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MFN2 mutations cause compensatory mitochondrial DNA proliferation
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Sir, We read with great interest the report of a Tunisian family by
Rouzier et al. (2011) describing the neurological disorder linked to
a novel heterozygous missense mutation in MFN2 (1p36.2)
(Rouzier et al., 2011). MFN2 mutations typically cause autosomal
dominant axonal Charcot-Marie-Tooth disease (CMT2A, OMIM
609260), with peripheral nerve degeneration occasionally asso-
ciated with visual failure and optic atrophy (Zuchner et al.,
2004, 2006). Interestingly, the clinical manifestations among
mutational carriers in this Tunisian family were even more variable,
ranging from asymptomatic subclinical disease to an axonal
sensorimotor neuropathy complicated by optic atrophy, deafness,
cerebellar ataxia and proximal myopathy. Furthermore, the
intriguing finding of cytochrome c oxidase (COX)-deficient fibres
and multiple mitochondrial DNA deletions in skeletal muscle
biopsies suggest that MFN2 mutations can result in disturbed
mitochondrial DNA maintenance and an overt respiratory chain
defect, in addition to marked fragmentation of the mitochondrial
network. These deleterious consequences are strikingly reminiscent
of the pathological features recently highlighted in Brain for
autosomal dominant optic atrophy due to OPAT mutations

(Amati-Bonneau et al., 2008; Hudson et al., 2008; Yu-Wai-Man
et al.,, 2010a). Here, we provide additional evidence that
MFN2-associated neuropathy is a novel disorder of mitochondrial
DNA maintenance in a study of 58 probands with CMT2A and
confirmed MFN2 mutations (Table 1), compared with 131
age-matched normal controls.

Total genomic DNA was extracted from the leucocyte fraction of
venous blood samples. The average cellular mitochondrial DNA con-
tent was quantified with a SYBR Green™ quantitative polymerase
chain reaction assay on a MyiQ™ real-time polymerase chain reac-
tion detection system (Biorad), with MTND7 as the mitochondrial
template and GAPDH as the nuclear-encoded housekeeping tem-
plate (Yu-Wai-Man et al., 2010a). Relative mitochondrial DNA
copy number was derived from the difference in threshold cycle
(Cy values obtained for MTND7 and GAPDH using the 2(2,“C)
equation to account for two copies of GAPDH per cell nucleus.

Mitochondrial DNA levels in the MFN2 group [mean mitochon-
drial DNA copy number = 195.7, standard deviation (SD) = 126.6,
n=58] were significantly higher compared with controls (mean
mitochondrial DNA copy number=60.9, SD =423, n=131,
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Figure 1 Comparison of mitochondrial DNA (MtDNA) blood copy number: (A) MFN2 mutational carriers compared with age-matched
normal controls; (B) patients harbouring MFN2 mutations within the GTPase domain (mean mitochondrial DNA copy number = 207.9,
SD =150.2, n =0 24) compared with those located outside this region (mean mitochondrial DNA copy number = 189.8, SD = 108.2,

n =34); ***P < 0.0001; ns = not significant at P = 0.5957.

P < 0.0001) (Fig. 1A). Given the suggestion by Rouzier et al.
(2011) that MFN2 mutations involving the functional GTPase
domain were more likely to precipitate the severe multi-system
phenotype documented in their family, we performed a subgroup
analysis based on whether or not patients in our cohort harboured
mutations within the highly conserved GTPase gene region.
No significant difference was found between these two distinct
mutational subgroups (P = 0.5957) (Fig. 1B).

Although we have previously shown that variation in the differ-
ential blood cell count can affect blood-derived mitochondrial
DNA copy number (Pyle et al., 2010), the 3-fold increase in
mitochondrial DNA content detected in our MFN2 cohort was
substantially greater than the error attributable to this possible
confounding factor. Mitochondrial proliferation is a well-
recognized important diagnostic feature in skeletal muscle of
patients with a range of mitochondrial cytopathies (Taylor et al.,
2004; Aure et al., 2006). This compensatory mechanism is
thought to occur in response to an underlying cellular bioenergetic
crisis (the ‘sick mitochondrion hypothesis’), which leads to the
classical ‘ragged-red fibre' appearance on Gomori Trichrome or
succinate dehydrogenase staining (Chinnery and Samuels, 1999;
Capps et al., 2003; Durham et al., 2007). In this study, we have
demonstrated the same phenomenon in blood leucocytes derived
from patients with MFN2 mutations. Although Rouzier et al.
(2011) determined mitochondrial DNA copy number in four

skeletal muscle biopsies, they only report on the absence of
mitochondrial DNA depletion in homogenate muscle extracts
(Table 1). Pathologically increased mitochondrial DNA levels
have been detected in laser-microdissected single skeletal muscle
fibres from patients with OPA7 mutations, this effect being
particularly marked in COX-deficient muscle fibres (Yu-
Wai-Man et al., 2010b). Given the overlapping clinical, histolo-
gical and molecular characteristics observed in these two
primary disorders of mitochondrial dynamics, it would be of
great interest to know whether mitochondrial DNA proliferation
was also present in muscle fibres from patients with MFN2 muta-
tions, especially in the two biopsies noted to have ragged-red
fibres.

MFN?2 is the newest member of an expanding group of nuclear
mitochondrial disorders characterized by disturbed mitochondrial
DNA maintenance, a process which, increasingly, seems to be
intrinsically related to the state of the mitochondrial network
(Chen et al., 2010; Elachouri et al., 2011). Our observation that
MFN2 mutations cause mitochondrial proliferation in blood adds
weight to the novel disease mechanism reported by Rouzier et al.
(2011). Future work is needed to disentangle the complex
interplay between disturbed mitochondrial fusion and fission,
mitochondrial DNA instability and the eventual development of
both neurological and visual deficits in patients with CMT2A and
MFN2 mutations.
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Table 1 MFN2 mutations identified in our patient cohort

Mutation Type Functional domain Number of
patients
p.Glué5Stop Nonsense - 3
p.Arg94Trp Missense = 8
p.Arg94Gin Missense - 2
p.Ala100Gly Missense GTPase 1
p.Arg104Leu Missense GTPase 3
p.Arg104Trp Missense GTPase 1
p.Thr105Ala Missense GTPase 1
p.His165Tyr Missense GTPase 6
p.Gly202Ala Missense GTPase 4
p.Thr206lle Missense GTPase 2
p.Thr232Asn Missense GTPase 1
p.Arg250GIn Missense GTPase 1
p.Arg259Cys Missense GTPase 1
p.Arg280His Missense GTPase 1
p.Gly298Arg Missense GTPase 1
p.Glu308Stop? Nonsense GTPase 1
p.Arg364Trp Missense Coiled-Coil 1 (CC1) 1
p.Arg364Pro Missense Coiled-Coil 1 (CC1) 1
p.Arg364Gin Missense Coiled-Coil 1 (CC1) 1
p-Met376Val Missense Coiled-Coil 1 (CC1) 1
p-Met376lle Missense Coiled-Coil 1 (CC1) 1
p.Ala383Val Missense Coiled-Coil 1 (CC1) 1
p.Arg468His Missense = 2
p.Asp496Gly Missense - 2
p.Arg519Pro® Missense - 1
p.Leu673Pro Missense = 3
p.Val705lle Missense Coiled-Coil 2 (CC2) 2
p.Arg707Trp Missense Coiled-Coil 2 (CC2) 1
p.Arg707Pro Missense Coiled-Coil 2 (CC2) 1
p.Ala716Thr Missense Coiled-Coil 2 (CC2) 1
p.His750Pro Missense = 1
p.GIn751Stop Nonsense - 1
p.Tyr752Stop Nonsense - 1

#One patient harboured two heterozygous MFN2 mutations.
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