3.82). Particle-wall forces are calculated for those particles in a
boundary grid cell using Eq. (3.71) or 3.72 where δn,wall > 0. The domain is bound on all
sides by walls.

5. Evolution of particle positions. The total force vector on each particle is now known. Here
the Simplectic Euler integration scheme [4] is used to find the velocity and positions of the
particles for the next time step. Danby used the nominally second order backward
difference scheme for stability, no stability issues were encountered as a result of solver
choice in the 3D simulation.

6. Iteration complete. The total time is incremented by ∆t, Eq. (3.67), and the process returns
to step 2 until either the fill condition, having the highest particle remain above a certain
height for a given number of time steps, or the probe having reached the maximum
descent point, < 15mm above the container base.

During probe indentation the neighbour grid methodology explained in stage 3 would
require a very coarse grid with cell width equal to the probe size. This would reduce the number
of cells in the domain and increase the number of neighbours in each neighbour list. This would
result in many more interaction checks and a significantly slower solution speed. The 2D code
used a hybrid grid system that contained larger cells around the probe, however, the grid itself
needed to be regenerated every time step. It was found during the 3D development that a more
efficient method than either the coarse or hybrid grid methods was to use the original grid and
deliberately include the probe on every neighbour list.

The two most demanding processes in the enumerated algorithm above are the neighbour
finding routine and the force calculation. There is a balance between these two processes in that
a finer grid takes longer to process and produces more lists but the total number of collisions
considered is smaller whereas for a coarse grid the neighbour lists are much quicker to generate
but leads to more processing in the force calculation. Through profiling the code and trial and
error an increase in grid cell width to 1.2rp,max gave a small improvement in iteration time.

C.5.2 2D test cases

The model parameters of the 2D particle simulations carried out by Danby are summarised in
table C.2, where kn and kcoh are the elastic and cohesive normal stiffness in Eq. (3.60) and 3.68
respectively, rcoh is the cohesive radius in Eq. (3.68) and Np is the number of particles in the
simulation.

Danby chose to simulate the experimental test cases with the two largest particle sizes
because of the increase in time step and the reduction in the number of particles in the
simulation, both reducing the cost of computation. The stiffness values were chosen to be
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Case
Diameter

Dp
µm

Particle-particle
kn kcoh

Nm−1 Nm−1

Particle-wall
kn kcoh

Nm−1 Nm−1

rcoh
r

Friction
Forces

NP

Restitution
coefficient

e

1 400–600 0.5 0 1.0 0 n/a No 1590 0.2
2 400–600 1.0 0 2.0 0 n/a No 1380 0.2
3 400–600 0.5 -0.05 1.0 -0.1 1.1 No 1590 0.2
4 400–600 1.0 -0.1 2.0 -0.2 1.1 No 1425 0.2
5 300–400 0.5 0 1.0 0 n/a No 2961 0.2
6 300–400 1.0 0 2.0 0 n/a No 2688 0.2
7 400–600 0.5 0 1.0 0 n/a Yes 1545 0.2
8 400–600 1.0 0 2.0 0 n/a Yes 1380 0.2

Table C.2: DEM parameters used by Danby and Shrimpton [7].

artificially low as is common practice in DEM in order to reduce the time step to feasible
computation times, it was shown by Langston et al. [194] that altering the stiffness could still
produce acceptable results. Damping was chosen to be artificially high to reduce rebound and
speed up particle settling with the justification that the damping force contributed only slightly
in the quasi-static force regime for the probe indentation. The other parameters were chosen for
comparison to consider the effects of including cohesion or friction models on the indentation
profiles.

Danby used a friction model and resolved the particle angular velocity and angular
momentum in the 2D simulations. Danby solved the friction force described in Eq. (3.66) and
resolved the particle rotation using the angular momentum expression, Eq. (3.75). Danby used a
friction coefficient of µ = 0.7 and a tangential to normal stiffness coefficient of kt/kn = 1/5, these
same values have been used in the frictional cases of the 3D simulations performed here. In 2 of
the cases in the 3D simulations performed in this work friction was used but only in addition to
the rectilinear forces, no rotation was solved due to encounters with stability issues when
expanding the rotational calculations to 3D.

Danby conducted extensive validations including particle-wall and particle-particle
collisions and the effect of changing time-step resolution. The collisions provided satisfactory
results. The change in time step resolution gave a curious result: for a small system of particles
the final positions were compared for varying time resolutions, it was found that no consistent
convergence was achieved for the final positions of particles by increasing the time resolution.

C.5.3 2D results

The force on the probe in the 2D simulations performed by Danby is presented in Fig. C.7
comparable with Fig. C.2. Danby highlights several differences between his experiments and his
2D simulations:

1. The magnitude of the forces in the 2D simulations are 2 orders of magnitude less than
those in the experiments.

2. The exponent of the mean force curve, p, for all the 2D cases was p ' 0.7 but the equivalent
experimental cases for this particle size gave values of 1.4 < p < 2.0. The 2D numerical
cases used sizes of 400− 600µm but p was similar to the experimental cases with particle
sizes of 0− 50µm.

3. The smaller particles in Cases 5 and 6 result in a slightly reduced value of p but the
reduction is less significant than seen in the experimental results for the same particle sizes.

Each model choice used 2 stiffness values; comparing Case 1 with 2, 3 with 4 etc. it is clear
that increasing the stiffness increased the amplitude of the fluctuations. The smaller particles in
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Cases 5 and 6 produced very small fluctuations compared with the larger particles in Cases 1
and 2. Cases 7 and 8 were identical to cases 1 and 2 but included a friction model, Eq. (3.66),
however there was large scale change in behaviour. The addition of rotation added an extra
degree of freedom to the particles, Danby expected this to effect the way particles rearranged but
there was no evidence of this in the results.

Spectral results

The 2D simulated force traces from Danby were reprocessed here to find the spectral profile,
Fig. C.8. The method used was identical to that used to process the experimental spectral results
presented in Fig. C.3 in Section C.4.2. All of the cases behave in a similar manner. The power is
concentrated in the larger length scales and all profiles have a decay rate, γ, similar to each other.
There is a distinctive sawtooth wave throughout the results in Fig. C.7 but most noticeable in
case 4, sawtooth curves are observed in the experimental results, Fig. C.2 but not as distinctive.
A ’kink’ in the spectral curves is obvious in all the 2D results, Fig. C.8, corresponding to a
distance of 0.05− 0.1Dp. Danby expected the smaller particles, in Cases 5 and 6, to have more
power located in the small length scales compared the other cases but this did not occur, even
the length scale of the ’kink’ was unaffected in the results with the smaller particles. Stiffness,
however, seems to have a consistent effect on the ’kink’ across all cases, the larger stiffness of
Cases 2, 4, 6 & 8 shifted the ’kink’ to slightly smaller lengths.

The frictional cases, 7 and 8, had an increased response amongst the the smallest length scales
compared to the smooth cases, Danby speculates this is a result of a numerical instability related
to the friction force calculation, Eq. (3.66) and the angular momentum calculation, Eq. (3.75).

Danby speculated that the restricted motion of a 2D system and the dramatically reduced
particle stiffness are the main cause of discrepancy between the results. The trends of the
experimental results were, however, recreated in the 2D model. Danby was able to draw the
following conclusions from the 2D probe work:

• The number of degrees of freedom in the 2D simulation makes it less easy for a particle to
slip past its neighbour when under stress.

• The number of critical contacts is likely to be responsible for reducing the force exponent of
Eq. (C.2), p. Critical contacts are contacts between particles that will slip if they are loaded
any more. Adding cohesion slightly reduces the value of p, whilst not changing the
packing structure it is speculated that it encourages critical contacts in the force network.

• The spectral results of the simulations are similar to the experiments showing the clear
dominance of high length scales and similar rates of decay, γ as the length scale decreases.

• The peaks in the spectral curves are in the vicinity of l ' Dp indicating that the probe
slipping past particles dominates the force trace. Danby suggests that the dominant
frequencies are not caused simply by particles sliding past the probe but rather a more
complex scenario involving extended force networks of multiple particles. Given that the
numerical simulation is free of machine noise this explanation accounts for the presence of
power in other length scales.

C.5.4 3D test cases

The findings of the 2D study along with the computational restrictions were considered when
choosing which 3D cases to model:

• 2D Cases 1 and 2, Table C.2, were chosen to be modelled as base cases as they were in the
2D simulations, the equivalent 3D cases are designated ’A’ and ’B’.

159



Appendix C

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

6

Depth, y/dp

F
o
rc
e
,
F
/
W

p

1

2

3

4

5

6

7

8

Figure C.7: The resistive force on the probe during indentation for the 2D simulations performed
by Danby [6]. Results are incrementally offset by +0.4/Wp and labelled with case numbers from
Table C.2.
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Figure C.8: Spectral power of the 2D results by Danby [6]. Results are incrementally offset by
×104 and labelled with case numbers from Table C.2. Reproduced using raw data from [6].
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• Smaller particles of Cases 5 and 6, Table C.2, require a smaller time step and also many
more particles are required to fill the container, this would increase the runtime past
feasibility in 3D. Danby noted no significant differences in the results with smaller
particles. Cases 5 and 6 will not be modelled in 3D.

• Danby speculated that cohesion would reduce packing density by inhibiting the natural
tendency of particles to minimise their gravitational potential, in the experimental work
Danby associated the packing density with the local and whole-scale rearrangement
behaviours. Friction should have a similar effect and so reduce packing density. Danby
noticed that the numerical cases with tangential forces, Cases 7 and 8, exhibited different
behaviour in the low length scale range, though the source may have been numerical
instability. Danby included rotation in Cases 7 and 8 but found change as a result. In the
2D cases friction did not alter the exponent but with the additional degree of freedom
offered in the 3D simulations the behaviour may change. Tangential forces will be included
in the 3D study by solving Eq. (3.66), but in the 3D cases no rotation was included as
Danby observed no effect of including rotation. Cases with friction are prefixed with the
letter ’F’, smooth cases have no tangential forces and are prefixed with ’S’.

• Danby concluded that the cohesive forces have a small effect on the particle packing
structure and slightly reduce the mean force exponent, p, discussed further in section C.5.5,
but overall cohesion had little effect on the results. For these reasons cohesive cases were
not modelled in the 3D simulations.

• As observed in Fig. C.7 all of the simulations by Danby resulted in mean force trends with
an exponent p < 1, Eq. (C.2), contrasting the experimental data, Fig. C.2, showing p ' 2.
The linear force model was used in all of Danby’s simulations to model the repulsion force
between interacting particles, Eq. (3.60). The Hertzian model is an alternative non-linear
force model, the rate of force increases with overlap, Eq. (3.63). The Hertzian model was
considered in half the 3D cases, ’H’ designates a case that used the Hertzian model and ’L’
indicates the linear model was used.

Initial findings from Cases A and B showed a clear increase in the exponent value, p, when
the stiffness increased. Danby discusses the reduction of stiffness as a possible source of
discrepancy in the DEM, to test this a further 2 stiffness values k = 2.0 and k = 4.0 designated ’C’
and ’D’. The wall stiffnesses had to be greatly increased to handle the weight of the particles
especially during the injection process, the wall stiffness was scaled with the particle stiffness
consistently in each case. A new test matrix was designed with 4 stiffness values, 2 frictional
cases using the lower stiffnesses and all replicated with the Hertzian force model, the exact
parameters are given in Table C.3. The restitution coefficient was greatly reduced for the 3D
simulations as this aided convergence during the filling process.

C.5.5 3D Results

Filling process

The particles were injected into the top of the domain at a constant rate, of particles per second,
with a uniform random position but constrained to ensure they were not initiated in contact
with other particles. The particles fell under gravity and settled at the bottom of the container.
Fluidic drag was also introduced to the simulation, for the injection process only, to provide a
terminal velocity to the falling particles, using drag reduced rebound occurrences and aided
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Case
Diameter

Dp
µm

Particle-particle
kn

Nm−1

Particle-wall
kn

Nm−1

Normal
model

Eq. (3.60)
3.63

Tangential
Forces

Eq. (3.66)
NP

Restitution
coefficient

e

Packing
density

ρpack

SLA 400–600 0.5 12.0 Linear No 42762 0.0001 86%
SLB 400–600 1.0 24.0 Linear No 36813 0.0001 74%
SLC 400–600 2.0 48.0 Linear No 32667 0.0001 66%
SLD 400–600 4.0 96.0 Linear No 31582 0.0001 64%
FLA 400–600 0.5 12.0 Linear Yes 40490 0.0001 82%
FLB 400–600 1.0 24.0 Linear Yes 34184 0.0001 69%
SHA 400–600 0.5 12.0 Hertzian No 39438 0.0001 80%
SHB 400–600 1.0 24.0 Hertzian No 35926 0.0001 73%
SHC 400–600 2.0 48.0 Hertzian No 32707 0.0001 66%
SHD 400–600 4.0 96.0 Hertzian No 31221 0.0001 63%
FHA 400–600 0.5 12.0 Hertzian Yes 36118 0.0001 73%
FHB 400–600 1.0 24.0 Hertzian Yes 31294 0.0001 63%

Table C.3: DEM parameter matrix for 3D simulations.

(a) 3% (b) 20% (c) 60% (d) 90%

Figure C.9: Particle filling process for Case A. Particles coloured by radius, rp. Only 20% of
particles are shown for clarity.

particle settling. The drag was calculated for a particle moving through a frozen air flow using
Eq. (3.82) assuming urel = up. This pouring process allowed structures that are dependent on the
physical properties of the particles to develop freely. These structures may contain voids,
force-chains or other arrangements that could be critical to the force experienced by the probe.
The sparse pouring process also mimicked the experimental procedure.

The filling process is shown in Fig. C.9, this injection method avoids the vertical oscillation
and instability that can occur if a large mass of particles all collide with the particle bed
simultaneously. As more particles are introduced the compute time for each iteration increased,
the filling process took several days of compute time, much longer for the stiffer frictional cases,
FLB and FHB.

Table C.3 lists the packing density for each case, ρpack =
4Npπr3

p
3Vbox

, where Vbox is the total
volume of the container. DEM is based on the soft sphere methodology, the repulsive forces
between 2 particles in contact are based on the overlap, δn as in Eq. (3.61). As stiffness increased
the overlap decreased and the packing density reduced. Friction reduced particle rearrangement
and created more voids between particles evident in the reduced packing density. The
experimental packing density was 61% indicating that using higher stiffnesses and the friction
model causes the simulation to approach the experimental packing density.

163



Appendix C

Probe speed

The probe in the experiments by Danby moved at Vexp =0.05, 0.1 and 0.5mm s−1 and no
dependence on speed was found. In the 2D simulations by Danby the probe speed was
Vprobe = 0.5mm s−1 but no other speeds were tested. Ideally this would have been the probe
speed in the 3D cases, however, the run time required for the probe to complete the necessary
number of time steps which that speed required was several months or even a year for the stiffer
cases. Cases SLA and SLB were tested with several faster probe speeds, the slowest being 20Vexp.
Case SLB has twice the stiffness of Case SLA. The results of these different speeds are shown in
Fig. C.10a and C.10b, it can be seen that the results all show similar behaviour with the
magnitude of the curves reducing with speed. It is curious that the simulation should
demonstrate a dependence on speed when the experiments did not. The speeds tested in
Fig. C.10a are all very high, it is possible that at lower speeds the results are independent of
speed but there is no indication of that from the results here.

Using the mean force fitting method, Eq. (C.2) in Section C.4.2, the exponent, p, and
coefficient, a, of the force profiles in Fig. C.10a and C.10b was found. Figure C.11 shows how
speed effected a and p. Both Case SLA and SLB approached the experimental result for a. The
larger stiffness of Case SLB produced larger values of p than in Case SLA but both cases failed to
reach experimental values of p at the lowest speeds and gave no indication of reaching it even at
Vprobe = Vexp. The speed of Vprobe = 20Vexp was chosen for the 3D simulation as it was both
obtainable computationally and was closest to the presumed results at the experimental probe
speed, Vexp. This speed is well below the fluidisation velocity.

Force-depth

The 3D numerical results of the Linear and Hertzian models are presented in Fig. C.12 and C.13,
the results are offset for clarity but all start at zero force. There is a clear trend and strong
fluctuations are present in the force profile, the dominant fluctuation being a sawtooth shaped
signal present in all the numerical results. In all cases the amplitude of the fluctuations increases
with depth, as in the experiments.

The same fitting method used in the experimental results, Eq. (C.2) in Section C.4.2, was used
to find the mean force coefficient, a, and exponent, p, of the 3D force results. For each case the
analytical expression for the mean force was found. As the bed surface is of varying
configuration only the results from the probe completely immersed are considered. The values
of a and p are given in Table C.4.

The purpose of running simulations in 3D was to better match the trends of the experimental
results. Table C.4 demonstrates that moving from 2D to 3D increases the value of a by an order
of magnitude but exponent, p, is unaffected; these effect minimal changes in the qualitative
results. Using the Hertzian model instead of the linear model did not change p with any
significance. Stiffness did not have a consistent effect on p or a but overall an increase in stiffness
seemed to increase the force magnitude. Friction appeared to have a large influence and brought
the exponent over the unity threshold such that the rate of probe resistance was increasing with
depth, the values of a and p were still smaller than those found in the experiments but the
behaviour of the frictional cases now shares several qualitative characteristics with the
experimental results.

Spectral response

In the unsteady simulation of a physical process, such as the one presented in this chapter, the
frequency of fluctuations can be attributed to the time scales of events in the simulation. In this
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Figure C.10: Force profile results for 3D Cases SLA and SLB, Table C.3, labelled by multiples of
experimental probe speed, Vexp. Case B has double the stiffness of Case A, both cases are smooth
and use the linear force model.
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Figure C.11: 3D cases A and B, Table C.3. Variation of mean force coefficient, a, and exponent, p
of Eq. (C.2), with simulated probe speed nondimensionalised by the experimental values. Case B
has double the stiffness of Case A.
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Figure C.12: Probe force during indentation – 3D Linear cases. Results labelled from Table C.3
and offset for clarity.
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Figure C.13: Probe force during indentation – 3D Hertzian cases. Results labelled from Table C.3
and offset for clarity.
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case a p Vprobe

SLA 0.226 0.667 20Vexp

SLB 0.195 0.868 20Vexp

SLC 0.207 0.847 20Vexp

SLD 0.274 0.776 20Vexp

FLA 0.0359 1.22 20Vexp

FLB 0.0138 1.71 20Vexp

SHA 0.186 0.816 20Vexp

SHB 0.216 0.770 20Vexp

SHC 0.234 0.825 20Vexp

SHD 0.157 1.01 20Vexp

FHA 0.0404 1.33 20Vexp

FHB 0.0312 1.47 20Vexp

Experimental (average of 5 runs) 0.0420 2.06 Vexp

2D (case 1: equivalent to SLA) 0.0361 0.734 Vexp

2D (case 2: equivalent to SLB) 0.0312 0.823 Vexp

Table C.4: Coefficient and exponent of the mean force expression, Eq. (C.2), and the probe speed.

case a probe diameter of Dprobe = 3mm is being driven through a bed of particles of
Dp = 400− 600µm at a fixed velocity, Vprobe.

Danby ran the 2D simulations with Vprobe = Vexp therefore the spectral results could be
acquired in the frequency domain using time as the independent variable and then directly
compared with the experimental results. Danby first separated the fluctuating signal from the
mean by subtracting the mean force expression from the force recorded, Eq. (C.2), using values
of a and p found from curve fitting. Danby applied a Hanning window to cut down on periodic
anomalies and then processed the signal with a Fast Fourier Transform (FFT) to convert the
signal into spectral space, using Matlab (2009). Danby performed the same procedure on the 2D
simulations and the experimental results, frequency results were reported in units of Hz with
PSD in units of N2/Hz.

In this study we wish to compare the results of simulations and experiments with different
probe speeds, time can not be used as the independent variable but the indentation depth is
constant throughout simulation and experiment allowing depth, y, to be the independent
variable. Using length instead of time results in wavenumber when converted to spectral space
by the FFT process. Wavenumber has units of inverse length, the inverse of the wavenumber
gives the length scale associated with that fluctuation. Table C.1 lists the physical length scales
present in the simulations and experiments.

In similar manner to Danby, the dominant length scales in the force trace were found by
separating the fluctuating signal, F′, from the mean, F̄. A Blackman-Harris window was applied
to the signal before processing to reduce periodicity anomalies, as it has superior performance,
[195], though no noticeable differences between the results of the Hanning and Blackman-Harris
windows were seen. An FFT was used to convert the signal to spectral space using Matlab
(2011a), the output of the FFT was multiplied by the complex conjugate of the output to produce
the Power Spectral Density (PSD), Ψ. The PSD has units of N2mm and wavenumber has units of
mm−1, the spectral plots were nondimensionalised using W2

p Dp, where Wp is average particle
weight; wavenumber is nondimensionalised with particle diameter, d−1

p . The wave number
value was inverted to present results in terms of length scale, l, in units of Dp.

The spectral results of the 3D cases are given in Fig. C.14, curves are offset and every 5th

point is plotted for clarity. Figure C.14 can be directly compared with the earlier experimental
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result shown in Fig. C.3 and the 2D results in Fig. C.8. The dominant peaks are all in the higher
length scale region, results displayed are several orders below the Nyquist frequency.

Both linear, Fig. C.14a, and Hertzian, Fig. C.14b, models produce similar results. The majority
of the power is located in the large length scales and the power decays rapidly as l decreases.
The Hertzian cases show a ’knee’ in the smaller values of l around which the gradient of the PSD
profile changes, the length scale of the ’knee’ that separates these two regions is 10−2 < l < 10−1

and can be seen to decrease with increasing stiffness. Linear cases SLB and FLA and FLB also
display this behaviour. Danby found observed a ’knee’ in the experimental results around which
the gradient changed this has been highlighted here in Fig. C.5, the feature seen in these 3D
results is very similar to the experimental results. Danby also found a very distinctive ’kink’ in
the 2D results which also shifted with stiffness, Fig. C.8, though there was no change in gradient
the feature exists in the same range of length scales.

Expanding on the approach by Danby the spectral results are additionally presented with a
linear vertical axis. Figure C.15 looks more closely at the dominant length scales around l = Dp.
Here the results are comparable to the experimental results in Fig. C.4. The numerical results
produce very similar spectral profiles to each other, indicating that the dominant rearrangement
length scales are independent of stiffness, normal and frictional force models. In all these plots a
family of peaks is clearly visible; this family are the harmonics associated with sawtooth shaped
waves. A pure sawtooth wave in the spectral domain has its largest peak as the wave frequency
and a set of harmonics identifiable as integer multiples of the principle frequency with
amplitudes reducing exponentially with a decay value of γ = −2, spectral analysis of a pure
sawtooth is illustrated in Appendix D for comparison. The pure sawtooth wave produces the
same basic shape as the experimental – Fig. C.3, 2D – Fig. C.8 and 3D – Fig. C.14 spectral results.
If a physical process, such as a particle slipping past the probe, creates a sawtooth wave then
only the length that produces the principle peak carries meaning, the other peaks are produced
by the FFT process as they build the triangular waveform but have no physical meaning. The
length scale associated with the triangular signal appears to be invariant to the parameters
chosen, consistently l ' 1.5Dp, the harmonic peaks are present as a series of smaller peaks as l
decreases.

It would appear that in most cases the single sawtooth peak dominates the spectral response,
in addition a closer look at Fig. C.12 and C.13 tells us that we should expect sub dominant length
scales much smaller than the sawtooth length, however their amplitude is low and difficult to
distinguish in Fig. C.14 but they may be related to the ’knee’ feature. The peak values present in
the 3D results, Fig. C.15, and the experimental, C.4, are similar to those predicted in Table C.1
more notably the middle range of particle-particle length scales. The sawtooth wave seems to
have a length scale slightly larger than the particle diameter, this could be due to particles being
carried by the probe before they slip and so extending the wavelength. This explanation would
also account for the very large amplitude in the force fluctuations if the particles that are carried
build up a lot of force before they slip.

The experimental results in Fig. C.4 indicate activity is concentrated across a narrow range of
high length scales from 1 < l < 10Dp with several peaks at ' 1.5, ' 2 ' 3.5 and 4Dp. The
distinctive sign of a sawtooth family of peaks is not as clear as in Fig. C.15 but the peak length
scale values match. These values, allowing some deviation, are what we expected based on the
physical length scales in Table C.1 and the peak at l ' 1.5Dp is the same value produced by the
numerical simulations.
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Figure C.14: Spectral profiles of the 3D numeric simulations. Length scale has been nondimen-
sionalised by particle diameter, Dp, power has been nondimensionalised by W2

pd−1
p . Every 5th

point is plotted for clarity and curve offsets are indicated in their individual captions. Curves
labelled by case as in Table C.3.
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Figure C.15: Spectral profiles of the 3D numeric simulations plotted with linear Y-axis and log
X-axis to indicate length scales associated with peak force fluctuations. Length scale, l has been
nondimensionalised by particle diameter, Dp, power, Φ, has been nondimensionalised by W2

pd−1
p .

Every 5th point is plotted for clarity and curve offsets are indicated in their individual captions.
Curves labelled by case as in Table C.3.
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C.6 Discussion

C.6.1 Whole-scale and local rearrangements

The experimental results of Danby showed that the mean force for smaller particles exhibited an
exponent value of p < 1, while larger particles have p > 2, Fig. C.1. Danby offered in
explanation of the behaviour of small particles: they rearrange easily and the force chains are
small because cohesion gives rise to a higher void fraction allowing the small particles to
rearrange by moving into the those voids. Conversely whole-scale rearrangement involves a far
reaching network of particles that are affected by the probe. A low exponent, p < 1, implies a
localised rearrangement of particles who react to the probe by moving into voids in the packing
structure. The 2D numeric results of Danby also offered a low exponent value with and without
cohesion. Since the DEM uses the soft sphere methodology and the stiffnesses are low compared
with reality the particles can pass each other easily and may accommodate the volume of the
probe by simply overlapping more with neighbouring particles, increasing δn in Eq. (3.61),
analogous to the void filling local rearrangement speculated by Danby. Increasing the stiffness
should extend the range of particles that are required to rearrange and make it more difficult for
particles to slip past each other, this is seen to some extent through increases in a and p in Table
C.4 for the increase of stiffness in the 3D simulations.

Danby suspected sawtooth signals are associated with sudden stress releases present in a
tightly packed bed within which rearrangements are difficult and this is typical of larger
particles with low cohesion-weight ratio as these are shown to have a lower void fraction [6].
The 3D simulations performed here consisted of large particles, tightly packed in the smooth
case as seen by the value of ρpack in Table C.3, and the sawtooth response behaviour was
strongly present. However, the packing density, ρpack, reported in Table C.3 decreased while p,
reported in Table C.4, increased. The soft particles will have a higher packing density because
they overlap more, due to the ratio of weight to stiffness, Wp/(knδn), meaning the packing
density in the simulations is not a reliable metric for predicting rearrangement behaviour. Above
an explanation of the mean force exponent value, p, speculated that the extremely soft particles
used in the simulations were capable of local rearrangements by overlapping in much the same
way as a particles move to occupy voids in a powder with a high void content. It would appear
then that ease of local rearrangement has a large influence over the value of p.

In all the numerical simulations, both the 2D Danby simulations and the 3D simulations
performed here, the magnitudes of the forces on the probe were significantly smaller than the
experiments, the reduced stiffness, kn, is responsible. Spectral results showed that despite using
different probe speeds the numerical results attribute the force fluctuations to similar peak
length scales seen in the experimental data and a similar power distribution across the length
scales is also seen. However, due to the reduced force magnitudes the PSD magnitudes are also
several orders of magnitude too small to reproduce the exact results.

C.6.2 Particle force visualisation

Figures C.16 and C.17 show particle positions shaded by compressive force, knδn, for 3D Cases
SLC and FLB respectively, dark particles have a low stress and pale particles are highly stressed.
The stress due to the weight of the particles is clearly shown by a multitude of dark particles
toward the top and pale particles near the bottom. Many particles showing much less stress due
to the packing configuration are seen as isolated dark coloured particles. No obvious structures
are apparent in the bed and none develop during the probe descent, an immediate few particles
in contact with the probe have a higher stress and this could be a clue to the distinctive sawtooth
pattern. If only a very small number of particles are taking the majority of the force from the
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(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure C.16: Probe progress during indentation case SLC. Particles shaded by normal force, knδn,
paler particles are experiencing greater force than dark particles.

(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure C.17: Probe progress during indentation case FLB. Particles shaded by normal force, knδn,
paler particles are experiencing greater force than dark particles.

probe then each rearrangement of those few particles would cause a large disruption in the force
trace. In summary there are two behavioural features observed in Fig. C.16 and C.17: the probe
resistance is caused by only a few particles and the force is distributed locally. The larger particle
size would cause fewer particles to be in contact with the probe and so promote the sawtooth
effect, this is visible in the experimental results of Danby discussed in Section C.4.2, where large
particles give rise to large γ, indicating the the larger particles have a greater sawtooth influence
on the spectral results.

The Figures of particle compression, Fig. C.16 and C.17, suggest that any near-probe particle
has a small cluster of dependants and together these hold a lot of force, when a particle slips
passed the probe the combined stress on the probe drops – but no large force chain was
involved, though from the view point of probe the effect is the same. This explanation is
corroborated by the spectral results that give a dominant length scale of slightly larger than Dp

because the particles are transported a short distance while a large force builds up. Evidence of
this concept would be visible as clusters or force chains of particles with similar compressive
force but consisting of only a few particles rather than a structure spanning the whole bed. There
appears to be a higher range of overlap present in the smooth case, C.16, this is to be expected as
the friction should help share the load, but the cluster phenomenon is difficult to see.
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The frictional cases showed a different behaviour, the exponent is large, p > 1, emulating the
behaviour seen by the experiments. But if we look at Fig. C.17 there are no more force chains to
be found than in the smooth case, Fig. C.16. Where does the higher exponent value come from
then? If we recall the original explanation offered by Danby of local and whole-scale
rearrangement we realise that strong force networks are not a necessity of this explanation.
Instead the whole-scale structure could be simply be farther reaching interactions diffused
amongst the whole bed. This is shown as a general increase in the magnitude of resistance in the
force traces, Fig.C.12. In the particle visualisation Fig. C.17 the particle forces seems to be more
uniform than in the smooth case of Fig. C.16 indicating a more widely distributed force in the
friction case.

C.6.3 Spectral analysis

There are many peaks in the 3D spectral results from Section C.5.5, the strongest ones are easy to
see on the linear scale, but the log scale exposes the many components of smaller amplitude. The
experiments are subject to noise, but the numerical results which also look noisy are exact, where
do these many small length scale results come from? These many low amplitude fluctuations
over a large range of l are all a result of particle force changes carried through the bed to the
probe. A sudden change in force in a particle results in a displacement causing force changes in
all contacting particles, this force travels like a wave through contacting particles back to the
probe. Damping in the fundamental equations, and indirect paths from the packing structure
will inhibit this information from reaching the probe. Small length scales indicate short duration
contacts, and the low power of these events indicate low stresses or distance from the probe.
Looking at Figs. C.16 and C.17 the stress amongst particles seems to be unrelated to distance
from the probe, therefore the fluctuations are likely to be small.

The most likely explanation of the slope of the spectral results, γ reported in Section C.4.2, is
that the sawtooth shaped signal has a strong influence but is not the only contribution to the
PSD. The experiments by Danby show that small particles produce a much shallower decay
slope, γ ' 0.4, and the large particles have a much steeper decay slope, γ ' 1.5. We have already
described that large particles having a more dominant sawtooth, therefore it follows that the
sawtooth contribution is increased in the larger particle cases agreeing with the whole scale
rearrangement notion. The other contributing signal could be a smoother interaction process
with slow changes in forces between particles rather than the violent build up and slip
behaviour, as seen in the small Dp cases of the experiments by Danby.

C.6.4 3D-2D comparison

The original aim of expanding the simulation to 3 dimensions was to attempt to recreate the
behaviour seen in the experiments. Danby speculated that using only 2 dimensions was a key
factor in the differences between his 2D simulations and his experimental results. However, the
results of the 3D simulations performed here were remarkably similar to the 2D simulations in
all but the frictional cases. The parameters of the 3D Cases SLA and SLB were identical to the 2D
Cases 1 and 2 in all but the number of dimensions and the results are very similar: the exponents
of the mean force are similar and the spectral results indicate similar length scales. It would
appear that simply expanding the model to 3 dimensions had no impact. However, friction was
modelled by Danby in the 2D Cases 7 and 8, Danby found that friction made no significant
difference to the behaviour, as seen in Fig. C.7; but including friction in the 3D simulation, Cases
FLA FLB FHA & FHB shown in Fig. C.12 C.12, had a large impact the exponent, p. The exponent
was now greater than unity indicating behaviour similar to the experimental results of Danby.
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C.7 Conclusions

DEM simulations can be significantly altered by choice of parameters and models. In this
chapter a physical process operating in the mesoscale was simulated using a variety of
parameters and models to find those that best match the experimental results in both spectral
and absolute terms. The physical process investigated was a fixed velocity probe indentation
into a particle bed. The work builds on the study by Danby [6] who produced the experimental
results used here and created a 2D simulation code that was adapted to 3D in this work.
Expanding on the knowledge acquired by Danby these new 3D simulations compared the
Hertzian and Linear normal force models, the merits of including friction and the effect of
different stiffness values. Computational restrictions prevented these simulations from running
with the correct probe speed, instead several speeds were simulated. The results were found to
be strongly dependent on speed – as speeds approached the experimental conditions the results
moved closer to the experimental result but were not predicted to match entirely. A
computationally affordable speed of 20Vprobe was used. From the result presented above the
following conclusions were drawn;

• The practice of reducing the stiffness of particles in DEM simulations prevents the force
magnitudes from being matched and therefore the PSD in the spectral results.

• In the experimental results of Danby the force recorded gave a mean with exponent p > 1,
Section C.4.2. The 2D results of Danby gave p < 1, Section C.5.3. Expanding the system to
3 dimensions did not change this, using a Hertzian force model did not change this,
increasing the stiffness may have increased the exponent slightly but the use of a friction
model gave a mean force exponent of p > 1 the closest match to the trend of the
experimental data, Section C.5.5.

• The numerical results, 2D and 3D, contain a strong sawtooth signal that is less obvious in
the experimental data though is argued to exist, Section C.5.5. This dynamic behaviour
indicates the same length scales as in the experimental results. The length scales associated
with the particle rearrangement are quantitatively reproduced and are very similar to the
physical length scales in the experiments with l ' Dp. The distribution of power across
other length scales in the simulated results qualitatively matches the experimental results
indicating that broader particle rearrangements across the domain contribute to the probe
force in a similar fashion to the experiments.

Is the DEM suitable for simulating the probe indentation method? The exact results could not
be recreated using the DEM, however, the spectral results were a good match. The 3D frictional
case matched the trends of the experiments but reproducing the force values will always be a
challenge using the DEM due to the computational restrictions using standard hardware.

Is the DEM suitable for modelling the sand bed in a brownout inception model? The
distribution of power in the 3D spectral results matches the experimental results of Danby. This
indicates that the particle rearrangements across the particle population is reacting appropriately
to the movement of the probe and therefore would be capable of reacting appropriately to the
forced motion of surface particles in an entrainment simulation.
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Frequency Analysis of Sawtooth
Waves

Sawtooth waves contain multiple sine or cosine waves to make up their shape. The Fast Fourier
Transform (FFT) finds those waves but since they are part of the same sawtooth it is desirable to
be able to identify those components with are part of the single sawtooth wave and other unique
frequencies that maybe present in the signal. Figure D.1 shows a sawtooth signal. It is good
practice to use a window when processing FFTs to avoid the singularity of periodicity, fig. D.2, is
the signal after a Blackman-Harris window has been applied. Applying the FFT and plotting the
results on log axis gives the result in fig. D.3, the principle frequency is visible at 10 Hz but there
is a large family of other responses decaying with the higher frequencies. If instead we plot the
FFT result on linear axis the picture is suddenly very clear, fig. D.4 shows the principle frequency
and a family of peaks decaying with increasing frequency. The family of peaks is easy to identify
because each subsequent peak is an integer multiple of the principle frequency, these lesser
peaks are called harmonics and help build up the triangular shape.
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Figure D.1: A sawtooth signal
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Figure D.2: A sawtooth signal with a BlackmanHarris window applied
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Figure D.3: The frequency response generated by an FFT on log-log axis

0 5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Frequency / Hz

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

Figure D.4: The low frequency response generated by an FFT on linear axis
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