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UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

ENGINEERING SCIENCES 

 

Doctor of Philosophy 

ARTIFICIAL INTELLIGENCE AND MATHEMATICAL MODELS FOR INTELLIGENT 

MANAGEMENT OF AIRCRAFT DATA 

by Peter Robin Knight 

 

Increasingly, large volumes of aircraft data are being recorded in an effort to adapt 

aircraft maintenance procedures from being time-based towards condition-based 

techniques. This study uses techniques of artificial intelligence and develops 

mathematical models to analyse this data to enable improvements to be made in 

aircraft management, affordability, availability, airworthiness and performance. In 

addition, it highlights the need to assess the integrity of data before further analysis and 

presents the benefits of fusing all relevant data sources together. 

 

The research effort consists of three separate investigations that were undertaken and 

brought together in order to provide a unified set of methods aimed at providing a safe, 

reliable, effective and efficient overall procedure. The three investigations are: 

 

1. The management of helicopter Health Usage Monitoring System (HUMS) 

Condition Indicators (CIs) and their analysis, using a number of techniques, 

including adaptive thresholds and clustering. These techniques were applied to 

millions of CI values from Chinook HUMS data. 

2. The identification of fixed-wing turbojet engine performance degradation, using 

anomaly detection techniques, applied to thousands of in-service engine runs from 

Tornado aircraft. 

3. The creation of models to identify unusual aircraft behaviour, such as 

uncommanded flight control movements. Two Chinook helicopter systems were 

modelled and the models were applied to over seven hundred in-service flights. 

 

In each case, the existing techniques were directed toward a condition-based 

maintenance approach, giving improved detection and earlier warning of faults. 
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CHAPTER 1 

 

1 INTRODUCTION 

1.1 Background 

Man has long desired to leave the ground and take flight like a bird, both for 

the pure emotional pleasure of it or, in the recent past, to provide rapid and 

convenient transport.  In Greek mythology, Icarus was able to fly, wearing 

wings fashioned from wax and feathers, but flew too near to the sun 

whereupon the wax melted and he fell into the sea and perished. Although 

Icarus lost his battle against gravity, eventually mankind was able to find a 

way to overcome it; until something goes wrong.  

 

On the 17th of December 1903, brothers Orville and Wilber Wright, two bicycle 

mechanics-turned-inventors, took turns (Orville was the first) to pilot the first 

powered aeroplane twenty feet above a wind-swept beach in North Carolina, 

Figure 1.1. Almost inevitably, air accidents soon followed. The first fatal 

powered aircraft accident was of the Wright Flyer III, in 1908: One of the two 

propellers separated in flight, tearing loose the wires bracing the rudder and 

causing the loss of control of the aircraft. Orville Wright, the pilot, broke his 

leg, pelvis and ribs and injured his back. Lieutenant Tom Selfridge, his 

passenger, suffered a crushed skull and died a short time later, [1] [2]. Clearly, 

this should not have happened, but it did, possibly because of ignorance, a 

weakness in the materials used or simply human mistakes. 

 

  

Figure 1.1: The Wright brothers’ first flight, [2].  

 

The word ‘ignorance’ may seem unfair, however, aviation was a brand new 

science then and many factors, which are now well known, had not yet been 
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encountered and were therefore not considered. One person died, which in 

statistical terms may not be significant, but for the family of Lieutenant 

Selfridge it was nothing short of a tragedy. 

 

The worst accident to date, caused by mechanical failure, was a Japan 

Airlines Boeing 747 that crashed on Mt. Osutaka, Japan, on August the 12th 

1985. All but four of the 524 people onboard were killed. Improper repairs, 

after a tail strike seven years earlier, led to a rupture of the pressure bulkhead 

and loss of all controls, [3]. Obviously this should not have happened, but it did 

with colossal ramifications. 

 

The consequences of accidents can be very severe, not only in fatalities but 

also in the grounding of whole fleets of aircraft. For example, on the 25th July 

2000, an Air France Concorde caught fire shortly after takeoff from Paris' 

Charles de Gaulle Airport on a charter flight to New York, Figure 1.2. The 

pilots lost control and the plane crashed into a hotel restaurant. Subsequent 

investigations revealed that the aircraft had run over a metal strip which had 

earlier dropped from a Continental Airlines DC-10 during its departure roll. 

This caused the tires on the Concorde to explode and puncture the under-

wing fuel tanks. All 109 passengers and five people on the ground died and, 

as a result, all Concordes were removed from service, [4]. Concorde was the 

result of many years of research, design and engineering development. It 

pushed the boundaries of supersonic flight further than it had ever gone in civil 

aviation, and in one fateful day it disappeared forever. 

 

Figure 1.2: Concorde catching fire on takeoff, 2000, [5]. 

From the relatively simple Wright Flyer we now have aircraft which are 

extremely complex engineering systems. A human is not capable of 

continually monitoring all of the data in real-time and determining the integrity 
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of the vehicle or prognosis of failure and accident so sophisticated automated 

methods have been developed. 

 

As will be described below, the focus of attention regarding flight safety has 

changed. Initially, all that could happen would be to visit the accident site, 

evaluate the wreckage, sweep up the bits and try to learn from what had 

happened and to try to prevent such an incident ever happening again. This 

was of small consolation to either the people directly involved in the accident 

or those left behind to mourn the loss. Accidents are almost always a 

consequence of several separate incidents colluding to cause the eventual, 

and often catastrophic, final accident. It is almost impossible to predict such a 

confluence of events so, if the loss of an aircraft is to be avoided, mechanisms 

have to be put in place to alert the pilot or ground crew of a potential accident 

arising. This may be a structural problem, an aerodynamic limitation about to 

be exceeded or, indeed, an error of judgement. Such monitoring is becoming 

the norm and has been in place in both commercial and military aviation for 

some time. Sensors placed in specific locations monitor the performance of 

critical items and alert the pilot to a potential failure. This requires the 

characteristics of the aircraft to be well established in order to provide a 

yardstick from which to base any decision to raise an alert. There will often be 

several different sensor systems, allowing for the failure of one system to be 

highlighted and a correct decision to be made. False alarms are detrimental to 

efficient operation and minimising of operating cost, however, missing a vital 

change in aircraft component behaviour is an extreme situation to be avoided 

at all cost. 

 

The way in which a sensor being triggered is acted upon is now being 

revisited. Traditionally, an alert would mean landing as quickly as possible and 

grounding the aircraft, or in certain circumstances, the entire fleet. This has 

profound consequences for the efficiency of the airline and can endanger the 

goodwill of the paying passenger. In a military scenario, this would mean the 

removal of a vital aircraft from an operation. 

 

If a move from a diagnostic procedure, where the sensors monitor what has 

happened, can be made to a prognostic method where the sensor can make a 

prediction when it is likely to happen, then safety can be retained, with the 
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correction of the problem made at a convenient time in the aircraft’s schedule 

or permit the military operation in question to continue without any interruption. 

 

A final comment is that, because of the complex nature of modern aircraft, 

data produced by the sensors fitted to an aircraft fleet will be considerable in 

magnitude. The question now facing a system designer is whether you can 

“see the wood for the trees”. The management of this enormous quantity of 

data, in order to transform it into useful information, is the basis of this thesis. 

 

1.2 Air Accident Investigation 

There are moral, commercial and political pressures to reduce the number and 

severity of accidents because of the cost, both in terms of money and human 

life. To do this, accidents are investigated to see whether any lessons can be 

learnt to prevent them in the future.  

 

The roots of the UK Air Accidents Investigation Branch (AAIB) date back to 

1915. Its stated purpose is: “To improve aviation safety by determining the 

causes of air accidents and serious incidents and making safety 

recommendations intended to prevent recurrence.", [6]. After an accident 

investigation, the AAIB issues a report which may include a number of 

recommendations. These recommendations are compiled to define the 

airworthiness requirements for an aircraft to be safe to fly, and so receive 

airworthiness certification. Figure 1.3 shows the number of AAIB 

recommendations between 2004 and 2009 and the number of resulting 

European Aviation Safety Agency (EASA) final recommendations. As more 

accidents occur, these requirements become more stringent with the aim of 

making aviation safer. The airworthiness requirements ensure that an aircraft 

has been designed and manufactured to international standards, has a 

maintenance programme by which the aircraft can be serviced, checked and 

repaired and has a continued airworthiness programme that supports the 

aircraft in operation, [7].  
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Figure 1.3: AAIB and EASA recommendations per year, [8, 9] 

Figure 1.4 depicts the cycle of aircraft crashes or incidents leading to an 

investigation, which may make recommendations for airworthiness, which in 

turn affects aircraft design and maintenance policies.  

 

Figure 1.4: Schematic of the crash-investigation cycle 

Organisations and laws have been set up in order to enforce adherence to 

airworthiness regulations.  In the United States, the Air Commerce Act 

became law in 1926 to ensure civil air safety, which led to the Federal Aviation 

Administration (FAA) being formed in 1958. In the UK, aircraft safety was the 

responsibility of the Department of Transport from 1919 until the formation of 

the Civil Aviation Authority (CAA) in 1972. 

 

Despite airworthiness requirement revisions and updates, the number of fatal 

accidents per flying hour for US airlines has not noticeably decreased in the 

last twenty years (Figure 1.5). The accident rate has, however, slightly 

improved over the last ten years, despite the rise in flight hours from about 12 

million to nearly 20 million. The percentage of worldwide fatal accidents, 

Airworthiness 
Requirements 

Crash/Incident 

Investigate 

Recommendations 

Aircraft Design/ 
Maintenance 
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caused by mechanical failures, has not decreased over the past fifty years 

(Figure 1.6). The figure represents 1,300 fatal accidents, involving commercial 

aircraft, for which a specific cause is known. Aircraft with ten or less people 

onboard, military aircraft, private aircraft and helicopters are not included.  
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Figure 1.5: US airline accidents per 10,000 flight hours, [10] 
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Figure 1.6: Percentage of world-wide fatal aircraft accidents, caused by 
mechanical failure, by decade, [11] 

1.3 Aircraft Diagnostics 

In order to improve safety, designers and airworthiness authorities have been 

trying to move towards systems that give a ‘red light’ indication of mechanical 

faults before they develop and cause accidents. This would allow the pilot to 

make a safe landing and the fault could be fixed without loss of life. 

 

In order to move to a ‘red light’ system, the process for designing, operating 

and maintaining aircraft has to be changed. Traditional aircraft design has 
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been based either on the “fail-safe” principle (whereby any single failure will 

permit the total structure to remain “safe” and will not lead to a catastrophe), or 

on the “safe-life” principle (whereby those components which cannot be 

designed to be “fail-safe” will have a fixed life, based either on theoretical 

design principles or testing to destruction). The assigned life-limit is based on 

the worst anticipated operational conditions and will therefore be excessively 

conservative (i.e. expensive) for aircraft operating under more normal 

conditions. Under the ‘red light’ system, onboard sensors can be used to track 

the actual usage of individual aircraft and components, which can then be 

used to assess the current condition of the aircraft. Hence, aircraft design and 

maintenance is transitioning from the current Time-Based Maintenance (TBM), 

where aircraft are inspected/maintained at regular intervals, to Condition-

Based Maintenance (CBM), where maintenance is only performed when it is 

triggered by, for example, measured usage or degraded performance.  

 

1.4 Aircraft Prognostics 

The next progression in the development of flight safety is towards a ‘timeline’ 

based system, i.e., to make a prognosis of when a current fault may lead to a 

failure. The more warning that can be given, the cheaper it is to take corrective 

action (for example, maintenance can be carried out during scheduled down 

time rather than aborting flights). In order for such a methodology to operate, 

data analysis algorithms need to produce a fault propagation timeline, with 

associated uncertainty (Figure 1.7). 

 

Figure 1.7: Hypothetical percentage system health prediction over time showing 
uncertainty and potential warning times. 

Thus, three system types for airworthiness improvement can be described as: 

Prognosis + Uncertainty 

 

Time 
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 Crash/Incident – no warning of failure; the aircraft or its debris is 

investigated to try to prevent re-occurrence. 

 Red Light – faults are diagnosed and the systems give warning of 

imminent failure, avoiding the crash or incident, but corrective action is 

still expensive. 

 Timeline – the propagation of faults to failure is predicted to give a 

prognosis of when corrective action needs to be taken, when 

convenient, thus reducing costs and avoiding incidents. This could be 

described as an orange light, indicating that a failure mode has been 

detected. 

 

To realise this move to CBM, and the desired improvements in aircraft 

Management, Affordability (reduced cost), Availability, Airworthiness (safety) 

and Performance (MAAAP), the data should be intelligently managed. 

 

These are the items on the wish list and the thesis describes a research effort 

on three fronts, to provide proven methods that can be used on aircraft, both 

commercial and military, to furnish these aspirations. 

 

1.5 Thesis Overview 

This thesis asks the question “can an improved management and analysis of 

aircraft data lead to an improved detection of faults?” To investigate this 

question, and to determine which types of analysis are most effective in 

identifying potential fault conditions, a research programme was undertaken 

making use of Artificial Intelligence (AI) and mathematical models to develop 

novel algorithms to manage and analyse aircraft data for improved MAAAP. 

These developed algorithms were validated against large, in-service aircraft 

datasets, and have led to the definition of those key elements required in a 

framework for managing aircraft data. 

 

A survey of both current practice and state-of-the-art aircraft data recording 

and monitoring techniques was undertaken and is presented in Chapter 2. The 

review includes an introduction to the typical data sets available for modern 

aircraft and the challenges faced when analysing this data.  
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As already highlighted, three separate, but related, investigations were 

undertaken during the course of this research. In each, the aim was to 

improve the current system from crash/incident investigation to an automated 

red-light warning system and, if possible, to a timeline giving early warning of 

failures.  

 

A summary of each investigation follows: 

 

1) HUMS CI Intelligent Health Management: The management of 

helicopter Health and Usage Monitoring System (HUMS) Condition 

Indicators (CIs) and their analysis using a number of techniques, including 

data reduction by Principal Component Analysis (PCA), adaptive 

thresholds, prognostic trends and clustering. The MOD Chinook fleet was 

used as an example. The HUM system was installed on UK MOD Chinook 

helicopters in the late nineties and offers a red-light capability to warn of 

imminent failure. The work carried out by this study aims to move this 

towards the timeline prognosis, reduce the number of false alarms, and to 

analyse a wider number of components and data signals than the current 

system. The initial findings of the analysis were published in the Journal of 

Aerospace Engineering in 2005, [12], which was awarded the ‘Derek 

George Astridge Safety in Aerospace’ award. This work is presented in 

Chapter 3. 

 

2) Aircraft Turbojet Engine Performance Degradation Models: The 

identification of engine performance degradation, using anomaly detection 

techniques, applied to in-service data from Tornado aircraft engines. 

Current analysis involves manual data recording and analysis that may 

result in a red-light warning to ground an aircraft. This study aims to move 

this to an automated system that identifies failures much earlier. The 

preliminary analysis was presented at the Institute of Electrical and 

Electronics Engineers (IEEE) aerospace conference in 2006, [13]. This 

work is presented in Chapter 4. 

 

3) UFCM Identification: The use of linear models to identify unusual aircraft 

behaviour, such as Uncommanded Flight Control Movements (UFCM), 

applied, as an example, to Chinook helicopters. These occurrences are 

currently only analysed after the incident has occurred. The work carried 
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out by this study aims to move towards a red-light warning before the 

event, and to identify events that are currently missed. This work is 

presented in Chapter 5. 

 

These three approaches cover different aspects of aircraft operation which 

could contribute to an accident occurring. They cover both fixed and rotary 

wing airframes and engines. Two are focussed on engineering issues; the 

third examines the influence of the pilot. In this way, the ability of the 

methods, developed in this thesis, to perform in differing situations and under 

differing influences provides a solid justification for their adoption in the future. 

 

An overview of the work presented in this thesis was also published in the first 

International Conference on Prognostics and Health Management in 2008, 

[14]. The thesis was undertaken while the author was in the employment of 

GE Aviation Systems.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

A survey of current practice and state-of-the-art aircraft data recording and 

monitoring techniques is presented in this Chapter. Common sources of 

modern aircraft data are described and the need for this data to be intelligently 

managed and analysed is presented. A brief introduction to AI and modelling 

techniques is also presented. Finally, examples from the literature of 

managing and analysing aircraft data for improved MAAAP are discussed. 

 

2.1 Modern Aircraft Data Sources 

Since the study aims to manage and analyse aircraft data, this section 

identifies the most important data sources currently recorded for modern 

aircraft that may require intelligent management and analysis. The following 

data sources are described: 

 Flight Data Recorders (FDR) 

 Health and Usage Monitoring Systems (HUMS) 

 Operational Loads Monitoring (OLM) 

 Engine Health Management (EHM) 

 Structural Health Monitoring (SHM) 

 Debris Monitoring 

 Maintenance Databases 

 

2.1.1 Flight Data Recorders (FDR)  

Flight Data Recorders (FDR) (also ADR, for Accident Data Recorders) have 

been used for many years to record flight parameters such as altitude, 

airspeed, control positions and accelerations. The data is typically recorded 

between 16 Hertz (Hz) (for parameters that vary quickly, like roll-rate) and 

0.25 Hz (for parameters that don’t change very often, such as ‘weight on 

wheels’ flags). They may also record cockpit voice, radio and background 

sounds. The first FDRs, developed in 1939, used light shining on photographic 

film. However, it was not until the 1950s, spurred on by the grounding of the 

fleet of De Havilland DH106 Comets after a series of accidents, that FDR 

units, as we know today, were developed, [15, 16]. FDR data are primarily 
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used for air accident/incident investigation; further use of FDR data to improve 

MAAAP would be invaluable. FDR data is also used for Flight Operations 

Quality Assurance (FOQA) applications, such as the Helicopter Operations 

Monitoring Programme (HOMP), [17, 18], which monitors flight operations by 

routinely analysing aircraft flight data to detect deviations from normal, 

expected, or flight manual practice. They provide continuous operational 

quality control with timely feedback on sub-standard practices, and produce 

valuable information for the evaluation and improvement of operating 

procedures. 

 

White and Vaughan discussed how fleet usage monitoring, using FDR data, is 

essential in improving aging US Army helicopter safety, availability and 

affordability, [19]. The remaining life of components are determined using 

assumed worst-case flight profiles across the fleet. The actual flight profiles 

will vary widely from these assumptions. FDR data can be used for ‘flight 

regime recognition’, which can be used to determine the remaining life of 

components more accurately, improving safety and reducing costs. 

 

2.1.2 Health and Usage Monitoring Systems (HUMS) 

Since the 1990s, helicopters have been fitted with Health and Usage 

Monitoring Systems (HUMS), which particularly focus on measuring and 

recording vibration of gears and bearings, and on performing Rotor Track and 

Balance (RTB), along with recording a range of other health and usage data. 

In fact, HUMS has been mandated for retro-fit to all United Kingdom (UK) 

Ministry of Defence (MOD) rotary wing aircraft capable of carrying nine or 

more passengers, with Operational Service Dates (OSD) past 2010, and to all 

new helicopter procurements, [20]. Typically HUMS vibration data is acquired 

for a short period at very high frequency (e.g. 100 kHz) at one or more points 

during a flight. The data is usually summarised by the airborne unit using 

signal processing and statistics to derive CIs. 

 

Liu and Pines, of the University of Maryland, have analysed US civil rotorcraft 

accidents caused by vehicle failure or malfunction, between 1998 and 2004, 

[21]. Figure 2.1 shows a pie chart of the results of their analysis, giving the 

number and percentage of accidents for each cause.  
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Figure 2.1: Causes for vehicle factor related US civil rotorcraft accidents (1998-
2004), [21] 

The study reached the following conclusions: 

 

1. The average ratio of the number of accidents caused by vehicle factors 

to the total number of accidents, during the period of 1998 to 2004, has 

been reduced by more than one half, in comparison to the accident 

data examined between 1963 and 1997.  

2. Engine failure or malfunction remains the primary reason for vehicle 

factor related accidents.  

3. The turbine engine has a potential vulnerability to mechanical failures.  

4. Human errors account for almost one in five vehicle failure or 

malfunction related accidents (design, manufacture, maintenance or 

operation).  

 

To improve the performance of the next generation of integrated mechanical 

health and usage monitoring systems, the study made the following 

recommendations:  

 

1. The monitoring of the mechanical properties and thermal conditions of 

the turbine, the conditions of the bearing and the adaptor/coupling in a 

turbine engine deserve HUMS researchers’ focus.  
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2. Clutch and coupling are two components in the drive-train which are 

susceptible to failure. These components have not received enough 

attention.  

3. The diagnostic methodologies of the main rotor, as well as tail rotor 

fatigue fracture, should be pursued.  

4. Tail rotor drive shaft hanger bearings need to be considered carefully 

in a HUMS system.  

5. Better methodologies and systems should be developed for the 

monitoring of hydraulic, fuel and oil systems. In particular, a reliable 

fuel monitoring and fuel starvation alarm system is needed. 

 

Draper, of the UK MOD HUMS Integrated Project Team (IPT), discussed the 

operational benefits of using HUMS on helicopters, [22]. The Chinook 

GenHUMS completed an In-Service Reliability Demonstration (ISRD), which 

found a system reliability of over five thousand flying hours, significantly above 

the reliability requirement for the aircraft to have a 99% probability of 

successfully completing an eight flying hour working day, without experiencing 

a system failure (equating to a minimum Mean Time Between System Failure 

(MTBSF) of about eight hundred flying hours). Use of HUMS has reduced the 

time to diagnose and rectify Uncommanded Flying Control Movements 

(UFCM) by 75% and prevents unnecessary removal and replacement of 

serviceable flight control components from the aircraft. Overall, HUMS has 

delivered cost savings, resulting from preventing incidents and accidents, 

equating to approx £4.6m per year. Having outlined these benefits, Draper 

highlighted that there was the potential for greater improvements by further 

developing the management of the HUMS data. 

 

Land et al also studied the potential savings of HUMS and concluded that it 

both increases vehicle reliability and safety while significantly reducing 

maintenance and insurance costs, [23]. 

 

2.1.3 Operational Loads Monitoring (OLM) 

Traditionally, fatigue damage to critical components was estimated solely 

using flight time and β-factors (damage, measured in terms of cycles, per 

hour). However, analysis of in-service flight data shows that there is often little 

correlation between damage and flying hours. Figure 2.2 gives an example of 
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in-service flight data showing how there can be little correlation between 

damage and engine flying hours (EFH).  

 

 

Figure 2.2: Showing that critical area life consumption (number of cycles) is not 
well correlated with flight time, [24] 

To improve the estimation of fatigue damage, UK military jets started to use a 

single fatigue load meter on each aircraft, which counts time spent in various 

normal acceleration (G) bands. Fatigue meters give a better measure of how 

much damage is likely to have been induced on critical components in each 

flight. DEF STAN 00-970 section 3.2.24, issued in 1983, stated that “provision 

shall be made in every aeroplane for the installation of an RAE fatigue load 

meter and one or more switches to start and stop the meter automatically in 

flight.”, [25]. 

 

Operational Loads Monitoring (OLM) programmes give a much improved 

measure of damage on particular components. A large number of strain 

gauges (e.g. a legacy UK MOD combat aircraft had about fifty) are used to 

record the strains on key components during normal operations of a small fleet 

sample. The fatigue lives of the fleet sample components are calculated from 

the strain measurements. The fatigue lives of the rest of the fleet are 

estimated by extrapolating the sample results using recorded parametric data. 

For example, the Canadian Air Force CC130 fleet has an OLM Individual 

Aircraft Tracking (IAT) programme and a Data Analysis System (DAS), which 

was developed to process and analyse both parametric and strain data and 

assess usage severity, [26]. However, OLM is prohibitively expensive to apply 

to a whole fleet and comes with its own problems of calibration (especially in 
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different configurations such as with/without weapons) and signal data 

corruption, [27].  

 

An emerging technology, developed in the Fleet and Usage Management 

System (FUMS™) (originally developed by MJA Dynamics, then Smiths 

Aerospace and now GE Aviation Systems), [28], uses models, combining a 

number of techniques including Artificial Neural Networks (ANNs), trained 

using OLM data from one aircraft, to predict the damage across the fleet using 

FDR data that is always recorded for air accident investigations. These 

methods have been shown to be very accurate and much cheaper than 

monitoring strain across a large fleet, [29]. For example, Figure 2.3 shows how 

well the blind predication of fatigue over three flights, including sortie profiles 

and configurations not in the training data, match the strain gauge measured 

values. The author was part of a team that updated DEF STAN 00-970, [30] 

and the associated guidance material to cover the use and qualification of 

non-adaptive prediction methods, such as ANNs, to monitor critical component 

fatigue for airworthiness approval. 
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Figure 2.3: Blind prediction of military aircraft fatigue, [29] 

 

2.1.4 Engine Health Management (EHM) 

EHM and Engine Usage Monitoring Systems (EUMS) are increasingly being 

used in both civil and military aircraft to record spool speeds, temperatures, 

pressures, vibration and usage of turbine engines.  
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Jaw reviewed recent advancements in aircraft EHM technologies and made 

recommendations for the future, [31]. He sums up EHM progress as: 

 

“The traditional Engine Health Management approach uses fleet statistical 

data and signal processing techniques to detect and isolate faults. Modern 

EHM approaches enhance the traditional approach with physics-based 

models, individual engine performance tracking, predictive algorithms and 

decision support capabilities.” [31] 

 

The following EHM functional areas can be identified: 

1. Gas path performance monitoring. 

2. Oil and debris monitoring (considered in section 2.1.6). 

3. Vibration monitoring. 

4. Usage and life monitoring. 

 

The major requirements of EHM are:  

1. Automated monitoring, analysis and decision support. 

2. Accurate results with high confidence. 

3. Robust capabilities against noise and faulty information. 

4. Wide coverage of fault conditions. 

5. Predictive capabilities. 

6. Using existing, or as few as possible, sensing instruments. 

7. Flexible, modular and open architecture. 

8. User friendliness. 

 

EHM systems are used to identify “engine component problems, commonly 

called faults or failures, including: erosion, corrosion, fouling, dirt build-up, 

foreign object damage (FOD), worn seals, excessive tip clearance, burned or 

warped turbine stator or rotor blades, partially or wholly missing blades, 

plugged fuel nozzles, rotor disk or blade cracks induced by fatigue or 

operation outside normal intended limits, etc.” [31]. 

 

Jaw’s review [31] shows how useful EHM can be in identifying a wide range of 

engine faults. The requirements listed above can be carried across to any 

health monitoring program and can form a good basis for the design of more 

intelligent systems. 
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2.1.5 Structural Health Monitoring (SHM) 

Increasingly, dedicated systems are fitted to aircraft to monitor the health of 

structures. For example, an array of Acoustic Emission (AE) sensors can be 

used to detect the sounds of cracks developing in both metal and composite 

structures. The arrival times at each sensor can be used to triangulate the 

exact location of the crack, even if it is not visible to inspection. Examples of 

the types of degradation measured are: corrosion, fatigue, damage, 

delamination/disbanding, etc., Figure 2.4. 

 

  

Figure 2.4: Examples of disbond, crack and corrosion damage, [32] 

 

Ever improving sensing and processing technologies are being used to assess 

the health of structures. For example, Roach and Rackow, of the FAA 

Airworthiness Assurance Centre in the USA, have used Distributed Sensor 

Systems (DSS) for Structural Prognostic Health Monitoring (SPHM), [32]. The 

DSS include the use of the following in-situ sensors: Comparative Vacuum 

Monitoring (CVM), Piezoelectric Transducers (PZT), fibre optics and remote 

field eddy currents. Figure 2.5 shows example outputs from PZT sensors. The 

white dots indicate the position of the sensors, and the colours indicate areas 

of crack damage after different numbers of cycles. These sensors are 

combined to create distributed networks to monitor large panels.  

 

 

Figure 2.5: Colour-coded PZT heat-map images showing crack growth, [32] 
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2.1.6 Debris Monitoring 

As bearings and gears wear, crack, fatigue or are damaged, debris is 

deposited in the oil that is used as a lubricant. This debris can be collected in 

oil filters, magnetic plugs, dedicated Oil Debris Monitors (ODMs), or detected 

by performing Spectral Oil Analysis (SOA) on a sample of the oil to find 

element concentrations. Debris analysis has been in use since the early 

1980s, when the Canadian Defence Research Establishment Atlantic (DREA) 

developed it to try to evaluate the condition of their Sea King helicopter 

gearboxes, which had been plagued with main gearbox problems, [33, 34]. 

 

Dempsey  has used oil debris analysis to investigate tapered roller bearing 

damage, [35]. Figure 2.6 shows an example of how the debris mass can relate 

closely to the actual damage occurring. The figure shows how little debris is 

accumulated over the majority of the running time and that the debris count 

increases rapidly once the damage starts to progress. 

 

 
 

 

Figure 2.6: ODM mass accumulation as seeded bearing damage progresses, 
[35] 
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Gas path debris can also be monitored, as developed for the Joint Strike 

Fighter (JSF) program, [36, 37]. This monitors the ingestion of debris (foreign 

objects such as a bolt, or fluids/particles such as salt spray) into the engine, in 

real time, using electrostatic sensors. A simple schematic of the Engine 

Distress Monitoring System (EDMS) and Ingested Debris Monitoring System 

(IDMS) is shown in Figure 2.7. 

 

 

Figure 2.7: Schematic of IDMS & EDMS equipment for the JSF engine, [36] 

 

2.1.7 Maintenance Databases 

Maintenance information is also increasingly recorded digitally to aid 

diagnostics and prognostics. For example, the UK MOD Logistic Information 

Technology System (LITS) and the Work Records and Asset Management 

(WRAM) databases store the following kinds of information: 

 Component strip reports – the results of investigating faults on 

components. 

 Maintenance Work Orders (MWO) – information on every maintenance 

job carried out. 

 Pilot forms – indicating flight profiles, stores, mass and centre of 

gravity, etc.  

 Asset Tracking – identifies the part(s) fitted to each aircraft. 
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This information can be very useful in building up a fault database and linking 

symptoms with faults for improved diagnostic and prognostic capabilities. 

 

2.2 The Need for Data Management 

The drive for improved MAAAP has resulted in the large number of different 

data sources being collected, as described in the previous section. To date, 

limited advantage is being gained from this data because it is not intelligently 

managed. Often the data is simply collected and stored but not analysed in 

any way. Intelligent data management needs to handle the large data volume; 

assess the data integrity and correct or discard corrupt data as appropriate; 

fuse diverse sources of data; and finally, process the data to turn it into 

information used to make decisions. The following paragraphs give various 

cases from the literature where the need for aircraft data management is 

emphasised. 

 

Evans, of the CAA, recommended best practice for managing HUMS data, 

[38]. While recognising that ‘HUMS was probably the most significant isolated 

safety improvement of the last decade’ he also states that ‘expert 

interpretation and/or physical investigation is usually necessary to detect 

incipient failures that would otherwise remain undetected.’  He emphasises the 

following areas of HUMS that require management:  

 

 Setting appropriate thresholds and documenting any changes. 

 Tracking the frequency with which data is downloaded and analysed. 

 Maintaining data continuity (both the Maximum Permitted Period 

Between Successful Downloads (MPPBSD) and access to a 

helicopter’s past vibration history) when analysing HUMS data. 

 Prioritising maintaining the serviceability and system reliability of 

HUMS. 

 Having a structured diagnostic approach. ‘Successfully downloading 

data on a regular basis will only be of safety benefit if there is an 

effective response to any HUMS warnings.’ 

 Establishing clear responsibilities for each aspect of HUMS. 

 Ensuring adequate training and staff competency for all those using 

HUMS. 
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 Through life monitoring of the performance of HUMS and its 

management and using this feedback to make improvements. 

 

Evans summarises that all of these aspects should be brought together into a 

comprehensive HUMS Management System. Such a system is the subject of 

the work presented in Chapter 3. 

 

Larder et al describes how the monitoring function of HUMS needs to be 

enhanced by management, [39]. Table 2.1 shows the comparisons made 

between the use of HUMS to simply monitor aircraft and the aim of improving 

this by managing the data. 

Table 2.1: Comparison of using HUMS for monitoring and management, [39] 

 HUMS as Monitoring HUMS as Management 

Monitoring Providing diagnostic data to 
detect and diagnose faults to 
indicate a requirement for 
maintenance action. 

Providing diagnostic and 
prognostic data to predict 
requirements for future 
maintenance.  

Health Improving safety by detecting 
faults which represent a 
hazard to airworthiness. 

Giving early indications of 
potential problems for 
maintenance planning 
purposes.  

Usage Relatively simple and largely 
limited to an automation of the 
aircraft logbook. 

A key function to manage the 
usage of the aircraft and 
control life expired component 
replacements.  

Output Data: While HUMS has 
provided a significant advance 
in the quantity and quality of 
data available on aircraft, this 
has largely remained in the 
form of data rather than being 
transformed into information. 

Information: The HUMS will 
convert monitoring data into 
information, which facilitates 
the effective management of 
aircraft maintenance.  

Use Stand-alone: HUM systems 
have mostly been stand-alone 
systems in two respects - the 
HUMS ground stations have 
not been integrated with other 
aircraft maintenance 
management or logistics 
systems and the HUMS 
outputs have not been fully 
integrated into the aircraft 
maintenance policy. 

Integrated: The HUMS will be 
an integral part of the aircraft 
maintenance management and 
logistics system and the HUMS 
outputs will be fully integrated 
into the aircraft maintenance 
policy. 

 

Pipe  discussed the important features to consider when measuring the 

performance of HUMS, [40]. Pipe recommends looking at the following 

building blocks of a health usage management system in turn: sensors, signal 
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acquisition, signal processing, database management, alarm generation and 

management. The need to set appropriate thresholds, specific to each group 

of data, was also emphasised. Incorrect thresholds can result in missed faults 

or too many false alarms. Methods of assessing fault diagnosis are presented 

in section 2.3.6. 

 

Draper, of the UK MOD HUMS IPT, commented that lessons could be learnt 

from the Chinook HUMS programme, where too much attention was paid to 

the onboard systems at the expense of the ground stations, [22]. For example, 

the ground station was contracted to operate on a UNIX platform. However, 

this was antiquated by the time it came into service. It is essential that the two 

systems are fully integrated: the Chinook HUMS had numerous Interface 

Control Document (ICD) errors, which were very expensive to rectify. Draper 

also states that “there was a degree of naivety regarding the amount of data 

that HUMS would produce and how it would be handled through the support 

infrastructure”. 

 

2.2.1 Data Volume 

As already described in section 2.1, the current trend is towards ever-

increasing volumes of aircraft data being recorded and stored. The growth of 

data volume is not limited to the aviation industry and includes industries such 

as internet search engines, medical, marketing, banking, engineering and 

science. One poll in 2007 found that 22% of respondents reported mining 

databases of 1 terabyte or more, about double the number for 2006, [42]. The 

following paragraphs give some aviation examples of the large volumes of 

data available and how this has increased over time. 

 

Chinook HUMS data is stored in a relational database, consisting of over four 

hundred tables as well as Binary Large Object (BLOB) files, of approximately 

one megabyte (MB) per flight, containing raw vibration signals and FDR 

parameter snapshots. The vibration signals are summarised by CIs. 

Nevertheless, the number of summarised CIs could be very large and typically 

about three thousand CIs are downloaded per flight from the Chinook HUMS 

(from about forty accelerometers; monitoring about 170 components; with up 

to four pass-band filters; up to twenty CIs can be computed from each 

dataset). Since the MOD operate a fleet of over forty aircraft, each flying many 

sorties per day, very large numbers of CI values must be managed daily. 
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The Eurofighter Typhoon database contains over 600 tables, covering Aircraft 

Structural Health (ASH), EHM, Logistics (LOG), Non Destructive Tests (NDT) 

and SHM. In addition, a Bulk Storage Device (BSD) can be used to record 

various configurations of flight parameters and the Crash Survivable Memory 

Unit (CSMU) stores over 6000 flight parameters to be used in incident 

investigations. This results in a database that is over 100 gigabytes (GB) for 

only thirty aircraft over three years. The expected UK fleet will be over 200 

aircraft, over a life of thirty years; hence, over six terabytes (TB) of data will be 

stored and processed over the life of the Typhoon in the UK. 

 

It is anticipated that the Lightning II (the F35 Joint Strike Fighter (JSF)) will 

routinely download five GB of data per sortie. With the anticipated worldwide 

fleet of over 3000 aircraft, flying many missions a day, hundreds of terabytes 

of data will be generated.  

 

Table 2.2 gives some indication of the growth of FDR data capture over the 

past 30 years. 

 

Table 2.2: Number of FDR parameters for various UK MOD aircraft types 

Year of 
service entry 

Aircraft Number of FDR 
parameters 

Frequency of 
download 

1982 Chinook  158  Most flights 

1982 Tornado 283  Every sortie on 3 
OLM Aircraft 

1998 Merlin (EH101) 296 Only for incidents 

2000 WAH-64 
Apache  

1500 Routinely every sortie 

2002 Typhoon  
(Eurofighter) 

6059  Only for incidents 

2012 Lightning II  
(F35 JSF) 

1204  Routinely every sortie 

 

Due to the large amounts of data, the intelligent management approach must 

be able to store and process terabytes of data and efficiently turn it into useful 

information that is clearly presented, to allow decisions to be made. It should 

also facilitate retrieving and displaying relevant data requested by the user. 
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2.2.2 Data Integrity 

Before processing data it is important to assess its quality/integrity. There are 

a large number of potential causes for such data corruption. For example, in 

legacy strain gauge data the following causes of corruptions have been 

identified [43]:  Short term failures in power supplies can cause sudden drops 

in strain measurements to values close to zero. The strain voltage levels are 

usually very small (millivolts), and, therefore, the strain signals are amplified 

hundreds of times (e.g. 200 times). The signal amplifiers can suffer failures 

leading to intermittent gain changes and signal corruption. Whilst the strain 

system cables are screened to prevent electromagnetic interference, 

operating in high radio fields can cause signal corruption, especially for aging 

strain gauge systems. Dry joints and soldering that fails to achieve perfect 

contacts can cause erratic strain behaviour characterised by the signals being 

stuck at a wrong strain levels for a period of time. Changes in resistance due 

to ingress of moisture can cause corruption. Failures in temperature 

compensation mechanisms can lead to sensitivity to local temperature 

changes and signal drifts. Strain gauge sensitivity can be influenced by 

changes in bonding characteristics. Errors can also occur during strain signals 

multiplexing, synchronisation and recording. The corruption patterns of a strain 

gauge system are influenced by the system maintenance status; they can vary 

with time and can be at variance with those of other systems. 

 

Multiple methods exist for identifying corrupt data and, if possible, replacing it 

with synthesised values. For example, the Smiths (now GE Aviation Systems) 

Automatic Data Correction (ADC) algorithm identifies short period corruptions 

in flight data and strain measurements, [44]. The identified short period 

corruptions can include: spikes, multi-spikes, spike-step transitions, steps, 

hesitant steps, step reversals, dropouts, constant signals, complex corruptions 

and jumps. An example of each corruption type is shown in Figure 2.8. The 

examples shown come from three different aircraft systems. 
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Figure 2.8: Examples of short period corruptions corrected by the Smiths 
Automatic Data Correction algorithm, [44] 

 

The Smiths data quality algorithms can also identify long period corruptions 

caused by temporarily or persistently inoperative sensors and/or calibration 

problems. For a target sensor, long period corruption was identified by 

comparing the statistics of the sensor data across a number of sorties and by 

cross-correlating its data with other sensor data and/or with synthetic data 

generated by neural networks. The statistics of the sensor data were 

computed over the entire sortie, over its most probable data levels and at a 

number of predefined flight conditions referred to as ‘hypercubes’ or ‘points in 

the sky’. A decision making process was implemented to fuse sensor health 

indicators derived from the above statistics, [44]. Examples of observed strain 

corruptions are shown in Figure 2.9. The chart on the left shows that the data 

from the sensor on the right wing gave significantly lower readings than the left 

wing – the synthesised values are more correlated with the left wing sensor. 

The right hand chart shows an example where the first thousand seconds of 

data were lost for both sensors, but could be approximated from other flight 

parameters. 
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Figure 2.9: Examples of long period corruptions identified by the Smiths data 
quality algorithms, [44] 

 

Roemer et al stressed the importance of detecting and correcting faulty data:  
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“Sensor problems such as ground loop faults, sensor drift or electrical noise 

can often appear as the onset of a performance or vibration fault and must 

be isolated and detected properly.” [45] 

 

Goebel et al  identified the following data anomalies, which should be removed 

by pre-processing before diagnostic or prognostic techniques can be applied: 

non-linearities, noise and outliers, sensor failures, saturation, disjoint response 

to events, information smoothing, information fading and reliability scaling, 

[46]. These data anomalies will be apparent in most data sets, not just within 

aviation.  

 

Han and Kembler in “Data Mining – Concepts and Techniques” explore 

methods for cleaning data to remove missing values, noisy data and 

inconsistencies, [47]. For example, when missing values are identified you 

could choose to: ignore the whole record, fill the missing value manually or fill 

with a global constant, a mean value or interpolate between adjacent values. 

All of these techniques will bias the data and so must be carefully considered. 

 

With the increasing capabilities and application of HUMS, the FAA, in 

conjunction with the US Navy, was interested in assessing the impact of 

degraded data on the performance of these systems, [48]. They investigated 

the effect on flight regime recognition of the following data degradations and 

found that most of them could be identified: data spikes, signal discontinuities, 

lost signals, constant signal, intermittent signal, erratic signal, band edge 

signal and signal drift. 

 

Since data may contain corruption or inconsistencies of one sort or another, 

the intelligent management tools must always assess the data integrity and, 

where appropriate, correct it or discard it before further analysis. It is also 

advisable to keep a record of the corruptions identified, to help give 

confidence in the analysis results and for future improvements to the data 

acquisition system. 

 

2.2.3 Data Fusion 

Given the large number of potential data sources outlined in section 2.1, it is 

necessary to be able to fuse/merge data from multiple sources for improved 

analysis. For example, a better indication of faults in helicopter drive-train 
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components can be identified if vibration data and wear debris data are used 

together. This data is usually recorded by different systems in different 

databases and so are often analysed in isolation. However, information about 

debris can help to confirm the source of increased vibration, and isolate the 

type of damage. This data is also sampled at different intervals. Typically, 

vibration data is recorded multiple times per flight, whereas debris may only be 

recorded every 20 flying hours. To be useful the disparate data sets must be 

temporally aligned. 

 

Data fusion can be performed on raw data or after some processing or 

generation of health indicators. For example, FUMS™ offers users the ability 

to fuse data from many different sources (Figure 2.10) and the flexibility to 

align data using complex criteria, such as finding the closest match between 

dates within specific limits such as one week, [13, 49, 50]. 
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Figure 2.10: Schematic of the FUMS™ fusion platform, [13] 

 

As described in [51], there are at least three levels at which fusion can be 

performed: sensor level, features level and decision level. Before fusing data 

from different sources it may be mapped into a single comparable domain, 

such as a fault likelihood score on a scale of 0 to 1, [52].  
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Goebel et al , [46], have fused data sources such as engine operation 

parameters, vibration data, oil debris and mathematical spall propagation 

models, to give improved engine fault diagnostics. As well as fusing data 

sources they have also investigated fusing the results of two different 

modelling approaches, [53]. One is to model, from first principles, the physics 

of fault initiation and propagation; the second is an empirical model of 

condition-based fault propagation rates using data from experiments in which 

the conditions are controlled, or otherwise known and the component damage 

level is carefully measured. These two approaches have competing 

advantages and disadvantages. However, fusing the results of the two 

approaches produces a result that is more robust than either approach alone, 

[54]. 

 

Not only do different data sources need to be fused, but each stage of the 

diagnostics process may use different techniques and technologies from a 

number of suppliers, which must be integrated to provide a coherent solution. 

Callan et al  have investigated the integration of PHM systems for CBM, [55]. 

Layers of PHM systems such as acquisition, data manipulation, condition 

monitoring, health assessment, prognostics and automatic decision reasoning, 

need to be aligned from potentially different suppliers. 

 

The intelligent management strategy should use all available relevant data 

sources as part of any decision process. It should also be able to fuse the 

results of multiple analysis techniques performed on each data set to give an 

improved overall decision. 

 

2.3 Techniques 

There are a large number of AI and model based techniques available for 

analysing data, to determine faults and predict time to failure. The following 

sections give a brief introduction to some techniques, which are referenced 

later in the thesis: Mathematical models, signal processing, feature extraction, 

data mining, reasoning and decision making. 
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2.3.1 Mathematical Models 

Mathematical models attempt to model the real life physical processes behind 

measured data, in order to predict the expected data that would be recorded 

from a given system in a particular state (healthy, faulty, under particular 

loads, etc.). The model’s results can be compared with measured data to 

identify features. In order to be useful, the models must be as realistic as 

possible, taking into account all the failure modes and operating conditions of 

the system. This requires a good engineering understanding of the system.  

 

A fundamental problem in the development and validation of PHM 

technologies is the general shortage of realistic fault signature data. While 

healthy signatures can be obtained from operational systems, faults are 

relatively rare and difficult to observe. The PHM community often have to rely 

on bench level seeded fault test data collected under a limited set of 

conditions. Models can also be built using healthy data and then used to 

identify outliers. 

 

Lybeck et al have developed a modelling and simulation toolset for the 

vibration signatures of faulted components in propulsion subsystems such as 

gearboxes, [56]. Figure 2.11 shows how synthesised vibration data is built up 

from a forcing function to calculate the response, which is combined to give 

the output. The figure shows an example simulated time series vibration trace 

for a bearing, compared with measured data. 

 

 

 
 

Figure 2.11: Simulating vibration data and comparing with measured values 

Time (seconds) 
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Physics based fault models also use techniques such as regression using 

Singular Value Decomposition (SVD), state deciders to use different models 

for different conditions and Finite Element Analysis (FEA) to build up complex 

relationships within structures. 

 

2.3.2 Signal Processing 

When analysing time-variant data, such as vibration, various processing 

techniques may be used to help understand the content. The following are 

some common techniques. 

 

Fourier Transforms (usually referred to as Fast Fourier Transforms – FFT) 

convert time series (such as measured vibration signals) into frequency series. 

The FFT tells us what frequencies are present in the signal and at what 

amplitude. Figure 2.12 shows an example signal containing a combination of 

10, 20 and 30 Hz sine waves and its associated FFT with peaks at these 

frequencies.  

 

FFTs are particularly useful when analysing gear vibration data that will have 

strong frequency components at meshing frequency between the teeth of two 

gears. FFTs can be used to isolate these peaks and remove them if necessary 

to emphasise other damaging vibration (filtering the FFT and applying an 

inverse FFT). For another example, helicopter vibration would contain strong 

FFT peaks at the main rotor speed (and harmonics, e.g. twice the rotor speed) 

and at blade passing frequencies. 
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Figure 2.12: Example signal containing 10, 20 and 30 Hz and its FFT 

The statistics of non-stationary signals change with time. Such signals can be 

analysed by techniques such as Wavelet Transforms (WT) and short term 

FFT; the later applies an FFT to a subset of the signal, and then repeats this, 

moving the section of the signal along each time.  This allows you to analyse 

how the frequency changes with time. 

 

2.3.3 Feature Extraction 

Feature Extraction is a method of compressing large volumes of data into 

some simple measures, which can be more easily compared with other 

samples. For example, a vibration signal may be summarised by statistics 

such as the kurtosis, maximum difference and Root Mean Squared (RMS), 

etc. As another example, Acoustic Emission (AE) signals may be compared by 

features such as peak amplitude, duration, rise time and the number of times 

a threshold is crossed, Figure 2.13.  
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Figure 2.13: Acoustic Emission signal feature extraction, [57] 

2.3.3.1 Statistics 

Statistical techniques can be used to identify outliers and trends. For example, 

data that lies outside three standard deviations from the mean will be the most 

unusual data points. Other statistics such as RMS and statistical moments 

(mean (1st), variance (2nd), skewness (3rd), kurtosis (4th), M5 and M6) are all 

essential in analysing vibration data. Moving averages and medians can be 

used to filter noise/spikes in the data to see the underlying trend, and least-

squared linear trend lines can be used to forecast the value into the future. 

Correlation and Chi-squared can be used to identify how similar two data sets 

are. The CIs generated by HUMS are essentially statistics of the original 

vibration data. 

 

2.3.4 Data Mining 

Data Mining is a term that describes the process of turning large quantities of 

data into useful information or knowledge. As stated by Han and Kembler in 

“Data Mining – Concepts and Techniques”: 

 

“The major reason that data mining has attracted a great deal of attention in 

the information industry in recent years is due to the wide availability of 

huge amounts of data and the imminent need for turning such data into 

useful information and knowledge”, [47] 
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Data Mining can be used to find patterns in data in the form of associations, 

classes, clusters, outliers and evolution. Large data sets can be reduced by 

methods such as data cube aggregations, dimensionality reduction, data 

compression and numerosity reduction. Barnathan gives a good review of 

methods for mining complex high-order datasets, [58]. 

 

Data mining is being progressed in many fields. For example, in 2008 a new 

journal was launched called BioData Mining which is focused on the 

development of data mining techniques applied to biological data, [59]. 

Bellazzi and Zupan have published a review of predictive data mining in 

clinical medicine giving a worked example, discussions on techniques and 

offers guidance, [60]. Their recommendations are applicable to the wider use 

of data mining, and include: 

 

 Define the success criteria in advance. Set acceptable ranges of 

evaluation statistics prior to modelling.  

 Model probabilities, not crisp class membership. Prefer methods that 

report confidence intervals.  

 Avoid over-fitting. Never test models on data that was used in their 

construction. If possible, test the resulting model on an independent 

separate data set.  

 Prefer modelling techniques that expose relations and can present 

them in a readable form.  

 If still of acceptable performance prefer simple modelling techniques, 

possibly those that derive models that can be reviewed and criticized 

by experts.  

 

Table 2.3 shows the results of a poll on which techniques are most used for 

data mining. Decision trees and rules are consistently the most popular. 
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Table 2.3: Poll on data mining techniques [61] 

Data Mining Technique 2005 2006 2005 Percentage 2006 Percentage

Decision Trees/Rules 107 90 14% 16%

Clustering 101 70 13% 12%

Regression 90 67 11% 12%

Statistics 80 64 10% 11%

Association rules 54 54 7% 9%

Visualization 63 38 8% 7%

SVM 31 31 4% 5%

Neural Nets 61 31 8% 5%

Sequence/Time series analysis 26 24 3% 4%

Bayesian 30 24 4% 4%

Nearest Neighbor 34 20 4% 3%

Boosting 25 17 3% 3%

Hybrid methods 23 14 3% 2%

Bagging 20 13 3% 2%

Genetic algorithms 19 12 2% 2%

Other 20 4 3% 1%  

2.3.4.1 Cluster Algorithms 

There are a plethora of cluster algorithms available, each suited to particular 

data sets or types of information to be gathered. Representative examples are 

given below. 

 

The FUMS™ anomaly/novelty detector can efficiently recognise, in huge data 

sets, densities of clusters, anomalies and non-linear patterns, having a wide 

range of sizes/orientations, [62].  

 

Support Vector Machines (SVM) are a set of related supervised learning 

methods used for classification and regression. A special property of SVMs is 

that they simultaneously minimize the empirical classification error and 

maximize the geometric margin; hence they are also known as maximum 

margin classifiers. Many linear classifiers (hyper-planes) separate the data. 

However, only one achieves maximum separation. For example, Figure 2.14 

shows two clusters of data (circles and squares) which could be separated by 

many lines (L1, L2, L3…). L2 gives the best separation. 
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Figure 2.14: Support Vector Machines – finding the best separation, [63] 

 

Adaptive Resonance Theory (ART) allows clusters to keep learning, by 

moving the clusters as more data arrives. This means that the cluster model is 

always up to date, using as much information as possible. However, it may 

mean that the model learns about unwanted conditions. 

 

The Kohonen map is an example of an unsupervised neural network. The map 

consists of a number of units, which are arranged in a fixed topology – in this 

case, a rectangular grid. Each unit has an n-dimensional weight vector 

associated with it. This weight vector can be interpreted as that unit's position 

within the data space. A fundamental feature of the Kohonen map is that each 

unit occupies a position within the n-dimensional data space and also a 

position within the topology of the map. The Kohonen map's aim is to adapt 

the weight vectors so that the units of the map are distributed over the data-

space where the density of units in any part of the space reflects the density of 

data in that part of the space. However, the map will also preserve its topology 

- i.e. neighbouring units in the map's fixed topology will tend to end up next to 

each other in the data space as well. Imagine a three-dimensional data space 

with data distributed unevenly within this space, Figure 2.15. Now imagine the 

Kohonen map as trying to arrange an elastic fishing net within this space so 

that: 

 The relative density of nodes at any point within the space 

approximately corresponds to the density of data in that point.  

 The surface area of the stretchable mesh is minimised.  

L1 

L2 

L3 
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Figure 2.15: FUMS™ Kohonen map example 

The Kohonen map has been applied to many problems ranging from the 

Travelling Salesman Problem (TSP) to robot learning. The method is also 

useful for reducing the original data down to a set of representative data points 

that is far smaller than the original data set or can be used for dimensionality 

reduction.  

 

2.3.4.2 Artificial Neural Networks (ANN) 

Haykin in his book “Neural Networks a Comprehensive Foundation”, [64], 

gives the following description of what a neural network is and how it relates to 

the network of neurons in the human brain: 

 

“A neural network is a massively parallel distributed processor that has a 

natural propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Inter-neuron connection strengths known as synaptic weights are 

used to store the knowledge”, [64] 

 

An ANN can be trained on a data set with known inputs and required outputs 

(the target). Once trained, given another set of inputs from the same source, 

the output can be computed. For example, FDR parameters such as vertical 

acceleration and air speed from one aircraft can be used as training inputs, 

and measured wing strain can be used as the target. Once trained, the 

network could be used to synthesise the wing strain for other aircraft given the 

FDR data, [29] [44]. 
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An ANN is made up of individual neurons that take in N inputs, sum them 

together with a weight for each input, and then pass this through an activation 

function. The activation function can take various forms such as thresholds, 

linear, Gaussian, sigmoid, etc., as shown in Figure 2.16. Neurons are then 

stacked together to create a network. This usually takes the form of an input 

layer, output layer and a number of hidden layers made up of any number of 

neurons, Figure 2.17. 

 

 

Figure 2.16: A model of a neuron, [65] and example activation functions, [66] 

 

 

Figure 2.17: Typical ANN, [67] 

 

2.3.4.3 Genetic Algorithms (GA) 

Genetic Algorithm (GA) theory was developed by Holland in the mid-1960s to 

simulate the adaptive optimisation process of nature, [68]. GA theory 

simulates the principles of evolution as put forward by Darwin in 1859, [69]. 

The slow process of adaptation is governed by inheritance from the survived 

fittest among a population of genetic diversity that also allows adaptation by 

mutation. 
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For example, Figure 2.18 shows a set of experimental inputs x1, x2 and x3 that 

give a corresponding output ym. A ‘chromosome’ containing three ‘genes’ 

holds values for three weights to multiply by the input x values. These weights 

may be picked at random to start with or may be set using some knowledge of 

the problem. The chromosome is then used to calculate a calculated y value 

(yc) from the experiment inputs. Yc is then compared to the experimental result 

ym to find the error – representing the fitness of the chromosome. The 

chromosome is then modified to create offspring, either by mutating a gene at 

random, or by swapping a gene with another chromosome.  

 

 

Figure 2.18: Schematic of GA, [50] 

 

2.3.5 Reasoning and Decision Making 

Expert Systems (ES) have developed to capture human experience and 

provide reasoning and decision making capabilities. The first ES were 

constructed in the late 1960s. These systems attempt to take the place of a 

human expert, mimicking their decision-making capabilities. ES are intelligent 

computer programs that use knowledge and inference procedures to solve 

problems that are difficult enough to require significant human expertise for 

their solution, [71]. 

 

The main techniques that provide reasoning and decision making capabilities 

include: Crisp Logic, Fuzzy Logic and Bayesian Networks. 
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2.3.5.1 Crisp Logic 

Crisp Logic applies hard and fast rules using Boolean logic of the form: 

 

IF condition THEN action 
 

Multiple conditions can be combined using operators such as OR, AND or 

NOT, for example: 

IF (condition 1 OR (condition 2 AND NOT condition 3)) THEN action 
 

The main shortcoming of Crisp Logic is how to treat uncertainty. This is where 

Fuzzy Logic and Bayesian Networks can help, by formulating the expression 

in a form such as: 

IF condition with certainty x THEN fact with certainty f(x) 
 

2.3.5.2 Fuzzy Logic (FL) 

“Humans have a remarkable capability to reason and make decisions in an 

environment of uncertainty, imprecision, incompleteness of information and 

partiality of knowledge, truth and class membership. The principal objective 

of fuzzy logic is formalisation/mechanisation of this capability.”, [72] 

 

FL is the application of the concept of fuzzy sets that was first published in 

1965 by Zadeh, [73]. A fuzzy set is a mathematical model of vague qualitative 

or quantitative data. For example, consider a birds-eye view of a forest in 

Figure 2.19.  

 

 Is location A in the forest? Certainly yes, 1)(Aforest .  

 Is location B in the forest? Certainly not, 0)(Bforest .  

 Is location C in the forest? Maybe yes, maybe not. It depends on a 

subjective (vague) opinion about the sense of the word "forest". Let us 

put 6.0)(Cforest .  
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Figure 2.19: Simple fuzzy set: birds-eye view on a forest, [74] 

 

A basic FL application might characterise sub-ranges of a continuous variable. 

For instance, a temperature measurement for a cooling fan system might have 

several separate membership functions, defining particular temperature 

ranges needed to control the fan properly. Each function maps the same 

temperature value to a truth value in the zero to one range. These truth values 

can then be used to determine how the fan should be controlled. 

 

 

Figure 2.20: Simple fuzzy set definition, [75] 

In Figure 2.20, cold, warm and hot are functions mapping a temperature scale. 

A point on that scale has three "truth values" — one for each of the three 

functions. For the particular temperature shown, the three truth values could 

be interpreted as describing the temperature as, say, "fairly cold" (cold = 0.8), 

"slightly warm" (warm = 0.2) and "not hot" (hot = 0), [75]. 

 

FL usually uses IF/THEN rules, or constructs that are equivalent, such as 

fuzzy associative matrices. Rules are usually expressed in the form: 

IF variable IS set THEN action 

Cold Warm Hot 

1 

0 
ºC 
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For the example in Figure 2.20, rules may be: 

IF temperature IS cold THEN slow down fan 

IF temperature IS warm THEN maintain level 

IF temperature IS hot THEN speed up fan 

 

The AND, OR and NOT operators of Boolean logic exist in fuzzy logic, usually 

defined as the minimum, maximum and complement. For example: 

IF temperature IS cold OR warm = MAX(cold, warm) = MAX(0.8, 0.2) = 0.8 

 

Ross describes FL and engineering applications in more detail in his book, 

[76]. 

 

2.3.5.3 Bayesian Networks 

A Bayesian network (or belief network/Bayesian Theory (BT)) is a probabilistic 

graphical model that represents a set of variables and their probabilistic 

dependencies, [77]. Bayesian networks start with known probabilities and 

progress these to dependants using conditional probability, [78], i.e., given the 

event B, the probability of the event A is x. 

 

The concept is best explained by a simple example. Suppose that there are 

two reasons that could cause grass to be wet: either the sprinkler is on, or it's 

raining. Also, suppose that the rain has a direct effect on the use of the 

sprinkler (namely that when it rains, the sprinkler is usually not turned on). 

Then the situation can be modelled with the Bayesian network in Figure 2.21. 

All three variables (G = Grass wet, S = Sprinkler and R = Rain) have two 

possible values T (for true) and F (for false). 
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Figure 2.21: A simple Bayesian network, [77] 

 

The model can answer questions like "What is the likelihood that it is raining, 

given the grass is wet?" by using the conditional probability formula and 

summing over all associated variables: 

 

 
 

The difficulty in using Bayesian networks for real world engineering 

applications is finding appropriate probabilities, especially when fault cases 

are very rare. 

 

2.3.6 Evaluating Techniques 

Since a system may have many failure modes, each with individual 

characteristics, it is often advantageous to use multiple techniques and then 

use reasoners to evaluate an overall assessment. 

 

To illustrate the performance of the individual model-based reasoners, a 

matrix presentation, of input versus response, can be used, Figure 2.22. 

Quantities expressed on the diagonal are correct classifications. Remaining 

quantities displayed are either false positives (no fault input, but a fault output 

- top row), mis-classifications (wrong fault output - off diagonal in fault rows) or 

false negatives (fault input, but no output - no fault column). The goal is for the 

technique to have as many predictions as possible on the diagonal axis. 
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Figure 2.22: Matrix View of Reasoner Performance, [48] 

Bock et al have developed new algorithms for user defined false alarm rates, 

stating:  “The assignment of a fault detection threshold implies a trade-off 

between true positives (sensitivity) and false positives (specificity).” [49]. 

 

Byington et al have developed a Metrics Evaluation Tool (MET) to assess the 

performance and effectiveness of vibration features typically used in HUMS, 

[50]. The method is based on a detection decision matrix developed by 

Dowling of Boeing, [51] shown in Figure 2.23. 

 

Detection Decision Matrix 

Outcome Fault (F1) No Fault (F0) Total 

Positive (D1) 

(detected) 

a 

Number of 

detected faults 

b 

Number of false 

alarms 

a+b 

total number of 

alarms 

Negative (D0) 

(not detected 

c 

Number of 

missed faults 

d 

Number of 

correct rejections 

c+d 

Total number of 

non-alarms 

 

Total 

a+c 

Total number of 

faults 

b+d 

Total number of 

fault-free cases 

a+b+c+d 

Total number of 

cases 

 

Figure 2.23: Detection Decision Matrix, [51] 

From this matrix, the detection metrics can readily be computed. The 

probability of detection (POD) assesses the detected faults over all potential 

fault cases: 
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ca

a
FDPPOD )1/1(  2.1 

 

 

The probability of false alarm (POFA) considers the proportion of all fault-free 

cases that trigger a fault detection alarm: 

 

db

b
FDPPOFA )0/1(  2.2 

 

 

The accuracy is used to measure the effectiveness of the algorithm in 

correctly distinguishing between a fault-present and fault-free condition. The 

metric uses all available data for analysis (both fault and no fault): 

 

 

2.3 
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2.4 Examples of AI and Modelling Techniques used to Manage Aircraft 
Data 

In this section a number of examples are presented where AI and 

mathematical models have been applied to aircraft data. In fact, these 

techniques are applicable to a wide range of applications outside aviation but 

the focus of this literature survey was within the aviation industry. The 

examples have been split into the following categories: 

 

 Mathematical Models 

 Improving HUMS 

 Engine Health Management 

 Prognostics 

 Managing Uncertainty 

 

2.4.1 Mathematical Models 

Physics based mathematical models allow real-world laws to be captured and 

used to compare with measured data to identify anomalies. Models can also 

be used to synthesise data where it is unavailable. Azzam investigated the 

use of mathematical models and artificial intelligence techniques to improve 

HUMS prediction capabilities, [79]. Azzam developed a Helicopter 

Mathematical Model (HMM) that included a physics based rotor wake model, 

rotor elastic model, fuselage model and dynamic model. The HMM can be 

configured to represent a particular helicopter, by setting appropriate 

coefficients (such as the number of blades, rotor diameter, centre of gravity, 

mass, moments of inertia, etc.), and can be used to simulate loads and 

vibration for specified flight conditions. Aerodynamic, structural and hydraulic 

faults, such as pitch link errors, blade cracks and mass imbalance, can also be 

simulated and the resulting vibration signatures generated. The theoretical 

results, generated using the HMM, compare favourably with test data gathered 

from in-service aircraft. Azzam has also used ANNs to simulate helicopter 

blade lug fatigue, wing pivot fatigue, tail rotor torque and engine fatigue. 

Extensive trials have been undertaken that show that fatigue values can be 

synthesised, without the use of strain gauges, giving improved lifing accuracy 

and at a significantly lower cost than fitting strain gauges to the whole fleet, 

[79]. 
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2.4.2 Improving HUMS 

Various studies have attempted to improve fault detection using HUMS data, 

simulations or seeded fault data. The following paragraphs give some 

examples: 

 

Byington et al have developed feature extraction and fault isolation algorithms 

and applied them to three test rig examples, [80] and [81]. The three examples 

were: aircraft engine ceramic bearing data, aircraft engine bearing test cell 

data and T63 turboshaft engine test cell data. The methods focus on the high 

frequency bands which are most likely to indicate faults. ANNs and tree 

classifiers were used to isolate faults. As stated in their conclusions, they have 

yet to apply the techniques to in-service aircraft data, which makes it difficult to 

assess the usefulness of the methods. 

 

Hochmann and Baringer presented a number of case studies showing how 

drive train component CIs can be analysed to give improved diagnostics, [82]. 

The following case studies were presented: 

1. A time to spatial domain transformation example, where one index 

position (tachometer value) is offset relative to the others. 

2. A gear component example of how subtle characteristics in the CIs 

could lead to mis-diagnosis. In the example, what was thought to be a 

tooth crack issue turned out to be due to tooth positional deviations. 

3. A rolling element bearing example, demonstrating how global changes 

may be misinterpreted for component specific issues. 

 

Feng mathematically simulated rolling element bearing defects in the inner or 

outer race, [83]. This can be used to understand the likely fault that is causing 

the vibration patterns that have been measured by HUMS. However, in-

service data is always harder to analyse than mathematically simulated faults, 

so the techniques do not always have direct read across. Appendix A1.6 gives 

details of typical bearing geometry. 

 

Hamza et al investigated the use of knowledge capture, GA optimisation and 

case-based reasoning (using Bayesian networks) to improve the reliability of 

HUMS, [84]. Figure 2.24 shows the data flow involved in capturing knowledge 

of HUM systems and using it to improve the reliability of HUMS diagnostics. 

The aim of this technique is to learn from past data off-board and then use 



Chapter 2 Literature Review 

 

 48 

Bayesian case based reasoning onboard to give more reliable HUMS fault 

detection and isolation. The knowledge capture tool combines the fault type, 

the diagnosis algorithm and the performance metrics such that they can be 

used by the GA. The GA determines the optimum algorithm to use for each 

fault type. The database of both fault and no-fault data builds up over time 

improving the case based reasoning of the on-board system. The system was 

integrated into the Chadwick-Helmuth Vibration eXPert tool. While the 

concepts of this approach seem to offer HUMS improvements, it is not clear 

whether the system has been used on in-service data, or how well the system 

actually performs.  

 

 

Figure 2.24: Adaptive HUMS Knowledge Management Architecture, [84] 

 

Bechhoefer et al have investigated the setting of HUMS CI thresholds by 

modelling aircraft and torque band variance, i.e. having different thresholds for 

different levels of torque and for each individual aircraft, [85, 86]. The 

techniques have been applied to data from thirty Sikorsky UH-60L Black Hawk 

aircraft. An Integrated Mechanical Diagnostics (IMD) HUMS, was also 

developed by Bechhoefer et al, [87]. IMD-HUMS combines CIs into Health 

Indicators (HIs) and uses Kalman filtering techniques to reduce the noise in 

the data. The CIs are fused to reduce the false alarm rate by simply assigning 

a value of 0 for the CI if it is below the warning level, 1 if it is above the 

warning level but below the alarm level, and 2 if it is above the alarm level, 

(2.4). 
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Figure 2.25 shows 3 shaft order CIs and the HI derived from them. A Kalman 

filter is then applied to the HI reducing the noise and making the fault condition 

clear after acquisition 325. The filter does, however, delay the detection of the 

fault, which is clear in the raw data by acquisition 300.  

 

 

Figure 2.25: IMD-HUMS example – three shaft order CI values, the HI value 
(cyan) and the Kalman filter of the HI (black), [87] 
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An engineering software utility called Mechanical Diagnostics Analysis Toolkit 

(MDAT) was developed by Goodrich and was used to investigate the 

propagation of damage in the four bearing defect passage frequencies: cage, 

ball/roller, outer race and inner race, [88]. Appendix A1.6 gives further details 

of bearing geometry. Again, MDAT employs the concept of a HI that fuses 

multiple CIs using both rule-based and statistical approaches. 

 

2.4.3 Engine Health Management  

A number of major players in engine health management have been 

developing a holistic approach that fuses the multiple sources of engine data 

for improved results. The following paragraphs expand on a few examples: 

 

Acquisition 
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Ashby, of GE Aircraft Engines, and Scheuren, of the Defence Advanced 

Research Projects Agency (DARPA), developed a condition-based Intelligent 

Maintenance Advisor for Turbine Engines (IMATE), [89]. IMATE integrates 

sensor and model-data from various diagnostic, prognostic and usage 

sources, with information fusion algorithms to produce a more accurate 

assessment of engine condition than those available from any individual 

source of information. Typical inputs to the information fusions are: Full 

Authority Digital Engine Control (FADEC) sensor values, intermittence tests, 

trending algorithms, model based reasoners, vibration analysis, engine 

models and life usage algorithms. The paper presents the results of IMATE 

using simulated data. The information fusion requires that all diagnostic tools 

give a HI in the range of 0 to 1, [52]. The tools are also given a weighting 

based on the reliability of detecting faults in simulated data. 

 

Volponi et al (including NASA, Pratt and Whitney, and the US Army) have 

developed an information fusion architecture for engine diagnostics and health 

management, [51]. They list a number of data sources for use in fusion 

including: engine gas path measurements, oil/fuel system measurements, 

vibration measurements, structural assessment sensors, FADEC codes, 

onboard engine models, maintenance/analysis history and companion engine 

data. In the architecture developed, data fusion can take place at one of three 

levels:  

 

 Sensor Level: Align data, for example, by resampling. 

 Features Level: Using extracted features, Failure Modes Effects and 

Criticality Analysis (FMECA) and Bayesian networks for fault isolation. 

 Decision Level: Used fuzzy logic for feature level fusion. 

 

Roemer et al have been working on prognostics and diagnostics of gas turbine 

faults for many years. In 1999 they published work using a probabilistic 

approach to diagnose gas turbine engine faults, [90]. The probabilistic 

methods are aimed at robustly assessing the condition of engine sensor 

signals, performing mechanical and performance diagnostics, and providing 

critical component prognostics. By 2005 they had reported on an integrated 

set of turbo-machinery health monitoring techniques that, when implemented, 

would offer significant potential for reducing current turbo machinery Life Cycle 

Costs (LCC), [45]. Various techniques were investigated for diagnostics and 
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prognostics of turbine engine faults, including the use of trained neural 

networks, fuzzy logic analysis, signal auto and cross-correlation, statistical 

anomaly detection, high-pass filtering and Kohonen and Bayesian techniques.  

 

The Distributed Aircraft Maintenance Environment (DAME) project, funded by 

the Engineering and Physical Sciences Research Council (EPSRC) e-Science 

programme, brought industry and academia together to develop methods of 

using grid computing to improve engine diagnostics, [91]. DAME was 

undertaken in partnership with Rolls-Royce (who provided the aero-engine 

data for the diagnostic system), Data Systems and Solutions (DS&S) and 

Cybula (a York University spin-off company, managing the data storage 

technology in the project). The academic partners in the project were the 

Universities of York, Leeds, Sheffield and Oxford. This architecture removes 

the need for the expensive transfer of data to a central repository, since the 

aircraft data remains at the airport where it was downloaded and all 

processing occurs on site. Only limited amounts of relevant data need to be 

moved between the end-user and the data-nodes during a search/analysis 

process. The DAME architecture follows the following steps: 

 

 Download raw data. 

 Pre-process and archive the raw data. 

 Train the Advanced Uncertainty Reasoning Architecture (AURA), which 

is a neural network based pattern matching engine. The architecture is 

designed to be generic, allowing any pattern matching engine to be 

used. 

 Diagnose anomalies using case-based reasoning and integrating 

model-based fault detection and isolation approaches. 

 Interface via web page. 

 

The DAME projects aimed to combine two current analysis methods: ground-

based trend analysis of civil engine snapshot data across large fleets with on-

wing analysis or high frequency vibration data. This means that the analysis 

needs access to the large, high frequency data for the whole fleets, amounting 

to many terabytes of data. 

 

Frith and Karvounis have investigated the use of modelling for the diagnosis 

and prognosis of helicopter engine gas path health, [92]. These models focus 
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on estimating power assurance parameters and detecting abnormal engine 

operations. Fuzzy Logic is used to aid the decision process of engine 

degradation levels. The capabilities have been demonstrated against 

simulated degradation applied to 30 flights of operational and trial data. 

 

Yu et al have developed an approach to aircraft engine anomaly detection and 

diagnostics, [93]. This technique uses statistics and fuzzy logic for trend 

recognition, shift evaluation and failure classification. Figure 2.26 shows an 

example output of the approach, to identify outliers and shifts in engine 

performance data. The figure shows that single outliers are recognised, but 

are not classified as shifts. Only when a subset of new data does not 

statistically belong to a previous data window is it classed as a shift. 

 

  

Figure 2.26: Example results from GE shift analyser prototype, [93] 

Kobayashi and Simon have developed a hybrid ANN and GA technique for 

aircraft engine performance diagnostics, [94]. They describe some of the 

challenges involved in engine performance diagnosis: 

 

“First, the only information available for health parameter estimation is the 

sensed parameters and the number of health parameters to be estimated 

is often greater than the number of sensors available. Another issue is 

that the sensor measurements are often distorted by noise and bias. 

Finally, the combined effect of system non-linearity and sensor selection 

may result in multiple health degradation scenarios producing similar 

measurement shifts.” 
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Koehl has used FEA to model a reference design mission for aero engine life 

usage monitoring, [24]. The FE models are used to generate comparison data, 

including gas path temperatures, metal temperatures and stresses. Sensor 

data can then be compared with the simulated model results to identify shifts, 

trends and anomalies. Safe crack initiation and propagation concepts are also 

used, and consideration is made for lost or missing data. 

 

2.4.4 Prognostics 

Historically, most effort has been expended on diagnosing current faults in a 

system. However, this approach may give little time to take action. Ideally, the 

operator wants to be able to plan corrective maintenance in advance and 

know when aircraft or engines will be out of service. To do this, systems need 

to be able to estimate when a fault will occur in the future, or how long a 

detected defect will take to propagate to a critical level, whereupon action 

must be taken. Often the first step is to diagnose a fault, then predict how it 

will propagate. The following paragraphs give some examples of research into 

techniques that attempt to predict the future health of aircraft systems.  

 

Byington et al have used data-driven neural networks to predict remaining life 

for aircraft actuator components, [95]. The methodology employed for 

prognostics and health management is as follows:  Flight control data is 

checked for data quality, diagnostic features are extracted using neural-

networks and signal processing (RMS of high frequency pressure data and 

servo current at the system natural frequency) and then the data is classified 

to identify damage levels. The various fuzzy logic classification modes are 

then fused using Dempster-Shafer Combination and Bayesian Inference. 

Kalman filters are then used to assess the progression of the fault over time. 

The Remaining Useful Life (RUL) can then be computed, giving the user an 

estimate of time to failure. The diagnostic features were found to have a good 

correlation with both simulated and in-service electro-hydraulic servo valve 

degradation. 

 

Lyer et al have developed a Decision Support System (DSS) for use in 

operational (real-time on-board) decision making with PHM specific data, [53]. 

Challenges arise from the large number of different information pieces upon 

which a decision maker has to act. Conflicting information from on-board and 

off-board PHM (OBPHM) modules, seemingly contradictory and changing 
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requirements from operations, as well as maintenance for a multitude of 

different systems within strict time constraints, make operational decision-

making a difficult undertaking. Figure 2.27 illustrates the proposed DSS 

Prognostics Decision Support Mechanism (PDSM). The PDSM communicates 

with the OBPHM system and is made up of an Information Processor (IP) and 

a Multi-Objective Decision Support System (MODSS). The IP fuses different 

data sources, manages uncertainty and checks for data consistency, whilst 

the MODSS evaluates the data ‘fitness’ and ranks the results. The simulator 

module models different operational scenarios and produces evaluations for 

the performance objectives, along which each solution or alternative scenario 

is to be evaluated. For a given flight schedule assignment and its associated 

maintenance plan, an evolutionary search is then conducted to find solutions 

that are optimal to the stated performance objectives. The results can then be 

presented clearly to the user (operator, mission control, maintainer) via a 

Human Machine Interface (HMI). 

 

Figure 2.27: Decision Support System, [53] 

 

2.4.5 Managing Uncertainty 

Uncertainty representation and management is the Achilles heel of fault 

prognosis in CBM systems. No prediction will be one hundred percent 

accurate but usually some measure of how likely a prediction is to be correct 

can be computed. Khawaja et al investigated the use of ANNs for calculating 

confidence intervals for predictions, [96]. Figure 2.28 shows how the 

uncertainty in prediction methods can be represented. The historical data is 

certain and so represented by a solid line. Multiple predictions of how the fault 
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will progress can be computed and statistically compared to give a probability 

function of a given health measure and point in time. 

 

 

Figure 2.28: Example of Representing Uncertainty in Prediction Methods, [96] 

 

Roemer et al have used collaborative probabilistic and pattern recognition 

techniques to diagnose particular fault error patterns with associated 

confidence and severity levels, [45]. Figure 2.29 illustrates how data 

propagates away from the regions of normal operation within the fault 

detection threshold. At each point the probability of a fault being present can 

be evaluated.  

 

 

Figure 2.29: Probabilistic fault diagnostics process, [45] 
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Figure 2.30 and Figure 2.31 show other representations of the effects of 

uncertainty in prediction methods for CBM: both show how the time when the 

component would be triggered for replacement by the CBM method varies 

with improved prediction variance (i.e. a higher confidence with less 

uncertainty gives improved prediction variance which may lead to component 

life extension). 

 

 

Figure 2.30: Prediction uncertainty schematic, [97] 

 

Figure 2.31: Relationship between remaining life uncertainty and mission 
reliability, [53] 
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2.5 Summary 

This chapter presented a review of some of the available literature with 

relevance to the study. Sources of modern aircraft data were described and 

the need for this data to be intelligently managed and analysed was 

presented. A brief introduction to AI and modelling techniques was also 

presented. Finally, examples from the literature were given for managing and 

analysing aircraft data for improved MAAAP using these AI and modelling 

techniques. 

 

The literature shows the marked progress and advances that have been made 

in recent years in the areas of diagnostics and prognostics. However, there 

are still significant challenges:   

 

 Hard to validate: For methods that are data driven (such as ANNs), 

the approach must be validated, proving that sufficient data has been 

used to cover all current and future aspects of operation and fault 

cases. The author was part of a team to update DEF STAN 00-970, 

[30], which includes guidance on the qualification of non-adaptive data 

driven approaches. Before this update, only fatigue meters were 

mandated for military aircraft. Validation of adaptive approaches (such 

as clusters that are updated as new data arrives), is even more 

difficult. 

 Not proven: Many of the examples presented have not yet been 

fielded and so their applicability to in-service situations is not proven.  

 Insufficient fault cases: Case based reasoners, such as Bayesian 

networks, require many cases, of all types of fault and healthy 

condition, in order to build accurate probability models. This may be 

time consuming and expensive to collect and would require input from 

experts in the field. For example, in the medical industry, expert 

systems have been developed to aid in patient diagnosis, but these 

have required many years of input from experienced doctors to take 

into account all factors when making a diagnosis. 

 Addressing data integrity issues: All data driven methods also have 

to contend with the often poor integrity of the data from sensors. For 

example, operational strain gauges are affected by factors such as 

placement/orientation precision, bonding, age, environments (sand, 
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temperature, humidity) along with the inherent inaccuracy and 

resolution of the sensor. The same load values can produce different 

strains because of, for example, strain hysteresis, drift and strain 

gauge fatigue, [44]. 

 

In the next three chapters the work carried out by the author is presented. This 

study aims to address the shortcomings of data management identified from 

the literature. Fusion, from the outputs of the various techniques, has been 

accomplished using crisp logic, which is easier to validate than AI techniques. 

The methods have been applied to huge volumes of in-service aircraft data, 

further validating them. Processes have also been developed to address 

sensor issues. 

 

Whilst attempting to address these challenges, the study’s primary aim is to 

improve current methods, from manual investigations, towards the ultimate 

goal of automated predictive analysis. Three case studies are used to explore 

the way aircraft data can be more effectively managed, each using different 

techniques but all improving on the current state-of-the-art.  
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CHAPTER 3 

 

3 HUMS CI INTELLIGENT HEALTH MANAGEMENT (IHM) 

This chapter presents the analysis performed, as part of this study, to 

intelligently manage the CIs generated by onboard HUMS. The study used the 

Chinook helicopter HUMS as an example, but the techniques could be applied 

to any HUMS. The initial findings of the analysis were published in [12] and 

have also been reported to the MOD, [98, 99]. Note that throughout this 

Chapter tail numbers have been changed to make them unidentifiable and 

have been labelled as AC1 to AC40. 

 

3.1 General 

Whilst the MOD HUMS ground stations and maintenance/logistic systems 

contain a wealth of data, there is a growing interest in automatically analysing 

the data within these systems, [79, 100]. For example, large volumes of 

HUMS data are routinely downloaded from MOD Chinook helicopters. The raw 

vibration data are reduced to CIs that summarise periods of tachometer and 

accelerometer data, using time and frequency domain analysis. Nevertheless, 

the number of summarised CIs can be very large; typically about three 

thousand CIs are downloaded per flight, but many more could be configured. 

The data comes from as many as forty accelerometers, monitoring about 180 

gears, bearings and shafts. Each vibration signal can be filtered to produce up 

to four pass-band filtered datasets; up to twenty CIs can be computed from 

each filtered dataset.  

 

Appendix A gives details on the different signal processing techniques 

performed onboard the Chinook and the CIs that are computed from these 

vibration signals. The key CIs studied as part of this thesis are shown in Table 

3.1. CIs are usually also referenced by prefixing the abbreviation of the data 

from which they were calculated: “Original signal” (SIG), “Enhanced signal” 

(ESA), “Enveloped signal” (ETE) and “Envelope spectrum” (FTE). 
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Table 3.1: Key Chinook CI names and descriptions 

Name Description 

PP “Peak-to-peak”. Difference between the max and min data values. 

PK “Peak”. Maximum absolute data value. 

SD Standard deviation of the data. 

MN Mean of the data. 

MRC “Maximum Rate of Change”. Max absolute difference of adjacent 
data values. 

M6 Normalised 6th moment of the data. 

IMP “Impulsiveness”. Normalised 4th moment (kurtosis) of the data. 

EB “Band Energy”. RMS value of the data. 

TON Tonal energy of the band-passed envelope spectrum 

WHT White noise energy of the band-passed envelope spectrum 

SOn Magnitude of nth shaft order vibration 

 

Figure 3.1 shows the key Chinook drivetrain component groups monitored by 

HUMS. A detailed schematic of sensors fitted to monitor each component 

within these groups can be found in Appendix A. The appendix also describes 

the terminology for parts of bearings and planetary gear systems. 
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Figure 3.1: Key Chinook drivetrain component groups monitored by HUMS 

 

A HUM system, designed to provide adequate health coverage by generating 

a large number of CIs, would provide a wealth of health information, but would 

require an intelligent, automatic, off-board, analysis capability to handle the 

large volume of CIs. A HUM system, designed to produce a small set of CIs, 

could reduce off-board logistic burdens but would not provide adequate health 

coverage.  
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HUMS automatically generates alerts when engine and gearbox vibration 

exceed their cautionary and threshold levels. These exceedances must be 

examined regularly and appropriate action taken, such as grounding the 

aircraft and stripping the part to identify damage. For CI values less than the 

cautionary/threshold levels, it would be very useful to know when they would 

reach these levels. The manual assessment of these exceedances, for each 

helicopter, each engine, each gearbox and each component, can be laborious 

and will divert the assessor’s attention to data analysis tasks, rather than 

maintenance and airworthiness guideline tasks. Additionally, there may be 

value in data that has not triggered an alert, which is currently not being 

exploited. A capability to automatically analyse such a vast dataset is 

therefore needed.  

 

Various studies have been undertaken to try to improve on HUMS [80] to [88]. 

However, many of these have not been applied to large in-service aircraft 

data, so it is difficult to assess their strengths. The following capabilities were 

therefore proposed, to be part of the HUMS CI IHM, to address the need to 

automatically analyse the large Chinook HUMS dataset:   

 The processing should be performed automatically, allowing the user 

to assess the updated status of the entire fleet, starting from a high 

level warning report. 

 The warning report should be colour coded to indicate the severity of 

the warning.  

 The user should be able to navigate down further to see more detailed 

information including trend charts. The trend reports would include 

prognostic information, indicating the expected time at which a 

cautionary/threshold level will be reached. The reports would also 

include information describing the quality of trends and their types.  

 It should be possible to configure the number of data points over which 

the trend would be evaluated and set conditions to restart trends: for 

example, the user might require the trend to restart after certain 

maintenance actions. The user should be able to set short-term and 

long-term trend reports for the same component.  
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3.1.1 The Features of a Condition Indicator 

The measurements, from which an indicator is computed, can capture 

information about many factors, including the health state of the monitored 

component (Health). The only information required is the Health of the 

component and thus the effects of the other factors should be isolated. The 

other factors include: 

 

Individuality: Differences between vibration characteristics of aircraft of the 

same type or similar components fitted on different aircraft. Individual 

characteristics can arise from factors such as age and manufacturing 

and maintenance tolerances. 

Operation: For example, more vibration at a higher speed or a higher loading 

condition. The effect of operation can be reduced if the FDR data 

indicates the effect of the current operational condition. 

Noise: Background random variations in vibration characteristics. 

Sensor Health: For example, high vibration levels can be induced by 

accelerometer faults and not by monitored component faults. 

It is highly desirable to eliminate the effects of these factors leaving only 

Health by, for example, statistical processes. Figure 3.2 is a schematic that 

shows the condition indicator ingredients for two fictitious aircraft, A and B, 

with eleven and eight flights respectively. The figure also shows the effect of 

ideal processes that have removed the effects of all undesirable factors. One 

of the objectives of this investigation was to develop such processes. 
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Figure 3.2: Schematic of data characteristics 
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3.2 Chinook HUMS Data 

This section describes the Chinook helicopter HUMS data used in this study, 

incidents observed by the MOD and the current approach employed to 

analyse such incidents. More detailed information about the Chinook HUMS 

system, including schematic diagrams, accelerometers and monitored 

components, and descriptions of the CIs can be found in Appendix A. 

 

3.2.1 Data Sourced 

HUMS data were sourced from the MOD, covering nearly twenty thousand 

HUMS recording sessions (HRS), across forty Chinook aircraft, Figure 3.3 and 

Figure 3.4. The drive-train CI data contains approximately forty-six million CI 

values.  
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Figure 3.3: Number of HUMS recording sessions sourced per aircraft 
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Figure 3.4: Number of HUMS recording sessions sourced by month 
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3.2.2 Current CI Management Approach 

HUMS alerts are generated when certain CIs exceed their predetermined 

thresholds. The thresholds are fixed throughout the fleet, but are specific to 

particular key components and indicators. Since a large number of 

automatically generated alerts have been identified by the MOD as false 

alarms, a sceptical approach is taken. The approach, adopted by the MOD to 

identify monitored component faults, as described by private communication, 

[101], is as follows: 

 

(i) Alerts would trigger further investigation by experts asking the following 

questions: 

1 Are the CI values realistic?  If a CI value is unrealistically high (e.g. 

ETE_M6 value higher than one thousand) or suddenly triples, the 

investigator should suspect a sensor fault rather than a component 

failure. 

2 Is there a gentle upward trend of CIs over time (positive gradient)?  

A positive CI trend is likely to indicate a potential component fault 

more than a CI sudden jump to an exceedance. 

3 Are other CIs consistent with the alert?  For example, if the signal 

peak to peak (SIG_PP) value is high, one would expect the signal 

standard deviation (SIG_STD) value to be also high. 

4 Does the raw time history have characteristics indicative of a fault?  

For example, periodic peaks at the meshing frequency, 

superimposed on data similar to that seen for a healthy 

component, could indicate damage to a gear tooth. On the other 

hand, an accelerometer fault could cause dramatic changes in the 

time history. 

5 Are the peaks in the FFT of the raw data consistent with the 

monitored component characteristics (geometry, speed, meshing 

frequency, etc.)? 

(ii) The calculation process performed on-board the aircraft, to calculate the 

CIs, would be emulated to confirm the correctness of the on-board 

computation. 

(iii) Oil from the component would be analysed to identify debris that could 

confirm the potential component fault. 
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(iv) An independent tape-recording of data, from an accelerometer fitted 

close to the monitored component, could also be made during a ground 

run. The analysis of the recorded data would help to indicate the 

presence of a component fault or failed HUMS sensor. 

The above investigations could confirm the presence of a component fault. In 

this case, a decision would be made to replace the component. A strip report 

about the removed component would be requested to gather concrete 

evidence of the component faults. 
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3.2.3 Incidents of Data Anomalies Observed by the MOD 

Information was also sourced from the MOD concerning observed HUMS CI 

anomalies, [101]. Ten case studies are presented which cover a spectrum of 

faults that the system is intended to detect. Some of the observed anomalies 

were associated with mechanical failures that had occurred. Other CI 

anomalies had been under investigation by the MOD. The information was 

used to help understand the types of fault seen in the field and the associated 

HUMS values. For the first five cases charts are included which show the 

relevant CI value (amplitude) against data acquisition number (i.e. each data 

point). Where available, images of the damaged component are also shown. 

The last five cases are depicted using fleet charts of a CI value, where the x-

axis is grouped by aircraft and then date. 

 

3.2.3.1 Case 1 

An increasing trend in the values of the impulsive CI ‘M6’ for the aircraft 

‘AC17’ shown in Figure 3.5 was detected by HUMS threshold exceedances 

and so the bearing was removed from service on the 23rd of June 2003. The 

photo shown in Figure 3.5 depicts the damage found to the inner race of the 

bearing. There was also evidence of damage to the rolling elements.  
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Figure 3.5: Case 1 - Chart of M6 CI values indicating combiner bearing fault and 
photo of damage found 
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3.2.3.2 Case 2 

Data from the aircraft AC25 showed an upward trend for M6. For this 

component monitored by M6, the trends in HUMS data, as shown in Figure 

3.6, were not detected. However, the debris monitoring system identified a 

large chip and so the gearbox was removed in October 2001. Figure 3.7 

shows photos of the failed inner race of the bearing. 
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Figure 3.6: Case 2 - Chart of M6 CI values indicating combiner bearing failure 

 

 

Figure 3.7: Case 2 - Photos showing failed combiner bearing, [102] 
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3.2.3.3 Case 3 

High M6 values alerted the MOD to a potential engine bearing fault for AC26. 

In July 2003, the component monitored by M6 was removed and inspected, 

but no fault was seen. So, the component was fitted to AC22. However, the CI 

values became even higher so the bearing was removed again in July 2004. 

The CI values, across both aircraft, are shown in Figure 3.8. The bearing was 

stripped and close inspection revealed a crack in one of the rolling elements, 

4.2mm long and penetrating 3.2mm into the surface, Figure 3.9. 
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Figure 3.8: Case 3 - Chart of M6 CI values indicating engine input bearing fault 

 

  

Figure 3.9: Case 3 - Photos showing crack in bearing rolling element 
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3.2.3.4 Case 4 

The M6 used to monitor an aft transmission bearing had a step increase for 

AC 17, Figure 3.10. The bearing was eventually removed from service in 2005 

and stripped. There was damage found to both the inner race and the rolling 

elements, Figure 3.11. 

 

 

Figure 3.10: Case 4 - Chart of M6 CI values indicating aft transmission bearing 
fault 

 

  

Figure 3.11: Case 4 - Photos showing damage to aft bearing inner race and 
rolling elements 
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3.2.3.5 Case 5 

The M6 used to monitor a right-hand combiner bearing for AC20 had a step 

increase, Figure 3.12. Figure 3.13 shows the damage found to one of the 

rolling elements, after the bearing was removed and inspected. The first 

increase in the CI values was noted on the 7th of October 2004. On the 5th 

November an investigation was triggered. The component was eventually 

removed on the 15th of February 2005. 

 

 

Figure 3.12: Case 5 - Chart of M6 CI values indicating combiner bearing fault 

 

 

Figure 3.13: Case 5 - Photos showing damage to combiner bearing rolling 
element 

RH Input Bearing M6

0

50

100

150

200

250

300

350

400

450

Aquisitions

A
m

p
li
tu

d
e



Chapter 3 HUMS CI IHM 

 

 71 

3.2.3.6 Other Case Studies 

Figure 3.14 to Figure 3.17 show CI values for some of the incidents identified 

by the MOD. Each chart shows M6 indicator values for a particular component 

across the whole fleet, grouped by aircraft and then sorted by date. These 

cases had M6 values which were significantly different to fleet values and so 

should be relatively easy to detect, for example using a fixed threshold. 
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Figure 3.14: Case 6 (AC2) and case 7 (AC19) - aft gear faults 
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Figure 3.15: Case 8 - Aft bearing fault 
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Figure 3.16: Case 9 - Combiner bearing fault 
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Figure 3.17: Case 10 - Engine bearing fault 
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3.3 HUMS CI IHM Architecture 

Figure 3.18 shows the architecture for the intelligent analysis capability that 

was developed. The techniques considered were chosen due to their success 

in the literature and their availability and familiarity to both the author and the 

end user. The process flow is as follows: Firstly, the vibration data is acquired, 

processed and stored on-board the Chinook and downloaded into a ground 

database. After this, the IHM process audits the data to check for 

inconsistencies. Next, the data is pivoted from 3rd normal form into a format 

designed for speed of access. The data can then be reduced using PCA. 

Multiple threads of analysis are then performed to identify anomalies, including 

adaptive thresholds, trends and clustering. Then the outputs of the analysis 

are fused and reasoning is used to decide whether to alert the user. Finally, 

the results are summarised and presented in a user friendly way. Each block 

is described in more detail in the following sections. 

 

 

Figure 3.18: HUMS CI IHM architecture 
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3.4 Auditing the Data 

HUMS data is likely to contain some erroneous values, which must be filtered 

out before further analysis can be performed. Erroneous data can include: 

unrealistically high CI values, flights with conflicting date/time stamps and 

monitored components incompatible with accelerometers. An audit algorithm 

was designed to detect and remove such data, generating reports showing the 

detected errors. The following sections provide a simplified description of the 

algorithm. 

 

3.4.1 Flights with Conflicting Date/Time Stamps 

Occasionally, two different HRS numbers or two different sequence IDs from 

the same aircraft are stamped with the same date/time. It is not known why 

this occurs. This inconsistency implies that two different flights occurred at 

exactly the same time. In this investigation, inconsistent data were filtered out 

and not considered further, to enable reliable trend analysis. The inconsistent 

data were identified and removed when the sequence ID and/or the HRS 

number varied for the same tail number and date/time stamp.  

 

3.4.2 Monitored Components Incompatible with Accelerometers 

Other examples of database inconsistencies are incompatible combinations of 

monitored component IDs and accelerometer location IDs. Table 3.2 shows 

some examples of such inconsistencies. The first example shows an 

inconsistent combination, where CIs were generated from an accelerometer 

located in the forward rotor transmission to monitor an input pinion gear on the 

aft rotor transmission. This implies that a sensor is monitoring a component 

that is over ten metres away, and so is obviously incorrect. The cause of such 

errors is unknown. This type of inconsistency was filtered out, using a list of 

compatible components and accelerometers, as shown in Appendix A1.3.  

Table 3.2:  Examples of monitored components incompatible with 
accelerometers 

Monitored 
Component ID 

Component Description Accelerometer ID Accelerometer 
Description 

9 Aft Gear 1 - Input Pinion Gear 5 Forward Transmission 

75 Combiner Bearing 1 – Left Hand Input Pinion 
Bearing 

22 Aft Transmission 

66 Synchronous Shaft #6 14 Left Engine Transmission 

67 Engine Bearing 1 – Left Hand Input Pinion 
Bearing 

6 Forward Transmission  

105 Forward Bearing 3 - 2nd Stage Planet Bearing 19 Combining Transmission 
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3.4.3 Unrealistically High Values 

It was found that the HUMS data contained unrealistically large values. For 

example, the average of the CI ‘ETE_M6’, over most components, was found 

to be approximately 50. A value above 200, for the combiner bearings, could 

indicate a fault. Nevertheless, the maximum value of the CI, shown in Figure 

3.19 for component FB7(29), was found to be 415,000 and sixteen out of 660 

values exceeded 5000. However, faults were not reported for these 16 cases. 

Therefore, it was concluded that excessively high values should be filtered 

out, before further processing, by setting an upper limit for each indicator. An 

excessively high CI value would indicate temporary short period sensor data 

corruption. Successive occurrences of excessively high values could indicate 

persistent sensor fault.  
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Figure 3.19: Example of high values needing to be filtered out 

3.4.4 Data Gaps 

The audit process was also designed to flag up potential data gaps. It was 

found that aircraft may only capture data for some of the required CIs. This 

may be due to the time taken to calculate the CIs, for example, if the aircraft 

has left the cruise condition before the complete capture is finished. If a 

sensor is not functioning correctly, its data may be missing altogether. If the 

tachometers are not recording correctly, all the synchronous data may be 

missing. The audit process checks for missing data and alerts the user. 

Missing data is identified where data is present for some, but not all, 

accelerometer locations, or when no data has been recorded at all for a long 

time period (e.g. three months).  
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3.4.5 Data Audit Results 

The HUMS CI auditing capability was applied to about 46 million CI values 

and 423246 CIs of these failed the audit. Table 3.3 shows the number of CIs 

that failed for each audit type. 

 

Table 3.3: Number of CIs to fail audit for each audit type 

Audit 
Code 

Description Number 
Failed 

Percentage of 
all CIs 

1 Value too high. 26,997 0.06% 

2 Component and accelerometer location 
incompatible. 

376,254 0.81% 

3 Date/time, HRS, sequence conflict. 19,995 0.04% 

Total All. 423,246 0.91% 

 

The most common incompatibilities involved accelerometers 23 (aft 

transmission) and 6 (forward transmission). The CIs with the highest number 

of audit failures were the log average magnitude of 1st shaft order (FSA_SE1) 

and the normalised 6th statistical moment of the enveloped signal (ETE_M6). 

 



Chapter 3 HUMS CI IHM 

 

 77 

3.5 Analysis Tools 

This section describes some of the key analysis tools used to intelligently 

manage the Chinook HUMS CI data. 

 

3.5.1 Threshold Management 

One of the approaches for identifying potential faults from the CI values is to 

use thresholds. Setting threshold values, so that all faults are identified with 

minimum possible false alarms, is difficult. Since the statistics of the various 

CIs are not the same, a different threshold is required for each CI. For 

example, the peak to peak of a signal (SIG_PP) and its mean (SIG_MN) are 

likely to be of a different order of magnitude. The signal characteristics also 

vary with accelerometer locations due to factors such as loadings of 

neighbouring bearing and gears. As mentioned in section 3.1.1, age and 

manufacturing/maintenance tolerances can lead to significant individual 

aircraft characteristics.  

 

Therefore, it would be beneficial to have three thresholds defined for each CI 

and component combination: aircraft-specific, fleet-wide and user-defined. 

This leads to too many thresholds to be defined manually and so automation 

would be required. The automation method developed in this study sets and 

updates thresholds using statistics of previous datasets. Figure 3.20 shows 

fleet-wide and aircraft-specific thresholds, set for one CI. The fleet-wide 

threshold will indicate that the data is abnormally high compared to the whole 

fleet. Whereas the aircraft-specific threshold will indicate that the data is 

abnormally high compared to the previous data for the same aircraft. This can 

give useful information in diagnosing the cause of the high values. 

 

In this study, the thresholds were set at three standard deviations above the 

mean, since for a normal Gaussian distribution this means that over 99% of 

the data would be below the threshold. Some HUMS calculate these learnt 

thresholds, so, where available, these could be used rather than calculating 

them off-board. 
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Figure 3.20: Example of fleet and individual aircraft thresholds set using mean 
and standard deviations 

Exceedances of fleet and aircraft thresholds could then be generated. 

Exceedances can also be ranked according to how far they were above the 

threshold. For this study, the number of standard deviations above the 

threshold indicated the severity of the exceedance. 

 

3.5.1.1 Criteria for Threshold Update 

Setting thresholds would require a sufficient number of CI values for the 

thresholds to be statistically significant. The thresholds should be regularly 

updated to ensure that they reflect the current fleet status and individual 

aircraft characteristics. Therefore, an automatic schedule should be 

implemented to update the thresholds. Criteria would be required to initiate the 

automatic update. For example, the criteria could be regular update times, 

such as every night, every weekend or once a month, or could be triggered 

after accumulating new database records. It could also be necessary to 

reinitiate the threshold setting process after certain events, such as 

maintenance actions or after a specified time interval. After such events, 

previously set fleet/aircraft threshold values should be used until a sufficient 

number of CI values become available to calculate statistically significant 

thresholds. 

 

In this investigation, the thresholds were updated on a flight-by-flight basis, 

using all available data prior to the current flight. Regular updates at short time 

intervals would require retrieving few records from the database. Re-initiation, 
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for example, every three months, would require retrieval of three month’s 

worth of data. It is worth noting that the re-initiation periods could overlap. 

Figure 3.21 illustrates the potential effect of different update criteria for the 

mean of a CI. The figure shows that all the methods settle down to a fairly 

constant value after a few months (about fifty data points). If the threshold is 

restarted every month a more realistic picture of the current data is 

represented but this may be modelling faults or may mask drifting trends in the 

data.  
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Figure 3.21: Effect of different methods of periodically updating means 

A decision process would be required to select whether a CI value should be 

used in the update process. Values that significantly exceed a previously set 

threshold, for example, by more than one standard deviation, could be 

excluded from the update process to prevent large exceedance values 

influencing the normal, healthy CI statistics. 

 

The threshold process also tracks how many points exceed the threshold in a 

row. This means that multiple spikes can be distinguished from consistent 

exceedances which are more likely to indicate a component fault. 

 

3.5.2 Automatic Trending 

A high indicator value on its own may be insufficient evidence of component 

failure. It could be down to erroneous values, sensor failure, processing 

failure, database error, etc. A trend of the indicators can give a more reliable 

indication as to whether an exceedance is due to component failure. Data 

trends can also provide prognostics. The trend can be used to predict if and 

when CIs, that have not reached a threshold, will exceed it.  



Chapter 3 HUMS CI IHM 

 

 80 

 

Figure 3.22 indicates a number of different periods over which trends could be 

calculated and updated:   

a) The trend could use all available data for the particular component and 

CI. This method may hide medium/short-term trends.  

b) A specified number of flights may be used, such as the last six flights.  

c) Overlapping flights could be used.  

d) Shows the gradient of the trends for method a), updated every data 

point.  

One or any combination of these may be used. 
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Figure 3.22: Examples of different linear trending methods 

The trend gradient could also be used to generate alerts: negative, zero and 

very high gradients should be ignored, whereas reasonable positive gradients 

should generate alerts, with an associated severity level. For example: if a 

gradient of 5 indicates the most severe gradient (100%) and zero values, 

negative values and gradients over ten should be ignored. (3.1) may be used 

a) b) 

c) d) 
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to generate a percentage severity. Positive severities could generate an alert. 

(3.1) is illustrated in Figure 3.23. 
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Figure 3.23: Graphical illustration of (3.1) 

In the example shown in Figure 3.24, the CI has exceeded the fleet threshold 

(fleet mean plus three standard deviations) and the trend is increasing. Using 

(3.1) and the gradient 4.12, the severity is 82%. 
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Figure 3.24: Increasing Trend Example 

Trends can also be calculated on CIs that have not crossed a threshold. If the 

gradient is positive, an estimate of the time to exceedance can be calculated. 

For example, Figure 3.25 shows a trend of signal peak to peak CI for the right 

hand combiner bearing. In this case, assuming that the trend remains the 

same and the aircraft flies with the same regularity, the CI will exceed the 

aircraft threshold in January and the fleet threshold in May.  
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Trend of CB1(17)-SIG_PP-0
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Figure 3.25: Trend prediction against date 

It may be more useful to have this information in terms of flying hours as 

shown in Figure 3.26. In this case, assuming that the trend remains the same, 

the CI will exceed the aircraft threshold after 110 flying hours and the fleet 

threshold in 340 flying hours. The two examples show the importance of 

trending against the correct time values. 
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Figure 3.26: Trend prediction against flight hours 

A trending algorithm was implemented to calculate the gradient of a ‘least 

squares linear best fit’ trend line through the data. (3.2) to (3.4) can be used 

for calculating the gradient m  and y-intercept c  using the x  and y  values 

and their means x  and y . In the developed algorithm, a short-term (by 

default fifteen data points) and long-term (by default thirty data points) trend 

can be calculated. Any data points that are above any of the thresholds are 

not used as part of the trend calculation. The gradients are stored to be used 

later as part of the overall decision process. The trend lines are also extended 

into the future to identify whether the data would cross one of the thresholds 

within a specified time. 
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3.5.3 Principal Component Analysis (PCA) 

HUMS typically stores twenty CI values but may store as many as 80 CIs for 

each component. These CIs are often well correlated since they are different 

statistical transformations on the same original vibration data. Using PCA this 

large number of CIs could be reduced to fewer principal components, with little 

loss of information, which would greatly reduce the processing, analysis, 

storage and time required. The eigenvalues computed by the PCA algorithm 

give an indication of the variation in each principal component, and hence can 

be a good guide to choose the appropriate number of components to use. For 

example, Figure 3.27 and Figure 3.28 show how 75 CIs (17 CIs for 4 

passbands and 7 with no passbands) are reduced to 3 principal components, 

whilst retaining 99.5% of the CI variation. The patterns in the original CI data 

can also be seen in the 3 principal components. 
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Figure 3.27: Seventy-five CI values for the left combiner bearing. 
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First 3 Principal components for CB1(16)
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Figure 3.28: First three principal components for the left combiner bearing. 

3.5.4 Zone Analysis 

For each unique combination of monitored component and accelerometer in 

the diagnostic configuration, CIs are computed. CIs for different monitored 

components, computed from the data of the same accelerometer, could have 

similar characteristics, such as those associated with a fault. For example, 

CB1 to CB7 are all monitored using accelerometer 16 and, therefore, the 

associated CIs could have comparable values. For example, Figure 3.29 

shows that the CI values for CB1 and CB4 are comparable. 
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Figure 3.29: Combiner bearing component zone comparison 

Grouping components and accelerometers into zones can add a further test to 

distinguish between potentially corrupt data and a genuine fault. Alerts 

generated from one CI and not from other CIs within a zone could indicate 

erroneous data, rather than a fault. 
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3.5.5 Cluster Analysis 

The FUMS™ anomaly/novelty detector can efficiently recognise, in huge data 

sets, densities of clusters, anomalies and non-linear patterns having a wide 

range of sizes/orientations, [62]. The cluster algorithm is based on ISODATA 

[103] and uses k-means to attribute each value to a cluster. For m clusters in n 

dimensional space, the clusters are defined by m vectors of length n defining 

the centre and variance and m, n × n covariance matrices to define cluster 

rotations. The algorithm will find the optimum number of clusters within a 

specified range.  

 

This tool can be used to separate the data into one or more clusters of normal 

data and other minority clusters of anomalous data. The minority clusters can 

be further analysed to determine if they contain consecutive flights from one 

aircraft, which could indicate a fault. 

 

For example, Figure 3.30 shows how data for two principal component CIs 

from the left combiner bearing are grouped into two normal clusters and four 

minority (abnormal) clusters. By selecting the minority clusters, shown in the 

scatter chart, the associated table data records were highlighted. By 

examining the highlighted records it was found that they were all consecutive 

records from the same aircraft. These records were found to be acquired from 

the failed bearing, reported in [102]. 

 

 

Figure 3.30: Typical cluster results for a progressive fault case 

Once identified, the clusters could be labelled according to the type of fault 

found. For example, in a perfect world, cluster ‘Abnormal_3’ might be labelled 

‘crack initiation’, cluster ‘Abnormal_1’ labelled ‘crack propagation’ and cluster 

‘Abnormal_2’ labelled ‘imminent failure’. If further analysis showed that this 

anomaly was in fact a sensor failure, it could be labelled to that effect. In 
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practice, fault progression does not always fall in successive clusters. The 

severity of the fault could be based on the number of points from the particular 

aircraft in minority clusters and/or the distances of the minority clusters from 

the normal clusters. 

 

Cluster analysis was applied to each component. Points belonging to large 

clusters were labelled as ‘normal’, whereas points in outlying clusters, 

containing fewer than a configurable proportion of the data points, were 

labelled as ‘abnormal’ (a default of five percent was used). Additionally, points 

lying far from the centres of any of the identified clusters (e.g. more than ten 

standard deviations) were recorded as ‘unassigned’. The  Euclidean distance, 

in standard deviations, from a cluster centre is known as the quality, [62]. For 

the cases where one or more CIs were missing for an acquisition date-time it 

was not possible to assign a cluster to the CIs. A ‘null’ cluster group was used 

in these cases. 
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3.6 Decision Process 

The previous sections have described both the vast number of CIs to be 

analysed and the variety of tools that may be required to analyse them. To get 

more value from the results, each Health Judgement (HJ), produced by a tool, 

should be fused together and reasoning used to decide whether the 

combination of HJs indicate a fault. Care must always be taken when fusing 

data to ensure that information is not lost, and unforeseen fault cases are not 

masked. In order to be effective, the data and analysis should be presented in 

a user friendly and quick access manner. As far as possible, the results from 

the analysis should be summarised, giving the user the option to navigate 

down to more details and more information.  

 

The HJs can be fused by an AI tool such as a Bayesian belief network, or 

crisp or fuzzy logic (rules) can be used to derive a final decision confirming or 

denying the presence of a fault. The following sections describe two decision 

algorithms that were developed, implemented and investigated by the author; 

the first was implemented in a final trial system that has been used by MOD 

engineers. 

 

3.6.1 Rule-Based Decision Process 

For this decision process simple logical rules are used to assign each warning 

a level - “High”, “Medium” or “Low”. The pseudo-code shown in Figure 3.31 

gives an example of how the various HJs (exceedances, trend gradients, 

cluster type) can be fused to give a warning level: 

 

 

Figure 3.31: Rule based decision logic 

IF( 

 (num_exceed_fleet_in_row > 4 OR num_exceed_aircraft_in_row > 4 ) 

 AND ( 

  (percentage_exceed_fleet > 0 AND percentage_exceed_aircraft > 0) 

  OR (percentage_exceed_fleet > 50 OR percentage_exceed_aircraft > 50) 

 ) 

 AND (long_term_gradient > 0 AND short_term_gradient > 0) 

 AND cluster_quality > 4 

) THEN warning_level = “High” 

ELSE IF ( 

 (num_exceed_fleet_in_row > 2 OR num_exceed_aircraft_in_row > 2 ) 

 AND (percentage_exceed_fleet > 0 OR percentage_exceed_aircraft > 0) 

 AND (long_term_gradient > 0 OR short_term_gradient > 0) 

 OR cluster_quality > 6 

) THEN warning_level = “Medium” 

ELSE warning_level = “Low” 
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HJs were also combined by using a weight factor for each CI (for example, 

weighting the M6 values above PP, or pass band two over pass band one) 

and each HJ (for example, weighting clustering above trending) and then 

combining the weightings to give an overall score. Care was taken to provide 

robustness in the cases where CIs were missing for a particular acquisition 

and to ensure that valid warnings generated by the CIs that were present, 

resulted in appropriate weightings. It was also necessary to ensure that the 

total weight was factored by the number of relevant CIs for the component. 

 

A ‘percentage confidence’ was then calculated for each summarised weighted 

warning to indicate the probability that a fault condition existed. This 

percentage was a function of the current total weight and a configurable 

number of previous weights. The confidence could aid in discriminating 

between possible sensor faults and actual mechanical faults, by assuming that 

a sensor / recording fault would be most likely to generate a very abrupt 

change, whereas an actual fault would show a gradual worsening and should 

generate a number of warnings from multiple CIs. 

 

3.6.2 Fuzzy Logic Decision Process  

An alternative decision method was investigated using fuzzy logic, [73].  The 

concepts of fuzzy logic are presented in section 2.3.5.2. The tools described in 

section 3.5 generate HJs, which were analysed using fuzzy logic to give the 

user an indication of the severity of any warnings. The HJs included: the 

percentage exceedance over the fleet and aircraft thresholds (%Fleet_Ex and 

%AC_Ex respectively); the number of exceedances in a row for both the fleet 

and aircraft thresholds (NEXROWFT and NEXROWAC respectively); the short 

and long-term gradient of a linear trend on the points preceding each 

exceedance (GRADST and GRADLT respectively); the rate of change of the 

gradient (GradRate); and the degree of membership of the normal cluster 

(Cluster DMEMB), [104]. 

 

For each HJ a number of fuzzy sets were defined and a fuzzy rule was used to 

describe the degree of membership of each set. Table 3.4 shows some 

examples of rules used to give the degree of membership of the fuzzy set 

(Fuzzy DMEMB). Figure 3.32 graphically illustrates some of these rules. In a 

final system design, the end user should have the ability to change the rules to 

achieve improved results. 
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Table 3.4: Fuzzy rules for HUMS CI IHM 

Variable (x) Set Rule for Set Membership 

NEXROWAC Persistent If(x>3 then 1 else if(x>1 then (x-1)/2 else 0)) 

Not-Persistent If(x<1 then 1 else if(x<3 then 1-(x-1)/2 else 0)) 

%AC_Ex None If(x<-20 then 1 else if(x>20 then 0 else 1-(x+20)/40)) 

Slight If((x>-20 and x<20) then 1-abs(x/20) else 0) 

Exceedance If(x<0 then 0 else if(x<20 then x/20 else if(x<200 then 1 else if(x<300 
then 1-(x-200)/100 else 0)))) 

Error If(x<200 then 0 else if(x<300 then (x-200)/100 else 1)) 

GradRate Decreasing If(x<-0.1 then 1 else if(x<0 then -(x*10) else 0)) 

Zero If((x>-0.1 and x<0.1) then 1-abs(x*10) else 0) 

Increasing If(x<0 then 0 else if(x<0.1 then x*10 else 1)) 

Cluster 
DMEMB 

Normal If(x<5 then 1-x/5 else 0) 

Abnormal If(x<5 then x/5 else if(x<20 then 1 else if(x<25 then 1-(x-20)/5 else 0))) 

Extreme If(x<20 then 0 else if(x<25 then (x-20)/5 else 1)) 
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Figure 3.32: Charts of example fuzzy rules for HUMS CI IHM 

The following fuzzy rule was then used to evaluate the membership of a 

component failure alert: 

 

Component_Alert = (PersistentNEXROWFT OR PersistentNEXROWAC)  

AND (Exceedance%Fleet_Ex OR Exceedance%AC_Ex)  

AND PositiveGRADST AND PositiveGRADLT  

AND (AbnormalCluster DMEMB OR ExtremeCluster DMEMB) 

 



Chapter 3 HUMS CI IHM 

 

 90 

To perform this rule in fuzzy logic, the OR function becomes the maximum of 

the values (MAX) and the AND function becomes the minimum of the values 

(MIN): 

 

Component_Alert = MIN( MAX(PersistentNEXROWFT, PersistentNEXROWAC),  

MAX(Exceedance %Fleet_Ex, Exceedance %AC_Ex),  

PositiveGRADST, PositiveGRADLT,  

MAX(AbnormalCluster DMEMB, ExtremeCluster DMEMB)) 

 

The user requires an indication of the confidence of the alert generated, so a 

defuzzification rule was used to give a percentage confidence as to whether 

the alert is related to a component failure.  

 

It was found that the Fuzzy logic approach did not give significant 

improvements in fault isolation and introduced more complex configuration 

that the end-users would find more difficult to adjust. As a result the rule-

based method described above was implemented in the final trial system. 
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3.7 Implementation 

It is important that developed methods can be deployed to engineers at the 

front line and that they facilitate intuitive and efficient access of pertinent 

information, to enable them to decide whether to take actions, such as 

grounding aircraft. Therefore, the algorithms described in the previous 

sections were implemented in the FUMS™ framework using a combination of 

C++ and the internal scripting language. FUMS™ also allows User Interfaces 

(UI) (referred to as reports) to be designed by a user without software 

rewriting. Reports can contain various items, including: data tables, charts, 

forms (a collection of buttons, edit boxes, images, etc.) and tools (which allow 

data processing). Report items are interactive and allow the user to filter data, 

zoom charts, select options for processing, select data in a table, which will 

then also be highlighted in connected charts, etc. Reports were designed and 

configured by the author to display the results of the automated analysis, 

starting with a high level summary and allowing the user to easily navigate 

down to more detail. These reports are described below: 

 

3.7.1 Configuration 

Reports were designed to allow the user to easily set the configuration for the 

IHM application for optimum performance. The report allows setting the CI and 

process weights, selecting the number of acquisitions to use for short and 

long-term trends and how far to extrapolate them, and defining cluster and 

adaptive threshold parameters such as the minimum and maximum number of 

clusters, how many acquisitions are required before the statistical thresholds 

are applied and the number of standard deviations above the mean to use for 

thresholds. 

 

A report was also developed to allow the user to reset the thresholds for a 

selected aircraft (or all) and a selected component (or all). The tool was 

designed to keep a log, which includes the user name and comments, and the 

date and time when the threshold was reset. 

 

In addition, a report was configured that displays the results of the audit 

algorithm, giving the user quick access to a list of CIs that were rejected and 

why. 
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3.7.2 Summary Display 

A report was designed and implemented to display the IHM analysis results 

with tabs for different levels of detail. The Summary tab summarises all the 

warnings, showing how many were generated at each level (“High”, “Medium” 

or “Low”), for each aircraft and for each component, Figure 3.33. The rows are 

ranked and coloured according to the confidence value. The user can specify 

the colour coding methodology but, by default, any values with a confidence of 

more than 50% are coloured red, a confidence of less than 10% is coloured 

green and all others are coloured amber. Warnings are also tagged according 

to the date and time that they were generated (i.e. when the process was run). 

An entry is also made, even if no warnings were generated, to indicate that the 

data was processed correctly on a particular day. 

 

Each warning can be marked as ‘reviewed’ once it has been analysed by the 

user. The reviewed warnings can be viewed using the “Reviewed Warnings” 

tab. The user will be prompted to enter a reason for moving the warning to the 

reviewed tab. A log is kept with the reviewed warning showing user name, the 

date and time and the reason it was reviewed.  

 

 

 

Figure 3.33: HUMS CI IHM display: Summary tab 

3.7.3 Warnings Display 

Depending on which line is selected in the Summary tab, all the warnings, 

including the HJs generated for the selected aircraft and component, are 

displayed on the Warnings tab. If no selection was made on the summary, all 

the HUMS CI warnings will be displayed. Table 3.5 shows all the HJs and 

other information that is displayed on the Warnings tab. 

 



Chapter 3 HUMS CI IHM 

 

 93 

Table 3.5: The Fields for Warnings 

Column Name Description 

generated date time The time at which the data was processed and the warning 
generated. 

aircraft_serial_number The tail number of the aircraft, as in the input data. 

sequence_id The sequence_id, as in the input data. 

hrs_number The hrs_number, as in the input data. 

display_date_time The display_date_time, as in the input data. 

value The value of the CI, as in the input data. 

monitored_component_id The monitored_component_id, as in the input data. 

accel_location_id The accel_location_id, as in the input data. 

dtrain_indi_type_id The dtrain_indi_type_id, as in the input data. 

magnitude The magnitude, as in the input data. 

filter_passband_id The filter_passband_id, as in the input data. 

num_exceed_fixed_in_row The number of sequential CIs that are above the fixed 
threshold, as set in the HUMS database. 

num_exceed_fleet_in_row The number of sequential CIs that are above the 
automatically generated fleet threshold (based on statistics 
for the whole fleet). 

num_exceed_aircraft_in_row The number of sequential CIs that are above the 
automatically generated aircraft threshold (based on 
statistics for the particular aircraft). 

fleet_thresholds The fleet threshold value used. 

aircraft_thresholds The aircraft threshold value used. 

percentage_exceed_fixed The percentage by which the CI is above the fixed 
threshold. 

percentage_exceed_fleet The percentage by which the CI is above the fleet threshold. 

percentage_exceed_aircraft The percentage by which the CI is above the aircraft 
threshold. 

long_term_gradient The gradient of the linear trend through the previous points 
that have not generated warnings. 

long_term_y_intercept The y-intercept of the linear trend through the previous 
points that have not generated warnings. 

long_term_gradient_normalised The gradient of the linear trend normalised by dividing by 
the mean. 

short_term_gradient The gradient of the linear trend through the previous points 
that have not generated warnings. 

short_term_y_intercept The y-intercept of the linear trend through the previous 
points that have not generated warnings. 

short_term_gradient_normalised The gradient of the linear trend normalised by dividing by 
the mean. 

cluster The cluster the point has been assigned to (Abnormal or 
Normal). 

cluster_quality The distance of the point from the centre of the cluster in 
terms of standard deviations. 

points_to_exceed_fleet_short The number of points into the future required for the short-
term trend to exceed the fleet threshold. 

points_to_exceed_aircraft_short The number of points into the future required for the short-
term trend to exceed the aircraft threshold. 

points_to_exceed_fixed_short The number of points into the future required for the short-
term trend to exceed the fixed threshold. 

points_to_exceed_fleet_long The number of points into the future required for the long-
term trend to exceed the fleet threshold. 

points_to_exceed_aircraft_long The number of points into the future required for the long-
term trend to exceed the aircraft threshold. 

points_to_exceed_fixed_long The number of points into the future required for the long-
term trend to exceed the fixed threshold. 

warning_level The warning level calculated by the decision process (High, 
Medium or Low). 
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3.7.4 CI Display 

This page shows a chart plotting all the CI values, the thresholds, the selected 

point that had exceeded the thresholds and short and long-term trends from 

the selected point. A dotted line is used to show the trends extended into the 

future, to help visualise when the thresholds would be exceeded. Where a 

fixed threshold is available, this is also plotted on the chart. The drop-down 

boxes, at the top of the display, show the details of the selected warning from 

the Warnings tab. These can be changed directly to look at another CI for the 

same component, or at a CI of a different aircraft, or a CI of a different 

component. This also allows the user to look at data that has not generated 

any warnings. The user can also choose whether to look at data only for the 

selected aircraft, or for the whole fleet. 

 

  

Figure 3.34: HUMS CI IHM display: CI Charts tab – One aircraft (left) and the 
whole fleet (right) 
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3.7.5 Cluster Results Display  

All available data, for the particular component selected on the Warnings tab, 

is shown in the cluster results page. The data is converted into three principal 

axes (using PCA) and plotted on two three-dimensional scatter charts, Figure 

3.35. One scatter chart is coloured by the cluster name, the other by the 

aircraft tail number. At the bottom of the tab a form is available for the user to 

rename individual clusters. This updates the display and saves the new name 

for future runs of the process. If insufficient points have been analysed for 

clusters to be identified, the user will not be able to rename clusters. 

 

 

 

Figure 3.35: HUMS CI IHM display: Cluster Results tab 



Chapter 3 HUMS CI IHM 

 

 96 

3.8 Assessment 

In order to assess the enhanced health monitoring capability that was 

developed, it was run on a subset of data and manually inspected. The results 

were compared to the fault cases described in section 3.2.3 and to the 

“Chinook Query Register”, which lists Chinook HUMS related investigations 

made by the MOD. 

 

Of the 46 million CI values sourced, spanning the operation of 40 aircraft 

between 2002 and 2006, a subset was selected to make the comparisons 

easier. The Combiner Bearings (CB) and Engine Bearings (EB) were selected, 

since over half the fault cases are for these components. In addition, only the 

impulsive indicator (ETE_M6) and energy indicators (total energy (EB), tonal 

energy (TON) and white noise energy (WHT)) were used, since these are 

most sensitive to bearing faults. This reduced the data set of CIs, which had 

passed the audit, to 1.8 million values. 

 

It is also worth noting that there was a configuration change in the onboard 

HUM system in April 2004. This change grouped some of the bearings, which 

had the same CI values. For example, there are three input shaft combiner 

bearings (CB1, CB2 and CB3); CIs, such as M6 and EB, have exactly the 

same values for all these bearings, but the pattern match CIs are different for 

each. Originally, these values were duplicated and associated with each 

bearing. However, after the configuration change, they were grouped into a 

new component called CB123. For this analysis, for the first configuration, only 

the first component was used (i.e. CB1), otherwise the group component was 

used (i.e. CB123). For the subset selected, there are three combiner input 

pinion bearings (CB123), four combiner gear bearings (CB4567), three engine 

input pinion bearings (EB123) and four engine output gear bearings (EB4567), 

each for both the left and right hand engines. Hence, a total of twenty eight 

components were analysed, broken down into eight groups. 

 

Processing the data took five and a quarter hours, which equates to less than 

twenty seconds to process each day’s worth of data (PC spec: Dell Precision 

PWS390 with Intel® Core™2Quad CPU (Q6600@2.4GHz) and 3.5GB RAM). 

The processing included: pivoting the data to a suitable format, running the 

cluster algorithm, calculating fleet and individual thresholds and identifying 
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exceedances, calculating short and long term linear trends, and then 

calculating an overall confidence of a fault being present.  

 

Once processed, a total of just over 60 thousand warnings were generated 

(approximately 3% of the data) covering the two-year period (10843 high, 

20571 medium and 28820 low). This works out to about 40 warnings per day. 

Note that a particular fault is usually characterised by many warnings, since 

historical data anomalies may be present for long time periods and many 

different CIs and related components will generate warnings.  

 

The summary that is first presented to the user is grouped by aircraft and 

component, and ranked by the calculated confidence that there is a fault. The 

summary had a total of 176 out of a possible 320 rows populated, and 21 were 

given a confidence of over 50%. The key fields of the summary table are 

presented in Table 3.6. The table shows all the results with a confidence over 

50% (coloured red) and also results with a confidence under 50% that were 

associated with known fault cases, or MOD query register entries.  

 

Out of the ten fault cases described in section 3.2.3, five related to the 

components and time period covered by this analysis and all were alerted by 

the system. In addition, all of the related MOD query register entries were 

alerted by the system. On inspection, only three of the results with a 

confidence of over 50% did not look like a possible fault, but rather were due 

to very low initial values causing the learnt threshold to be too low. Figure 3.36 

shows the worst-case receiver operating characteristic (ROC) curve for the 

results. It is based on a threshold on the confidence, assuming that only 

events identified by the MOD were real faults. It shows that 83% detection can 

be achieved with only a 13% false positive rate. 

 

Figure 3.36: HUMS CI IHM ROC curve
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Table 3.6: Summary of results from the IHM process 

# Aircraft Component Confidence Case # In Register 

1 AC10 LH-CB123 99   

2 AC14 RH-CB1 99  y 

3 AC14 RH-CB4 99  y 

4 AC17 LH-CB1 99 1  

5 AC17 LH-CB4 99 1  

6 AC6 RH-CB1 99   

7 AC38 RH-CB123 95   

8 AC31 RH-EB4567 82 threshold issue 

9 AC31 RH-EB123 72 threshold issue 

10 AC17 RH-EB123 71   

11 AC2 LH-CB123 70   

12 AC17 RH-EB4567 70   

13 AC29 RH-EB4567 69   

14 AC6 RH-CB123 68 9  

15 AC33 LH-EB1 64   

16 AC7 LH-EB123 62   

17 AC33 LH-EB4 62   

18 AC10 LH-EB123 58   

19 AC32 LH-CB123 55 threshold issue 

20 AC1 RH-EB123 54   

21 AC14 RH-CB123 53  y 

…      

40 AC22 LH-EB123 28 3  

…      

46 AC26 LH-EB4 26 3,10  

…      

48 AC33 LH-CB123 25  y 

49 AC26 LH-EB1 25 3  

…      

80 AC20 RH-CB123 16 5 y 

…      

89 AC2 RH-CB123 14  y 

…      

176 AC8 LH-EB4567 0   

 

Each of the results presented in Table 3.6 is described in detail in Appendix 

A1.10, showing charts of all the related CI data and descriptions of related 

MOD findings. Representative case studies are presented in the following 

sections that illustrate some of the successes and shortcomings of the 

developed IHM process. All the charts shown are taken from the developed 

system that was delivered to the MOD. 
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3.8.1 HUMS CI IHM Results - Case 1 

For the aircraft ‘AC10’ and the left hand combiner bearing group, all the 

energy CIs were found to be above the calculated fleet threshold for all 

available data. The data for the energy band CI for passband 4 is shown in 

Figure 3.37. The values are nearly twice as high as the values for Case 9 

described in section 3.2.3. It is therefore likely there was some damage to a 

combiner bearing. However, the values are fairly constant for over a year 

which indicates that any damage present is not progressing significantly. The 

values are highest for February to April 2005. At the end of this period it is 

likely that some maintenance was performed, as there is a gap in the data 

between the 15th and 26th of April, but no maintenance information was 

available to confirm this. The M6 CI values were found to only have a few 

spikes slightly above the calculated fleet threshold causing a few low level 

warnings. It seems sensible that the algorithm has given this data a high 

confidence over 99% as these values should be further investigated by the 

MOD. 

 

 

Figure 3.37: HUMS CI IHM chart of aircraft ‘AC10’ and component ‘LH-CB123’ 
showing the CI ‘FTE_EB’ for passband 4 
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3.8.2 HUMS CI IHM Results - Case 2 

For the aircraft ‘AC14’ and the right hand combiner bearing group, all the 

energy CIs were found to be above the calculated fleet threshold from the start 

of the data in March 2003, until the last but one point on the 29th of January 

2004. The last data point is normal (on the 6th of February 2004), as shown in 

the left hand chart of Figure 3.38. In April 2003 there were found to be a large 

number of very high spikes in the M6 data, as shown in the right hand chart of 

Figure 3.38. These were investigated by the MOD, as recorded in the query 

register, in July and again in August 2004. The conclusions were: “Analysis 

confirms impulsive content but cannot be attributed to any bearing frequencies 

in the Combiner Xmsn. Consider this still to be spurious arisings”. The data for 

combiner bearing component group ‘CB4567’ had similar values. This shows 

that the system correctly classified this data as a fault case and gave it a high 

confidence of 99%. 

 

 

 

Figure 3.38: HUMS CI IHM chart of aircraft ‘AC14’ and component ‘RH-CB1’ 
showing the ‘FTE_EB’ CI for passband 4 (left) and the ‘ETE_M6’ CI for passband 

3 (right) 

ETE_M6 Passband 3 

 

FTE_EB Passband 4 
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3.8.3 HUMS CI IHM Results - Case 3 

For the aircraft ‘AC17’ and the left hand combiner bearing group, all the 

energy CIs were found to be above the calculated fleet threshold, from the 

start of the data on the 2nd of December 2002 until the 23rd of January 2003. 

There was also found to be a step down in energy CI values for passband 3 

between the 6th and 11th of December 2002. The M6 values ramp up from 

about the 16th of January 2003. Figure 3.39 shows these two CIs for both 

passband 3 and 4. This data relates to fault case 1, presented in section 

3.2.3.1. The combiner bearings were replaced and normal operation can be 

observed in the data from May onwards. The CB4 group was found to have 

similar characteristics. The algorithm has given this known fault data a high 

confidence of 99%, thus demonstrating that known faults can be detected. 

 

 

 

 

Figure 3.39: HUMS CI IHM chart of aircraft ‘AC17’ and component ‘LH-CB1’ for 
the CIs ‘ETE_M6’ and ‘FTE_EB’ for passbands 3 and 4 
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3.8.4 HUMS CI IHM Results - Case 4 

For the aircraft ‘AC31’ and the right hand combiner bearing group, a large 

number of acquisitions were found to be above the calculated fleet threshold. 

However, the fleet threshold ramps up fairly quickly over this period and then 

the CI values are marked as normal, as shown in Figure 3.40. This doesn’t 

look like a real fault. Further investigations revealed that there were about 380 

acquisitions from AC15, AC23 and AC3 in 2003, which had much lower 

means and standard deviations than later data, causing the fleet threshold to 

be too low. If this analysis was run regularly, this would be spotted early on 

and the fleet statistics could be reset to start at the end of January 2004. This 

demonstrates the importance of the period defined before which the statistics 

can be relied upon. In this case, it seemed that three aircraft had abnormally 

low vibration which skewed the initial statistics. This problem was found to 

occur for two other cases with confidence scores over 50%. Resolving this 

threshold setting problem would mean that these cases would no longer be 

flagged to the end user. 

 

 

Figure 3.40: HUMS CI IHM chart of aircraft ‘AC31’ and component ‘RH-EB123’ for 
the CI ‘FTE_EB’ for passband 4 
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3.9 HUMS CI IHM Conclusions 

In this section, the problem of analysing huge volumes of Chinook HUMS CIs 

was described. A suite of techniques, including data cleaning, automatic 

adaptive threshold evaluation, prognostics using linear trends and data mining 

by clustering were presented, that have been developed, implemented in the 

FUMS™ framework and used to automatically and intelligently manage this 

data and present it to an expert in the field to make airworthiness judgments. 

Comparisons have been given between the practices currently employed by 

the MOD and the results of the techniques developed by the author. The tools 

developed would make analysing anomalies easier for the MOD. 

 

The assessment of the techniques showed that all the related fault cases and 

query register entries were identified, with the lowest confidence being about 

14% and all but two being above 25%. Of all the other events identified with a 

confidence of more than 50%, only three seemed to be data that is unlikely to 

relate to a fault. High level warnings were generated well before any of the 

MOD investigations were initiated, indicating that the methods could alert the 

users to issues earlier. For example: The first alert for case 1 was issued 52 

days before the component was replaced, the first alert for AC14 RH-CB123 

was 60 days before the MOD started investigating it, the first alert for case 3 

was 49 days before the MOD started investigating it, the first alert for AC33 

LH-CB123 was 7 days before it was investigated by the MOD. 

 

The assessment could be improved by quantifying the confidence level that 

would have been generated at different points in time for each event, since the 

analysis presented only gave an overall confidence at the end of all the data. 

In addition, it would improve the analysis if continuous periods of alert could 

be grouped, since the current summary may group multiple faults together. It 

would also have been beneficial to have more maintenance information, to 

confirm whether the other events identified actually related to faults.  

 

The analysis could also be improved by identifying long gaps in the acquisition 

data or using maintenance data to split the data. The methods could also be 

enhanced by attempting to fuse information from more data sources to give 

more confidence in fault predictions. For example, the Chinook has an oil 

debris monitoring programme, frequent FDR downloads and maintenance 

data stored in a logistics database.  
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The next chapter looks at the problem of identifying engine performance 

degradation. As with the Chinook, the aim of the analysis is to identify 

anomalous data for further investigation, to allow events to be identified 

automatically and to give an improved lead time on pending issues. 
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CHAPTER 4 

 

4 ENGINE PERFORMANCE DEGRADATION MODELS 

This section presents analysis carried out to identify engine performance 

degradation using measured aircraft data. Some of the work was presented at 

the Institute of Electrical and Electronics Engineers (IEEE) aerospace 

conference in 2006, [13], and to the MOD in 2004, [105]. 

 

4.1 General 

Gas turbine performance deteriorates during operation due to degradation of 

gas path components. The most common causes of degradation are 

compressor fouling, increased blade tip clearance due to wear and erosion, 

labyrinth seal damage, foreign and domestic object damage, hot end 

component damage and corrosion. These physical faults result in changes in 

gas turbine thermodynamic performance, which lead to changes in observable 

engine parameters, such as temperature, pressure, rotational speeds and fuel 

flow-rate. The degraded performance, reflected in the observable engine 

parameters, can be used to detect component faults. Gas Path Analysis 

(GPA) was originally coined by Urban in 1975 as a technique for using models 

of engine performance, compared with engine data, to monitor engine 

performance, [106]. Figure 4.1 illustrates how physical faults cause degraded 

performance, which can be detected by changes in measured parameters.  

 

 

Figure 4.1: Gas turbine fault diagnostics approach, [106] 
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In 2002 Li reviewed performance-analysis-based gas turbine diagnostics, 

covering data validation, linear and non-linear, AI (ANNs, GA, Expert Systems, 

FL) and transient based models, [107]. Li’s review also indicated the relative 

computation speeds and complexities of the various techniques, as shown in 

Figure 4.2. 

 

Figure 4.2: Comparison of diagnostic methods in terms of computation speed 
and model complexity, [107] 

 

Jaw also describes how ANNs, FL, GA, Markov Chains (MC), BT, ES and 

Decision Trees (DT) are applied to GPA, [31]. Figure 4.3 shows how these 

methods can be classified according to computation complexity and speed. 
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Figure 4.3: GPA algorithmic performance assessment, [31] 

In this study, data from the Tornado RB199 engine were used to develop 

methods for analysing engine performance degradation.  
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4.2 Data Sourced 

Data from Rolls Royce RB199 engines fitted to Tornado aircraft, were sourced 

from the UK MOD. The data were from the Engine Health and Usage 

Monitoring System (EHUMS) that is being retro-fitted to the entire UK fleet. By 

the end of 2009 about fifty percent of the fleet had been fitted with EHUMS. 

Figure 4.4 shows the layout of the RB199 engine and the location of the 

significant components. 

 

 
1 Low Pressure Compressor (Fan) 14 Reheat Flameholders 
2 Intermediate Pressure Compressor 15 Bypass Stream Reheat Fuel Sprays 
3 Bypass Duct 16 Flameholder Ring 
4 Low Pressure Turbine 17 Exhaust Diffuser 
5 Bypass 18 Intermediate Pressure Turbine 
6 Primary Vapouriser 19 High Pressure Turbine 
7 Jet Pipe 20 Flame Tube 
8 Jet Pipe Heatshield 21 Combustion Chamber 
9 Thrust Reverser Bucket 22 High Pressure Compressor 
10 Propelling Nozzle Flap 23 External Gearbox 
11 Shroud Roller 24 Oil Tank 
12 Propelling Nozzle Shroud 25 PTO Shaft 
13 Thrust Reverser Links   

 

Figure 4.4: Cut-away diagram of the RB199 engine, [108] 

 

The data sourced contained 2613 EHUMS downloads. Each download can 

contain multiple flights (sorties). Of these, 450 downloads had corrupt engine 

and/or tail numbers (e.g. engine serial number 0000, tail number “�ÿ000”). 

This is a significant fraction of the data (17%), and was mostly due to the 

details not being entered after main engine control unit (MECU) changes by 

the maintainers when the system was new. In addition, forty-one sorties had 

invalid data block markers. A total of 27,470 sorties, from 136 aircraft and 236 

engines, from January 2006 to October 2009, were sourced. The average 

flight was one hour forty minutes long: hence the parameters recorded at 

8.33Hz have an average of about fifty thousand points per flight.  
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The data were read using the FUMS™ system, which took about fifty hours, 

including calculating statistics on all parameters, and correcting corrupt data 

(see section 4.3); this corresponds to just seven seconds per flight (PC spec: 

Dell Precision PWS390 with Intel® Core™2Quad CPU (Q6600@2.4GHz). 

Some of these flights may potentially be duplicated, since the EHUMS data is 

recorded in a loop, so the same flight can appear in more than one download. 

Duplicates were later removed as part of the analysis.  

 

Airspeed (IAS) and altitude parameters were derived from Static Pressure 

(PAVS) and Total Pressure (PASVS) using the following International 

Standard Atmosphere (ISA) equations: 

190263.0

1
AMBLAPS

AMB

P

PAVS

T

T
Altitude  (4.1) 

 

AMB

PASVS
IAS

2000

514.0

1
 (4.2) 

 
Where: 
TAMB = 288.15 K 
PAMB = 101.325 kPa 
ρ AMB = 1.2256 
TLAPS = 0.00198122 K/ft (6.5K/km) 
1kt = 0.5144 m/s 

 
 
The parameters read are given in Table 4.1. A suffix of “_L” and “_R” was 

used to indicate whether an engine had been fitted on the left-hand or right-

hand position in the aircraft respectively. 
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Table 4.1: EHUMS parameters 

Dry Parameters 

Name Description Units Frequency Range 

NHV High Pressure Shaft Speed % 8.333Hz 0 to 125 

NLV Low Pressure Shaft Speed % 8.333Hz 0 to 125 

TBT Turbine Blade Temperature Degrees C 8.333Hz 0 to 1000 

PLRH Pilot’s Lever Angle Degrees 
(Position) 

2.083Hz -30 to 15 

T1 Intake Total Temperature 
Equivalent to OAT 

Degrees K 2.083Hz 200 to 495 

PAVS Aircraft Static Pressure kPa 2.083Hz 0 to 220 

PASVS Aircraft Total Pressure - Ps0 kPa 2.083Hz -5 to 158 

LPCDEM Lectric Pressure Control 
Demand (controls fuel flow)  

Volts 2.083Hz 2.5 to 7.5 

SFLAGA Lane 1 Fail Flag 2.083Hz Good = 0 
Fail = 1 

SFLAGB Lane 2 Fail Flag 2.083Hz Good = 0 
Fail = 1 

LC Lane In Control L1 or L2 2.083Hz Lane1 = 0 
Lane2 = 1 

XDRV Gearbox Cross Drive 
Engaged/Disengaged 

Flag 2.083Hz Disengaged = 0 
Engaged = 1 

OPNBAR IP BOV Solenoid  Flag 2.083Hz Energised/ 
Closed = 1 

GFBAL1 Weapons Fire  Flag 2.083Hz Weapons Fire on 
= 0 

AUIG Auto Ignition  Flag 2.083Hz Ignition = 0 
Non-Ignition = 1 

TBTSWT TBT Datum Switch  Low/Datum 2.083Hz Datum = 0 
Low = 1 

Reheat Parameters 

Name Description Units Frequency Range 

AJACT Nozzle Shroud Position Degrees 2Hz -5 to 12 

FUACT Reheat Fuel Actuator 
Position 

Degrees 2Hz -5 to 12 

TTACT Tt1 Actuator Drive Position 
Distributes fuel between 3 reheat fuel 
manifolds. The colder the OAT, the 
more fuel goes to the flame holder and 
primary, with less to the bypass. 

Degrees 2Hz -5 to 12 

HARDEN Reheat Enabled True/False 2Hz Reheat OFF = 0 
Reheat ON = 1 

ONFTSW Open Nozzle for Taxi Enable True/False 2Hz TN Closed = 0 
TN Open = 1 

BKTSIN Reverse Buckets Deployed True/False 2Hz Stowed = 0 
Deployed = 1 

PLBA Reheat Reset (by Pilot) 
Enabled 

True/False 2Hz Reset = 0 

FREEZE Reheat Fail or Freeze 
Indication 

True/False 2Hz Freeze/Fail = 1 

LFAULT Reheat Dormant Fail True/False 2Hz Good = 1 
Fail = 0 

WLOOL Working Line Limit (WLL) 
Exceedance 

True/False 2Hz Limit Exceed = 1 
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Figure 4.5 shows the number of sorties and flying hours, per month, recorded 

in the EHUMS data. The figure shows that there was a marked increase in 

EHUMS data from August 2008, as the EHUMS units are retrofitted to the 

fleet.  

 

 

 

Figure 4.5: Total flying hours (top) and number of sorties (bottom), per month 
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Figure 4.6 shows correlations between parameters for a typical flight. While 

the individual charts are small, the overall figure allows identification of 

parameters that are well correlated or don’t have normal distributions. 

 

 

Figure 4.6: Parameter scatter plot matrix with histograms for a typical flight 

Key 
Correlated because ALT and IAS are 

derived from PAVS and PASVS 
Correlated parameters 
 
Parameters with two modes of operation 
 

The diagonal plots are histograms, with the bin 
values corresponding to the x-axis labels, and 
the y-axis being normalised frequency (such 
that the sum of the bars is 100% of the data) 
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4.3 Data Correction 

The FUMS™ short period automatic data correction (ADC) , [44], algorithm 

was configured for the EHUMS data. ADC is designed to correct corruptions 

such as spikes, steps and drop outs, which occur over periods of less than two 

seconds. It is only applicable to the twelve continuous parameters such as 

NHV, NLV, TBT, derived Altitude and Airspeed, and not to discrete data, 

which only has values of true/false or one/zero. 

 

The configuration data of the ADC algorithm are derived by analysing a 

sample from the data signal under consideration. The configuration data can 

include both generic data for all signals and configuration data specific to a 

single signal. Corrections are performed using linear interpolation between 

valid values, either side of the period of corruption.  

 

The key configuration parameter is DMAX. DMAX is a real number evaluated 

for each signal and represents the maximum expected rise/fall of the signal. 

Exceeding the maximum rise/fall DMAX can occur over a number of points 

denoted by NSEARC; legacy data has indicated that a suitable value of 

NSEARC is three data points (regardless of data frequency) and can be 

applied to the majority of signals. 

 

The algorithm marks the data with one of the following flags (note that only 

type 4 corruption is corrected):  

 

0 = Data valid, no corruption.  

1 = Long period of corruption (data not corrected).  

2 = DC signal – i.e. successive values are constant (data not corrected).  

3 = Jump as sensor switched on condition. Data preceding this point can 

be considered as "sensor off" (data not corrected).  

4 = Short period corruption (e.g. spikes). Data flagged and corrected with 

interpolated values.  

5 = Jump type data corruption (data not corrected).  

 

The 27,470 EHUMS sorties sourced represented a total of 46,298 recorded 

hours. The twelve continuous parameters therefore contained a total of 

555,576 hours of data. Table 4.2  shows the total hours of data that was 

flagged by the ADC algorithm. The table also shows the percentage of data 
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identified, and the number of periods of corruption that were identified. A total 

of 1547 hours were flagged as corrupt, which represents just 0.28 percent of 

the data. Only 0.068 percent of the data was of type four and so was corrected 

by linear interpolation. 

 

Table 4.2: Results of ADC by correction code 

Code Type Hours % Count 

1 Long period 1133.78 0.2041% 12,065 

3 Jump at start 2.56 0.0005% 5,559 

4 Short period 378.98 0.0682% 149,257 

5 Jump 31.59 0.0057% 4,968 

Total  1546.92 0.2784% 171,849 

 

Figure 4.7 shows a FUMS™ report that was configured to view the results of 

the data correction. It allows the user to select the aircraft, flight and 

parameter of interest and to see a chart of the raw and corrected data. Figure 

4.9 to Figure 4.12 show statistics of the number and duration of corruptions 

found, by aircraft and parameter. The figures show that: aircraft 6 had 

significantly more corruptions than other aircraft; TTACT was the parameter 

with the longest duration of corruption; PLRH and TBT had the largest number 

of corrupt periods. Figure 4.13 shows some example corruption and the 

corrected values.  

 

 

Figure 4.7: Report to view data correction 
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Figure 4.8: Number of corruptions identified per aircraft 

 

Figure 4.9: Duration, in minutes, of corruptions identified per aircraft 

 

 

Figure 4.10: Number of corruptions identified per parameter 

 

Figure 4.11: Duration, in minutes, of corruptions identified per parameter 
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Figure 4.12: Number of corruptions identified per aircraft and parameter 

RAW Corrected

 

Figure 4.13: Example of data corruption and the corrected values 
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4.4 ProDAPS Anomaly Modelling 

GE Aviation has developed a Probabilistic Diagnostic and Prognostic System 

(ProDAPS) for anomaly detection, [55]. The objective of anomaly detection is 

to identify abnormal behaviour that might be indicative of some fault. Anomaly 

detection is used in a number of applications, with the underlying theme being 

that there is no large library of tagged fault data with which to train a model. 

The process is conceptually simple; a model of normal behaviour is built using 

a training data set, then new data is assessed for its fit against this model. If 

the fit is not within the model’s threshold then it is flagged as anomalous. 

Nearly all approaches assume that a set of normal data is available to 

construct a model of normal behaviour. Modelling with in-service data 

therefore presents significant challenges. Due to issues such as a lack of 

feedback from the repair and overhaul process, undetected instrumentation 

problems, maintenance interventions, etc., it must be assumed that any 

database of historical in-service data will contain unknown anomalies. 

 

Anomaly models are built from a set of input data, with input parameters 

selected according to the particular monitoring requirements for the model. 

The anomaly models are based on Gaussian Mixture Models (GMMs) and 

provide detailed density mapping of the data. GMMs allow complex 

distributions to be modelled by summing a number of Gaussian distributions. 

A Gaussian distribution )(xd  is governed by (4.3) where μ is the mean 

(location of the peak) and σ is the variance (the measure of the width of the 

distribution). Multiple Gaussian distributions can then be summed as shown in 

(4.4), each with a weight w  corresponding to the number of samples 

represented by that distribution. An example of summing four Gaussian 

distributions to represent the density of the data is illustrated in Figure 4.14. In 

multi-dimensional problems, the individual distributions are often called 

clusters since they represent a subset of the data in terms of density 

distribution. 
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Figure 4.14: Single parameter distribution modelled by a Gaussian mixture 
model 

 

The clusters in a model can rotate to represent correlations between 

parameters. The rotation is defined by the cluster covariance matrix. In 

ProDAPS, the models are then adapted so that they reject any abnormalities 

existing in the training data. A carefully designed automatic ‘model adaptation’ 

process detects regions in the cluster space that are not representative of 

normal behaviour and then removes these clusters. The adaptation process is 

complex but is controlled by a simple tuning parameter. The final model 

provides a poor fit to samples in the training data that are outliers. A significant 

amount of effort was expended developing the novel automated model 

adaptation process, as this is the key to the successful building of models 

using in-service data, containing various unknown anomalies. 

 

The resulting models are sophisticated statistical representations of the data 

generated from in-service experience; fusing sets of input parameters to 

reduce a complex data picture into a single parameter time-history, called a 

‘Log Likelihood’ (LL) or ‘Fitness Score’ (FS) trace. The FS measures the 

degree of abnormality in the input data and mirrors the shape of any 

significant data trends. It represents a ‘goodness of fit’ criterion, indicating how 

well data fits a model of normality. Therefore, the FS has a decreasing trend 

as data becomes increasingly abnormal.  
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Another novel feature of the modelling process is that it does not require data 

to be categorised as ‘training’ or ‘test’ (which is a common practice in data 

modelling, to ensure that built models will generalise to data not used for 

training). All data can contribute to a model and the standard procedure for 

building a model is to use all available historical data, apart from cases that 

are known a-priori to be anomalous. This also has the advantage that online 

model updates can be performed as new data are acquired. The ability to 

update models is important, particularly for a new aircraft type where data is 

initially limited. 

 

The anomaly model FS output is converted into a ‘Probability of Anomaly’ (PA) 

measure, which is a normalised probability measure that ranges between zero 

and one. For each model there is a PA distribution which is an extreme value 

distribution. A FS value is passed to the PA distribution and a PA value 

(probability) is returned. Most FS values will return a PA of zero because most 

acquisitions will be normal. The PA values provide a measure that is 

normalised across models. This allows model outputs to be compared. Such a 

measure could be fed into a secondary process, such as automated 

reasoning, to assess the nature of an anomaly. In addition, it would facilitate 

data mining of anomalous patterns in the search for new knowledge. 

 

ProDAPS models can also be used to predict an input variable from any 

combination of other inputs. These can be subtracted from the measured 

value to give deltas, which indicate whether the measured data is higher or 

lower than expected by the model. Influence Factors (IF) can also be 

computed, which give an indication (0-1) for each input parameters as to how 

it is affecting the overall PA. Figure 4.15 shows the data flow in a typical 

ProDAPS application: the input data (CIs) are pre-processed (e.g. moving 

median filter, removing of outliers, splitting the data when components were 

replaced), then used to build anomaly models; these models can then be used 

to calculate the FS and PA. Where an alert is identified (usually using an m-

out-of-n (MooN) criteria – i.e. if m is 3 and n is 4, 3 out of every 4 PA values 

must be over a threshold, e.g. 0.9), the IF can be interrogated to help 

diagnose the fault. Periodically the models can be rebuilt to represent changes 

in the fleet.  
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Figure 4.15: ProDAPS data driven intelligence, [55] 
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4.5 Performance Snapshots 

There is an established link between the deterioration of the High Pressure 

Nozzle Guide Vanes (HPNGVs) in the RB199 engine and degradation in the 

engine performance, [109]. The study of Accident Data Recorder (ADR) 

information has revealed that engines suffering uncontained failures had 

undergone a progressive deterioration in high pressure spool speed, over a 

number of sorties, and had been operating significantly below their placard 

values immediately before the failure. This indicates that the deterioration of 

the HPNGVs, leading to such events, would have been gradual and that this, 

and similar incipient mechanical integrity problems, could have been detected 

by monitoring performance parameters. It is believed that early investigation of 

low NH trends could have prevented the loss of at least two Tornado aircraft. 

Furthermore, installed performance trending of the engine allows early 

detection of the following types of fault, [109]:  

 

 Performance deterioration. 

 Incorrect placard figures entered by pilots or maintainers. 

 Turbine damage. 

 Compressor damage. 

 Optical pyrometer faults. 

 Incorrect TBT datum values. 

 Performance below NL Minimum Installed Thrust Limit (MITL). 

 High NH/NL. 

 

In order to address this requirement, the aircraft crews are required to record 

engine performance data prior to take-off. The procedure for recording is as 

follows: 

 

 Record current OAT. 

 Select maximum dry power (no afterburner). 

 After ten seconds (minimum) record NHV, NLV and TBT readings. 

 On completion of sortie, transfer data onto MOD Form 705C. 

 

The above procedure is taken from reference [109]. These values are 

currently used in the RB199 Installed Performance System (RIPS) to evaluate 

the engine performance. 
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4.5.1 Automatically Identifying Performance Snapshots 

An algorithm was developed by the author to automatically identify this RIPS 

performance run just before take-off and to record values of all parameters at 

this time. Rather than using a single value, an average is taken over five 

seconds. Additionally, the spool speeds and temperatures are corrected to 

ISA conditions using the T1 value and the equations in Appendix A1.11. The 

snapshot data could then be used for performance modelling, removing the 

need for the pilot to manually record it. Figure 4.16 shows the twelve 

continuous parameters for a typical EHUMS data set around the time of the 

performance run. 

 

 

Figure 4.16: Example data around the performance run (from 1125 to 1150 seconds) 
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Figure 4.17 shows pseudo-code of the algorithm developed to automatically 

identify snapshots in the EHUMS data. 

 

Figure 4.17: Pseudo-code for the steady state snapshot algorithm 

 
 

Set points_for_mean = 10 

Set points_after_start = 20 

Create all the columns required for the snapshot data 

Query for a list of all translated flights 

Loop round each Flight 

 Get the flight data for required parameters 

 Skip flights with very short duration (<30 seconds) 

 Interpolate any null data points 

 Resample to lowest frequency (2Hz) 

 Filter Data for IAS > 200 to find the time spent in the air 

 Filter Data NHV > 70 to find the engine run time 

 Count the number of flights 

 Filter the flight data for: 

 90< NHV  <120, 

 0< IAS <110, (These represent max dry power while stationary) 

 -1< PLRH  <2 

 -0.1< HARDEN <0.1 

 Check that there are enough points 

  Find mean of required number of points around the snapshot position 

End of loop round flights 

 

Check that there are no duplicates 

Filter out flights with no snapshots found 

Sort by engine_serial, download_date_time, flight_number 

Calculate unique_eng_run_number (integer that increments for each engine run) 

Calculate FIT (1 if there is an engine change, else 0) 

Calculate Accumulative Flight Length, Time In Air, and Engine Run Time 

Convert T1 to OAT (Celsius) 

Correct NH, NL and TBT to ISA conditions 

Save the results 
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4.5.2 Performance Snapshots - Dry 

Out of a potential 27,470 translated flights, 13,584 snapshots were taken by 

the algorithm. Note that over six thousand of the flights had less than a minute 

of engine run-time. Parameter histograms (Figure 4.18) and correlations 

between parameters (Figure 4.19) were investigated to help with 

understanding the data and choosing input parameters for the anomaly model. 

Note that the following discrete parameters always held a constant value 

during the snapshot: HARDEN=0, BKTSIN=1, PLBA=1, ONFTSW=0. The 

histograms show that TTACT and LPCDEM appear to have two distinct 

modes which the MOD revealed to be due to two different marks of engine 

since Mk104 has a longer jet pipe. A ProDAPS anomaly model was built using 

NH_COR, NL_COR, and TBT_COR as inputs.  

 

 

Figure 4.18: RB199 EHUMS snapshot histograms 
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Figure 4.19: RB199 EHUMS snapshot scatter plot matrix with histograms 

Key 
Correlated because ALT and IAS are 

derived from PAVS and PASVS 
Correlated parameters 
 
Parameters with two modes of operation 
 

The diagonal plots are histograms, with the bin 
values corresponding to the x-axis labels, and 
the y-axis being normalised frequency (such 
that the sum of the bars is 100% of the data) 
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4.5.3 Performance Snapshots - Reheat 

Using the same algorithm, developed for identifying the dry performance 

snapshot run just before take-off, snapshots were taken during take-off with 

the afterburner on (reheat). If this condition could give comparable results to 

the pre-takeoff run, it would remove the need for this extra run to be 

performed. This in turn would reduce fuel burn and increase sortie turn-around 

times as well as reducing unnecessary wear and tear on the engine. Figure 

4.20 shows the twelve continuous parameters for a typical flight, around the 

time of the reheat snapshot. The following configuration changes were made 

to the algorithm (see section 4.5.1): The points_after_start value was 

increased from twenty to thirty and the filter configuration was changed to: 

 

90 < NHV < 120 

0 < IAS < 200 

9 < PLRH < 20 

0.9 < HARDEN < 1.1 

 
Out of a potential 27,470 translated flights, 11,892 snapshots were taken by 

the algorithm. Note that nearly nine thousand of the flights had no time in the 

air. Quick analysis (looking at parameter distributions) identified the following 

outliers, which were caused by data corruption and so were removed: one 

flight had a value for TTACT of 0.2 degrees when the next smallest value was 

1.6 degrees; two flights had very low NL values (0.09% and 0.27% 

respectively) when the next lowest NL value was 87.8%; one flight had an 

AJACT value of 5.6 degrees, which is 8.5 standard deviations from the mean. 

Finally, eleven snapshots were removed due to low OAT values (less than -2 

ºC) as these appeared to represent a different engine configuration, Figure 

4.21.  
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Figure 4.20: Example data around the reheat snapshot (from 1160 to 1195 
seconds) 

 

Figure 4.21: Reheat snapshot scatter plot of NH vs. TBT coloured by OAT 
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Parameter histograms (Figure 4.22) were investigated to aid with 

understanding the data. Note that the following discrete parameters always 

held a constant value during the snapshot: HARDEN=1, BKTSIN=1, 

ONFTSW=0, OPNBAR=1. The histograms show that PLRH, AJACT, FUACT, 

TTACT and LPCDEM appear to have more than one distinct mode. Further 

understanding of the engine may therefore be required to help decide whether 

it would be beneficial to create two or more anomaly models for these different 

states. 

 

 

Figure 4.22: Reheat Snapshot histograms 
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4.5.4 Results 

Using the performance anomaly model, the PA and LL values, along with the 

deltas between the actual and predicted values for NH, NL and TBT, were 

calculated. A summary table was also calculated that shows, for each engine, 

the number of points with LL outside two and three standard deviation limits. A 

MooN calculation was used to highlight where three out of four successive 

points were outside the threshold. A count was also made where the PA 

values were above 0.9 and a MooN calculation was performed on the PA 

data. 

 

A FUMS™ report was configured to enable the results to be viewed. Figure 

4.23 shows the summary table on the first page of the report. Colour coding 

was used to highlight data of interest. An engine can be selected and on the 

subsequent page the original, corrected and delta values for the parameters 

can be viewed. Figure 4.24 shows the layout of this display, which is used to 

present the results in the following sections. The charts show the fleet mean 

(green) and three standard deviation bounds (light blue). The charts also 

indicate, via a vertical maroon line, where an engine has been fitted to a 

different airframe. Some of the charts presented combine the dry and reheat 

snapshots on one chart – in this case the dry data and its statistics (mean and 

standard deviation bounds) are in blue, and reheat in green. Note that the 

engine numbers used are not actual MOD/RR engine serial numbers. 

 

A full table of all the 60 engines that had at least one point in alert is given in 

Appendix A1.12. The table gives a description of what the data looks like and 

relates it to any Maintenance Work Orders (MWO). Twenty two of the engines 

looked like the alerts were likely to relate to an engine degradation of some 

sort. The table also shows the number of flying hours between the alert being 

generated and the fault being resolved. On average, the data is in alert for 

over sixty flying hours before it is resolved. This offers the operator a good 

window to investigate the fault and perform maintenance. Appendix A1.13  

presents charts of all the engines shown in the table. A selection of engines 

that show the range of data anomalies detected are described in the following 

paragraphs. 
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Figure 4.23: RB199 performance data – FUMS™ report to view results 

 
 

 

Figure 4.24: EHUMS anomaly results display layout 
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4.5.4.1 Engine 25 – TBT Sensor Failure 

Eleven data snapshots from EN025 were found to be extremely anomalous 

(more than ten standard deviations from the mean), Figure 4.25. For all of 

these flights the TBT values were 600 (the minimum TBT value) whilst the 

other parameters appear to be normal. This suggests a sensor failure. Figure 

4.26 shows how the TBT value drops off halfway through the previous flight 

(note that the raw sensor value after failure was 600; the plot shows this 

corrected to ISA conditions using OAT). The MWO revealed that the TBT fault 

was noted and an amplifier was replaced. Hence these snapshots were then 

removed from the training data and a new model was built. Note that it took 

the MOD eleven flights to spot this error, which could have been picked up 

after only one flight using this automated method. 

 

 

Figure 4.25: EN025 performance results 

 

Figure 4.26: Flight from EN025 where the TBT sensor failed 
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4.5.4.2 Engine 157 – Incorrect Snapshot Position 

EN157 had a single snapshot value that was identified as anomalous, Figure 

4.27. The delta TBT values show that the TBT reading was lower than 

expected. Investigation of the parameters around the snapshot position 

showed that the engine was not in a steady state condition. The engine was 

then returned to idle and ramped back up to maximum power a few minutes 

later, which did reach steady state conditions, Figure 4.28. This is an example 

where the algorithm, identifying the pre-take-off steady state condition, needs 

further refinements to ensure the engine is in a steady state condition. 

 

 

Figure 4.27: EN157 performance results 

 

Figure 4.28: EN157 data showing wrong and correct snapshot positions 
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4.5.4.3 Engine 201 – Data Corruption 

EN201 had two snapshot values that were identified as anomalous, Figure 

4.29. The first corresponded to flight ten where the delta values indicated that 

NH was high and TBT was low. The second corresponded to flight fifteen 

where the delta values indicated that NH was low and NL was high. 

Investigating the data around the time of the snapshots revealed that there 

was severe data corruption, which could not be corrected to sufficient 

accuracy to avoid skewing the snapshot values, Figure 4.30. Hence this 

snapshot was removed from the training data. This example highlights the 

importance of identifying and correctly dealing with corrupt data values. 

 

 

Figure 4.29: EN201 performance results 

 

Figure 4.30: EN201 flight 15 around the snapshot position, showing the raw 
corrupt data (left) and the corrected data (right) 
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4.5.4.4 Engine 30 

EN030 has a few anomalous points (mainly for the reheat snapshot) before an 

engine change, Figure 4.31. The deltas appear to show an increase in TBT 

and drop in NH for the last six flights for this engine. The engine was removed 

due to debris identified by the Early Failure Detection Cells (EFDC). When 

fitted to another aircraft, nine months later (presumably after being 

reconditioned), the data returned to normal. The analysis gave about twenty 

five hours warning of this fault. 

 

 

Figure 4.31: EN030 performance results 
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4.5.4.5 Engine 100 

EN100 had a few anomalous points at the start of the data, Figure 4.32. The 

engine was then fitted to another airframe and the data for the engine returned 

to normal, implying that maintenance was performed to remedy the problem; 

however, no related MWOs were identified to confirm this. The deltas indicate 

that NH is high whilst NL is low. 

 

 

Figure 4.32: EN100 performance results 

4.5.4.6 Engine 204 

EN204 performance seems to deteriorate, with delta NH rising sharply after 42 

hours, Figure 4.33. The MWO indicated that there had been a FOD event, 

resulting in the low pressure compressor being damaged. Despite this, it took 

over 36 flight hours for this fault to be noticed by the MOD.  

 

 

Figure 4.33: EN204 performance results 
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4.5.4.7 Engine 36 

EN036 performance data becomes anomalous after 60 engine running hours 

due to high NH, Figure 4.34. The MWO identified FOD as the cause and 

engine modules 1-3 were replaced. 

 

 

Figure 4.34: EN036 performance results 

 

4.5.4.8 Engine 104 

EN104 performance data has high NH and low NL at the start, Figure 4.35. 

The values appear to become normal about ten engine run hours before an 

engine change. 

 

 

Figure 4.35: EN104 performance results 

High NH 

High NH 

Low NL 



Chapter 4 Engine Performance Degradation Models 

 

 136 

4.5.4.9 Engine 55 

EN055 performance data has high NH and slightly low NL and TBT for ten 

flights then returns to normal, Figure 4.36. There are two MWO that relate to 

this period: The first indicated that the engine was replaced due to debris 

identified by the EFDC; the second states that the main fuel feed supply pipe 

was damaged. These alerts would have given about twenty flight hours 

warning of these faults. 

 

 

Figure 4.36: EN055 performance results 
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4.5.4.10 Engine 2 

EN002 performance data has alerts only for the reheat snapshot data. 

However, the shapes of the deltas are similar for the dry snapshots also, 

Figure 4.37. The trend of NH was found to have a negative gradient, with NL 

and TBT having a positive gradient. The engine was then removed for 

maintenance and the values returned to normal levels. The MWO indicated 

that the engine was removed because its performance was below the 

minimum installed performance tolerance level allowable. 

 

 

Figure 4.37: EN002 performance results 
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4.6 Engine Performance Conclusions 

In this chapter, anomalies were identified in a large set of RB199 data, by 

automatically identifying ‘snapshots’ of data during a mandatory maximum dry 

power engine run before take-off and with reheat applied during the take-off 

run. The integrity of the data was also analysed using an automatic data 

correction algorithm, which flagged 0.28 percent of the data as corrupt, and 

performed linear interpolation to correct 0.068 percent of the data.  

 

The methods identified anomalies in 60 of the 230 engines, of which about 

half could be attributed to faults identified in maintenance records. On 

average, alerts were raised over 60 flying hours before the fault was fixed by 

the operators. This shows that the methods could offer significant 

improvements in MAAAP. The automation of the snapshot data collection 

could also remove the need for pilots to perform long ground runs and 

manually take readings from instruments. These improvements would, 

however, require rigorous airworthiness qualification that would be costly and 

time-consuming. In addition, the EHUMS units, which record the data, have 

yet to be fitted to the entire fleet. 
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CHAPTER 5 

 

5 IDENTIFYING UNCOMMANDED FLIGHT CONTROL MOVEMENTS 

Uncommanded Flight Control Movements (UFCMs) are incidents where the 

aircraft makes an unexpected manoeuvre (such as a jolt in pitch, roll or yaw) 

without pilot inputs or external factors such as a gust. UFCMs are usually 

caused by faults in the Automatic Flight Control System (AFCS) or one of its 

inputs (i.e. sensors such as gyros) or outputs (i.e. actuators). 

 

This chapter presents analysis carried out to automatically identify UFCM 

events. Some of the initial findings were presented to the MOD in 2005, [110] 

and published at the first Prognostic Health Management conference, [14]. 

 

5.1 Background – Chinook Control 

The Chinook helicopter has a tandem contra-rotating rotor configuration. This 

cancels the inherent rotor torque, thereby eliminating the need for a 

conventional tail rotor, meaning that all installed power is available for lift and 

translation/rotation of the aircraft. This alters the flying control actions as 

shown in Table 5.1. 

Table 5.1: Comparison between Chinook and conventional helicopter controls 

Desired  
Behaviour 

Pilot  
Input 

Conventional 
Helicopter 

Chinook 
(Tandem) 

Diagram [111] 

Climb/ 
Descent 

Collective 
Leaver 

Increase pitch 
on all blades of 
the main rotor 

Increase pitch 
on all blades 
of both rotors  

Yaw Pedals Change pitch 
of tail rotor 

Apply cyclic 
pitch to tilt 
fore and aft 
rotors laterally 
in opposing 
directions 

 

 
 

Roll Cyclic 
Stick 
left/right 

Apply cyclic 
pitch to main 
rotor to tilt 
left/right 

Apply cyclic 
pitch to tilt 
fore and aft 
rotors laterally 
in the same 
direction 

 

 
 

Pitch Cyclic 
Stick 
fore/aft 

Apply cyclic 
pitch to main 
rotor to tilt 
fore/aft 

Differential 
Collective 
Pitch (DCP) 
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The Chinook has a duplex Automatic Flight Control System (AFCS) providing 

short-term damping and long-term attitude hold. The AFCS receives and 

processes signals from sensors; it passes control signals to electro-hydraulic 

and electro-mechanical actuators in the flying control system. Pitch and roll 

attitude, airspeed, heading, barometric altitude and radar altitude hold 

functions are incorporated in the system, [112]. 

 

As shown in Figure 5.1, the forward rotor shaft has a forward tilt of 9  and the 

aft rotor a forward tilt of 4 . This was required to provide a ground taxi 

capability and to eliminate abnormal nose-down attitude during cruise. This 

configuration causes a number of problems, which are discussed below. 

 

Figure 5.1: Chinook tandem configuration, showing rotor shaft tilts [111] 

The first problem is that, as the forward speed increases, because of the 

different tilts, the forward rotor will produce less lift, creating a pitch-down 

force. The pilot would have to counteract this by pulling back on the cyclic 

stick at higher speed, which is counterintuitive. The solution to this problem 

was to introduce a Differential Air Speed Hold (DASH) system. The DASH 

system has three main purposes: to provide a positive linear stick plot for 

increasing speed, to maintain commanded airspeed and to correct the aircraft 

attitude for any pitch trim changes. Figure 5.2 illustrates the relationship 

between cyclic stick position and forward speed, with and without the DASH 

operating. The DASH actuators are controlled by the AFCS, which is based on 

four signals: airspeed, pitch attitude, longitudinal cyclic stick position and 

DASH actuator position feedback. The DASH operates in different modes 

above and below forty knots (kts). 
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Figure 5.2: Effect of DASH system on the relationship between airspeed and 
cyclic stick position, [111] 

The rotor configuration also causes disc flap-back at higher speeds, requiring 

increased nose-down pitch, resulting in higher profile drag and an undesirable 

cockpit environment (i.e. excessive nose down pitch). The force generated by 

the disc flap-back creates structural stress on the rotor shafts, which could 

reduce component life. In addition, the flap-back may cause the aft traversing 

blade, which is flapping down, to contact with the droop stops, causing droop 

stop pounding. In order to solve these problems, the Chinook is fitted with a 

Longitudinal Cyclic Trim (LCT) system, which automatically tilts the rotor discs 

forward, as airspeed increases. A negative side-effect of this system is that 

the more the rotors are tilted forward, the smaller the separation between the 

overlapping discs, which causes increased noise. In summary, the LCT 

system aims to achieve the following: maintain a near level fuselage for any 

constant airspeed, improve the cockpit environment, reduce profile drag, 

reduce stress and vibration on the rotor shafts and heads, and prevent droop 

stop pounding. 

 

The LCT operation varies with flight conditions as follows: When on the 

ground, the swashplate is aligned at approximately 90  to the rotor shaft, i.e., 

zero cyclic pitch. When airborne, and travelling at less than 60 kts, the LCT 

actuators retract, tilting the rotors back. Between 60 and 150 kts the actuators 

extend in proportion to indicated air speed. At 150 kts, at sea level, the 

actuators reach their forward stops. Figure 5.3 shows how the LCT position 

varies with airspeed. Since increased altitude decreases the air density, the 

LCT actuators also extend by 0.2  per 1,000 ft. This means that the forward 

stops will be reached earlier at higher altitudes; conversely the LCTAs become 
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active as early at 40 kts (below 40 kts the IAS is unreliable, so the AFCS 

assumes 40 kts airspeed). 
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Figure 5.3: Relationship between the forward and aft LCT positions with 
airspeed, at sea level [113] 

Due to the complex nature of the Chinook control laws, it is easy to see how 

failures of any one of the systems (AFCS, DASH, and LCT) or their inputs 

(e.g. sensors such as gyros) or outputs (e.g. actuators) could cause noticeable 

events. It is these events that this analysis is attempting to detect. 

 

5.2 Review of UFCM incidents 

A database of forty UFCM events, between February 1996 and January 2005, 

was obtained from the MOD. To prevent traceability, the data had the aircraft 

tail number information removed. FDR data was not available for the UFCMs. 

The UFCM events were summarised, as described by the pilot, into the 

following categories: Cockpit Warning, Jolt, Pitch Disturbance, Vertical 

Bounce, and Yaw Disturbance. 

 

The resulting maintenance actions were also summarised, by listing the items 

that were replaced:  

 AFCS 

 Differential Air Speed Hold (DASH) Actuator (DA) 

 Directional Gyro (DG) and Vertical Gyro (VG) 

 Other actions, which include: Pitch or Roll Control Position Transducer 

(CPT), Integrated Lower Control Actuator (ILCA), LCT Actuator, 

Attitude Indicator (AI), chaffed cables, incorrect fitting, etc. 
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Table 5.2 shows the maintenance actions associated with the various 

categories of UFCM.  

Table 5.2: Summary of components replaced after different types of UFCMs 

UFCM AFCS1 AFCS2 DG DA VG1 VG2 Other 

Cockpit Warning    1    

Jolt       1 

Pitch Disturbance 4 4  12 2 1 3 

Vertical Bounce 3 1   3 3 4 

Yaw Disturbance 4 5 8 1 2 3 4 

Total 11 10 8 14 7 7 12 

 

5.3 Data Analysis to Identify UFCMs 

FDR data for 775 Chinook flights from thirty-five aircraft, between October 

1999 and January 2006, were also sourced from the MOD. Table 5.3 lists the 

parameters from these flights used in this analysis and their full descriptions, 

units, sampling rate (Hz) and statistics. 

Table 5.3: Chinook helicopter parameters investigated 

Parameter Description Units Hz Min Max Mean Seconds % NULL 

AFT_LCTA Aft LCT Actuator Position Inch 2 -1.9 2.0 0.6 3279599 0.13% 

ALT_RATE Altitude Rate Ft/Min 16 -8192.0 8128.0 -32.3 3279431 0.03% 

COLL_STICK Collective Stick Position Inch 2 -128.0 127.5 4.9 3279599 0.13% 

DASH_ACT_1 DASH Actuator 1 % 2 -128.0 127.5 30.8 3279599 0.03% 

DASH_ACT_2 DASH Actuator 2 %  2 -128.0 127.5 32.7 3279599 0.03% 

FWD_LCTA 
Forward LCT Actuator  
Position 

Inch 2 0.0 1.0 0.4 3279599 0.14% 

IAS Indicated Airspeed Kts 1 0.0 163.0 45.3 3295119 0.03% 

LH_WOW 
Left Hand  
Weight On Wheels 

1=Gnd 
1 0 1 0.5 3295119 0.03% 

0=Air 

NX Lateral Acceleration G 4 -1.0 0.6 0.0 3279501 0.14% 

NY Longitudinal Acceleration G 4 -1.0 0.9 0.0 3279501 0.14% 

NZ Vertical Acceleration G 4 -3.2 2.8 1.0 6558906 0.14% 

PITCH_ANGLE Pitch Angle Deg 2 -51.0 386.0 85.1 3279599 0.13% 

PITCH_STICK Pitch Stick Position Inch 2 -79.5 61.0 2.5 3279599 0.13% 

PRESS_ALT Pressure Altitude Ft 16 -20112.4 16688.7 738.8 3279431 0.14% 

RH_WOW 
Right Hand  
Weight On Wheels 

1=Gnd 
1 0 1 0.5 3295119 0.03% 

0=Air 

ROLL_ANGLE Roll Angle Deg 2 -65.5 434.0 174.7 3279599 0.13% 

ROLL_STICK Roll Stick Position Inch 2 -103.5 90.0 -0.3 3279599 0.13% 

YAW_PEDAL Yaw Pedal Position Inch 2 -82.0 90.5 -1.4 3279599 0.13% 

 

Some initial statistical analysis was performed on the data to check its 

integrity. As shown in Table 5.3, the number of points (shown as seconds), 

maximum, minimum, mean, and number of null points (i.e. error in the 



Chapter 5 Identifying UFCMs 

 

 144 

airborne system recording the data, shown as a percentage of the data) were 

calculated. The data contained 910 hours of data, totalling over 230 million 

data points for the eighteen parameters of interest. The statistics took about 

one hour to process (PC spec: Dell Precision PWS390 with Intel® 

Core™2Quad CPU (Q6600@2.4GHz). The following observations were 

made: 

 Of the 775 flights, 130 were ground runs (i.e., both the LH_WOW and 

RH_WOW flags were true throughout the flight).  

 Whilst the normal range of the collective stick is zero to 110, 588 flights 

(none of which were ground runs) had collective stick values of less 

than 10. This meant that this parameter could not be relied upon.  

 The data frequency was found to be set to zero for all parameters in 

two flights and some parameters in another three flights. However, for 

further processing, the data was assumed to be at the frequency listed 

in Table 5.3. 

 On average, 0.08% of data was found to be null. Five flights had more 

than 1% null, and the highest percentage was 25.9%. No single 

parameter appeared to have more null points than others. 

 Table 5.4 shows that a significant number of flights had constant 

values (i.e., the maximum was the same as the minimum) for some 

parameters. 

Table 5.4: Number of flights with all values constant (i.e. max = min) by 
parameter 

Parameter Flights Ground Runs Total 

AFT_LCTA 13 47 60 

ALT_RATE 1 1 2 

COLL_STICK 37 44 81 

DASH_ACT_1 4 27 31 

DASH_ACT_2 4 27 31 

FWD_LCTA 5 28 33 

IAS 11 15 26 

LH_WOW 6 130 136 

NX 0 1 1 

NY 0 3 3 

NZ 0 0 0 

PITCH_ANGLE 8 36 44 

PITCH_STICK 16 29 45 

PRESS_ALT 0 1 1 

RH_WOW 13 130 143 

ROLL_ANGLE 11 51 62 

ROLL_STICK 6 29 35 

YAW_PEDAL 16 31 47 
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5.3.1 Example UFCM 

One of the flights for which FDR data was available was identified by the MOD 

as having a UFCM event. During the flight, incorrect operation of the Forward 

LCT Actuator (FWD_LCTA) resulted in a pitch oscillation. 

 

Figure 5.4 shows the instant in the flight where the UFCM occurred. The 

aircraft pitch-down can be seen in the FUMS™ screenshot of the 3D 

animation and the pitch angle time trace. Note that the FWD_LCTA is 

approximately proportional to the IAS, except at the point when the UFCM 

occurred (approximately twenty-three minutes into the flight), where the 

FWD_LCTA value plummets to zero. 

 

 

 

Figure 5.4: FUMS™ flight animation screenshot showing the UFCM 

The various flight parameters related to UFCM events, for a typical flight, were 

plotted in a scatter matrix, to understand the relationships between 

parameters, Figure 5.5. The plot shows that the fore and aft LCTAs are well 

correlated, as are the two DASH actuators. In addition, these parameters are 

well correlated with IAS above 40 kts. These could then be used to build 

simple linear models, against which each flight could be compared. 
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Figure 5.5: Scatter plot matrix for UFCM related Chinook parameters for a 
typical flight 

 

Key 
Correlated parameters 
 

The diagonal plots are 
histograms, with the bin values 
corresponding to the x-axis 
labels, and the y-axis being 
normalised frequency (such 
that the sum of the bars is 
100% of the data) 
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5.3.2 Modelling the LCT Actuator 

From the Chinook control laws (section 5.1), the following relationships can be 

derived for the LCT Actuators: 

2.0

:

1000

_

min

minmax

minmax

a

IASmc

IASIAS

LCTALCTA
m

Where

ALTPRESS
acIASmLCTApredicted

 

(5.1) 

LCTAAFT
m

m
LCTAFWD

AFT

FWD
predicted __  

(5.2) 

 

Table 5.5 shows the constants for (5.1). Note that the Chinook documentation 

gave the LCT position in degrees; however, the data is recorded in inches. In 

order to convert between the two, the maximum and minimum values were 

extracted from the data and compared to the maximum and minimum position 

in degrees from the documentation. Investigating the data also revealed that 

the actuator reached their stops at about 140 kts at sea level, rather than the 

150 kts stated in the documentation; consequently, this was used in the 

equations. Figure 5.6 shows pseudo-code of the algorithm that was developed 

to identify LCT position anomalies. 

Table 5.5: Parameter Limits 

Parameters IAS  
Documented 

IAS 
Used 

FWD_LCTA 
Degrees 

AFT_LCTA 
Degrees 

FWD_LCTA 
Inches 

AFT_LCTA 
Inches 

Min 60 60 -1.2 -3.25 0 0 
Max 150 140 4 4 0.9453 1.2891 

range 90 80 5.2 7.25 0.9453 1.2891 
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Figure 5.6: Pseudo-code for algorithm to identify anomalous LCTA events 

 

The algorithm was run on all 775 available flights. Table 5.6 gives a summary 

of the results. The exceedances were further investigated to identify the kinds 

of event identified. Each figure, presented below, shows the relevant data for 

IAS greater than 60 kts. The figures each show four plots: Scatter charts are 

shown for the three relationships modelled (IAS vs. AFT_LCTA (top left), IAS 

vs. FWD_LCTA (top right), and FWD_LCTA vs. AFT_LCTA (bottom right)), 

with the actual data (blue), the predicted value (green) and any anomalies 

(deviations from the predicated value by more than the defined tolerance) 

marked (red). The bottom left plot show time series plots of these three 

parameters around the time of the detected anomaly. This plot also has flags 

indicating the periods that fall outside each model. 

Table 5.6: LCTA Results Summary 

 Seconds Hours Flights 

Total 3,297,044 915.8 775 

IAS>60 1,717,889 477.2 507 

Exceedances 27497 7.6 79 

Percent of Total 0.83% 0.83% 10.19% 

Percent of IAS>60 1.60% 1.60% 15.58% 

 

The known UFCM, discussed in section 5.3.1, was identified by the developed 

algorithm and is shown in Figure 5.7. Multiple exceedances were recorded for 

all three models. 

Set tolerance = 0.3 Inches 

Loop through all flights. 

Read the two LCTA parameters, IAS and PRESS_ALT. 

Record total data duration. 

Up sample IAS to 2Hz from 1Hz. 

Down sample PRESS_ALT to 2Hz from 16Hz. 

Filter where IAS > IASMIN (60 kts). 

Record total time above 60 kts. 

Identify where AFT_LCTA ≠ AFT_LCTApredicted + tolerance using (5.1) 

Identify where FWD_LCTA ≠ FWD_LCTApredicted + tolerance using (5.2) 

For each exceedance, calculate the number of events (continuous 

periods outside tolerance) and total duration. 

For each exceedance, count events and time with more than a 

minimum duration (5 seconds). 
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Figure 5.7: Known UFCM 

Twenty-five flights, from twenty different aircraft, appeared to have LCTA 

oscillations similar to the one shown in Figure 5.8. It is not known what causes 

this kind of oscillation during flight, and they may be classified as UFCMs. 
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Figure 5.8: Example of possible UFCMs which have an LCTA oscillation 

 

In addition, twelve flights, representing all flights for two aircraft, appear to 

have a shift in the operation of the aft LCTA. Figure 5.9 shows one of these 

flights. 
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Figure 5.9: Example flight with shift in LCTA relationship 

Four flights, all from one aircraft, appeared to have an AFT_LCTA failure, as 

the values are zero throughout the flight. This could be a sensor issue rather 

than the actuator being at a fixed position. The FWD_LCTA appeared to be 

operating correctly. Figure 5.10 shows one of these flights. 

 

 

Figure 5.10: Example with AFT_LCTA stuck at zero 

Twenty-nine flights had exceedances which seemed to relate to periods of 

transition, where the LCTAs responded more slowly than expected to changes 

in IAS. In most cases, the events occurred immediately before or after a 

change in airspeed crossing the 60 kts level. Figure 5.11 shows a flight with 

some of these events – note that the data shown has been filtered for IAS 

greater than 60 kts. These are not UFCMs and may indicate that the 

tolerances used to detect anomalies are too restrictive. 
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Figure 5.11: Examples of transition events 

The eight remaining anomalies detected could potentially relate to UFCM 

events. The following figures show some of these events. Figure 5.12 and 

Figure 5.13 show flights where the LCTAs appeared to stick for about a 

minute. Figure 5.14 shows an example flight where the LCTA positions retract 

to zero during flight and then return to their expected positions. 

 

 

Figure 5.12: First example flight where LCTAs appear to “stick” 
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Figure 5.13: Second example flight where the LCTAs appear to “stick” 

 

Figure 5.14: Example flight where the LCTAs appear to drop to zero during flight 

 

Table 5.7 shows the number of flights with each of these exceedance event 

types. The table also shows which of the three models were exceeded. From 

this it may be possible to extend the algorithm to also predict the type of event 

that is likely to have occurred. For example, most of the transition events only 

exceeded the IAS vs. AFT_LCTA model, all the oscillation events exceeded 

either all three models or both IAS models, the shift and all zero events 

occurred when both the IAS vs. AFT_LCTA and the FWD vs. AFT models 

were exceeded. 
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Table 5.7: Number of LCTA anomalies detected categorized by the models 
exceeded and the type of event 

Event Type  All 
zero 

Known 
UFCM 

Oscillation Possible 
UFCM 

Shift Transition Total 

 Models Exceeded 

IAS vs. AFT 
 

     22 22 

IAS vs. FWD_LCTA 
 

   1  1 2 

IAS vs. AFT_LCTA   
FWD vs. AFT_LCTA 

4    9 4 17 

IAS vs. FWD_LCTA  
IAS vs. AFT_LCTA 

  8 3 3 2 16 

All Three 
 

 1 17 4   22 

Total 4 1 25 8 12 29 79 
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5.3.3 Modelling the DASH Actuator 

To understand the distribution of the data for the DASH actuator, two-

dimensional histograms were produced, using all 775 flights. Figure 5.15 

shows the two dimensional histograms for the position information for two 

DASH actuators against each other and against IAS. (a – DASH actuator 1 

and 2 showing the full data range, b – same as a but zoomed to expected 

(and most dense) range, c – DASH actuator 1 and IAS, d - DASH actuator 2 

and IAS). It can be clearly seen that there is a strong but not exact correlation 

between the parameters. It is also clear that the DASH actuator position often 

appears corrupt (DA position is a percentage and should be in the range or 0-

100%). 
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Figure 5.15: 2D histograms of 75 flights for IAS and DASH actuator positions 

An algorithm was developed to identify where the DA position is out of range 

and to identify any points where the two DAs are not aligned within a 

configurable tolerance. The algorithm developed is described in pseudo-code 

in Figure 5.16. 

a) b) 

c) d) 
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Figure 5.16: Pseudo-code for the algorithm developed to identify DA anomalies 

 

The algorithm was run on all 775 available flights. It was found that 8.9% of 

flights had every single DA position out of range, even when IAS was above 

forty kts. For four aircraft, every single flight had these erroneous DA readings, 

implying some sort of data acquisition problem. These four aircraft 

represented 40% of the out of range flights. It was also noted that all but two 

of the flights with all points out of range occurred before October 2001, with 

only 12 flights having valid readings before October 2001. It is therefore likely 

that a system error caused these and was rectified in October 2001 across the 

fleet. An additional 4.3% of flights had some points out of range. 

 

11.2% of flights had some points outside the 20% limit, comparing the two DA 

positions. This represents about 3% of flight time. Figure 5.17 shows the 

cumulative number of flights with percentage and actual time out of limit. The 

figure shows that, of the 87 flights, only 30 were out of limit for more than 5% 

of the flight and only 35 flights were out of limit for more than a minute. 
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Figure 5.17: Plots of cumulative flights with percentage time (left) and actual 
time (right) out of DA limit 

One aircraft had every single point out of limit. Figure 5.18 shows a scatter 

plot of the two DAs for all eight flights from this aircraft. The solid blue line 

shows the expected relationship between DA1 and DA2. It appears that, for 

Loop through all flights. 

Read the two DASH Actuator parameters and IAS. 

Resample IAS from 1Hz to 2Hz, the same as the DA data. 

Filter where IAS > 40 kts (since the DA operates differently and the 

IAS parameter is unreliable below 40 kts). 

Identify where DA is out of range (<0% or >100%). 

Identify where DA2 ≠ DA1 + tolerance (20%). 
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this aircraft, DA2 is operating with approximately a 35% offset compared to 

DA1. 

 

Figure 5.18: All eight flights from an aircraft with all points out of DA limits  

(each colour is a separate flight, the solid blue line is the expected relationship) 

Five flights from one aircraft were found to have a non-linear relationship 

between DAs (an example is shown in Figure 5.19). A number of flights were 

found to have periods where one DA appeared to ‘stick’ in one position (an 

example is shown in Figure 5.20). Figure 5.21 shows four further examples of 

the kind of exceedance that was picked up by the algorithm. Further input from 

the MOD may reveal the causes of these anomalies. 

 

 

Figure 5.19: Example flight which was found to have a non-linear DA 
relationship 
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Figure 5.20: Example flight where DA2 was found to ‘stick’ for about half an 
hour during flight 

 

Figure 5.21: Further examples of flights with DA anomalies 

 

5.4 UFCM Identification Conclusions 

This chapter presented the analysis of Chinook UFCMs. Forty UFCM events, 

recorded by the MOD, were analysed for their cause and effect. Two models 

were developed to identify anomalies. The first model identified anomalies in 

the LCTA, by modelling the relationship between LCTA position and airspeed, 

and flagging data that did not fit this model. The resulting anomalies were 

investigated and categorised as being potential UFCMs, LCTA oscillations, 

transitions, or shifts. The second model investigated anomalies in the DA; 

again the results were categorised as shifts or possible events. Whilst the 

models have been shown to be good at identifying anomalies, feedback from 

the MOD would be required to tailor these to improve UFCM investigations. 
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CHAPTER 6 

 

6 CONCLUSIONS 

The introduction left the reader with the question of whether a system of 

techniques can be developed, using sensors monitoring aircraft 

characteristics, to provide data which can be processed (or managed) to give 

reliable information on the health of an aircraft, at the present time, and in the 

future. 

 

This study shows that an improved management and analysis of aircraft data 

can indeed lead to an improved detection of faults. A study of the literature 

revealed that a wealth of aircraft data is being recorded and a plethora of 

techniques and studies are being undertaken, in an attempt to transform the 

data into useful information. However, it was found that although data are 

routinely recorded often it is not processed at all. Also, many of the previous 

studies have only been limited to test-bed sourced data or only a small sample 

of in-service data, and so need to be further and more widely validated. This 

research has addressed these shortfalls and makes the following key 

contributions: 

 

 A new algorithm was developed to identify data integrity problems in 

Health Usage Monitoring System (HUMS) condition indicator (CI) data. 

This is a necessary precursor to any further analysis of any HUMS 

data. 

 A HUMS intelligent health management system was developed, which 

was able to detect all previously documented faults many days earlier 

and identify new anomalies not previously recorded. The algorithm was 

validated using 1.8 million records of Chinook HUMS data, and has 

subsequently been supplied to the MOD for use on the SeaKing and 

Merlin helicopters. This technique can be extended for use on any 

HUMS. 

 A new algorithm was developed to identify a snapshot of steady state 

performance parameters from Tornado engine HUMS data. This 

algorithm has the potential to save the MOD from performing pre-flight 

engine runs, which waste both fuel and time, and is subject to human 
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error in data recording. The algorithm is flexible enough to be adapted 

to any aircraft engine. 

 New algorithms were developed to identify anomalies in the operation 

of Chinook differential airspeed hold and longitudinal cyclic trim 

actuators. The concepts behind the algorithm could be applied to other 

aircraft systems. 

 These developed algorithms were validated using huge volumes of in-

service aircraft data, covering a wide range of operating conditions: 

o The Chinook HUMS audit algorithm successfully identified just 

under half a million inconsistencies in 46 million CI values.  

o The HUMS intelligent health management system identified 

83% of known faults with a false positive rate of just 13%, after 

analysing 1.8 million CI values from 40 aircraft. 

o The Tornado EHUMS analysis identified 60 anomalies, of which 

30 related to known issues, in over 27 thousand engine runs 

from 236 engines.  

o The Chinook flight system anomaly detection algorithm was 

applied to 775 flights from 35 aircraft, representing 910 hours of 

data, totalling over 230 million data points. 79 flights were found 

to have longitudinal cyclic trim actuator anomalies, and 87 

flights had differential airspeed hold actuator anomalies. 

 The study has demonstrated the application of a framework for 

managing aircraft data that includes: data acquisition and storage, data 

integrity checking, feature extraction, fusion, decision support and a 

user interface. It is the recommendation of this study that aircraft 

operators consider all of these aspects when seeking to manage the 

health of their assets. 

 Throughout, algorithm development was not focussed on a specific 

aircraft. The methodology was applied in a systematic manner enabling 

the underlying mathematical approach to stand on its own and thereby 

be capable of extending naturally to other situations and air vehicles. 

 

In a final set of remarks, the thesis describes a research effort directed at 

various problem areas and components, including the pilot, of both fixed and 

rotary wing aircraft. It identifies the characteristics of typical data and how the 

operation of sensors, installed in order to protect the aircraft, must themselves 

also become part of the data review and subsequent management.  
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The majority of the research was directed towards a well-established transport 

helicopter. The transmission of a helicopter is both vital and complicated. 

Failure is not normally survivable and so the many components must be 

monitored and accurate and reliable decisions must be made by the system. 

This requires solid decision making from the algorithms to sift the data for the 

information required to assure the safe operation of the helicopter. 

 

The aspect of engine testing, on a long-established fighter aircraft, whilst on a 

sortie, was addressed. The present technique, using full throttle operation 

before take-off, is both expensive and problematic. It consumes fuel, adds to 

the structural loads on the airframe and engine and asks an additional duty of 

the pilot when on the threshold of a military sortie. Data was examined and 

processed to give reliable and effective information for the successful 

operation of the engines. 

 

The flight of an aircraft is under the joint control of a pilot and the flight control 

system. The latter can be analysed, since it is based on mathematical 

techniques. The former, however, being human, is a different proposition. The 

vagaries of human intervention in the system need to be isolated in order to 

make sense of the incoming data. One pilot may fly with soft hands, whilst 

another may be rather heavy-handed in technique. This disparity is likely in 

the operation of a military aircraft, particularly a helicopter, in contrast to civil 

airlines, which largely make use of an autopilot. To be of any use, the data 

management technique developed must be capable of separating out the 

differences in piloting technique from a change in airframe characteristics, 

which may, in turn, indicate a developing fault. 

 

It was considered important not to focus on specific airframes which would 

render any results rather limited. The study used data from actual aircraft 

flights but always sought to examine the wider picture. In this way the 

techniques, methods, software and user interface development would be 

applicable generally and therefore move the field forward.  

 

As with all research, there are always more questions generated than 

answered. The goal will always be to eliminate air accidents entirely. A noble 

aspiration but not guaranteed as yet. The work described in this thesis moves 
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the subject to a point of establishing a set of methods, which are documented 

and verifiable. Improvements in hardware and the associated developments in 

software and supporting mathematical techniques will move on from this point 

towards the final goal. It is hoped that the results and conclusions described in 

this thesis will provide a solid foundation for this further work. 
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APPENDIX A: CHINOOK HUMS INFORMATION 
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A1.1 Chinook Driveshaft Configuration 
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A1.2 Schematic of Chinook Component and Accelerometer Locations 
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A1.3 Monitored Components 
 

id description Accel Location 

9 AG1 - Input Pinion Gear 20 

10 AG2 - Bevel Ring Gear 20 

13 FG1 - Input Pinion Gear 5,6 

14 CG1 - LH Input Pinion Gear 16 

15 CG2 - RH Input Pinion Gear 17 

16 EG1 - LH Input Pinion Gear 14 

17 EG3 - RH Input Pinion Gear 15 

20 EG2 - LH Output Gear 14 

21 FG2 - Bevel Ring Gear 5,6 

22 CG3 - Collector Gear 16,17,18 

29 AG9 - AFT Rotor Shaft 26 

30 FG9 - FWD Rotor Shaft 27 

31 E - Sync Shaft #5 11 

32 F - Sync Shaft #4 10 

33 G - Sync Shaft #3 9 

34 H - Sync Shaft #2 8 

35 I - Sync Shaft #1 7 

36 P - Sync Shaft #8 13,21,28 

37 AG3 - 1st Stage Sun Gear 21,22,23 

38 FG3 - 1st Stage Sun Gear 28,29,30 

39 AG5 - 1st Stage Ring Gear 21,22,23 

40 FG5 - 1st Stage Ring Gear 28,29,30 

41 AG4a - 1st Stage Planet Gear 1 21,22,23 

42 AG4b - 1st Stage Planet Gear 2 21,22,23 

43 AG4c - 1st Stage Planet Gear 3 21,22,23 

44 AG4d - 1st Stage Planet Gear 4 21,22,23 

45 FG4a - 1st Stage Planet Gear 1 28,29,30 

46 FG4b - 1st Stage Planet Gear 2 28,29,30 

47 FG4c - 1st Stage Planet Gear 3 28,29,30 

48 FG4d - 1st Stage Planet Gear 4 28,29,30 

51 AG6 - 2nd Stage Sun Gear 21,22,23 

52 FG6 - 2nd Stage Sun Gear 28,29,30 

53 AG8 - 2nd Stage Ring Gear 21,22,23 

54 FG8 - 2nd Stage Ring Gear 28,29,30 

55 AG7a - 2nd Stage Planet Gear 1 21,22,23 

56 AG7b - 2nd Stage Planet Gear 2 21,22,23 

57 AG7c - 2nd Stage Planet Gear 3 21,22,23 

58 AG7d - 2nd Stage Planet Gear 4 21,22,23 

59 FG7a - 2nd Stage Planet Gear 1 28,29,30 

60 FG7b - 2nd Stage Planet Gear 2 28,29,30 

61 FG7c - 2nd Stage Planet Gear 3 28,29,30 

62 FG7d - 2nd Stage Planet Gear 4 28,29,30 

65 EG4 - RH Output Gear 15 

66 D - Sync Shaft #6 12 

67 EB1 - LH Input Pinion Bearing 14 

68 EB2 - LH Input Pinion Bearing 14 

69 EB3 - LH Input Pinion Bearing 14 

70 EB4a - LH Output Gear Bearing 14 

71 EB5 - LH Output Gear Bearing 14 

72 EB4b - LH Output Gear Bearing 14 

73 EB6 - LH Output Gear Bearing 14 

74 EB7 - LH Clutch Shaft 14 

75 CB1 - LH Input Pinion Bearing 16,17,18 

76 CB2 - LH Input Pinion Bearing 16,17,18 

77 CB3 - LH Input Pinion Bearing 16,17,18 

78 CB4 - Combiner Gear 16,17,18 

79 CB5 - Combiner Gear 16,17,18 

80 CB6 - Combiner Gear 16,17,18 

81 CB7 - Combiner Quill 16,17,18 

82 EB1,2,3 LH Transmission 14 

83 EB4,5,6,7 LH Transmission 14 

84 CB1/2/3 - LH Combiner Bearings 16 

85 CB4,5,6,7 Combiner Bearings 18 

86 D - Sync Shaft #6 Bearing 12 

87 E - Sync Shaft #5 Bearing 11 

88 F - Sync Shaft #4 Bearing 10 

89 G - Sync Shaft #3 Bearing 5,9 

90 H - Sync Shaft #2 Bearing 8 

91 I - Sync Shaft #1 Bearing 7 

92 P - Sync Shaft #8 Bearing 13 

93 AB1 - AFT Rotor Shaft Bearing 26 

94 AB2 - AFT Rotor Shaft Bearing 26 

95 AB3 - 2nd Stage Planet Bearing 21,22,23 

96 AB4 - 1st Stage Planet Bearing 21,22,23 

97 AB5 - Sun Gear Shaft Bearing 21,22,23 

98 AB6 - Sun Gear Shaft Bearing 20,21,22,23 

id description Accel Location 

99 AB7 - Sun Gear Shaft Bearing 20,21,22,23 

100 AB8 - Input Pinion Bearing 20 

101 AB9 - Input Pinion Bearing 20 

102 AB10 - Input Pinion Bearing 20 

103 FB1 - FWD Rotor Shaft Bearing 27 

104 FB2 - FWD Rotor Shaft Bearing 27 

105 FB3 - 2nd Stage Planet Bearing 28,29,30 

106 FB4 - 1st Stage Planet Bearing 6,28,29,30 

107 FB5 - Sun Gear Shaft Bearing 28,29,30 

108 FB6 - Sun Gear Shaft Bearing 6,28,29,30 

109 FB7 - Sun Gear Shaft Bearing 6,28,29,30 

110 FB8 - Input Pinion Bearing 5 

111 FB9 - Input Pinion Bearing 5 

112 FB10 5 

113 AB1,2 Bearing Group 26 

114 AB5,6,7 Bearing Group 20 

115 AB8,9,10 Bearing Group 20 

116 FB1,2 Bearing Group 27 

117 FB5,6,7 Bearing Group 6 

118 FB8,9,10 Bearing Group 5 

119 AG7e - 2nd Stage Planet Gear 5 21,22,23 

120 AG7f - 2nd Stage Planet Gear 6 21,22,23 

121 FG7e - 2nd Stage Planet Gear 5 28,29,30 

122 FG7f - 2nd Stage Planet Gear 6 28,29,30 

124 CG5 - Oil Cooler Blower Fan 19 

126 CG7 - Pump Drive Gear 18 

127 AG10 - Spiral Bevel Acc Drv 24 

128 CG4 - Blower Drive Gear 19 

129 CG6 - Pump Drive Gear 18 

130 AG11 - Spur Accessory Drive 24 

131 AG12/14/17/18 Pumps and Idler 24 

132 AG13 - Not Used 24 

133 AG14 - Not Used 24 

134 AG15/21 Idler Gears 24 

135 AG13/16/22 Alternator Gears 24 

138 AG19 - Idler Gear 24 

139 AG20 - Oil Cooler Fan 24,25 

142 FG10 - Aux Lube Drive Gear 5,6 

143 FG11 - Aux Lube Pump Drive Gear 5,6 

144 FG12 - Drive Gear 5,6 

145 FG13 - Idler Gear 5,6 

146 FG14 - Main Lube Pump Drive 5,6 

147 FG15 - Hyd Flight Cont Pump Drv 5,6 

148 CG8 - LH Pump Drive Gear 16,18 

150 EB1 - RH Input Pinion Bearing 15 

151 EB2 - RH Input Pinion Bearing 15 

152 EB3 - RH Input Pinion Bearing 15 

153 EB4a - RH Output Gear Bearing 15 

154 EB5 - RH Output Gear Bearing 15 

155 EB4b - RH Output Gear Bearing 15 

156 EB6 - RH Output Gear Bearing 15 

157 EB7 - RH Clutch Shaft 15 

158 EB1,2,3 RH Transmission 15 

159 EB4,5,6,7 RH Transmission 15 

160 Main accessory drive AB12 AFT 24 

161 Main accessory drive AB11 AFT 24 

162 Idler B ball 206 AFT 24 

163 Lube pump G ball 106 AFT 24 

165 Hydraulic pump D/H ball 107 AFT 24 

166 Idler E/K ball 106 AFT 24 

167 Idler I ball 107 AFT 24 

168 Alternator C/F/L ball 106 AFT 24 

169 Alternator C/F/L ball 107 AFT 24 

170 Fan AB13 ball 106 AFT 24 

171 Fan AB13 ball 107 AFT 24 

172 Main Accessory Drive AFT 24 

173 Pumps AFT 24 

174 Alternators AFT 24 

176 Oil Cooler Fan AFT 24 

179 Blower gear bearings CB8/9 CMB 18 

180 Lube pump drive ball 106 FWD 6 

181 Idler ball 107 FWD 6 

182 Hyd flt con pump ball 107 FWD 6 

183 Lube / Hydraulic pumps FWD 6 

186 CB1 - RH Input Pinion Bearing 17 

187 CB2 - RH Input Pinion Bearing 17 

188 CB3 - RH Input Pinion Bearing 17 

189 CB1/2/3 - RH Combiner Bearings 17 
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A1.4 Accelerometer Locations 
 

id description Long description Orientation monitored_component_id 
1 FWD HEAD (lat) MForward Head Lateral (ch.28) Lateral  

2 FWD HEAD (vert) Forward Head Vertical (ch.27) Vertical  

3 AFT HEAD (lat) Aft Head Lateral (ch.30) Lateral  

4 AFT HEAD (vert) Aft Head Vertical (ch.29) Vertical  

5 FWD XMSN (rad ID5) IFD pad I/P shaft (ch.5) Radial 13, 21, 89, 110, 111, 112, 118, 142, 
143, 144, 145, 146, 147 

6 FWD XMSN (rad ID6) Bell crank mounting bolt (ch.6) Radial 13, 21, 106, 108, 109, 117, 142, 143, 
144, 145, 146, 147, 180, 181, 182, 183 

7 Sync Shaft (rad ID7) Sync shaft #1 (ch.7) Radial 35, 91 

8 Sync Shaft (rad ID8) Sync Shaft #2 (ch.8) Radial 34, 90 

9 Sync Shaft (rad ID9) Sync Shaft #3 (ch.9) Radial 33, 89 

10 Sync Shaft (rad ID10) Sync Shaft #4 (ch.10) Radial 32, 88 

11 Sync Shaft (rad ID11) Sync Shaft #5 (ch.11) Radial 31, 87 

12 Sync Shaft (rad ID12) Sync Shaft #6 (ch.12) Radial 66, 86 

13 Sync Shaft (rad ID13) Sync Shaft #8 (ch.13) Radial 36, 92 

14 LH ENG XMSN (RAD ID14) Left hand eng xmsn (radial to cross shaft) (ch.14) Radial 16, 20, 67, 68, 69, 70, 71, 72, 73, 74, 
82, 83 

15 RH ENG XMSN (RAD ID15) Right hand eng xmsn (radial to cross shaft) (ch.15) Radial 17, 65, 150, 151, 152, 153, 154, 155, 
156, 157, 158, 159 

16 COMB XMSN (Rad ID16) Combiner Left IFD pad (Radial to cross shaft) (ch.16) Radial 14, 22, 75, 76, 77, 78, 79, 80, 81, 84, 
148 

17 COMB XMSN (Rad ID17) Combiner Right IFD pad (Radial to cross shaft) (ch.17) Radial 15, 22, 75, 76, 77, 78, 79, 80, 81, 186, 
187, 188, 189 

18 COMB XMSN (Ax ID18) Combiner Aft o/p IFD pad (Axial to O/P shaft) (ch.18) Axial 22, 75, 76, 77, 78, 79, 80, 81, 85, 126, 
129, 148, 179 

19 COMB XMSN (Rad ID19) Combiner Cooling Fan rear left (Radial to fan) (ch.19) Radial 124, 128 

20 AFT XMSN (rad ID20) Aft XMSN IFD pad I/P shaft (Rad to I/P shaft) (ch.20) Radial 9, 10, 98, 99, 100, 101, 102, 114, 115 

21 AFT XMSN (rad ID21) Aft upper ring gear bolt 12 o'clk (Rad to O/P shaft) 
(ch.21) 

Radial 36, 37, 39, 41, 42, 43, 44, 51, 53, 55, 
56, 57, 58, 95, 96, 97, 98, 99, 119, 120 

22 AFT XMSN (rad ID22) Aft upper ring gear bolt 4 o'clk (Rad to O/P shaft) 
(ch.22) 

Radial 37, 39, 41, 42, 43, 44, 51, 53, 55, 56, 
57, 58, 95, 96, 97, 98, 99, 119, 120 

23 AFT XMSN (rad ID23) Aft upper ring gear bolt 7 o'clk (Rad to O/P shaft) 
(ch.23) 

Radial 37, 39, 41, 42, 43, 44, 51, 53, 55, 56, 
57, 58, 95, 96, 97, 98, 99, 119, 120 

24 AFT XMSN (vert ID24) Aft Lower accessories drv csing 6o'clk (Vert) (ch.24) Vertical 127, 130, 131, 132, 133, 134, 135, 138, 
139, 160, 161, 162, 163, 165, 166, 167, 
168, 169, 170, 171, 172, 173, 174, 176 

25 AFT XMSN (rad ID25) Aft XMSN cooling fan (Radial to fan) (ch.25) Radial 139 

26 AFT XMSN (Rad ID26) Aft vert shaft 12o'clk (Radial to O/P shaft) (ch.26) Radial 29, 93, 94, 113 

27 FWD XMSN (Rad ID1) Main lift IFD pad (Radial to O/P shaft) (ch.1) Radial 30, 103, 104, 116 

28 FWD XMSN (Rad ID2) Lower ring gear bolts (11o'clk) (ch.2) Radial 36, 38, 40, 45, 46, 47, 48, 52, 54, 59, 
60, 61, 62, 105, 106, 107, 108, 109, 
121, 122 

29 FWD XMSN (Rad ID3) Upper ring gear bolts (3 o'clk) (ch.3) Radial 38, 40, 45, 46, 47, 48, 52, 54, 59, 60, 
61, 62, 105, 106, 107, 108, 109, 121, 
122 

30 FWD XMSN (Rad ID4) Upper ring gear bolts 7 o'clk (ch.4) Radial 38, 40, 45, 46, 47, 48, 52, 54, 59, 60, 
61, 62, 105, 106, 107, 108, 109, 121, 
122 

31 FWD Frame 95 Vertical Beneath access panel vertical Vertical  

32 FWD Frame 95 Lateral Beneath access panel lateral Lateral  

33 AFT Frame 534 Vertical STN 534 cabin roof mounted onto bulkhead vertical Vertical  

34 AFT Frame 534 Lateral STN 534 cabin roof mounted onto bulkhead lateral Lateral  

35 STVA 2 (NOSE) Right frame of STVA mount Vertical  

36 STVA 3 (STBD) Beneath pilot seat  (right) Vertical  

37 STVA 1 (PORT) Beneath co-pilot seat (left) Vertical  

38 LH ENG Pos 1, Radial Left Engine, Position 1, Radial Radial  

39 LH Eng Pos 2 Radial Left Engine Position 2 Radial Radial  

40 LH Eng Pos 3 Axial Left Engine Position 3 Axial Axial  

41 RH ENG Pos 1, Radial Right Engine, Position 1, Radial Radial  

42 RH ENG Pos 2, Radial Right Engine, Position 2, Radial Radial  

43 RH ENG Pos 3, Axial Right Engine, Position 3, Axial Axial  

44 Unused B1 (20) Unused Board 1 Accelerometer Mux 20 Unused  

45 Unused B1 (21) Unused Board 1 Accelerometer Mux 21 Unused  

46 Unused B1 (22) Unused Board 1 Accelerometer Mux 22 Unused  

47 Unused B1 (23) Unused Board 1 Accelerometer Mux 23 Unused  

48 Unused B1 (24) Unused Board 1 Accelerometer Mux 24 Unused  

49 Calib B1 (0) Calibration Board 1 Accelerometer Mux 0 Calibration  

50 Calib B2 (0) Calibration Board 2 Accelerometer Mux 0 Calibration  
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A1.5 Passbands 
 

passband_id Description 
Short 
Name 

5 Broad Band 100 - 40000 Hz (1638) 1 

10 Broad Band 100 - 10000 Hz (6553) 1 

15 Broad Band 100 - 40000 Hz (6553) 1 

20 Broad Band 100 - 12000 Hz (6553) 1 

25 Broad Band 100 - 40000 Hz (3276) 1 

6 Second Band 100 - 10000 Hz (163) 2 

11 Second Band 100 - 2500 Hz (6553) 2 

16 Second Band 100 - 10000 Hz (655) 2 

21 Second Band 100 - 2500 Hz (6553) 2 

26 Second Band 100 - 10000 Hz (327) 2 

7 Third Band 10000 - 20000 Hz 3 

12 Third Band 2500 - 5000 Hz 3 

17 Third Band 10000 - 20000 Hz 3 

22 Third Band 2500 - 5000 Hz 3 

27 Third Band 10000 - 20000 Hz 3 

8 Fourth Band 20000 - 40000 Hz 4 

13 Fourth Band 5000 - 10000 Hz 4 

18 Fourth Band 20000 - 40000 Hz 4 

23 Fourth Band 5000 - 10000 Hz 4 

28 Fourth Band 20000 - 40000 Hz 4 
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A1.6 Bearings and Gear Terminology 
 
The following figures show the part that make up some of the common gears 

and bearings monitored by a HUMS system. 

 

  

  
 

Figure 6.1: Rolling bearing components, [114] 

 

 

Figure 6.2: Front-view cross-section diagram of a planetary gearbox, [115] 
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A1.7 Data Acquisition and Labelling 
 

The MOD has approximately forty Chinook helicopters, each of which is 

identified by a unique aircraft tail number. Every time the onboard HUMS 

system is powered up, a session number, called a HUMS Recording Session 

(HRS) number (hrs_number), is assigned. HUMS vibration is acquired when 

the aircraft enters pre-defined flight regimes, and the vibration data is then 

sorted and pre-processed in the Vehicle Airborne Unit (VAU). The datasets 

recorded during a sequence of HRSs, which can cover up to twenty five 

flights, are downloaded to the Ground Support System (GSS). After 

downloading data from HUMS to GSS, the sequence identifier (sequence_id) 

is incremented and the HRS number is reset. The aircraft serial numbers, 

sequence IDs, HRS numbers and associated datasets are stored in relevant 

HUMS database tables. The HUMS relational database consists of over four 

hundred tables. Each data item is also identified within the HUMS database by 

a date/time stamp (display_date_time). In this thesis, the word ‘flight’ refers to 

an ‘HRS’, which can include ground-run data or a complete dataset of a flight 

that can involve one or more take-offs and landings. Various CIs (identified by 

the drivetrain_indicator_type_id) can be computed, from both raw and band-

pass filtered vibration, measured by an accelerometer using information about 

the monitored component (e.g. a gear meshing frequency). A schematic of the 

Chinook monitored components is shown in section A1.2 including 

descriptions of all components and accelerometers. Therefore, eight HUMS 

IDs are required to uniquely identify each CI value:  

 

 ‘aircraft_serial_number’ 

 ‘sequence_id’ 

 ‘hrs_number’ 

 ‘display_date_time’ 

 ‘accel_location_id’ 

 ‘monitored_component_id’ 

 ‘passband_id’ 

 ‘drivetrain_indicator_type_id’ 
 

The raw vibration data, from which the CIs are computed, can be stored by 

HUMS in Binary Large Object (BLOB) files. This data can be used to validate 

the onboard processing, and/or perform additional processing if required. 

Snapshots of FDR parameters can also be recorded within the BLOB files, 

which can give an indication of how the aircraft was flying when the data was 

acquired.  
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Component CIs are computed from vibration measurements acquired by 

accelerometers, using diagnostic configuration information, such as shaft 

speeds and meshing frequencies. The derived signal is identified by the 

accelerometer identifier and the monitored component identifier. In this thesis 

a derived signal is identified using the first word of the description of the 

monitored component, followed by the accelerometer identifier number in 

brackets. For example, CB1 (16) refers to a signal derived from the 

accelerometer sixteen to monitor the first input pinion Combiner Bearing (CB). 

A particular CI is identified by its abbreviated name (see Table 6.2) and the 

filter pass-band identifier, for example: CB1(16) ETE_M6-5. 

 

A1.8 Chinook Health Indicators 
 

The following paragraphs provide brief descriptions of the terms and signal 

processing techniques used in the on-board HUM system to calculate CIs, [98, 

116]. 

 

Time Series: A series of values representing consecutive samples of a signal 

equally spaced in time. 

Time Average: A way of averaging data, performed by splitting a time series 

into adjacent blocks of equal length, then computing the average of the 

corresponding samples in each block. This has the effect of reducing all 

components of the original data, except those whose frequency is periodic 

with the length of the block. 

Spectrum: A representation of the frequency composition of a signal, usually 

its Fourier Transform. Each sample (or bin) is a complex number 

representing magnitude and phase. 

Spectral Enhancement: A way of processing data, often applied to a time 

average, performed by computing its spectrum, modifying the values of 

individual bins (setting some values to zero), then converting the spectrum 

back to a time signal, usually via the inverse Fourier Transform. This is 

useful for reducing or emphasising specific frequency components. 
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Gear Mesh Frequency: The frequency at which the teeth of meshing gears 

pass through the region of contact. The vibration signal generated usually 

contains components at this frequency and its harmonics. 

Power Spectrum: A representation of the power of the frequency content of a 

signal. Each bin is a real number, representing the square of the 

magnitude of the corresponding bin in the spectrum. 

Power Average: A way of averaging data, performed by splitting a time series 

into adjacent blocks of equal length, calculating the power spectrum of 

each block, then computing the average of corresponding bins in each 

power spectrum. This has the effect of reducing all components of the 

original data, except those whose frequency is relatively constant. The 

square root of the final result is often used, giving average amplitudes. 

Band-pass Filtering: A process of reducing all components of the original 

data with frequencies outside a specified band.  

Envelope:  If a signal consists of high frequencies, whose amplitudes change 

slowly over time, the envelope is a low frequency signal, with values 

corresponding to the peaks of the high frequency signal when they occur 

and changing smoothly between them. It is often calculated as the 

magnitude of the Analytic Signal. 

Analytic Signal: A complex-valued representation of a real-valued signal, 

having an imaginary component in phase quadrature (shifted by ninety 

degrees) with the real component. 
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A1.9 GenHUMS Analysis 
 

The Generic HUMS (GenHUMS) bearing vibration analysis process, used on 

the Chinook aircraft, consists of two elements. In the primary analysis, the 

acquired vibration data (SIG) is band-pass filtered, the filtered signal is 

“enveloped”, and the enveloped signal (ETE) is then converted into the 

frequency domain to produce an envelope power spectrum (FTE). Secondary 

analysis involves the calculation of a series of Condition Indicators (CIs) at 

different stages of the primary analysis process. The CI’s include pattern 

matching indicators which search for defect patterns associated with damage 

on bearing components: both Energy Index (EI) and Detection Index (DI) (a 

percentage score) are calculated for the inner race (IN), outer race (OU), cage 

(CG) and rolling elements (EL). Figure 6.4 shows example frequencies and 

pattern match weights. Tones are matched if a peak is found within 1% of the 

defect frequency. The pattern match logic is based on the log of the envelope 

power spectrum, with a moving median filter, and a threshold of the mean plus 

two standard deviations. Figure 6.3 illustrates the primary analysis performed 

by GenHUMS. 
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Figure 6.3: Example GenHUMS primary analysis 
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Figure 6.4: Example bearing defect tone frequencies and pattern match weights  
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Table 6.1 shows some of the most commonly calculated CIs. 

Table 6.1: CI name and descriptions 

Name Description 

PP “Peak-to-peak”. Difference between the maximum and minimum 
data values. 

PK “Peak”. Maximum absolute data value. 

STD Standard deviation of the data. 

MN Mean of the data. 

MRC “Maximum Rate of Change”. Maximum absolute difference of 
adjacent data values. 

M6 Normalised 6th moment of the data. 

IMP “Impulsiveness”. Normalised 4th moment (kurtosis) of the data. 

EB “Band Energy”. RMS value of the data. 

TON Tonal energy of the band-passed envelope spectrum 

WHT White noise energy of the band-passed envelope spectrum 

IN EI for tone pattern generated by inner race damage 

ID DI for tone pattern generated by inner race damage 

OU EI for tone pattern generated by outer race damage 

OD DI for tone pattern generated by outer race damage 

EL EI for tone pattern generated by rolling element damage 

ED DI for tone pattern generated by rolling element damage 

CG EI for tone pattern generated by cage damage 

CD DI for tone pattern generated by cage damage 

SOn Magnitude of nth shaft order vibration 

 
Specific CIs are calculated from the vibration data, after various types of 

processing. These pre-processing techniques are described below: 

 

“Original signal” (SIG) applies to both gears and bearings. For gears, it refers 

to the time average of the vibration data. For bearings, it refers to the 

unprocessed vibration time series. 

 

“Enhanced signal” (ESA) is specific to gears. It refers to the residual 

component of the time average after spectral enhancement, usually including 

removal of harmonics of the gear mesh frequency. 

 

“Enveloped signal” (ETE) and “Envelope spectrum” (FTE) are specific to 

bearings. They refer to the envelope of the band-pass-filtered vibration data 

(the magnitude of the “analytic signal”) and the power average of the envelope 

spectrum respectively. 
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Table 6.2: CI vibration data 

CI 
Type 

Original signal Enhanced 
signal 

Enveloped 
signal 

Envelope 
spectrum 

PP SIG_PP ESA_PP ETE_PP  

PK SIG_PK    

STD SIG_STD ESA_STD ETE_STD  

MN SIG_MN  ETE_MN  

MRC SIG_MRC    

M6  ESA_M6 ETE_M6  

IMP  ESA_IMP   

EB    FTE_EB 
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A1.10 Chinook HUMS CI IHM Results Charts 

 

This section presents some of the results of running the Chinook HUMS CI 

intelligent management algorithms on the CB and EB data. Results are 

presented for each aircraft and component combination shown in Table 3.6, in 

section 3.8, i.e. all those with a confidence of greater than 50% and those that 

match cases described in section 3.2.3, or entries in the MOD Chinook HUMS 

query register. For each aircraft and component combination presented: a 

description is given of the anomalies in the data and, where applicable, how 

they relate to a confirmed fault case or investigation; the overall confidence 

and number of high, medium and low warnings are given; charts for each of 

the four CIs analysed, for two passbands. The charts show the CI values, 

colour coded if they have generated high, medium or low warnings or fall in an 

abnormal cluster, and show the fleet and group (aircraft) thresholds as they 

develop over time. Some charts also show the short and long term gradients 

for a selected CI value. The section and figure labels follow the format: Aircraft 

identifier (e.g. AC01) and component identifier (e.g. LH-CB123 indicates the 

left hand combiner bearing group comprising bearings 1, 2 and 3). Further 

details of the naming convention can be found in section 3.8. 
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AC10 LH-CB123 

All the energy CIs were found to be above the fleet threshold for all available data. The 

values are highest for February to April 2005. At the end of this period it is likely that 

some maintenance was performed, as there is a gap in the data between the 15th and 

26th of April. The M6 values were only found to have a few spikes slightly above the 

fleet threshold causing a few low level warnings.  

Confidence: 99.0 Number of Alerts: High: 392 Medium: 622 Low: 506 

 

 

 

 

 

Figure 6.5: AC10 LH-CB123 
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AC14 RH-CB1 

All the energy CIs were found to be above the fleet threshold from the start of the data 

in March 2003 until the last but one point on the 29th of January 2004. The last data 

point was normal (on the 6th of February 2004). In April 2003 there were found to be a 

large number of very high spikes in the data. These were investigated by the MOD, as 

recorded in the query register, in July and again in August 2004. The MOD conclusions 

were: “Analysis confirms impulsive content but cannot be attributed to any bearing 

frequencies in the Combiner Xmsn. Consider this still to be spurious arisings”. The data 

for CB4567 had similar values. 

Confidence: 99.0 Number of Alerts: High: 395 Medium: 390 Low: 491 

 

 

 

 

Figure 6.6: AC14 RH-CB1 
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AC17 LH-CB1 

All the energy CIs were found to be above the fleet threshold from the start of the data 

on the 2nd of December 2002 until the 23rd of January 2003. A step down in energy CI 

values for passband 3 between the 6th and 11th of December 2002, was also noted. 

The M6 values were found to ramp up from about the 16th of January 2003. This data 

relates to fault case 1, presented in section 3.2.3.1. The combiner bearings were 

replaced and normal operation was observed in the data from May onwards. The data 

for CB4 is also presented on the next page, and has similar characteristics. 

Confidence: 99.0 Number of Alerts: High: 192 Medium: 202 Low: 135 

 

 

 

 

 

Figure 6.7: AC17 LH-CB1 
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Confidence: 99.0 Number of Alerts: High: 157 Medium: 224 Low: 131 

 

 

 

 

 

Figure 6.8: AC17 LH-CB4 
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AC6 RH-CB1 

All the energy CIs were found to be above the fleet threshold from the start of the data 

on the 23rd of March 2003 until the end of data on the 8th of July 2003. The M6 values 

were found to have a spike on 23rd of April 2003 and then remained high from the 26th 

of June onwards. 

Confidence: 99.0 Number of Alerts: High: 164 Medium: 74 Low: 74 

 

 

 

 

 

 

Figure 6.9: AC6 RH-CB1 
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AC38 RH-CB123 

All the energy CIs, for passband 4, were found to be above the aircraft threshold, from 

the 12th of April 2005 onwards. It is likely that maintenance was carried out before this 

date, since the previous acquisition was on the 26th of August 2004. For passband 3, 

the energy levels were found to return to normal on the 18th of April 2005: note that the 

next acquisition was not until the 6th of May, so it is likely that maintenance was 

performed in this period. However, the energy levels were found to be well below the 

fleet limit and there were no significant M6 alerts. 

Confidence: 94.8 Number of Alerts: High: 327 Medium: 198 Low: 36 

 

 

 

 

 

Figure 6.10: AC38 RH-CB123 
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AC31 RH-EB123 

The warnings generated for this component do not appear to indicate a real fault. All 

the CIs were found to be constant and at a low level, but the fleet threshold was initially 

very low. Further investigations revealed that there were about 380 acquisitions from 

AC15, AC23 and AC3 in 2003, which had much lower values of mean and standard 

deviations than later data, causing the fleet threshold to be too low. If this analysis was 

run regularly, this would be spotted early on and the fleet statistics could be reset to 

start at the end of January 2004. The data is very similar for EB4567. 

Confidence: 71.8 Number of Alerts: High: 106 Medium: 191 Low: 219 

 

 

 

 

 

Figure 6.11: AC31 RH-EB123 
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AC17 RH-EB123 

There appear to be two issues identified in this data. Initially, there were found to be 

M6 passband 1 and 2 alerts from start of data, from the 24th of January until the 24th of 

March 2004. There was then a big gap in the data, during which this fault seems to 

have been cleared. However, the energy values were then found to step up on the 23rd 

of January until the end of the data on the 22nd of March 2006. Although all the energy 

indicators for both passbands have this step, only the passband 1 data was found to 

have warnings generated and the values were only just above the fleet threshold. The 

data is very similar for EB4567. 

Confidence: 70.8 Number of Alerts: High: 23 Medium: 87 Low: 261 

 

 

 

 

 

Figure 6.12: AC17 RH-EB123 
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AC2 LH-CB123 

Initial low energy values for this aircraft have caused a low aircraft threshold. The 

values were found to be below the fleet thresholds for passband 4. A clear shift in the 

data was identified on the 17th of September 2004, so something has changed which 

may be of interest to the operator. There were no significant M6 warnings. 

Confidence: 70.3 Number of Alerts: High: 524 Medium: 386 Low: 244 

 

 

 

 

 

Figure 6.13: AC2 LH-CB123 
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AC29 RH-EB4567 

Passband 2 energy CIs were found to have a clear shift on the 1st of June 2005 until 

the end of data on the 6th of March 2006. There were also some high M6 values in this 

period. 

Confidence: 68.6 Number of Alerts: High: 145 Medium: 10 Low: 47 

 

 

 

 

 

Figure 6.14: AC29 RH-EB4567 
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AC6 RH-CB123 

M6 values were found to be very high for between the 3rd and 22nd of June 2004. This 

period relates to fault case 9 presented in section 3.2.3.6. The energy values were also 

fairly high, from the start of data on the 17th of January until the 22nd of June 2004. 

Confidence: 67.7 Number of Alerts: High: 91 Medium: 101 Low: 257 

 

 

 

 

 

Figure 6.15: AC6 RH-CB123 
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AC33 LH-EB1 

All of the energy CI values were found to be above the fleet thresholds for all available 

data. This is also the case for the EB4 group. 

Confidence: 63.5 Number of Alerts: High: 99 Medium: 93 Low: 78 

 

 

 

 

 

Figure 6.16: AC33 LH-EB1 
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AC7 LH-EB123 

The EB and TON CIs for passband 1 were found to be very high, from the start of the 

data on the 22nd of April until the 22nd of August 2005. There was then a gap in the data 

until the 29th of November, when the values returned to normal. The M6 levels were 

found to be very low for the first period, then higher, but still normal for the second, 

resulting in the aircraft threshold being too low. 

Confidence: 62.3 Number of Alerts: High: 86 Medium: 207 Low: 121 

 

 

 

 

 

Figure 6.17: AC7 LH-EB123 
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AC10 LH-EB123 

The M6 values were found to be very high between the 8th and 24th of February 2006. 

The previous good acquisition was on the 31st of October 2005, so there is a big gap, 

indicating major maintenance may have occurred. The energy levels actually fall for 

this period. These conditions may indicate an instrumentation fault. The values are very 

similar for EB4567. 

 

Confidence: 57.7 Number of Alerts: High: 36 Medium: 38 Low: 15 

 

 

 

 

 

Figure 6.18: AC10 LH-EB123 
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AC32 LH-CB123 

The CIs were found to have very low initial energy values causing a low aircraft 

threshold resulting in some alerts. This is not considered to represent a real fault case 

and may indicate that a longer period is required before group thresholds are used. 

Confidence: 55.4 Number of Alerts: High: 38 Medium: 63 Low: 198 

 

 

 

 

 

Figure 6.19: AC32 LH-CB123 
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AC1 RH-EB123 

The initial warnings seem to be caused by the fleet threshold being too low. However, 

the energy CIs for passband 1 continue to be high relative to the fleet until the 25th of 

November 2005. The levels were found to be only just above the fleet threshold, but 

there is then a clear shift indicating that maintenance has corrected the issue. 

Confidence: 53.6 Number of Alerts: High: 33 Medium: 129 Low: 188 

 

 

 

 

 

Figure 6.20: AC1 RH-EB123 

F
T

E
_
W

H
T

 

  

F
T

E
_
T

O
N

 

  

F
T

E
_
E

B
 

  

E
T

E
_
M

6
 

 

 

Passband 1 

 
 

Passband 2 

 
 

Acquisition Date Time 

 
 

Acquisition Date Time 

 
 
 



Appendix A Chinook HUMS 

 

 194 

AC14 RH-CB123 

Both the energy and M6 CI values were found to be high for passband 4, from the start 

of the data on the 19th of July 2004, until the 17th of September 2004. The next data 

acquisition is on the 1st of April 2005 and the data appears to be normal. This case was 

investigated by the MOD, on the 17th of September 2004, and the query register 

conclusions were: “No matches for CB1-3 defect freq.'s, however, freq.'s at 2760hz and 

3570hz (oil cooler fan?) couldn't really relate the frequencies to anything.” 

Confidence: 52.5 Number of Alerts: High: 87 Medium: 166 Low: 265 

 

 

 

 

 

Figure 6.21: AC14 RH-CB123
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AC33 LH-EB4567 

All the energy CIs for passband 2 were found to be high for all data. 

Confidence: 41.8 Number of Alerts: High: 373 Medium: 489 Low: 625 

 

 

 

 

 

Figure 6.22: AC33 LH-EB4567 

F
T

E
_
W

H
T

 

  

F
T

E
_
T

O
N

 

  

F
T

E
_
E

B
 

  

E
T

E
_
M

6
 

 

 

Passband 1 

 
 

Passband 2 

 
 

Acquisition Date Time 

 
 

Acquisition Date Time 

 
 
 



Appendix A Chinook HUMS 

 

 196 

AC26 LH-EB1 

M6 values for passband 3 were found to be very high for all data sourced data (7th of 

May to 25th of June 2003). This data relates to case number 3 described in section 

3.2.3.3. This gearbox was then fitted to AC22, but the problem persisted. The values 

were also found to be high for EB4, which is the same fault as that described as case 

10 in section 3.2.3.6. 

Confidence: 25.7 Number of Alerts: High: 39 Medium: 26 Low: 41 

 

 

 

 

 

Figure 6.23: AC26 LH-EB4 
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AC22 LH-EB123 

This data also relates to case 3 described in section 3.2.3.3. Initially the M6 values 

were extremely high for passband 2. The component was then removed on the 26th of 

July 2004. The M6 values then returned to normal, but the energy CIs became high 

and were found to be above the fleet threshold. 

Confidence: 28.0 Number of Alerts: High: 39 Medium: 17 Low: 15 

 

 

 

 

 

Figure 6.24: AC22 LH-EB123 
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AC33 LH-CB123 

Very high M6 values were recorded for passband 4 from the 22nd of September 2005 

onwards. These values were investigated by the MOD, as documented in the query 

register, at the end of September, and again in January 2006, however, no gear or 

bearing defects were identified.  

Confidence: 25.4 Number of Alerts: High: 3 Medium: 13 Low: 152 

 

 

 

 

 

Figure 6.25: AC33 LH-CB123 
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AC20 RH-CB123 

The M6 values for passband 4 were found to step up to high values on the 29th of 

November 2004. The M6 values remained high until June 2005, when they get even 

higher before returning to normal levels. These values relate to case 5 described in 

section 3.2.3.5. 

Confidence: 15.6 Number of Alerts: High: 9 Medium: 40 Low: 150 

 

 

 

 

 

Figure 6.26: AC20 RH-CB123 
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AC2 RH-CB123 

The M6 values for passband 4 were found to be very high from the start of the data in 

June 2004. These were investigated by the MOD on the 11th of October 2004. 

Maintenance was then performed after the 20th of October 2004. The next acquisition 

was on the 15th of February 2005 and the M6 values returned to normal. The 

maintenance also caused the energy CIs in passband 4 to step up to values above the 

aircraft threshold, but still below the fleet threshold, resulting in many low level 

warnings. Note that the confidence level relates to the most recent CI values. 

Confidence: 14.0 Number of Alerts: High: 42 Medium: 40 Low: 710 

 

 

 

 

 

Figure 6.27: AC2 RH-CB123 
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APPENDIX B: TORNADO EHUMS INFORMATION 

A1.11 Corrections to ISA Conditions 
 

Temperatures (6.1), pressures (6.2), fuel-flows (6.3) and spool speeds (6.4) 

can be corrected to standard-day (International Standard Atmosphere) 

conditions, in order to compare like with like. The following equations for 

correction are taken from [117]. They assume that temperature is in Kelvin 

and pressures in KPascal. 
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A1.12 Tornado EHUMS Anomaly Detection Results Table 
 

This section presents the results from running the performance anomaly 

detection algorithms on Tornado engine data. The table shows all engines that 

have a PA value greater than 0.9 or an LL value more than three standard 

deviations from the mean, for the dry or reheat snapshot, for at least one flight. 

The table has one row for each engine. The engine serial numbers have been 

de-identified but have a one-to-one mapping to real RB199 engines. The ‘alert’ 

columns indicate that the data is above the threshold for at least three out of 

four successive flights. The table also gives the following information: 

Column Name Description 

Row Row number as in the FUMS display 

Engine ID De-identified engine number 

LL>3SD Number of flights more than 3 SD from the LL Mean 

LL Alerts Number of LL>3SD for 3 out of 4 consecutive flights 

PA>0.9 Number of flights with PA greater than 0.9  

PA Alerts Number of PA>0.9 for 3 out of 4 consecutive flights 

Sum Sum of all alert columns (the table is sorted by this) 

Count The number of alert columns that are non-zero 

Max The maximum number of flights above a threshold 

Total Flights The total number of flights available for that engine 

Num Fits The number of engine fits (installations on different aircraft) 

% (Max/Total Flights) The percentage of flights above a threshold 

flight hours in alert The approximate number of flight hours that an alert was 
raised before the issue was resolved 

Dry/Reheat/Both Whether the dry (D), reheat (R) or both (B) snapshots have 
flights in alert 

Alert in Fit The fit number in which the alerts are present 

Engine Position Left (0) or right (1) engine 

Fault? Whether manual inspection of the data and MWOs indicate 
that this is likely to be a fault of some sort 

Description Comments on what the data is doing and what the deltas 
indicate 

Related MWO The text of Maintenance Work Orders immediately before or 
after the fault, where available. 

The section after the table shows the charts of each of the engines listed in 

the table. The charts show the original data for OAT, NH, NL and TBT, the 

data after they have been corrected to ISA condition, and the deltas calculated 

by the ProDAPS anomaly model. The charts also show the LL and PA values. 

The x axis of each chart is the accumulative engine run time in hours. Each 

chart shows the dry snapshot values in blue and the reheat values in green. 

Fleet mean and three standard deviation limits are also shown to make it clear 

when data is outside the normal bounds. Finally vertical maroon lines indicate 

when an engine has been fitted to a different aircraft. The charts are labelled 

using the engine identifier, e.g. ‘EN001’. 
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1 EN046 26 16 3 3 6 4 39 36 133 8 39 133 2 29%   B 1 0 N Mainly Reheat Alerts. High NL. None 

2 EN025 12 12 12 12 12 12 12 12 96 8 12 144 1 8% 90 B 1 1 Y TBT stuck at 600 for 13 flights. 25/07/07 - NO TBT ON LANES TEST  
08/08/07 - [ENC-9S] ON PLACARD CHECK 
RIGHT ENGINE ACHIEVED 101.3 HN, 932 
DEG C TBT AND STEADY R TBT CAPTION - 
[E1T]  RH MECU REPLACED 

3 EN040 13 13 13 13 8 8 13 13 94 8 13 18 1 72%   B 1 0 N All points in Alert. NL/NH slightly high, TBT 
slightly low. Doesn't seem like real fault - 
possible good engine. 

19/01/09 - LH BURNER BLOW OUT ON T/O 
SUBSEQUENTLY RE-LIT NO PROBLEMS 
AFTER SOAKING FOR 15-20 SECONDS 

4 EN017 18 11     4   22 16 71 5 22 146 1 15% 264 B 1 1 Y All data looks fairly anomalous throughout, 
with NH being slightly high. 

None 

5 EN168 6       11 7 20 20 64 5 20 42 1 48% 95 B 1 1 Y Low NL, high NH for most data. Reheat more 
severe. 

09/09/08 - R/H ECU THROTTLE FAILS MP50-
20/1 PARA 6.14 (NO ENGINE RUNAWAY 
PROTECTION) 

6 EN036 9 9 8 8 3 3 9 7 56 8 9 41 1 22% 20 B 1 0 Y Data anomalous after 60 hours (Nov 08) due 
to high NH. All one download. 

16/10/08 - L/H ECU COMPRESSOR STAGE 
ONE FODDED DAMAGE OUT OF LIMITS - 
Modules 1-3 replaced 

7 EN014         7   23 18 48 3 23 50 1 46%   R 1 0 N All points only for reheat - TBT high, NH low. 18/09/08 - LH ECU STUCK IN ENC NONE 
RESETABLE. 24/10/08 - ECU LIFE EX - 
MODULE No 10 IPT Rotor 

8 EN104 7 5     4 3 14 13 46 6 14 115 3 12% 90 B 1 1 Y High NH, low NL. Becomes normal just before 
fit change. 

16/04/08 - MECU cannibalised 
21/08/08 - RH ECU TO BE REPLACED 

9 EN068 3 3     6   23 3 38 5 23 146 1 16%   B 1 0 N Only Reheat alerts. NL very spiky, NH low. None 

10 EN236 9 7     2   9 9 36 5 9 60 1 15% 21 B 1 1 Y NH operating high after 100 hours (19/03/08). 
No data between 23/08/07 and 19/03/08. 

30/06/08 - FURTHER INVEST REQUIRED 
FOR RH ECU PULSING. 04/07/08 - RH MFCU 
TO BE REPLACED 

11 EN201 3   2   5 5 8 5 28 6 8 113 2 7% 49 B 1 1 Y NL and TBT spike at 32 hours - data looks 
corrupt. However, the majority of the alerts are 
caused by high TBT. There is an improvement 
after an engine change. There is no data for 
this engine between 30/05/07 and 29/10/08. 

29/05/08 - RH REHEAT FAILS TO LIGHT 
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12 EN083 2       2   11 11 26 4 11 44 2 25%   B 2 0 N Mostly Reheat alerts with one Dry spike at the 
end of the data. Seems to be caused by low 
NL. Data is sporadic with one download from 
June 2006 (when fitted to ZA447), three from 
October 2008 and one from February 2009. 

Too large date range to find MWO 

13 EN055 2       1   10 10 23 4 10 48 1 21% 23 B 1 1 Y High NH, low NL for ten flights then returns to 
normal. 

02/08/06 - R/H E.C.U. TO BE REPLACED, 
FAILS E.F.D.C. (MAR/77/06 REFERS) 
03/08/06 - R/H ECU RHFCU MAIN FUEL 
FEED SUPLY PIPE FOUND DAMAGED 

14 EN172         2   13 4 19 3 13 101 1 13%   R 1 1 N Intermittent Reheat Alerts with slightly high 
TBT and low NH. NL seems erratic. 

N/A 

15 EN204 2           8 8 18 3 8 41 1 20% 36 B 1 1 Y Two periods of high NH from 42 hours 
onwards - all are from 1 download on 6/7/06. 

23/06/06 - R/H LP COMPRESSOR DAMAGED 
BEYOND LIMITS (FOD) 

16 EN229             9 9 18 2 9 113 2 8%   R 1 1 N Low TBT in a hot environment - perhaps good 
engine? 

N/A 

17 EN081         2   10 5 17 3 10 81 1 12%   R 1 0 N Intermittent Reheat alerts with high NL, slightly 
high TBT and low NH. 

N/A 

18 EN131 4       4   5 3 16 4 5 119 1 4%   B 1 0 N Intermittent Reheat alerts with slightly high NH 
and low TBT. 

N/A 

19 EN089         3   7 6 16 3 7 27 1 26%   R 1 0 N Reheat alerts with high NL and TBT, and low 
NH. 

None 

20 EN163         4   7 3 14 3 7 104 1 7%   R 1 1 N Intermittent Reheat alerts with high NL, slightly 
high TBT and low NH. 

N/A 

21 EN018         3   10   13 2 10 122 2 8%   R 1&2 1 N All the data is intermittently in Reheat alert, 
with low TBT - this may be a good operation in 
a hot climate (OAT is mostly > 40 °C). Unlikely 
to be a fault since it has persisted for so long 
(500 hours!). Seems to be clear shift in Delta 
TBT around 100 hours (20/05/07). 

N/A 

22 EN159 7 6             13 2 7 13 1 54%   D 1 0 N Possibly high NH - PA below 0.9. N/A 

23 EN020         3   5 3 11 3 5 34 1 15%   R 1 0 N Intermittent Reheat alerts with slightly high 
TBT and low NH. 

N/A 

24 EN002             7 4 11 2 7 213 2 3% 197 R 1 0 Y Reheat alerts with high NL, TBT and low NH - 
returns to normal after engine change 
(4/10/06). 

08/11/06 - LH ECU RUNS BELOW MITL 
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25 EN230         1   5 4 10 3 5 14 1 36%   R 1 0 N Intermittent Reheat alerts with slightly high 
TBT and low NL/NH. 

N/A 

26 EN045 1           9   10 2 9 76 2 12% 58 B 2 0 Y NH trending high, mainly after fit change. 21/01/09 - ENGINE SURGE led to Engine 
change. 27/01/09 - L/H ECU FAILS TO 
GOVERN ON NL GOVERNOR TEST 

27 EN048             5 4 9 2 5 20 1 25%   R 1 0 N Only Reheat alerts. TBT low, possible linked to 
high OAT. 

  

28 EN027 2   2   2   2   8 4 2 154 3 1% 18 B 3 1 Y A couple of very high values across all three 
parameters. In addition, there appears to be 
shifts in the data for NH and NL at 
approximately 88, 100 and 138 hours. 

14/11/08 - RH ECU TO BE REPLACED 
(FODDED) 

29 EN100 2   2   2   2   8 4 2 61 2 3% 6 B 1 0 Y Low NL, high NH. Returns to normal after 
engine change. No data for this engine 
between 19/04/05 and 18/04/07. 

No record of engine 6800 removed/fitted 

30 EN030         1   4 3 8 3 4 98 2 4% 25 R 1 0 Y High NL and TBT and low NH - cleared after 
engine change. 

22/01/07 - EFDC REPORT MAR/11/07 
REJECT LH ECU 

31 EN043 5 3             8 2 5 145 1 3%   D 1 1 N Noticeable shift in NH at about 80 hours (July 
07). 

04/07/07 - R/H ECU TO BE REPLACED, 
EFDC REPORT MAR 75/07 REFERS 

32 EN042         2   5   7 2 5 85 2 6%   R 1 1 N Intermittent Reheat alerts - but deltas look 
normal? No data between 8/9/06 and 4/4/09. 

29/08/06 - [ENC-SCX-DHW] RH ECU to be 
replaced because of no NL indication 

33 EN157 2   2   1   1   6 4 2 59 1 3%   B 1 1 N 2 spikes: one at 25 hours (Sept 08) and one at 
78 hours (Feb 09) with high NH/NL and low 
TBT. The second appears in both models. 

None. 

34 EN142         1   5   6 2 5 92 1 5%   R 1 1 N Intermittent Reheat alerts with slightly high 
TBT/NL and low NH. 

N/A 

35 EN165 3 3             6 2 3 44 1 7%   D 1 1 N A few high Dry PA values. Possible high TBT. 
Doesn't look significant. 

N/A 

36 EN034         1   4   5 2 4 89 1 4% 80 R 1 1 Y Intermittent Reheat Alerts with slightly high NH 
and low TBT. 

N/A 

40 EN115 2           1   3 2 2 53 2 4% 7 B 1 1 Y Six possible anomalies in a row before an 
engine change. High NL, low NH - possibly 
linked to high OAT. 

06/08/08 - ECU FAILS TO START - 
INTERNAL FAILURE OF ENGINE GEARBOX. 
RH ECU NO ROTATION 
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41 EN008             3   3 1 3 55 2 5% 71 R 1 0 Y Low NH, high TBT, then switches to high NH, 
low TBT (around 46 hours Nov 08), then 
returns to normal after engine change. 

04/11/08 - FAILS TO REVERSIONARY LANE 
WITH REHEAT CAPTION. LH PTO SHFT 
FOUND DAMAGED 
18/03/09 - LH ECU NOZZLE FREES AT 80% 
AJ ON SELECTION OF TAXI. 
02/04/09 - LH BUCKET. GROUNDCREW 
REPORTED SYMPTOMS WHICH WOULD 
NOT RESET. DRY CONDITIONS. LH UPPER 
THRUST REVERSE BUCKET CRACKED 

42 EN113             3   3 1 3 133 1 2%   R 1 1 N Intermittent alerts, high NL.   

43 EN120             3   3 1 3 89 1 3%   R 1 0 N Intermittent Reheat alerts with slightly high 
TBT/NL and low NH. 

N/A 

44 EN188         1   1   2 2 1 12 1 8%   R 1 1   Low TBT. Snapshot at 12 hours looks incorrect 
as it is towards the end of the flight. 

17/03/09 - RH ENGINE FUEL FLOW 6-8 
KG/MIN LESS THAN LH ENGINE BETWEEN 
75-90% NH MATCHED THROTTLES .SEA 
LEVEL TO 16K FEET. 
23/03/09 - AIRTEST- R/H ENGINE WINDMILL 
RELIGHT E11 FAILED TO LIGHT AFTER 80S 
- MAX NH 20% MAX T7 290 DEG 

45 EN054         1   1   2 2 1 16 1 6%   R 1 1   Single point, slightly low No, high TBT. N/A 

46 EN057 1   1           2 2 1 58 2 2% 0 D 1 1 Y Single point, very high for all parameters - 
possible corruption issue? 

N/A 

47 EN182 2               2 1 2 50 1 4%   D 0 1   High reheat NL for most of the data. N/A 

48 EN206             2   2 1 2 66 1 3% 96 R 1 0 Y Reheat high NH, low TBT. Returns to normal 
about 85 hours (March 08). 

08/03/08 - [ENR-P5] LH AJ GAUGE 
INDICATES 50%. [A1T]   LH ECU NPT 
(TRANSDUCER NOZZLE POSN) REPLACED 
& FUNCTIONALLY TESTED SATIS 

49 EN194             2   2 1 2 53 2 4% 40 R 2 0 Y Not clear what is causing this? None 

50 EN112             2   2 1 2 120 2 2%   R 1 1   A few fairly anomalous reheat points at the 
start of the data with slightly high NH and low 
TBT. 

23/09/05 - NOZZLE SLOW TO OPEN ON 
SELECTION OF TAXI NOZZLE. RH MECU 
TO BE REPLACED 

51 EN122             2   2 1 2 4 1 50%   R 1 0   All four data points have high TBT and low NH. None 

52 EN155 2               2 1 2 34 1 6%   D 1 0   Two low NL points. N/A 
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53 EN170 2               2 1 2 13 1 15%   D 1 0   Not significant. N/A 

54 EN197 2               2 1 2 7 1 29%   D 1 0   Slightly high TBT, low NL. N/A 

55 EN187 2               2 1 2 17 1 12%   D 1 1   Two points slightly high TBT. N/A 

56 EN126 1               1 1 1 62 1 2%   D 0 1   Reheat NL high. N/A 

57 EN235             1   1 1 1 127 2 1% 105 R 2 0 Y Low NL/TBT high NH after engine change. 
Steps back again at 140 hours. 

None 

58 EN145             1   1 1 1 74 1 1%   R 1 0   High NL, low NH.  N/A 

59 EN212 1               1 1 1 44 1 2% 0 D 0 0 Y Dry NH seems very high for some periods. 
Only intermittent reheat alerts raised. 

18/08/08 - LH ECU #8029 COMBUSTION 
CHAMBER HOLED AND UNZIPPING 

60 EN233             1   1 1 1 160 3 1% 19 R 1&2 0 Y NL and TBT spike at 135 hours (ZA401 Sept 
07). Additional period of data with low TBT and 
high NH. 

17/08/08 - L/H ENGINE SURGE DURING 
FLIGHT NO CWP CAPTIONS BUT L/H TBT 
RISE SEEN. INVESTIGATE HP SPOOL 
STIFF TO TURN. MODULE No 03 (HPC) 
replaced 
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A1.13 Tornado EHUMS Anomaly Detection Results Charts 
 

 
EN046 

 
EN025 

 
EN040 



Appendix B Tornado EHUMS 

 

 209 

 
EN017 

 
EN168 

 
EN036 



Appendix B Tornado EHUMS 

 

 210 

 
EN014 

 
EN104 

 
EN068 



Appendix B Tornado EHUMS 

 

 211 

 
EN236 

 
EN201 

 
EN083 



Appendix B Tornado EHUMS 

 

 212 

 
EN055 

 
EN172 

 
EN204 



Appendix B Tornado EHUMS 

 

 213 

 
EN229 

 
EN081 

 
EN131 



Appendix B Tornado EHUMS 

 

 214 

 
EN089 

 
EN163 

 
EN018 



Appendix B Tornado EHUMS 

 

 215 

 
EN159 

 
EN020 

 
EN002 



Appendix B Tornado EHUMS 

 

 216 

 
EN230 

 
EN045 

 
EN048 



Appendix B Tornado EHUMS 

 

 217 

 
EN027 

 
EN100 

 
EN030 



Appendix B Tornado EHUMS 

 

 218 

 
EN043 

 
EN042 

 
EN157 



Appendix B Tornado EHUMS 

 

 219 

 
EN142 

 
EN165 

 
EN034 



Appendix B Tornado EHUMS 

 

 220 

 
EN099 

 
EN169 

 
EN119 



Appendix B Tornado EHUMS 

 

 221 

 
EN115 

 
EN008 

 
EN113 



Appendix B Tornado EHUMS 

 

 222 

 
EN120 

 
EN188 

 
EN054 



Appendix B Tornado EHUMS 

 

 223 

 
EN057 

 
EN182 

 
EN206 



Appendix B Tornado EHUMS 

 

 224 

 
EN194 

 
EN112 

 
EN122 



Appendix B Tornado EHUMS 

 

 225 

 
EN155 

 
EN170 

 
EN197 



Appendix B Tornado EHUMS 

 

 226 

 
EN187 

 
EN126 

 
EN235 



Appendix B Tornado EHUMS 

 

 227 

 
EN145 

 
EN212 

 





 References 

 

 229 

REFERENCES 

 
[1] I. Mackersey, The Wright Brothers, Little, Brown 2003. 0 316 86144 8 

[2] "Eye Witness History," http://www.eyewitnesstohistory.com/wright.htm, 
accessed: May 2010 

[3] "Plane Crash Info - Japan 747 Crash," 
http://www.planecrashinfo.com/w19850812.htm, accessed: May 2010 

[4] "Air Disaster.com - Air France Crash 2000," http://www.airdisaster.com/cgi-
bin/view_details.cgi?date=07252000&reg=F-BTSC&airline=Air+France 

[5] "Air Disaster.com - Air France Crash 2000 - Photo," 
http://www.airdisaster.com/photos/afsst/2.shtml, accessed: May 2010 

[6] "Air Accidents Investigation Branch " www.aaib.gov.uk, accessed: May 2010 

[7] "Institution of Mechanical Engineers - Airworthiness," 
http://www.imeche.org/industries/aero/airworthiness/, accessed: May 2010 

[8] "Air Accidents Investigation Branch - Publications - Progress Reports," 
http://www.aaib.gov.uk/publications/progress_reports.cfm, accessed: May 2010 

[9] "European Aviation Safety Agency - Annual Safety Recommendations review 
2009 - SAR-002-2010," http://www.easa.eu.int/ws_prod/g/doc/Safety/2009%20-
%20Annual%20Saftey%20Recommendations%20Review.pdf, accessed: May 
2010 

[10] "US National Transport Safety Board - Aviation Accident Statistics," 
http://www.ntsb.gov/aviation/Table5.htm, accessed: May 2010 

[11] "Plane Crash Info - Cause," http://www.planecrashinfo.com/cause.htm 
accessed: May 2010 

[12] P. R. Knight, J. Cook, and H. Azzam, "Intelligent Management of Helicopter 
Health and Usage Management Systems Data," Proceedings of the Institute of 
Mechanical Engineers - Part G: Journal of Aerospace Engineering, vol. 219, pp. 
507-524, 2005. 

[13] H. Azzam, J. Cook, P. R. Knight, and E. Moses, "FUMS™ Fusion and Decision 
Support for Intelligent Management of Aircraft Data," Proceedings of IEEE 
Aerospace Conference, 2006. 

[14] P. R. Knight, H. Azzam, S. J. Newman, and A. J. Chipperfield, "Artificial 
Intelligence and Mathematical Models for Intelligent Management of Aircraft 
Data," International Conference on Prognostics and Health Management, 2008. 

http://www.eyewitnesstohistory.com/wright.htm
http://www.planecrashinfo.com/w19850812.htm
http://www.airdisaster.com/cgi-bin/view_details.cgi?date=07252000&reg=F-BTSC&airline=Air+France
http://www.airdisaster.com/cgi-bin/view_details.cgi?date=07252000&reg=F-BTSC&airline=Air+France
http://www.airdisaster.com/photos/afsst/2.shtml
http://www.aaib.gov.uk/
http://www.imeche.org/industries/aero/airworthiness/
http://www.aaib.gov.uk/publications/progress_reports.cfm
http://www.easa.eu.int/ws_prod/g/doc/Safety/2009%20-%20Annual%20Saftey%20Recommendations%20Review.pdf
http://www.easa.eu.int/ws_prod/g/doc/Safety/2009%20-%20Annual%20Saftey%20Recommendations%20Review.pdf
http://www.ntsb.gov/aviation/Table5.htm
http://www.planecrashinfo.com/cause.htm


 References  

 

 230 

[15] Australian Research Laboratories, "Australia invented the Black Box voice and 
instrument recorder," http://apc-online.com/austrade/blackbox.htm, accessed: 
May 2007 

[16] D. Beaudouin and C. Beaudouin, Charles Beaudouin: une histoire d'instruments 
scientifiques, EDP Sciences Editions, 2005. 2868838073 

[17] B. D. Larder and N. Norman, "A Trial Helicopter Operations Monitoring 
Programme (HOMP)," Royal Aeronautical Society Conference, vol. London, 
March 2000. 

[18] B. D. Larder and N. Norman, "Application of HOMP to Helicopter Maritime 
Operations," Royal Aeronautical Society Conference, March 2001. 

[19] D. White and R. Vaughan, "Fleet Usage Monitoring Is Essential In Improving 
Aging U.S. Army Helicopter Safety, Availability, And Affordability," 9th Joint 
FAA/DoD/NASA Aging Aircraft Conference, 2006. 

[20] J. Cook, "Personal communication,"  MOD, Materials and Integrity Group, 
Fleetlands, Gosport, 2004. 

[21] L. Liu and D. J. Pines, "Analysis of U.S. Civil Rotorcraft Accidents Caused by 
Vehicle Failure or Malfunction, 1998 - 2004," American Helicopter Society 61st 
Annual Forum, Grapevine, Texas, 2005. 

[22] A. Draper, "The Operational Benefits of Health and Usage Monitoring Systems 
in UK Military Helicopters," Third International Conference on Health and Usage 
Monitoring - HUMS2003, 2003. 

[23] J. Land and C. Weitzman, "How HUMS systems have the potential of 
significantly reducing the direct operating cost for modern helicopters through 
monitoring," Proceedings of the AHS 51st Annual Forum, Fort Worth, TX, 1995. 

[24] M. Koehl, "Algorithmic Aero Engine Life Usage Monitoring Based on Reference 
Analysis of Design Mission," 3rd International Workshop on Structural Health 
Monitoring, Stanford University, Stanford, CA, 2001. 

[25] "Defence Standard (Def Stan) 00-970 Issue 1," 1983. 

[26] A. M. Van-Den-Hoeven, "CC130 Data Analysis System for OLM/IAT," NATO 
Research and Technology Organisation (RTO) Applied Vehicle Technology 
(AVT), vol. "Exploitation of Structural Loads/Health Data for Reduced Life Cycle 
Costs", Brussels, Belgium, II-12 May 1998. 

[27] A. Draper, "Fatigue Usage Monitoring in UK Military Helicopters," Workshop on 
Helicopter Health and Usage Monitoring Systems, Australia, February 1999, 
vol. DSTO-GD-0197 pages 153-166, D/DHP/16/2/43, 1999. 

http://apc-online.com/austrade/blackbox.htm


 References 

 

 231 

[28] H. Azzam, F. Beaven, M. Wallace, N. H. Wakefield, and P. R. Knight, 
"Qualification Guidelines for Non-Adaptive Prediction Methods," Smiths 
Aerospace Ltd REP1620, 2004. 

[29] H. Azzam, F. Beaven, A. Smith, and M. Wallace, "FUMS™  Fleet Management 
Applications and Algorithms," Aging Aircraft Conference, 2007. 

[30] "Defence Standard (Def Stan) 00-970 Issue 1," originally issued: 1983, revised 
2006. 2006. 

[31] L. C. Jaw, "Recent Advancements in Aircraft Engine Health Management 
(EHM) Technologies and Recommendations for the Next Step," Proceedings of 
Turbo Expo 2005: 50th ASME International Gas Turbine & Aeroengine 
Technical Congress, 6-9 June 2005. 

[32] D. Roach and K. Rackow, "Health Monitoring Of Aircraft Structures Using 
Distributed Sensor Systems," 9th Joint FAA/DoD/NASA Aging Aircraft 
Conference, 2006. 

[33] A. M. Toms and M. P. Barrett, "Using Filter Debris Analysis To Identify 
Component Wear In Industrial Applications," Proceedings of the 61st Meeting of 
the Society for Machinery Failure Prevention Technology, vol. Integration of 
Machinery Failure Prevention Technologies into Systems Health Management, 
pp. 239–245., 2007. 

[34] D. E. Veinot and G. C. Fisher, "Wear Debris Examination as a Condition 
Monitoring Technique for the Sikorsky Sea King Helicopter Main Gearbox," 
STLE Special Publication SP-27, pp. 119-131, May 1989. 

[35] P. J. Dempsey, G. Kreider, and T. Fichter, "Investigation of Tapered Roller 
Bearing Damage Detection Using Oil Debris Analysis," Proceedings of IEEE 
Aerospace Conference, 2005. 

[36] C. E. Fisher, "Gas Path Debris Monitoring – A 21st Century PHM Tool," 
Proceedings of IEEE Aerospace Conference, 2000. 

[37] H. Powrie and A. Novis, "Gas Path Debris Monitoring for F-35 Joint Strike 
Fighter Propulsion System PHM," Proceedings of IEEE Aerospace Conference, 
2006. 

[38] A. J. Evans, "Managing a Successful HUMS Operation," Third International 
Conference on Health and Usage Monitoring - HUMS2003, 2003. 

[39] B. Larder, H. Azzam, C. Trammel, and G. Vossler, "Smith Industries HUMS: 
Changing the M from Monitoring to Management," Proceedings of IEEE 
Aerospace Conference, 2000. 

[40] K. Pipe, "Measuring the Performance of a HUM System - the Features that 
Count," Third International Conference on Health and Usage Monitoring - 
HUMS2003, 2003. 



 References  

 

 232 

[41] J. A. Keller, R. Branhof, D. Dunaway, and P. Grabill, "Examples Of Condition 
Based Maintenance With The Vibration Management Enhancement Program," 
American Helicopter Society 61st Annual Forum, Grapevine, Texas, 2005. 

[42] "Largest Data Size Data-Mined," 
http://www.kdnuggets.com/polls/2007/largest_database_data_mined.htm, 
accessed: Jan 2011 

[43] G. Venn, "Personal communication,"  Westland Helicopters Limited, 2003. 

[44] H. Azzam, F. Beaven, I. Hebden, L. Gill, and M. Wallace, "Fusion and Decision 
Making Techniques for Certifiable, Affordable Structural Prognostic Health 
Management " Proceedings of IEEE Aerospace Conference, 2005. 

[45] M. J. Roemer and G. J. Kacprzynski, "Advanced Diagnostics and Prognostics 
for Gas Turbine Engine Risk Assessment," Proceedings of IEEE Aerospace 
Conference, 2005. 

[46] K. Goebel, P. Bonanni, and N. Eklund, "Towards an Integrated Reasoner for 
Bearings Prognostics," Proceedings of IEEE Aerospace Conference, 2005. 

[47] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan 
Kaufmann Publishers, 2001. 1-55860-489-8 

[48] G. Barndt, S. Sarkar, and S. Maley, "The Effects of Degraded Data on the 
Performance of Health Usage Monitoring Systems (HUMS) in Rotary Wing 
Aircraft," 9th Joint FAA/DoD/NASA Aging Aircraft Conference, 2006. 

[49] H. Azzam, J. Cook, P. R. Knight, and N. H. Wakefield, "FUMS™ Fusion For 
Improved Aircraft MAAAP," Proceedings of IEEE Aerospace Conference, 2005. 

[50] H. Azzam, F. Beaven, M. Wallace, and I. Hebden, "Optimisation of Fusion and 
Decision Making Techniques for Affordable SPHM," Proceedings of IEEE 
Aerospace Conference, 2006. 

[51] A. J. Volponi, T. Brotherton, R. Luppold, and D. L. Simon, "Development of an 
Information Fusion System for Engine Diagnostics and Health Management," 
NASA, vol. NASA/TM—2004-212924, 2004. 

[52] K. Goebel, M. Krok, and H. Sutherland, "Diagnostic Information Fusion: 
Requirements Flowdown and Interface Issues," Proceedings of IEEE 
Aerospace Conference, 2000. 

[53] N. Iyer, K. Goebel, and P. Bonissone, "Framework for Post-Prognostic Decision 
Support," Proceedings of IEEE Aerospace Conference, 2006. 

[54] K. Goebel, N. Eklund, and P. Bonanni, "Fusing Competing Prediction 
Algorithms for Prognostics," Proceedings of IEEE Aerospace Conference, 2006. 

http://www.kdnuggets.com/polls/2007/largest_database_data_mined.htm


 References 

 

 233 

[55] R. Callan, B. Larder, and J. Sandiford, "An Integrated Approach to the 
Development of an Intelligent Prognostic Health Management System," 
Proceedings of IEEE Aerospace Conference, 2006. 

[56] N. Lybeck, B. Morton, S. Marble, A. Hess, and J. Kelly, "Modelling and 
Simulation of Vibration Signatures in Propulsion Subsystems," Proceedings of 
IEEE Aerospace Conference, 2006. 

[57] K. P. J. Bryant and H. Azzam, "Intelligent Analysis Of Damage Acoustic 
Emission Data," Smiths Aerospace, Electronic Systems - Southampton 
REP1599, 2004. 

[58] M. Barnathan, "Mining complex high-order datasets," Dissertation for PhD, 
Temple University, 2010. 

[59] J. S. Aguilar-Ruiz, J. H.Moore, and M.D.Ritchie, "Filling the gap between 
biology and computer science," BioData Mining, 2008. 

[60] R. Bellazzi and B. Zupan, "Towards knowledge-based gene expression data 
mining," J.Biomed.Inform, 2007. 

[61] "Data Mining Methods " 
http://www.kdnuggets.com/polls/2006/data_mining_methods.htm, accessed: 
Jan 2011 

[62] N. H. Wakefield and H. Azzam, "A Novel Cluster Identification Algorithm Using 
a Minimum Area Method," Smiths Aerospace, Electronic Systems - 
Southampton MJAD/R/311/02, 2002. 

[63] Wikipedia, "Support vector machine," 
http://en.wikipedia.org/wiki/Support_vector_machine, accessed: May 2007 

[64] S. Haykin, Neural Networks - A Comprehensive Foundation, Macmillan 
Publishing Company, 1994. ISBN: 0-02-352761-7 

[65] N. Nikolaev, "Single-Layer Perceptrons," University of London. 

[66] "Introduction to Neural Networks," 
http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Introduction/, accessed: 
May 2007 

[67] B. J. Copeland and D. Proudfoot, "Turing's Neural Networks of 1948," 2000. 

[68] J. H. Holland, "Introduction to Genetic Algorithms." 

[69] C. Darwin, The Origin of Species by Means of Natural Selection: Or, the 
Preservation of Favored Races in the Struggle for Life, John Murray, London, 
1859.  

http://www.kdnuggets.com/polls/2006/data_mining_methods.htm
http://en.wikipedia.org/wiki/Support_vector_machine
http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/Introduction/


 References  

 

 234 

[70] H. Azzam, F. Beaven, M. Wallace, and I. Hebden, "Optimisation of Fusion and 
Decision Making Techniques for Affordable SPHM " Proceedings of IEEE 
Aerospace Conference, 2007. 

[71] P. Harmon and D. King, Expert Systems, John Willey & Sons, 1985. ISBN: 0-
471-80824-5 

[72] Scholarpedia, "Fuzzy Logic," http://www.scholarpedia.org/article/Fuzzy_Logic, 
accessed: March 2005 

[73] L. A. Zadeh, "Fuzzy Sets," Information and Control vol. 8, pp. 338--353, 1965. 

[74] Scholarpedia, "Fuzzy Sets," http://www.scholarpedia.org/article/Fuzzy_Sets, 
accessed: May 2007 

[75] Wikipedia, "Fuzzy Logic," http://en.wikipedia.org/wiki/Fuzzy_logic, accessed: 
March 2005 

[76] T. J. Ross, Fuzzy Logic with Engineering Applications, Second ed., John Wiley 
& Sons, 2004. ISBN: 0-470-86075 

[77] Wikipedia, "Bayesian network," http://en.wikipedia.org/wiki/Bayesian_network, 
accessed: May 2007 

[78] F. V. Jensen, An Introduction to Bayesian Networks, UCL Press, 1996. ISBN: 1-
85728-332-5 

[79] H. Azzam, "The Use Of Mathematical Models And Artificial Intelligence 
Techniques To Improve Hums Prediction Capabilities," Innovation in Rotorcraft 
Technology Proceedings, The Royal Aeronautical Society, 1997. 

[80] C. Byington, R. F. Orsagh, P. Kallappa, J. Sheldon, M. DeChristopher, S. Amin, 
and J. Hines, "Recent Case Studies in Bearing Fault Detection and Prognosis," 
Proceedings of IEEE Aerospace Conference, 2006. 

[81] M. J. Smith, C. S. Byington, P. Kalgren, A. Parulekar, and M. DeChrisopher, 
"Layered Classification for Improved Diagnostic Isolation in Drivetrain 
Components," Proceedings of IEEE Aerospace Conference, 2006. 

[82] D. Hochmann and G. Baringer, "Analytical Mechanical Diagnostic Benefits: 
Case Studies," Proceedings of IEEE Aerospace Conference, 2006. 

[83] N. S. Feng, E. J. Hahn, and R. B. Randall, "Simulation Of Vibration Signals 
From A Rolling Element Bearing Defect," DSTO International Conference on 
Health and Usage Monitoring, Melbourne, February 19-20, 2001. 

[84] R. Hamza, S. Menon, and S. McRoberts, "Advanced Knowledge Management 
For Helicopter HUMS," HUMS User Conference, 2001. 

http://www.scholarpedia.org/article/Fuzzy_Logic
http://www.scholarpedia.org/article/Fuzzy_Sets
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Bayesian_network


 References 

 

 235 

[85] E. Bechhoefer and A. P. F. Bernhard, "Setting HUMS Condition Indicator 
Thresholds by Modelling Aircraft and Torque Band Variance," Proceedings of 
IEEE Aerospace Conference, 2004. 

[86] E. Bechhoefer and A. P. F. Bernhard, "Experience in Setting Thresholds for 
Mechanical Diagnostics in the UH-60L Fleet Demonstration," Proceedings of 
IEEE Aerospace Conference, 2005. 

[87] E. Bechhoefer and E. Mayhew, "Mechanical Diagnostics System Engineering in 
IMD HUMS," Proceedings of IEEE Aerospace Conference, 2005. 

[88] H. H. Chin, E. Mayhew, and D. L. Green, "Assessing Bearing Health for 
Helicopter Power Train Systems," American Helicopter Society 61st Annual 
Forum, Grapevine, Texas, 2005. 

[89] M. J. Ashby and W. J. Scheuren, "Intelligent Maintenance Advisor for Turbine 
Engines," Proceedings of IEEE Aerospace Conference, 2000. 

[90] M. J. Roemer and D. M. Ghiocel, "A Probabilistic Approach To The Diagnosis 
Of Gas Turbine Engine Faults," International COMADEM Congress, Tasmania, 
Australia, 1999. 

[91] T. Jackson, J. Austin, M. Fletcher, M. Jessop, B. Liang, A. Pasley, M. Ong, X. 
Ren, G. Allan, V. Kadirkamanathan, H. A. Thompson, and P. Fleming, 
"Distributed Health Monitoring for Aero-Engines on the GRID: DAME," 
Proceedings of IEEE Aerospace Conference, 2005. 

[92] P. Frith and G. Karvounis, "Model-Based Decision Support Tools For T700 
Engine Health Monitoring," HUMS User Conference, 2001. 

[93] L. Yu, D. J. Cleary, and P. E. Cuddihy, "A Novel Approach to Aircraft Engine 
Anomaly Detection and Diagnostics," Proceedings of IEEE Aerospace 
Conference, 2004. 

[94] T. Kobayashi and D. L. Simon, "A Hybrid Neural Network-Genetic Algorithm 
Technique for Aircraft Engine Performance Diagnostics," American Institute of 
Aeronautics and Astronautics, 2001. 

[95] C. S. Byington, M. Watson, and D. Edwards, "Data-Driven Neural Network 
Methodology to Remaining Life Predictions for Aircraft Actuator Components," 
Proceedings of IEEE Aerospace Conference, 2004. 

[96] T. Khawaja, G. Vachtsevanos, and B. Wu., "Reasoning about Uncertainty in 
Prognosis: A Confidence Prediction Neural Network Approach," Proceedings of 
IEEE Aerospace Conference, 2005. 

[97] J. R. Bock, T. Brotherton, P. Grabill, D. Gass, and J. A. Keller, "On False Alarm 
Mitigation," Proceedings of IEEE Aerospace Conference, 2006. 



 References  

 

 236 

[98] H. Azzam, P. R. Knight, D. Hart, and I. Grainger, "FUMS™ for MOD DAPAT – 
Tasks 2b, 3b, 4b, 7a and 7b Contract COMMPSSPT/015," Smiths Aerospace, 
Electronic Systems - Southampton REP1580(1), 2003. 

[99] P. R. Knight, R. Ellison, R. Horabin, R. Abbott, K. P. J. Bryant, G. Pitt-Nash, and 
H. Azzam, "FUMS™ for MOD DAPAT phase II, Task 2.2 and Task 4.3 of 
Contract COMMPS/042," Smiths Aerospace, Electronic Systems - 
Southampton RES158(1), 26 March 2007. 

[100] H. Azzam and N. Harrison, "Intelligent Management of Helicopter HUMS Data,"  
CAA Paper 99006, 1999. 

[101] M. D. Pryce, "Personal communication,"  Assistant Directorate Aircraft Integrity 
Monitoring (AD AIM), Ministry of Defence (MOD), Fleetlands, Gosport, UK, 
2003. 

[102] D. N. Symonds, "Combiner Bearing Failure," Assistant Directorate Aircraft 
Integrity Monitoring (AD AIM), Ministry of Defence (MOD), Fleetlands, Gosport, 
UK 2003. 

[103] G. H. Ball and D. J. Hall, "ISODATA, an iterative method of multivariate data 
analysis and pattern classification," IEEE International Communications 
Conference, 1966. 

[104] N. H. Wakefield, P. R. Knight, K. P. J. Bryant, and H. Azzam, "FUMSTM Artificial 
Intelligence Technologies Including Fuzzy Logic For Automatic Decision 
Making," Annual Meeting of the North-American-Fuzzy-Information-Processing-
Society, 26-28 June 2005. 

[105] F. Beaven, N. H. Wakefield, P. R. Knight, K. P. J. Bryant, and H. Azzam, 
"FUMS™ for DAPAT – Tasks 8a, 9a, 10a, 10b," Smiths Aerospace, Electronic 
Systems - Southampton RES134, 2004. 

[106] L. A. Urban, "Parameter selection for multiple fault diagnostics of gas turbine 
engines,," AGARD-CP-165 ASME Paper 74-GT-62, J. Eng. Power, pp. 225-
230, April 1975. 

[107] Y. G. Li, "Performance-Analysis-Based Gas Turbine Diagnostics: A Review," 
Proceedings of the Institute of Mechanical Engineers - Part A: Journal of Power 
and Energy, vol. 216, p. 363, 2002. 

[108] Tornado-Data.com, "RB199 Engine Black and White Cutaway Diagram," 
http://www.tornado-data.com/History/engine/cutaway.htm, accessed: March 
2009 

[109] "RAF Engineering Authority General Orders and Special Instructions, Leaflet 
302, Health Monitoring of Tornado Engines and Accessories, DAP 101B-4100-
2(R)1," 2006. 

http://www.tornado-data.com/History/engine/cutaway.htm


 References 

 

 237 

[110] P. R. Knight, R. Abbott, and R. Ellison, "FUMS™ for MoD DAPAT – Phase 2 – 
Tasks 5.2 and 8.1 of Contract COMMPS/042," Smiths Aerospace, Electronic 
Systems - Southampton RES141, 2005. 

[111] "Chinook Maintenance School Training Manual, Section 12, Tandem Rotor 
Theory of Flight." 

[112] "Chinook Helicopter Mk2 Aircrew Manual." 

[113] "Chinook Maintenance School Training Manual, Section 14, Automatic Flight 
Control System ". 

[114] NSK, "Introduction to Bearings," 
http://www.nsk.com/services/basicknowledge/introduction.html, accessed: May 
2007 

[115] Stefan Vorkoetter, "Demystifying Gearing and Gearboxes," 
http://www.stefanv.com/rcstuff/qf200003.html, accessed: May 2007 

[116] D. Hart, "Signal Processing Techniques for HUMS and FUMS™ Applications," 
Smiths Aerospace, Electronic Systems - Southampton MJAD/RTDN/003/00, 
2000. 

[117] P. P. Walsh and P. Fletcher, Turbine Performance. Oxford, Blackwell Science, 
1998.  

 
 

http://www.nsk.com/services/basicknowledge/introduction.html
http://www.stefanv.com/rcstuff/qf200003.html

