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ABSTRACT 
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NONLINEAR VIBRATION ISOLATORS WITH ASYMMETRIC STIFFNESS 

by Ali Abolfathi 

A vibration source is commonly coupled to a receiving structure by a vibration isolator. A key 
trade-off in the choice of vibration isolator is the requirement for a wide frequency range of 
isolation without excessive static deflection. This compromise can, in principle, be 
circumvented by employing a softening nonlinear isolator that presents a high stiffness to the 
weight of the isolated mass but a low tangent stiffness in the vicinity of the equilibrium position. 
The first part of this thesis is concerned with the static response of a number of elements that are 
expected to exhibit such a nonlinear stiffness characteristic. A mechanism with geometrical 
nonlinearity is studied first and found to offer some benefits compared with a similar one 
reported in the literature.  Beams are commonly employed as linear springs and their suitability 
as nonlinear isolators is considered here. It is shown that the stiffness of a simply supported 
beam loaded transversely at its centre is of a hardening type in contrast to what is reported in the 
literature. Post-buckled beams are also investigated as candidates for nonlinear springs of 
vibration isolators although the sudden change in stiffness at the buckling point is unfavourable. 
Curved beams and beams with eccentric loading are investigated as alternatives to a straight 
axially loaded post-buckled beam. Static analyses are presented which show that curvature or 
eccentricity in loading can be incorporated to smooth the force-deflection curves. A 
commercially available rubber isolation mount is also studied as an example of an axially 
loaded curved element and its force-deflection characteristic measured. The hypothesis that it 
can be modelled by a curved beam is found not to hold. The inter-variability observed between 
samples is evaluated which illustrates the potential for mistune of nonlinear mounts in general. 

Nonlinear stiffness gives rise to the possibility of asymmetry about the equilibrium position, 
either as an inherent characteristic of the isolator or as a result of a mistuned added mass or 
static preload. A nonlinear isolator with asymmetric stiffness is modelled as a Duffing 
oscillator. The force transmissibility of the oscillator is obtained analytically using the 
Harmonic Balance Method from which the performance of the isolator is evaluated 
quantitatively as a function of both static load and mistuned mass. A study is presented for the 
case of a nonlinear isolator comprised of a curved beam. The high stiffness of the beam in 
extension causes impulsive behaviour in the transmitted force which is alleviated by the 
inclusion of a linear spring placed in series.  It is shown that this combination significantly 
outperforms a linear isolator with the same static deflection. 
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1 Introduction 
 

Vibration is an important consideration in many mechanical systems. In some cases, vibration is 

necessary for the system to perform its function, such as vibrating conveyors. However, in the 

majority of cases, it is unwanted and possibly harmful, particularly when the vibration affects 

people or sensitive equipment. The levels of vibrations that are considered to be acceptable 

today are lower than they were in the past. In addition, advances in technology, especially in 

materials and manufacturing engineering, have led to the development of components and 

systems that are more prone to vibration than those they replace. This is due to reduction in 

mass and/or an increase in the velocity at which the system is operated. An example of this is 

Rolls-Royce Trent XWB jet engine, where a 15% module weight reduction was achieved 

relative to the previous engine. These mean there is a great and continuing interest in vibration 

control.  

One of the methods to control vibration is to isolate the receiver from its source. The devices 

used to achieve this are called vibration isolators. While most mechanical systems are designed 

to operate in their linear range, there are some systems where nonlinearity may be desirable with 

regard to the performance of the system. The purpose of this thesis is to investigate the possible 

advantages of implementing a nonlinear vibration isolator and the methods to achieve such 

nonlinear characteristics.  

An introduction to vibration isolation is given in section  1.1. The motivation for doing this 

research work is addressed in section  1.2. A review on the previous attempts to build isolators 

with low natural frequency is presented in section  1.3 and their nonlinear dynamic response is 

presented in section  1.4. The objectives of the thesis are listed in section  1.5 and the 

contributions in section 1.6. The thesis contents are presented in the final section of this chapter.  
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1.1 Vibration isolation 

According to Rivin [1]: “vibration isolation is one of the vibration control techniques whereby 

the source of vibration excitation and the object to be protected are separated by an auxiliary 

system comprising special devices called vibration isolators or vibration isolation mounts”. The 

purpose of an isolator may differ depending on the situation. It may isolate rotating machinery 

from transmitting its vibration to its surroundings or protect a precise piece of equipment from 

unwanted vibration. Despite different purposes, the same principles apply in each case. The 

concept can be best described by a single degree of freedom system [2]. For a linear system, the 

displacement transmissibility for a base excited system is the same as force transmissibility for a 

force excited system. It is therefore sufficient at this stage to consider only a force excited 

system. Note that for nonlinear systems, such as those investigated in chapter 5 and 6, the 

transmitted force and transmitted displacement are not the same. 

A single degree of freedom system is shown in Figure  1-1. A harmonic force, f, is applied to the 

mass and the motion of the mass is defined by x. The base is assumed to be rigid without any 

displacement. The equation of motion for the system is given in the following equation, 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑓 ( 1-1) 

 

Figure  1-1: a) A force excited single degree of freedom system, b) transmitted force to the base 

If the harmonic force is described by the function 𝑓(𝑡) = 𝐹𝑒𝑖𝜔𝑡, the steady state response will 

be 𝑥(𝑡) = 𝑋𝑒𝑖𝜔𝑡 and the transmitted force to the base will be 𝑓𝑡(𝑡) = 𝐹𝑡𝑒𝑖𝜔𝑡, where i is the 

imaginary number. X and 𝐹𝑡 in these equations have complex values. The ratio 𝐹𝑡/𝐹 is called 

forced transmissibility and this can be derived for the above system as follows, 
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𝐹𝑡
𝐹

=
1 + 2𝑖𝜁𝑟

1 − 𝑟2 + 2𝑖𝜁𝑟
 ( 1-2) 

where 𝜁 is the damping ratio and r is the frequency ratio defined as 𝜔 𝜔𝑛⁄ , and 

𝜔𝑛 = �𝑘/𝑚  
( 1-3) 

is the natural frequency. 

The modulus of transmissibility for different values of damping ratio is shown in Figure  1-2. 

There is a peak for every curve at about the natural frequency of the system. A transmissibility 

value of less than unity means that the transmitted force is smaller than the applied force, so that 

there is some vibration isolation effect between the base and the mass. All of the transmissibility 

curves cross the line of unit transmissibility at the same point where the frequency ratio is √2.  

This frequency is referred to here as the isolation frequency. 

 

Figure  1-2: Magnitude of transmissibility of a viscously damped linear single degree of freedom system 
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1.2 Motivation for research 

It is clear from the preceding section that in order to have effective vibration isolation over a 

wide range of excitation frequencies, it is necessary to have a low natural frequency. Since, it is 

not usually desirable to increase the mass, reducing stiffness of the spring is usually the 

preferred way to achieve this practically. A reduction in stiffness of the spring (or an increase in 

the mass) will result in greater static deflection of the system which, for a mass-spring 

mechanism, is given by Hooke’s law, 

𝛿𝑘 = 𝑚𝑔 ( 1-4) 

where δ is the static deflection. If the stiffness of the spring is substituted from equation ( 1-4) 

into equation ( 1-3) one obtains expression for the natural frequency, 

𝜔𝑛 = �
𝑔
𝛿

 
( 1-5) 

The natural frequency as a function of static deflection is shown in Figure  1-3 and is seen to 

decrease by increasing static deflection. This confirms that in order to achieve vibration 

isolation at low frequencies, a large static deflection must be accommodated, which may be not 

possible in practice, e.g. a static displacement of 248 mm is required to achieve a natural 

frequency of 1 Hz.  

This limitation can be overcome by using a spring with a nonlinear force displacement 

characteristic. A typical force-displacement curve for a nonlinear isolator is shown in 

Figure  1-4. The slope of the force-deflection curve at any point of interest is called “tangent 

stiffness” here which is also referred to as “dynamic stiffness” in some literature (e.g. [3-8]). It 

can be used as an equivalent stiffness in calculating the natural frequency assuming that the 

amplitude of oscillation is small enough and it is oscillating about that point. The tangent line is 

shown in red in the graph at a position marked 𝑥𝑒 at which the tangent stiffness is minimum. 

The isolator can be loaded to this position statically for example, by the weight of the supported 

mass. The nonlinear isolator may be compared with a linear isolator with the same static 

deflection due to the mass. The force-deflection of such an isolator is shown by a dashed line in 
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Figure  1-4. The slope of this line is called “static stiffness” here which is considered as a 

parameter of the nonlinear isolator. It can be seen that the tangent stiffness is much lower than 

the static stiffness in this particular case.  

 

Figure  1-3: Natural frequency as a function of static deflection for a linear single degree of freedom 
system 

 

Figure  1-4: Schematic of a force-displacement curve of a nonlinear isolator, black line: force-deflection, 
dashed line: corresponding linear spring, red line: tangent to the curve at the statically loaded position 
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The large static stiffness keeps the static deflection within an acceptable range and the low 

tangent stiffness allows a low natural frequency when loaded, providing the amplitude of 

vibration is small. Such isolation mounts are referred to in some literature as “High-Static-Low-

Dynamic-Stiffness” (HSLDS) devices (e.g. [6, 7]) 

There are several different approaches by which a force-displacement characteristic of the shape 

shown in Figure  1-4 can be achieved practically. Three of these are considered in this thesis: 

mechanisms, axially loaded buckled beams and a rubber mount.  

 

1.3 Nonlinear vibration isolators 

The literature reports a considerable number of studies on nonlinear vibration isolators. Ibrahim 

[8] published a comprehensive review on nonlinear passive vibration isolators. This covers a 

wide range of mechanisms and mounts. Some of these isolators are reviewed here in five 

different groups, in accordance with the thesis content. The sub-sections are named based on the 

distinguishing feature of the vibration isolator, but in some cases it may be possible to 

categorise them in more than one group. Nonlinear isolators that incorporate a mechanism with 

negative stiffness intervals are studied in the first sub-section. The second group uses magnets 

as the elements that provide negative stiffness. The third group are those that include beams as 

nonlinear springs. The last group is dedicated to viscoelastic isolators.  

 

1.3.1 Negative stiffness mechanism 

A desirable stiffness characteristic for nonlinear vibration isolators can be achieved by the 

addition of a mechanism with negative stiffness to a linear spring. Negative stiffness occurs 

when the restoring force becomes smaller as the displacement becomes larger. The system 

becomes unstable in this region and, when loaded “snaps through” to a range with positive 

stiffness. Different systems can possess negative stiffness. Previous studies on mechanisms 

which employ linear springs and a special linkage to achieve negative stiffness are addressed 

together in this section.  
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Alabuzhev et al. [9] presented different nonlinear vibration protection systems with Quasi-Zero-

Stiffness (QZS) in their research monograph. The term QZS refers to systems that have zero 

tangent stiffness while loaded statically. Schematic diagrams of various QZS mechanisms are 

shown in Figure  1-5. They comprise of a load bearing elastic element with positive stiffness 

which is the vertical spring in the mechanisms shown in Figure  1-5. The addition of other 

springs through special mechanisms shown in the figure provides negative stiffness which adds 

to the stiffness of the vertical spring. Alabuzhev et al. studied these mechanisms statically and 

also obtained the dynamic response of a nonlinear oscillator with nonlinear restoring force of 

polynomial type as a general model for nonlinear isolators. The monograph ends with methods 

to design such isolators. However, they did not refer to nonlinear dynamics of the isolators in 

the last section on the design and only static force bearing capacity is considered at that stage. 

 

Figure  1-5: Quasi-Zero-stiffness mechanism, arrow: force excitation, double headed arrow: possible 
movement of base [9] 

Platus [10-12] introduced a negative stiffness mechanism and combined it with a linear spring to 

isolate sub-Hertz vibration. A snap-through mechanism was used to reduce the vertical stiffness 

while a column-beam arrangement was used to isolate horizontal movement. Commercial 

vibration isolators for vibration-sensitive instruments were built based on his work. Natural 

frequencies as low as 0.5 Hz were achieved for their vibration isolators. Ahn [13] investigated 

the performance of this vibration isolator by calculating the fundamental frequency of the 

isolator and used this to suggest design guidelines for nonlinear isolators.  
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Winterflood and Blair [14] introduced a long period vertical vibration isolator which is called a 

torsion crank linkage. This comprises of a mass hung on two crank arms which are held in place 

by a torsional spring (torsion rod) at the pivot end, as shown in Figure  1-6. The crank arm acts 

as an inverse pendulum which has negative stiffness. The angle φ defines the position at which 

the torsion spring is unloaded. The mass can move vertically up and down. The angle α is the 

statically loaded position. The mechanism geometry can be defined by three lengths r, l, and x, 

which are the crank-arm length, the supporting link length, and the offset distance respectively. 

They used the mechanism to accomplish low tangent stiffness in the vicinity of the working 

point. However, the mechanism attains negative stiffness in part of its displacement range by 

increasing the initial angle further which should be avoided.  

 

Figure  1-6: Schematic geometry of  a pair of torsion sprung crank arm [14] 

Carrella et al. [5] built a test rig to show the effect of negative stiffness on the free vibration of 

an oscillator. The mechanism consists of a horizontal beam that is hinged at one end with two 

coil springs attached to the middle to form a single degree of freedom rotational system. They 

showed that the frequency can be reduced by a factor of 4 when correction springs are attached 

through a lever to the beam. 

Park and Luu [15] studied four different negative stiffness mechanisms and compared their 

performance in reducing the natural frequency of an isolator experimentally. They obtained the 

force-deflection equations for the mechanisms statically. They used them to set the parameters 

of the mechanisms to achieve the lowest possible natural frequency. The natural frequency was 
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obtained by measurements. They did not analyse the nonlinear dynamics of the mechanism or 

consider nonlinear effects in the measurements. 

Carrella et al. analysed a QZS mechanism statically and optimized it to have the widest low 

stiffness displacement range in reference [3]. The force transmissibility of this mechanism is 

investigated in reference [16] by modelling it with a Duffing oscillator. They showed 

analytically that the nonlinear mechanism outperforms the linear system with equal static 

deflection. Kovacic et al. [17] analysed the forced response of the same mechanism loaded by 

static and dynamic loads simultaneously. 

 

1.3.2 Magnet springs 

The second group that can be used to achieve nonlinear characteristics are those implementing 

magnets. The principal of a magnetic anti-spring system is described in Figure  1-7. As magnets 

move with respect to each other in the vertical direction a vertical component of force appears. 

This vertical component opposes the movement and provides negative stiffness. Beccaria et al. 

[18] implemented magnets as anti-springs in an isolator proposed for the VIRGO gravitational 

wave detector. They showed that the vertical resonance of the isolator chain can reduce from 7 

Hz to 2 Hz by the addition of magnets to the original isolator.  

 

Figure  1-7: The principle of magnetic anti-spring systems, a) magnets at the equilibrium position, b) 
magnets moved with respect to each other in the vertical direction, 𝐹0: magnetic force, 𝐹𝑦: vertical 

component of magnetic force, d: distance between magnets [18] 

The performance of magnetic anti-springs depends strongly on the horizontal separation 

between them. Winterflood and Blair [14] and Bertolini et al. [19] pointed out some 
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disadvantages of magnetic anti-springs such as difficulties in achieving a wide displacement 

range of stiffness neutralization and their strong dependency on temperature. 

Carrella et al. [7] built a rig by adding magnets to a linear mass and spring, and studied the 

effect of nonlinear stiffness on transmissibility. The linear vibration isolator comprised of two 

vertical coil springs between which an isolated mass was mounted. Magnets were placed at the 

other ends of the springs and the isolated mass was itself a magnet.  The magnets were arranged 

in such a way to attract each other and so form a negative stiffness that counteracts the positive 

stiffness of the spring. The resulting mechanism possessed low tangent stiffness around the 

static equilibrium point. The natural frequency reduced from 14 Hz to 7 Hz as a result of the 

addition of the magnets. 

1.3.3 Beams as nonlinear springs 

Beams that undergo large deformation exhibits nonlinear force-deflection thus potentially can 

be used as nonlinear spring for a vibration isolator. The tangent stiffness of a beam that is 

loaded axially in compression is reducing, which makes them a candidate to be used in 

nonlinear vibration isolators and different implementations of them are studied in the following 

sub-section. It is suggested beams loaded transversely have a softening characteristics [20] i.e. 

tangent stiffness becomes lower, thus suitable for nonlinear vibration isolation. A literature 

review on the force-deflection of beams going under large deformation and loaded transversely 

is presented in the sub-section  1.3.3.2. 

1.3.3.1 Axially loaded buckled beams 

The nonlinear force-deflection characteristics of axially loaded buckled beams make them a 

suitable candidate for use as spring elements of a vibration isolator directly or through some 

mechanisms. First, the mechanisms that incorporate buckled beams are reviewed here. These 

mechanisms can possess negative stiffness in part of their displacement range and can also be 

categorised in the negative stiffness mechanisms group which was reviewed in sub-

section  1.3.1.  

Another advantage of using buckled beams is to increase internal resonances of the isolator. The 

large static deflection in linear springs used to achieve a low natural frequency necessitates a 
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large mass of elastic material which in turn supports low frequency internal modes of the spring. 

This limitation can be overcome by using a column spring in its Euler buckled mode. The 

working range of the column spring can be adjusted to start just after buckling. As a result, the 

spring element is used for its dynamic working range, not for the static deflection which results 

in higher internal resonance frequencies and better isolation performance. 

A column spring in its Euler buckling mode is used as a stiffness element in a high performance 

vibration isolator by Winterflood et al. [21, 22]. The mathematical analysis and experimental 

implementation of the Euler spring in the isolator are presented in reference [23]. It is argued 

that the mass of a Euler column may be (1/250)th of the mass of its linear spring equivalent, 

which makes the internal resonances occur at higher frequencies. 

In reference [22], they proposed a pivoted lever mechanism to constrain the movement of Euler 

springs, which is shown in Figure  1-8. They showed that negative stiffness can be achieved 

through the beam that buckles to the side at which the pivot is situated, while the one that 

buckles away from the pivot has a positive spring rate. By combining the stiffness of these two 

springs a very low tangent stiffness is achievable. However, the resulting stiffness is 

significantly nonlinear and it is not so easy to achieve a very low stiffness by this method.    

 

Figure  1-8: A simple structure for mounting and constraining Euler springs [22] 

Lee et al. [24, 25] presented a negative torsional stiffness mechanism, shown in Figure  1-9. It 

comprised of a number of longitudinally compressed thin plates which are marked with (1΄) in 

Figure  1-9. They used the finite element method (FEM) to optimise the negative stiffness 

torsional element in order to achieve the required negative stiffness range with the smallest 

possible size.  
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Figure  1-9: A schematic diagram of a negative torsional stiffness mechanism, the base link (0), movable 
connecting link (1), an insertion (2), and elements of elastic link (1΄) [26] 

Lee and Goverdovskiy [27] studied the possibility of incorporating a negative stiffness element 

into a conventional passive vibration isolator used in the passenger seats of vehicles. They 

compared the performance of different isolators in the low frequency bands and concluded that 

the performance of the traditional vibration isolators is not ideal for that purpose. They 

introduced a nonlinear elastic element with variable torsion negative stiffness (TNS) to control 

the stiffness of the isolator. It is possible to add this element to any existing vibration protection 

mechanism and optimise its parameters to achieve the desired level of vibration protection. The 

experimental results of a combined nonlinear isolator with the original isolators of a land 

vehicle and a helicopter are presented. Results were obtained through laboratory tests as well as 

field tests which were matched with theoretical predictions. They did not consider the nonlinear 

dynamics of the isolator in either their tests or analysis. 

The chaotic vibration of the same mechanism with negative stiffness elements is addressed in 

[26]. The Lyapunov largest exponent and Poincare map of phase trajectories were used to study 

stability. It is shown that although the negative stiffness elements have a tendency towards 

chaotic vibration, they cannot destabilize the motion of a combined mechanism.  

Bertolini et al. [19] introduced a mechanism based on the torsion crank linkage. They replaced 

crank arms with tapered width cantilever beams (A in Figure  1-10) and used a disc (C in 

Figure  1-10) to connect link wires to the mass. A cross-sectional view of the experimental test 

rig they built is shown in Figure  1-10. The rig is made adjustable by the initial angle of the 

blades (defined by ‘D’ in the figure) and the blades’ position (defined by ‘E’ in the figure). The 
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movement of disc ‘C’ changes the wire inclination, which affects the vertical component of the 

wire tension and provides negative stiffness in the mechanism. The test results agree very well 

with the analytical results, and the mechanism was shown to be capable of achieving natural 

frequencies down to 0.25 Hz. This mechanism is referred to as geometric anti-spring (GAS). 

 

Figure  1-10: Cross-sectional view of GAS experimental test rig, (A) stressed blade, (B) link wire, (C) 
load disk, (D) angular movement of the blade base, (E) radial movement of the blade base, (F) anti-tilt 

tower, (G) anti-tilt centring wires, (H) suspension wire (or rod), (I) load [19] 

The geometric anti-spring concept [19] was further developed into the monolithic geometric 

anti-spring (MGAS) to improve the GAS system performance significantly [28]. A schematic 

view of the MGAS mechanism is shown in Figure  1-11. The main advantage of this mechanism 

over the GAS is its simplicity. Fewer mechanical parts results in fewer unwanted natural 

frequencies which can reduce the performance of the isolators. The triangular shaped blade base 

is clamped and simulates a cantilever beam. The external force is applied to the centre where the 

vertices of the blades are joined. The symmetry causes the horizontal components of the force to 

cancel out and the mechanism can be treated as a single degree of freedom system. Depending 

on the load and separation of the clamps, the mechanism can become unstable under the applied 

load which is due to negative stiffness in parts of its displacement range. 

The geometry of the mechanism can be chosen in such a way as to minimize the natural 

frequency. They concluded that nonlinearity is not a major problem for the application they 

considered, namely a vertical passive seismic noise attenuator conceived for ground-based 

gravitational wave interferometers. They also studied the thermal stability of the mechanism. It 
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is possible to reduce the sensitivity of the mechanism to temperature variations, but it is difficult 

and probably requires trial and error adjustments. They did not report any experimental work. 

 

Figure  1-11: Schematic view of the Monolithic geometric anti-spring mechanism [28] 

Virgin and Davis [29] studied the buckled beam to be implemented directly as a vibration 

isolator. They used an approximate second order solution to find the force-deflection 

characteristics and stiffness of a buckled simply supported straight beam. An experimental rig 

was used to validate their results. They measured transmissibility across the mount. They 

showed that a lower level of transmissibility is achievable by implementing buckled beams as 

vibration isolators compared to a linear one. A linear isolator would need a static deflection four 

times the one they measured to achieve the same natural frequency. 

Shoup [30] used a pair of initially straight strips that were clamped in a semi-circular shape to 

form a nonlinear shock and vibration isolation mount. It was claimed that the low tangent 

stiffness provides vibration isolation from very low frequencies, while hardening springs can 

prevent excessive deformation due to shock inputs. He obtained the force-deflection curve for 

the strip pair and used the Ritz averaging method to obtain the dynamic response. He showed 

that the response is of a hardening type. Shoup and Simmonds [31] introduced an adjustable 

version of the vibration and shock isolation mount comprised of clamped strips. They obtained 

the force-deflection curve for different distances between the load and clamp. A design routine 

based on maximum bending stress of the strips was also proposed. 

Plaut et al. [32] considered a buckled fixed-fixed beam as a vibration isolator. They obtained 

non-dimensional governing differential equations and considered harmonic base excitation. 
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They considered a solution comprised of a static equilibrium part and a dynamic part. These 

were solved numerically. Displacement transmissibility was obtained for different static loads 

and beam dimensions. It was shown that a wide frequency range of isolation is achievable by 

implementing buckled beams. 

Plaut et al. developed their model to a two degree of freedom system in [33]. They considered 

an asymmetric bar to be supported by two buckled columns or two pairs of pre-bent columns 

bonded by a viscoelastic filler. The transmissibility of the centre of mass was obtained for a low 

range of frequencies. They showed that asymmetry introduces an additional peak between the 

first and second mode compared to the symmetrical model. El-Kafrawy et al. [34] considered 

the same bar isolated with only straight buckled columns. They compared two cases of allowing 

horizontal movement of the bar and preventing horizontal movement of the bar, concluding that 

good isolation is achievable in both cases. Jeffers et al. [35] continued the previous work and 

considered a three-dimensional model. They isolated a plate with four pairs of pre-bent columns 

bonded with viscoelastic material. They considered a symmetric and asymmetric plate, solving 

for the response numerically. They showed that the isolation method is effective for a wide 

range of excitation frequencies. El-kafrawy et al. [36] considered the same configuration, but 

only considered a straight buckled column. Here again, they compared two cases of allowing 

lateral movement of the plate and preventing it. 

1.3.3.2 Beams loaded transversely undergoing large deformation 

The large deformation of beams must be investigated in order to assess their suitability as spring 

elements of nonlinear vibration isolators. Large deflection of a simply supported beam, loaded 

centrally, seems to be a simple example to which large deflection theory can apply. However, it 

is revealed that there is some misinterpretation in the literature about its nonlinear 

characteristics, which is addressed in chapter 3. 

The problem of large deformation of beams has attracted a lot of attention and some different 

methods have been suggested to solve this problem. Frisch-Fay [37] has cited most of the work 

up to its publication date in his book “Flexible bars”. Bishop and Drucker [38] presented an 

analytical solution for the large deflection of a cantilever beam loaded at its tip in terms of 

elliptical integrals. Conway [39] found a solution for the large deflection of a simply supported 

beam. He considered the distance between the supports to be fixed without considering axial 
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stresses. By these assumptions, this is the case of a beam that can slide on the supports and the 

length of the beam between supports is variable which is not his definition of the case. The 

problem was solved for two cases of the vertical reaction at the supports and for a perpendicular 

reaction force with friction. Gospodnetic [40] considered a thin elastic beam deflected by three 

symmetrically arranged knife-edged supports. In the absence of friction, he considered that the 

supports exert forces normal to the deflected beam and are situated at fixed distances from each 

other while the beam could slide. He also found the solution in terms of elliptical integrals. The 

ratio of the maximum deflection obtained from the nonlinear theory and the linear theory as a 

function of applied force was plotted. It was claimed to be different from the analogous diagram 

given in reference [39].   

Sundara Raja Iyengar and Lakshmana Rao [41] studied the same problem as the one in 

reference [39] and considered a uniformly distributed load in addition to the concentrated load. 

They used a power series expansion for the angle along the beam length to find the solution for 

the problem.  

Wang et al. [42] used a numerical method to find the large deflection of a cantilever loaded 

along its length and a simply-supported beam loaded partially along its length or by a 

concentrated load. He used the finite difference method to find a solution for the bending 

differential equation along the length of the beam and compared the results with experimental 

results. Wang [43] introduced a different numerical method based on integrating along the 

horizontal axis for a cantilever beam loaded at its end and for a simply supported beam subject 

to a non-symmetrical load. In reference [44] equations for a cantilever and a simply supported 

beam with a distributed load were integrated to obtain the relationship between the angle along 

the beam, the projection in the axial direction and the load. Numerical methods were then 

implemented to solve the problem and deflections were calculated using numerical integration. 

Beléndez [45] restated the analytical solution for a cantilever beam loaded at its tip using an 

elliptical integral and compared the results of analytical and numerical solutions with 

experimental results. 

Thomsen [20] studied vibration of a simply-supported beam under a harmonic concentrated 

force at its midpoint. He considered simply-supported beams with moveable and immovable 

supports. The Galerkin method was used. The effect of shortening of the projection length in the 
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axial direction was not considered, which resulted in the erroneous conclusion that a simply 

supported beam with movable supports acts as a softening system.  

 

1.3.4 Viscoelastic vibration isolation mounts 

Rubber is widely utilized in vibration isolation mounts. It has been shown that the stiffness and 

loss factor of rubber materials depend on the temperature and frequency of oscillation [46, 47]. 

McCallion and Davies [48] studied the effect of temperature, frequency and also amplitude of 

oscillation on the mechanical properties of rubber under compressive loading. The variation in 

stiffness, hysteresis energy absorbed in a cycle, and resilience are shown in their paper through 

experimental data. They have also tried to develop expressions to model the dynamic behaviour 

of a rubber-like material.  

Shaska et al. [49] investigated characteristics of a butyl rubber isolator loaded in shear and the 

potential advantage over linear isolators. They obtained the effective shear modulus and 

effective loss factor as a function of excitation amplitude. They showed that the transmissibility 

of the nonlinear isolator is less than the linear isolator when the excitation frequency exceeds a 

particular frequency, where this frequency depends on temperature and excitation amplitude.  

The nonlinear characteristics of rubber due to pre-stress is addressed by Harris and Stevenson 

[50]. In the design of engine mounts, a primary and secondary stiffness are usually considered 

based on geometry change. The tangent stiffness is assumed larger than static stiffness with a 

correction factor in the range of 1.2-1.4 [51, 52]. 

Geometrical nonlinearities can be used to achieve a low tangent stiffness for a statically loaded 

rubber mount. Richards and Singh [53] proposed a method to characterize the nonlinear 

properties of stiffness of rubber based on force-deflection measurements. They tested three 

different types of mounts. One of which had geometrical nonlinearities and a reduced dynamic 

stiffness at the loaded position. Kim and Singh [54] developed a method to identify the multi-

dimensional frequency-dependent transfer stiffness over a wide frequency range. The effect of 

preload, temperature and amplitude of oscillation is not considered in their study. They tested 

their method on the same mounts as the previous study. Zhang and Richards [55] proposed a 
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parameter identification method for rubber isolator mounts where the Maxwell model is used to 

represent the isolator mounts. The method is tested on three vibration isolation mounts. It is 

shown that the model with two Maxwell elements can accurately represent the measured static 

and dynamic characteristics of rubber isolator mounts. 

 

1.4 Dynamic response of nonlinear vibration isolators 

Linearization of the force-deflection relation can be used to investigate a system with nonlinear 

stiffness. This approach has been adopted by many researchers to study nonlinear vibration 

isolators. However, it is only valid for small oscillations about the working position and does 

not address the nonlinear dynamics of oscillators. There are also reports on measured dynamic 

response spectra for different excitation types in which nonlinear dynamics of the isolators is 

not discussed. (For example refer to references [14, 18, 21, 22, 27, 32-36, 50]) 

Methods of analysing the nonlinear dynamics are well established [56, 57]. Kirk [58] 

investigated the response of vibration isolators with nonlinear stiffness under random excitation. 

Ravindra and Mallik [59] studied the performance of nonlinear isolators under harmonic 

excitation. They considered both stiffness and damping nonlinearities, with a symmetric and 

asymmetric restoring force. They used the Harmonic Balance Method (HBM) to obtain the 

response. It is concluded that a vibration isolator with softening stiffness outperforms one with a 

hardening stiffness. The effect of damping was also investigated in their work. It was shown 

that the nonlinear isolator with asymmetric stiffness does not isolate base excitation 

satisfactorily for the parameters they chose in their studies. Their analysis was limited to some 

specific values for the parameters of the system and they did not explore all nonlinear dynamic 

features of such isolators. 

Carrella et al. [16] studied the dynamic response of a quasi-zero stiffness isolator by using an 

approximation based on a model that consisted of a Duffing oscillator without a linear stiffness 

term. The HBM was used to obtain the response of the system at the excitation frequency. The 

force transmissibility of the isolator was obtained and it was concluded that the nonlinear 

isolator offers a performance advantage over a linear one provided that the system parameters 

are chosen appropriately and the excitation amplitude is limited. Kovacic et al. [17] considered 
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the effect of static load on the same isolator and investigated period doubling bifurcation and its 

development to chaotic motion. It was shown that improvement of static characteristics can be 

achieved in this case by incorporating a nonlinear softening spring in the vibration isolator; 

however this can lead to period-doubling bifurcations for such a nonlinear vibration isolator 

under static and dynamic excitation simultaneously.  

The force transmissibility of a nonlinear isolator is compared to its displacement transmissibility 

in reference [6]. The isolator is tuned in such a way that its minimum stiffness is greater than 

zero and it is modelled by a Duffing oscillator with hardening nonlinearities. It is shown that, 

unlike a linear isolator, the force and displacement transmissibility are not the same. The 

performance of the same nonlinear isolator which is tuned in a way that potential energy of the 

system has a double-well is investigated by Lu et al. [60] under random excitation. It is shown 

that an isolation region occurs between the two troughs of the transmissibility plot. These 

troughs can be shifted by applying a harmonic control load.  

A nonlinear isolator with cubic stiffness and damping nonlinearities is studied by Milovanovic 

et al. [61]. They compared the performance of the nonlinear isolator with cubic viscous damping 

and linear damping in displacement transmissibility. The stiffness of both isolators is considered 

to be comprised of linear and cubic stiffness terms. They showed that a finite value of damping 

is required for a given nonlinear stiffness to achieve a bounded response for a base excited 

system. Although the system with cubic damping has a better displacement isolation 

performance in the resonance region, the transmissibility at high frequencies is much higher 

compared to the isolator with a linear damper.  

A vibration isolator system for a vehicle seat is proposed by Le and Ahn [62]. They used a 

negative stiffness mechanism to reduce the tangent stiffness of a vehicle seat isolator. They used 

the HBM to obtain the dynamic response at the excitation frequency. The advantage of the 

isolator over conventional isolators was demonstrated through measurements of steady state and 

transient response to harmonic excitation and also random excitation.  
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1.5 Thesis objectives 

The literature review has shown that there is interest in both academia and industry to improve 

the performance of isolation mounts by using nonlinear stiffness elements. Much of the previous 

work on this subject has been on the static characteristics, or on the linearised dynamics of 

nonlinear isolators; few references have addressed the nonlinear dynamics of such mounts. In 

particular, the dynamic response of a nonlinear isolator with asymmetric stiffness has not been 

investigated thoroughly in previous work. The asymmetry can be an inherent characteristic of 

the mount or can be due to mistuned loading. This thesis addresses this issue with the following 

objectives: 

• To establish the static characteristics of a nonlinear isolator with low tangent stiffness 

consisting of a QZS mechanism. The design of a test rig based on this mechanism is 

also considered. 

• To consider whether a beam can be used as a nonlinear stiffness element in an isolator. 

• To determine whether a commercially available rubber mount can be modelled by a 

curved- beam model.  

• To determine the force transmissibility of a nonlinear isolator with asymmetric stiffness 

and to investigate its effectiveness.  

• To quantify the performance of a nonlinear isolator comprised of curved beams as 

spring elements in suppressing the transmitted force, and to determine if it can be 

modelled as a Duffing oscillator. 

 

1.6 Contributions of the thesis 

The contributions of the thesis are: 

1. It is shown that a mechanism with low tangent stiffness is easily adjustable for different 

static preloads. A detailed comparison between this mechanism and a similar one with 

low tangent stiffness is presented and the benefit of each one as a nonlinear isolator is 

highlighted. 
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2. It has been found that a simply supported beam loaded transversely in the middle acts as 

a hardening spring for large deformations, contrary to claims made in the literature. 

3. The minimum tangent stiffness and its corresponding static stiffness are obtained as 

functions of initial curvature angle of curved beams, and the eccentricity of the loading 

for straight beams. The stiffness graphs are proposed as a measure of isolation 

performance for mounts with them as their spring elements. It has been found that an 

order of magnitude reduction in the tangent stiffness compared to a linear isolator with 

the same static deflection can be achieved.  

4. It was determined that a bell-shape commercially-available rubber isolation mount 

cannot be adequately modelled by a curved beam. The variability in stiffness 

characteristics between nominally identical mounts was also measured and quantified 

which demonstrates the requirement of considering the nonlinear effect of variation of 

loading on performance of nonlinear isolators.  

5. The effects of static preload and incorrect values for the supported mass, as sources of 

asymmetry in stiffness, on the force transmissibility of a model for such nonlinear 

isolation based on a Duffing oscillator model have been established. It has been shown 

that a nonlinear isolator outperforms a linear one for a relatively wide range of static 

preload or incorrect values for the supported mass, i.e. a degree of robustness for its use 

has been established.  

6. The effectiveness of a vibration isolator comprised of curved beams as its spring 

elements is established dynamically. However, it has also been found that the time 

history of the transmitted force exhibits periodic impulse-like behaviour, which is 

attributed to the existence of a high range of values for the asymmetric stiffness. 

Implementing a linear spring in series with the curved beam is suggested as a method to 

overcome this problem and this alternative is compared with using a linear spring alone. 

 

1.7 Thesis outline 

A ‘snap-through mechanism’ that possesses a negative stiffness region is analysed in chapter 2. 

It is added to a vertical spring to form a QZS mechanism. Its parameters are optimised to obtain 

the widest displacement range for which low stiffness occurs. It is compared with another QZS 
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mechanism that was formed of oblique springs in addition to the vertical one. Measurements 

made on a snap-through mechanism are presented at the end of the chapter. 

Large deformation of beams is studied in the chapter 3. The principal theory is presented and 

this is followed by an investigation of the large deformation of a simply supported beam loaded 

transversely. An approximate solution is obtained for the beam’s force-deflection characteristics 

and the results are compared with those obtained by using the finite element method. The 

buckling and post-buckling of an axially loaded beam is studied in section 3.4. The reduction in 

the tangent stiffness of the beam at buckling makes the post-buckled beam a candidate for the 

spring element of nonlinear vibration isolators. The beam loaded eccentrically and curved 

beams are also studied as alternatives to the post-buckled beam in order to improve its 

characteristics for isolation purposes. A case study is presented at the end of the chapter in 

which the effect of higher order resonances of the curved beam on vibration isolation 

performance is evaluated. 

A commercially available rubber isolation mount, called a bubble mount, is studied in chapter 4. 

Measurements for the force-deflection characteristics of the mount are presented and the 

possibility of modelling the bubble mount as a curved beam is investigated. The variability in 

characteristics of these bubble mounts is also addressed through measuring the force-deflection 

curve for a set of nominally identical mounts. 

The nonlinear dynamics of vibration isolators with asymmetric stiffness is studied in chapter 5. 

Differential equations for the forced response of the Duffing oscillator are presented. A QZS 

mechanism is reintroduced as an example of an isolator that can be modelled by the Duffing 

equation. The effect of static preload on the nonlinear dynamics of a Duffing oscillator with 

purely cubic stiffness is then investigated. The forced response is obtained, followed by force 

transmissibility. The effect of mistuned mass on the dynamic response is addressed in section 

5.5 by considering its forced response and the isolation frequency as a function of mistuned 

mass. The effect of an additional linear stiffness term on a Duffing oscillator dynamic response 

is addressed in section  5.6. 

The dynamic response of a vibration isolator that is comprised of curved beams is investigated 

in chapter 6. A model of the curved beam isolator is presented in section 6.2. The forced 

response of the curved beam isolator for different initial curvature angles is obtained in section 
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6.3 followed by a study of the effect of static preload. The force transmissibility of the isolator 

is obtained and is used to evaluate the performance of the isolator in the next section. The 

transmitted force in the time domain is addressed in the section 6.7. 

The thesis closes with conclusions and suggestions for future work in chapter 7. 
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2 Quasi-Zero-Stiffness (QZS) mechanisms 

 

2.1 Introduction 

Quasi-Zero-Stiffness (QZS) mechanisms are so called because they can be tuned to possess zero 

tangent stiffness for infinitesimally small displacements in the vicinity of the statically loaded 

position. One method of achieving such a characteristic is to implement mechanisms with snap-

through instability [63, 64] in parallel with the main load bearing elastic elements. The 

instability in these mechanisms is due to the existence of a displacement range where stiffness is 

negative. By loading these mechanisms, they perform like a softening spring up to a point after 

which there is a negative stiffness range. By increasing load further, they snap through an 

unstable equilibrium point to the other stable arrangement. By adding such a mechanism to a 

vibration isolator mount, the isolator keeps its static load bearing capability but with reduced 

tangent stiffness when statically loaded.  

There are several mechanisms that possess snap-through instability and these are referred to 

here as “snap-through mechanisms”. The static behaviour of a snap-through mechanism is 

studied here. A QZS mechanism is formed by adding this mechanism to a linear spring and 

adjusting the mechanism parameters. The QZS mechanism is studied statically as well and the 

range at which the stiffness is less than the stiffness of the vertical spring is obtained. It is 

shown that the mechanism could easily be tuned for different loads by making the vertical 

spring position adjustable.  
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The QZS mechanism that is the subject of this chapter is compared with a similar mechanism 

that has previously been investigated by Carrella et al.[3]. The force and stiffness equations are 

stated using consistent notation and the variation of force and stiffness as a function of 

displacement for the two mechanisms are compared. The source of difference between the two 

mechanisms is also identified. 

A test rig that is similar to one of the snap-through mechanisms exists in the ISVR. It was 

introduced as a tuneable vibration absorber by Bonello et al. [65]. The model of the snap 

through mechanism is used to predict the behaviour of the test rig. It has been tested to confirm 

the theory presented here, and to find the possible practical difficulties in the design of such a 

test rig. A hammer test and also a shaker test with base excitation were used to conduct the 

measurements.  

The aim of this chapter is to evaluate statically the possibility of utilising a QZS mechanism as a 

nonlinear vibration isolator and to establish the dependency of its characteristics on the 

mechanism parameters. To achieve these, the snap-through mechanism is introduced in 

section  2.2. The QZS mechanism has been studied in section  2.4. The effect of preload on the 

QZS mechanism is investigated in the next section. Two QZS mechanisms are compared in 

section  2.6. The test rig is introduced, modelled and test results are presented in section  2.3. The 

chapter finishes with conclusions.  

 

2.2 A snap-through lever mechanism 

A mechanism is investigated in this section that possesses negative stiffness over a finite 

displacement range. The mechanism is comprised of two levers that are hinged at one end and 

sliding at the other end. The levers are further connected by a lateral spring. The mechanism is 

shown in Figure  2-1 (a). It is similar to one of the mechanisms that was studied in reference [9] 

and also a mechanism studied by Bonello et al. [66]. The position of the lateral spring of the 

mechanism studied here is different, which introduced a geometrical coefficient in the equations 

that is described later in this section. A static force F is applied vertically at the hinge, and the 

displacement x of the same point is measured in the vertical direction. The free body diagram of 

the hinge is shown in Figure  2-1 (c) where 𝐹𝑙 and 𝐹𝑟 are the reaction of the left and right levers 
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respectively and F is the applied force. In Figure  2-1 (b), the free body diagram of the right 

lever is illustrated. 𝐹𝑠 is the spring force and 𝐹𝑛 is the surface reaction force. The forces acting 

on the hinge, the applied force F and the levers’ reactions, must be in equilibrium (Figure  2-1 

(c)) such that, 

𝐹 = 𝐹𝑟 sin𝜑 + 𝐹𝑙 sin𝜑 = 2𝐹𝑟 sin𝜑 ( 2-1) 

since, by symmetry, 𝐹𝑙 = 𝐹𝑟. From Figure  2-1 (b), the lever reaction can be derived as a 

function of the spring force 𝐹𝑠, 

𝐹𝑟 cos𝜑 = 𝐹𝑠 ( 2-2) 

By substituting 𝐹𝑟 from equation ( 2-2) into equation ( 2-1), the following expression can be 

obtained for the applied force, F. 

𝐹 = 2𝐹𝑠 tan𝜑 ( 2-3) 

 

Figure  2-1: a) The lever mechanism shown at an arbitrary position, b) free body diagram of the right 

lever, c) Free body diagram of hinge 

Let the values of y, x and θ when the spring is unstretched be 𝑦0, 𝑥0 , and 𝜃0. Also, define the 

parameter β as ℎ′/ℎ or equivalently 𝑦′/𝑦 which determines the vertical position of the lateral 

spring. Then the following equations can be derived for tanφ and 𝐹𝑠. 
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tan𝜑 =  
ℎ′
𝑦

=  𝛽
ℎ
𝑦

  ( 2-4) 

𝐹𝑠 = 𝑘𝑙�2𝑦′ − 2𝑦′0� = 2𝑘𝛽(𝑦 − 𝑦0) ( 2-5) 

Substituting for 𝐹𝑠  and tan𝜑 from equations ( 2-4) and ( 2-5), equation ( 2-3) can be rewritten as:  

𝐹 = 4𝑘𝑙𝛽2ℎ �1 −
𝑦0
𝑦
� 

( 2-6) 

The length h can be obtained in terms of x and a, the lever length, 

ℎ = 𝑎 − 𝑥 
 ( 2-7) 

The distance of the movable support from centre, y can also be obtained in terms of x, and a: 

𝑦 = �2𝑎𝑥 − 𝑥2 
 ( 2-8) 

The initial position of movable support, 𝑦0, can be obtained as a function of unloaded angle 𝜃0, 

and the length of the lever, a, 

𝑦0 = 𝑎 sin𝜃0 
( 2-9) 

The applied force, F, can be derived in terms of x by substituting equations ( 2-7),  ( 2-8), and 

( 2-9) into equation ( 2-6):  

𝐹 = 4𝑘𝑙𝛽2(𝑎 − 𝑥) �1 −
𝑎 sin𝜃0

√2𝑎𝑥 − 𝑥2
� 

 

( 2-10) 

The above equation can be non-dimensionalised by dividing throughout by 𝑎𝑘𝑙 and defining 

non-dimensional displacement 𝑥� equal to x/a, so that, 
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𝐹
𝑎𝑘𝑙

= 4𝛽2(1− 𝑥�) �1 −
sin𝜃0

√2𝑥� − 𝑥�2
� 

( 2-11) 

The non-dimensional force as a function of non-dimensional displacement is shown in 

Figure  2-2. The graphs are plotted for different values of initial angles. Despite different initial 

angles, all the curves meet each other at the non-dimensional displacement equal to one where 

the mechanism is horizontal and the levers’ reactions have no vertical component. There is an 

unstable equilibrium position at the horizontal position. The curves are anti-symmetric about the 

unstable equilibrium position. By loading the mechanism, the force increases to its maximum 

where the tangent stiffness is equal to zero and after this point it snaps through the horizontal 

position. The tangent stiffness is negative from this point to the local minimum point where the 

tangent stiffness is zero again. The negative tangent stiffness causes an unstable displacement 

range. By increasing the initial angle, the maximum force before snap-through occurs decreases 

and the displacement range at which the stiffness is negative becomes smaller.  

 

Figure  2-2: Non-dimensional force-displacement curves for the mechanism of Figure  2-1 (β=0.5) 
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The tangent stiffness can be obtained by differentiating the force-deflection relation governed 

by equation ( 2-10). In non-dimensional terms, 

𝐾� = 4𝛽2 �
sin𝜃0

(2𝑥� − 𝑥�2)
3
2
− 1� 

 

( 2-12) 

where the non-dimensional stiffness is defined as 𝐾� = 𝐾/𝑘𝑙. The non-dimensional stiffness as a 

function of non-dimensional displacement is shown in Figure  2-3. The stiffness is symmetrical 

about the unstable equilibrium position, i.e. 𝑥� = 1. The displacement range at which stiffness is 

negative and the absolute value of the stiffness both decrease by increasing initial angle. By 

differentiating the stiffness with respect to the displacement and setting it equal to zero, it is 

revealed that the stiffness is minimum when the levers are in the horizontal position.  

 

Figure  2-3: Non-dimensional stiffness of the mechanism as a function of non-dimensional displacement 

(β=0.5) 
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By substituting non-dimensional displacement equal to one in equation ( 2-12), the minimum 

stiffness is found to be, 

𝐾𝑚𝑖𝑛

𝑘𝑙
= 4𝛽2(sin𝜃0 − 1) 

 

( 2-13) 

The displacement interval at which the stiffness is negative can be found by finding the 

positions at which the stiffness is zero, 

𝑥�|𝐾=0 = 1 ∓�1 − (sin𝜃0)2 3�  
( 2-14) 

The displacement range at which the stiffness is negative is shown in Figure  2-4 and is defined 

by the hatched area. It is symmetric about the line passing through the non-dimensional 

displacement equal to unity where the mechanism is horizontal. The displacement range at 

which the stiffness is negative becomes smaller as the initial angle increases. The negative 

stiffness range extends to the entire displacement range as the initial angle approaches zero.  

 

Figure  2-4: The negative stiffness displacement range as a function of initial angle 
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2.3 Experiment on a snap-through mechanism 

A mechanism similar to the snap-through lever mechanism but based on the click mechanism of 

an insect flight motor [67] was studied by Bonello et al. [65, 66], for which a demonstrator test 

rig was built and tested at ISVR [66]. 

The stiffness of the rig is adjustable and it was originally used as an adjustable tuned vibration 

absorber. Bonello et al. [66] measured the natural frequencies for different distances between 

the levers and its response for different excitation amplitudes. By keeping the mass of the 

absorber constant, the variation in natural frequencies is due to changes in the rig stiffness. The 

capability of changing the natural frequency enables it to adapt to a different working frequency 

and perform over a range of excitation frequencies. Some measurements have been performed 

on the rig here to identify the possible practical difficulties in conducting experiments on such 

mechanisms and to provide an illustration of a similar mechanism with strong nonlinearity.   

In studying the snap-through mechanism in section  2.2 the focus was on the snap-through 

behaviour relating to the displacement range at which the stiffness is negative. The stiffness was 

calculated at the unstable equilibrium position which is used later in this chapter to form a QZS 

isolator. However, it is not possible to measure the rig property at its unstable equilibrium 

position. Therefore, the tests are conducted without applying any load on the rig. The equivalent 

weight of the rig considering its stiffness is negligible and so the rig could be assumed to be at 

its initial unloaded position.  

The rig is shown in Figure  2-5. It comprises two vertically orientated cantilevers which play the 

lateral spring role in the mechanism. The restoring force is generated due to outward bending of 

the cantilevers. Two levers are hinged by small bearings to the free end of the cantilevers. The 

other ends of the levers are hinged together where two small mass are attached to the 

mechanism. By applying a downward force to the top joint, the joint moves down and the angle 

between the levers gets wider. An adjusting bolt at the bottom of the rig can be used to change 

the distance between the cantilevers which changes the stiffness.   
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Figure  2-5: The experimental rig 

A schematic diagram of the undeformed rig is shown in Figure  2-6 (a). It differs slightly from 

the snap-through mechanism of section  2.2. The horizontal component of the cantilevers’ 

reaction replicates the lateral spring force in the snap-through mechanism. Equation ( 2-5) can be 

rewritten for the rig, 

𝐹𝑠 = 𝑘𝑐(𝑦 − 𝑦0) ( 2-15) 

where 𝐹𝑠 is the horizontal component of the cantilevers’ force, y is half of the distance between 

the two cantilevers’ tips, 𝑘𝑐 is the stiffness of the cantilever at its tip due to horizontal loading, 

and  𝑦0 is this distance at the unloaded condition. The cantilevers are connected to the end of the 

levers, thus, parameter β which defines the position of the lateral spring in equation ( 2-5) is 

equal to unity.  

Replacing the above equation with the lateral spring force in equation ( 2-11), the applied  force 

F can be derived for the rig, 

𝐹
𝑎𝑘𝑐

= 2(1 − 𝑥�) �1 −
sin𝜃0

√2𝑥� − 𝑥�2
� ( 2-16) 
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where 𝑥� is the non-dimensional displacement and is equal to x/a. The non-dimensional stiffness 

corresponding to equation ( 2-12) can be similarly obtained, and is given by, 

𝐾
𝑘𝑐

= 2 �
sin𝜃0

(2𝑥� − 𝑥�2)
3
2
− 1� ( 2-17) 

 

Figure  2-6: Schematic diagram of Bonello's rig a) un-deformed b) deformed [66] 

The predicted force versus displacement is plotted in Figure  2-7. This graph is plotted using 

equation ( 2-16). To plot the force-displacement in dimensional form, the stiffness of the rig is 

calculated by measuring the cantilevers’ dimensions. The calculated stiffness is 222 kN/m. The 

lever length is 40 mm. The force is calculated for three different distances between the levers 

which is stated on the graph with corresponding initial angles. For small vibration, the force 

displacement function can be considered as linearized around the static equilibrium position. 

The dashed lines represent the linearized force-displacements at the unloaded position and the 

slope of these lines defines the tangent stiffness.  

It is apparent from this figure that the slopes of these dashed lines (stiffness) decrease with 

increase in initial angle. The stiffness can be calculated form equation ( 2-17) at each 
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equilibrium position. The consequence of changing stiffness is variation in natural frequency 

which can be observed in practice by measuring FRFs.   

Although the test rig is nonlinear, the high stiffness of the cantilevers makes it very difficult to 

oscillate it with large enough amplitude to obtain nonlinear behaviour. By keeping the 

amplitude of excitation small, it was ensured that the measurements were done in a linear 

manner. The coherence between excitation and response was also checked to make sure the 

results were linear. 

 

Figure  2-7: The non-dimensional force-displacement for different values of initial angle with 
linearisations shown around the unloaded positions 

Experiments were conducted to measure the natural frequency for different distances between 

the cantilevers. The first set of data was acquired by doing a hammer test and measuring the 

accelerance. Two accelerometers were situated on top of the two small masses. The lever was 

hit on the top, where the levers are hinged, by an instrumented hammer. The results of the 

hammer test for the two measured accelerances are shown in Figure  2-8 (a). The distance 

between the cantilevers was 64 mm which corresponds to an initial angle of 53°. There is a 
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dominant peak at the about 140 Hz and the two accelerances match well up to 200 Hz. The 

accelerances of the rig are converging at high frequencies to 20 dB (ref. 1𝑚𝑠−2/𝑁) from which 

the equivalent mass of the rig is estimated to be about 100 g.  

The transmissibility frequency response was measured by applying a random signal to the base 

by a shaker and recording the base acceleration by a third accelerometer connected to the base. 

The transmissibility for the same distances between levers is shown in Figure  2-8 (b). It can be 

seen that there is a dominant peak at the same frequency of about 140 Hz and the results from 

two accelerometers are almost the same up to 200 Hz. There are damped resonances at 270 Hz 

and 250 Hz for first and second accelerometer respectively. These are additional modes of the 

rig which have not been identified. 

 

Figure  2-8: FRFs for 2b = 64mm  (𝜃0 = 53°), solid line: first accelerometer, dashed lines: second 
accelerometer, a) Accelerance (hammer test), b) Transmissibility (shaker with random excitation, 100 

averages) 

The tests were repeated for different distances between the cantilevers and the natural frequency 

was estimated from FRFs in each case.  These estimated natural frequencies from both hammer 
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and base excitation by shaker are plotted as a function of distance between cantilevers in 

Figure  2-9 alongside the predicted results using theoretical equations where the stiffness of the 

cantilevers is calculated by measuring its dimensions. These natural frequencies are denoted as 

the first set of predicted results in the graph. There is considerable discrepancy between this 

prediction and the measured data.  

The second set of predicted results is calculated by estimating the rig’s stiffness from the natural 

frequency for the position where the cantilevers are 64mm apart. This estimation agrees with the 

experimental results. The stiffness of the cantilevers estimated by this method is 64 kN/m which 

is about 30 per cent of the calculated stiffness by considering the cantilevers’ dimensions. The 

non-perfect fixed boundary condition at the ends of the cantilevers and the backlash and 

stiffness of the bearings could be reasons for this disagreement. 

 

Figure  2-9: Natural frequency variation as a function of separation of cantilevers  
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As it was expected the frequency decreases from about 180 Hz to 90 Hz while the distance 

between the cantilevers increases from 57.6 mm to 72 mm. The results from hammer and shaker 

tests match closely and the difference between experimental results and the second set of 

predicted numerical results is less than 5%. 

The measured data were used to estimate the damping in each position and it is shown in 

Figure  2-10. The damping is estimated from the peak amplitude in both cases. The damping 

estimated by the results of the shaker tests is almost twice that obtained from the hammer test 

for a cantilever separation of 71.2 mm. The mechanism was very damped in some positions 

which seemed to be a result of the backlash at the adjustment bolt. In some positions it was not 

firm and caused loss of energy which could be modified by slightly turning the adjustment bolt. 

To overcome this problem, the damping was measured for slightly different positions which 

caused two different damping ratios for the mentioned position. There is a good match between 

the two values for damping for other distances between the cantilevers.  

 

Figure  2-10: Damping ratio ζ for different separation of cantilevers 
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2.4 A Quasi-Zero-Stiffness mechanism  

As noted in the chapter’s introduction, vibration isolation can be improved by decreasing the 

natural frequency of the system and this can be achieved by adding the snap-through mechanism 

in parallel with an isolator spring. The new arrangement causes a reduction in vibration isolator 

tangent stiffness. The mechanism studied here is one of the mechanisms that is introduced in 

reference [9]. The analysis presented in this section is used as a base to obtain the effect of 

preload on the mechanism in section  2.5 and to compare it with a similar mechanism in 

section  2.6. 

Suppose that the lever mechanism is added to a vertical spring in such a way that both of the 

springs are un-deformed at the unloaded position. The resulting mechanism is shown in 

Figure  2-11 (a). The free body diagram of the right lever (Figure  2-11 (b)) is the same as the 

free body diagram of the mechanism without vertical spring (Figure  2-1 (b)). The force 

generated by the vertical spring adds to the forces applied to the pivot. The free body diagram of 

the pivot is shown in Figure  2-11 (c).  

 

Figure  2-11: a) The QZS mechanism shown at an arbitrary position, b) free body diagram of the right 

lever, c) free body diagram of hinge  

The force of the vertical spring as a function of displacement x is simply, 
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𝐹𝑣 = 𝑘𝑣(𝑥 − 𝑥0) 
 

( 2-18) 

where 𝑥0 denotes the initial position where the springs are unloaded and can be derived as a 

function of the initial angle, 

𝑥0 = 𝑎(1 − cos𝜃0) ( 2-19) 

Equation ( 2-1) for the force acting on the hinge can be rewritten for this case as, 

𝐹 = 𝐹𝑣 + 𝐹𝑟 sin𝜑 + 𝐹𝑙 sin𝜑 = 𝐹𝑣 + 2𝐹𝑟 sin𝜑 ( 2-20) 

The force-deflection relation with the vertical spring included becomes, 

𝐹
𝑎𝑘𝑣

= (𝑥� − 1 + cos𝜃0) + 4𝛾𝛽2(1 − 𝑥�) �1 −
sin𝜃0

√2𝑥� − 𝑥�2
� ( 2-21) 

where 𝑘𝑣 is the stiffness of the vertical spring and γ is the ratio between springs stiffness, 𝑘𝑙/𝑘𝑣. 

The equation is non-dimensionalised by 𝑎𝑘𝑣. The stiffness can be obtained by differentiating 

equation ( 2-21) with respect to 𝑥�. 

𝐾
𝑘𝑣

= 1 + 4𝛾𝛽2 �
sin𝜃0

(2𝑥� − 𝑥�2)
3
2
− 1� ( 2-22) 

The minimum stiffness can be found by differentiating equation ( 2-22) and setting it equal to 

zero. The minimum is at the horizontal position where the non-dimensional displacement is 

equal to unity. The minimum stiffness is given by, 

𝐾𝑚𝑖𝑛

𝑘𝑣
= 1 + 4𝛾𝛽2(sin𝜃0 − 1) 

 

( 2-23) 
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Quasi-Zero-Stiffness behaviour can be achieved by setting the minimum stiffness to zero. From 

equation  ( 2-23), the stiffness ratio γ for a minimum stiffness of zero can be derived for an 

arbitrary initial angle,  

𝛾𝑄𝑍𝑆 =
1

4𝛽2(1− sin𝜃0) 

 

( 2-24) 

The non-dimensional force as a function of non-dimensional displacement of such a QZS 

mechanism is shown in Figure  2-12 for different initial angles. Equation ( 2-24) is used here to 

calculate the stiffness ratio for different initial angles to achieve the QZS mechanism.  

The thin straight lines are the non-dimensional force-displacement curves of the vertical spring 

alone, i.e. as if 𝑘𝑙 is set to zero, for the stated initial angles.  At the horizontal position the snap-

through mechanism produces no vertical force and the QZS mechanism force is due to the 

vertical spring alone. As a result, the non-dimensional force-displacement curve of the vertical 

spring alone intersects with that of the QZS mechanism. The first intersection is at the unloaded 

position where the force is equal to zero for both the vertical and horizontal springs. 

As seen in Figure  2-12, the load increases rapidly with displacement initially and then there is a 

low stiffness region around the horizontal position, i.e. the non-dimensional displacement equal 

to unity. By increasing the initial angle, the low stiffness region becomes narrower and the load 

at the minimum stiffness position decreases.  

The non-dimensional stiffness as a function of non-dimensional displacement is shown in 

Figure  2-13. Here again the stiffness ratio is selected in such a way that the minimum stiffness 

become zero. The mechanism outperforms the vertical spring in the range where the non-

dimensional stiffness is less than one. It is apparent that by increasing the initial angle, the 

displacement range over which the non-dimensional stiffness is less than one becomes 

narrower. According to equation ( 2-22), the stiffness of the snap-through mechanism detracts 

from the stiffness of the vertical spring. The displacement range at which the combined QZS 

mechanism is less stiff than the vertical spring is the same as the displacement range at which 

the snap-through mechanism possesses negative stiffness. 
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Figure  2-12: The non-dimensional force-displacement of the QZS mechanism for different initial angles 
and of the vertical spring alone 

 

Figure  2-13: Non-dimensional stiffness as a function of non-dimensional displacement for different initial 
angles 
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2.5 A QZS system with preload 

The QZS mechanism described in the previous section is comprised of the snap-through 

mechanism and the vertical spring where both springs are unloaded at the same position. The 

initial angle, 𝜃0, is taken as the angle of the position where both springs are unloaded. To 

consider the effect of preload on the QZS mechanism, a displacement is applied to the vertical 

spring and then it is attached to the snap-through mechanism. In this section, the initial angle 𝜃0 

only defines the position where the snap-through mechanism is unloaded and not the vertical 

spring or the preloaded QZS mechanism. The initial positioning of the vertical spring makes it 

possible to tune the QZS mechanism for different static loads. 

The unloaded vertical spring is shown in Figure  2-14 (a). The reference of the displacement is 

considered a distance equal to the length of the lever, a, above the horizontal position. The 

position of the vertical spring when unloaded is called 𝑥0. A displacement equal to 𝛿𝑝 is applied 

to the vertical spring (Figure  2-14 (b)). In Figure  2-14 (c), the vertical spring is added to the 

snap-through mechanism which is unloaded at the angle 𝜃0. The corresponding position to the 

angle 𝜃0 is denoted as 𝑥𝑝. Because the snap-through mechanism is unloaded at this position the 

force 𝐹𝑝 which is needed to keep the mechanism at the position shown in Figure  2-14 (c) is to 

maintain the preload alone and can be derived from the force-displacement relationship of the 

vertical spring. 

 

Figure  2-14: The pre-loaded vertical spring, a) unloaded vertical spring, b) preloaded vertical spring, c) 

the position of preloaded vertical spring regarding snap-through mechanism 



  

  

44 

 

𝐹𝑝 = 𝛿𝑝𝑘𝑣 
( 2-25) 

The unloaded position 𝑥0 of the vertical spring can be obtained as a function of 𝛿𝑝 and the 

unloaded position of the snap-through mechanism, 𝑥𝑝, 

𝑥0 = 𝑥𝑝 − 𝛿𝑝 
( 2-26) 

The position 𝑥𝑝 can be obtained as a function of 𝜃0 from Figure  2-14 (c), 

𝑥𝑝 = 𝑎(1 − cos𝜃0) 
( 2-27) 

By substituting equations ( 2-27)  and ( 2-26) into equation ( 2-18) the force of the vertical spring 

at any arbitrary position x which is measured from the reference line can be derived for the 

preloaded vertical spring, 

𝐹𝑣 = 𝑘𝑣�𝑥 − 𝑎 + acos𝜃0 + 𝛿𝑝� 

 

( 2-28) 

Now, suppose the snap-through mechanism is added to this preloaded spring. The force due to 

the snap-though mechanism is the same as before and it needs to be added to the above equation 

which in non-dimensional form is, 

𝐹
𝑎𝑘𝑣

= �𝑥� − 1 + cos𝜃0 + 𝛿𝑝� + 4𝛾𝛽2(1− 𝑥�) �1 −
sin𝜃0

√2𝑥� − 𝑥�2
� 

 

( 2-29) 

where 𝛿𝑝 is the non-dimensional preload displacement, 𝛿𝑝/a. The above equation is different 

from equation ( 2-21) only in first part which is the force generated by the vertical spring. The 

tangent stiffness of the preloaded QZS mechanism is the same as the tangent stiffness of the 

QZS mechanism with the same initial angle as 𝜃0.  

The force-displacement graph of the preloaded mechanism is shown in Figure  2-15. The preload 

appears to have the effect of moving the force-displacement graph upward or downward. The 
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positive preload displacement 𝛿̂𝑝 means the vertical spring is in compression by preload while 

the negative 𝛿𝑝  refers to the vertical spring in tension while preloaded according to the 

definition illustrated in Figure  2-14. 

The QZS mechanism has low stiffness in the vicinity of the non-dimensional displacement 

equal to unity where the levers are horizontal. When it is used to isolate a mass, the weight of 

the mass should load it statically to this position. At this position the force due to the snap-

through mechanism has no vertical component and the whole weight of the mass should be 

carried by the vertical spring, If the weight does not provide the required displacement of the 

vertical spring to achieve the horizontal lever position, then the inclusion of preload makes it 

possible to tune the mechanism easily by adjusting the vertical spring position. 

 

Figure  2-15: The preloaded QZS mechanism (β=0.5, γ=2, and 𝜃0=30˚) 
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2.6 Comparison between two QZS mechanisms 

In section  2.2, a snap-through mechanism was introduced to which a vertical spring can be 

added to achieve a QZS mechanism. There are many other mechanisms with intervals of 

negative stiffness which cause them to snap through in part of their displacement range. The 

combination of these mechanisms and a linear spring could similarly form a QZS mechanism. 

One of these QZS mechanisms is studied by Carrella et al.[3] which is shown in Figure  2-16 (a). 

It comprises of two oblique springs and one vertical spring, all of them connected together at the 

top. The two oblique springs are simply supported at the other end. The load is applied at the 

hinge and the position x of the same point is measured from a reference line. This mechanism 

will be referred to as the oblique spring mechanism henceforth. The QZS mechanism studied in 

the previous section is shown in Figure  2-16 (b). This mechanism will refer to as the lever 

mechanism in the rest of this chapter. The length of the unloaded oblique spring is taken to be 

the same as the length of lever to compare the two mechanisms with similar geometry. 

 

Figure  2-16: QZS mechanisms, a) Oblique spring mechanism, b) lever mechanism 

The force-displacement equation given in reference [3] can be rewritten to comply with the 

oblique spring mechanism definitions used here as follows, 

𝐹𝑎
𝑎𝑘𝑣

= �𝑥� − (1 − cos𝜃0)� + 2𝛾𝑎(1− 𝑥�)�
1

�(1− 𝑥�)2 + (sin𝜃0)2
− 1� 

( 2-30) 
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where force 𝐹𝑎 is non-dimensionalised by 𝑎𝑘𝑣, 𝑥� is the non-dimensional displacement equal to 

x/a, 𝛾𝑎 is the ratio between the oblique spring stiffness and the vertical spring stiffness, and 𝜃0 is 

the initial value of the angle θ. The stiffness can be derived by differentiating the force 𝐹𝑎 with 

respect to displacement, thus  

𝐾� = 1 + 2𝛾𝑎 �1 −
sin2 𝜃0

((1 − 𝑥�)2 + sin2 𝜃0)
3
2
� 

( 2-31) 

where 𝐾� is the non-dimensional stiffness, 𝑘/𝑘𝑣. The force-displacement and stiffness-

displacement relation for the lever mechanism are derived in section  2.4 and are given by 

equations ( 2-21) and ( 2-22) respectively. The non-dimensional force as a function of non-

dimensional displacement is plotted in Figure  2-17 for both of the mechanisms. The parameter β 

for the lever mechanism is chosen as 0.5 in this graph which affects only the stiffness ratio γ. 

The stiffness ratio is chosen for each initial angle to make the minimum stiffness zero, i.e. QZS. 

The black lines are the non-dimensional force-displacement curves for the oblique spring 

mechanism and the cyan lines demonstrate the non-dimensional force-displacement for the lever 

mechanism.   

The slope of the graph is less at the beginning for oblique spring mechanism compared to the 

lever mechanism and the flat region is narrower for oblique spring mechanism. The curves for 

both of the mechanisms are anti-symmetric, and both of them demonstrate softening spring 

behaviour in half of the range until a non-dimensional displacement of unity which is the 

inflection point of the curves.  After this point they behave like a hardening spring. An initial 

angle of 33° is the optimum initial condition where the oblique spring mechanism has the widest 

low tangent stiffness range. In the case of the lever mechanism, the range steadily increases with 

decreasing initial angle. The stiffness ratio of the lever mechanism is higher than the ratio for 

the oblique spring mechanism. 
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Figure  2-17: Non-dimensional force as a function of non-dimensional displacement, black lines: QZS 
oblique spring mechanism, cyan line: QZS lever mechanism 

The non-dimensional stiffness as a function of non-dimensional displacement is shown in 

Figure  2-18. A non-dimensional stiffness of less than unity can be interpreted as the positions at 

which the stiffness of the QZS mechanism is equal to that of the vertical spring alone. The range 

at which the non-dimensional stiffness of the lever mechanism is less than unity is wider than 

that of the oblique spring mechanism, but the lever mechanism is stiffer for large excursion 

from the horizontal position.  

In order to explore the reasons for the different behaviours of the systems, the force and 

stiffness as a function of angle θ can be derived. The stiffness of vertical spring can be set to 

zero to explore the nonlinearity in the force-deflection of two cases. For 𝑘𝑣 = 0, the force as a 

function of θ is given by equation ( 2-32) for the oblique spring mechanism and by equation 

( 2-33) for the lever mechanism. 

𝐹𝑎
𝑎𝑘𝑙

= 2 cos𝜃 �1 −
sin𝜃
sin𝜃0

�       ( 2-32) 

𝐹𝑏
𝑎𝑘𝑙

= 4𝛽2 cos𝜃 �1 −
sin𝜃
sin𝜃0

� 
( 2-33) 
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Figure  2-18: Non-dimensional stiffness as a function of non-dimensional displacement, black lines: 
oblique spring mechanism, cyan lines: lever mechanism 

These two equations differ from each other only in the coefficient 2𝛽2 which affects the level of 

force. The displacement as a function of angle is given by equations ( 2-34) and ( 2-35) for the 

two mechanisms. 

𝑥𝑎 = 𝑎 �1 −
sin𝜃0
tan𝜃

� 
( 2-34) 

𝑥𝑏 = 𝑎(1 − cos𝜃)     
( 2-35) 

It can be noticed that the difference between the two mechanisms is due to the departure in 

displacement as a function of angle i.e. although the applied force to achieve a specific angle for 

both mechanisms is the same, the displacement of the hinge point is different. Note also that the 

displacement of the lever mechanism, 𝑥𝑏, is bounded between 0 and 2a whereas the 

displacement of the oblique mechanism is unbounded. 
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2.7 Conclusions 

A snap-through mechanism that can be incorporated into a vibration isolator is investigated in 

this chapter. Equations for the restoring force and stiffness as a function of displacement are 

derived. It is shown that by loading the mechanism it snaps through the horizontal position and 

there is an interval for which the stiffness is negative. The width of this range depends on the 

initial angle at which the mechanism is unloaded. The negative stiffness displacement range 

becomes smaller by increasing the initial angle. The value of minimum stiffness also depends 

on the initial angle and decreases by increasing the initial angle.  

A QZS mechanism is formed by adding a vertical spring to the mechanism and the force and 

stiffness are derived as a function of displacement. The ratio between vertical spring stiffness 

and the lateral spring stiffness of the snap-through mechanism can be tuned to form a 

mechanism with a minimum stiffness of zero and an expression for the required stiffness ratio 

has been derived.  

The vertical spring can also be pre-loaded. The consequence is a shift in force-displacement 

graphs and the tangent stiffness remains the same which allows one to tune the mechanism for 

different static loads by simply adjusting the position of the vertical spring.  

This QZS mechanism referred to here as a lever mechanism, is compared with a so-called 

oblique spring QZS mechanism. It is shown that the lever mechanism has a wider displacement 

range affording low stiffness. There is also no optimum initial condition for the mechanism and 

the range increases by decreasing the initial angle. However, the oblique spring mechanism is 

optimized at an initial angle of about 33°. Although the lever mechanism has a wider range at 

which its displacement is low it becomes stiffer at large displacements away from the static 

equilibrium position.  

Some measurements were also conducted on an existing test rig, which can be modelled by the 

snap-through mechanism, to investigate the difficulties in designing a test rig of a nonlinear 

vibration isolator. The test rig is nonlinear but it is tested for small vibration amplitudes about 

the unloaded position. The FRF of the rig is measured using an instrumented hammer and a 

shaker.  The backlash at the joint can introduce other modes of vibration in the system. It can 

also increase the damping of the rig. While the mechanism and the test rig was well suited for 
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the purpose it is designed for (a tuned vibration absorber), to implement the test rig as a 

vibration isolator it is necessary to use much softer cantilevers to make it possible to load it to 

the minimum tangent stiffness position during the experiment. As a result, both the bending 

moment and axial compression prescribe the deformation of the cantilevers which are known as 

beam-columns [68]. The lateral stiffness of a cantilever is much lower than its axial stiffness 

while they can be similar values for a loaded beam-column. This may introduce a flexural mode 

of vibration with a frequency close to the frequency of the fundamental mode of vibration of the 

mechanism i.e. the mass on the nonlinear spring. The cantilever cannot also be modelled as a 

linear spring in this case. 

Considering the complexity of designing a test rig based on the QZS mechanism and the effect 

of higher modes of vibration and joints on its response, it is concluded to try to find alternative 

methods of forming desirable spring elements for a nonlinear vibration isolator with fewer parts 

involved. Beams loaded axially and a commercial rubber mount are considered in future 

chapters for this purpose. 
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3 Beams as nonlinear springs  

 

3.1 Introduction 

In the previous chapter, it was shown that a high static, low tangent stiffness characteristic can 

be achieved through the introduction of QZS mechanisms. However, their physical complexity 

makes them difficult to implement in practice for the purpose of this thesis. A suitable 

alternative to the QZS mechanism must maintain similar nonlinear properties and ideally 

comprise of a single light component. Reducing the number of components will eliminate the 

relative displacements of internal parts and also make its construction easier. The aim of this 

chapter is to investigate the possibility of using beams undergoing large deformations as spring 

elements of nonlinear vibration isolators and to address the possible shapes of beams that are 

beneficial for this purpose. 

The study requires investigation of large deflection of beams. The common approach to study 

deflection and vibration of beams is to implement linear theory and to consider small rotations. 

This approach is valid for many practical cases, since the materials become plastic with 

increasing deformation before the small rotation assumption becomes invalid. However, there 

are cases in which beams can violate the assumption of small deflections. For example, thin bars 

under excessive load or vibration can result in large deflections without going outside the elastic 

range of their material. Different methods, both numerical and analytical, are suggested in the 

literature to obtain solution for large deformations of beams. A brief review of the theory is 

presented at the beginning of this chapter alongside an example of a simple case to clarify the 
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deformation mechanisms that contribute to characteristics of the beam undergoing large 

deformation. 

A simply supported beam loaded by a harmonic transverse load at its midpoint is addressed as a 

nonlinear oscillator with softening characteristic in literature [20]. The softening characteristic 

means a lower tangent stiffness when loaded statically. Thus, it is considered as a candidate for 

the nonlinear spring in a vibration isolator. However, it is revealed in this study that there is 

some misinterpretation in the published literature about its nonlinear stiffness characteristic.  

Another candidate component with low tangent stiffness is the Euler buckled beam (column). 

Buckling happens when a structure undergoes large displacement due to compression stresses. 

The buckling appears as a discontinuity in the force-deflection curve where the beam deflects 

suddenly under compressive load. Deflection before the buckling point is due to axial 

deformation which results in a high stiffness. As a result a post-buckled beam can be considered 

as a component with high static stiffness but low tangent stiffness [29]. The beam must be 

implemented in its post-buckled range to achieve low tangent stiffness in operation. The sharp 

change in stiffness at the buckling point results in a system with large nonlinearity which is not 

generally desirable in isolation. Hence, other configurations such as a curved beam or a straight 

eccentrically loaded beam are considered here to achieve a smoother transition in stiffness.  

The chapter starts with a brief description of the theory of the basic principles of beam bending. 

Then the special case of a simply-supported beam loaded by a pure bending moment is studied. 

This case is used to provide a physical explanation for large displacements of beams in general. 

The solution of the simply-supported beam is the subject of section  3.3. The exact solution is 

presented first and is followed with an approximate solution using the Galerkin method. A 

physical explanation concerning the beam’s nonlinear static behaviour is provided and this 

section then concludes with a discussion about the accuracy of method. 

Buckling and post-buckling characteristics of an Euler column are investigated in section  3.4. A 

modified version, a beam loaded eccentrically, is studied next. A curved beam is another 

alternative which is considered in subsection 3.4.3 followed by an analysis of dynamic and 

static stiffness of a curved beam.  The internal resonances of the beam are also investigated to 

consider practical limitations. A case study is considered in this section and natural frequencies 

are obtained. The chapter finishes with conclusions. 
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3.2 Principal theory of a straight beam’s deformation 

Shear force and bending moment are the causes of transverse deflection of beams. As 

mentioned in the introduction, beams that are intended to be used as nonlinear springs must 

undergo large deformation. This requires implementing thin beams to prevent them from 

deforming plastically. The effect of shear force can be neglected in deflection of thin beams. 

Therefore, only the effect of bending moment is considered in this study.  

According to Gere and Timoshenko [69], “a beam is a structural member that is subjected to 

loads acting transversely to the longitudinal axis”.  A force applied to a beam causes bending 

moments to develop inside the beam as well as shear forces and/or axial forces depending on the 

direction of the applied force. It is assumed that the cross-section of a beam remains plane and is 

normal to the centre line of the beam. This is true for beams with any homogeneous material 

properties (elastic or inelastic as well as linear or nonlinear), and is also true for the large 

deflection of a beams under pure bending [70].  

To determine the relationships between strain, deformation and bending moment, the procedure 

in reference [69] is followed. Consider the section of a beam shown in Figure  3-1(a) in which 

the bending moment is constant and equal to M. The sign convention is given in Figure  3-1(b).  

The strain in the beam element is given by,  

 

Figure  3-1: a) Deflection of an initial straight beam due to pure bending moment, b) Sign convention for 
curvature 
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𝜀𝑥 = −
ℎ
𝜌

= −𝜅ℎ ( 3-1) 

where ρ is radius of curvature and h is the distance from the neutral axis at which the strain is 

evaluated. The reciprocal of the radius of curvature is called the curvature and is represented by 

κ. The bending moment is related to the curvature of the beam and can be found by equilibrium 

of moments to be, 

𝑀 = � 𝜎𝑥ℎ 𝑑𝐴
𝐴

= � 𝐸𝜀𝑥ℎ 𝑑𝐴
𝐴

 ( 3-2) 

Substituting for 𝜀𝑥 from equation ( 3-1) gives, 

𝑀 = −𝐸𝜅� ℎ2 𝑑𝐴
𝐴

 ( 3-3) 

The integral in equation ( 3-3) is the second moment of area denoted by I, so the relationship 

between the curvature and the bending moment can be written as, 

𝜅 =
1
𝜌

= −
𝑀
𝐸𝐼

 ( 3-4) 

It should be noted that equation ( 3-4) is valid for large as well as small deflections. This is the 

key equation in the derivation of the expressions for beam deflection.  

 

3.2.1 Deflection of a beam due to a pure bending moment 

A beam loaded by a pure bending moment is a special case whose deflection can be easily 

found. This is presented here as an example of large deflection which can be solved analytically 

and used later to describe the hardening and softening characteristics of beams. Consider the 
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beam shown in Figure  3-2(a). The beam is of length L and is loaded by a bending moment M at 

both ends. The distance s is measured along the deflected beam and x is the corresponding 

lateral distance; 𝑦max is the transverse displacement of the beam at the centre and 𝜃0 denotes 

angle of the beam at each end. 

For the element ds which is shown in Figure  3-2(a), equation ( 3-4) can be written as a function 

of dθ and ds as, 

𝑑𝜃
𝑑𝑠

= −
𝑀
𝐸𝐼

 ( 3-5) 

 

Figure  3-2: Simply supported beam loaded by bending moment, a) deflected beam, b) small section of 
beam of length ds 

The angle at the centre of the beam is zero because of symmetry. Integrating equation ( 3-5) 

from 𝑠 = 0 to 𝑠 = 𝐿
2
 gives, 

� 𝑑𝜃
0

𝜃0
= � −

𝑀
𝐸𝐼
𝑑𝑠

𝐿
2

0
 ( 3-6) 

which can be solved to find the angle at each end of the beam, 

𝜃0 =
𝑀𝐿
2𝐸𝐼

 ( 3-7) 
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This shows that there is a linear relationship between the angle and the bending moment and 

rotational stiffness, 𝑘𝑟 = 2𝐸𝐼/𝐿.  The transverse deflection of the beam can be determined 

from, 

𝑦(𝑠) = �𝑑𝑦 = � sin𝜃 𝑑𝑠
𝑠

0
 ( 3-8) 

The maximum transverse deflection occurs at L/2. Substituting for s=L/2 into equation ( 3-8), 

and noting the relationship between 𝜃 and s given in equation ( 3-5) results in, 

𝑦𝑚𝑎𝑥 = � sin𝜃  𝑑𝑠
𝐿
2

0
= −

𝐸𝐼
𝑀
� sin𝜃  𝑑𝜃
0

𝜃0
 ( 3-9) 

which evaluates to, 

𝑦𝑚𝑎𝑥 =
𝐸𝐼
𝑀

(1 − cos𝜃0) ( 3-10) 

Substituting for 𝜃0 from Equation ( 3-7) and dividing through by L, gives the non-dimensional 

expression for 𝑦𝑚𝑎𝑥 , which is, 

𝑦�𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥

𝐿
=

1
2𝑀�

�1 − cos𝑀�� ( 3-11) 

where 𝑀� = 𝑀
(2𝐸𝐼/𝐿) (which is also equal to 𝜃0) is the non-dimensional bending moment. The 

lateral displacement of the tip of the beam can be determined in a similar way. The 

displacement of the tip is given by, 

𝑢 = 𝐿 − � cos𝜃 𝑑𝑠
𝐿

0
= 𝐿 −

𝐸𝐼
𝑀
� cos𝜃  𝑑𝜃
−𝜃0

𝜃0
 ( 3-12) 

The integral can be evaluated in a straightforward manner and the resulting equation divided 

through by L to give the non-dimensional displacement of the beam tip, 
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𝑢� =
𝑢
𝐿

= 1 −
1
𝑀�

sin𝑀�  ( 3-13) 

The bending moment as a function of tip displacement is shown in Figure  3-3 with the deformed 

shape of the beam illustrated for various loads. The radius of curvature is constant over the 

beam as a result of the constant bending moment along the beam. As a result, the beam forms an 

arc, then a circle as the bending moment increases. The cross stiffness of the beam  𝑀�/𝑢� , is 

softening up to when the angle is about 120° whereupon it becomes hardening.  

 

Figure  3-3: Non-dimensional bending moment as a function of non-dimensional lateral displacement of 
the tip, curves: shape of the deflected beam 

The non-dimensional bending moment is plotted as a function of both the transverse 

displacement and the lateral tip displacement in Figure  3-4. The results obtained from the finite 

element method using ANSYS are also shown. The BEAM3 element of ANSYS is used in this 

analysis which is a two dimensional uniaxial element with tension, compression and bending 

capabilities. It can be used for nonlinear large deflection analysis. Without loss of generality, a 
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beam was chosen with unit length, unit second moment of area and unit modulus of elasticity, 

and the results subsequently non-dimensionalised in a consistent way with the analytical results. 

Since the beam is solved for pure bending moment the dimension of the beam would not affect 

the non-dimensional results. A hundred elements are used to model the beam. The problem was 

solved with ANSYS’ option of “large displacement static” and 50 sub-steps were used to obtain 

the nonlinear solution. It can be seen that these match well with the analytical results. 

 

Figure  3-4:  Comparison of the analytical results with the results obtained from ANSYS for the axial 
displacement of the tip of the beam and the transverse displacement at the centre of the beam. 

Two cross stiffness 𝑀�/𝑦� and 𝑀�/𝑢� are shown in Figure  3-5 as a function of the transverse 

displacement and the lateral tip displacement respectively. The transverse cross stiffness 𝑀�/𝑦�, 

is hardening from the beginning and does not soften for any value of bending moment for the 

range shown, unlike the axial cross stiffness 𝑀�/𝑢� ,  which is softening for relatively small 

bending moments and then has a hardening characteristic for very large bending moments. The 

reason of this behaviour is given in the next section by considering the displacement as a result 

of rotation of beam elements.  
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Figure  3-5:  Cross stiffness as a function of deflection 

 

3.2.2 Effect of rotation 

Applying a bending moment to a beam causes it to deflect and take the shape of an arc. 

Although the rotational stiffness is constant, the cross stiffness in the axial direction 𝑀�/𝑢� and 

transverse direction 𝑀�/𝑦� are nonlinear, having softening and then hardening, and hardening 

behaviour respectively. Each segment of the beam rotates as a result of this deformation. 

Considering a single element, when it rotates its tip moves in both axial and transverse 

directions. Summing the displacements of all the elements gives the displacement of the beam 

in both directions. The effect of the angle of rotation on this displacement is the cause of the 

softening behaviour in the axial direction and the hardening behaviour in the transverse 

direction. 

To illustrate this phenomenon, consider the line shown in Figure  3-6. The dotted line in 

Figure  3-6(a) is inclined at an angle of 10° to the x axis. By rotating the line by a further 10°, the 

tip of the line moves to the left by a distance dx. Now, consider the same dotted line making an 

angle of 70° with the x axis. By rotating it by a further 10°, as before, the projection of 
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displacement dx is larger than in the previous case.  It can thus be seen that for an increasing 

angle the displacement in the x direction is proportionately larger and the displacement in the y 

direction is proportionately smaller in the second case. 

 

Figure  3-6: Relationship between the angle and the displacement in the x direction. 

The tip displacement of the line in the x direction is the difference between its projections onto 

the x axis for two different positions. This is related to the cosine of the angle and can be 

derived easily.  

Consider now equation ( 3-12) which describes the axial displacement of the tip of the beam. If 

the beam is divided into n equal segments, the integral on the right hand side of equation ( 3-12) 

can be approximated by a summation over the n segments, so that 

𝑢 = 𝐿 − � cos𝜃𝑚  ∆𝑠
𝑛

𝑚=0

 ( 3-14) 

Because of the constant radius of curvature, the angle, Δθ, for each segment Δs is constant, so 

that 

∆𝜃 =
∆𝑠
𝜌

 ( 3-15) 
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Considering that  ∆𝑠 = 𝐿/𝑛, and 𝐿 = 2𝜌𝜃0 then 

∆𝜃 =
2𝜃0
𝑛

 ( 3-16) 

So equation ( 3-14) can be rewritten as, 

𝑢 = 𝐿 − �  cos �
2𝑚𝜃0
𝑛

�  ∆𝑠
𝑛

𝑚=0

 ( 3-17) 

Thus, it can be seen that the axial displacement of the tip of the beam is the difference between 

the length of the beam and the sum of all projections of beam segments onto the x axis. It can 

also be 4Tseen4T that the relationship between the axial displacement of the beam and the rotation of 

the beam behaves in a similar way to the line discussed at the beginning of this section. Note 

that the angle θ0 is linearly related to the bending moment as shown by equation ( 3-7) so the 

axial displacement of the beam subject to a bending moment behaves as a softening spring as 

discussed previously. This explains the softening behaviour shown in Figure  3-3 up to an angle 

θ0 of about 120°. The hardening behaviour of the beam in the transverse displacement can be 

analysed in a similar way.  

 

3.3 The static stiffness characteristics of a simply supported beam 

loaded at its centre 

A simply supported beam with a movable support loaded by a harmonic transvers force at its 

midpoint is reported as a nonlinear oscillator with softening stiffness characteristics [20]. The 

beam is initially straight. The softening characteristics can cause a reduced tangent stiffness at 

the statically loaded working position. However, it is revealed here that their stiffness 

characteristic is not softening but hardening type. The same approach is used and developed 

here to obtain large deflection but considering the change in the distance between the supports 

which was neglected in the literature. The exact analytical differential equation is extracted here 

first which is used later to determine results numerically. It is then used as a reference to 
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validate the approximate solution derived using the Galerkin method in section  3.3.2. The 

results are also compared with solutions determined using the finite element analysis software 

ANSYS. The accuracy of the approximate method is also examined by comparing the shape 

function used with the actual deformed shape of the beam. 

 

3.3.1 Exact solution 

A concentrated load p is applied to the middle of the simply supported beam shown in 

Figure  3-7. As before, the transverse displacement of the beam is denoted by y and 𝑦𝑚𝑎𝑥 is the 

maximum deflection at the middle. Parameter L is used for the length of the beam and is 

constant while parameter l is used for the distance between two supports and is the projection of 

the beam on to the horizontal direction which decreases as the transverse load increases. The 

bending moment at each cross section of the beam at a distance x from the left-hand end is 

given by, 

𝑀 =
𝑝𝑥
2

                  for 𝑥 <
𝑙
2

 

𝑀 =
𝑝(𝑙 − 𝑥)

2
        for 𝑥 >

𝑙
2

 

( 3-18a) 

(18b) 

 

Figure  3-7: Simply supported beam loaded at the centre, a) schematic of the beam, b) a small section of 
the beam 

The solution presented here is similar to that given in references [38, 45].  By substituting the 

expression for the bending moment from equation ( 3-18a) into equation ( 3-5) gives, 
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𝑑𝜃
𝑑𝑠

= −
𝑝𝑥

2𝐸𝐼
      for 𝑥 <

𝑙
2

 ( 3-19) 

Because of symmetry only half of the beam is considered in the following analysis. The 

equation for 𝑥 > 𝑙/2 would only be slightly different from the equations derived. 

Differentiating equation ( 3-19) with respect to s gives, 

𝑑2𝜃
𝑑𝑠2

= −
𝑝

2𝐸𝐼
𝑑𝑥
𝑑𝑠

 ( 3-20) 

Now, 

𝑑𝑥
𝑑𝑠

= cos𝜃 ( 3-21) 

Combining equations ( 3-20) and ( 3-21) gives, 

𝑑2𝜃
𝑑𝑠2

+
𝑝

2𝐸𝐼
cos𝜃 = 0 ( 3-22) 

Multiplying equation ( 3-22) by 𝑑𝜃/𝑑𝑠 gives, after some rearrangement, 

𝑑
𝑑𝑠
�
1
2
�
𝑑𝜃
𝑑𝑠
�
2

+
𝑝

2𝐸𝐼
sin𝜃� = 0 ( 3-23) 

Integrating equation ( 3-23) gives, 

�
𝑑𝜃
𝑑𝑠
�
2

+
𝑝
𝐸𝐼

sin𝜃 = 𝑐 ( 3-24) 

where c is a constant. From equation ( 3-19), it can be seen that when 𝑥 = 0, then 𝑑𝜃/𝑑𝑠 = 0. 

Also at this position 𝜃 = 𝜃0. Thus the constant is given by, 
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𝑐 =
𝑝
𝐸𝐼

sin𝜃0 ( 3-25) 

And equation ( 3-24) can be rewritten as, 

𝑑𝜃
𝑑𝑠

= −�
𝑝
𝐸𝐼 �

sin𝜃0 − sin𝜃 ( 3-26) 

Note that the minus sign is because of the negative curvature illustrated in Figure  3-1(b). The 

angle at the left-hand support θ0 can be found by integrating equation ( 3-26) from s =0 to L/2, 

𝐿 = −2�
𝐸𝐼
𝑝
�

𝑑𝜃
�sin𝜃0 − sin𝜃

0

𝜃0
 ( 3-27) 

The solution of the integral in equation ( 3-27) can be found in terms of an elliptical integral 

whose solution exists as a power series. Noting that cos𝜃 = 𝑑𝑥/𝑑𝑠 and sin𝜃 = 𝑑𝑦/𝑑𝑠, the 

following equations can be derived by multiplying equation ( 3-26) by cos𝜃 and sin𝜃 and 

integrating to obtain x and y at any point on the beam as a function of θ, 

𝑥 = 2�
𝐸𝐼
𝑝 �sin𝜃0 − sin𝜃 ( 3-28) 

𝑦 = −�
𝐸𝐼
𝑝
�

sin𝜃 𝑑𝜃
�sin𝜃0 − sin𝜃

𝜃

𝜃0
 

( 3-29) 

The angle θ is equal to zero at the middle of the beam where the transverse displacement is 

maximum. The length between the two supports and the maximum transverse displacement can 

be determined by setting 𝜃 = 0 in equations ( 3-28) and ( 3-29) to give, 
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𝑙 = 4�
𝐸𝐼
𝑝 �sin𝜃0 

( 3-30) 

𝑦𝑚𝑎𝑥 = �
𝐸𝐼
𝑝
�

sin𝜃 𝑑𝜃
�sin𝜃0 − sin𝜃

𝜃0

0
 

( 3-31) 

As described in many publications, the displacement of the beam can be found by way of 

elliptic integrals using a suitable variable transformation. The other approach is to evaluate the 

integrals using numerical methods by Matlab. To do this, the applied force p can be found by 

solving the integral in equation ( 3-27) for different values of θ0. Having a set of forces p and the 

corresponding set of angles 𝜃0, the maximum deflection can be found from equation ( 3-31) by 

calculating the integral in this equation numerically for each pair of p and 𝜃0. The distance 

between the supports can be easily calculated using equation ( 3-30). The shape of the deflected 

beam can be found from equations ( 3-28) and ( 3-29) by considering a set of values of θ varying 

from 𝜃0 to zero for each specific value of p.  

3.3.2 An approximate solution 

For large deflections, the relationship between the radius of curvature and the derivatives of the 

transverse displacement, y with respect to x (denoted by the superscript ′ ) is [71], 

1
𝜌

=
𝑦′′

(1 + (𝑦 ′ )2)
3
2
 ( 3-32) 

By assuming that rotation is finite but not very large, this can be expanded by a Maclaurin series 

up to the second order of 𝑦′ to give, 

1
𝜌

= 𝑦′′ �1 −
3
2

(𝑦′)2�+ 𝑂�𝑦 ′ �4 ≈ 𝑦′′ �1 −
3
2

(𝑦′)2� ( 3-33) 

Combining equation ( 3-33) with equation ( 3-4) results in,  
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−
𝑀
𝐸𝐼

= 𝑦 ′′ �1 −
3
2
𝑦 ′2� ( 3-34) 

which is often called second order beam theory in the literature. Here, a sinusoidal shape 

function is chosen as it represents the shape of a simply supported beam in its first mode of 

vibration. Thus the transverse displacement of the beam can be approximated by, 

𝑦(𝑥) = 𝑦𝑚𝑎𝑥 sin(𝑘𝑥) ( 3-35) 

The coefficient k can be found by applying the boundary condition 𝑦(𝑙) = 0. Hence 

𝑦𝑚𝑎𝑥 sin(𝑘𝑙) = 0 ( 3-36) 

Hence, for the first mode of vibration which is the same as the static deflection of the beam in 

this case, 

𝑘 =
𝜋
𝑙
 ( 3-37) 

To find the deflection 𝑦𝑚𝑎𝑥, Galerkin’s method is applied to equation ( 3-34) to give, 

� −
𝑀
𝐸𝐼

sin �
𝜋
𝑙
𝑥� 𝑑𝑥

𝑙

0
= � 𝑦′′ �1 −

3
2
𝑦′2� sin �

𝜋
𝑙
𝑥�𝑑𝑥

𝑙

0
 ( 3-38) 

By substituting for y(x) from equation ( 3-35) and M from equation ( 3-18a) gives, 

�
𝑝𝑥

2𝐸𝐼
sin �

𝜋
𝑙
𝑥� 𝑑𝑥

𝑙
2

0
+ �

𝑝(𝑙 − 𝑥)
2𝐸𝐼

sin �
𝜋
𝑙
𝑥� 𝑑𝑥

𝑙

𝑙
2

= � 𝑦𝑚𝑎𝑥 �
𝜋
𝑙
�
2

sin2 �
𝜋
𝑙
𝑥� �1 −

3
2
�
𝑦𝑚𝑎𝑥𝜋
𝑙

�
2

cos2 �
𝜋
𝑙
𝑥��𝑑𝑥

𝑙

0
 

( 3-39) 
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Evaluating the integrals gives, 

𝑙2𝑝
2𝐸𝐼𝜋2

+
𝑙2𝑝

2𝐸𝐼𝜋2
=

8𝑦𝑚𝑎𝑥𝑙2𝜋2 − 3𝑦𝑚𝑎𝑥
3𝜋4

16𝑙3
 ( 3-40) 

which can be rearranged to give, 

𝑝 =
𝐸𝐼𝜋4

2𝑙3 �𝑦𝑚𝑎𝑥 −
3𝜋2

8𝑙2
𝑦𝑚𝑎𝑥

3� ( 3-41) 

where the right hand side of equation ( 3-41) is the same as the stiffness term of equation (3.158) 

in reference [20]. It may appear at first glance that the beam exhibits softening behaviour 

because of the negative sign in front of the cubic term.  However, the length between the 

supports is not fixed and reduces in size because the beam is inextensible and the support on the 

right hand side slides to the left with increasing beam displacement. To determine whether the 

beam has a hardening or softening characteristic the expression given in equation ( 3-41) needs 

to be rewritten in terms of the length of the beam L. To do this the relationship between L and l 

needs to be determined.  

Now, 

𝐿 = � 𝑑𝑠 
𝐿

0
= � �1 + (𝑦′ )2

𝑙

0
𝑑𝑥 ( 3-42) 

Substituting for y from equation ( 3-35) gives, 

𝐿 = � �1 + �𝑦𝑚𝑎𝑥
𝜋
𝑙
�
2

cos2 �
𝜋
𝑙
𝑥� 𝑑𝑥

𝑙

0
 ( 3-43) 

The integral in equation ( 3-43) can be evaluated as the sum of two elliptic integrals, 
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𝐿 =
𝑙
𝜋
�� �1 + �𝑦𝑚𝑎𝑥

𝜋
𝑙
�
2

sin2θ 𝑑𝜃
𝜋
2

0

+ �1 + �𝑦𝑚𝑎𝑥
𝜋
𝑙
�
2
� �1 +

𝑦𝑚𝑎𝑥
2𝜋2

𝑙2 + 𝑦𝑚𝑎𝑥
2𝜋2

sin2θ 𝑑𝜃
𝜋
2

0
� 

( 3-44) 

Expanding the elliptic integrals as a series up to second order results in, 

𝐿 = 𝑙 +
𝑦𝑚𝑎𝑥

2𝜋2

4𝑙
 ( 3-45) 

Rearranging equation ( 3-45), the distance between the supports can be written in terms of the 

length of the beam as,  

𝑙 =
1
2
�𝐿 ± �𝐿2 − 𝑦𝑚𝑎𝑥

2𝜋2� ( 3-46) 

Combining equations ( 3-41) and ( 3-46) results in, 

𝑝 =
2𝐸𝐼𝜋4(2𝑦𝑚𝑎𝑥�𝐿 + �𝐿2 − 𝑦𝑚𝑎𝑥

2𝜋2�
2
− 3𝑦𝑚𝑎𝑥

3𝜋2)

(𝐿 + �𝐿2 − 𝑦𝑚𝑎𝑥
2𝜋2)5

 ( 3-47) 

Expanding equation ( 3-47) as a series up to third order gives, 

𝑝 =
𝐸𝐼𝜋4

2𝐿3 �𝑦𝑚𝑎𝑥 +
3𝜋2

8𝐿2
𝑦𝑚𝑎𝑥

3� ( 3-48) 

Comparing this with equation ( 3-41) it can be seen that the equations are identical in form with 

the exception of the sign change in front of the cubic term and the variable L replacing l. The 

beam has a hardening rather than a softening characteristic. Equations ( 3-47) and ( 3-48) can be 

written in non-dimensional form respectively as, 
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𝑝̂ = 2𝜋4
�2𝑦�𝑚𝑎𝑥 �1 + �1 − 𝑦�𝑚𝑎𝑥

2𝜋2�
2

− 3𝑦�𝑚𝑎𝑥
3𝜋2�

�1 + �1 − 𝑦�𝑚𝑎𝑥
2𝜋2�

5  ( 3-49) 

𝑝̂ =
𝜋4

2 �1 +
3𝜋2

8
𝑦�𝑚𝑎𝑥

2�𝑦�𝑚𝑎𝑥 
( 3-50) 

where 𝑝̂ = 𝑝/(𝐸𝐼/𝐿2 ) and 𝑦�𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥/𝐿.  

Equations ( 3-49) and ( 3-50) are plotted in Figure  3-8 together with results calculated from finite 

element analysis using ANSYS and the numerical solution of equation ( 3-31). The same 

ANSYS model as used in section  3.2.1 but loaded at the middle is used here.  

 

Figure  3-8: Non-dimensional force as a function of non-dimensional transverse displacement 
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Both equations ( 3-49) and ( 3-50) deviate from the exact solution at a non-dimensional 

transverse displacement of about 0.17. Since equation ( 3-50) is obtained by expanding equation 

( 3-49) and neglecting higher order terms it is expected that equation ( 3-49) follows the exact 

solution more accurately. However, the negative higher order terms in equation ( 3-49) cause its 

solution to deviate almost immediately to negative values for a non-dimensional transverse 

displacement of about 0.27. Whilst, neglecting these higher order terms in obtaining equation 

( 3-50) makes it to have a similar trend as the exact solution.  

3.3.3 Discussion 

The deflection of a slender beam is mainly due to the internal bending moment, and the effect of 

shear deformation can be neglected, which is the case in this study. To determine the reason 

why the beam has a hardening characteristic, the behaviour of the bending moment, which is the 

main reason for the deflection, is investigated. 

Suppose a simply supported beam is loaded by a force equal to 𝑝1 as shown in Figure  3-9(a). 

The internal bending moment as a function of the distance from the fixed end x is shown in the 

same figure. The maximum bending moment is at the middle of the beam and is equal to 𝑝1𝑙1/4 

where 𝑙1 is the distance between the supports. By increasing the force to 𝑝2 = 𝛼𝑝1, the beam 

deflects more and the distance between the supports 𝑙2 decreases compared to 𝑙1. Although the 

force 𝑝2 = 𝛼𝑝1, the maximum bending moment 𝑀max2 < 𝛼𝑀max1, because of the decreasing 

distance between the supports. In other words, the torque arm is smaller in second case 

compared to the first case. 

Thus, as the force increases, the internal bending moment increases at a lower rate. Because of 

the direct relationship between the bending moment and the curvature, the beam exhibits 

hardening behaviour. In addition to this, the “rotation effect”, which was described in 

section  3.2.2, is valid in this case as well, and this also causes the beam to have hardening 

characteristics.  
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Figure  3-9: The bending moment in a simply supported beam loaded at the centre 

 

3.3.4 Accuracy of the approximate solution 

To find a solution for the large deflection of the simply supported beam, two approximations 

were made. The first one was to consider the deflected shape of the beam to be a Sine function. 

The second approximation was made in the determination of the length between the beam 

supports as a function of force and transverse displacement. This was considered to be a second 

order function of the length of the beam with the higher order terms being ignored. The effect of 

these approximations is investigated in this section. 

The Sine function is considered to be a good candidate for the shape function for a simply 

supported beam in the Galerkin method. It satisfies the simply supported boundary condition 

and its first and second derivatives are determinable easily.  

To examine its suitability, the shape of the beam modelled by the Sine function is compared 

with the exact shape of the deflected beam derived from the exact solution of equation ( 3-29) 

which is calculated numerically and is shown in Figure  3-10. The dotted line represents the 

shape of the beam given by 𝑦�𝑚𝑎𝑥 sin𝜋𝑥�. The approximate shape is a reasonable representation 

of the actual shape of the beam even for large deflections. The Mean Square Error (MSE) 
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between the actual and the approximate shape normalised by the area bounded by the curves of 

the deflected shape and the undeflected shape of the beam is shown in Figure  3-11 as a function 

of the non-dimensional force applied to the beam. The error is small but increases rapidly for 

non-dimensional forces greater than about 12. As well as errors in the approximate displacement 

there are errors in the first and second derivatives of transverse displacement as well, and these 

are investigated next.  

 
Figure  3-10: Deflected shape of the beam for different values of load, solid lines (-): exact shape, dotted 

lines (...): shape given by a Sine function 

Examining equation ( 3-38), it can be seen that the first and second derivatives of the transverse 

displacement have been used to find the deflection of the beam. The first derivative of the 

transverse displacement with respect to x is shown in Figure  3-12. The Sine function is a good 

approximation for small displacements, but deviates for higher loads especially close to the ends 

of the beam. The mean square error of the first derivative (slope) normalised by the area under 

the curve (as before) is plotted in Figure  3-13. The MSE of the slope increases with the force 

similar to the MSE of the displacement.  
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Figure  3-11: Normalised mean square error between the actual and approximate shapes of the beam  

 

 

Figure  3-12: Slope of transverse displacement, solid lines (-): exact solution, dotted lines (...): 
approximate solution 
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Figure  3-13: Mean Square Error of slope normalised by the area under the curve 

The same procedure is followed for the second derivative of the transverse displacement with 

respect to x.  The second derivatives of the exact and approximate solutions are shown in 

Figure  3-14. It can be seen that the Sine function is no longer a good approximate of the second 

derivative of the beam. The second derivative is not a smooth function, as there is a 

discontinuity at the centre of the beam. This can be understood by examining equation ( 3-34), 

that the second derivative is a function of the bending moment as well as slope of the beam. The 

bending moment of a simply supported beam loaded by a force at the centre has a triangular 

shape with the maximum being in the middle. For small loads, where the slope is small, the 

second derivative is predominantly a function of the bending moment only. By increasing the 

force and as a result the deflection, the slope of the beam increases and cannot be ignored in this 

case. This results in the second derivative having a pronounced discontinuity at the centre of the 

beam. 
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Figure  3-14: Second derivative of the transverse displacement, solid lines (-): exact solution, dotted lines 
(...): sine function 

To obtain the approximate solution, the integral of the product of second derivative and first 

derivative of deformation is used. Although, the Sine function does not approximate well the 

second derivative of deformation, the area under the curve is very similar to the actual curve and 

thus the normalised MSE between the actual and the approximate solutions is small for small 

loads a shown in Figure  3-15.   

The second issue with the accuracy of the approximate solution is the accuracy of the solution 

for length between the supports. As mentioned in the previous section, the accuracy of 

equation ( 3-49) illustrated in Figure  3-8 is linked to the accuracy of the expansion of the integral 

in equation ( 3-43) used to derive equation ( 3-49). The expansion of equation ( 3-44), which 

relates the length of the beam to the distance between the beam supports, can be written in a 

more complete form by including higher order terms to give, 
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𝐿 = 𝑙 +
𝑦𝑚𝑎𝑥2𝜋2

4𝑙
−

3𝑦𝑚𝑎𝑥4𝜋4

64𝑙3
+

5𝑦𝑚𝑎𝑥6𝜋6

256𝑙5
−

175𝑦𝑚𝑎𝑥8𝜋8

16384𝑙7
+

441𝑦𝑚𝑎𝑥10𝜋10

65536𝑙9
−

4851𝑦𝑚𝑎𝑥12𝜋12

1048576𝑙11

+ ⋯ ( 3-51) 

 

Figure  3-15: Mean Square Error of the second derivative normalised by the area under the curve 

Considering this equation, the distance between the beam supports l cannot be derived easily as 

a function of the beam’s length L. The integral in equation ( 3-43) can be solved numerically to 

compare the results with the series. A new variable a is introduced to help solve the integral 

numerically, so that 

𝑎 =
𝑥
𝑙

    → 𝑑𝑥 = 𝑙 𝑑𝑎 ( 3-52) 

and the integral in equation ( 3-43) can be rewritten as, 

𝐿
𝑙

= � �1 + �𝜋
𝑦𝑚𝑎𝑥

𝑙
�
2

cos2(𝜋𝑎)𝑑𝑎
1

0
 ( 3-53) 
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Solving this integral for values of 𝑦𝑚𝑎𝑥/l  from zero to one gives the results presented in 

Figure  3-16. Results of the expanded series using the first two, three and seven terms of 

equation ( 3-51) are plotted alongside the numerical solution as well. The expansion series 

results match with the numerical results well for small beam deflections, but deviate rapidly for 

large deflections. It can be seen that the truncated series given in equation ( 3-45), which is used 

to give the analytical results, gives reasonable accuracy up to a value of 𝑦𝑚𝑎𝑥/𝑙 < 0.2. For 

approximate solutions with higher orders, the results match with the exact solution up to a 

slightly larger displacement but then deviates from the exact solution more rapidly. The 

approximate solution shown in Figure  3-8, deviates from the exact solution at about the same 

displacement. From these two, it seems that the dominant parameter which affects the accuracy 

of approximate solution is the accuracy of the approximated distance between the supports, l. 

The odd number terms in expansion ( 3-51) have negative sign. As a result, when choosing odd 

number of terms for approximate solution, e.g. 7 terms, the approximate solution deviates from 

exact solution towards negative infinity at large displacement. The lower order terms can be 

neglected at large displacements. 

 

Figure  3-16: Relationship between the distance between the beam supports, its length and the transverse 
displacement. 
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3.4 Buckling and post-buckling of beam 

In structural stability texts, buckling is defined as a failure of a slender column due to transverse 

deflection under a compressive force rather than exceeding the compressive strength of its 

material. “Buckling is the first structural stability problem that was solved historically”[72]. The 

reduction in the stiffness of the columns at the buckling point makes them a suitable candidate 

for the stiffness element of nonlinear isolators. They can be loaded beyond the buckling point 

where the tangent stiffness is less than the static stiffness. Here, the buckling load using Euler 

theory is obtained first, and then a post buckled beam is investigated to inspect the nonlinear 

performance of isolators comprising buckled elements. Columns may be referred to as “beams” 

here for consistency with the rest of this study. 

3.4.1 Buckling analysis of beams (Euler Buckling) 

Buckling happens when the internal moment due to a transverse perturbation and the axial 

loading is enough to maintain transverse deflection of the beam. The most well-known formula 

of buckling of structures is the Euler buckling load which defines the maximum load a column 

can undergo before large deflection due to buckling happens. The Euler buckling load is derived 

by employing linear theory of bending and does not provide any information of post-buckling 

characteristics of beams. A beam loaded axially is shown in Figure  3-17. A buckled beam is 

shown in Figure  3-17(b) where axial load P is greater than the Euler buckling load, 𝑃𝐸.  The 

internal moment can be obtained by considering the free body diagram of  Figure  3-17 (c). 

𝑀 = 𝑝𝑤 ( 3-54) 

By considering small displacement and rotation the following approximation can be derived 

from equation ( 3-32) for curvature, 

1
𝜌

= 𝑤′′ ( 3-55) 

where ρ is the radius of curvature and prime denotes differentiation with respect to x. By 

substituting M from equation ( 3-54) into equation ( 3-4) and considering the above relation 
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between radius of curvature and  slope, the following linear homogenous differential equation 

can be derived, 

𝑤′′ + 𝑘2𝑤 = 0 ( 3-56) 

where 𝑘2 is equal to P/EI and EI is elastic rigidity. The general solution of the above differential 

equation is in the form of, 

𝑤 = 𝐴 sin𝑘𝑥 + 𝐵 cos𝑘𝑥 ( 3-57) 

 

Figure  3-17: Simply supported column, a) unloaded, b) buckled, c) free body diagram 

By applying boundary conditions for a simply supported beam,  

𝑤(0) = 0      ⇒         𝐵 = 0 ( 3-58) 

𝑤(𝐿) = 0      ⇒        𝐴 sin𝑘𝐿 = 0 ( 3-59) 

The nontrivial solution is, 

sin𝑘𝐿 = 0      ⇒       𝑘𝐿 = 𝑛𝜋 ( 3-60) 
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This solution defines the load required to obtain a transversely deflected shape. It does not 

provide information about the magnitude of deflection since A can be any arbitrary value. The 

solution defines the minimum load that makes transverse deflection possible. By substituting k 

and setting n equal to 1, the lowest buckling load will be, 

𝑃𝐸 =
𝜋2𝐸𝐼
𝐿2

 ( 3-61) 

Buckling is a neutral stability. The column can buckle to left or right, or axial deformation can 

continue if there is no perturbation and the beam and loading are ideal. When the beam buckles 

it undergoes large deformation. Hence, the small deflection assumption is no longer valid and 

large deflection theory must be employed to investigate post-buckling of the beam. 

3.4.2 A post-buckled straight beam 

Nonlinear finite deflection theory is employed to obtain the deflection of a post-buckled axially 

loaded straight beam. The analysis presented in this section is similar to that presented in 

reference [71]. The buckled beam is shown again in Figure  3-18 where a new coordinate s is 

defined which is measured from the beam’s end along the deflected curve. By neglecting the 

axial strain (inextensible beam), the slope angle θ and coordinate s will be used instead of x and 

w in the following analysis. Equation ( 3-5) can be rewritten by substituting the moment M 

which is equal to Pw as, 

𝑑𝜃
𝑑𝑠

= −
𝑃𝑤
𝐸𝐼

 ( 3-62) 

By differentiating both sides with respect to s and noting that dw/ds is equal to sinθ the 

following nonlinear differential equation can be derived, 

𝐸𝐼𝜃′′ = −𝑃 sin𝜃 ( 3-63) 

where prime denotes differentiation with respect to s. Kirchhoff was the first to solve this 

problem. He noticed that it is identical to the differential equation for large oscillations of a 
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pendulum [71]. The equation is rewritten by substituting sinθ by its half angle equivalent and 

multiplying both sides by 𝜃′, 

 

Figure  3-18: Simply supported beam under axial load, a) unloaded, b) buckled, c) free body diagram 

𝐸𝐼𝜃′′𝜃′ = −2𝑃 sin�
𝜃
2
� cos�

𝜃
2
�  𝜃′ ( 3-64) 

which is equal to, 

𝐸𝐼
2
𝑑
𝑑𝑠 �

𝜃′2� = −2𝑃
𝑑
𝑑𝑠
�sin2

𝜃
2
� ( 3-65) 

By integrating the above equation, 

1
4𝑘2

𝜃′2 = − sin2
𝜃
2

+ 𝑐2 ( 3-66) 

where 𝑘2 = 𝑃/𝐸𝐼 and c is a constant of integration. The bending moment is zero at the tips of 

the beam (𝑠 = 0 and 𝑠 = 𝐿) which, from equation ( 3-62), results in 𝑑𝜃/𝑑𝑠 equal to zero at the 

same positions. Denoting the angle at s=0 by 𝜃0, the constant of integration can be obtained as, 
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𝑐 = sin
𝜃0
2

 ( 3-67) 

To solve the nonlinear differential equation ( 3-66) the variables can be separated, and by taking 

square root, 

±𝑑𝜃

�𝑐2 − sin2 𝜃2

= 2𝑘𝑑𝑠 =
2𝜋
𝐿
�
𝑃
𝑃𝐸
𝑑𝑠 ( 3-68) 

The ± defines buckling to the left and to the right. The minus sign is considered hereafter. The 

integral of the above equation defines the curve of the deflected beam completely which is 

known as an elastica. It can be converted to an elliptic integral by proper variable substitution, 

sin
𝜃
2

= 𝑐 sin𝜑                 𝑑𝜃 =
2𝑐 cos𝜑 𝑑𝜑

cos(𝜃/2)
=

2𝑐 cos𝜑 𝑑𝜑
�1 − 𝑐2 sin2 𝜑

 ( 3-69) 

The slope angle at the tip is 𝜃0 which results in sin𝜑0 = 1 or 𝜑0= π/2, and the angle of the 

slope at the middle is equal to zero which yields sin φ=0 or φ=0.  The slope angle at the tips of 

the beam 𝜃0 can be obtained by taking the integral of equation ( 3-68) from s=0 to s=L/2, 

𝜋
2
�
𝑃
𝑃𝐸

= �
𝑑𝜑

�1 − 𝑐2 sin2 𝜑

𝜋/2

0
 ( 3-70) 

This is an elliptical integral of the first kind to which a solution exists as a power series and 𝜃0 

can be solved as a function of P. If a small end rotation of 𝜃0 is considered, the constant c would 

be a very small number which results in 𝑐2 sin2 𝜑 being much smaller than unity. A Taylor 

series can be used to expand the left side of the integral and higher order terms can be neglected,  

1
�1 − 𝑐2 sin2 𝜑

= 1 + 𝑐2 sin2 𝜑 ( 3-71) 
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The integral of equation ( 3-70) can be solved by this modification easily for small rotation to 

result in, 

𝑃 = 𝑃𝐸 �1 +
𝜃02

8 � ( 3-72) 

For a very small angle of deflection 𝜃0, the applied force would be equal to the Euler buckling 

load which is in agreement with linear theory.  The other conclusion that can be made from the 

above equation is that the load increases by increasing deflection (stiffness is positive and thus 

the buckled beam is statically stable). 

To obtain the displacement of the tip of the beam, equation ( 3-68) can be multiplied  by 

(1+cosθ), noting that ds cosθ is equal to dx, 

−
2(1 − sin2(𝜃/2))
�𝑐2 − sin2(𝜃/2)

= 2𝑘(𝑑𝑠 + 𝑑𝑥) ( 3-73) 

By applying the same substitution of variables as introduced in equation ( 3-69) and by 

integrating the right hand side from s=0 to s=L/2, 

𝑙 = 𝐿�
4
𝜋
�𝑃𝐸
𝑃
� �1 − 𝑐2 sin2 𝜑 𝑑𝜑 − 1
𝜋/2

0
� ( 3-74) 

where l is the distance between the supports. The axial displacement is, 

𝑢 = 𝐿 − 𝑙 = 2𝐿 �1 −
2
𝜋
�𝑃𝐸
𝑃
� �1 − 𝑐2 sin2 𝜑 𝑑𝜑
𝜋/2

0
� ( 3-75) 

An approximate solution can be obtained by considering small rotation, (1 − 𝑐2 sin2 𝜑)1/2 ≈

1 − 1
2
𝑐2 sin2 𝜑 and sin𝜃0 ≈ 𝜃0. Then the axial displacement is, 
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𝑢 = 2𝐿�1 − �1−
𝜃02

16 �
�𝑃𝐸
𝑃
� ( 3-76) 

The tip slope angle can be substituted from equation ( 3-72) into the above equation to find a 

direct relation between force and deflection, 

𝑢 = 𝐿 �2− 3�
𝑃𝐸
𝑃

+ �
𝑃
𝑃𝐸
� ( 3-77) 

Numerical analysis can be employed to obtain the exact solution for the buckled beam. The 

force-deflection for a buckled beam can be solved numerically from equations ( 3-70) and 

( 3-76). The applied force can be calculated by solving the integral of equation ( 3-70) 

numerically for different values of tip angle 𝜃0. Having applied force P and its corresponding 

tip slope angle 𝜃0, the axial displacement can be found from equation ( 3-75). The exact solution 

obtained by this method alongside the approximate solution of equation ( 3-77) is shown in 

Figure  3-19. The approximate solution deviates from the exact solution at the non-dimensional 

displacement of about 0.2 which makes it suitable for most practical analysis. It can be seen that 

the post-buckled beam perform as a hardening spring. The minimum tangent stiffness can 

achieve at the buckling point. 

To obtain the minimum stiffness at the buckling point, equation ( 3-77) can be differentiated in 

non-dimensional form, 

𝑑𝑢� = �
3

2 ��𝑃��
3 +

1

2�𝑃�
�𝑑𝑃� ( 3-78) 

where 𝑃� is the non-dimensional force and is equal to 𝑃/𝑃𝐸 and 𝑢� is the non-dimensional 

displacement and is equal to u/L. If a value of unity is taken for the non-dimensional force, the 

non-dimensional stiffness can be obtained as, 
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𝑘�|𝑃=𝑃𝐸 =
𝑑𝑃�
𝑑𝑢�

|𝑃=𝑃𝐸 =
1
2

 ( 3-79) 

Thus the asymptotic relation can be obtained as, 

𝑃� = 1 +
1
2
𝑢� ( 3-80) 

The asymptotic relation is shown in the Figure  3-19 with a dashed-dot line. This defines the 

minimum tangent stiffness achievable with a buckled beam. It should be mentioned that 

compression of the beam is neglected in this analysis.  

 

Figure  3-19: Non-dimensional force-displacement of inextensible buckled beam  

To investigate the advantages of implementing a post-buckled beam as a stiffness element of a 

nonlinear isolator the static stiffness must be compared with the minimum tangent stiffness. The 
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displacement of the beam tip before buckling is due to axial stiffness. The displacement can be 

obtained from the following equation, 

𝑢𝑎 =
𝑃𝐿
𝐸𝐴

          (𝑃 ≤ 𝑃𝐸) ( 3-81) 

where A is the cross section area of the beam. The axial displacement at the buckling point can 

be found by replacing the axial load with the buckling load from equation ( 3-61) in the above 

formula, 

𝑢0 =
𝜋2𝐸𝐼
𝐿2 𝐿

𝐸𝐴
=   

𝜋2𝐼
𝐿𝐴

       (𝑃 = 𝑃𝐸) ( 3-82) 

where 𝑢0 is the beam tip displacement just before buckling. The displacement only depends on 

the geometry of beam and the material does not affect it. To consider the overall displacement 

of the post-buckled beam, the force-displacement curves shown in Figure  3-19 must be shifted 

to the right by 𝑢0/𝐿. A schematic graph of force-displacement of a buckled beam is shown in 

Figure  3-20 which also demonstrates the force-displacement prior to buckling.  

 

Figure  3-20: Schematic diagram of force-deflection before and after buckling 
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The buckling of an axially loaded straight beam happens when the bending moment developed 

in the beam due to its lateral deflection is large enough to establish such a deflection. In ideal 

conditions where there are not any disturbances, the beam will deflect only axially whatever the 

force. This is an unstable equilibrium state and by introducing a small transverse disturbance, 

for a load bigger than the buckling load, the beam will deflect laterally to its stable equilibrium 

deformed shape. This is why in structural stability texts it is called a bifurcation point, where the 

beam can choose its deformed shape, deflecting to the right, left, or unstable axial deflection. 

The imperfections can be modelled as a load applied off- axis or initial curvature of the beam, or 

both. 

The buckling point, where the tangent stiffness is a minimum, may be considered as a possible 

working point of a nonlinear isolator. The non-dimensional displacement would be 𝜋2 𝐼/𝐿2𝐴  

for this point. However, there is a singularity in force-deflection curve of a beam due to 

buckling. This singularity is undesirable and will cause strong nonlinearity effects to appear in 

the dynamic response of the system. Thus the beam must be statically loaded beyond buckling 

to avoid the buckling point from occurring in the displacement range of the isolator. The 

approximate asymptotic solution can be used to model the isolator in this range, but the actual 

tangent stiffness will be higher than the asymptotic solution suggests. The other way to 

overcome the problem of singularity in force-displacement relation is to modify the beam to 

have a smoother force-displacement curve. This can be achieved by applying the load 

eccentrically or by implementing a curved beam instead of a straight beam. 

 

3.5 Beam loaded eccentrically 

A straight beam loaded eccentrically is shown in Figure  3-21 where the eccentricity is denoted 

by e. The application of the off- axis load causes a bending moment to be applied to the beam as 

well as the axial load. Compared to the straight beam studied previously, the newly introduced 

bending moment causes the beam to deflect laterally from the outset of load application in 

contrast to the former one which deflects laterally only after buckling. The lateral deflection of 

the beam from the beginning removes the singularity in force-deflection curve. The bending 

moment of the beam in this case is, 
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𝑀 = 𝑃(𝑤 + 𝑒) ( 3-83) 

Hence equation ( 3-62) can be rewritten as, 

𝑑𝜃
𝑑𝑠

= −
𝑃(𝑤 + 𝑒)

𝐸𝐼
 ( 3-84) 

 

Figure  3-21: Simply supported beam under axial eccentric load, a) unloaded, b) loaded, c) free body 
diagram 

Differentiating both sides with respect to s, the same equation as equation ( 3-63) is derived. 

Thus, the differential equation describing the beam loaded eccentrically is exactly the same as 

the straight beam. The eccentricity appears in the constant of integration in equation ( 3-66). The 

bending moment is not zero at its tips and the constant of integration c will be given by, 

𝑐2 =
1

4k2
�

Pe
EI
�
2

+ sin2
𝜃0
2

=
π2

4
�

e
L
�
2
�

P
PE
�+ sin2

𝜃0
2

 ( 3-85) 

Considering this new constant of integration equation ( 3-75) can be solved to find the force-

displacement relation for beam with non-dimensional eccentricity e/L. This is shown in 

Figure  3-22. The singularity at the buckling point has disappeared and the beam tangent 

stiffness decreases gradually. As expected, the deflection of the beam for the same load 

increases by increasing the eccentricity. It seems that the curves are almost parallel in part of 
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displacement range which implies similar tangent stiffness but for bigger deflection where 

eccentricity is larger. The stiffness of a beam with eccentricity and a curve beam are both 

examined later in this chapter to investigate their suitability as vibration isolators. 

 

 

Figure  3-22: Non-dimensional force-displacement of inextensible beam loaded eccentrically 

 

3.6 Curved beams 

A beam with constant initial curvature is shown in Figure  3-23. A bending moment develops in 

the curved beam by loading it axially in a similar way as for the beam loaded out of axis. The 

distribution of internal bending moment is different in the two cases which results in different 

force-displacements graphs. The internal bending moment causes the beam to deflect laterally 



  

  

92 

 

even when the load is small. This prevents forming a buckling point where the deflection 

increases suddenly with a small increase in load and a corresponding singular point in the graph. 

The following relation between the magnitude of the bending moment and curvature for a thin 

curved beam is given in reference [73], 

𝐸𝐼 �
1
𝜌
−

1
𝑅
� = −𝑀 ( 3-86) 

where ρ is the radius of curvature of the loaded beam and R is the initial radius of the curved 

beam. The equation for bending moment is the same as for the straight beam and is equal to pw. 

The same differential equation as equation ( 3-63) for a straight beam can be obtained for a 

curved beam by substituting for the bending moment from the above equation and 

differentiating with respect to s. 

 

Figure  3-23: Curve beam, a) unloaded, b) loaded, c) free body diagram 

The same procedure as the case of a straight beam can be followed to obtain the same equation 

as equation ( 3-66) for a curved beam. However, the constant of integration c is different in this 

case. The curvature at the tips of the beam is no longer zero. Since the beam is simply supported 

the bending moment is zero at the tips of the beam, so from equation ( 3-86), 
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1
𝜌

|𝑠=0 =
1
𝑅

=
𝛼
𝐿

 ( 3-87) 

Hence the integration constant c is given by, 

𝑐2 =
𝛼2

4π2
�

PE
P
� + sin2

𝜃0
2

 ( 3-88) 

An equation similar to equation ( 3-75) can be obtained for the axial displacement of the curved 

beam, 

𝑢 = 2𝑅 sin
𝛼
2
− 𝑙 = 2𝐿 �

1
𝛼

sin
𝛼
2
−

2
𝜋
�𝑃𝐸
𝑃
� �1 − 𝑐2 sin2 𝜑 𝑑𝜑
𝜋/2

0
� ( 3-89) 

This equation can be solved numerically again here by considering the new integration constant 

c for different values of α. The force displacement relations of beams with varying curvatures 

are shown in Figure  3-24. There is no singularity in these curves. The shape of the curves for 

smaller curvatures implies a higher degree of nonlinearity which could be disadvantageous in 

dynamic analysis. 

To validate the results, the nonlinear force-deflection of the curved beams are obtained by FEM 

for different curvature angles. The BEAM4 element in ANSYS, which is a three dimensional 

uniaxial element, is used for the model. Curved beams are modelled with a hundred elements in 

each case. All displacement and in-plane rotation were set to zero at one end of the beam, whilst 

at the other end where the load is applied the displacement in the axial direction is allowed and 

other displacement and in-plane rotation are set to zero. The nonlinear static solver with 100 

sub-steps is used to obtain the results. The force-displacement of curved beams alongside the 

results obtained from ANSYS are shown in Figure  3-25 for some curvature angles. As it can be 

seen, there is a perfect match between the results obtained by ANSYS and the results of solving 

the constitutive equations. 
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Figure  3-24: Non-dimensional force-displacement of an inextensible curved beam 

 

Figure  3-25: Non-dimensional force-displacement of inextensible curved beam, circles: ANSYS results 
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The stiffness of curved beams with different initial angles as a function of non-dimensional 

displacement is shown in Figure  3-26. The stiffness of the curved beam is asymmetric. The 

minimum tangent stiffness shifts to the right by increasing the initial curvature angle and its 

value increases. The tangent stiffness and static stiffness of the curved beam is examined in the 

next section to investigate its potential benefit in vibration isolators.   

 

Figure  3-26: Non-dimensional tangent stiffness of inextensible curved beams 

 

3.7 Dynamic and static stiffness of beams 

The tangent stiffness of a nonlinear vibration isolator should be low to achieve good isolation 

while the static stiffness at the statically loaded position should be high to prevent large static 

deflection. Therefore, the dynamic and static stiffness of the proposed beams are investigated 

here. The tangent stiffness of a curved beam and a beam loaded eccentrically are obtained 

numerically as a function of non-dimensional displacement. The minimum tangent stiffness is 

then extracted and the static stiffness at the same displacement is calculated in each case. 
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The minimum tangent stiffness and its corresponding static stiffness is shown in Figure  3-27 for 

a beam with eccentric loading. The minimum tangent stiffness is almost constant for the beam 

loaded eccentrically. Higher static stiffness makes smaller eccentricity more desirable but strong 

nonlinearity of a beam with small eccentricity may affect the choice of eccentricity for optimum 

isolation.    

The non-dimensional minimum tangent stiffness and corresponding static stiffness of the curved 

beam is shown in Figure  3-28. The minimum tangent stiffness increases by increasing the 

curvature angle while the static stiffness at the corresponding position decreases. This makes the 

beam with small curvature more desirable but, again, there is a trade-off between the level of 

nonlinearity in force-displacement (Figure  3-24) and its stiffness characteristics.  

 

Figure  3-27: Minimum tangent stiffness and its corresponding static stiffness of the straight beam loaded 
eccentrically (solid line: minimum tangent stiffness, dashed line: corresponding static stiffness) 

It should be mentioned that the stiffness calculated here, assuming that the beam is inextensible 

which is reasonable assumption for metallic beams with a high modulus of elasticity. The non-

dimensional minimum tangent stiffness approaches 0.5 when either eccentricity or curvature 

tends to zero, which corresponds to a straight axially loaded beam. It can be concluded that an 
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order of magnitude reduction in stiffness when compared to a linear spring is achievable but 

only for small eccentricity or curvature in which case the stiffness can be highly nonlinear. 

 

 

Figure  3-28: Minimum tangent stiffness and corresponding static stiffness for a curved beam as a function 
of angle of curvature (solid line: minimum tangent stiffness, dashed line: corresponding static stiffness) 

 

3.8 Internal resonances 

The spring of a vibration isolator model is usually considered as an ideal element. It does not 

possess any mass and it has no resonances in itself.  In contrast, beams are not ideal elements 

and comprise of distributed mass and stiffness which means that standing waves can arise in 

them. To investigate the performance of a beam as an isolator, the transmissibility of the 

continuous coupled system must be considered. The mobility approach provides a strong tool to 

inspect the coupled system. However, the equations for mobility and impedance of the curved 
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beam are complex and beyond the scope of this thesis. An easier approach is to consider the 

resonance frequencies of the beam with suitable boundary condition as an approximation of the 

resonances of the coupled system. An example is used to explain the approach. The 

transmissibility of a rod carrying longitudinal waves is cited and its relation to resonances of the 

rod is presented. It is desirable for these higher resonances to be as high as possible to achieve a 

wide frequency range of isolation. 

3.8.1 Resonances of rod isolator 

Yan et al. [74] studied distributed parameter isolators and categorized them as non-dispersive 

and dispersive isolators. They investigated longitudinal, torsional and bending waves in a 

straight beam. Here, the basics of the mobility approach are presented and the impedance of a 

linear uniform undamped rod due to longitudinal waves is obtained. The peak in transmissibility 

of the coupled system of the mass and the isolator is then obtained using this method and it is 

compared with the natural frequencies of the rod. The schematic diagram of a distributed 

parameter isolator is shown in Figure  3-29 where m is the isolated mass, 𝑍𝑚 is its impedance, 𝑍𝑖 

is the impedance of isolator, 𝑓1 and 𝑓2 are internal forces acting on the isolator, 𝑓𝑚 is the load 

acting on isolated mass, 𝑢𝑚 is the displacement of mass and 𝑢𝑏 is the displacement of base. 

 

Figure  3-29: a) Schematic diagram of a distributed parameter isolator, b) free body diagram 

The relationship between force and velocity can be rewritten as, 
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𝑓𝑚 = 𝑍𝑚𝑢̇𝑚   ( 3-90) 

and, 

�
𝑓1
𝑓2
� = 𝒁𝒊 �

𝑢̇𝑏
𝑢̇𝑚

�   ( 3-91) 

where dot denotes differentiating with respect to time and 𝒁𝒊 is the impedance matrix of the 

isolator, 

𝒁𝒊 = �𝑍11 𝑍12
𝑍21 𝑍22

�   ( 3-92) 

The velocity transmissibility can be obtained from the above equations noting that 𝑓𝑚 = −𝑓2, 

𝑇 =
𝑢̇𝑚
𝑢̇𝑏

=
−𝑍21

𝑍22 + 𝑍𝑚
 ( 3-93) 

𝑍22 is the point impedance of the isolator at the connection point to the supported mass. The 

resonances of the coupled system occur at the frequencies where the denominator of the right 

hand side of the above equation becomes zero. The impedance of the mass 𝑍𝑚 is jωm where m 

is the mass, and ω is circular frequency. The driving point impedance of a rod can be found 

from the following equation [75], 

𝑍11 = 𝑍22 = −𝑗𝐴�𝜌𝐸cot ��
𝜌
𝐸
𝐿𝜔� ( 3-94) 

where A is the cross-section area of the rod, E is the modulus of elasticity, ρ is density, L is the 

length of the rod. The impedance can be non-dimensionalised by introducing a frequency ratio 

as 𝛺 = 𝜔/𝜔𝑒 where 𝜔𝑒 is the fundamental natural frequency due to the interaction of the 

isolated mass and the static stiffness of the isolator. It is equal to �𝑘𝐿/𝑚 for the longitudinal 

isolator where 𝑘𝐿 = 𝐸𝐴/𝐿 is the longitudinal stiffness of the rod. The non-dimensional 

impedance then will be, 
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𝑍11
�𝑘𝐿𝑚

=
𝑍22
�𝑘𝐿𝑚

= −𝑗�𝜇cot ��𝜇Ω� ( 3-95) 

𝑍𝑚
�𝑘𝐿𝑚

= −𝑗Ω ( 3-96) 

where μ is the mass ratio and is equal to ρAL/m. The moduli of the non-dimensional impedances 

of the rod and the mass are plotted in Figure  3-30. The resonances occur at the intersection of 

the two curves where the impedances are the same in modulus and opposite in phase according 

to equation ( 3-93). The first intersection at non-dimensional frequency Ω equal to 1 is the 

fundamental natural frequency of the mass on the static stiffness of the rod. Since the impedance 

of the mass is proportional to the frequency, it becomes larger at higher frequencies. Thus, later 

intersections of the two impedances, and as a result the resonances of the coupled system, are 

close to the peaks in the impedance curve of the rod.  

The resonance frequencies of a rod can be obtained from the following equation [76] 

𝑓𝑖 =
𝜆𝑖

2𝜋𝐿
�
𝐸
𝜌
�
1/2

 
( 3-97) 

where 𝜆𝑖 = 𝑛𝜋,𝑛 = 1,2,3, … for fixed-fixed boundary conditions and 𝜆𝑖 = (2𝑛−1)
2

𝜋,𝑛 =

1,2,3, … for fixed-free boundary condition. The resonance frequencies of the fixed-fixed and 

fixed-free rod are shown in Figure  3-30 by dash-dotted line and dotted line respectively. The 

resonance frequencies of fixed-fixed rod are the same as the peak frequencies of the point 

impedance 𝑍22 and resonance frequencies of fixed-free rod are those frequencies at which 𝑍22 is 

minimum. This analogy between natural frequencies and extrema of point impedances can be 

explained by referring to the definition of point impedance. The following equation can be 

obtained by expanding the second row of the matrix equation ( 3-91), 

𝑓2 = 𝑍21𝑢̇𝑏 + 𝑍22𝑢̇𝑚   ( 3-98) 
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Figure  3-30: Non-dimensional impedances of a rod (𝑍22/�𝑘𝐿𝑚) and mass (𝑍𝑚/�𝑘𝐿𝑚) alongside non-
dimensional natural frequencies of the rod for μ=0.1 ( dash-dotted line: fixed-fixed boundary condition, 

dotted line: fixed-free boundary condition) 

The impedance  𝑍22 can be obtained by fixing point 1 (setting 𝑢̇𝑏 to zero) and measuring force 

and velocity at point two which is equivalent to fixed boundary condition, 

𝑍22 =
𝑓2
𝑢̇𝑚

|𝑢̇𝑏=0   ( 3-99) 

The peaks of the impedance occur where the velocity at point 2, 𝑢̇𝑚, tends to zero while the 

force has limited value according to the above equation. This resembles a rod with fixed-fixed 

boundary conditions. The amplitude of vibration of a fixed-fixed rod tends to infinity for a 

limited force at the resonance frequency.  

Although the above description is given for a rod, the impedance relations ( 3-91) and ( 3-93) are 

independent of the isolator type and are valid for any type of isolator. It can be concluded that 

the peak in the point impedance 𝑍22 occurs at the resonance frequencies of a bounded-bounded 
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isolator. The direct relation between impedance of the mass and the frequency of excitation 

implies that the resonances of the coupled system will be close to the peaks in impedance 𝑍22 or 

the resonances of the isolator with bounded-bounded boundary condition. A case study has been 

considered here to investigate the resonance frequencies of a coupled system implementing 

curved beam as the spring element of the isolator. The impedance equation for a curved beam 

can be obtained from dynamic stiffness matrix which can be found in references [66, 77], 

however they are complex and beyond the scope of this thesis. The finite element method is 

used here instead to obtain the natural frequencies.  

 

3.8.2 Case study, isolating a one kg mass with curved beams 

Complexity in the governing differential equation of curved beams results in complicated 

approximate solution for the natural frequencies and mode shapes of the unloaded curved beam. 

A dimensional special case is considered hereafter to illustrate the effect of internal resonances. 

The curved beams are sized to isolated a one kilogram mass and achieve 1Hz fundamental 

natural frequency by loading them to their minimum tangent stiffness position and considering 

infinitesimally small dynamic displacements. A schematic diagram of an vibration isolator 

implementing curved beams is shown in Figure  3-31.  

 

Figure  3-31: Schematic diagram of a vibration isolator with curved beams as springs 

 The required minimum tangent stiffness can be calculated from the natural frequency equation 

of a SDOF; a minimum tangent stiffness of 19.7 N/m for each curved beam is required to 



  

  

103 

 

achieve 1Hz natural frequency in this case. The ratio between minimum tangent stiffness and its 

corresponding static stiffness is unique for different curvature angles and this is obtained 

numerically. The static stiffness can be obtained from this ratio and the required minimum 

tangent stiffness. Having the static stiffness and considering 1kg as the static load, the static 

deflection can be calculated. The non-dimensional displacement for the optimally loaded beam 

is obtained by numerical solution and it is non-dimensionalised by the length of the beam. The 

static deflection and its non-dimensional equivalent are used to calculate the length of the beam 

for each curvature.  

The Euler buckling load is used to non-dimensionalise the loads in obtaining the equation for 

curved beams. From the calculated data the Euler buckling load can be calculated as well. 

Knowing the value of the Euler buckling load the dimension of the cross section can be 

obtained. The calculated dimensions are shown in Table  3-1 for different values of initial 

curvature where α is the initial curvature angle, δ is deflection due to the weight of the isolated 

mass, 𝑘𝑠 is static stiffness as the ratio between the static load and δ, L is the length of the 

isolator, 𝑃𝐸 is the buckling load, I is the second moment of area, w is the width of the curve 

beam, t is the thickness of the curve beam, and μ is the mass ratio between the mass of both 

curved beams and the isolated mass, 1kg. 

Table  3-1: Dimensions of curved beam for different curvature angle 

α (degree) 𝒌𝒔 
(kN/mm) 

δ (mm) L (mm) 𝑷𝑬 (N) 
I 

�𝒎𝒎𝟒�  
w 

(mm) 
t  

(mm) 
μ 

2 240 24 154 4.6 .053 24 .3 .017 

10 108 45 188 4.6 .079 35 .3 .031 

30 60 81 244 4.8 0.139 62 .3 .071 

60 40 122 321 5.4 0.271 120 .3 .18 

75 34 141 363 5.8 0.37 164 .3 .28 

90 31 157 411 6.2 0.511 227 .3 .44 
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If two curved beams in the schematic diagram of the nonlinear isolator were replaced with two 

linear springs the static deflection to achieve 1 Hz fundamental frequency would be 248 mm. As 

expected, the static deflection is smaller than a linear spring for all the cases. A smaller curved 

beam can be achieved with smaller initial angle.  

The natural frequencies obtained from analytical formulas for an unloaded curved beam are 

presented in Figure  3-32. The formulas for natural frequencies of a curved beam are presented 

in Table 9-2, page 209 of reference [76]. Among the formulas presented there, the lowest 

natural frequency belongs to the in-plane flexure. This formula is for a simply supported beam 

while one of the supports is not fixed in the axial direction. Therefore, the results from Belevins’ 

book are different from the ANSYS results where both ends were bounded in the axial direction.  

The natural frequency of the in-plane flexure mode can be obtained from the following equation 

for mode shapes that are antisymmetric in the radial direction and symmetric in the tangential 

direction about the mid-span, 

𝑓𝑖 =
𝑖2𝜋2

2𝜋(𝑅𝛼)2
⎝

⎛
�1 − �𝛼𝑖𝜋�

2
�
2

1 + 3 �𝛼𝑖𝜋�
2

⎠

⎞

1
2

�
𝐸𝐼
𝜌𝐴

   ( 3-100) 

where i=2,4,6,… The natural frequencies for i equal to 2 for in-plane flexure mode that is 

antisymmetric in radial direction and symmetric in tangential direction about mid-span is shown 

in Figure  3-32 (marked by plus). 

Additionally, ANSYS is used to find the lowest natural frequency of the unloaded and loaded 

curved beam. The optimized values obtained by the procedure described above are used to 

model the curve beam for each curvature angle.  The natural frequencies of the first mode for 

the unloaded curved beam (marked with stars) are shown in Figure  3-32. The BEAM4 element 

which is a three dimensional uniaxial element with compression, tension, bending and torsion 

capabilities is used to make the model. It is also capable of stress stiffening and large deflection. 

Stress stiffening is the stiffening or weakening of a structure due to its stress state [78]. Curved 

beams are modelled with a hundred elements in each case. All displacement and in-plane 
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rotation were set to zero at both ends of the beam. The modal solver of ANSYS is used to obtain 

the natural frequencies. 

To obtain the natural frequency of the statically loaded beams using ANSYS, the static large 

deformation of the beam is first solved while the option is chosen in the software to obtain the 

stress stiffening matrix. This matrix is the linearised stiffness matrix about the statically loaded 

position . Then, two methods are used to obtain the natural frequencies for the statically loaded 

curved beam using the ANSYS modal solver. As discussed in section  3.8.1, the natural 

frequencies of a curved beam with bounded boundary conditions should be the same as the 

natural frequency of internal modes of the curved beam isolator when the isolated mass is 

considered in the finite element model. First, the natural frequencies of the statically loaded 

beam are obtained while all displacement and in-plane rotations are set to zero at both ends and 

are shown with dots in Figure  3-32. Secondly, the natural frequencies of the statically loaded 

curved beams when a mass element is added to one of its end and the axial displacement at that 

end was relaxed are obtained.  The first mode of vibration was very close to 1 Hz, the frequency 

to which it is sized to produce. The second mode should be close to the bounded curved beam 

natural frequency when loaded statically which was marked by circles in Figure  3-32.  It can be 

seen that the two results match very well, which confirms the conclusions of section  3.8.1.  
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Figure  3-32: Lowest natural frequency of curve beam sized to achieve 1 Hz fundamental frequency, +: in-
plane flexure mode of analytical solution [76], *: finite element model of unloaded curve beam bounded 

both ends, dots: finite element model of statically loaded curve beam bounded both ends, o: finite element 
model of curve beam supporting mass at one end simply supported 

The first four mode shapes of a beam with an initial curvature angle equal to 5 degrees are 

shown in Figure  3-33. As it can be seen in this figure, the tip where the mass is added (shown 

by a star at the top) is displaced only in the first mode of vibration and in three other mode 

shapes the mass is fixed. This is to be expected because of the high impedance of the mass at 

high frequencies.  

The smaller angles are better both considering the size of the curve beams and the internal 

resonances. However, the effect of nonlinearity must be considered in implementing the curved 

beam as elements of nonlinear isolators. There is strong nonlinearity for small angles of 

curvature. 
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Figure  3-33: Mode shape of curved beam with initial angle equal to 5 degree 

These results of the modal analysis that was solved by ANSYS to find the natural frequencies of 

the coupled system can be used to calculate the harmonic response of the curved beam isolator 

to forced vibration with infinitesimally small amplitude. The mode superposition method is used 

by ANSYS to find the force transmissibility of a curved beam with initial curvature angle equal 

to 5 degrees as shown in Figure  3-34. The damping ratio is considered equal to 0.5%. The first 

peak is the fundamental mode of vibration which is 1 Hz by design. There is wide frequency 

range where isolation occurs before the first internal resonance. The amplitude of the internal 

resonance can be controlled by the damping which is limited to -18dB here. The decay rate is 40 

dB per decade after the first peak and before the second one which complies with the theory. It 

should be mentioned here that this graph is produced with the assumption of small vibration and 

linearization about the statically loaded position. 
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Figure  3-34: Force transmissibility of curved beam isolator of initial curvature angle α equal to 5 degree 
and damping ratio equal to 0.5% obtained by finite element method 

 

3.9 Conclusions 

The nonlinear stiffness properties of beams are investigated in this chapter. It is shown that a 

simply supported beam loaded in the middle can be modelled by approximate model with 

hardening nonlinearity. Galerkin’s method is used to obtain the approximate model and the 

analytical exact solution and the FEM have been used to validate the results. It is shown that the 

sine function is a suitable shape function in Galerkin’s method for this purpose.  

Buckled beams are then considered in the context of nonlinear vibration isolators with low 

tangent stiffness. It is shown that the post-buckled straight beam possesses hardening stiffness 

characteristics. The drop in tangent stiffness at the buckling point makes axially loaded beams a 

suitable choice for forming a nonlinear vibration isolator with low tangent stiffness and high 

static stiffness characteristics. However, buckling causes a singularity in force-deflection curve. 

The static load should be increased to avoid the buckling from occurring in the range of 
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dynamic displacements which results in a higher tangent stiffness. The other approaches to 

avoiding singularity are to introduce eccentricity to the loading or initial curvature to the beam. 

It is shown that both loading eccentrically and introducing initial curvature have a smoothing 

effect on force-displacement curve. This is because of developing a bending moment with low 

axial forces which results in transverse displacement of the beam. So there is not a specific load 

for which the beam suddenly deflects to the sides and causes a discontinuity in tangent stiffness. 

The minimum tangent stiffness and corresponding static stiffness are obtained for each case and 

it is shown that an order of magnitude reduction in stiffness is possible for small initial 

curvature of the beam. This static analysis implies a reduced natural frequency and hence 

improved isolation. However, a buckled beam spring has distributed mass and therefore internal 

resonances which must be investigated.  

A case study is considered to obtain a practical estimate of the performance of curved beams as 

nonlinear springs for isolators. A 1 kg mass is isolated with two curved beams and the beams 

are sized to achieve their lowest tangent stiffness when loaded statically. The second mode of a 

mass-curved beam coupled system was at about 70 Hz for an initial curvature angle of 5 

degrees. The ANSYS software is used to obtain the natural frequencies. It is also used to obtain 

force transmissibility of the curved beam isolator. It can be concluded that a lower initial 

curvature is better in both achieving a lower dynamic to static stiffness ratio as well as moving 

the second peak in transmissibility to higher frequencies. The transmissibility and natural 

frequencies are obtained with the assumption of linearization of the system about the statically 

loaded position. The nonlinearity effect must also be considered especially for small initial 

curvatures which introduce more nonlinearity in the force-deflection relation that can affect the 

transmissibility of large amplitudes of vibration. This issue is addressed in chapter 6. 
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4 Bubble mounts 

 

4.1 Introduction 

Vibration isolation mounts are available commercially in different shapes, sizes and from 

different materials. Rubber is the most common material used to construct vibration isolator 

mounts. Its stiffness and damping characteristics alongside its ability to be formed and 

manufactured easily have made it a popular choice. Rubber is a viscoelastic material and its 

stiffness and damping depend on the loading frequency, amplitude, static preload and 

temperature [79].  

Some of the commercially available mounts are intended to have nonlinear stiffness and/or 

damping properties. A desirable characteristic for a nonlinear vibration isolator is low tangent 

stiffness at the statically loaded position. The “Bubble mount” is a commercially available 

mount, which appears to have a low tangent stiffness at the working position from the sales 

brochure. It is a bell shape rubber vibration isolation mount, see photograph shown in 

Figure  4-1. It is expected that the nonlinearity in its stiffness characteristics is due to its 

geometry primarily, with material nonlinearity making a contribution of secondary order.  

 

Figure  4-1: Bubble mount 
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The bubble mount has an axisymmetric curved shape that, geometrically speaking, may be 

considered as a curved beam that is rotated about its vertical axis. In this chapter, the force-

deflection of the bubble mount is measured and it is attempted to model its force-deflection with 

that of a curved beam which is obtained in the previous chapter. This is intended to establish 

whether the mechanism responsible for low tangent stiffness is similar to that of a curved beam.  

One might expect that, ideally, a nonlinear isolator should be loaded to its minimum tangent 

stiffness position statically to exploit it fully as a nonlinear vibration isolation mount. Any 

deviation from the optimum loaded position results in a higher level of tangent stiffness, which 

undermines the advantage of using a nonlinear mount. The sample-to-sample variability in the 

stiffness of bubble mounts can cause the static equilibrium position to deviate from its optimally 

loaded position. The force-deflection characteristics for a set of ten bubble mounts is measured 

here to evaluate this variability.  

The aim of this chapter is to evaluate if the bubble mount can be modelled with a curved beam 

and to investigate the variability in their characteristics. Measurements of the force-deflection 

characteristics of the bubble mount are presented in section  4.2. It is attempted to model the 

bubble mount with curved beams in section  4.3. The dimensions of curved beams are optimised 

to obtain the best possible fit to the measured force-deflection of the bubble mounts. The force-

deflection and stiffness of the set of ten bubble mounts are considered in section  4.4. The 

tangent stiffness and static deflection of the set loaded statically by a nominal mass are also 

compared. A set of conclusions is presented in section  4.5. 

 

4.2 Force-deflection characteristics 

The natural frequency of a mass supported by a nonlinear isolation mount can be estimated from 

the tangent stiffness of the isolation mount for a small amplitude of vibration. The dynamic and 

static stiffness of an isolation mount can be obtained from its force-displacement curve. The 

force-displacement curves of different sizes of bubble mounts are shown in Figure  4-2, which is 

reproduced from the manufacturer’s catalogue. The graph suggests that a smaller bubble mount, 

with a lower load bearing capability, possesses the widest low tangent stiffness range. Thus, 
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type 50640 is the most suitable candidate for this study and all measurements presented 

hereafter belong to this type of isolator.  

It is easier to apply a displacement to the bubble mount and measure the generated blocked 

force in order to obtain its force-displacement curves, rather than to apply a force and measure 

its displacement. The former can be done to high precision using an Instron testing machine. 

The measurements were done in quasi-static mode with a displacement rate of 0.2 mm/s and at a 

room temperature that was almost constant for all tests. The set-up for the test rig is shown in 

Figure  4-3. In the first instance, the rod was connected directly to the bubble mount 

(Figure  4-3(a)) and the bubble mount could become concave on top when loaded to large 

displacements (Figure  4-3 (b)). In practice, it may be connected to an item of equipment such 

that the top would not become concave. To model such a situation, a disk was added to the set-

up to resemble the practical condition as shown in Figure  4-3 (c and d).  

 

Figure  4-2: Force-deflection of different sizes of bubble mount (Tech Products Corporation)  

The measured load-deflection curves for a bubble mount without and with the disk are shown in 

Figure  4-4. The results are shown for a single loading cycle. The upper lines belong to loading 

and the lower ones demonstrate unloading in both graphs. The effect of contact between the 

rubber and the ring can be seen in Figure  4-4 (b), where the load increases more rapidly with the 

increase in deflection compared to the same curve without the ring. The difference between the 

two cases is significant for deflection greater than about 9 mm. 
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Figure  4-3: Bubble mount test rig, a) connecting the load cell directly to the bubble mount by a rod, b) 
loaded bubble mount, c) a disk installed to resemble contact with the isolated mass, d) loaded bubble 

mount with a disk on the top 

The focus of this study is on the stiffness rather than damping properties of the nonlinear 

isolators, so the average of the loading and unloading curves is considered hereafter. The 

average force-displacement curves are shown in Figure  4-5 for the bubble mount tested with and 

without the disk. The average force-deflection curve is not as flat as suggested in the catalogue 

and thus a higher tangent stiffness is expected.  
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Figure  4-4: Force-deflection of bubble mount loaded quasi-statically , a) displacement applied directly 
through rod, b) disk added between rod and bubble mount 

 

Figure  4-5: Average force-displacement graph obtained by averaging the loading and unloading curves 
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4.3 Modelling the bubble mount with curved beams 

The cross section of a bubble mount is shown in Figure  4-6. The bubble mount takes the 

appearance of a curved beam which is rotated around a vertical axis. Hence, it seems 

appropriate to model the bubble mount as a curved beam. A constant thickness and initial radius 

of curvature are assumed here. Different angles of curvature and dimensions for the curved 

beams are considered to obtain the dimensions that provide a similar force-deflection curve to 

that of the bubble mount. These parameters are adjusted by minimizing the square of the 

difference between the two sets of data i.e. the measured force-deflection of the bubble mount 

and the force-deflection of the curved beam model. 

 

Figure  4-6: Cross section of bubble mount (Tech Products Corporation) 

The force-deflection characteristics of a curved beam are presented in non-dimensional form in 

chapter 3. There, the buckling load of a straight beam with the same length and cross section as 

the curved beam was used to normalize the force and the length of the curved beam was used to 

non-dimensionalise deflection. Initial estimates for the dimensions of the equivalent curved 

beam are obtained by setting the inflection point in the curved beam model to that in the 

measured force-deflection. Notional values for the buckling load of the equivalent straight beam 

and length of the curved beam are obtained by this method. These calculated values are shown 

in Table  4-1 for the buckling load of the equivalent straight beam and the length of the curved 

beam for different curvature angles. 
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Table  4-1: Initial values of length of curved beam and buckling load for different curvature angles 

α (Degree) 10 20 30 45 60 75 80 90 95 

Euler Buckling Load 
of the equivalent 
straight beam (N) 

26.2 26.3 27.3 28.9 30.6 32.4 33.8 35.6 36.6 

Length (mm) 29.2 22.3 20.8 19.2 18.4 17.8 18.4 18.7 18.8 

The Mean Square Error (MSE) between the measured data and the force-deflection of the 

dimensional curved beam model is shown in Figure  4-7 as a function of length and curvature 

angle. The MSE is shown on the logarithmic axis. The notional buckling load is chosen from 

Table  4-1 for different initial angles. The MSE is obtained by varying the length from 50 per 

cent to 150 per cent of notional length listed in Table  4-1. It is smaller for larger initial curvature 

angle and there is a minimum over length at about the notional length.  

 

Figure  4-7: Mean square error as a function of length and initial curvature angle for fixed buckling load 
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Alternatively, the minimum mean square error can be found by varying the buckling load, 

which is shown in Figure  4-8, for the notional lengths chosen from Table  4-1 according to initial 

curvature angle. The MSE is shown on the logarithmic axis. The higher initial curvature angles 

agree more closely with the bubble mount and there is also a minimum over buckling load at 

about the notional buckling load. 

 

Figure  4-8: Mean square error as a function of curvature angle and buckling load for fixed length 

Whilst Figure  4-7 and Figure  4-8 are useful for visualisation purposes, the mean square error 

can of course be optimized for both of the length of the curved beam and the buckling load 

simultaneously; the length of the beam is varied and in each step the optimization is run for 

different values of buckling load. The force-deflection curve for the curved beam with 

optimized buckling load and length is shown in Figure  4-9 alongside the measured force-

deflection curve of the bubble mount. It can be seen that the result of the curved beam model is 

not a good match for the bubble mount, especially at large displacements.  
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Figure  4-9: Force-displacement of the bubble mount and optimized curved beams 

Only the measured data up to the inflection point is considered in a second attempt to fit the 

curved beam model to the measured data for modest displacement. The physical dimensions of 

the bubble mount are also considered in obtaining an equivalent length for the curved beam. A 

range of lengths that seems to be realistic for the bubble mount is chosen and the MSE is 

minimized on these lengths and the buckling load. The force deflection obtained using this 

approach is shown in Figure  4-10.  The second approach has not resulted in an appropriate 

match between the two sets of data either. 

The mismatch between the bubble mount and the curved beam model can be due to various 

reasons. The force-deflection of the curved beam is obtained by assuming that it behaves as a 

slender beam, which is not necessarily valid for the bubble mount. In addition to this, the 

curvature of the bubble mount is not constant along its length. The bubble mount is also 

axisymmetric and the circumferential stress could affect its characteristics. Material properties 

are another potential source of disagreement between the bubble mount and the curved beam. 

There is also a thick part on the top which can affect the large deflection characteristics of the 

bubble mount. The bubble mount internal walls also become in contact at large deformations.  
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Figure  4-10: Force-displacement of bubble mount and optimized curved beams. (Data up to the minimum 
tangent stiffness point is considered and length is chosen to match physical dimension of bubble mount) 

 

4.4 Variability in the properties of bubble mounts 

The performance of a nonlinear mount as a vibration isolator depends on the tangent stiffness of 

the statically loaded mount. Any deviation from the minimum tangent stiffness position, due to 

manufacturing variability for example, results in a higher natural frequency of a mass supported 

by the nonlinear mount. In addition to this, different tangent stiffness values can result in 

coupled rigid body modes in practice where a piece of equipment is supported by a number of 

mounts. 

The force-deflection curves of ten different bubble mounts were measured and their 

characteristics are compared. The bubble mounts used here were bought from the same 

manufacturer and received in the same package. The measurements were conducted by the same 

method as described in section  4.2.  

The force-deflection curves were obtained for five cycles of loading and unloading up to a 

displacement of 11 mm with a speed of 0.2 mm/s. Only the last cycle is used for analysis and 
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this is shown in Figure  4-11. The unloaded position is considered as the origin of the 

measurements. The first notable difference in the characteristics of bubble mounts is the 

maximum force at a displacement of 11 mm. It seems that the static stiffness at the maximum 

deflection differs between bubble mounts and the maximum load varies from 39 N to 47 N. 

However, there are similarities in the shapes of force-deflection curves for the ten mounts.  

 

Figure  4-11: Force-displacement of ten nominally identical bubble mounts, last cycle of loading is 
considered  

To quantify the similarity between the shapes of the force-deflection curves, the correlation 

matrix between different bubble mounts has been obtained and this is shown in Table  4-2. The 

element in the ith row and jth column corresponds to the correlation between the ith and jth 

mounts, where the order is the same as in the legend in the Figure  4-11. Column 11 and row 11 

correspond to a linear spring which is introduced here as a benchmark. The correlation 

coefficient between different bubble mounts is very close to one, which shows strong agreement 

in the shape of the force-deflection curves. From the difference between the values it can be said 

that some of them are more similar than others. The highest correlation coefficient is 0.9999 for 

example between mounts two and six. The smallest coefficient between bubble mounts arises 

from the comparison of mounts number one and ten, where the correlation coefficient is 0.9976. 
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The correlation coefficient between any pair of mounts is considerably higher than between any 

mount and the linear spring. 

Table  4-2: Correlation matrix for force-deflection of bubble mounts 

No. 1 2 3 4 5 6 7 8 9 10 11 

1 1 0.9997 0.9990 0.9995 0.9991 0.9997 0.9998 0.9987 0.9980 0.9976 0.9623 

2  1 0.9994 0.9997 0.9994 0.9999 0.9999 0.9991 0.9985 0.9981 0.9672 

3   1 0.9999 0.9999 0.9993 0.9992 0.9999 0.9996 0.9995 0.9718 

4    1 0.9998 0.9996 0.9995 0.9997 0.9994 0.9992 0.9691 

5     1 0.9993 0.9991 0.9999 0.9996 0.9995 0.9702 

6      1 0.9999 0.9990 0.9983 0.9979 0.9671 

7       1 0.9988 0.9981 0.9977 0.9647 

8  Symmetric      1 0.9998 0.9997 0.9728 

9         1 0.9999 0.9737 

10          1 0.9741 

11           1 

The minimum tangent stiffness and the corresponding static stiffness of the same bubble mount 

loaded to its optimum position are key characteristic parameters of a nonlinear vibration 

isolator. The minimum tangent stiffness defines the resonance frequency and isolation 

frequency of a nonlinear isolator, providing that the oscillation amplitude is small enough for a 

linearised model to be valid. The corresponding static stiffness defines the deflection of the 

mount due to the weight of the isolated mass. 

The force-deflections in loading and unloading were averaged to eliminate the effect of 

damping and then an order nine polynomial was fitted to the data in order to smooth the effect 

of noise and find the minimum tangent stiffness. This high order polynomial is used to obtain an 

accurate fit and does not carry any physical interpretation. The fitted polynomial is used to 

obtain the minimum tangent stiffness for each bubble mount. The minimum tangent stiffness is 

normalised by its mean and presented as a percentage in Figure  4-12. The minimum tangent 

stiffness varies from less than 85 per cent of its average value for bubble mount number 1 to 
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about 112 per cent for bubble mount number 8. The corresponding static stiffness is fluctuating 

in a narrower range, about ± 5 per cent of its average value.  

 

Figure  4-12: Variation of tangent stiffness and corresponding static stiffness in percentage from their 
mean values for different bubble mounts 

The minimum tangent stiffness as a function of its corresponding static stiffness is shown in 

Figure  4-13. The line of best fit that passes through the origin is also shown. The positive slope 

of the linear fit shows that the minimum tangent stiffness increases with the static stiffness. 

However, it seems that the variance is large. The slope of the line is almost 0.39, which 

corresponds to a 61 per cent reduction in tangent stiffness as compared with static stiffness. 

The variation in stiffness of the bubble mounts from some nominal or average value removes 

any guarantee that it will be loaded to its minimum tangent stiffness position by a specific mass. 

A nominal mass is considered here and the static deflection and tangent stiffness of the bubble 

mounts are obtained for this load. The nominal mass is obtained by averaging the required mass 

to load each bubble mount to its minimum tangent stiffness position. The changes in stiffness of 

nominally loaded bubble mounts are a measure of their variability. 
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Figure  4-13: Minimum Tangent stiffness as a function of static stiffness for each bubble mount (circles) 
alongside best linear fit (solid line) 

Pieces of equipment are usually supported with three or more mounts. The mounts are required 

to displace equally under static load in some cases, such as where there is a requirement for 

alignment between connected equipment. The static deflection due to the nominal mass is 

shown in Figure  4-14 (a) for the different bubble mounts examined here. The displacements are 

normalised by the average displacement. It can be seen that the range of variation in 

displacement is 20%, which is considerable.  

The tangent stiffness values at the position obtained when loaded by the nominal mass are 

shown in Figure  4-14 (b) for different bubble mounts. The tangent stiffness values are 

normalised by the average minimum tangent stiffness. The tangent stiffness varies between 95 

per cent and more than 115 per cent of the average tangent stiffness. On this basis, the 

corresponding natural frequency of a nominal mass supported by a bubble mount would vary 

between 98 per cent and 108 per cent of the average natural frequency of the optimally loaded 

bubble mount. 
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Figure  4-14: a) Displacement due to optimal load normalised by average displacement, b) Tangent 
stiffness of optimally loaded bubble mount, normalised by averaged minimum tangent stiffness 

 

4.5 Conclusions 

The stiffness characteristic of a commercially available isolation mount, known as a “bubble 

mount”, is studied in this chapter. The force-deflection of the bubble mount was measured using 

an Instron machine in a quasi-static manner. The forces in loading and unloading are averaged 

to consider only the effect of stiffness and not hysteresis. The measured force-deflection curve 

is different from that given in the manufacturer’s catalogue.  

Due to the bell shape of the bubble mount, it was hypothesised that it would behave like a 

curved beam and attempts have been made to model the bubble mount as such. The length and 

Euler buckling load of a straight beam with the same length as the curved beam have been 

obtained by minimizing the mean square error between the measured force-deflection of the 

bubble mount and curved beams. It is revealed that a curved beam is not a good model for the 

bubble mount. This may be due to the thickness of the bubble mount which is not slender, and 

also its cross section shape, which is not uniformly curved.  
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The variability in the properties of bubble mounts is evaluated in section  4.4. A set of ten bubble 

mounts which were purchased at the same time from the same manufacturer were considered. 

Their force-deflection relations were measured and compared. The correlation coefficient of 

their force-deflection curves is considered here as a measure of the similarity in the shape of 

their force-deflection curves. A linear spring is used as a reference to compare the correlation 

coefficients. The correlation coefficients are very close to unity.  

The minimum tangent stiffness and corresponding static stiffness are obtained for different 

bubble mounts. The static stiffness is generally greater for the mounts that possess higher 

minimum tangent stiffness. A nominal mass is also considered by averaging the required mass 

to load the bubble mounts to their minimum tangent stiffness position. The variation in bubble 

mounts is negligible in practice, however the change in tangent stiffness may cause some degree 

of mode coupling in practice for a piece of equipment that is supported by several mounts. The 

static deflection of the nominally loaded bubble mounts varies between 90 and 115 per cent of 

its average value which may cause difficulties in devices that are required to be aligned with 

other equipment. 

The differences in bubble mounts can be due to tolerances in the manufacturing process and the 

variability in the properties of rubber which depends very much on its composition. The 

variability in the force-deflection curve of bubble mounts is illustrative of the inherent 

variability in all mounts. This has particular consequences for nonlinear mounts which are tuned 

devices. The effect of mistuning on the performance of a different nonlinear isolator is dealt 

with in chapter 5. 
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5 Force transmissibility of an asymmetric Duffing 

oscillator 

 

5.1 Introduction 

Some mechanisms and elements that have a low tangent stiffness and a high static stiffness were 

investigated in the preceding chapters. It was presupposed that this is an attractive property for a 

vibration isolator, at least for small amplitudes of vibration, where it may be assumed that such 

a system can be described satisfactorily by an equivalent linear model. For larger amplitudes, 

however, it is necessary to study the nonlinear forced response in order to evaluate the 

performance of a nonlinear vibration isolator.  

A nonlinear vibration isolator that is loaded statically to its minimum tangent stiffness position 

may be modelled by the classic Duffing oscillator which is a single degree of freedom system 

with a cubic stiffness term to represent a nonlinear restoring force. The force-deflection curve of 

the Duffing oscillator is symmetric about the intervening point of inflection, which is also the 

minimum tangent stiffness position. However, a symmetric force-deflection characteristic is not 

the case for all nonlinear springs. An asymmetric characteristic is observed in the force-

deflection characteristics of both the bubble mount and the curved beam presented in the 

previous chapters. A simple example of a nonlinear oscillator with asymmetric force-deflection 

curve about the working position is a Duffing oscillator preloaded by a static force. The forced 

response of such an oscillator is investigated by Koviac et al. [80, 81]. The force transmissibility 

of such an oscillator is studied in this chapter to assess the performance of a nonlinear vibration 
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isolator with asymmetric force-deflection characteristics. As an alternative scenario to the static 

preload, the effect of a mistuned mass on the nonlinear dynamics of a Duffing oscillator is also 

investigated in this chapter. The Harmonic Balance Method (HBM) is used to obtain 

approximate analytical solutions for the forced response of the nonlinear systems in this chapter. 

The results are compared with the numerical simulation in the time domain. 

This chapter aims to assess the performance of a nonlinear isolator with asymmetric stiffness in 

isolating harmonic forces and to establish the effects of a static preload and a mistuned mass as 

sources of asymmetry on a nonlinear isolator. Different forms of the equation of motion for the 

forced response of a Duffing oscillator are presented in the first section of this chapter. The 

mechanism with oblique springs presented in chapter 2 is reintroduced in section  5.3 as an 

example of a nonlinear isolator. It is used to attribute physical meaning to the parameters that 

have been used in this chapter. The effect of static preload on a Duffing oscillator with a cubic 

stiffness term only is investigated in section  5.4. The Duffing oscillator with a cubic stiffness 

term only loaded by a mistuned mass is considered in section  5.5. The addition of a linear 

stiffness to the equation of motion and forming the common form of Duffing oscillator is 

considered in section  5.6. Conclusions are presented in section  5.7 and the accuracy of the 

approximate solutions given in this chapter is assessed in Appendix A. 

  

5.2 Equations of motion for forced response of a Duffing oscillator 

The Duffing equation is a common form of nonlinear differential equation that has been widely 

used to study nonlinear systems including nonlinear vibration isolators [82]. The equation of 

motion for time-harmonic forced excitation of a Duffing oscillator can be expressed in the 

following non-dimensional form, 

𝑥′′ + 2𝜁𝑥′ + 𝜅𝑥 + 𝛾𝑥3 = 𝑓1 cos(Ωτ) ( 5-1) 

where (•)′ denotes differentiating with respect to non-dimensional time τ. The stiffness element 

of the isolator described by the 𝜅𝑥 and 𝛾𝑥3 terms of the above equation possesses symmetric 

force-deflection characteristics. However, practical nonlinear springs can exhibit asymmetric 
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force-deflection such as the curved beam and bubble mount presented in the previous chapters. 

The addition of a quadratic term to the above equation is a simplistic way to introduce 

asymmetry about the origin. The corresponding differential equation with the additional 

quadratic term is called the Helmholtz-Duffing equation, 

𝑥′′+ 2𝜁𝑥′+ 𝑘𝑥 + 𝜇𝑥2 + 𝛾𝑥3 = 𝑓1 𝑐𝑜𝑠(Ωτ) ( 5-2) 

The above equation can be transformed to the Duffing equation by appropriate variable 

transformation [59] , 

𝑧′′ + 2𝜁𝑧′ + 𝜅𝑧 + 𝛾𝑧3 = 𝑓0 + 𝑓1 𝑐𝑜𝑠(Ωτ) ( 5-3) 

where, 

𝑧 = 𝑥 + 𝛿 ,    𝛿 =
𝜇

3𝛾
 ,    𝜅 = 𝑘 −

𝜇2

3𝛾
 ,     𝑓0 =

𝑘𝜇
3𝛾

−
2𝜇3

27𝛾2
 

( 5-4) 

The linear stiffness can be zero in the special case that k is equal to 𝜇2/3𝛾 . The term 𝑓0 can be 

thought as a static preload which depends on the stiffness terms of the original equation. 

Therefore, the Helmholtz-Duffing equation can be recast as a Duffing oscillator with a static 

preload. 

The Duffing oscillator with cubic stiffness only (κ=μ=0) has been investigated widely in the 

literature (e.g. in references [16, 59, 80, 81, 83]). The same type of oscillator is considered here 

first. Such a system is an example of a quasi-zero-stiffness mechanism, since its minimum 

tangent stiffness is zero.  

 

5.3 Example of a QZS nonlinear isolator modelled by a cubic 

nonlinearity 

The oblique spring mechanism presented in chapter two is reintroduced here as an illustration of 

a nonlinear vibration isolator described by the Duffing equation, such that physical meaning can 

be attributed to the parameters that are used later in this chapter. The nonlinear isolator 
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comprised of two oblique springs and a vertical spring is shown in Figure  5-1. All the springs 

are connected together when in their undeformed state. The two oblique springs are simply 

supported at their other ends. The displacement of the mass is shown by x and is measured from 

the mass loaded position. The weight of the mass is cancelled out by the restoring force of the 

springs. The origin of the displacement x is different from that was chosen in section  2.6 for the 

same mechanism. The spring force applied on the mass in the vertical direction due to deflection 

x can be found from the following equation , 

𝐹𝑠 = 𝑘𝑣𝑥 + 2𝑘𝑜 �1 −
𝑙0

√𝑥2 + 𝑙2
� 𝑥 ( 5-5) 

where 𝑙0 is the unloaded length of the oblique springs, l is their length at the equilibrium 

position, 𝑘0 is the stiffness of oblique springs and 𝑘𝑣 is the stiffness of the vertical spring. 

Equation ( 5-5) can be approximated using the Maclaurin series,  

𝐹𝑠 = �𝑘𝑣 + 2𝑘𝑜 �1 −
𝑙0
𝑙
�� 𝑥 +

𝑘𝑜𝑙0
𝑙3

𝑥3 + 𝑂(𝑥5) 
( 5-6) 

 

Figure  5-1: QZS mechanism with oblique springs as nonlinear vibration isolator, loaded statically at the 
zero stiffness position 

The above equation is symmetric about the selected origin and so does not comprise any even 

power terms. However, if the origin were selected at a different position, such as that of the 

unloaded spring, the equation would be asymmetric and even terms would appear in the 
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equation. The approximate equation of forced response for a nonlinear isolator can be obtained 

by considering equation ( 5-6) for force-deflection of springs and considering harmonic and 

static forces applied at the same time on the mass, 

𝑚 𝑥̈ + 𝑐𝑥 +̇ �𝑘𝑣 + 2𝑘𝑜 �1 −
𝑙0
𝑙
�� 𝑥 +

𝑘𝑜𝑙0
𝑙3

𝑥3 = 𝐹0 + 𝐹1 cos(𝜔𝑡) 
( 5-7) 

It was also shown in reference [4]that the geometry of the nonlinear isolator can be optimised to 

obtain the widest displacement range for low stiffness (where the stiffness would be less than 

the vertical spring stiffness). The ratio of spring lengths (𝑙/𝑙0) equal to 2√6/9 maximises the 

low stiffness range. The linear stiffness term can be made zero by choosing an appropriate ratio 

of oblique spring to vertical spring stiffness (𝑘𝑜/𝑘𝑣) depending on the spring length ratio (𝑙/𝑙0). 

For the optimum arrangement (i.e. the widest low stiffness range) the stiffness ratio should be 

equal to 9/(4√6− 18). 

The nonlinear vibration isolator can be compared with a linear vibration isolator easily by 

choosing proper normalizing parameters. One important characteristic of a nonlinear vibration 

isolator is its static deflection. Thus, static deflection is chosen as the normalizing parameter for 

displacement. The static deflection is equivalent to the displacement of the vertical spring due to 

the weight of the isolated mass. Note that at the equilibrium position, the vertical component of 

the reaction force from the oblique springs is zero. Since, the above equation has a dimension of 

force, stiffness 𝑘𝑣 is chosen as the second parameter for normalizing. By choosing these specific 

normalizing parameters, the nonlinear vibration isolator can be compared with a linear vibration 

isolator that has the same static deflection due to the weight of the mass, and has a non-

dimensional natural frequency of unity, 

𝑦′′ + 2𝜁𝑦′ + κy + 𝛾𝑦3 = 𝑓0 + 𝑓1 cos(Ω𝜏) ( 5-8) 

where (•)′ denotes differentiating with respect to non-dimensional time τ, 

𝜏 = 𝜔𝑛𝑡,   Ω = 𝜔/𝜔𝑛 , 𝑦 = 𝑥/𝑥𝑠 ,   𝑥𝑠 = 𝑚𝑔/𝑘𝑣 ,   𝜁 = 𝑐𝜔𝑛/2𝑚 ,    𝜔𝑛 = �𝑘𝑣/𝑚 ,    

𝑓1 = 𝐹1/𝑘𝑣𝑥𝑠 ,      𝑓0 = 𝐹0/𝑘𝑣𝑥𝑠 ,       𝜅 = 1 + 2 𝑘0
𝑘𝑣
�1 − 𝑙0

𝑙
�,        𝛾 = 𝑘0

𝑘𝑣

𝑙0
𝑙
�1 − �𝑙0

𝑙
�
2
� 

( 5-9) 
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This method of normalising results in a constant damping coefficient for the nonlinear 

oscillator. Equation ( 5-8) for an optimum QZS nonlinear isolator that has zero linear stiffness 

reduces to the following form by considering optimum values for the stiffness and length ratios, 

𝑦′′ + 2𝜁𝑦′ + 𝛾𝑦3 = 𝑓0 + 𝑓1 cos(Ω𝜏) ( 5-10) 

where γ= 3
8 √6 + 27

16
 ≈ 2.606. The other value for cubic nonlinearity that is used in subsequent 

sections of this chapter is γ equal to 0.0783. This coefficient has been used in reference [81]. It 

is for the same mechanism where the oblique springs are softening nonlinear springs and the 

mechanism is optimized to obtain a QZS mechanism that has the widest low stiffness 

displacement range. Equation ( 5-10) will be used to investigate the performance of a nonlinear 

vibration isolator first, and then the effect of adding linear stiffness to it is also investigated. 

The schematic force-deflection curve for a nonlinear spring that has been defined by equation 

( 5-10) is shown in Figure  5-2. The curve is symmetric about the origin where the tangent 

stiffness is minimum and equal to zero. By applying static load 𝑓0, the equilibrium position for 

the mechanism would move to 𝑥0. The force-deflection curve is not symmetric about the new 

equilibrium position and is hardening in one direction whereas it is softening in the other 

direction up to the zero displacement point. The tangent stiffness is the slope of the tangent line, 

which is shown by the dashed line on the graph and marked by 𝑘𝑑𝑦𝑛 for the statically loaded 

position 𝑥0. 

 

Figure  5-2: Schematic of force-deflection curve for a nonlinear spring with cubic nonlinearity, dashed 
line: tangent to the curve at the statically loaded position 
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5.4 Effect of static preload on the dynamic response of nonlinear 

vibration isolator with cubic stiffness 

The existence of asymmetry in the force-deflection curve of nonlinear springs in practice makes 

it important to consider its effect on the performance of nonlinear vibration isolators. A simple 

means to form a nonlinear vibration isolator with asymmetry in force-deflection curve is to 

apply an additional static preload to a nonlinear isolator with cubic stiffness term only. The 

effect of static preload on the forced response of such an oscillator is studied by Kovacic et al 

[80, 81]. The purpose of this section is to examine the performance of such an oscillator in 

transmitting force. 

The Harmonic Balance Method (HBM) is used here to obtain the dynamic response of the 

system in the steady state. The forced response is evaluated in subsection  5.4.1, as previously 

published by Kovacic et al [80, 81]. It is followed by obtaining force transmissibility in 

subsection  5.4.2 which, to the author’s knowledge, has not been studied before for asymmetric 

systems. This provides a tool to examine the effectiveness of a statically preloaded Duffing 

oscillator in isolating harmonic forces.  

5.4.1 Forced response 

The HBM is used here to approximate the system response at the excitation frequency. The 

response of a nonlinear oscillator to harmonic excitation is usually comprised of different 

frequencies. The HBM assumes that the response can be represented by a limited number of 

harmonics of the excitation frequency. In order to assess the validity of this assumption, the 

solutions from the HBM can be compared with the results of numerical simulation.  

To obtain the transmissibility, the forced response of the system must be obtained first. The 

response is assumed to consist of a static term and a harmonic term at the excitation frequency 

[80, 81], 

𝑦 = 𝐴0 + 𝐴1 cos(Ω𝜏 + 𝜙) ( 5-11) 
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By substituting the above solution for y in equation ( 5-10) and equating the corresponding terms 

on both sides of the equation, the following set of equations can be obtained for the amplitude of 

the response and its phase with respect to the input, 

𝛾𝐴03 +
3
2
𝛾𝐴0𝐴12  =  𝑓0  ,                − 𝐴1 𝛺2 + 3𝛾𝐴02𝐴1 +

3
4
𝛾𝐴13 = 𝑓1 cos𝜙, 

−2𝜁𝐴1𝛺 = 𝑓1 sin𝜙 

( 5-12) (a-c) 

The following is obtained for the amplitude of response by summing the squares of equations 

( 5-12) (b) and (c), 

𝐴12Ω4 − 6𝛾𝐴12𝐴02Ω2 −
3
2
𝛾𝐴14Ω2 + 9𝛾2𝐴04𝐴12 +

9
2
𝛾2𝐴02𝐴14 +

9
16

𝛾2𝐴16 + 4𝜁2𝐴12Ω2  =  𝑓12 ( 5-13) 

The above equation can be recognised as a quadratic function of frequency squared. 𝐴0 can be 

obtained as a function of 𝐴1 from equation ( 5-12) (a). The equation can be solved numerically 

by assuming different positive real values for 𝐴1 and obtaining real solutions for the non-

dimensional frequency.  

The phase angle at the peak amplitude of a lightly damped linear isolator would be 

approximately -90 degrees. The same assumption is considered here for the nonlinear isolator. 

The phase angle for peak harmonic amplitude 𝐴1 can be found by differentiating the equation 

( 5-12) (c) with respect to 𝜙, 

𝑑𝐴1
𝑑𝜙

=
𝜕𝐴1
𝜕𝜙

+
𝜕𝐴1
𝜕𝛺

𝑑𝛺
𝑑𝜙

= 0 ( 5-14) 

𝑑𝐴1
𝑑𝜙

= −
𝑓1 cos𝜙

2𝜁𝛺
+
𝑓1 sin𝜙

2𝜁𝛺2
𝑑𝛺
𝑑𝜙

 ( 5-15) 

By neglecting the second term in the right hand side of the above equation, the derivative of 𝐴1 

with respect to 𝜙 can be approximated by, 
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𝑑𝐴1
𝑑𝜙

≈
𝜕𝐴1
𝜕𝜙

= −
𝑓1 cos𝜙

2𝜁𝛺
  ( 5-16) 

Thus, the phase angle at the resonance is −90° (𝑑𝐴1/𝑑𝜙 = 0). The locus of amplitudes with a 

phase angle equal to -90 degrees is found from equation ( 5-12) (c) which would be an 

approximate locus for peak of harmonic amplitude 𝐴1, 

𝐴1|𝜙=−90°  =
𝑓1

2𝜁𝛺
 ( 5-17) 

The locus of 𝐴1 is independent of the nonlinear stiffness term γ and static preload 𝑓0. However, 

the value of A1|𝜙=−90° for a specific case implicitly depends on the nonlinear stiffness γ and 

static preload 𝑓0 through the non-dimensional frequency.  Substituting A1|𝜙=−90° from the 

above equation in equation ( 5-12)(b) and solving for 𝐴0 the following equation can be obtained 

for the value of the bias term, 

𝐴0|𝜙=−90°  =
�−3𝛾(3𝛾 𝑓12 − 16𝜁2𝛺4)

12𝛾𝜁𝛺
 ( 5-18) 

A thorough analysis for the force response of this system is presented in reference [80, 81]. The 

solutions are presented here for the same set of values for static and harmonic forces as used in 

reference [81] to demonstrate the important characteristics of the response. In the following set 

of Frequency Response Curve (FRC) plots, solid and dotted lines are obtained by the HBM. 

There are regions that multiple solutions exist simultaneously, where the stability of these 

solutions, which are merely periodic states of equilibrium, must be evaluated [57].  A periodic 

solution is stable if, when slightly disturbed, the effect of the disturbance decays by time. 

Stability of periodic oscillations can be calculated using Floquet theory. It is shown in reference 

[81] that the vertical tangents to the FRCs are at the stability limits. These results are used here, 

and the solid line is used for the stable solution and the dotted line for the unstable solution. The 

discrete dots in the figure are obtained by evaluating the forced response in the time domain 

numerically and obtaining the amplitude at the excitation frequency by the Fast Fourier 

Transform (FFT). The ode45 solver of Matlab has been used to obtain the time domain solution. 

The solution has been obtained for over 4000 non-dimensional units of time to ensure that 
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steady state has been reached. There are regions in which the HBM solutions do not match with 

the results obtained from the time domain simulation. This can be due to existence of other 

harmonics in the response which is not considered in the solution given by equation ( 5-11). The 

accuracy of the solutions is discussed in Appendix A.  

The harmonic amplitude of response 𝐴1 is shown in Figure  5-3 (a). The dashed line is the locus 

of 𝐴1|𝜙=−90° that is obtained from equation ( 5-17). The FRCs bend to the left and then to the 

right as non-dimensional frequency is increased. This behaviour is discussed in detail in 

reference [80, 81] where it is related to the instantaneous stiffness.  

For small amplitudes, the vibration should be about the statically loaded position, which is 

shown in Figure  5-2. The force-deflection characteristic is hardening when the displacement is 

increasing and softening when it is decreasing. Since displacement of the mass in the softening 

range requires a lower level of force; it is expected to have a dominant softening behaviour by 

increasing the amplitude up to a certain level. This explains the bend to the left at first in the 

FRCs. For negative displacements, after passing through the unloaded position, the force-

deflection curves become hardening again. By increasing vibration amplitude even more, the 

hardening characteristic becomes dominant and FRCs bend to the right.  

The phase of the FRCs for different values of static load is shown in Figure  5-3 (b). The phase 

angle seems to be equal to -90 degree at the same frequency as the peak amplitude as previously 

assumed in equations ( 5-17) and ( 5-18).  

The bias term of the response as a function of frequency is shown in Figure  5-4. It is expected 

that the isolator will oscillate around the statically loaded position, which is shown in Figure  5-2 

by 𝑥0. This position is introduced in equation ( 5-11) by the bias term 𝐴0. Thus the bias term 

should increase with increasing static load. The same trend can be seen in Figure  5-4, except for 

around the resonance frequency where 𝐴0 drops to its minimum. The curves bend to the left 

then to the right with increasing frequency for a static load greater than 0.2. 

The dependency of force on the cubic displacement results in very large forces at large 

displacements. As a consequence, the mass oscillates close to the minimum tangent stiffness 

position at large amplitudes because of higher stiffness at large displacements. Thus the bias 
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term has a minimum value at the resonance frequency while the harmonic term is at its peak. 

The dashed line is the locus of 𝐴0|𝜙=−90°  which is obtained by equation (15). The locus also 

corresponds to the minimum value of the bias term.  

 

Figure  5-3: a) Magnitude of FRC of the harmonic term, b) phase angle of FRC for different values of 
static preload, γ=0.0783, ζ=0.025, and 𝑓1=0.1, solid lines: stable branch, dotted lines: unstable branch, 

dots: time domain solutions, dashed line: locus of 𝐴1|𝜙=−90° 
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Figure  5-4: FRC of bias amplitude for γ=0.0783, ζ=0.025, and 𝑓1=0.1, solid lines: stable branch, dotted 
lines: unstable branch, dots: time domain solutions, dashed line: locus of 𝐴0|𝜙=−90° 

 

5.4.2 Force transmissibility 

The transmitted force to the base is obtained here to evaluate the performance of the nonlinear 

isolator. The transmitted force can be obtained from the following equation, 

𝑓𝑡 = 2𝜁𝑦′ + 𝛾𝑦3 ( 5-19) 

It can be written as a function of the applied force and acceleration by substituting 2𝜁𝑦′ + 𝛾𝑦3 

from equation ( 5-10) in the above equation, 

𝑓𝑡 = 𝑓0 + 𝑓1 cos(Ω𝜏) − 𝑦′′ ( 5-20) 

The transmitted force can be considered as the combination of a static transmitted force and a 

harmonic term at the same frequency as the excitation frequency, 
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𝑓𝑡 = 𝑓𝑡0 + 𝑓𝑡1 cos(Ω𝜏 + 𝜙𝑡) ( 5-21) 

An equation for the harmonic and bias terms of the transmitted force can be obtained from 

equations ( 5-20) and ( 5-21). Substituting for acceleration that was obtained by differentiating 

equation ( 5-11),  

𝑓𝑡0 + 𝑓𝑡1 cos(Ω𝜏 + 𝜙𝑡) = 𝑓0 + 𝑓1 cos(Ω𝜏) + 𝐴1Ω2 cos(Ω𝜏 + 𝜙) ( 5-22) 

The bias and harmonic terms of the transmitted force can be obtained by expanding and 

equating the corresponding terms of the above equation, 

𝑓𝑡0 = 𝑓0 

𝑓𝑡1 cos(𝜙𝑡) = 𝑓1 + 𝐴1Ω2 cos(𝜙) 

𝑓𝑡1 sin(𝜙𝑡) = 𝐴1Ω2 sin(𝜙) 

( 5-23) (a-c) 

The static force transmits to the base without any attenuation and is independent of frequency. 

The harmonic part of the transmitted force can be obtained from equation ( 5-23) (b and c) and is 

given by, 

𝑓𝑡1  =  �𝑓12 + 𝐴12Ω4 + 2𝑓1𝐴1Ω2 cos(𝜙) ( 5-24) 

The transmissibility can be obtained by substituting the cos(𝜙) term from equation ( 5-12) (b) 

into the above equation and dividing it by 𝑓1, 

𝑇1  =  �1 +
𝐴12

𝑓12
Ω2 �6𝛾𝐴02 +

3
2
𝐴12𝛾 − Ω2� ( 5-25) 
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The locus of transmissibility that has a phase angle equal to -90 degree can be found by setting 

𝜙 equal to -90 degrees in equations ( 5-23) (b and c) and substituting 𝐴1𝑚𝑎𝑥 from equation 

( 5-18) into equation ( 5-23) (b), 

T1|𝜙=−90°  = �1 +
Ω2

4𝜁2
≈
Ω
2𝜁

 ( 5-26) 

Although the locus of peaks is not explicitly dependent on the nonlinearity coefficient γ and the 

amount of dynamic loading, a specific peak depends on these parameters due to the dependency 

of the non-dimensional frequency Ω on them. The transmissibility for the nonlinear vibration 

isolator of equation ( 5-10) is plotted in Figure  5-5 as a function of non-dimensional frequency 

for the same set of values as in previous figures. The same trend of bending to the left and to the 

right can be seen here as previously for the forced response amplitude. It can be seen that the 

locus of the transmissibility at which phase angle is -90 degrees is the locus of the peaks. 

 

Figure  5-5: Transmissibility as a function of non-dimensional frequency Ω for γ=0.0783, ζ=0.025, and 
𝑓1=0.1, solid lines: stable solution, dotted lines: unstable solutions, dots: time domain solutions, dashed 

line: locus of transmissibility at which phase angle is -90˚ 
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The FRCs shift to the right on increasing the static force is due to the increase in tangent 

stiffness at the statically loaded position. The static displacement due to preload 𝑓0 is (𝑓0/𝛾)1/3. 

The tangent stiffness of a nonlinear spring with cubic stiffness is 3𝛾𝑥2. By substituting for the 

static deflection, the tangent stiffness at the statically loaded position is obtained, 

𝑘𝑑 = 3𝛾
2
3 𝑓0

1
3 ( 5-27) 

The transmissibility curves of a linear isolator whose stiffness is equal to the tangent stiffness at 

the statically loaded position are plotted in Figure  5-6 alongside the transmissibility of the 

nonlinear isolators. An increase in static load causes an increase in tangent stiffness and the 

transmissibility curves shift to the right. The nonlinear isolator deviates from the linear model 

for relatively large amplitudes. Hence around resonance only, bending to the right or left can be 

seen that is due to the nonlinearity. It can also be seen that the effect of nonlinearity is more 

severe for small values of the preload, 𝑓0. The tangent stiffness is low around zero displacement 

which results in relatively large amplitudes of oscillation. Thus for small preloads, the large 

oscillation amplitude causes deviations from the linear model over a wider frequency range, 

more clearly seen in Figure  5-6 for 𝑓0 equal to 0.01. 

 

Figure  5-6: Transmissibility as a function of non-dimensional frequency Ω for γ=0.0783, ζ=0.025, and 
𝑓1=0.1, solid lines: stable solution, dotted lines: unstable solutions, dashed line: transmissibility of 

equivalent linear isolators, dashed-dot line: locus of peaks 
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The transmissibility for the cubic stiffness coefficient γ of 2.606, which is the cubic coefficient 

for the optimum oblique spring mechanism with linear oblique springs is shown in Figure  5-7. 

The transmissibility curves for γ=0.0783 are also shown in the figure by grey lines. The higher 

nonlinear term γ causes the FRCs to bend more to the right and left. The FRCs are also shifted 

to the right which can be explained by the increased tangent stiffness at the statically loaded 

position due to the larger nonlinear stiffness coefficient. The curve for a static load equal to 0.95 

still demonstrates a hardening effect by bending to the right for large amplitudes about the 

resonance frequency compared to the curve of Figure  5-5 which only bends to the left. 

 

Figure  5-7: Transmissibility as a function of non-dimensional frequency Ω for γ=2.606, ζ=0.025, and 
𝑓1=0.1, solid lines: stable solution, dotted lines: unstable solutions, dashed-dot line: locus of peaks, Grey 

lines: transmissibility curves for γ=0.0783 

The frequency at which the amplitude of transmissibility is less than unity is called the isolation 

frequency here. This is the key parameter that defines the performance of an isolator. As shown 

in Figure  5-6, at small amplitudes of response, the nonlinear isolator can be approximated by a 

linear isolator whose stiffness is equal to the tangent stiffness of the nonlinear isolator at the 

statically loaded position. Thus, the isolation frequency is √2 times the natural frequency of the 

equivalent linear isolator. However, bending to the right in the FRC of a nonlinear isolator can 

cause the peak to occur at a higher frequency than the frequency at which the transmissibility 
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drops below unity on the high frequency branch. The frequency of the peak must be compared 

with √2 times the natural frequency and the higher of these defines the isolation frequency of 

the nonlinear vibration isolator.  

The isolation frequency of a nonlinear vibration isolator is shown in Figure  5-8. If the jump 

down frequency defines the isolation frequency, it is shown with a circle on the graph; 

otherwise it is shown by a dot. The curves are produced for two different values of nonlinear 

coefficient γ and three different levels of dynamic load. The dotted line defines a frequency of 

√2 times the natural frequency of a comparable linear isolator that has the same static deflection 

due to the weight of the mass. At low static load, the tangent stiffness is very low and the 

bending to the right due to the hardening effect causes the peak frequency to become the 

definitive frequency for isolation. The tangent stiffness becomes larger on increasing the static 

load and the FRC bends to the left and then to the right. For large values of the static load, they 

only bend to the left. As a consequence, the frequency at which the transmissibility drops below 

unity becomes the definitive isolation frequency at large values of the static load.  

 

Figure  5-8: Isolation frequency as a function of static load, circles: peak frequency dominant, dots: 
transmissibility less than one, lines: isolation frequency of equivalent linear isolator with stiffness equal to 

tangent stiffness, (solid line: γ=0.0783, dashed line: γ=2.606), dotted line: isolation frequency of linear 
isolator with the same static deflection due to the mass 



  

  

144 

 

A nonlinear vibration isolator with a low level of nonlinearity (γ=0.0783) performs better than a 

linear isolator with the same static deflection due to mass up to a non-dimensional static load of 

about 0.7. For the isolator with a higher nonlinearity (γ=2.606), it performs worse than the linear 

isolator for higher dynamic loads (𝑓1=0.1). For lower levels of dynamic load it is advantageous 

over linear isolator up to a non-dimensional static load of about 0.12. 

 

5.5 Effect of a mistuned mass on a nonlinear isolator with cubic 

stiffness 

If an incorrect nonlinear isolator is used for a specific mass, the mass will not load the isolator 

statically to its minimum tangent stiffness position which is the optimum working position. The 

force-deflection characteristics about this new equilibrium position would be asymmetric. This 

is formulated by introducing a ratio between two masses, the isolated mass (mistuned or non-

optimum mass) and the optimum mass for the implemented nonlinear isolator, in the equation of 

motion. Hence, it is called mistuned mass in this thesis. The difference between this case and 

that of the statically loaded isolator would be the effect of the mass on the inertia term of the 

differential equation. Equation ( 5-10) can be rewritten for a different mass 𝑚2 without static 

preload, 

𝜇𝑦′′ + 2𝜁𝑦′ + 𝛾𝑦3 = 𝜇 − 1 + 𝑓1 cos(Ω𝜏) ( 5-28) 

 where μ is the mass ratio 𝑚2/𝑚 and m is the original mass. The added mass ratio, which is 

equal to μ-1, is a substitute for the static preload and should have a similar effect. The natural 

frequency of a linear oscillator would decrease for increased mass and the FRCs would shift to 

the left. If the mass decreases then the natural frequency would increase and the FRCs would 

shift to the right. The FRCs of a nonlinear isolator are also expected to shift in this manner as a 

result of changes to the mass. 
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5.5.1 Forced response 

The HBM is used to find an approximate solution for equation ( 5-28). Equation ( 5-11) is used to 

describe the response here also. By substituting it in equation ( 5-28), a set of equations for the 

harmonic amplitude, the bias term and the phase angle can be found which are slightly different 

from those in equation ( 5-12), 

𝛾𝐴03 +
3
2
𝛾𝐴0𝐴12  =  𝜇 − 1 ,            − 𝜇𝐴1 𝛺2 + 3𝛾𝐴02𝐴1 +

3
4
𝛾𝐴13 = 𝑓1 cos(𝜙),  

      −2𝜁𝐴1𝛺 = 𝑓1 sin(𝜙) 

( 5-29) (a-c) 

A quadratic equation in Ω2 can be found from equation ( 5-29) (b and c), 

𝜇2𝐴12Ω4 + �−6𝜇𝐴12𝛾𝐴02 −
3
2
𝛾𝐴14𝜇 + 4𝜁2𝐴12�Ω2 +

9
16

𝛾2𝐴16 + 9𝛾2𝐴04𝐴12 +
9
2
𝛾2𝐴14𝐴02  

=  𝑓12 

( 5-30) 

𝐴0 can be obtained as a function of 𝐴1 from equation ( 5-29) (a). This equation can be solved 

numerically by assuming different positive real values for 𝐴1 and obtaining real solutions for 

the non-dimensional frequency.  

The locus for harmonic amplitude 𝐴1 when the phase angle is -90 degrees is the same as the 

oscillator considered previously that is subjected to a static preload and can be found from 

equation ( 5-17). The locus for the bias term is different in only one term, 

  

𝐴0|𝜙=−90°  =
�−3𝛾(3𝛾 𝑓12 − 16µ𝜁2Ω4)

12𝛾𝜁Ω
 

( 5-31) 

The above equation depends on the mass ratio μ, in addition to other parameters. The FRCs of 

the bias term for a nonlinear isolator with mistuned mass and nonlinearity coefficient γ equal to 

0.0783 are shown in Figure  5-9. The mass ratios are selected in a way to have the same constant 
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on the right side of equation ( 5-28) as the static preloads that were used to plot the previous 

graphs. The locus obtained from the above equation is not shown since there is a different line 

for each mass. A similar trend to the static preload case can be seen here. By increasing the 

mass, the static deflection becomes larger and as a result, the bias term increases at both high 

and low frequencies. 

 

Figure  5-9: FRC of bias amplitude for γ=0.0783, ζ=0.025, and 𝑓1=0.1, solid lines: stable branch, dotted 
lines: unstable branch, dots: time domain solutions 

The forced response FRCs of harmonic amplitude 𝐴1 are shown in Figure  5-10. Again the same 

trend in bending to the left and then to the right can be seen here. It can also be seen that when 

there is a maximum in harmonic amplitude, the bias amplitude is at a minimum. The increased 

mass causes the curve to shift to the left compared to Figure  5-3. The locus of 𝐴1|𝜙=90°, which 

is the locus of peaks in the harmonic term is the same as in the previous case with the static 

preload. The peak amplitude is inversely related to the frequency and the shift of the curves to a 

lower frequency causes the peaks to increase. 

There are also frequency ranges where the results from the approximate solution obtained by the 

HBM do not match with exact time domain simulations for 𝜇 equal to 1.01 and 1.2. This is due 

to the existence of other harmonics in the response that are not considered in the approximate 

solution. This is similar to case of an isolator with a static preload as discussed in  Appendix A. 
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Figure  5-10: FRCs of harmonic amplitude for γ=0.0783, ζ=0.025, and 𝑓1=0.1, solid lines: stable branch, 
dotted lines: unstable branch, dots: time domain solutions, dashed line: locus of 𝐴1|𝜙=−90° 

The amplitude of the FRCs of the harmonic response term of the corresponding static preload 

and mistuned mass (𝑓0 = 𝜇 − 1) demonstrate different characteristics. To clarify this, the FRC 

of the harmonic amplitude for static preload 𝑓0 equal to 0.95 and μ equal to 1.95 are plotted on 

the same axes in Figure  5-11. The FRC of the harmonic term of the statically preloaded 

nonlinear oscillator is bending to the left only while for the mistuned mass it is bending to the 

left and then to the right.  While both of these two cases have the same static deflection, the 

mistuned mass has a larger amplitude. The instantaneous stiffness becomes hardening for large 

amplitudes around the peak. The hardening effect appears as a small bend to the right about the 

peak for the mistuned mass case. 
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Figure  5-11: FRC of harmonic amplitude for γ=0.0783, ζ=0.025, and 𝑓1=0.1, solid lines: stable branch, 
dotted lines: unstable branch, dashed line: locus of 𝐴1|𝜙=−90° 

 

5.5.2 Force transmissibility 

By following the same procedure as in section  5.4.2, the force transmissibility for an oscillator 

with a mistuned mass can be obtained, 

𝑇1  =  
1
𝑓1
�𝑓12 + 6𝜇𝐴12Ω2𝛾𝐴02 − 𝜇2𝐴12Ω4 +

3
2
𝛾𝐴14𝜇Ω2 ( 5-32) 

The locus of transmissibility that has a phase angle equal to -90 degrees can be obtained by 

following the same method, 

𝑇1|𝜙=90°  =
1
2
�4 +

𝜇2Ω2

𝜁2
≈

1
2
𝜇Ω
𝜁

               𝑓𝑜𝑟 𝜁 ≪ 1 ( 5-33) 
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As for the bias term of the response, it depends on the mass ratio μ. The transmissibility curves 

for the same set of parameters as were used for the forced response are shown in Figure  5-12. 

The curves are shifted to the left because of the added mass. From equation ( 5-33), it can be 

noticed that the peak of transmissibility is proportional to the mass ratio and the ones with 

higher mass ratio have larger peak values. This is the opposite of the case of static preload 

where peaks at lower non-dimensional frequency are smaller.  

 

Figure  5-12: Transmissibility as a function of non-dimensional frequency Ω for γ=0.0783, ζ=0.025, and 
𝑓1=0.1, solid lines: stable solution, dotted lines: unstable solutions, dots: time domain solutions 

The shift of the curves to the left gives rise to a reduced isolation frequency. In the case of a 

reduced mass which is not plotted here, the curves shift to the right and isolation frequency 

increases.   The isolation frequency as a function of mistuned mass is shown in Figure  5-13. 

Circles are used to indicate points at which the peak frequency (the jump down frequency) 

defines the isolation frequency. Dots are used to mark frequencies at which the reduction of 

transmissibility below unity on the high frequency branch defines isolation. A mass ratio equal 

to one defines the position where the tuned mass is employed and it can be compared to zero 

static preload. The graph is not symmetric about this point. Similarly to the case of static 

preload, the range at which a nonlinear isolator has a better isolation frequency than a linear one 

depends on the dynamic load level and the nonlinearity coefficient γ.   
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Figure  5-13: Isolation frequency as a function of mass ratio, circles: peak frequency dominant, dots: 
transmissibility less than one, lines: isolation frequency of equivalent linear isolator with stiffness equal to 

tangent stiffness, (solid line: γ=0.0783, dotted line: γ=2.606), dashed line: isolation frequency of linear 
isolator 

The isolation frequency for a linear isolator also decreases by increasing the mass and increases 

by reducing the mass. It is shown by the dashed line in the figure. For a nonlinearity coefficient 

γ equal to 0.0783, the isolation performance of the nonlinear isolator is better than the linear 

isolator up to a mass ratio of about 1.69, while from Figure  5-8 for the static preload case, it is 

0.69. The mass ratio and static preload for a nonlinearity coefficient of 2.606 are 1.12 and 0.12 

respectively. Although the isolation frequency of the mistuned mass case is different from those 

of the static preload case, the range at which the nonlinear isolator performs better than a linear 

isolator is the same for the mistuned mass and static preload cases. The isolation curve is not 

symmetric about the optimum mass ratio of unity. However, from the graph, the range at which 

the nonlinear isolator performs better than its linear counterpart seems to be symmetric about 

the mass ratio of unity. 
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5.6 The effect of the linear term on the performance of a nonlinear 

vibration isolator 

The Duffing oscillator with pure cubic stiffness is a special case of a nonlinear oscillator that 

has a minimum tangent stiffness of zero. To investigate the Duffing oscillator in its complete 

form, an additional linear stiffness term must be added to the differential equation ( 5-10). The 

differential equation of the nonlinear oscillator with the additional linear term loaded statically 

and harmonically is, 

𝑦′′ + 2𝜁𝑦′ + 𝜅𝑦 + 𝛾𝑦3 = 𝑓0 + 𝑓1 cos(𝛺𝜏) ( 5-34) 

where κ is the non-dimensional linear stiffness. Due to the similarity between the effect of 

mistuned mass and the effect of static preload on a nonlinear oscillator, only the effect of static 

preload is considered here. HBM is employed to find an approximate solution to the above 

equation. By considering the same response as equation ( 5-11) and setting equal the 

corresponding terms on both sides of the equation the following set of equations can be found, 

𝜅𝐴0+𝛾𝐴03 +
3
2
𝛾𝐴0𝐴12  =  𝑓0 ,         𝜅𝐴1 − 𝐴1 𝛺2 + 3𝛾𝐴02𝐴1 +

3
4
𝛾𝐴13 = 𝑓1 cos(𝜙), 

−2𝜁𝐴1𝛺 = 𝑓1 sin(𝜙) 

( 5-35) (a-c) 

Equations ( 5-35) (a and b) differ from ( 5-12) (a and b) only in an additional term 𝜅𝐴0 and 𝜅𝐴1 

term respectively. Equations ( 5-35) (c) and ( 5-12) (c) are the same. The quadratic equation in 

the square of non-dimensional frequency can be obtained from the above set of equations, 

𝐴12Ω4 + �−2𝜅𝐴12 −
3
2
𝐴14𝛾 − 6𝐴12𝛾𝐴02 + 4𝜁2𝐴12�Ω2 + 𝜅2𝐴12 +

9
16

𝛾2𝐴16 + 6𝜅𝐴12𝛾𝐴02

+
3
2
𝜅𝐴14𝛾 +

9
2
𝛾2𝐴02𝐴14 + 9𝛾2𝐴04𝐴12 −  𝑓12 = 0 

( 5-36) 

The numerical method can be used as before to find the solution for the forced response with 

different parameters. The locus of harmonic response for a phase angle of -90˚ can be obtained 
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from equation ( 5-35) (c). It is the same as the previous case which is obtained from equation 

( 5-18). The bias term 𝐴0 is plotted for different values of linear stiffness as a function of non-

dimensional frequency in Figure  5-14, for static preload 𝑓0 equal to 0.5. The addition of linear 

stiffness has appeared as an increase in the stiffness of the oscillator. The bias term drops for 

higher values of linear stiffness.  

 

Figure  5-14: FRC of bias amplitude for γ=0.0783, ζ=0.025, 𝑓0=0.5 and 𝑓1=0.1, solid lines: stable branch, 
dotted lines: unstable branch, dots: time domain solutions 

The amplitude of the harmonic term of response 𝐴1 is shown in Figure  5-15 for a static preload 

equal to 0.5, harmonic load 𝑓1=0.1 and different levels of linear stiffness. It can be seen that by 

increasing the linear stiffness the curves are shifted to the right, due to increased tangent 

stiffness. The lower level of harmonic term 𝐴1 at low frequencies is also due to the increased 

tangent stiffness. The bending to the left disappears by increasing the linear stiffness and only 

curves for κ equal to 0.5 and 0.6 demonstrate the hardening effect, bending to the right. An 

oscillator with larger linear stiffness has smaller static deflection compared to those without 

linear stiffness or a small linear stiffness. The stiffness reduces from the statically loaded 

position toward the unloaded position and in this range the stiffness is of the softening type. The 

decrease in static deflection is the equivalent of a reduced range where instantaneous stiffness is 
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softening. Thus, higher static preload must be applied to the oscillators with higher linear 

stiffness to achieve softening characteristics and bending of the FRCs to the left. 

 

Figure  5-15: FRC of harmonic term of response for γ=0.0783, ζ=0.025, 𝑓0=0.5 and 𝑓1=0.1, solid lines: 
stable branch, dotted lines: unstable branch, dots: time domain solutions, dashed line: locus of 𝐴1|𝜙=90° 

The performance of a nonlinear isolator in transmitting force can be evaluated by obtaining the 

force transmissibility. The force transmissibility can be found by following the same procedure 

as in section  5.4.2,  

𝑇1  =
1
𝑓1

 �𝑓12 − 𝐴12𝛺4 + 6𝐴12𝛺2𝛾𝐴02 +
3
2
𝐴14𝛺2𝛾 + 2𝐴12𝛺2𝜅 ( 5-37) 

The locus of peaks of transmissibility can be found as before, by assuming a phase angle equal 

to  -90 degrees, 

𝑇1|𝜙=90°  =
1
2
�4 +

𝛺2

𝜁2
≈
Ω
2𝜁

 ( 5-38) 
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The transmissibility as a function of non-dimensional frequency is shown in Figure  5-16. The 

curves are shifted to the right by increasing the linear stiffness. The higher tangent stiffness also 

causes the peaks to have larger values at high frequencies. The locus of peaks which is obtained 

by equation ( 5-38), does not explicitly depend on linear stiffness. However, for a specific set of 

parameters the frequency at which transmissibility is at a maximum depends on the oscillator 

parameters including linear stiffness as discussed earlier in this chapter.  

 

Figure  5-16: Transmissibility as a function of non-dimensional frequency Ω for different linear stiffness 
and γ=0.0783, ζ=0.025, 𝑓0=0.5, and 𝑓1=0.1, solid lines: stable solution, dotted lines: unstable solutions, 

dots: time domain solutions, dashed line: locus of transmissibility at which phase angle is -90˚ 

The isolation frequency as a function of static preload is shown in Figure  5-17 for γ=0.0783, 

ζ=0.025, and 𝑓1=0.1. The frequency of isolation due to jump down increases by increasing the 

linear stiffness. The linear model with stiffness equal to the tangent stiffness at the statically 

loaded position can model the nonlinear isolator at small amplitudes of vibration. It can be seen 

that the dots which are obtained by solving the nonlinear model match the linear equivalent 

isolation frequency with acceptable accuracy because of the small amplitude.  
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The isolation frequency is reduced by increasing the linear stiffness at large static preloads 

while it becomes larger when the linear stiffness is increased at low static preloads. The static 

deflection is smaller for greater values of linear stiffness. The tangent stiffness comprises of 

linear and nonlinear terms. The nonlinear term depends on the static deflection. The reduced 

static deflection results in smaller tangent stiffness. Thus, the range at which the isolation 

frequency of nonlinear isolator is smaller than that of a linear isolator is wider for larger values 

of linear stiffness. 

 

Figure  5-17: Isolation frequency as a function of static preload for γ=0.0783, ζ=0.025, and 𝑓1=0.1, circles: 
peak frequency dominant, dots: transmissibility less than one, lines: isolation frequency of equivalent 

linear isolator with stiffness equal to tangent stiffness, dotted line: isolation frequency of linear isolator 

 

5.7 Conclusions 

The nonlinear dynamics of a Duffing oscillator loaded statically was investigated in this chapter 

to evaluate the performance of a nonlinear oscillator with asymmetric force-deflection 

characteristics in isolating harmonic forces. The HBM was used to obtain the approximate 
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solution for response. These solutions were compared with the results of the time domain 

simulation in order to assess their accuracy. Different variations of Duffing equations were 

introduced. The equation of motion for an oscillator with linear, quadratic, and cubic stiffness 

terms can be converted to a Duffing equation with linear and cubic stiffness by axis 

transformation and by introducing an additional constant term which can be treated as a static 

preload.  

The first case considered was a Duffing oscillator with pure cubic stiffness subjected to a static 

preload. The forced response has been studied before thoroughly but is presented here for 

consistency [80, 81].  The response is of a hardening type for small levels of static preload and 

bends to the right depending also on the parameters of the system. There is a combination of 

hardening and softening for larger static preloads and purely softening type for very large static 

preloads. The response can comprise of multiple jump frequencies depending on the level of the 

static preload.  

The same trend in bending to the right and left is visible in the force transmissibility graphs. An 

approximate equation for the locus of the peak of transmissibility was obtained. The frequency 

at which the transmissibility drops below unity is considered as a measure for evaluating 

performance of the isolator and it is called the isolation frequency. The graph for isolation 

frequency as a function of static preload is produced and is compared with the isolation 

frequency of a linear isolator. For the hardening type nonlinearity the jump down frequency 

defines the isolation frequency while for linear or softening type nonlinearity the drop of 

transmissibility below unity on the high frequency branch identifies it. It depends on the 

dynamic load level in addition to the nonlinear stiffness and damping. A weakly nonlinear 

isolator can perform better than a linear one up to a large static preload. 

The effect of a mistuned mass on the dynamic response of a Duffing oscillator with only cubic 

nonlinearity was investigated. The mistuned mass moves the statically loaded position away 

from the optimum position in a similar way to the static preload but differs in that the inertia 

term of forced equation of motion is affected by the mistuned mass. The FRCs shift to the left 

for an increased mass and to the right for decreased mass. Oscillators which are loaded to the 

same position statically due to mistuned mass or static preload show different types of FRC. 

The shift in FRCs causes a change in the response amplitude which affects the instantaneous 

stiffness and the shape of the FRCs. 
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The same trend is visible in the transmissibility graph for a nonlinear isolator that is loaded with 

a mistuned mass. The isolation frequency as a function of mass ratio is also produced. The 

isolation frequency is different from that of a statically preloaded case, but the range at which it 

performs better than a linear isolator loaded by the same mass is the same for the statically 

loaded case and the mistuned mass case. 

The effect of a linear term in the dynamic response of a Duffing oscillator is also investigated. 

The nonlinear effects such as bending to the right and left become weaker when the linear 

stiffness is increased. The additional linear stiffness term also brings an increase in the effective 

tangent stiffness. The static deflection reduces due to the additional linear stiffness. The tangent 

stiffness at the statically loaded position is increasing for small static preloads due to the 

additional linear stiffness while it is decreasing at large static preloads due to reduced static 

deflection. As a result, the isolation frequency increases for small static preloads due to the 

additional linear stiffness term and it decreases for large static preload. 
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6 Dynamic response of a curved beam isolator 

 

 

6.1 Introduction 

Axially loaded curved beams are investigated in chapter 3 as nonlinear elements that can 

provide low tangent stiffness while maintaining high static stiffness, this being a desirable 

characteristic for springs elements of a nonlinear vibration isolator. A case study of an isolator 

that is comprised of curved beams as its springs, hereafter referred to as a “curved beam 

isolator”, is introduced in chapter 3 to illustrate the achievability of a low natural frequency with 

modest static deflection. The FEM was used to evaluate the potentially detrimental effect of 

modes of the isolator itself on the isolator performance. The FEM solution was obtained by 

considering a linearized model about the statically loaded position. In addition to the linear 

analysis of chapter 3, the nonlinear dynamics must also be examined to assess the performance 

of such an isolator when excitation is not small. A similar configuration was studied by Bonello 

et al. [66, 77]. They used a mass supported by curved beams for an adaptive tuned vibration 

absorber.  

The nonlinear dynamics of the Duffing oscillator with a static preload or a mistuned mass was 

examined in the previous chapter using the Harmonic Balance Method. The possibility of 

modelling a curved beam isolator about its statically loaded position with such a Duffing 

oscillator is investigated here. A third order polynomial is fitted to the force-deflection curve of 

a curved beam to obtain an approximate model in the form of the Duffing oscillator. The HBM 
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is used to obtain the forced response of the Duffing oscillator. It is compared with the forced 

response of the curved beam isolator obtained in the time domain using the exact force-

deflection curve. While the time domain simulation fulfils the purpose of this chapter, the 

approximate Duffing oscillator model is examined to assess the applicability of the method 

presented in chapter 5 to the curved beam isolator and to provide an insight into the nonlinear 

characteristics of the system. 

The purpose of this chapter is to assess the performance of a nonlinear isolator comprised of 

curved beam in isolating transmitted force considering its nonlinear dynamics. The method that 

is used to model the curved beam isolator is described in section  6.2. The schematic graph of the 

isolator is introduced and its force-deflection relation and polynomial fit are presented. The 

forced response of a mass on the curved beam isolator is obtained for different amplitudes of 

harmonic force. The approximate forced response obtained by applying the HBM to the Duffing 

oscillator model of the curved beam isolator is compared with the exact solution obtained by 

time domain simulation. The effect of additional static preload is explored in section  6.4 for the 

curved beam isolator with an initial curvature angle of 2 degrees. The performance of the 

isolator in transmitting force is evaluated in the following section. The force transmissibility is 

obtained for different amplitudes of harmonic load. The transmissibility graphs are also 

produced for different static preload and the transmitted force is analysed. The wave form of the 

transmitted force is investigated in section  6.6 which highlights an issue arising from strong 

asymmetry in the force-deflection curve. This issue is addressed and a method to overcome it is 

introduced. The chapter finishes with conclusions.  

 

6.2 Modelling of a curved beam isolator 

A schematic view of a curved beam isolator is shown in Figure  6-1(a). It is the same as the 

isolator that has been used in chapter 3. The model of the curved beam isolator is shown in 

Figure  6-1(b) where the nonlinear spring’s force-deflection curve is that of two curved beams in 

parallel. The beams are assumed to be massless in the model. The fundamental mode of 

vibration of a mass supported by the curved beam isolator can be obtained from the model 

presented here. The linear spring 𝑘𝑐 is added in series with the isolator to overcome a 
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convergence problem that arises in the time domain simulation due to the high stiffness at about 

the unloaded position and beyond that in tension. By choosing a large stiffness for the linear 

spring the force-deflection curve of the curved beam isolator is hardly affected in its intended 

operation range, i.e. in compression. The linear spring is also used in section  6.6 to improve the 

performance of the isolator. A dashpot is considered in parallel to model damping. The equation 

of motion for the dynamic system subject to a time-harmonic force is, 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝐹𝑘(𝑥) = 𝐹 cos(𝜔𝑡) ( 6-1) 

 

Figure  6-1: a) Schematic view of the curved beam isolator, b) Model  of the curved beam isolator with 
additional linear spring to over come convergence problems in the numerical simulation (it  is also used in 

section  6.6 to improve the performance of the isolaor.) 

where 𝐹𝑘 is the restoring force due to the spring. Equation ( 6-1) can be written in terms of non-

dimensional parameters and variables as, 

𝑦′′ + 2𝜁𝑦′ + 𝑓𝑘(𝑦) = 𝑓1 cos(𝛺𝜏) ( 6-2) 

here (•)′ denotes differentiating with respect to non-dimensional time τ, 



  

  

162 

 

𝜏 = 𝜔𝑛𝑡,  𝛺 = 𝜔/𝜔𝑛, 𝑦 = 𝑥/𝑥𝑠, 𝑘𝑠 = 𝑚𝑔/𝑥𝑠,       𝜔𝑛 = �𝑘𝑠/𝑚, 

𝜁 = 𝑐/2𝑚𝜔𝑛 ,           𝑓1 = 𝐹/𝑚𝑔,      𝑓𝑘 = 𝐹𝑘/𝑚𝑔 

and 𝑥𝑠 is the static displacement of the isolator due to the weight of the isolated mass. This 

method of normalizing makes it possible to compare the nonlinear isolator with a linear isolator 

with the same static deflection due to the mass since its non-dimensional natural frequency is 

unity. Note that, as the previous chapter, 𝜔𝑛 is the natural frequency of a comparable linear 

isolator which has the same static displacement 𝑥𝑠.  The damping parameter 𝜁 = 𝑐/2𝑚𝜔𝑛 is 

therefore not the equivalent damping ratio of the system, which can be defined as dependent on 

the natural frequency of the nonlinear system when linearized about its equilibrium position.  

It is shown in chapter 3 that for small amplitudes of oscillation, a smaller initial angle of 

curvature achieves a smaller minimum tangent stiffness and hence better isolation. However, the 

nonlinear dynamics such as bending to the right of the frequency response curve can undermine 

the benefits of using small initial curvatures since they result in higher stiffness nonlinearity. 

Three initial curvature angles of 2˚, 5˚, and 15˚ are chosen to examine the dynamic response of 

the curved beam isolators.  

It is assumed that the curved beam isolators are loaded to their minimum tangent stiffness 

position by the isolated mass which is considered to be the optimum static loading condition. 

For analysis purposes, the force-deflection curves are also transformed to have their origin at the 

minimum tangent stiffness position i. e. 𝑥 in Figure  6-1 is measured from equilibrium position. 

The stiffness of the linear spring is normalized with the static stiffness of the optimally loaded 

curved beams. The non-dimensional force-deflection curves for the combination of curved beam 

and high stiffness spring (𝑘𝑐) are shown in Figure  6-2 with dashed lines. The force-deflection 

curves are normalized by the force and displacement at the minimum tangent stiffness position 

of the combination of linear springs and curved beams, for consistency with the previous 

chapter.  Stiffness 𝑘𝑐 is chosen equal to 100 for these force-deflection curves. Such a high 

stiffness for the linear spring lessens the steepness of the curve around 𝑥/𝑥𝑠=-1 to an 

imperceptible degree but sufficiently to ensure numerical convergence of the time domain 

solution. 



  

  

163 

 

Fitting a third order polynomial to the curved beam force-deflection curve is not possible in its 

whole range and so the system can be adequately modelled as a Duffing oscillator for 

sufficiently small oscillation. Thus a range, centred at statically loaded position, is chosen to fit 

the third order polynomial to it. The inclusion of a quadratic term in the fitted polynomial is to 

model asymmetry in the force-deflection about the statically loaded position. It is shown in the 

previous chapter that the quadratic term of a third order polynomial can be omitted by proper 

transformation of the axes. The new fit is in the form of the Duffing equation with an additional 

constant term which can be considered as a static preload.  

The polynomial fits and the ranges over which they are fitted are shown in Figure  6-2 with 

dotted and solid lines respectively. The third order polynomial fits the force-deflection curve on 

the specified range but at displacements of about -1, where the stiffness is very high, the fits do 

not represent the true curves at all well. At large positive displacements, they also start to 

deviate from the exact solutions.  

 

 

Figure  6-2: Non-dimensional force-deflection curve for curved beam isolator and polynomial third order 
fit for different initial angles and 𝑘𝑐=100, (Dashed line: exact solution of chapter 3, solid line: Range that 

data is fitted to, dotted line: Fitted third order polynomial)  
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The coefficients for the fits are shown in Table  6-1 alongside the corresponding coefficients 

when the equations are transformed to eliminate the quadratic terms where γ and κ are the cubic 

and linear stiffness respectively, 𝑓0′ is the constant arising from the transformation as given by 

equation (4) of chapter 5, and δ is the transformation of the axes. The cubic stiffness is small 

compared to the values used in the previous chapter while the linear stiffness is comparably 

large. Consequently, a lower level of nonlinearity is predicted for the fitted Duffing oscillator 

compared to the previous chapter. The coefficients of the transformed polynomial are used in 

the next section to find the dynamic response of this equivalent Duffing oscillator by the 

Harmonic Balance method.  

Table  6-1: Coefficients of the fit of the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 = 0 to the force-deflection of the curved 
beam isolator about its minimum tangent stiffness position and transformed polynomial of the form 

𝑧3 + 𝜅𝑧 = 𝑓0′, (z=x+δ) 

Initial 
curvature 

angle 
(degree) 

Fitted polynomial Transformed polynomial 

a b c γ κ 𝑓0′ δ 

2 0.0121 -0.0064 0.0814 0.0121 0.0803 -0.0142 -0.176 

5 0.0178 -0.0048 0.1273 0.0178 0.1269 -0.0114 -0.089 

15 0.0380 -0.0042 0.2223 0.0380 0.2221 -0.0082 -0.037 

 

6.3 Forced response of a curved beam isolator 

The polynomial fits obtained allow modelling the isolator as a Duffing oscillator with static 

preload for a small range in the vicinity of the statically loaded position. The harmonic balance 

method is applied to obtain the approximate forced response in a similar way to the previous 

chapter. A harmonic force with non-dimensional amplitude 𝑓1 and non-dimensional frequency 

Ω is applied to the isolated mass. The response of the curved beam isolator is considered to be 

of the same form as before comprising a harmonic term at the excitation frequency with 

amplitude 𝐴1 and a bias term, 𝐴0. 
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The approximate results are not expected to match the true response of the isolator for large 

amplitudes. To investigate this, the response of the isolator obtained by direct numerical 

integration is compared with the approximate solution. The time domain numerical integration 

is performed by using the ode45 function in Matlab in which the exact force-deflection of the 

curved beam isolator is used, as obtained in section 3.6. The amplitude of the response at the 

excitation frequency and the bias term of the response can be obtained from the steady state 

response by applying the Fast Fourier Transform.  

The harmonic term of the response 𝐴1 is shown at the top of Figure  6-3 for 𝑓1=0.01, ζ=0.025, 

and 𝑘𝑐=100. The coefficients of the approximate Duffing oscillators are given in Table  6-1 and 

the obtained results are shown by solid lines. The corresponding results from the time domain 

simulations are shown by the dots on the same graph. For this small amplitude of dynamic force 

(1 per cent of the weight of the isolated mass here), the isolator behaves similarly to a linear 

isolator. There is no unstable range nor any bending of the peak to the right or left. The Duffing 

oscillator can be seen to model the harmonic response of the system. The curved beams with 

smaller initial curvature angles provide better isolation compared to the isolator with higher 

initial angles due to lower tangent stiffness. The linear isolator with the same static deflection 

due to the isolated mass would have a non-dimensional natural frequency of unity. The peak 

frequency of the nonlinear isolator is well below unity in all three cases which is indicative of 

better isolation performance compared to the linear equivalent. 

The bias term of the forced response for the same set of parameters is shown in bottom part of 

Figure  6-3. Solid lines represent results from the HBM for the approximate Duffing model 

where the coefficients are given in Table  6-1. The curves are corrected for transformation by δ 

which was introduced previously to eliminate the quadratic terms of the polynomial fits. As a 

result, bias term is measured from the minimum tangent stiffness position. The bias term of the 

response is very small comparing to harmonic amplitude of the response. The approximate 

model cannot predict the bias term which can be due to strong asymmetry in the force-

deflection of the curved beam. The statically loaded position of the approximate Duffing model 

is different from that of the curved beam isolator due to the error in the polynomial fit. For a 

very small bias term, the difference becomes significant and the approximate model predicts a 

larger bias term.   
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Figure  6-3: Harmonic term of forced response 𝐴1 and bias term of forced response 𝐴0 for curved beam 
isolator loaded to its minimum tangent stiffness position, 𝑓1=0.01, 𝑘𝑐=100, and ζ=0.025, approximate 

solutions from the HBM are obtained by using coefficients given in Table  6-1. (Solid line: approximate 
results, dots: accurate solution from the time domain simulation)  

The effect of nonlinearity can be expected to become more apparent when increasing the 

harmonic load amplitude. The harmonic response term 𝐴1 is shown in Figure  6-4 for 𝑓1=0.1. 

The solid and dashed lines are obtained by the HBM for the approximate Duffing models 

(Table  6-1) and are the stable and unstable branches respectively. Dots represent the exact 
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response obtained from direct numerical integration with the correct force-deflection relation. 

The third order polynomial does not represent the curved beam isolator force-deflection for 

large amplitudes. As a result, the forced-response cannot be predicted from the approximate 

model at about resonance where the amplitude becomes large. The amplitude follows the 

resonance branch when increasing frequency and jumps down at the peak which is shown by the 

letter d on the graph. For decreasing frequencies, the amplitude follows the high frequency 

branch and then jumps up to the peak resonance branch which is indicated by the letter u on the 

graph.  

 

Figure  6-4: Harmonic term of forced response 𝐴1 for curved beam isolator for 𝑓1=0.1, 𝑘𝑐=100, and 
ζ=0.25, (solid line: HBM results stable branch, dotted line: HBM results unstable branch, dots: time 

domain simulation)  

It seems that the resonance branches of the exact solutions are different from those obtained 

from approximate Duffing models. The shift is due to the increased instantaneous stiffness at 

about the unloaded position which becomes effective at larger harmonic amplitudes. There is a 

transition range between the frequency at which the harmonic amplitude starts to deviate from 

the approximate solution until the frequency it begins to follow a different resonant branch.  
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The harmonic amplitude curve is shown again in Figure  6-5 for only an initial angle of 2˚. The 

range at which transition happens is shown on the graph. The steady state time response of the 

same isolator is shown in Figure  6-6 for four different excitation frequencies Ω. At low 

excitation frequency, Figure  6-6 (a), the oscillation is almost sinusoidal where at its minima it 

flattens slightly due to the high stiffness range at a non-dimensional displacement of about -1, 

i.e. the unloaded position. The waterfall spectrum of the forced response is shown in Figure  6-7. 

It can be seen that the excitation harmonic is dominant, with the higher harmonics of the 

excitation frequency having very small amplitudes. At the higher excitation frequency of Ω=0.2, 

see Figure  6-6 (b), the time history is not sinusoidal at a single frequency. The amplitude of the 

second harmonic is increased as can be seen in Figure  6-7. 

 

Figure  6-5: Harmonic term of forced response 𝐴1 for curved beam isolator for 𝑓1=0.1, 𝑘𝑐=100, ζ=0.25, 
and α=2˚, (black solid line: HBM results stable branch, black dotted line: HBM results unstable branch, 

(κ=.08, γ=0.0143, 𝑓0=-0.019) , grey line: fitted line to the time domain data, dots: time domain 
simulation) 

At a non-dimensional frequency Ω of 0.22, there is a sudden drop in harmonic amplitude. The 

time history of the oscillation for this excitation frequency is shown in Figure  6-6 (c). The 

second harmonic is at its peak at this frequency.  By increasing the excitation frequency further, 

the shape of the response time history changes again, Figure  6-6 (d). This is the region which is 

shown by a grey line in Figure  6-5. The amplitude of the main harmonic keeps increasing by 
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increasing the frequency, while the amplitude of the second harmonic is almost constant in this 

range (Figure  6-7). The shape of the time history remains the same up to the jump down 

frequency.  At a non-dimensional frequency of 0.6 the amplitude of the main harmonics jumps 

down and the higher harmonics disappear, where for small amplitudes it becomes a linear like 

oscillation.  

 

Figure  6-6: Curved beam isolator oscillation time history (exact time domain solution) for α=2˚, 𝑓1=0.1, 
ζ=0.025, and 𝑘𝑐=100, dashed line: applied harmonic force 
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Figure  6-7: waterfall spectrum of forced response for curved beam isolator for 𝑓1=0.1, 𝑘𝑐=100, ζ=0.25, 
and α=2˚ 

The bias term of the forced response is shown in Figure  6-8 for 𝑓1=0.1. The coefficients for the 

approximate Duffing oscillator are given in Table  6-1 for the results shown on this graph. The 

Duffing oscillator model does not match with the frequency response from the exact solution 

here either. The strong asymmetry in the force-deflection at negative displacement shifts the 

centre of oscillation further into the deformed region while there is not such a high stiffness as 

the fitted third order polynomial. At high frequencies, the obtained bias term by the approximate 

solution is larger than the exact solution in the time domain due to the poor polynomial fit. 
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Figure  6-8: Bias term of forced response 𝐴0 for the curved beam isolator for 𝑓1=0.1, 𝑘𝑐=100, and ζ=0.25, 
(The coefficient for approximate Duffing oscillator is given in Table  6-1, solid line: Approximate model, 

stable branch, dotted line: approximate model, unstable branch, dots: exact model) 

 

6.4 Curved beam isolator loaded statically 

The curved beam isolator is assumed to be loaded to its minimum tangent stiffness position in 

the previous section. A vibration isolator might not be loaded to its optimum position in practice 

due to a static preload or a mistuned mass. The effect of applying a static preload is investigated 

in this section to obtain the forced response of a nonlinear vibration isolator with suboptimal 

static loading. 

The curved beam isolator is modelled by a Duffing oscillator with a static preload in the 

previous section where the static preload appeared due a coordinate transformation to eliminate 

the quadratic term of the fitted polynomial. An actual static preload, 𝑓𝑠, is applied to the mass in 

this section. A third order polynomial is fitted about this statically loaded position. The 

quadratic term of the fitted polynomial is again eliminated by appropriate axis transformation. 

As a result of this transformation, a constant is introduced in the equation which is also treated 

as a static load. The static preload that appears in the Duffing oscillator forced response model 
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is the sum of the applied static preload 𝑓𝑠 and the constant appearing due to the axis 

transformation, and are shown by 𝑓0 in this section. 

The effect of static preload on the curved beam isolator with initial curvature angle of 2˚ is 

investigated here. It is shown in the previous section that a smaller initial curvature angle 

provides a lower jump down frequency which is desirable in a vibration isolator. The harmonic 

terms of forced response of the curved beam isolator are shown in Figure  6-9 for different 

positive static preloads. The coefficients that have been used to obtain the approximate response 

for the Duffing oscillator model are shown in Table  6-2.  

Table  6-2: Coefficients of the Duffing oscillator model (𝑥̈ + 2𝜁𝑥̇ + 𝜅𝑥 + 𝛾𝑥3 = 𝑓1cos (Ω𝑡) + 𝑓0) of the 
curved beam isolator with initial curvature angle α of 2˚, 𝑘𝑐=100 

𝑓𝑠 κ γ 𝑓0 
δ (axis 

transformation) 

0 .08 0.0143 -0.019 -0.238 

0.1 0.09 0.004 0.039 -0.768 

0.2 0.08 0.0013 0.249 -0.612 

0.4 0.1 0.0022 0.336 -0.835 

The mass moves further into the deformed region by increasing the static preload which results 

in an increased separation between the statically loaded position and the high stiffness region 

near the unloaded position. Thus higher amplitudes of response are achievable before straying 

into the high stiffness region where the Duffing oscillator model cannot predict the response of 

the isolator. It can be seen in Figure  6-9 that for larger statically preloaded isolators the 

deviation from the Duffing oscillator model occurs for comparably larger amplitudes of 

oscillation. Also, a larger amplitude of response is possible before the high stiffness region 

controls the motion in the extensional direction.  
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Figure  6-9: Harmonic term of forced response for curved beam isolator with initial curvature angle α=2˚ 
for different static loads 𝑓𝑠, 𝑓1=0.1, 𝑘𝑐=100, and ζ=0.025, (solid line: approximate model, stable branch, 

dotted line: approximate model, unstable branch, dots: exact model) 

The bias term of the forced response is shown in Figure  6-10. The coefficients for the 

approximate Duffing model are given in Table  6-2. The bias increases with static preload as 

expected. The approximate Duffing oscillator model predicts a trough at the resonance for the 

bias term which is explained in the previous chapter in section 5.4.1. However, the bias term 

obtained from the exact solution in the time domain increases at about resonance due to strong 

asymmetry in the force-deflection curve. The high stiffness of the beam in tension acts as a 

rigid-end stop and shifts the centre of oscillation further into the deformed region. As a result 

the bias term increases for large amplitudes. 
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Figure  6-10: Bias of forced response for the curved beam isolator with initial curvature angle of 2˚ for 
different static preloads𝑓𝑠, 𝑓1=0.1, 𝑘𝑐=100, and ζ=0.025, (solid line: approximate model, stable branch, 

dotted line: approximate model, unstable branch, dots: exact model) 
 

6.5 Force transmissibility of a curved beam isolator 

The force transmissibility is used to assess the performance of the curved beam isolator in 

reducing the transmitted force. The transmitted force can be considered as a combination of a 

harmonic force at the excitation frequency and a static component. In the previous chapter, it is 

shown how the transmissibility of a Duffing oscillator with a static preload can be obtained and 

the effect of different parameters on it investigated. The same method can be applied here by 

using the polynomial fit to approximate the curved beam to a Duffing oscillator. The results are 

compared with exact results obtained by the time domain simulations of the curved beam 

isolator using the exact force-deflection relation. 

The force transmissibility obtained by both the approximate and exact models are shown in 

Figure  6-11 for three different initial curvature angles and a non-dimensional forcing amplitude 

of 0.01. The coefficients for the approximate Duffing oscillator model are given in Table  6-1. 

For small oscillations, the isolator can be modelled by a linear oscillator with the same stiffness 

as the tangent stiffness as at the statically loaded position. The force transmissibility of the 

curved beam is, as one might expect, very similar to that of a linear system and there is no 
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unstable region and no jump down and jump up frequencies. The smaller the initial angle, the 

lower is the minimum tangent stiffness and thus the isolation occurs at lower frequencies. The 

isolation frequency (where transmissibility drops below unity) for the curved beam isolator with 

initial curvature angle of 2˚ occurs at a non-dimensional frequency of about 0.4, which is just 

over one quarter of the isolation frequency for a linear isolator which possesses the same static 

deflection due the isolated mass.  

 

Figure  6-11: Transmissibility as a function of non-dimensional frequency Ω for the curved beam isolator 
with three different initial angles α, for ζ=0.025 and 𝑓1=0.01, 𝑘𝑐=100, solid lines: approximate solution 

(coefficients for Duffing oscillator model is given in Table  6-1),  dots: results of exact model 

The force transmissibility of the same set of curved beam isolators for a harmonic load of 0.1 is 

shown in Figure  6-12. The Duffing oscillator model cannot predict the transmissibility at 

frequencies for which the amplitude of vibration is large. The jump-down frequency is shifted to 

the right for larger initial curvature angles. The transmissibility at jump-down is also larger for 

higher initial curvature angle which is the reverse of what was observed for the forced response 

in section  6.3(the transmissibility is also proportional to frequency due to force being 

transmitted through the damper). Because of the strong nonlinearity and bend to the right, the 

jump down frequency defines the isolation frequency. For initial curvature of 2˚ and non-

dimensional force of 0.1, the jump down frequency is about 0.6 is still less than half of √2 

which is the isolation frequency of the comparable linear isolator with the same static deflection 

due to the isolated mass.  
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Figure  6-12: Transmissibility as a function of non-dimensional frequency Ω for the curve beam isolator 
with three different initial angles α, for ζ=0.025, 𝑓1=0.1, 𝑓𝑠=0, and 𝑘𝑐=100,(Parameters for approximate 

solution from Table  6-1) solid lines: approximate solution stable branch, dotted lines: approximate 
solution unstable branch, dots: results of exact model of the time domain simulation 

The effect of static preload on the forced response of the curved beam isolator with initial 

curvature angle of 2˚ is shown in the previous section. The transmissibility for the isolator with 

the same set of parameters is shown in Figure  6-13. The jump down occurs at lower frequencies 

for larger values of static preload 𝑓𝑠 and as a result achieves a lower frequency of isolation. In 

this respect, one might conclude that the minimum stiffness position is not the optimal working 

position when large dynamic loads are considered. However, the extra deflection due to static 

load is not considered in normalising the parameters that are used to obtain this graph and only 

the deflection due to the weight of the isolated mass is used for normalising. By considering the 

static deflection due to both of weight of the mass and the static force, a new set of 

transmissibility curves are obtained and are shown in Figure  6-14. The isolators are now 

compared in such a way that all of them have the same static deflection. The dynamic load level 

is also adjusted to have the equivalent amplitude of 𝑓1 = 0.1 for the unloaded isolator. It can be 

seen that the jump down frequency occurs at a higher frequency for larger static load 𝑓𝑠. The 

performance of the isolator is poorer with static preload when the extra static deflection due to 

the preload is considered in normalising the parameters. 
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Figure  6-13: Force transmissibility for curved beam isolator with initial curvature angle α=2˚ for different 
static preloads 𝑓𝑠, 𝑓1=0.1, 𝑘𝑐=100, and ζ=0.025, parameters for approximate Duffing oscillator are given 

in Table  6-2 (solid line: approximate results stable branch, dotted line: approximate results unstable 
branch, dots: exact results of the time domain simulation) 

 

Figure  6-14: Force transmissibility for curved beam isolator with initial curvature angle α=2˚ ,( isolators 
are normalised with the total static deflection and dynamic load, 𝑓1, is adjusted to have the equivalent 

dynamic force of 𝑓1=0.1), for different static preloads 𝑓𝑠, 𝑘𝑐=100, and ζ=0.025, (solid line: approximate 
results stable branch, dotted line: approximate results unstable branch, dots: exact results of the time 

domain simulation) 
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6.6 Transmitted force in the time domain 

The force transmissibility of the isolator presented in the previous section considers only the 

component of the response at the excitation frequency. However, it is important to investigate 

the existence of any other harmonic in the response of the system. The time history of the 

transmitted force of the curved beam isolator with an initial angle of 2˚ for an excitation 

frequency of 0.58, which is the jump-down frequency, is shown in Figure  6-15. There is a 

narrow trough in each cycle of very large absolute value. This is caused by the high beam’s 

stiffness for negative displacement about a non-dimensional displacement of -1. The existence 

of this trough makes it extremely undesirable to implement the isolator with the same set of 

parameters in practice even though the transmitted force component at the excitation frequency 

is limited.  

 

Figure  6-15: Time history of transmitted force through curved beam isolator for excitation frequency of 
0.58 for α=2˚, 𝑓1=0.1, ζ=0.025, 𝑓𝑠=0, and 𝑘𝑐=100 

The total harmonic distortion (THD) is a measure of the contribution of harmonics to the overall 

response [84, 85] and is defined as, 

THD =
∑ 𝐴𝑖2𝑁
𝑖=2

𝐴12
 

( 6-3) 
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where 𝐴1 is the amplitude of the fundamental, 𝐴𝑖 are the amplitudes of the harmonics, and N is 

the number of harmonic components included. The amplitude is obtained by applying FFT on a 

cycle at excitation frequency and 𝑁 is chosen equal to 200. The THDs are shown in Figure  6-16 

for three different initial curvature angles. The solid line is produced by increasing the 

frequency and the dashed line by reducing the frequency. The two lines match except the 

frequency range between jump-up and jump-down. There are also some disagreements between 

curves for increasing and decreasing frequency for example at a non-dimensional frequency of 

about 0.4 for 𝛼 = 15°. This is due to the existence of subharmonics which are not considered in 

obtaining the THD. The excitation frequency is the dominant frequency in most of the range for 

all three different initial curvature angles. The only exception is at a non-dimensional frequency 

of 0.2 where the second peak in the time history exists, as shown previously in Figure  6-6. At 

high frequencies, the oscillation becomes sinusoidal and the THD is almost zero.  

 

Figure  6-16: Total Harmonic Distortion (THD) of harmonic term of forced response 𝐴1 in per cent as a 
function of non-dimensional frequency for 𝑓1=0.1, ζ=0.025, 𝑓𝑠=0, 𝑘𝑐=100, (solid line: increasing 

frequency, dashed line decreasing frequency) 

The total harmonic distortion for the transmissibility of the curved beam isolator with static 

preload is shown in Figure  6-17. The existence of other harmonics due to the narrow deep 

trough in the time history of the transmitted force makes its THD significantly larger than the 

THD of the harmonic term 𝐴1. In the case of forced response, the high stiffness for negative 
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displacements limits the amplitude of oscillation. However, in the case of force transmissibility, 

the force is transmitted to the base at other frequencies in addition to the excitation frequency. 

 

Figure  6-17: Total Harmonic Distortion (THD) of force transmissibility in per cent as a function of non-
dimensional frequency for 𝑓1=0.1, ζ=0.025, 𝑓𝑠=0, 𝑘𝑐=100, (solid line: increasing frequency, dashed line 

decreasing frequency) 

The high stiffness about the statically unloaded position can be controlled by the stiffness of the 

linear springs. The non-dimensional stiffness 𝑘𝑐 of the linear springs is chosen to be unity in the 

following analysis, i.e. the stiffness of the linear spring is equal to the static stiffness of the 

curved beam at its optimal position. The force deflection curve of the curved beam isolator is 

shown in Figure  6-18 for α=2˚, 𝑘𝑐=1 and 𝑘𝑐=100. The force-deflection is normalized by force 

and displacement at the minimum tangent stiffness position of the combined system of the 

curved beam and the linear spring. The stiffness at negative displacements towards the unloaded 

position is linear and is controlled by the linear spring while at the optimally loaded position it 

is controlled by the curved beam with low tangent stiffness. The stiffness at negative 

displacements is reduced considerably at a cost of increasing the minimum tangent stiffness of 

the isolator for 𝑘𝑐=1.   
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Figure  6-18: Non-dimensional force-deflection curve of the curved beam isolator for initial curvature 
angle α=2˚  

The harmonic amplitude of the forced response of the curved beam isolator is shown in 

Figure  6-19 for two different values of linear spring stiffness, 𝑘𝑐=1 and 𝑘𝑐=100. The 

coefficients for the approximate Duffing oscillator model for this graph are given in Table  6-3. 

The amplitude 𝐴1 is smaller for 𝑘𝑐 equal to unity at low frequency due to the increased tangent 

stiffness. The jump down frequency has increased to a non-dimensional frequency of 0.68 

whereas it was 0.58 for the isolator with 𝑘𝑐 equal to 100. At high frequencies, the two curves 

approach each other asymptotically where the oscillation is mass controlled. 

Table  6-3: Coefficient of the Duffing oscillator model (𝑥̈ + 2𝜁𝑥̇ + 𝜅𝑥 + 𝛾𝑥3 = 𝑓1cos (Ω𝑡) + 𝑓0) of the 
curved beam isolator with initial curvature angle α of 2˚ 

𝑘𝑐 κ γ 𝑓0 
δ (axis 

transformation) 

1 0.15 0.0694 -0.014 -0.095 

100 0.08 0.0143 -0.019 -0.238 
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Figure  6-19: Harmonic term of forced response 𝐴1 for curved beam isolator for α=2˚,  𝑓1=0.05, 𝑓𝑠=0 and 
ζ=0.25, (Approximate Duffing model of Table  6-3; solid line: approximate solution stable branch, dotted 

line: approximate solution unstable branch, dots: time domain simulation) 

The transmissibility curve of the curved beam isolators for two different linear spring stiffness 

values, 𝑘𝑐=1 and 𝑘𝑐=100, are shown in Figure  6-20. The coefficients for the approximate 

Duffing oscillator model are given in Table  6-3. The transmissibility of the linear isolator with 

the same static deflection due to the mass is also shown in the same figure by the dotted-dashed 

line. The jump-down frequency increased to 0.68 for the curved beam isolator with 𝑘𝑐 equal to 

unity. It is also the isolation frequency of the curved beam isolator. Compared to the linear 

isolator with the same static deflection, the isolation frequency of the curved beam isolator is 

still less than half of the linear one. After jump down, the transmissibility of the curved beam 

isolators is lower than the linear isolator while the one with a smaller linear spring stiffness 𝑘𝑐 

has higher transmissibility. At a non-dimensional frequency of √2 which is the isolation 

frequency of the linear isolator and is shown by dotted line on the graph, the transmissibility of 

the curved beam isolator with 𝑘𝑐 equal to unity is smaller than one tenth of the linear one.  

Were the transmissibility curves plotted to high frequencies, e.g. Ω~ 100, one would see that 

they converge to the same asymptote of the transmissibility of the equivalent linear isolator 

(𝑇 = 2𝜁/𝜔). This is because of the fixed damping ratio for the equivalent linear system. 

However, the effective damping ratio of the nonlinear system depends on resonance frequency. 
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In practice, one might instead employ lighter damping for the nonlinear isolator in order to 

maintain an acceptable resonant response while reducing the transmission at high frequencies. 

 

 

Figure  6-20: Transmissibility as a function of non-dimensional frequency Ω for the curves beam isolator 
with two different linear springs stiffness 𝑘𝑐, for ζ=0.025, 𝑓1=0.1, 𝑓𝑠=0, (Approximate Duffing model of 

Table  6-3; solid line: approximate solution stable branch, dotted line: approximate solution unstable 
branch, dotted-dashed line: linear isolator with the same static deflection due to the isolated mass) 

The time history of a few cycles of the transmitted force for the curved beam isolator and the 

linear isolator with the same static deflection are shown in Figure  6-21. The stiffness of the 

linear springs of the curved beam isolator is equal to unity. The non-dimensional excitation 

frequency for which the time history of the curved beam isolator is produced is chosen equal to 

0.68 which is the jump down frequency of the curved beam isolator. There is still a dip in the 

time history of the transmitted force of the curved beam isolator but its absolute value has 

decreased to a more acceptable level.  
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Figure  6-21: Steady state time history of the transmitted force of the curved beam isolator at non-
dimensional frequency Ω = 0.68 for 𝑘𝑐 = 1, ζ = 0.025, 𝑓1 = 0.1, and 𝑓𝑠 = 0 

 

6.7 Conclusions 

The nonlinear dynamics of a curved beam vibration isolator are investigated in this chapter to 

assess its performance in isolating harmonic forces. A mass on the curved beam isolator is 

modelled as a single degree of freedom system whose spring is nonlinear and has the force-

deflection of the curved beam as obtained in chapter 3. The model of the curved beam isolator is 

slightly modified by adding a linear spring in series to overcome a convergence problem in the 

time domain simulations due to the high stiffness range about the unloaded position and beyond 

that in extension. A third order polynomial was fitted to the force-deflection curve to model it as 

a Duffing oscillator for small displacements about the statically loaded position. The HBM is 

used to obtain the approximate response of the Duffing oscillator model. The exact solutions are 

obtained by time domain simulations using the true force-deflection relation of the curved beam. 

Three initial curvature angles of 2, 5 and 15 degrees are chosen and the isolators comprised of 

them are compared. The isolators are assumed to be loaded to their minimum tangent stiffness 

position and the response at the excitation frequency is considered. The approximate model fails 

to predict the response for large amplitudes near resonance. The frequency response curves are 

of a hardening type which bends to the right and there is a jump frequency in the FRCs. It is 
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revealed that the curved beam isolators with smaller initial curvature angles have lower jump 

down frequencies. 

The bias term is almost zero up to the frequency range around resonance. The sudden change in 

tangent stiffness at about the statically unloaded position performs as a rigid-end stop and 

prevents the movement of the mass in the negative direction for large amplitudes. It forces the 

centre of oscillation further into the deformed range which results in a large bias at about 

resonance.  

The effect of additional static preload on the forced response and force transmissibility of the 

curved beam isolator is explored as a breach of the optimum working condition. The positive 

static preload moves the mass further into the deformed region away from the high stiffness end. 

The jump down frequency decreases with increasing static preload. Because of the bend to the 

right in the transmissibility curve, the jump down frequency is a measure of the performance of 

the isolator, and one may argue that the preloaded isolator is better. However, the extra 

deflection due to static load is not accounted for in the normalisation. By considering this extra 

deflection, i.e. comparing the isolator with the same static deflection at the loaded position, it is 

observed that the isolator loaded to the minimum tangent stiffness position outperforms the 

others. 

In time history of the transmitted force a dip with very large absolute value appears due to the 

high tangent stiffness in effect at about the unloaded position. The existence of such a dip 

introduces other harmonics in the frequency response and its large absolute value is undesirable. 

The difficulty is overcome by reducing the stiffness of the linear springs to a value comparable 

to the static stiffness of the curved beam at their optimum position. A curved beam in series 

with a linear spring outperforms a linear isolator with the same static deflection.  

Overall, it may be concluded that a nonlinear isolator with strong asymmetry in its force-

deflection curve can have a better isolation performance than a linear one providing that the 

tangent stiffness is limited. The smaller minimum tangent stiffness provides better isolation. 

The mass should be chosen to load the isolator to its minimum tangent stiffness position. The 

nonlinear isolator can accommodate static preloads but the resulting static deflection is 

undesirable and larger than the corresponding linear isolator.    



  

  

186 

 

  



  

  

187 

 

 

 

 

7 Concluding remarks and future works 

 

The performance of vibration isolators with nonlinear stiffness characteristics has been 

investigated in this thesis. A static analysis of mechanisms that can be used to achieve desirable 

stiffness characteristics has been presented. The Duffing oscillator with static preload or 

mistuned mass was considered as a nonlinear vibration isolator with asymmetric stiffness and its 

nonlinear dynamic response has been investigated in order to evaluate its performance.  In the 

last part of the thesis, the nonlinear dynamics of a vibration isolator comprising of curved beams 

was studied to assess its performance.  The main conclusions from this work are as follows: 

A mechanism called a snap through mechanism that has a negative stiffness in part of its 

displacement range was investigated statically in chapter 2. It was shown that the displacement 

range over which negative stiffness is shown depends on the angle at which the mechanism 

becomes unloaded, becoming larger as this angle is reduced.  A QZS mechanism can be formed 

by adding a vertical spring to the mechanism and adjusting the ratio between the vertical spring 

stiffness and the stiffness of the snap-through mechanism. The mechanism can be tuned for 

different static loads by simply adjusting the position of the vertical spring.  Finally, it is shown 

that this QZS mechanism has a wider displacement range affording low stiffness than a similar 

mechanism that was proposed in a previous work.   

Some measurements on an existing test rig that can be modelled as a snap-through mechanism 

was done.  Although, the test rig well suited its design purpose, an adaptive tuned vibration 

absorber, it is necessary to use elements that can accommodate large deflections in order to 

make it possible to use the rig as a QZS mechanism for vibration isolation. This implies using 

much thinner cantilevers, which have higher modes of vibration within the frequency range of 

interest.  It was decided that an alternative arrangement for a nonlinear vibration isolator, which 
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has fewer parts, would be required to avoid the problems encountered with the existing rig when 

it deforms with large deflections.     

The nonlinear stiffness properties of beams were investigated in the third chapter of the thesis. 

A simply supported beam loaded transversally at its midpoint is addressed as a nonlinear 

oscillator with softening characteristics in the literature [20] and was considered as a potential 

stiffness element for a nonlinear vibration isolator. However, it has been revealed here that it 

has a hardening stiffness nonlinearity. 

The reduction in tangent stiffness with deflection of an axially loaded buckled beam makes it 

suitable for use as a nonlinear vibration isolator. Buckling of the beam causes a singularity in 

the force-deflection curve and this can be avoided by increasing the static load of the system to 

move the buckling point out of the dynamic range. Alternative methods to avoid the singularity 

due to buckling are the introduction of eccentricity to the loading or initial curvature in the 

beam. It was shown that both of these have a smoothing effect on the force-displacement curve. 

The minimum tangent stiffness and corresponding static stiffness were obtained for them and it 

was shown that an order of magnitude reduction in stiffness can be achieved for a beam either 

with small initial curvature or small eccentricity to the loading.   

To investigate the effect of higher modes of vibration on the performance of an isolator 

comprising a curved beam, a case study was considered to isolate a mass of 1 kg and achieve 

1Hz fundamental frequency. The FEM was used to study the higher modes of vibration and 

forced transmissibility of an axially-loaded beam.  It was found that lower initial curvature is 

helpful with regard to achieving a higher static to tangent stiffness ratio and also in moving the 

second peak in the transmissibility curve to higher frequencies. The transmissibility and natural 

frequencies were obtained by assuming the system behaves linearly about the statically loaded 

position using FEM and nonlinear dynamic effects were not considered at this stage. 

Due to the bell shape of a commercially available isolation mount, the 'bubble mount', it was 

thought that it could be modelled as a curved beam.  The dimensions of the curved beam model 

were obtained by minimising the mean square error between the measured force-deflection 

curve of the bubble mount and the result of the curved beam model. It was found that a curved 

beam is not a suitable model for the bubble mount. This may be due to the thickness of the 
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bubble mount, which is not slender, or to its shape in cross section, which is not uniformly 

curved.  

The variability in the properties of bubble mounts was also evaluated. The force-deflection 

characteristics of ten nominally identical bubble mounts were measured and compared.  It was 

found that the variability in the natural frequency when mass-loaded was negligible; however 

the variability in tangent stiffness may causes some degree of mode coupling in practice for a 

piece of equipment that is supported by several of these mounts. This would also cause mounts 

to be loaded to positions other than their minimum tangent stiffness positions that must be 

considered in any further study of nonlinear isolators. The differences in bubble mounts can be 

due to manufacturing tolerances and to the variability in the properties of rubber, which depends 

very much on its composition.  

The nonlinear dynamics of a Duffing oscillator with asymmetric stiffness resulting from a static 

load or a mistuned mass was investigated in chapter  5. The force transmissibility for a Duffing 

oscillator with cubic stiffness only, subject to a static preload was obtained first. It is revealed 

that the FRC of transmissibility is similar to that of forced response. It is of the hardening type 

for small levels of static preload and bends to the right depending on the parameters of the 

system. There is a combination of hardening and softening for larger static preloads and its 

stiffness is of the purely softening type for very large static preloads.  The FRCs can consist of 

multiple jump frequencies, depending on the level of static preload.  An approximate equation 

for the locus of the peak amplitudes of the response and the transmissibility was presented.  The 

frequency at which the transmissibility drops below unity was used as a measure for evaluating 

the performance of the isolator and it is called the isolation frequency here. The plot for the 

isolation frequency as a function of the static preload was produced and compared with the 

isolation frequency of a linear isolator.  For the hardening type of nonlinearity, the jump-down 

frequency defines the isolation frequency.  It is shown that a weakly nonlinear isolator can 

perform better than a linear one up to a large static preload. 

The same analysis was performed for a Duffing oscillator with purely cubic stiffness and a 

mistuned or non-optimum mass. The variability in isolator characteristics as observed for the 

bubble mount or changing load (isolated mass) in a real system can result in an isolator that is 

not loaded with the mass that it had been designed to support. The mistuned mass moves the 

statically loaded position away from the optimum position in a similar way to static preload, but 
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differs in that the inertia term of the equation of motion is affected by the addition of the 

mistuned mass. The change in inertia term causes a change in the response amplitude compared 

to the equivalent statically loaded isolator, which affects the instantaneous stiffness and the 

shape of the FRCs.  The isolation frequency as a function of mass ratio was determined. The 

isolation frequency was different from that of a statically preloaded case, but the range at which 

it performs better than a linear isolator was the same for the mistuned mass oscillator and the 

equivalent statically loaded oscillator. 

Finally in chapter 5, the Duffing oscillator in its complete form, i.e. with linear and cubic 

stiffness terms, was investigated. Nonlinear effects such as bending to the right and left become 

weaker when the linear stiffness is increased. The additional linear stiffness term also brings an 

increase in the effective tangent stiffness. The isolation frequency increases for small static 

preloads and it decreases for large static preload compared to an isolator with cubic stiffness 

only. 

The nonlinear dynamics of a nonlinear isolator comprising of curved beams in series with linear 

springs was investigated in chapter 6 to assess its performance in isolating harmonic forces. A 

mass on this isolator was modelled as a single degree of freedom system with a nonlinear spring 

that has the force-deflection characteristic of the nonlinear isolator.  

The FRCs of forced response are of the hardening type that bend to the right with a jump down 

frequency. The high tangent stiffness at about the statically unloaded position behaves as a 

rigid-end stop and prevents movement of the mass in the negative direction for large amplitudes 

and pushes the centre of oscillation further into the buckled range. This results in a large bias 

term of response near resonance. It also causes distortion in the steady state time history of the 

oscillation and shifts the frequency response curve of the harmonic term in the response to the 

right and jump-down therefore occurs at higher frequencies than those predicted by the 

approximate Duffing model. The approximate model fails to predict the response for large 

amplitudes about resonance. 

The force transmissibility curves of the curved beam isolator are of the hardening type and bend 

to the right. The jump-down frequency defines the isolation frequency which is lower for a 

small curvature angle.  Compared to a linear isolator with the same static deflection, there is a 

reduction in the isolation frequency of about 60% for the curved beam isolator with an initial 
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curvature angle of 2˚. It was shown that in the case of applying a static preload, the jump-down 

frequency is reduced by an increase in the static preload. Although the jump-down frequency 

was reduced, the effect of the additional static deflection due to preload was not considered. By 

considering this static deflection, it was observed that the curved beam isolator loaded to its 

minimum tangent stiffness position outperforms the other ones. 

In the time history of the transmitted force a dip with very large absolute value appears due to 

the high tangent stiffness occurring at about the unloaded position. The existence of such a dip 

introduces other harmonics in the frequency response and its large absolute value is undesirable. 

The difficulty is overcome by reducing the stiffness of the linear springs to be comparable to the 

static stiffness of the curved beam at their optimum position at the cost of a slight increase in the 

jump down frequency. 

It may be concluded that a nonlinear isolator with an asymmetric force-deflection curve 

outperforms a linear isolator with the same static deflection. The lower level of tangent stiffness 

at the statically loaded position provides better isolation performance and the mass should be 

chosen to load the isolator to this position. In the case of a strong asymmetry in the force-

deflection curve, tangent stiffness should not be excessive to have an acceptable level of 

transmitted force at frequencies close to the resonance. A nonlinear isolator can accommodate 

static preloads but the static deflection due to a preload is larger than a linear isolator as 

expected. 

 

7.1 Recommendations for future work 

The performance of a nonlinear vibration isolator has been considered in some detail in this 

thesis, but there are aspects of this issue that require further study. Firstly, only the force 

transmissibility has been studied here. Unlike a linear system, the displacement transmissibility 

of a nonlinear isolator is not the same as the force transmissibility.  Therefore, a study of the 

displacement transmissibility of a nonlinear mount could provide useful information about its 

ability to isolate vibration at its base.  Further, the isolation achieved at the excitation frequency 

is considered here, while the effects of the other harmonics are not investigated thoroughly.  
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This is also worthy of further study.  Nonlinear phenomena such as chaos could also be 

considered in order to determine the conditions required for their occurrence.  

It is recommended here that a test rig is built for the curved beam isolator, so that measurements 

can be made for the nonlinear dynamic response of the system.  These measurements could then 

be used to evaluate the ability of a mathematical model to predict the response, including the 

displacement transmissibility.  

It was shown in chapter 3 that beams loaded eccentrically are an alternative to the post buckled 

straight beam.  The dynamic response of a nonlinear isolator comprised of beams loaded 

eccentrically could be obtained in future work and compared with that for a curved beam 

isolator in order to identify the best solution for isolation performance. This may also provide an 

improved understanding of nonlinear mechanisms. 

Single-degree-of-freedom systems only are considered in this study. In practice, a piece of 

equipment has six rigid body dofs and is isolated with several mounts. It is necessary to 

consider the nonlinear effects on a multi-degree-of-freedom system with such isolators.  

Finally, it is recommended here that sets of plots are produced for use in engineering design of 

nonlinear vibration isolation systems, based on analytical and experimental data. For example, 

plots for the isolation frequency with different sets of non-dimensional parameters could be very 

useful in the design of nonlinear isolation mounts. 
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Appendix A. Accuracy of solutions  

There is no exact analytical solution for the Duffing equation although approximate analytical 

solutions can be obtained by methods such as the HBM. It is assumed that the response of the 

system is harmonic and the excitation frequency is dominant in the response, so the other 

harmonics can be neglected. However, the response contains other harmonics and can also be 

chaotic at some excitation frequencies for specific parameters [86]. For a Duffing oscillator, 

Szemplinska-Stupnicka and Bajkowski [83] studied the existence of different harmonics in the 

response, their stability and appearance of chaos in the response. They concluded that the 

oscillator can exhibit chaotic motion in a narrow zone where loss of stability of ½ sub-

harmonics is predicted theoretically. 

The solution of the HBM does not match with the amplitude obtained from simulation in the 

time domain for a non-dimensional static load of 0.01 for frequencies smaller than 0.25 as it is 

shown in Figure  5-3 and Figure  5-4. The phase portrait for some frequencies up to 0.34 is 

shown in Figure  A-1. The loops in the phase portrait are due to the existence of other 

frequencies in response. By increasing the non-dimensional frequency the number of loops 

reduces where at Ω=0.26 they disappear. This is consistent with the frequencies at which the 

time domain solution and HBM solution demonstrate good consistency. Although the phase 

portraits for frequencies higher than this do not match exactly with the expected phase portrait 

of sinusoidal single frequency oscillation (oval or circular shape depending on axis aspect ratio), 

the assumption of HBM leads to sufficient accuracy. 

To obtain an estimate of how much other harmonics contribute to the response at each 

excitation frequency, the Total Harmonic Distortion or THD is used. It is defined as the relative 

signal energy at non-fundamental harmonics to that at the fundamental frequency [84, 85].The 

THD is calculated here from the spectrum of the time domain simulation obtained by the Fast 

Fourier Transform (FFT). The result is shown in Figure  A-2 for a static preload equal to 0.01, 

dynamic load equal to 0.1, γ equal to 0.0783 and ζ equal to 0.025. The THD for increasing 

frequency is shown with dots and a solid line whereas for decreasing frequency it is shown with 

dashed line and squares. There are peaks in the low frequency region where the results of the 

time domain analysis do not match with the HBM solution and also where loops in phase 

portrait were evident.  
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Figure  A-1: Phase portrait of nonlinear vibration isolator for ζ = 0.025, γ = 0.0783, 𝑓1 = 0.1, and 𝑓0 =
0.01  

The THD obtained by increasing frequency and by decreasing frequency match except at a 

frequency range between 0.45 and 0.75 and also at a small frequency range between 0.1 and 

0.2.. The former range is between jump up and jump down frequencies where solution follows 

different branches for increasing and decreasing frequencies. By referring to Figure  5-3, it can 

be seen that for the time domain simulation, the jump up occurs at a higher frequency than that 

predicted by the HBM. The peak in the THD shows that the existence of other harmonics 

prevents sinusoidal oscillations at the excitation frequency only as it is the assumption of HBM 

here and jump up happens sooner while decreasing frequency. The phase portraits for these 

frequencies are presented in Figure  A-3. It can be seen how other harmonics appear as an 

additional loop and disappear after jump-up. The mismatch between two curves at a frequency 
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range between 0.1 and 0.2 in Figure  A-2 is due to the existence of subharmonics in response 

which are not considered in THD according to its definitiion. 

 

Figure  A-2: Total harmonic distortion as a function of non-dimensional frequency for  ζ = 0.025, γ = 
0.0783, 𝑓1 = 0.1, and 𝑓0 = 0.01 

 

Figure  A-3: Phase portrait of nonlinear vibration isolator for decreasing frequency, ζ = 0.025, γ = 0.0783, 
𝑓1 = 0.1, and 𝑓0 = 0.01 
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The total harmonic distortion for a static preload 𝑓0 of 0.2 and the same other parameter values 

as previously used is shown in Figure  A-4. The graph is plotted with a logarithmic y axis, since 

the peak is bigger than 200% and the other features are not visible otherwise. The peak in the 

THD corresponds to a local peak in the harmonic amplitude 𝐴1 from the time domain 

simulation at a frequency of 0.3 which can be seen in Figure  5-3. The phase portraits at these 

frequencies are shown in Figure  A-5 where the appearance of an additional loop is visible in the 

range where the THD has a high value. The time histories for three different frequencies in this 

range are shown in Figure  A-6. The existence of the other harmonic can be seen here as well 

from the two peaks in each cycle. 

There are also differences in the THD of the oscillator for increasing and decreasing frequency 

at a non-dimensional frequency of about .46 and .58. There is a jump-up and then jump-down in 

the FRC while frequency is increasing or decreasing. However, these jumps happen at different 

frequencies in the two cases. The amplitude follows different branches of the FRC for the 

increasing and decreasing frequencies in the two ranges mentioned. For detailed discussion on 

the jump up and jump down and the multiple amplitude of harmonic response one my refer to 

reference [80]. 

 

Figure  A-4: Total harmonic distortion as a function of non-dimensional frequency for  ζ = 0.025, 
γ = 0.0783, 𝑓1 = 0.1, and 𝑓0 = 0.2 
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Figure  A-5: Phase portrait of nonlinear vibration isolator for increasing frequency, ζ = 0.025, γ = 0.0783, 
𝑓1 = 0.1, and 𝑓0 = 0.2 

 

Figure  A-6: Time history of nonlinear vibration isolator for different non-dimensional frequencies, ζ = 
0.025, γ = 0.0783, 𝑓1 = 0.1, and 𝑓0 = 0.2 
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The total harmonic distortion for 𝑓0 equal to 0.5 is shown in Figure  A-7. The same 

characteristics can be seen in this case as the previous one. There is a peak with very high 

amplitude just before the resonance frequency which corresponds here to the local peak in 

harmonic amplitude 𝐴1 and is visible in time domain results of Figure  5-3. The difference here 

is that there are three branches in the THD curve here which are shown by a circle in 

Figure  A-7. The third branch corresponds to the resonance branch in the FRC of harmonic 

amplitude 𝐴1 in Figure  5-3 that is covered neither in sweeping frequency up nor down. To make 

the mass oscillate at this frequency, appropriate initial conditions must be chosen. Since there 

are three stable branches for the response of the oscillator, there are three branches of the THD 

accordingly in this range.  

 

Figure  A-7: Total harmonic distortion as a function of non-dimensional frequency for ζ = 0.025, 
γ = 0.0783, 𝑓1 = 0.1, and 𝑓0 = 0.5 

For a static preload of 0.95, the maximum of the THD drops to 25% at a non-dimensional 

frequency of 0.56. The FRC of response is of the softening type. The THD of this case is shown 

in Figure  A-8. There is only one jump frequency while sweeping up or down the frequency. 

Jump-up happens at a non-dimensional frequency of 1 and jump-down occurs about 0.9. As 

expected, the two curves of the THD are different between these frequencies. 
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Figure  A-8: Total harmonic distortion as a function of non-dimensional frequency for ζ = 0.025, 
γ = 0.0783, 𝑓1 = 0.1, and 𝑓0 = 0.95 
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