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MFN2 mutations cause compensatory mitochondrial DNA proliferation
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Sir, We read with great interest the report of a Tunisian family by

Rouzier et al. (2011) describing the neurological disorder linked to

a novel heterozygous missense mutation in MFN2 (1p36.2)

(Rouzier et al., 2011). MFN2 mutations typically cause autosomal

dominant axonal Charcot–Marie–Tooth disease (CMT2A, OMIM

609260), with peripheral nerve degeneration occasionally asso-

ciated with visual failure and optic atrophy (Zuchner et al.,

2004, 2006). Interestingly, the clinical manifestations among

mutational carriers in this Tunisian family were even more variable,

ranging from asymptomatic subclinical disease to an axonal

sensorimotor neuropathy complicated by optic atrophy, deafness,

cerebellar ataxia and proximal myopathy. Furthermore, the

intriguing finding of cytochrome c oxidase (COX)-deficient fibres

and multiple mitochondrial DNA deletions in skeletal muscle

biopsies suggest that MFN2 mutations can result in disturbed

mitochondrial DNA maintenance and an overt respiratory chain

defect, in addition to marked fragmentation of the mitochondrial

network. These deleterious consequences are strikingly reminiscent

of the pathological features recently highlighted in Brain for

autosomal dominant optic atrophy due to OPA1 mutations

(Amati-Bonneau et al., 2008; Hudson et al., 2008; Yu-Wai-Man

et al., 2010a). Here, we provide additional evidence that

MFN2-associated neuropathy is a novel disorder of mitochondrial

DNA maintenance in a study of 58 probands with CMT2A and

confirmed MFN2 mutations (Table 1), compared with 131

age-matched normal controls.

Total genomic DNA was extracted from the leucocyte fraction of

venous blood samples. The average cellular mitochondrial DNA con-

tent was quantified with a SYBR GreenTM quantitative polymerase

chain reaction assay on a MyiQTM real-time polymerase chain reac-

tion detection system (Biorad), with MTND1 as the mitochondrial

template and GAPDH as the nuclear-encoded housekeeping tem-

plate (Yu-Wai-Man et al., 2010a). Relative mitochondrial DNA

copy number was derived from the difference in threshold cycle

(Ct) values obtained for MTND1 and GAPDH using the 2ð2��
t CÞ

equation to account for two copies of GAPDH per cell nucleus.

Mitochondrial DNA levels in the MFN2 group [mean mitochon-

drial DNA copy number = 195.7, standard deviation (SD) = 126.6,

n = 58] were significantly higher compared with controls (mean

mitochondrial DNA copy number = 60.9, SD = 42.3, n = 131,
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P5 0.0001) (Fig. 1A). Given the suggestion by Rouzier et al.

(2011) that MFN2 mutations involving the functional GTPase

domain were more likely to precipitate the severe multi-system

phenotype documented in their family, we performed a subgroup

analysis based on whether or not patients in our cohort harboured

mutations within the highly conserved GTPase gene region.

No significant difference was found between these two distinct

mutational subgroups (P = 0.5957) (Fig. 1B).

Although we have previously shown that variation in the differ-

ential blood cell count can affect blood-derived mitochondrial

DNA copy number (Pyle et al., 2010), the 3-fold increase in

mitochondrial DNA content detected in our MFN2 cohort was

substantially greater than the error attributable to this possible

confounding factor. Mitochondrial proliferation is a well-

recognized important diagnostic feature in skeletal muscle of

patients with a range of mitochondrial cytopathies (Taylor et al.,

2004; Aure et al., 2006). This compensatory mechanism is

thought to occur in response to an underlying cellular bioenergetic

crisis (the ‘sick mitochondrion hypothesis’), which leads to the

classical ‘ragged-red fibre’ appearance on Gomori Trichrome or

succinate dehydrogenase staining (Chinnery and Samuels, 1999;

Capps et al., 2003; Durham et al., 2007). In this study, we have

demonstrated the same phenomenon in blood leucocytes derived

from patients with MFN2 mutations. Although Rouzier et al.

(2011) determined mitochondrial DNA copy number in four

skeletal muscle biopsies, they only report on the absence of

mitochondrial DNA depletion in homogenate muscle extracts

(Table 1). Pathologically increased mitochondrial DNA levels

have been detected in laser-microdissected single skeletal muscle

fibres from patients with OPA1 mutations, this effect being

particularly marked in COX-deficient muscle fibres (Yu-

Wai-Man et al., 2010b). Given the overlapping clinical, histolo-

gical and molecular characteristics observed in these two

primary disorders of mitochondrial dynamics, it would be of

great interest to know whether mitochondrial DNA proliferation

was also present in muscle fibres from patients with MFN2 muta-

tions, especially in the two biopsies noted to have ragged-red

fibres.

MFN2 is the newest member of an expanding group of nuclear

mitochondrial disorders characterized by disturbed mitochondrial

DNA maintenance, a process which, increasingly, seems to be

intrinsically related to the state of the mitochondrial network

(Chen et al., 2010; Elachouri et al., 2011). Our observation that

MFN2 mutations cause mitochondrial proliferation in blood adds

weight to the novel disease mechanism reported by Rouzier et al.

(2011). Future work is needed to disentangle the complex

interplay between disturbed mitochondrial fusion and fission,

mitochondrial DNA instability and the eventual development of

both neurological and visual deficits in patients with CMT2A and

MFN2 mutations.

Figure 1 Comparison of mitochondrial DNA (MtDNA) blood copy number: (A) MFN2 mutational carriers compared with age-matched

normal controls; (B) patients harbouring MFN2 mutations within the GTPase domain (mean mitochondrial DNA copy number = 207.9,

SD = 150.2, n = 0 24) compared with those located outside this region (mean mitochondrial DNA copy number = 189.8, SD = 108.2,

n = 34); ***P50.0001; ns = not significant at P = 0.5957.
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Table 1 MFN2 mutations identified in our patient cohort

Mutation Type Functional domain Number of
patients

p.Glu65Stop Nonsense – 3

p.Arg94Trp Missense – 8

p.Arg94Gln Missense – 2

p.Ala100Gly Missense GTPase 1

p.Arg104Leu Missense GTPase 3

p.Arg104Trp Missense GTPase 1

p.Thr105Ala Missense GTPase 1

p.His165Tyr Missense GTPase 6

p.Gly202Ala Missense GTPase 4

p.Thr206Ile Missense GTPase 2

p.Thr232Asn Missense GTPase 1

p.Arg250Gln Missense GTPase 1

p.Arg259Cys Missense GTPase 1

p.Arg280His Missense GTPase 1

p.Gly298Arg Missense GTPase 1

p.Glu308Stopa Nonsense GTPase 1

p.Arg364Trp Missense Coiled-Coil 1 (CC1) 1

p.Arg364Pro Missense Coiled-Coil 1 (CC1) 1

p.Arg364Gln Missense Coiled-Coil 1 (CC1) 1

p.Met376Val Missense Coiled-Coil 1 (CC1) 1

p.Met376Ile Missense Coiled-Coil 1 (CC1) 1

p.Ala383Val Missense Coiled-Coil 1 (CC1) 1

p.Arg468His Missense – 2

p.Asp496Gly Missense – 2

p.Arg519Proa Missense – 1

p.Leu673Pro Missense – 3

p.Val705Ile Missense Coiled-Coil 2 (CC2) 2

p.Arg707Trp Missense Coiled-Coil 2 (CC2) 1

p.Arg707Pro Missense Coiled-Coil 2 (CC2) 1

p.Ala716Thr Missense Coiled-Coil 2 (CC2) 1

p.His750Pro Missense – 1

p.Gln751Stop Nonsense – 1

p.Tyr752Stop Nonsense – 1

aOne patient harboured two heterozygous MFN2 mutations.
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