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by Francis Galloway

Joint replacements are a common treatment of osteoarthritis, rheumatoid arthritis, or fractures
of both the hip and knee. The rising number of procedures being performed each year means
that there is a need to assess the performance of an implant design in the general population.
The majority of computational studies assessing implants do not take into account inter-patient
variability and only use a single patient model. More often than not, it is then assumed that

the results can be extrapolated to the general population.

This thesis describes a method allowing population-based assessment of joint replacements,
focussing on the tibial tray component of a total knee replacement. To generate a large
population of models for finite element analysis, two statistical models were used. One was of
the tibia, capturing both the variability of the morphology and bone quality, and the other
was of the internal knee loads during a gait cycle. Assessment of the statistical models showed
that they could adequately generate representative tibiae and gait cycle loads. An automated
method was then developed to size, position, and implant the tibial tray in the generated

population of tibiae in preparation for finite element analysis.

The use of a population-based study, a unique approach compared to current studies, was
demonstrated using three case studies assessing the performance of the tibial tray. The first
case study examined the factors which might increase the risk of failure of the tibial tray and
the effect of under sizing the tibial tray on primary stability. Factors such as bone quality
and patient weight were seen to increase the risk of failure. It was found that under sizing
the tibial tray did not significantly affect the primary stability of the tibial tray. It was also
observed that the peak strain occurred during swing phase of the gait cycle, whereas peak

micromotion occurred at the beginning of stance phase of the gait.

The second case study investigated the effect of tibia resection depth on primary stability of
the tibial tray. A more distal resection was found to increase the peak strain and micromotion
of the bone-tray interface. The worsening primary stability with a more distal resection,
suggest that to obtain optimal primary stability of the tibial tray it is necessary to resect as

little bone as possible.

The third case study compared three tibial tray designs. It was found that the trays with
pegs or flanges surrounding the stem tended to perform better, reducing the strain and the
micromotion at the bone-tray interface. It was noted that the performance of the trays
predicted by the analysis was similar to that observed clinically. This shows the potential use

of population-based studies to help predict the clinical outcome of joint replacements.
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Chapter 1

Introduction

1.1 Background

Joint replacements are a common treatment of osteoarthritis, rheumatoid arthritis, and
fractures of both the hip and knee. In the UK, the number of primary total knee replacements
(TKRs) has risen from 28,000 in 2004 to over 77,000 in 2010 (National Joint Registry for
England and Wales, 2010). This dramatic increase in procedures means the assessment
of TKRs in the general population is becoming important. Many computational studies
evaluating the performance of the tibial tray often only perform testing using a model of a
single patient (Barker et al., 2005; Chong et al., 2010; Hashemi et al., 2000; Keja et al., 1994;
Perillo-Marcone et al., 2007; Taylor et al., 1998; Tissakht et al., 1995). A problem with such
an approach is that population variability is not taken into account and the results cannot be

applied to the general population.

There are a limited number of studies which use models of multiple patients in the testing of
the tibial tray. One of the largest studies of the tibial tray to date (Rawlinson et al., 2005)
used 9 paired tibiae in experimental tests and finite element (FE) models to study the effect
of an augmented stem on a tibial tray. It was found that due to the biological variability
between specimens, the displacement between the bone and implant was highly variable, and
the effect of the stem inconclusive. Smaller studies only using 4 patient specific models have
also been performed to investigate the link between risk of bone failure and the migration of
the tibial tray (Perillo-Marcone et al., 2004), and the effect of mal-alignment on the risk of
failure of the tibial tray (Wong et al., 2010).

In almost all the studies testing the tibial tray, a fixed magnitude static load is applied. Loads
can be scaled by body weight, but this does not represent the significant variation in the ratio
of the load components (for example anterior-posterior to axial force) known to occur between
subjects (Kutzner et al., 2010).

Performing a large multiple patient studies is challenging; there is limited availability of
patient geometry, kinematic, and kinetic data. Collecting clinical data is time consuming

and can be expensive. The ethics of exposing patients to radiation during CT scans must
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also be considered. Even with a large set of clinical data, current methods for creating bone
geometry, positioning and implanting a prosthesis, and generating a FE ready model require
significant manual effort. These issues and the need to understand how the differences in

patients influence the success of an implant are the motivations for this thesis.

Population-based studies, which incorporate the variability of the bone and joint loading
in the models, offer the potential to be able to better predict the performance of a joint
replacement. One approach to generating a large population of models is to use a statistical
model (SM). There are a large number of techniques for creating SMs of biological data, but
most only capture the variability of shape. SMs have been expanded to include the variability
of both shape and texture or intensity information as applied to the face (Edwards et al.,
1998) and the femur (Bryan et al., 2010). Recently, a statistical shape and intensity model
(SSIM) of the femur (Bryan et al., 2010) was used for a population-based study assessing
a hip resurfacing (Bryan, 2010). A large population of femurs was sampled from the SSIM,
automatically implanted with a hip resurfacing and analysed using FE to assess the risk of

failure.

In the literature, there is much debate about the choice of tibial tray fixation. Cementless
fixation of the tibial tray is an alternative to the more common cemented fixation (National
Joint Registry for England and Wales, 2010). It is thought to be advantageous for younger
more active patients, providing long-term fixation without the problems associated with
cement degradation (Lombardi et al., 2007). However, there are mixed reports about the
success of cementless tibial trays. Studies have reported evidence of extensive radiolucent
lines indicating poor fixation (Fuiko et al., 2003), rapid early migration (Albrektsson et al.,
1992), aseptic loosening, and poor survivorship in comparison to cemented implants (Berger
et al., 2001; Duffy et al., 1998). Studies have also reported good long-term survivorship of
cementless TKRs (around 95% after 10 years) (Baker et al., 2007; Bassett, 1998; Hofmann
et al., 2001; Holloway et al., 2010; Martin et al., 1997). By using population-based studies,

the factors which affect the performance of a cementless tibial tray can be investigated.

1.2 Objectives

The broad aim of this thesis is to combine two SMs, one of the geometry and modulus
distribution of the tibia, and another of knee gait cycle kinetics, for use in a population-based
FE study of a cementless tibial tray. The SM of the tibia was created following a similar
method to Bryan et al. (2010) and Bryan (2010), using an elastic matching surface registration
and volume morphing scheme. The SM of the gait cycle kinetics was based on musculoskeletal
(MS) modelling data (Worsley et al., 2011). This included all six load components: the
anterior-posterior, medial-lateral, and axial forces; and the flexion-extension, varus-valgus,

and internal-external moments.

The large scale of population-based studies introduces the problem of how to automate the

system. Registration, creation of statistical models, and generation of data are more easily
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automated. More challenging is the pipeline to automatically position and implant the tibial
tray. This was developed in collaboration with Zuse Institute Berlin (ZIB) and based on mesh
intersection and union operations. Accurately sizing and placing the tibial tray is important

because incorrect sizing or mal-positioning can cause clinical problems.

Three case studies will be used to demonstrate the use of a population-based study to assess
a tibial tray, investigating the variation of strain and micromotion at the bone-tray interface.
The first case study will investigate the effect of under sizing the tibial tray, the second
examines what effect changing the resection level of the tibia has on the primary stability of
the tibial tray, and the third will compare three tibial trays designs. In all these case studies,
the intention is to show that a population-based study can help to better understand the

factors which influence the tibial tray performance.

1.3 Structure of thesis

This thesis is divided into a further 9 chapters. The literature review is split into three
chapters: chapter 2 is an overview of the anatomy and biomechanics of the human knee,
and TKRs; chapter 3 describes the current computational assessment of the tibial tray; and
chapter 4 discusses how SMs are created and used. A summary of the literature review is

found in chapter 5.

The methods used in this thesis for population analysis of the tibial tray are described in
chapter 6. This includes the method used to create both the tibia and gait cycle SM, and
how the population of models are created, processed and analysed. The three case studies are
presented after this, in chapters 7 to 9. Finally, a broad discussion of this work, assessing the

limitations and potential future work is given in chapter 10.






Chapter 2

Review of human knee

There is a growing interest in understanding the knee joint as an ageing population means that
joint problems are becoming more common. Treatment for diseases, such as osteoarthritis,
is often a joint replacement, where an implant is used to replace the articulating surface of
the joint with the aim of relieving pain and restoring function. The number of TKRs has
increased dramatically in recent years, as previously mentioned in chapter 1. To be able to
study the knee and TKRs it is necessary first to review the structure and function of the knee
joint. This chapter covers the anatomy of the knee, kinematics and kinetics, the structure
and strength of bones, and the history of total knee replacements, considering the reasons for

replacement and how they fail.

2.1 Anatomy and function

The human lower limb is adapted for weight bearing, locomotion, and supporting the body in
the upright, bipedal posture (Palastanga et al., 2002). It is designed for strength and stability,
and many of the bones have adapted to support high mechanical stresses. The limb can be
classified into four main regions, gluteal, thigh, leg, and foot (figure 2.1). The regions are split
by three main joints, the hip, the knee, and the ankle, and the main supporting bones are
considered to be the pelvis, femur and tibia. The motion of the lower limb is controlled by
a complex system of muscles and ligaments. Many of the muscles cross over several joints
and exert a force on each one. There is a significant coordination of muscle groups to control

motions such as standing or walking.

There are three bones in the knee, the femur, the tibia and the patella (figure 2.2). These
form two separate articulations, the tibiofemoral joint (TFJ) and the patellofemoral joint
(PFJ). The TFJ can be thought of as the primary articulation, allowing a flexion-extension

motion, and is the main load bearing joint. The PFJ is a secondary articulation.
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Figure 2.1: Main regions, bones and joints of the lower limb (3D anatomy image copyright of Primal Pictures
Ltd, http://www.primalpictures.com).

Femur Femur Femur
Patella Articular ; Lat
. Medial ateral
groove cartilage condyle condyle

l Patella ¥ ACL
2 4 moth. W weda
. Tibia \ Tibia meniscus PCL

(a) Anterior with patella (b) Anterior view (c) Posterior view

Figure 2.2: The right knee joint with major structures identified (3D anatomy images copyright of Primal
Pictures Ltd, http://www.primalpictures.com).

2.1.1 Articulating surfaces

On the distal femur, the articular surfaces are the medial and lateral condyles (corresponding
to those on the proximal tibia) (figure 2.2c¢), and the patella groove on the anterior side
(figure 2.2b). The condyles have a large, non-spherical, curvature with a reducing radius
from anterior to posterior. The condyles are not symmetrical, the medial condyle is longer
in the anterior-posterior (A-P) direction and narrower in the medial-lateral (M-L) direction
than the lateral condyle. Between the condyles is the intercondylar notch for most of the
length, and on the anterior side they are joined by the patella groove. The articular surface of
the proximal tibia is also formed of two condyles, the medial and lateral (figure 2.3). These
are asymmetrical surfaces separated by a raised bony region, the intercondylar eminence
(figure 2.3a). The medial condyle is larger than the lateral condyle and is oval and slightly
concave in shape. The lateral condyle is smaller, concave from side to side, but concavoconvex

from front to back.
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Figure 2.3: The articulating surfaces of the tibia (a) highlights the condyles and (b) shows the menisci and
ligaments (3D anatomy images copyright of Primal Pictures Ltd, http://www.primalpictures.com).

The patella is the final articulating surface, a small oval shaped bone (figure 2.2a), which can
be divided into a larger lateral region and a smaller medial region by a vertical ridge. The
posterior side of the patella is covered with thick cartilage to help protect it from the high
stresses experienced during motion. It is attached to the tibia and femur by the patellofemoral

ligaments (figure 2.5).

The articular surfaces of the bones are covered by articular cartilage, protecting the ends of
the bone and aiding near friction-free motion of the joint. The cartilage varies in thickness,
from 3-7 mm and has some degree of elasticity (Palastanga et al., 2002), helping to distribute

the large vertical forces.

Additionally, two menisci (medial and lateral) are found in the TFJ joint attached to the
tibia (figure 2.3b). These are ‘half moon’ shaped discs with a wedge shaped cross section of

articular cartilage, which have a number of functions (Evans, 1986; Palastanga et al., 2002):
(i) Increase the congruency between the surfaces of the femur and tibia
(ii) Better distribute the weight across the joint
(iii) Reduce the friction between the articulating surfaces
(iv) Perform a role in the locking mechanism

The medial meniscus is the larger of the two, semi-circular in shape, and is broader posteriorly
than anteriorly. The lateral meniscus is approximately four-fifths of a circle in shape and has
uniform breadth. Both menisci are attached to the tibia by their anterior and posterior horns

by ligaments.

2.1.2 Joint capsule

The knee is surrounded by a joint capsule, a composite ligament sleeve surrounding the
tibia and femur formed by muscle tendons and their expansions (figure 2.4). It does not

surround the joint completely. The patella and ligamentum patellae form the capsule on the
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Figure 2.4: Posterolateral view of the knee showing the joint capsule and ligaments (3D anatomy image
copyright of Primal Pictures Ltd, http://www.primalpictures.conm).
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Figure 2.5: Cross section of knee showing the joint capsule (including patella ligaments), synovial membrane
and articular surfaces (3D anatomy image copyright of Primal Pictures Ltd, http://www.primalpictures.com).

anterior of the femur and it is not attached to the tibial tuberosity (figure 2.5). The capsule
is strengthened by the ligaments which hold the joint together.

Within the joint capsule is the synovial membrane which defines the joint cavity (figure 2.5).
This is the largest space within the body between two articulating surfaces. The membrane
covers the posterior side of the patella, covering the deep side of the infrapatella fat pad. It
runs over the articular surfaces of the femur and tibia, going over the upper surface of the
menisci and then underneath to the tibia. The purpose of the membrane is to lubricate the

joint by secreting synovial fluid into the joint cavity.

2.1.3 Ligaments
The incongruence between the articulating surfaces means the knee joint is inherently unstable.
A set of four main ligaments (figure 2.2) stabilise the joint (Palastanga et al., 2002):

o Anterior cruciate ligament (ACL). Attached on the anterolateral side of the tibia, it
run posterior of the lateral femoral condyle and twists by approximately 110°. The ACL
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tightens during extension resisting hyperextension and prevents posterior displacement
of the femur (relative to the tibia).

o Posterior cruciate ligament (PCL). Attached on the posterior intercondylar area
of the tibia, it passes the ACL on the medial side attaching to the femur on the lateral
surface of the medial condyle. The PCL resists hyperflexion and anterior displacement

of the femur (relative to the tibia).

o Medial collateral ligament (MCL). A strong flat ligament, extending from the
medial epicondyle of the femur, running down and attaching to the medial tibia condyle
and medial side of the tibial shaft.

o Lateral collateral ligament (LCL). A short rounded ligament, attached to the lateral

epicondyle of the femur and running down to the head of the fibula on the lateral side.

There is also the patella ligament (ligamentum patallae) holding the patella in place (figure 2.5).
This ligament is a continuation of the tendon of quadriceps femoris. It is a strong, flat band
attached to the apex of the patella and extending down to the tibial tuberosity, providing

support for the anterior of the knee and contributing to the strength of the joint capsule.

2.1.4 Muscles

The motions of the knee are controlled by the complex interaction of the lower limb muscles
(figure 2.6) and knee ligaments. The knee is a 12 degree of freedom system, with 3 rotations and
3 translations for both the TFJ and PFJ. The primary motion of the TFJ is flexion-extension,
with the hamstrings controlling flexion and the quadriceps femoris controlling extension. The

muscles used in the main movements of the knee are given in table 2.1.

Table 2.1: Muscles of the knee

Motion Active Muscles
Flexion Hamstrings, Gastrocnemius, Gracilis, Sartorius
Extension Quadriceps femoris (Rectus femoris, Vastus lateralis, Vastus medialis, Vastus

intermedius), and Tensor fascia lata
Lateral rotation Bicpes femoris

Medial rotation  Semitendinosus, Semimembranosus, Gracilis, Sartorius, Popliteus

2.1.5 Movements

Medical imaging, such as computed tomography (CT), magnetic resonance imaging (MRI),
X-ray, radiostereometric analysis (RSA) and fluoroscopy, has allowed the motions of the
cadaveric knee (Hill et al., 2000; Iwaki et al., 2002; Nakagawa et al., 2000) and the living
knee to be studied (Johal et al., 2005). The primary motion of the TFJ is flexion-extension
(F-E) with a small degree of A-P translation and internal-external (I-E) rotation. Secondary

motions of M-L translation and varus-valgus (V-V) rotation also occur, however these are
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Figure 2.6: Main muscles controlling motion of the knee. Left is anterior view and right is posterior view
(images from Gray, 1918).

extremely small in a healthy knee. In a review of the movement of the knee Freeman et al.
(2005) divides the F-E arc into three sub arcs: (i) full extension to between 10° and 30°
flexion termed ‘arc of terminal extension’, (ii) an arc from between 10° and 30° flexion to
approximately 120° flexion called the ‘active functional arc’, and (iii) an arc from about 120°

to full passive flexion called the ‘passive flexion arc’ (figure 2.7).

Arc of terminal extension. The use of this arc is limited in daily activities, except for
perhaps during one-leg stance (Freeman, 2001). The arc starts from the limit of passive
extension, normally between 5° flexion to 5° hyperextension and stops at a point in the arc of
active function (Freeman et al., 2005). The shape of the femoral condyles results in the medial
condyle ‘rocking’ between 30° and 10° flexion moving the point of contact with the tibia to
the anterior of the condyle. As the knee extends further, the motion remains pure sliding
and there is no (or very little) A-P movement of the femur (Freeman, 2001). In contrast,
the lateral femoral condyle ‘rolls’” down over the tibial condyle, as the condyle is shorter and
flatter. The combination of the two different motions of the femoral condyles relative to the
tibia means that the femur internally rotates (Freeman, 2001). For the last 10° of extension,
the ligaments (both cruciate and collateral) provide a progressive resistance to the movement
to ‘lock’ the knee in full extension. Perhaps the most important ligament at this instance is
the ACL which is fully elongated at approximately 10° flexion, forcing the internal rotation of

the femur (Freeman, 2001) and resulting in a ‘screw-home’ motion.
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Figure 2.7: Flexion arc of the TFJ (image reprinted from Freeman, 2001, with permission from Elsevier).

Active function arc. This arc covers almost all the activities of daily living and active
muscle control produces the movement, as suggested by the name (Freeman, 2001). The
medial condyle is almost spherical in shape allowing F-E and I-E rotation with very little or no
translation (Freeman et al., 2005). The lateral femoral condyle translates posteriorly relative
to the tibia by rolling and/or sliding during flexion, and is coupled with the movement of the
lateral meniscus (Freeman, 2001). The difference in relative motion of the femoral condyles
relative to the tibia means that femur tends to rotate externally by about 30° between 10°
and 120° flexion. The relative rotation of the femur appears not to be coupled to the flexion.
That is, it is possible for the tibia to rotate by about 30° and for the femur to flex without
external rotation between 20° and 90° flexion (Freeman et al., 2005). During external rotation
of the tibia relative to the femur, the lateral femoral condyle moves anterior over the lateral
tibial condyle, and the medial femoral condyle moves posterior over the medial tibial condyle.
The opposite motion occurs in internal rotation. The medial condyle moves less in comparison

to the lateral condyle because of the shape difference between them.

Arc of passive flexion. The movement in this arc is passive and in order to flex the
femur/tibia beyond 120° an external force, e.g. body weight, is required. This arc is used in
activities such as squatting and full kneeling and starts in the transition zone between 110° to
120° flexion and continues to the passive limit of the knee (Freeman et al., 2005). This limit
differs between between populations, Caucasians can achieve around 140° flexion, whereas in
Japanese, Indian and Middle Eastern populations full kneeling or squatting is common, and
up to 165° flexion can be achieved (Freeman et al., 2005). To achieve this, the medial femoral
condyle rolls up on to the posterior horn and the lateral femoral condyle continues to move
posteriorly beyond 120° flexion until it is posterior to the tibia and rests on the posterior horn
of the lateral meniscus (Freeman, 2001). As contact is lost between the tibia and femur and
the movement is considered passive, the TFJ could be considered subluxed (Freeman et al.,
2005).
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2.1.6 Measurement of kinematics and kinetics

The knee is subjected to a wide range of loading patterns which differ between subjects and
activities. To test a TKR realistically, knowledge of loading patterns from activities of daily
living (ADLs) is required. Both the magnitude of the loads and the frequency with which
activities occur are important. For example, although sitting (a ‘passive’ activity) occurs
more frequently, it places a lower demand on the knee compared to stumbling (an ‘active’
activity), which places an extreme load on the knee, but occurs infrequently. This has been
studied for total hip replacement (THR) patients (Morlock et al., 2001), and for the majority
of the time the patients performed ‘passive’ activities. Of the ‘active’ activities, the most

frequent was walking (10.2% of the time) followed by stair-climbing (0.4% of the time).

The kinematics of the knee can be measured or computed with a variety of methods. Often,
skin or exoskeletal markers coupled with video recording is used to track motion. This is
non-invasive, but the markers suffer from soft tissue artifact errors as the skin can move
relative to the bone. Radiographic imaging, such as fluoroscopy, allows accurate tracking of
the movement of the knee, but the subject is exposed to radiation and measurements out of
plane can be inaccurate. In the past, markers rigidly fixed to the bone have been used to
more accurately track movement of the knee (Lafortune et al., 1992). The disadvantage is
that an invasive surgical procedure to insert intra-cortical pins is required and the subject

might experience discomfort, altering the movement pattern of the activity.

Measuring the kinetics of the natural knee remains a challenge because it is simply not possible
to put a device in vivo. MS modelling, used to predict joint kinematics and kinetics, is a
major area of research in biomechanics. Inverse-dynamic models can predict the net joint
loads and muscle forces, requiring motion and force data (e.g. ground reaction force data)
for the body of interest. Coupled with optimisation techniques, the internal joint loads and
muscle forces can be estimated. Several studies have used MS modelling to compare the
kinematics and kinetics of the knee for level gait (Morrison, 1970; Taylor et al., 2004; Worsley
et al., 2011), stair ascent (Costigan et al., 2002; Reid et al., 2010), sit-stand (Worsley et al.,
2011), and squatting (Nagura et al., 2002). However, in the modelling process a large number
of errors can be introduced, from skin artifact errors during motion capture to inaccuracies in

the assumptions made during MS modelling (Riemer et al., 2008).

Telemetric prosthesis, pioneered by Bergmann et al. (1993) for the THR, have been used
to measure in vivo joint loads. Following from this, Taylor et al. (1998) and Taylor et al.
(2001) used an instrumented distal femoral replacement to measure the forces in the bone
and then computed the forces at the knee. Telemeterised prosthesis for the knee have also
been developed. D’Lima et al. (2006) used a tibial tray with four load cells (one in each
quadrant) to measure the axial force in vivo for sit-stand, standing, walking, and stair ascent
activities. The second generation of this device used 12 strain gauges allowing the three
forces and three moments of the knee to be measured for a variety of activities: walking and
jogging on a treadmill, using fitness equipment (rowing, cycling, stair-climbing, and leg-press

machines), and a golf swing (D’Lima et al., 2008). However, only the peak forces in the
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tibia were reported for these activities, which does not give enough information about the in
vivo kinetics of the knee. A similar device has been implanted in five TKR patients as part
of the Orthoload project (Bergmann, 2008). The load data for the three forces and three
moments is published for ADLs (Heinlein et al., 2009; Kutzner et al., 2010), and is available
for download. This data shows that there is large inter-patient variability in the loading for

different activities.

One problem with the currently published data is that the activities are performed under
laboratory conditions. The most recent development of telemeterised implants has been the
miniaturisation of the sensing equipment (D’Lima et al., 2011). This has allowed the patient
to perform activities outside of the laboratory in a more natural environment and internal

joint loads of the knee have been measured in patients performing activities such as skiing.

The in vivo load data has given a wealth of information about the kinetics of the knee,
particularly with the data made available from Orthoload, which provides data to validate MS
models. Much of this data forms the basis of input data for pre-clinical testing, whether for
experiments (e.g. simulator testing) or computational studies. Despite the range of activities
for which there is data, much literature focuses on the gait loading cycle, as it is the most
frequently ‘active’ activity. The focus of this work is also around the gait cycle and the next

section looks at the loading of the knee during gait.

2.1.7 The gait cycle

The gait cycle is normally taken as the period of time from when the heel of one foot strikes
the floor and continues until the heel strikes the floor again (Trew et al., 2001). There
are two phases to the gait cycle, stance phase and swing phase, defined for the limb under
consideration. During stance phase the limb is in contact with the floor, and during swing
phase the limb is swinging forwards in preparation for the next step. In walking gait, there is

a period of time when both limbs are in contact with the floor, called the double stance.

In the stance phase of gait, the lower limb must provide support for body weight, maintain
balance, and allow forward propulsion (Trew et al., 2001). The stages of stance phase are
(figure 2.8):

e Heel strike. In normal walking, this is the point at which the heel of leading limb first
contacts the floor. The following limb is also in contact with the floor, giving double

stance. The knee extends just before contact, and flexes just after.

o Foot flat. Immediately after heel strike, the foot moves to be flat on the floor and further

flexion of the knee occurs.

e Mid-stance. Body is carried forward over stance limb and opposite limb is in swing

phase. The knee reaches peak stance phase flexion and begins to extend again.

e Heel off. The heel lifts off the ground, preparing the limb for push off. Peak extension

of the knee occurs around heel off.
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e Push off. The foot pushes off against the floor providing propulsion. The knee flexes in

preparation for toe off.

e Toe off. End of stance phase as the the contact between the toes and floor is lost. Knee

is flexed at half the peak flexion angle in swing phase.

In the swing phase of gait, the swinging limb moves in front of the stance limb, in preparation
for the stance phase (Trew et al., 2001). The limb is not lifted far from the ground to conserve
energy. The stages of swing phase are (figure 2.8):

e Acceleration. Hip and knee are both flexed, and the swinging limb is accelerated

forwards.

e Mid-swing. The moment the swinging limb passes the stance limb corresponding with

mid-stance of the opposite limb. The knee is flexed.

e Deceleration. Muscles work to decelerate the swinging limb, ready for heel strike. The

knee moves from flexion to extension.

2.1.8 Loading during gait

The patterns of kinematics and kinetics of the knee during gait depend on the population, as
both are dependent on knee pathology. Generally, for a healthy population the gross flexion
angle during gait has a double peak, approximately 20° in stance phase, and 60° in swing
phase (figure 2.8). The resultant force is dominated by the axial force, which has a double
peak during stance phase, and has a small magnitude during swing phase (figure 2.8). The

resultant moment is dominated by the V-V moment (figure 2.8).

In vivo data from telemeterised implants has given an insight of the intra- and inter-patient
variability of loading. From the five Orthoload TKR patients, the intra-patient peak resultant
force varied by around 0.5 BW during gait, and the inter-patient variation was observed to
be slightly higher, around 0.7 BW (Kutzner et al., 2010). The actual range of peak forces
were 2.2 BW to 3BW for the resultant force, —0.28 BW to 0.18 BW for the the M-L force,
and —0.38BW to 0.2BW for the A-P force. The F-E moment ranged from 0.009 Nm/BW
extension to 0.029 Nm/BW flexion, the V-V moment ranged from 0.41 Nm/BW valgus to
0.18 Nm/BW varus, and the I-E rotation moment ranged from 0.015 Nm/BW internal to
0.011 Nm/BW external. More variation was observed in the moments, particularly during
stance phase of gait, and, whilst the peak to peak moments were comparable, the magnitudes

of the loads between the five patients could vary considerably.

In the literature, few studies present the full set of loading data. Many just give the peak
loading data, often only for axial force. With the data that is available, it can be observed that
MS models often overestimate the loads in comparison to in vivo data (tables 2.2 and 2.3).
One reason for this is simplifications made and errors introduced in the modelling process.
Another reason is the different population groups studied, using MS modelling healthy and

pathological (TKR or otherwise) knees can be studied, whereas using a telemeterised implant,
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Figure 2.8: Terminology and timing of the gait cycle (based on Trew et al., 2001) with approximately
corresponding flexion angle, forces, and moments. The force and moment data is averaged from MS models of
20 healthy elderly subjects (data from Worsley et al., 2011).

the patients must, obviously, have had a TKR. There are also differences in the number of
subjects used in the studies. Larger groups of subjects can be used in MS studies, which are

more likely to show higher inter-patient variability.

The peak loads of other ADLs are also reported in the literature. Stair ascent and descent
can generate a larger peak resultant force, which averages around 3 BW compared to 2.5 BW

for gait (D’Lima et al., 2007; Kutzner et al., 2010). Activities such as jogging, tennis, and
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Table 2.2: Summary of peak forces during a gait cycle from both in vivo data and MS modelling data. The
data shown is dependent on what was published (i) F' 4 o is the mean peak force (F') and standard deviation
(0), (ii) F (Fmin—Fmax) is the mean peak force and in brackets is the range of the peaks observed, and (iii)
Finin—Fmax is the range of the force where the sign indicates the direction.

Study Pathology n Force (BW)

AX A-P M-L
In vivo
D’Lima et al. (2006) TKR 1 2.17 NA NA
D’Lima et al. (2007) TKR 1 0.7-2.2 0-0.3  —0.2-0.35
Heinlein et al. (2009) TKR 2 —2.76——15 —-0.29-0.28 —0.20-0.21
Kutzner et al. (2010) TKR 5 2.3-3.0 —-0.25-0.15 —-0.14-0.11
MS modelling
Morrison (1970) Healthy 12 3.03 (2.06-4.0) NA 0.26
Costigan et al. (2002)  Healthy 35 3.7+11 0.51£0.16 0.15£0.05
Taylor et al. (2004) THR 4 31(2932) 0.50.4-0.6) NA
Shelburne et al. (2006) Healthy 1 2.4 NA NA
Worsley et al. (2011) Healthy 20 3.06+0.89 0.70+0.31 0.14+0.08

golf can generate a peak resultant force of around 4 BW (D’Lima et al., 2008) and carving
the slopes whilst skiing generates a resultant force of 4.3 BW (D’Lima et al., 2011). Although
these activities generate a higher peak resultant forces, it is unlikely that the ‘average’ TKR

patient will run or ski frequently, if at all.

Comparison of the moments generated during different activities (based on the average peak
for all patients) has to be drawn from Kutzner et al. (2010) as a comprehensive set of data
is provided. The flexion moment during gait (0.019 Nm/BW) is within the range of other
activities, 0.012 BWm during sit-stand to 0.032 BWm during stair descent. Higher valgus
moments are found for activities where deep(er) flexion occurs; during knee bend the valgus
moment was 0.016 BWm compared to 0.01 BWm during gait. The highest varus and F-E

moments were during gait.

The peak loads during gait are similar to other activities, and, whilst higher peak loads
might be seen during ADLs such as stair ascent or stair descent, more time is spent walking.
Therefore, gait is a suitable loading pattern for pre-clinical testing. There is large variability
observed in the knee loads which is important to account for in pre-clinical testing. In
addition to understanding the loading conditions for testing, it is also necessary to examine

the properties of bone as it can influence the success or failure of a TKR.

2.1.9 Structure and strength of bones

Bone is an extremely hard material formed of two components, a mineral phase, and an
organic phase. The mineral phase is primarily calcium phosphate, provides resistance to
tensile loads, and gives bone hardness and rigidity. The organic phase is a matrix of fibrous

tissue, provides resistance to compressive loads, and gives bone its toughness and elasticity.
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Table 2.3: Summary of peak moments during a gait cycle from both in vivo data and MS modelling data.
The data shown is dependent on what was published (i) M =+ o is the mean peak moment (M) and standard
deviation (o), (ii) M (Mmin—Mmax) is the mean peak moment and in brackets is the range of the peaks observed,
and (iii) Mmin—Mmax is the range of the moment where the sign indicates the direction.

Study Pathology n Moment (BWm)

F-E V-V I-E
In vivo
Heinlein et al. (2009) TKR 2 —0.003-0.015 —0.043-0.011 —0.01-0.01
Kutzner et al. (2010) TKR 5 —0.009-0.019 —0.03-0.01 —0.011-0.005

MS modelling

Costigan et al. (2002) Healthy 35 0.06 £ 0.01 0.05+0.02  0.01 +£0.004
Worsley et al. (2011)  Healthy 20 0.04 £0.03 0.07£0.03 0.01 £0.01

The composition of the two phases depends upon age, sex, anatomical position both within

the body and bone, and pathology.

Bones can be classified by their shape; both the femur and tibia are long bones. This type
of bone typically consists of a central cylindrical shaft (diaphysis) and two expanded ends
(epiphyses) (Palastanga et al., 2002). Conical regions (metaphyses) connect the diaphysis
to each epiphysis. The ends of a long bone are often wider than the shaft because they are
covered in articular cartilage and must carry the joint loads. The shaft region of a long bone
is made up of an outer ring of cortical bone that surrounds a cavity of marrow bone. The
end regions of a long bone have an outer shell of cortical bone with ‘spongy’ cancellous bone
inside. At the macroscale, the properties and structure of the two types of bone, cortical
and cancellous, are different, but are important when examining how bone responds to an
implant. Conversely, at the microscale, the properties and structure of cortical and cancellous
bone can be considered similar. Bone can be classified as cortical or cancellous based on
the density relative to fully dense cortical bone (normally assumed to be approximately 1.8
g/cm?3) (Huiskes et al., 2005). The relative density of cancellous bone is about 0.05 (~90%
porosity) to 0.7 (~30% porosity). Cortical bone has a higher relative density, from about 0.7
to 0.95 (Huiskes et al., 2005).

Cortical bone is a solid compact tissue, and at the microstructure level is composed of three
layers: a thin outer layer of laminar bone, a middle layer of interstitial bone, and an inner
layer of laminar bone. The laminar bone is formed of layers concentrically arranged lamellae.
Osteons, aligned along lines of high stress, make up the interstitial bone and contain the
nerves and blood vessels for the surrounding tissue. Cortical bone is transversely isotropic,
stronger longitudinally than transversely, with reported elastic moduli of 17.4 GPa and 9.6
GPa respectively (Guo, 2001).

Cancellous bone is composed of an interconnected series of rods and plates called trabecula
(figure 2.9a), forming a porous structure. The morphology and density of cancellous bone
depends on the atomic site and loading conditions. The formation and development of

the trabeculae is a response to environmental mechanical factors, controlled by a biological
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High density trabeculae

(femoral head and neck)
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Figure 2.9: The structure of bone: (a) the macroscale structure of bone (image copyright of Primal Pictures
Ltd, http://www.primalpictures.com) and (b) the trabecular structure of the femur (image from Huiskes,
2000, with permission from Wiley).The most dense region of trabeculae is in the femoral neck.

regulatory process, first proposed by Wilhelm Roux (Huiskes, 2000). This means that over
time, bone adapts to the loads it experiences. In regions of high loads, the density of trabeculae
increases and they tend to align in the load direction for maximum strength (e.g. figure 2.9b
in the femoral head and neck). In regions of low loads, there is a lower density of trabeculae

and the alignment is almost random (e.g. figure 2.9b in the greater trochanter of the femur).

The adaptive response of cancellous bone to loading, whereby bone is placed where it is needed,
means that it is heterogeneous and anisotropic. Regional differences in volume fraction, the
arrangement of trabeculae, and tissue properties results in a wide variation of mechanical
properties (Keaveny et al., 2001). Heterogeneity is apparent in the proximal tibia, where the
elastic modulus varies by an order of magnitude within a transverse section (Goldstein et al.,
1983). Experimental tests have shown that cancellous bone is anisotropic in both modulus

and strength.

The mechanical properties of bone are dependent on many factors: age, anatomic site,
pathology, load direction, and load type (tension versus compression versus shear) (Keaveny
et al., 2001). The most important factors affecting the elastic modulus and strength are
anatomic site (Morgan et al., 2003), density (which varies with anatomic site), and load
direction. Many modulus-density relationships have been reported (Helgason et al., 2008) and

they generally take the form of a power law

E = Ap’, (2.1)
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Figure 2.10: Elastic moduli of a transverse section of the proximal tibia. In the centre, the elastic modulus is
below 10 MPa and around the periphery it is over 100 MPa (image reprinted from Goldstein et al., 1983, with
permission from Elsevier).

where F is elastic modulus, p is density, and A and b are constants. Studies which have
reported the dependence of elastic modulus on density also generally show the dependence of

ultimate stress on density by a linear or power law relationship (Keaveny et al., 2001).

When considering the failure of bone, the anatomic site must be known, as strength, like
modulus, can vary by an order of magnitude between sites. Strength behaviour of cancellous
bone is complex, as it has a lower strength in shear than tension than compression. However,
it is perhaps simpler to characterise failure by strain instead of stress. The linear relationship
between failure stress and corresponding elastic modulus implies that the failure strain is
relatively constant for cancellous bone, because the ratio between stress and strain is modulus
(Keaveny et al., 2001). In bovine bone, tests have shown that yield strains are higher in
compression (0.97%) than tension (0.80%) and are isotropic (Chang et al., 1999). Experimental
measurements of strain have shown failure strain does not depend on density (Keaveny et al.,
1994; Rohl et al., 1991), with one study suggesting a very weak dependence (Kopperdahl
et al., 1998). Furthermore, yield strain of bone is dependent on the anatomic site (Morgan
et al., 2003; Morgan et al., 2001).

The yield and ultimate strain of cancellous bone in the proximal tibia has been measured
(table 2.4). It is likely that differences in measured values are because of experimental errors,
such as end-artifacts. The strains measured by Lindahl (1976) are significantly larger than
reported by other studies. Ultimate strain in compression is in the range of 1-2%, fitting in
the range reported for bone at other anatomical sites, such as vertebra (1.45%) (Kopperdahl
et al., 1998). The compressive strain is similar to that of other anatomic sites, 0.77% for
vertebra (Morgan et al., 2001), 0.81% for vertebra (Kopperdahl et al., 1998), 0.7% for the
femoral greater trochanter (Morgan et al., 2001), and 1.04% for the femoral neck (Bayraktar
et al., 2004).

Understanding the properties of bone is important when using FE models. Models can
now be generated by segmenting a CT scan and generating a mesh from the segmentation
labels (Young et al., 2008). The advantage of this is that the material properties of the
bone can be computed from the CT scan (Taddei et al., 2004). It is known that there is a

linear relationship between the intensity of a CT scan and apparent density. By doing this
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Table 2.4: Measured values of yield and ultimate strain of trabecular bone in the human proximal tibia.

Study Load type  Measure Strain (%)
Lindahl (1976) Compression  Yield 6.9+4.5
Ultimate 11.6 £6.2
Rghl et al. (1991) Compression  Ultimate  1.11£0.63
Tension Ultimate 1.55+£0.49
Linde et al. (1992) Compression  Ultimate  2.04 (0.07)
Morgan et al. (2001) Compression  Yield 0.73 £ 0.06
Tension Yield 0.65 £ 0.05

conversion, an appropriate modulus-density relationship can be applied to compute the elastic
modulus of each element in the mesh. The observation that the yield and ultimate strain of
bone is isotropic, means that it is not an unreasonable assumption to model bone as an an
elastic isotropic material. Bone heterogeneity can be modelled by assigning different moduli

to elements.

It has been suggested that the risk of failure of cancellous bone, and therefore migration of an
implant, is proportional to the stresses in the bone (Taylor et al., 1997; Taylor et al., 1998).
This means that the failure criteria of bone is important. If the stress in bone surrounding
an implant yields, or reaches ultimate strength, then it is likely that the implant will fail.
However, as discussed, bone exhibits a simpler strain behaviour, which makes it a better
failure criteria to use. In a FE model, the elements which exceed yield or ultimate strain can

be identified and the risk of failure can be assessed.

2.2 Total knee replacement

The term total knee replacement (TKR) broadly refers to the replacement of the femoral,
tibial, and patellofemoral articulating surfaces (Walker, 2005). This encompasses condylar
prostheses, where only the condyles of the tibia and femur are replaced, to hinged prosthesis,
where both the joint and ligaments are replaced. There are also design variations depending if
the patient is undergoing a primary (replacement of the natural knee) or revision (replacement
of one or more parts of the current prosthesis) procedure. Although a TKR procedure is a
relatively successful treatment, replacing the natural knee with an engineered one can cause
problems, leading to failure of the TKR. In this section, the common pathologies for a TKR,
current designs of TKRs, and the reasons for failure are discussed. The focus is on primary

condylar replacements, and, unless otherwise specified, they are simply referred to as TKRs.

2.2.1 Pathology and failure of the knee

TKRs are used to treat several pathologies of the knee, the most common being arthritis.
There are two types of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA). OA is

the most common form of arthritis and is a localised degenerative condition associated with
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Table 2.5: Incidence of reasons for a TKR from joint register data.

Joint register First Second Other
National Joint Registry for England and Wales (2011) OA (97%) RA (2%) 1%
Canadian Institute for Health Information (2008) OA (93%) RA (4%) 3%
Swedish Knee Arthroplasty Register (2010) OA (96%) RA (2%) 2%
Finnish National Agency for Medicines (2008) OA (92%) RA (4%) 4%
Australian Orthopaedic Association (2011) OA (97%) RA (2%) 1%
New Zealand Orthopaedic Association (2010) OA (93%) RA (3%) 4%

old age and natural wear of a joint. The cartilage covering the articulating surfaces of the

knee softens and wears away leaving bone-on-bone contact, causing pain and stiffness.

RA is a chronic, progressive auto-immune disease in which the synovial membrane becomes
thickened and inflamed. The inflammation damages the soft tissues and cartilage of the joint,
again causing pain and stiffness. The onset of RA tends to occur at an earlier age than OA,

and is more likely to affect women than men.

The other likely reason for a TKR is post-traumatic arthritis as a result of a serious knee
injury. Perhaps a knee fracture, ligament or cartilage tear can wear the articular cartilage

over time, leading to the need for a replacement.

Joint registers are maintained by several countries, recording total joint replacement patients
and reasons for surgery, replacement type, and other statistics. The most recent joint registers
indicate that OA is the top reason for a primary TKR and RA most often second (table 2.5).
Given that arthritis is the reason for a TKR in about 97% of cases, it is not surprising that
the age of the average patient is around 69 years (Australian Orthopaedic Association, 2011;
National Joint Registry for England and Wales, 2011; New Zealand Orthopaedic Association,
2010; Swedish Knee Arthroplasty Register, 2010).

2.2.2 Total knee replacement designs

The current design of TKRs became popular in the 1970s with the progress of new materials in
hip implants (Robinson, 2005; Walker, 2005). A TKR consists of a femoral component, which
covers both the medial and lateral condyles, and a corresponding tibial component, which
resurfaces proximal tibia (figure 2.11). The posterior of the patella can also be resurfaced with
a small ‘button-like’ component. In an article about the history of TKR designs, Robinson
(2005) describes two design approaches: the anatomical approach, which aims to mimic the
natural knee geometry and preserve soft tissue constraints; and the functional approach, which
aims to use mechanical principles to restore the movement of the natural knee, resecting the
cruciate ligaments and using movable joint surfaces. Irrespective of approach, the overall
goals of a TKR remain the same, to relieve pain, restore function, be durable (able withstand
contact stresses and wear), and be reliable (insensitive to misalignment, size mismatch, and
support variable loading conditions) (Walker, 2005). To achieve these goals, there are design

factors which must be considered.
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Figure 2.11: Example of a TKR: (a) is a Depuy PFC Sigma Fixed Bearing, and (b) is a patient X-ray before
a revision operation (image reproduced with permission and copyright of the British Editorial Society of Bone
and Joint Surgery, Baker et al., 2007).

Materials. For any joint replacement, all the materials used must be biocompatible, non-
toxic, corrosion resistant, and able to withstand the joint loads. Articulations must also be low
friction to minimise factors such as wear. Metal-on-polyethylene is the ‘gold’ standard for TKR
articulation. The femoral component is a single piece manufactured from cobalt-chromium,
titanium, or ceramic. The tibial component can be either a ultra high molecular weight
polyethelene (UHMWPE) monoblock, a porous tantalum monoblock (the base and stem is
porous tantalum, the bearing surface is UHMWPE), or modular with two parts, a metal
(often titanium or cobalt-chromium) tibial tray and a UHMWPE tibial insert which clip
together. The metal backed tibial component is now most common, giving a stiffer backing
and better osseointegration, but can cause stress shielding (Huiskes, 1993; Levitz et al., 1995).
The patella component is usually UHMWPE.

Cruciate retaining or resecting. Almost all designs require resection of the ACL to allow
space for full resurfacing of the tibia. The choice of retaining or resecting the PCL influences
the selection of TKR. There is no clear evidence that either choice offers an advantage, and it

really depends on the condition of the patients ligament and the surgeon’s personal preference.

The anatomical approach tends to retain the PCL. The geometry of the tibial tray tends to
be less conforming and have a lower profile, using the PCL to restrict A-P motion, thought
to give a higher range of flexion (Walker et al., 2000). However, the PCL must be in good
condition and correctly tensioned. Tibial contact pressures can increase with low profile

surfaces.

Resecting the PCL requires a more functional approach to TKR design. The constraint of the
PCL must be provided by the implant, and designs have used features such as more conformal
geometry with a higher anterior lip or an intercondylar cam to limit the A-P motion. Without
the PCL, the tibial component must withstand the larger restraint forces. Cam features

can induce a high shear stress, but a more conforming geometry will reduce surface contact
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Figure 2.12: The three bearing types of the tibial component

pressure. Modern TKR designs are modular and the choice to resect or retain can be made in

surgery, after the surgeon has assessed the condition of the PCL.

Tibial tray bearing. Modular TKRs mean that it is possible to allow motion of the tibial
insert relative to the tibial tray. The idea is the extra bearing allows a more conforming motion
of the tibia against the femur, increasing surface contact (Walker, 2005). There are three
types of bearing: (i) fixed bearing allows no motion of the tibial insert, (ii) rotating bearing
allows I-E rotation, and (iii) mobile bearing allows both I-E rotation and A-P translation
(figure 2.12).

Fixation method. The stability of the implant fixation, whether cemented or cementless, is
critical for long term success. Cemented fixation uses bone cement, polymethylmethacrylate
(PMMA), to fill the gap between the implant and bone. This has the advantage that it is
more forgiving as voids created from cutting inaccuracies are readily filled (Lombardi et al.,
2007), and can provide more stable fixation (Carlsson et al., 2005; Ryd et al., 1990). There is
evidence that the strength of the bone-cement interface is dependent on the compliance of
the interface, amount of interdigitation, and the contact area between the bone and cement
(Mann et al., 1997; Mann et al., 2008; Waanders et al., 2010). Poor bone-cement interface
strength, perhaps from minimal penetration of the bone cement into the bone, can lead to

cracks developing in the cement and loosening of the implant.

Cementless fixation relies on bone ingrowth onto the surface of the implant, which is often
porous or coated with hydroxyapatite (HA), to provide fixation. It is thought to provide
long-term fixation, advantageous for younger more active patients, without the problems
associated with cement degradation (Khaw et al., 2002; Lombardi et al., 2007). However,
there are problems with cementless implants, including evidence of extensive radiolucent lines
indicating poor fixation (Fuiko et al., 2003), rapid early migration (Albrektsson et al., 1992;
Ryd et al., 1990), and osteolysis (although this is mostly when screws are used to fix the

implant), all of which can result in loosening.

2.2.3 Mechanisms of total knee replacement failure

There is always a risk that a TKR could fail post-operatively, requiring a revision surgery.
Failure mechanisms should be thought of as a process which occurs over a period of time,

to quote Huiskes (1993) “failure is virtually always a process, hardly ever an event. Such a
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process develops as a mechanism and produces radiological and clinical signs along its way.
Failure mechanisms of the TKR leading to revision have been discussed by Austin et al. (2004);

Vince (2003). The following mechanisms are defined:

¢ Aseptic loosening. The implant becomes loose, either from accumulated damage, par-
ticle reaction, failed bonding, or perhaps malalignment of the components. Micromotion

and migration can also occur.

e Wear. Wear of the tibial insert (polyethylene) is often a problem in TKRs. There are
many factors which influence the rate of wear: the shape of the bearing surface; modular
design, allowing relative motion between the tibial insert and tibial tray; additional
bearing surfaces in mobile bearing and rotating platform designs; the thickness, quality,
and method of sterilisation of the polyethylene; the patient weight and activity; and

alignment of the TKR. Wear can either lead to particulate reactions or be destructive.

¢ Debonding. The debonding of the bone-cement, cement-implant, or bone-implant
interfaces can occur due to accumulated damage, particulate reactions, or failed bonding
scenarios. The formation of fibrous tissue around at the interfaces indicates debonding

and can be seen on radiographs.

¢ Instability. The knee depends upon the surrounding soft tissue and ligaments to
provide stability. Improper ligament balancing, particularly of the collateral ligaments,
or damage to the soft tissue, can lead to the instability of the tibiofemoral joint. This is

most common with valgus deformities and impairs patient mobility.

o Patella complications. Mal-alignment of the tibial and femoral components are linked
to patella mal-tracking (Barrack et al., 2001), often indicated by anterior knee pain.
Other patella complications are wear, fracture, and loosening. If the patella was not

originally resurfaced, it can be, otherwise a TKR revision could be required.

¢ Dislocation. This can occur for both the tibiofemoral joint and patellofemoral joint.
The likely cause is incorrect ligament balancing or severe component mal-alignment.
The risk of the tibia dislocating posteriorly is increased by a patellectomy or under

sizing of the femoral component.

o Disease progression. In the case of a patient with RA, it is likely that the joint will

continue to degenerate after surgery, leading to problems with the implant.

e Mechanical failure. There is always a risk of complete mechanical failure of an
implant. The destructive wear scenario leads to mechanical failure, particularly of the
polyethylene tibial insert. Improved testing techniques and strict safety specifications

mean that this is now a very rare failure mechanism.

e Limited function. Poor component position or improper ligament balancing can
reduce the range of motion of the joint. This can stop the patient performing certain

activities and impair mobility. In many cases, a revision is not performed.
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e Infection. The risk of infection is reduced from good hygiene practice, use of antibiotics,
and component and instrumentation sterilisation. Infection occurs in a few percent of
all joint replacement operations, and can normally be treated with antibiotics. Only

deep infections might require removal or revision of the implant.

e Pain. This is a very subjective measure to which there is not necessarily an underlying
cause (Ritter, 1997). Classified as the ‘mystery knee’ (Vince, 2003), pain without cause

can be a reason for a revision.

TKR failure can present in many different ways and the mechanisms are not independent
of each other. For example, accumulated damage, particulate reaction, and debonding can
all lead to loosening of the TKR. Survivorship studies have found the most common failure
to be infection, polyethylene wear, instability, and aseptic loosening (Fehring et al., 2001;
Sharkey et al., 2002). This is in agreement with the top five indications for revision from the
National Joint Registry for England and Wales (2011): aseptic loosening (33%), infection
(23%), pain (17%), instability (14%), and wear of polyethylene component (11%), which
includes all types of TKR.

2.2.4 Survivorship of the cementless tibial tray

Currently, the majority of TKR procedures use cemented fixation for one or more components.
In England and Wales, approximately 5% of the all TKR procedures are cementless (National
Joint Registry for England and Wales, 2011), a decrease of 2% compared to previous years.
In Australia around 27% of primary TKRs are cementless, 23% are hybrid!, and 55% are
cemented (Australian Orthopaedic Association, 2011). The proportion of cementless TKR
procedures in Canada and New Zealand is around around 6%, similar to England and Wales.
Only 1% of TKR procedures in Sweden are cementless (Swedish Knee Arthroplasty Register,
2008). The low proportion of cementless fixation is because of the proven clinical history of
cemented fixation, considered the ‘gold’ standard for TKRs and is the recommended technique
(Austin et al., 2004; Gandhi et al., 2009).

If this is the case, why use cementless tibial trays? The success of the cementless THR is
part of the reason. Long term survival rates are high, so there is naturally an interest in
using cementless TKRs. If improved long-term fixation can be achieved, then TKRs would be
expected to last longer, benefiting younger more active patients. Further to this, problems
associated with cement (e.g. cement debris) are avoided, bone stock is preserved and revisions

are easier.

However, there are mixed reports about the success of cementless tibial trays. Clinical studies
comparing cemented and cementless TKRs have reported poor survivorship. Duffy et al.
(1998) reports 94% and 72% survivorship for cemented and cementless fixation respectively.
These figures are for survival to revision for aseptic failure or radiographic loosening, excluding

problems relating to the patella. However, the study was not randomised, nor were the patient

Tt is assumed that this means only one or part of one component is cemented. The definition is not given
in the report.
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groups matched. Younger, more active patients were selected for a cementless TKR, and
the higher level of activity could increase the risk of failure. Berger et al. (2001) found that
whilst femoral fixation was good after 11 years (the only revisions were secondary to patella
complications), 8% of the tibial components had to be revised due to aseptic loosening and

12% showed small osteolytic lesions around the screw holes.

More recent studies have shown survivorship of cementless TKRs to be comparable to cemented
TKRs (Baker et al., 2007; Bassett, 1998; Hofmann et al., 2001; Holloway et al., 2010; Martin
et al., 1997). A long term study of a series of 501 TKRs (277 cemented, 224 cementless)
reported no significant difference in survival rates between the two types of fixation (Baker
et al., 2007). For cemented fixation, 15 year survival rate was 80.7%, with a 10 year survival
rate of 91.7%. For cementless fixation, the 15 year survival rate was 75.3%, with a 10 year
survival rate of 93.3%. Similar survival rates are reported by other studies and are in line
with recent joint register data, 96.19% survival rate for cemented TKRs and 95.25% survival

rate for cementless TKRs at 7 years (National Joint Registry for England and Wales, 2011).

Apparent from survivorship studies is that loosening of the tibial tray is the most likely reason
for revision. A few studies have reported a higher incidence of loosening for cementless tibial
trays (Austin et al., 2004; Duffy et al., 1998). Radiolucencies can often be seen around the
tibial tray indicating poor fixation. Studies report both a high (Duffy et al., 1998; Fuiko et al.,
2003) and low (Bassett, 1998; Cossetto et al., 2010; Holloway et al., 2010; Martin et al., 1997)
incidence of radiolucencies. However, there is often no progression of the radiolucencies, and

there is no apparent link between radiolucencies and revision.

The early appearance of radiolucencies around the tibial tray (Fuiko et al., 2003), suggests
that poor initial fixation could be a problem. Greater initial migration of cementless tibial
trays has been measured using RSA (Albrektsson et al., 1992; Carlsson et al., 2005; Nilsson
et al., 1999), and can be an indication of late aseptic loosening (Grewal et al., 1992; Ryd et al.,
1995). Use of HA coatings can reduce the migration of cementless tibial trays, providing a
stronger fixation than cemented implants after the initial preoperative period (Carlsson et al.,
2005; Nilsson et al., 1999). From experimental studies using porous implants in dogs, it was
observed that the amount of micromotion affected bone ingrowth. Micromotions less than
50 nm resulted in bone ingrowth, and greater than 150 pm resulted in fibrous tissue formation
(Jasty et al., 1997; Pilliar et al., 1986).

The success of long term fixation of a cementless implant is dependent on the primary stability
of the fixation. It has been suggested that the risk of cancellous bone failure, and therefore
migration, is related to the initial stresses in the bone (Taylor et al., 1997). That is, if the
stress or strain levels in the bone exceed the elastic limit, the implant is likely to migrate,
increasing the risk of aseptic loosening. Computational testing can predict the stress, strain,
and micromotion at the bone-implant interface using FE analysis. This technique of modelling
can give an insight into how a bone and implant respond to loading, indicating a relative
risk of failure between models. In the next section, current FE studies that model the tibia
implanted with a tibial tray are reviewed, looking at how this type of analysis can be used to

assess the performance of a tibial tray.
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Computational assessment of total

knee replacements

3.1 Finite element models of the knee

Finite element (FE) analysis is common in bioengineering, particularly for pre-clinical analysis
of orthopaedic implants. A review of FE models in bioengineering reports that they were
first used in the field in 1972 (Prendergast, 1997). Since then, advances in computational
technology have allowed FE analysis to be applied to a wide range of problems of varying
complexity. Generally, FE studies are used to determine the stresses and strains in biological
structures (e.g. bones and ligaments) for given load cases. They have been applied to individual
bones to the musculoskeletal system, with explicit and adaptive techniques also used to model

time dependent processes, such as fatigue, wear, and tissue adaptation (Prendergast, 1997).

Pre-clinical testing of joint replacements is one of the main uses of FE analysis in orthopaedics.
Failure of a joint replacement in vivo means that revision surgery would likely be required.
This requires the patient to have another major operation and is expensive for the health
authority. Engineers can use FE analysis as a tool to assess implant designs, looking at factors
such as joint function, implant fixation, and wear characteristics, with the aim of reducing

the chances of implant failure.

FE analysis of the knee has been used to look at the strain in the bone-implant interface
(Perillo-Marcone et al., 2007; Wong et al., 2010), stresses in the cancellous bone (Taylor et al.,
1998), micromotion of the tibial tray (Chong et al., 2010; Keja et al., 1994; Rakotomanana
et al., 1992; Taylor et al., 2012; Tissakht et al., 1995), or contact stresses between the TKR
components (Halloran et al., 2005). Wear of implants can be predicted using an FE model
(Knight et al., 2007; Laz et al., 2006) or a multi-body dynamics (MBD) models (Strickland
et al., 2009).
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3.2 Finite element models of the tibial tray

The focus of this thesis is on the proximal tibia implanted with a tibial tray. Other components
of the TKR are not considered. When assessing the performance of a tibial tray, of interest
is the mechanical response (stress and strain) of the bone and implant, and micromotion at
the contact interface!. Many studies use FE analysis as a comparative tool, examining the
relative changes of stress, strain, or micromotion between implant designs, fixation methods,
and/or load cases. A summary of recent FE studies which examine tibial tray fixation is given
in table 3.1, giving details of the study aims, applied model loads, mechanical response (if
reported), micromotion (if reported), and the main findings. Where studies have compared
multiple tibial tray designs or fixation methods, results are reported for what was judged to

be the more common design or uncemented fixation.

Generally, most models are 3D geometry of at least the proximal tibia and tibial tray, often
with the tibial insert, and a cement layer when appropriate. Hashemi et al. (2000) and
Rawlinson et al. (2005) modelled a small patch of the femoral component. Perillo-Marcone et

al. (2007) modelled the full femoral component and ligaments to be able to predict kinematics.

Not detailed in table 3.1 are the material properties applied to the models. The more recent
studies (Chong et al., 2010; Perillo-Marcone et al., 2007; Taylor et al., 2012; Wong et al.,
2010) sample intensity values for each mesh element from CT scans and convert this to an
elastic modulus (see section 2.1.9) to represent the heterogeneity of bone. The number of
materials in the model is reduced by grouping the elastic modulus. In earlier studies, the
bone was often split into multiple regions and a different material assigned to each, assuming
each region was homogeneous. If too few regions are used, intra-region variation of the bone

properties is ignored.

Linear elastic isotropic material behaviour was assumed for bone in most studies, with only
one study using transverse isotropic behaviour (Rakotomanana et al., 1992), and another
(Rawlinson et al., 2005) using anisotropic behaviour. The problem is that anisotropic behaviour
of bone is dependent on type of bone and anatomic site. Cortical and cancellous bone both
have different degrees of anisotropy and it can be difficult to separate the two types of bone,

particularly if the geometry is created based on a segmented CT scan.

One source of loading is from the ISO standard (ISO 14243-1, 2009). This defines a load cycle
to be used for wear testing of a TKR, and can be applied to FE models (Perillo-Marcone
et al., 2007; Wong et al., 2010). However, the ISO standard underestimates the peak-to-peak
I-E moment compared to TKR telemetry data (Heinlein et al., 2009; Kutzner et al., 2010).
The magnitude of change could have an impact on the bone-implant interface stresses and

polyethylene wear, important considerations when testing a TKR.

'In this context, the contact interface refers to either the bone-implant interface or bone-cement interface,
as these are most likely to become loose. It is often assumed that the implant is fully bonded to the cement.



Table 3.1: Summary of tibial tray fixation FE studies.

Reference

Aims

Loading

Mechanical response

Micromotion

Findings

Rakotomanana
et al. (1992)

Compare fixation of two
different designs of tibial
tray, cemented metal tray
total condylar, and porous

coated anatomic (cemented

and uncemented). 2D model.

Two static load cases of total
magnitude 2000 N, (i) equal
distribution between the
medial and lateral sides, and
(ii) one-third lateral and
two-thirds medial distribution
between condyles (varus

malalignment).

Peak stresses in uncemented
porous coated anatomic. Load
case (i) 8.1 MPa (cancellous
bone) and 18.1 MPa (cortical
bone); (ii) cortical lateral 15.1
MPa and cortical medial 21.2
MPa.

Uncemented porous coated
anatomic at bone-implant
interface. Load case (i) vertical
displacement 0.17 mm at medial
and lateral edges, relative
vertical displacement in centre
0.39 mm. Shear micromotion
0.05 mm max at edges. Load
case (ii) tilting of implant,
vertical displacements 0.0 mm
lateral, 0.55 mm centre, and 0.34
mm medial. Shear micromotions

0.05 mm max.

Concentration of stresses
appear at extreme edges of
implant. The peak stresses of
the porous coated implant
lower. Different stress

distributions along the pegs.

Keja et al.
(1994)

Comparison of micromotion
a prototype implant with
perimeter fixation, and the
PCA with two pegs. A
combination of different
materials and fixation points

were tested.

Axial load of 2500 N (assumed
3 BW) equally distributed
between medial and lateral
side. Implant-bone interface
assumed frictionless. The
points of fixation (perimeter
or pegs) were constrained to
move with the bone, allowing
no micromotion.

Not reported.

Prototype (perimeter fixation)
micromotions were 17 pm av.
and 37 pm max. PCA (peg
fixation) micromotions were 44
num av. and 101 pm max. The
fixation constraint meant that
micromotions decreased to 0 pm

at fixation points.

The perimeter fixation showed
lowest micromotion. Results
affected by unrealistic fixation
constraint, perimeter or pegs
are not necessarily bonded to

bone.

Tissakht et al.
(1995)

Compare three fixation type
of a tibial tray, close-fit,
press-fit, and screw fixation,
measuring the micromotion
of each. The model was
validated with experimental

results.

Axial load of 1000 N (approx.
1.5 BW) applied to single
node in center of tibial tray.
Friction contact model used

for bone-implant interface.

Not reported.

Micromotion was dominant in
shear direction. Pattern was
similar for all types of fixation.
Peak to peak micromotion:
Close-fit: 1.3-4.9 pm M-L,
2.5-6.8 ym A-P;

Press-fit: 1.1-3.8 pm M-L,
4.2-11 pm A-P;

Screw fixation: 0.0-2.5pm M-L,
0.0-3.0pm A-P.

Coefficient of friction value
affects the micromotion.
Magnitude of press-fit and
close-fit micromotions are
similar, screw fixation offers

best initial fixation.
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Table 3.1: Summary of tibial tray fixation FE studies (cont’d).

Reference

Aims

Loading

Mechanical response

Micromotion

Findings

Taylor et al.
(1998)

The bone-implant interface
stress measured for three
tibial trays of different
materials and fixations. The
mean stress is compared
with published migration

and survivorship data.

Uni-condylar: 2.2 kN axial
force applied to medial
condyle.

Bi-condylar: 2.2 kN axial
force applied with a 60-40%
ratio between medial and

lateral condyles respectively.

Mean (peak) min principal

cancellous bone stress for

cementless implant bi-condylar

load case:
Medial: 1.55 (2.48) MPa

Inter-condylar: 0.31 (1.02) MPa

Lateral: 1.00 (1.72) MPa

Not reported.

Rank order of implants based
on stress and migration data
the same. Data suggests a
correlation between the
cancellous bone stress and

implant migration.

Hashemi et al.
(2000)

Compare fixation designs of
a tibial tray and two friction
models. Model of proximal
tibia, tibial tray, tibial insert,
and medial patch of femoral

component.

Varus alignment with 2 kN
medial axial load. Femoral
component constrained to

move vertically only.

Not reported.

Micromotion highest posteriorly
and anteriorly. Peak to peak
micromotions:

Post fization: 0.1-12.7 pm M-L,
1.0-22.0 pm A-P.

Screw fization: 0.8-12.2 um M-L,

1.0-16.0 pm A-P.

Screw fixation reduced
micromotion and lift-off.

Miyoshi et al.
(2002)

Assess performance of a
posterior notched and

un-notched tibial tray.

2 kN axial load equally
distributed between the
condyles in different positions:
(i) stable, load central on each
condyle; (ii) unstable, load
medio-posterior edge of one
condyle and anterior-lateral to
the middle portion of the
other condyle.

Max von Misses stresses at
bone-implant interface
(stable/unstable):

Notched: 11.0/13.5 MPa
Un-notched: 11.6/12.3 MPa.

Max displacement of
mid-sagittal section
(stable/unstable):

Notched 0.068/0.089 mm
Un-notched: 0.076/0.104 mm

Max displacement of resected
surface (stable/unstable):
Notched: 0.07/0.113 mm
Un-notched: 0.073/0.114 mm

No significant difference was
found between the
micromotion and stress
distribution of the two

implant designs.

Perillo-Marcone
et al. (2004)

Patient specific study
correlated bone stresses with
RSA results. This study
used a model of a proximal

tibia, tibial tray, and insert.

3 BW axial load. Medial to
lateral ratio dependent on
patient post-operative

varus-valgus rotation.

Risk ratio (von Mises
stress/ultimate compressive
strength) and percent volume
failed bone (PVFB) reported.
Risk ratio 47.0-61.4% and
PVFB 0.4-26.2% with similar

rank order for patients.

Not reported.

Findings support that initial
implant migration is related
to initial mechanical
environment. Link established

between FE and clinical data.
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Table 3.1: Summary of tibial tray fixation FE studies (cont’d).

Reference

Aims

Loading

Mechanical response

Micromotion

Findings

Au et al. (2005)

Investigate different shape of
four tibial tray stems on
bone and interface stresses.

Non-uniformly distributed
axial force of 2 kN. Loading
nodes were determined from
experimentally determined

contact patterns.

Peak stresses:

Post: 7.5 MPa (proximal)
Cement: 1.1 MPa (distal)
Cancellous bone: 0.4 MPa
(distal)

Cortical bone: 4 MPa (distal)

Not reported.

Shape of the post influences
the stress distribution in

different regions of the tibia.
Pegs reduced the cancellous

bone stress for all four designs.

Barker et al.
(2005)

Parametric study of 16
different circumferential
flange shapes using a 2D
axi-symmetrical model. Aim
to minimise shear

micromotion.

Axial load of 586 N assuming
av. cancellous bone stress of
1.34 MPa under tibial tray.
Applied 10 mm inside lateral

edge with a triangular

distribution. No lateral loads.

Coulomb friction model for
contact between tibial tray
and bone. Coefficient of
friction assumed 0.5 for
post-bone interface, and 0.1

for tray-bone interface.

Peak stress under the load
point: ‘flat’ post 1.33 MPa,
‘optimal’ post 1.24 MPa,
‘capped’ post 1.31 MPa.

Peak stress at the periphery:

‘flat’ post 1.59 MPa, ‘optimal’
post 4.16 MPa, ‘capped’ post
2.28 MPa.

Peak bone-implant interface
micromotion for ‘flat’ post 23

pm (bone relative to implant),

and for tightly ‘capped’ post 37

pm (implant relative to bone).

Suggests circumferential
flange reduces micromotion.
‘Optimum’ design minimised
micromotion, but had the
highest peak compressive bone
stresses.
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Table 3.1: Summary of tibial tray fixation FE studies (cont’d).

Reference

Aims

Loading

Mechanical response

Micromotion

Findings

Rawlinson et al.

(2005)

Test the hypothesis that a
stemmed tibial tray
improves implant stability.
Compared stemmed and
unstemmed hybrid cemented
tibial trays using 9
paired-tibiae cadavers with
both experiments and
cadaver specific
computational models. For
each pair, a stemmed tibial
tray was implanted in a

randomly selected side.

Two load cases for FE models:
(i) 3 kN axial load with
transverse displacement and
rotation constrains; (ii) axial,
A-P, and M-L forces from
load cell in experiment with
rotations constrained. 10 Nm
V-V moment also applied in
both cases. Distal end of tibia

fully constrained.

For uncemented implant with
stem, mean min principal strain
at resected surface for load case
(i) —0.32% and (ii) —0.46%

Mean min principal stress at
resected surface for load case (i)
—2.7MPa and (ii) —3.35 MPa.

Relative displacements reported
in terms of percentage change
between stemmed and
unstemmed tibial trays.

Experimental micromotion of
tibial trays with stem is approx.
—0.05-0.03 mm.

Micromotion for FE models with

stem is approx. —0.08-0.12 mm.

Experiments suggest that
stem does not reduce global
micromotions due to large
inter- and intra-specimen
variations. The FE models
showed that the stem
consistently reduced the
compressive strains and stress
in the proximal cancellous
bone, with no significant
different between interface and
loading conditions. Cement
provided stability if the stem
was undersized compared to
the medullary canal.

Perillo-Marcone
et al. (2007)

Investigates V-V
malalignment of a cemented
tibial tray. FE model with
full TKR, proximal tibia and

ligaments.

Stanmore knee simulator data
(Walker et al., 1997). AX
force and F-E angle applied to
femoral component. A-P and
I-E torque applied to distal
end of the tibia. V-V
malalignment simulated by
offsetting the position of the
axial load medially and

laterally.

Peak min. and max. principal
strains of resected surface over
the gait cycle. Magnitude of
min. strains higher. At yield
strain of 0.73%, percentage
volume of bone failing is 59%
(min. prin. strain) and 25%

(max. prin. strain).

Not reported.

The kinematics and strain
changes depending on the V-V
alignment. The change in load
from varus to valgus shifted
the peak strains laterally.

43
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Table 3.1: Summary of tibial tray fixation FE studies (cont’d).

Reference Aims Loading Mechanical response Micromotion Findings
Chong et al. Compute micromotion of a (i) generic static load (AX, Not reported. Peak micromotion/surface area Micromotion is dependent on
(2010) cementless metal tibial tray A-P, and M-L forces); (ii) with micromotion <50 pm for the activity, with stair
under different loading static load at 15% of gait (AX each load case: climbing producing the
conditions. and A-P forces); (iii) static (i) 150 pm/33% highest peak micromotion.
load at 25% of the stair (ii) 107 pm/81% With all results combined,
climbing cycle (AX and A-P (iii) 218 um/30% only approx. 20% of surface
forces); (iv) load representing (iv) 133 pm/44%. with micromotion <50 pm,
four points in the gait cycle limited to a posterior region of
(AX and A-P forces). AX the tray underside and stem.
force distributed unequally
between condyles.
Wong et al. To determine the Experiments used ISO Volume of cortical bone at risk Higher micromotion for varus Varus alignment of tibial
(2010) biomechanical factors standard loading up to of failure: 50 mm? (neutral) alignment. Experimental increases the risk of cancellous

affecting the risk of tibial
tray subsidence with varus
malalignment. Gait cycle
loading of four human knees,
2 neutral and 2 varus
alignment, to measure
micromotion of tibial tray.
Subject specific FE models
were also used to predict the
volume of bone at risk of

failure in the proximal tibia.

100,000 cycles of gait. AX
medial to lateral force ratio:
(i) neutral alignment 55:45 (ii)
varus alignment 75:25.
Subject specific FE models
used same loading simulating
a single gait cycle. Additional
‘paired’ analysis, where both
neutral and varus alignment

was simulated for each model.

and 150 mm?3 (varus). Volume
of cancellous bone at risk of
failure: 3800 mm? (neutral)
and 4400 mm3 (varus). All av.

of ‘paired’ analysis.

measurements match subject

specific computed micromotion.

The AX micromotion for the
four subjects
(experiment/computed): 8/10
pm, 20/22 pm, 37/35 pm, and
38/36 pum.

bone failure, which is likely to
be a cause of subsidence.
Inter-patient variability of
bone quality also affects the
risk.
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Table 3.1: Summary of tibial tray fixation FE studies (cont’d).

Reference

Aims

Loading

Mechanical response

Micromotion

Findings

Taylor et al.
(2012)

Compare the micromotion of
three tibial trays for five
different activity cycles:

level gait, stair ascent, stair
descent, stand to sit, and
deep knee bend. Quantify
both the magnitude of peak
micromotion and when in
the activity cycle it occurs.
Only the proximal tibia and

tibial tray were modelled.

Post-operative telemeterised
TKR data (Orthoload) of five
complete activity cycles. All 3
forces and all 3 moments
applied directly to the tibial
tray. Distal end of tibia
constrained.

Not reported.

Composite peak micromotion
(CPM, peak micromotion of the
bone-implant contact surface
during the activity) for
comparison. Level gait, stair

ascent, and stair descent

generated highest micromotions.

For level gait: CPM mean
61-86 pm, CPM max.

180-225 pm, area < 50 pm
39-46%, area > 150 pm 2-16%.

Predicted micromotions for
the three tibial trays appear
to be agreement with the
reported incidence of
radiolucencies (higher
micromotion, higher incidence
of radiolucencies). Found that
the highest micromotions
occur when low AX force and
moderate V-V moment. Load
state occurs frequently in
ADLs affecting the primary
stability of the tibial tray.
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(a) LCS Complete (b) PFC Sigma (c) LCS Complete Duofix

Figure 3.1: Composite peak micromotion (CPM) plots of the bone-implant interface of three different implant
designs with level gait loading. These CPM plots report the peak micromotion at each individual node of the
surface that occurred during the simulated activity. Light grey corresponds to micromotions < 50 pm and
black corresponds to micromotions > 150 pm (image reproduced from Taylor et al., 2012, with permission from
Wiley).

Despite the availability of ISO standard data and Orthoload data, the loading applied to the
models in the majority of studies is a static axial (AX) force. The force is often split between
the condyles and perhaps can be considered to represent the peak load at an instance of an
activity cycle. The magnitude of the AX force varies, from 586 N up to approximately 4050
N, representing a patient specific load of 3 BW (Perillo-Marcone et al., 2004).

The assumption in many studies is that the peak stress, strain, and micromotion occurs with
peak axial load. During gait, this assumption is not necessarily the case. Chong et al. (2010)
simulated five points during the stance phase of gait (see section 2.1.7), applying only the
AX and A-P forces. The computed micromotions peaked at toe-off, not at mid-stance or
contralateral heel strike where the AX force peaks. The percentage area of the tibial tray
with micromotions < 50 pm was also lowest at toe-off. However, a full activity cycle was not
simulated and nor were the internal moments of the knee applied (although the medial to
lateral ratio of the AX force was unequal and could be considered to represent either a V-V

moment or varus malalignment).

Full activity cycles of level gait, stair ascent, stair descent, stand to sit, and deep knee bend
were simulated in a study comparing the micromotions of three cementless tibial trays (Taylor
et al., 2012). Loading for each activity was taken from a patient in the Orthoload data set.
All three forces and all three moments were applied directly to the tibial tray, discretised
at approximately 2% intervals of the activity cycle. During gait, the peak micromotions
occurred during swing phase, where the forces are negligible and there are moderate moments.
The pattern of peak micromotion during gait was also found to be similar for all tibial trays
(figure 3.1). It is important to note that the primary stability was considered in isolation from
bearing design and the loading applied to all models was taken from a telemeterised tibial
tray of a different design to any used in the study. The kinetics of the knee are dependent on
kinematics, which would be a function of implant design. Hence, the forces in the knee are
likely to be different between implant designs. Despite this limitation, it is clear that a TKR
should be tested for a full activity cycle.

From the reviewed studies, it is apparent that the micromotion at the contact interface is

highly dependent on choice of loading and contact properties. Despite this, the peak predicted



36 Computational assessment of total knee replacements

Tray Micromotion
40 ~
O Cadaver
BFEA
2
-
2
2
=
0 T T v
55:45 55:45 75:25 75:25

Specimen Group (Mediolateral Force Distribution)

Figure 3.2: The computed superoinferior micromotion of the tibial tray relative to bone on the medial side
compared to that measured experimentally in four specimens (image reproduced from Wong et al., 2010, with
permission from Wiley).

micromotions are often not much greater than 150 pm, the threshold above which fibrous
tissue forms. For example, during level gait, peak micromotions of 133 pm and 225 pm were
reported by Chong et al. (2010) and Taylor et al. (2012) respectively. Several studies have
also validated the predicted micromotions with experiments and found the magnitudes to be
similar (figure 3.2), showing that FE models can predict realistic micromotion of the tibial
tray. However, there were differences in the pattern of micromotion (Chong et al., 2010;
Rawlinson et al., 2005; Wong et al., 2010).

There is inconsistent reporting of the mechanical response of bone. Studies use different stress
and strain invariants in different regions of the model, making comparison difficult. However,
stresses in the tibia were generally below the ultimate stress of cancellous bone, around 5.3
MPa for the proximal tibia (Keaveny et al., 2001). Many studies assume isotropic behaviour
of bone, instead of transverse isotropic as found experimentally (Keaveny et al., 2001), which

can overestimate axial stresses by up to 40% (Rakotomanana et al., 1992).

Strain in the tibia is not widely reported. The peak minimum principal strain and peak
maximum principal strain at the bone-implant interface has been reported as —15% and 3.3%
respectively (taken from contour plots of strain in Perillo-Marcone et al., 2007). These are
high values of strain, in excess of compressive and tensile yield strain for cancellous bone.
Much lower peak minimum principal strains have been reported in the medial region below the
tibial tray, ranging from —1.35% to —0.30 % depending on material properties, fixation, and
applied loads (Rawlinson et al., 2005). Part of the reason for the differences in peak magnitude
of strain is that different regions of the tibia are being considered, but the complexity of the
models also differs. Rawlinson et al. (2005) modelled a tibia and tibial tray applying static AX,
A-P, and M-L forces, with a total AX force of 3000 N. This is relatively simple compared to
Perillo-Marcone et al. (2007), where a complete TKR (excluding patella component), proximal
tibia, and ligaments were modelled. A full gait cycle was simulated and the patient weight

was 116 kg, causing larger loads to be generated across the TFJ, leading to a higher strain.
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3.2.1 Assessing the risk of failure

It is clear from the literature that an important goal of FE models in pre-clinical testing of
the tibial tray is to predict the potential risk of failure. One measure often used to assess
the potential risk of failure is interface micromotion, an indicator of the tibial tray primary
stability. If primary stability is poor, micromotion at the bone-implant interface occurs,
preventing bone ingrowth and inducing fibrous tissue formation, leading to migration. As
previously discussed, early migration is a potential clinical indicator of late aseptic loosening

(see section 2.2.4).

Mechanical response of the bone is another measure used to predict the potential risk of failure.
A tibial tray is most likely to migrate if the surrounding bone fails, and bone is more likely to
fail if the strain exceeds yield or ultimate strain. If the bone does fail, the chance of continuous
migration is higher, affecting the long term success of the tibial tray. Instead of directly
comparing the stress and strain, several studies compute the volume or percentage of bone at
risk of failure in a given region, defining metrics such as the risk ratio, the ratio mean/median
of stress in a region of interest to ultimate compressive strength (Perillo-Marcone et al., 2004;
Taylor et al., 1998), and percentage of resected surface with strain (either compressive or

tensile) above yield or ultimate strain (Perillo-Marcone et al., 2007).

These metrics give an immediate idea about the amount of bone at risk of failure. At the
bone-tray interface, Perillo-Marcone et al. (2007) found that 59-70% of the surface had a
minimum principal strain as a metric above compressive yield strain of 0.73%. If maximum
principal strain was used instead, 25-52% of the surface was above a tensile yield strain of
0.65%. The high proportion of the interface surface at risk of failure could be because the

yield strain threshold is too conservative.

The volume of cortical and cancellous bone was computed for four subject specific models
of cadaveric knees, two in neutral alignment (AX force medial:lateral ratio of 0.55:0.45) and
two in varus alignment (AX force medial:lateral ratio of 0.75:0.25). The volume of cancellous
bone above fatigue strain (0.3% compressive) was significantly greater for the two models
in varus malalignment. This was not the case for the volume of cortical bone above fatigue
strain (0.4% compressive). For one neutral and one varus model the volume was < 60 mm?,
and for the other neutral and varus models the volume was > 150 mm3. It would be better to
express this relative to the volume of interest given the the inter-subject variation of shape,

size, and therefore volume, of the tibia.

Validation of FE models is not possible in many cases, and the magnitude of stress, strain,
and micromotion may not be accurately predicted. However, a relative comparison between
FE models and/or clinical factors can be made. One example of this is the link between
migration (a clinical factor) and initial stresses in the bone (a FE factor). Taylor et al. (1998)
modelled three tibial trays (a press-fit polyethylene tray, an uncemented metal backed tray
with polyethylene insert, and a cemented metal backed tray with polyethylene insert) and
computed the local and global risk ratio of cancellous bone beneath the tray. The rank order

of the risk ratio matched that of clinical migration data measured using RSA. Perillo-Marcone
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Table 3.2: Summary of risk ratio, percent volume failed bone (PVFB) and maximum total point motion
(MTPM) (Perillo-Marcone et al., 2004)

Rank Patient Fixation Risk ratio PVFB MTPM

1 4 Cemented 38.4 0.4 0.6
2 1 Cemented 47.0 8.5 1.1
3 3 Cementless 53.8 19.3 4.9
4 2 Cementless 61.4 26.2 4.3

et al. (2004) did the same thing, except instead of using different designs of tibial tray, four
patients with corresponding migration data were compared. When ranked by risk ratio and
percent volume failed bone (PVFB), the order of the patients was the same as when the
patients were ranked by measured migration (table 3.2). Patients with a higher risk ratio or
PVFB experienced higher migration. However, assumptions were made about the loading of
each model, and for one of the models the tibial tray was assumed to be fully osseointegrated

as the measured migrations were small, which would affect the computed risk ratio and PVFB.

It has also been observed that regions where high tibial tray micromotion occur are similar to
regions where a high incidence radiolucencies occur (Taylor et al., 2012). The limitation of
this observation is that only a single FE model was used and it was not of a TKR patient

with follow up data.

3.2.2 Population variation

It would be unrealistic to say that the performance of a TKR is thoroughly assessed using a
single patient model. Only three studies used models of multiple patients or subjects. The
largest study used 9 paired tibiae to determine the effect of a tibial tray stem augment on the
micromotion and strain in the cancellous bone with both in vitro experiments and subject
specific FE models (Rawlinson et al., 2005). The stem augment was found not to reduce
micromotion but did consistently reduce the strain in the cancellous bone. Perhaps the most
important observation was that the stem was beneficial in subjects with poor bone quality.

Even using a small population of subjects, the effect of inter-patient variability could be seen.

Two other studies used a smaller population of four patients (Perillo-Marcone et al., 2004;
Wong et al., 2010). Both observed inter-patient variability of bone quality was likely to affect
the predicted volume of bone at risk of failure. These studies are about the only examples
where models of multiple patients are used for analysis of the tibial tray and all are limited by
the small population of patients used. Creating the models was a manual process, requiring
segmenting and meshing of each patient model from the CT scans. Although multiple patient
geometries are used, the loading of each model is not patient specific. Patient differences in

loading are also likely to affect the primary stability of the tibial tray.

As previously discussed, the majority of studies apply a simple static load to the tibial
tray. This oversimplifies the 6 degree-of-freedom time varying loads of the knee. One study

used a load cycle representing five points of the gait cycle (Chong et al., 2010). The most
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comprehensive loading simulated the full cycle of five ADLs, applying all forces and moments
directly to the tibial tray (Taylor et al., 2012). If a study used models of multiple patients,
loads were only scaled by body weight, keeping the ratios between load components fixed.
This does not adequately represent inter-patient variability, where significant variation in the
ratio of the force components (e.g. A-P force to AX force) is known to occur between patients
(Kutzner et al., 2010).

The focus on patient specific models, particularly with only static loading, is a limitation of
the current tibial tray FE studies. Recently, a population of 17 patients was used to study
a hip resurfacing (Radcliffe et al., 2007a; Radcliffe et al., 2007b). Methods for determining
the minimum sample size are considered, either based on precision or statistical significance
between two groups of models. The approach to creating the models was ‘brute force’, each
model was created manually by segmenting the CT scan, creating a set of contours, and
then lofting the contours to generate the model. This process does not scale well with an
increase in the population size. A better approach would be to generate the mesh directly
from the segmented CT data, avoiding the intermediate step of converting the model to
parametric geometry. There are techniques which can be used to speed up the generation of
patient specific models such as automatic segmentation (Fripp et al., 2006), allowing faster
segmentation of the CT scan, or mesh morphing (Couteau et al., 2000; Moshfeghi et al., 1994),

where a reference mesh is created and morphed to fit the patient geometry mesh.

An alternative approach is to use a SM. A large scale FE study assessing the risk of hip
fracture used a SM of the femur, incorporating both geometry and elastic modulus variation,
to generate a population 1,000 femurs (Bryan et al., 2009). A similar approach was used to
assess the influence of head diameter of a hip resurfacing (Bryan et al., 2012). By using a SM,
a large population of models could be generated quickly and cheaply, with the advantage that
only a relatively small set of training data is required. To create the femur SM, Bryan et al.
(2009) used a set of 21 CT scans (although this was later increased to 46 (Bryan et al., 2010)).
For a large scale study, a SM negates the need to collect a CT scan of a patient to create each

model, a process which would be time consuming and expensive.

In pre-clinical testing of joint replacement, the shift from a patient specific study to a
population-based study is significant. The assumption often made is that the results from
a single model can be extrapolated to the general population. However, the survival rate
of TKRs is 90-95% after 10 years, and with over 80,000 TKR procedures being performed
each year, a significant number of implants are revised. Current pre-clinical testing does not
give an insight into patient differences, which might affect the long-term success of a TKR.
Population-based studies offer the opportunity to identify patient factors, such as weight,
loading, bone quality, or bone size, as well as, the influence of implant design and surgical

parameters on the performance of a TKR.

The main motivation for this thesis is to extend the computational testing of a TKR, specif-
ically the tibial tray, from patient specific to population-based. A methodology for large
scale, population-based testing of the tibial tray will be developed, the use of which will be

demonstrated in a series of case studies. The literature reviewed until this point only concerns
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the anatomy and function of the knee, and current FE models of the tibial tray. An important
aspect of a population-based study is the use of a statistical model. The next chapter reviews

statistical models, focusing on how they can be generated and current examples of models.



Chapter 4

Statistical models

4.1 What is a statistical model?

The idea of a statistical model (SM) is to capture the variation of an object. The magnitude
of the variation can be controlled to generate new instances of the object. With the growth
of medical imaging and the use of multi-modalities it is becoming important to be able to
recognise, capture, and analyse images more efficiently. SMs can be used for this task allowing
semi-automatic and automatic processes to segment images (Fripp et al., 2006; Heimann et al.,
2006), build geometric and FE models (Baldwin et al., 2010; Bryan et al., 2010; Querol et al.,
2006), identify diseases (Subsol et al., 1998), or track organ motion (Rueckert et al., 2003).

In this thesis, it is intended that SMs are used to to generate a large population of FE
models of the tibiae. These would then be used in a population-based FE study to assess
the performance of the tibial tray. This use of SMs has been applied to the femur to assess
hip fracture risk (Bryan et al., 2009) and a hip resurfacing (Bryan et al., 2012). This type
of SM is focussed on capturing the variation of the shape of an object and is referred to as
a statistical shape model (SSM). A review of SSMs are given in this chapter (section 4.3).
However, to be able to create a SSM, each of the objects must be described by the same
set of parameters (e.g. a mesh) and aligned in the same space. To do this, a process called

registration is required and this is described in the following section.

4.2 Registration schemes

In medicine, imaging is used for non-invasive assessments of patients, making it possible for
doctors to obtain potentially life-saving information without putting the patient through a
painful procedure. The wider use of imaging means that there has been an increase in medical
data and a need to make suitable comparisons between the different data. For example, a
doctor might want to compare two MRI scans of a tumour in a patient taken at two separate
intervals allowing them to determine if the tumour has grown or shrunk and help guide the

treatment of the patient. Modern computing provides methods for visualisation of medical
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data, but the challenge is to efficiently extract useful information from the data (McInerney
et al., 1996).

Registration is the alignment of two similar sets of data such that the similar patterns in each
set are in the same position. These data can be images, a set of points, parametric surfaces,
or a triangle mesh. Image registration is used in medicine to align or combine images of a
patient taken using multiple modalities (e.g. CT and MRI), align images taken over a period
of time for comparison, or in computer aided surgery where a patient specific model can be
created. Registration can also be used to align data from multiple subjects. This is useful
in a research setting for characterising a cohort or generating a statistical model and is the

context of registration in this thesis.

There are numerous reviews of registration schemes (Crum et al., 2004; Duncan et al., 2000;
Hill et al., 2001; Maintz et al., 1998; Mclnerney et al., 1996) each classifying algorithms in
different ways. A classification is offered by Maintz et al. (1998) who categorise registration
schemes into 9 categories. Whilst comprehensive, this categorisation misses some of the newer
developments in non-rigid registration. Instead, registration schemes will be described in
terms of three main parts; similarity measures, transformation models, and optimisation
strategies similar to Crum et al. (2004). An overview of each part of registration is given in

the following sections.

4.2.1 Similarity measures

Similarity measures are used to determine how well two objects match. They can be split
into two broad categories, geometric approaches and intensity approaches (Crum et al., 2004).
Geometric approaches match two shapes or images! based on explicit correspondence between
identified elements or landmarks in each shape or image. The landmarks might represent
important anatomical structures such as anatomical points or functional anatomical surfaces.
The differences in correspondence define the transformation to align or deform one shape or

image to the other.

To be able to use anatomical landmarks for registration, they have to be reliably identifiable
on each image or shape. Landmarks can be identified anatomically (e.g. selecting prominent
points on an image or shape) or geometrically (e.g. by change in voxel intensity in an image
or surface gradients), manually or automatically. Manual placement of landmarks means that
the accuracy of the locations needs to be checked. Automatic identification of landmarks
requires some parameterisation of the image or shape. For example, in a study on the brain,
crest lines were extracted of the gyri and sulci and registered to a reference to generate a
brain atlas (Subsol et al., 1998).

It is also possible to register surfaces? by identifying the matching points on each surface.

Point correspondence can be defined explicitly (Cootes et al., 1995) but this is not always

! An image in this context is either a single 2D image or a stack of 2D images (e.g. CT or MRI set). Often a
region of interest (ROI) has been defined which is the area being matched.
2This can be defined by a point cloud, splines, parametric surfaces, or a triangle mesh.
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suitable for a large number of points. Euclidean distance between points on the surfaces can
be used as a measure to identify the closest points (Besl et al., 1992; Moshfeghi et al., 1994)

and additional factors such as surface normals can be included (Stammberger et al., 2000).

The intensity of an image can be used as a similarity measure. This approach matches
image intensity patterns using a mathematical or statistical criteria (Crum et al., 2004).
This assumes that the patterns in the source and target images will be most similar at the
correct registration. The choice of similarity measure depends on the modality of the images
being registered. For mono-modal registration (the two images have the same modality), the
squared difference or correlation coefficient between intensities can be used. For multi-modal
registration (the two images have different modalities), similarity measures such as mutual
information or normalised mutual information can be used. These measures use image entropy
as a measure of the amount of information in the image and aim to minimise the amount of

information in the combined image.

Hybrid registration algorithms use both geometric features and intensity information. In
theory they are more robust because more information is used in the registration of two images.
In practice, each part of similarity measure is weighted; the PASHA (Pair-And-Smooth, Hybrid
energy based Algorithm) algorithm (Cachier et al., 2003) is a weighted sum of an intensity
similarity, the difference between landmark correspondences and volumetric deformation, and

a smoothing term.

4.2.2 Transformation models

The deformation required to warp a starting image to a target image is defined by the
transformation model. Rigid transformation models can be described using 6 degrees of
freedom (DOF) (3 rotations and 3 translations) to 12 DOF (3 rotations, 3 translations, 3
scalings, and 3 skews), the latter termed an affine transformation. Rigid transformation

models can be applied to either type of similarity measure.

The Procrustes method can be used to find a transformation, rigid or affine, to align two
shapes (Hill et al., 2001). It requires that corresponding points in both shapes or images
have been identified. Cootes et al. (1995) use a modified Procrustes method to align a set
of training shapes with explicit point correspondence to generate a SSM (see section 4.3),
optimising the transformation by a weighted sum of squares distance between the equivalent

points on different shapes.

There are several algorithms which match surface features to compute a rigid transformation,
the head and hat algorithm, distance transformations, and iterative closest point (ICP) (Hill
et al., 2001). Of these the ICP is the most commonly used. Proposed by Besl et al. (1992)
it is an algorithm designed to register 3D shapes described in a variety of forms, as a cloud
of points, line sets, triangular set, curves, or surfaces. The aim of the ICP algorithm is to
transform a ‘data’ shape P to be in alignment with a ‘target’ shape X. For each point in P

the closest point in X is identified, giving a new set Y. A least squares quaternion operation is
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applied to the points of P and the set of closest points Y to find a rigid body transformation

to minimise the distance between the points.

There are two main problems with ICP. First, there is a bottle neck in the algorithm when
finding the closest points. Several techniques have been developed, k-D trees, bucketing or
closest point caching to speed this up. Second, the algorithm does not necessarily converge to
the global minimum. Large changes in scale, rotation, or position can not always be corrected.
This can be overcome by pre-translating the models to move the centres of mass to coincide

or applying a set of initial rotations about the centre of mass of the model (Besl et al., 1992).

Studies use ICP to align images or shapes before applying a non-rigid registration (Declerck
et al., 1997; Yang et al., 2006) or to check the alignment of a shape (Barratt et al., 2008).
ICP has also been extended to include point weight based matching (Maurer et al., 1998),
and intensity based matching (Feldmar et al., 1997).

Non-rigid registration uses global rigid transformations to align images and local deformations
to obtain an image match. The concepts of non-rigid registration are reviewed in the literature
(Crum et al., 2004; Hill et al., 2001; McInerney et al., 1996), and a detailed mathematical

review of non-rigid transformations is given in Holden (2008).

Elastic models have been used to compute the deformation of an image (Bajcsy et al., 1989).
This type of transformation treats the source image as a linear elastic solid and applies a
deformation ‘force’ derived from a similarity measure (Crum et al., 2004). The model aims to
find the equilibrium between the force of the source image to the force of the target image
(figure 4.1). Moshfeghi et al. (1994) applied elastic matching to 3D surfaces. A surface
is warped with a decreasing volume stiffness resulting in initial transformations which are
essentially rigid and as equilibrium is approached local deformations are allowed to occur.
This scheme has been used to register 3D cartilage surfaces from MRI scans (Stammberger
et al., 2000). Another approach to elastic matching is to use octree-splines (a hierarchical
and adaptive 3D displacement grid) to represent the 3D transformation between the surfaces,
minimising a least squares criterion (Couteau et al., 2000). This method was used to morph a

baseline tetrahedral of a femur to 10 other patient models for FE analysis (figure 4.1).

One problem with elastic matching is that the assumption of linear elasticity means that it is
only valid for small deformations. If there is a large difference between images the deformations
might not be recoverable. Fluid flow models allow large deformations, but misregistration can
occur because of this (Crum et al., 2004). Another option if large deformations are present is

an optical model, but a constant intensity is assumed between images.

Another transformation model for non-rigid registration is spline-based. A spline is a curve
described by a piecewise polynomial function and control points are used to modify the curve.
With spline based registration schemes a regular mesh of control points is placed on the source
and target image or shape. Spline functions are used to describe the deformation of the mesh
(Crum et al., 2004).
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(a) Baseline mesh (grey) and surface (b) Baseline mesh morphed (wire-
target points (black) frame) to target shape (shaded grey)

Figure 4.1: An example of elastic matching. The baseline FE mesh is warped to fit the points on the surface
of the target using and elastic matching scheme (images reprinted from Couteau et al., 2000, with permission
from Elsevier).

Thin plate splines (Bookstein, 1989) have successfully been used in image registration. However,
one problem of thin plate splines is that each control point influences the global transformation.
If one point on the spline is moved, then all the other points along the spline are likely to
move, limiting the ability to model local deformations. Also, as the control point density
increases, the computational cost increases dramatically because more control points haves to
be moved each time the spline is deformed (Crum et al., 2004; Rueckert et al., 1999).

Fast form deformations (FFD) use B-splines to overcome the control point problem. Moving
a control point along the spline only transforms the curve in the local region of the point
(Crum et al., 2004). Perhaps the most popular B-spline based scheme is that proposed by
Rueckert et al. (1999) (for the breast), and turned into a generic registration framework by
Schnabel et al. (2001). A variety of shapes have been registered using this scheme, including
the brain (Rueckert et al., 2003), heart (Frangi et al., 2002), femur of apes (Yang et al., 2006),
shoulder (Yang et al., 2008), and the lung (Murphy et al., 2008).

The spline based approach has been extended and optimised to improve the efficiency of the
algorithms. Rueckert et al. (1999) assumes that all tissue in the image is non-rigid. In reality
this is not the case, the stiffness of tissues varies from bone being (almost) completely rigid to
soft tissues which are actually deformable. A tissue-dependent filter has been added to the
registration scheme (Staring et al., 2007). This estimates the tissue stiffness at the control

points and allows larger deformations for regions with lower stiffness.

There can be a secondary problem with the transformation model in that it might not produce
a physically meaningful model. If a deformation field were to be applied to a real object, then
no folding or tearing of the object is expected. To achieve this diffeomorphic transformations
can be used. This type of transformation is smooth and invertible (Cootes et al., 2008). A
diffeomorphic transformation can be found by placing constraints on the deformation field
(Rueckert et al., 2003), creating a series of small diffeomorphic transformations (Cootes et al.,

2004), or considering the deformations of an image in a reference plane (Cootes et al., 2008).
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Matching of the images or shapes is specified using a similarity measure. The transformation
model defines the deformation field for the registration. To obtain the best registration, the
aim is to find the transformation where the maximum amount of information matches between

the images. To do this, an optimisation strategy is applied.

4.2.3 Optimisation strategies

The way in which the transformation scheme is adjusted to improve the similarity measure is
the ‘optimisation’ part of a registration scheme (Crum et al., 2004). A detailed discussion on
optimisation strategies is beyond the scope of this thesis. Klein et al. (2007) is a technical
comparison of optimisation methods for non-rigid registration using mutual information and
B-splines. In a clinical setting real-time fast registration is becoming necessary for some
applications (Klein et al., 2007). Large high resolution image sets mean that computational
time to register images is a bottleneck and an optimisation strategy can help decrease the

registration time.

For a rigid transformation, the ICP algorithm is often used to identify the correspondence
between points in two models allowing a more automated image registration algorithm. This
technique was used to build a statistical model of the wrist (Vos et al., 2004). In non-rigid
registration the choice of optimiser depends on the registration problem. The more complex
the transformation model, the more parameters required to describe it, and the longer it
takes to find a set reasonable set of parameters. There is also the consideration that the
transformation should be diffeomorphic. Standard optimisation strategies (e.g. Downhill
Simplex Method, Powells Method, Conjugate Gradient Method etc.) have been applied to
registration algorithms and can be gradient-free or gradient-based. A different solution to the
optimisation strategy is to reformulate the problem using a Markov random field objective
function (Glocker et al., 2008). In doing this two limitations of registration are overcome:
the dependency on the similarity measure and on the selection of the initial conditions for

optimisation.

4.3 Statistical shape models

Statistical shape modelling was first developed using 2D images. Active Contour Models
(or snakes), popularised by Kass et al. (1988), used deformable contours to approximate the
locations and shapes of object boundaries (McInerney et al., 1996) on the assumption that
the boundary is continuous. This type of model used energy minimisation to warp the shape
of the contour (similar to the idea of elastic matching). It can also be applied to a dynamic
model to track the motion of an object over time (figure 4.2). Snakes can be applied to the
segmentation of 2D images, making use of a priori knowledge to constrain the segmentation

model.

Cootes et al. (1995) developed the Active Shape Model (ASM), similar to snake models, but

with different global constraints. A set of manually placed points is used to represent each
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Figure 4.2: 4 frames from a short video showing snakes being used for motion tracking (images reproduced
from Kass et al., 1988, with kind permission from Springer Science and Business Media). The snake is initialised

to the shape of the mouth in the first frame.
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Figure 4.3: An ASM of a heart ventricle. (a) shows examples of the training set models. Each is made up of
96 points. (b) shows the effect of varying the first 3 shape parameters individually (images reprinted from
Cootes et al., 1995, with permission from Elsevier).

training shape in an ASM, and the points must correspond from shape to shape. All the
shapes are registered using a minimisation of the weighted sum of squares between points
using a rigid body and scaling transformation based on the Procrustes method. Principal
component analysis (PCA) is used to extract the dimensions (modes) of change in the model
(figure 4.3). PCA gives a shape parameter matrix which allows the model to be used in
two different ways. First, new random instances of the shape can be generated because the
variation of the model is known. Second, it can be used as a classifier, estimating how well a

given example shape fits the ASM.

ASMs have been expanded to Active Appearance Models (AAMs) (Edwards et al., 1998),

which also include image texture (pattern intensities or colours over an image patch) or mesh
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field information (data associated with an element in the mesh). The example ASM is of the
face and image based. AAMs effectively combine two SMs, an ASM is used to capture the
shape variation of the face using landmarks to identify facial features. Each training image
is then deformed to fit the mean shape and the texture is normalised. PCA is then used to
compute the combined variation of the shape and texture. AAMs have been shown to rapidly

converge to find a new instance of a face.

Both ASMs and AAMs are examples of deformable models using a nearly non-rigid registration
scheme using a set of landmark points. Similar to this idea, Ballester et al. (2004) uses the
4D-ICP registration scheme (Feldmar et al., 1997) to create a generalised image model (GIM).
ICP is used with normal matching to register the landmarks of the training set. Each
landmark is clustered and the mean position and covariance matrix is calculated. Using this
information it is then possible to use the model to match a new shape using Mahalanobis
distance measures. Unlike an ASM or AAM, there is no need to define an explicit relationship
between the landmark points on the model and image. However, the GIM cannot be used to
generate a new random instance of the model, it is better suited for inter-patient registration

or identifying abnormal anatomy (Ballester et al., 2004).

All of the models described so far require a set of landmark points to be manually defined
which are then used to create the SM. This process can be time consuming and introduce
error in the model if the landmarks are not anatomically equivalent. Further to this, complex
shapes are often represented as a 3D mesh with hundreds of points and elements, and it would
not be practical to manually identify corresponding landmarks on such a shape. However,
the points of the mesh can be thought to define landmarks of the shape. Kaus et al. (2003)
proposed a statistical model which made use of the mesh vertices. Using an elastic matching
registration scheme, each vertex in a template (or baseline) mesh was warped to a point
of a segmented image that best matched the boundary criteria. This resulted in a set of
training meshes which had corresponding points and could therefore be used as input to PCA.
The mesh deformation was constrained by an internal energy, limiting the movement of each
vertex, which helped to ensure mesh integrity and maintain the distribution of vertices of the

mesh, improving the compactness of the SSM.

Using a mesh to create a SM allows further numerical analysis of the object (e.g. FE analysis).
It also allows for an easier automatic method for creating a SM which avoids the ambiguity in
placing landmarks. In a model of the wrist (Vos et al., 2004), each bone is represented as
triangulated mesh and the mesh of the bone with the most vertices is chosen as the baseline
(pivot) mesh. Point correspondence is found between this mesh and all the other meshes in
the training set using the ICP algorithm. All the training set meshes are resampled to have
the same density as the pivot mesh. The SM is created as per an ASM, possible because each
wrist is represented by the same mesh with point correspondence between them. The size of
the mesh used in this study is small (given the small size of the bones). If a more complex
shape were to be used, it could become more difficult to identify point correspondence between
meshes using ICP. This then becomes a problem in the SM because the shape is not compactly

represented, and each point might have a large variance making the modes of change noisy.
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Using a minimum description length (MDL) algorithm, it is possible to automatically find the
optimal correspondence between landmarks (or points) on a set of shapes (Davies et al., 2002).
By finding the optimal parameterisation of a set of shapes the computational complexity of the
SM is reduced; the SM is more compact, has better specificity, and has better generalisation
ability (Davies et al., 2002). This means that the noise in the modes is reduced and the
variance of the first few modes of the SM is maximised. The MDL approach has been extended
to 3-D (Davies et al., 2010). A disadvantage of the MDL approach is that the shape must be

parameterised using a homeomorphic shape function (e.g. sphere), which is challenging in 3-D.

An alternative to using MDL is to use a FFD based registration scheme (e.g. Rueckert et al.,
1999) to register the shapes. This finds the optimal deformation of a shape by manipulating a
set of arbitrary control points, providing a naturally compact representation of the deformation
field described at different resolutions. The deformation field of a set of shapes can then be
used to create a SM. The advantage of this approach is that there is automatic correspondence
between the arbitrary control points and because of the compact representation of the

deformation fields, the SM is compact.

There is one feature of the models so far which has not been mentioned, and that is the
creation of multi-body models. It has been shown that registering one shape of a single object
class and creating a statistical model of this is possible. It has not been shown how to register
and analyse two separate shapes in a single object class, e.g. the femur and tibia of the knee.
Automatic correspondence methods could get confused with point correspondence between
the two shapes, perhaps matching a point on the femur to a point on the tibia, thus creating
an invalid object. Explicit definition of the point correspondence manually overcomes this
problem. A very simple multi-body is shown in Cootes et al. (1995) with a heart ventricle
(figure 4.3).

Several studies have created multi-body models of the wrist (Vos et al., 2004), the heart
(Frangi et al., 2002) (figure 4.4), and the shoulder (Yang et al., 2008). The method, common
to all these studies, is to register each shape separately and recombine them for PCA. This
way, point correspondences are known for each individual shape and the global change in
the shape is captured by PCA. To do this however, a global coordinate system is required to

reduce the bias towards one particular shape.

All the models mentioned so far are surface only models. Whilst these models capture the
geometric change of a shape, useful in a segmentation setting, none capture a variation of
an associated field (except for Edwards et al. (1998) who presents an AAM of the face). A
combined model of shape and field data has a particular application in population-based FE
studies, where it would be of benefit to be able to generate meshes with associated material
properties (e.g. Young’s modulus) defined for each element. One example of this is Bryan
et al. (2010), where an FE ready SM of the femur is generated incorporating both geometric
and material properties variation. To do this, a set of femurs were segmented from CT scans
and a surface was generated for each one. These were registered to a selected baseline mesh
using an elastic registration scheme and the baseline volume mesh was morphed to fit each

surface mesh. The material properties were sampled from the CT scan at the nodes of the
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Figure 4.4: An example of a multibody statistical shape model. The first two modes of a 3-D two-chamber
heart model are shown (image reproduced from Frangi et al., 2002, © 2002 IEEE).

mesh and converted to a modulus value. The material property information is added to the
PCA vector. This method has been used to generate models for a FE study assessing femoral
neck fracture risk (Bryan et al., 2009) and the influence of size on a hip resurfacing (Bryan
et al., 2012).

Querol et al. (2006) take a slightly different approach, registering a training set of proximal
femur CT scans using a non-rigid scheme and using both deformation and intensity information
using PCA. There is no need to morph the shape of the intensity field as this is performed
during the registration process. Calibrated CT scans were used for the training set; therefore
a random instance of the model in the population will maintain the relationship between
the intensity level and modulus. A FE mesh is generated for each model, the intensities are
sampled from the generated volume image, and converted to Young’s modulus. A simple load
is applied to the model to assess the stress field (figure 4.5).

Both Bryan et al. (2010) and Querol et al. (2006) create what can be termed a SSIM. However,

there are significant differences between the two approaches:

(i) Region of interest. Bryan et al. (2010) uses the full femur and Querol et al. (2006) only

uses the proximal femur.

(ii) Training set size. To create the full femur SM, 46 training femurs were used. These were
taken from clinical CT scans of an unknown population demographic. The SM of the
proximal femur was created from a set of 11 proximal femurs. Using a larger training

set size, the accuracy and generality of the SM is likely to be better.

(iii) Registration approach. Bryan et al. (2010) uses mesh based approach, whereas Querol et
al. (2006) uses an image based approach. The disadvantage of image based registration is
that to incorporate the image intensity each image volume must have the same resolution.
For the proximal femur, the region of interest had dimensions of 175 x 150 x 200 and a

3

resolution of 1 x 1 x 1.65 mm®, a coarse resolution.
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Figure 4.5: Example of a statistical shape intensity model (image reproduced from Querol et al., 2006, With
kind permission of Springer Science and Business Media). Shapes from left to right are: —20, mean, and +20.
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(iv) Mesh density. The full femur has a much higher mesh density; proximal element size is
1mm, and the distal element size is 3 mm, resulting in over 615,000 elements. This is
compared to 3,500 elements of the proximal femur. This means that detail in the shape

and material properties might be be lost.

(v) Mesh consistency. Upon generating a new instance of a proximal femur, Querol et al.
(2006) had to mesh the segmented image. This means that each proximal femur is
represented by a different mesh. By using a mesh based registration scheme, each
generated full femur has the same mesh, and can be considered ‘FE ready’. This offers
an advantage in a population-based FE study, making comparison between models much

easier.

These differences highlight that it is important to consider the use of the SM. If performing a
FE study, it is an advantage that the SM is mesh based so that a new instance of the object
is instantly ready for analysis. Image based SMs perhaps have the advantage when used for
automatic segmentation, as the transformation of the shape is often applied directly to a

segmented region of the image.
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Figure 4.6: SM of knee cartilage and patella showing 4 modes of variation sampled at the mean and +1
standard deviation (image reprinted from Baldwin et al., 2010, with permission from Elsevier).

There is also an example of a FE ready model of the articulating structures of the knee
(femoral cartilage, medial tibial cartilage, lateral tibial cartilage, patella cartilage, and the
patella bone as shown in figure 4.6) that uses a mesh based registration scheme (Baldwin et al.,
2010). Template meshes of the geometry were segmented from a single subject and control
points were defined at a suitable resolution on the template meshes. On a set of 10 MRI scans,
control points were placed in positions corresponding to the template mesh control points
around the perimeter of the cartilage and patella, defining a target geometry. By computing
the difference in position of the two sets of control points, the template mesh was morphed to
fit the generic mesh. The advantage of this method is that the mesh connectivity is maintained
for each model. It also guarantees good correspondence between meshes because the control
points are placed manually. However, this requires significant effort, as on average each
structure requires around 160 control points to be defined, and the structures are relatively

small. To morph the mesh of, say a tibia, many more control points would be needed.
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4.4 Principal component analysis and statistical models

Discussion around SMs has focused on the use and properties of them. It has been mentioned
that PCA can be used to create a SM, capturing the variation of the training data, and
allowing the generation of new instances of shape. This is the approach taken in this thesis,
and perhaps the best definition of PCA is from Jolliffe (2002):

“The central idea of principal component analysis (PCA) is to reduce the dimen-
stonality of a data set consisting of a large number of interrelated variables, while
retaining as much as possible of the variation present in the data set. This is
achieved by transforming to a new set of variables, the principal components (PCs),
which are uncorrelated, and which are ordered so that the first few retain most of

the variation present in all of the original variables.”

Given this definition, PCA can be thought of as a method of extracting information from
a large confusing data set. It transforms a high dimensional data set to a lower dimension
representing its significant variance. In the case of linear PCA, a set of uncorrelated linear
transformations can be found that retain most of the information given by the variances,
correlations, or covariances of a data set. Suppose that X is a matrix of n observations for m
experiments (i.e. each column of X represents a set of n measured values from an experiment),
PCA theory shows that the principal components (PCs) are defined by an orthonormal
transformation of X,

Y = UTX, (4.1)

where Y are the PCs and U is an orthogonal matrix of eigenvectors. It is important to note
that the PCs are ordered by variance, such that the ‘kth PC’ is the PC with the kth largest
variance, corresponding to the ‘kth eigenvalue’ and ‘kth eigenvector’. Therefore, it would be
hoped that most of the variance in X is included in the first ¢ PCs, where ¢t < m.

The PCs can be derived from the eigenvectors and eigenvalues of either the covariance matrix
or correlation matrix. There are two advantages of using the correlation matrix (Jolliffe,
2002):

(i) The PCs are less sensitive to the units of measurement of each element in X, and also to
wide differences in variances. This is because X is normalised and mean centred making

the data dimensionless.

(ii) Due to the normalisation, it is easier to informally compare results from different

analyses.

As will later be seen when generating the SMs of the tibia and gait cycle, reason (i) is why
the PCs of the correlation matrix are computed. To compute the PCs, let the column vector

X; represent a registered set of data points [ expressed in vector form,

T

xi = [l T 1< < (4.2)
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The m shapes in the training set are then combined to create the training matrix
X =[x1,%x2, " ,Xi-1,%;] 1<i<m. (4.3)
In order to form the correlation matrix, the training data must be normalised
X =D'X, (4.4)

where D is a diagonal matrix composed of the row-wise standard deviation of X. The

normalised data is then mean centred
R, = X; — X, (4.5)

where X is the row mean of X. The correlation matrix can then be formed,

1
n—1

) o. & (4.6)

C =

However, rather than deriving the PCs directly from the correlation matrix, they can be
found much more efficiently using singular value decomposition (SVD) (Jolliffe, 2002). This is
because instead of explicitly calculating the eigenvectors and eigenvalues of the correlation

matrix, they are implicitly computed. SVD can be expressed as
X =UxVvT, (4.7)

where the columns of U correspond to the eigenvectors (representing the coefficients of each
PC) and the diagonal of X are the eigenvalues (the square of which represent the variance of

each PC). It is then convenient to define the weights of each PC as
b=3XV". (4.8)
From this, ‘un-normalised’ training data can be reconstructed using only ¢ PCs,
x; = D (X + U;by), (4.9)

where the columns of the matrix U; contain the first ¢ PC coefficients, and by; is the vector
containing the first ¢ PC weights for data set i. Two observations can be made about
equation 4.9. First, the transformation of dimensionality of the training data can be seen.
Given that there can be up to m PCs, only the first ¢ PCs need to be included to approximate
the original shape. Second, by changing the PC weights, a new instance of a shape can be
generated. By appropriate sampling of PC weights it is possible to generate a large population

of shapes.



Chapter 5
Summary of literature

The previous chapters reviewed the literature about the knee, TKR, and computational testing
of the tibial tray. A TKR is commonly used to replace the tibial and femoral articulating
surfaces in patients suffering from arthritis, but the survival rate is still only 90-95% after 10
years (National Joint Registry for England and Wales, 2011). The main failure mechanism
of a TKR is aseptic loosening, particularly of the tibial tray. Studies have suggested that
early migration of the tibial tray is an indicator of late aseptic loosing (Grewal et al., 1992;
Ryd et al., 1995). One reason for migration might be poor osseointegration, particularly
in the initial post-operative period. Osseointegration is affected by the micromotion of the
bone-implant interface, where large micromotions (> 150 pm) prevent osseointegration (Pilliar
et al., 1986).

Computational models using FE analysis can compute the micromotion at the bone-implant
interface. It is also possible to compute the initial mechanical response of the bone. If the
strain in the bone exceeds yield or ultimate limits, the bond between the implant and bone
could break, resulting in loosening. Further to this, studies have also shown that there is a link
between the initial mechanical response of the bone and implant migration (Perillo-Marcone
et al., 2004; Taylor et al., 1998).

Current FE studies that assess the ‘performance’ of a tibial tray tend to look at micromotion
and/or strain in the bone. Many of the studies compare the relative change of these measures
to determine if a change of a model factor (e.g. design of the tibial tray) improves the outcome.
A major limitation of many current studies is that they use either a model of a single patient,
or models of a small number of patients. Given the inter-patient variability of the shape,
size, and bone quality of the tibia, using only a single model does not represent the general
population. For a TKR it is important to understand not only the implant design factors

which might affect the long-term success, but also patient and surgical factors.

A second limitation of the tibial tray FE studies is often only a static axial load is applied,
representing the peak during an activity cycle. The assumption is that the peak strain and
peak micromotion will occur at this point. However, two studies have shown this not to be

the case; the peak micromotion occurred when there was a low axial load and moderate V-V
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moment (Taylor et al., 2012; Wong et al., 2010). This highlights that current FE models of
the tibial tray do not apply appropriate loading conditions to assess primary stability. Low
axial loading and moderate moments are likely post-operatively when only partial weight
bearing is possible. It is therefore important that the primary stability is assessed under these
loading conditions. None of the studies consider inter-patient variability of loads which has
been observed in vivo (Kutzner et al., 2010). Whilst a standard load cycle can be scaled by
body weight, this does not change the ratio of the load components (e.g. A-P to AX force).

These limitations in computational assessment of tibial trays could be addressed by using a
population-based study to incorporate inter-patient variability. To generate a population of
models, a PCA based SM can be used. The concept of SMs and the relation to registration
and PCA was discussed in chapter 4. Perhaps the biggest challenge, particularly if the shape
is complex, is ensuring that there is correspondence between all the training data. The data
must be registered to find the correspondence between each shape. It is then possible to apply

linear PCA to capture the variation of the training shapes, resulting in a SM.

Most of the SMs only include geometric variation of the shape. Few also include extra
information about the shape (e.g. material properties). The most successful example of a SM
that does this is of the femur (Bryan et al., 2010), where the elastic modulus data is included.
A mesh based registration scheme was developed to find correspondence between each vertex
of the mesh. This means that elastic modulus data can be defined at each node. A SM can be
created using the node vertex positions and associated elastic modulus. This is more difficult
using images, particularly 3D volumes. Registration schemes can find transformation of the
region of interest (defining the shape) in an image, so that each shape can be represented
in terms of the transformations of a set of control points. Including intensity information
requires that the images are all of the same resolution, which can be difficult to achieve the
training images are of mixed resolution. Furthermore, it is also necessary to generate a mesh

for each new instance of a shape.

Given the successful use of a mesh based SM of the femur in population-based FE studies
(Bryan et al., 2009; Bryan et al., 2012), it seems logical to follow a similar method for
population-based FE studies assessing the tibial tray. However, only a static load was applied
to the femur, as the kinetics of the hip are relatively simple in comparison to the knee. To
include the inter-patient variability of loads and the intra-variability of the loads, it is proposed

that a SM of knee kinetics during gait is used.

In chapter 6, the methods to generate a population of models are described. This will involve
creating two SMs, one of the tibia, and another of the internal tibiofemoral joint loads for
level gait. By sampling the SMs a population of tibiae with associated loads can be generated.
It is then necessary to automate the implantation of the tibial tray in each tibia, as it is not
feasible to do this manually. In collaboration with Zuse Institute Berlin (ZIB), tools were
developed to do this. The implanted model and load cycle can then be processed for FE

analysis, and a description of this process is also given.



Chapter 6

Generating a population of models

for a large scale finite element study

6.1 Introduction

To be able to perform a population-based FE study assessing the tibial tray, it is necessary to
generate a population of models. The limited availability of high quality clinical data has
meant that it is often only possible to study a small population of patient specific models. It
would be expensive and time consuming to obtain CT scans and joint load data to generate
hundreds of patient specific models. The ethics of exposing so many patients to, perhaps

unnecessary, radiation during a CT scan must also be considered.

Instead, a SM can be used, relying on only a small set of training data to generate a large
population. To assess the tibial tray using a population-based study, it has been proposed
that two SMs should be used, one of the tibia, and one of knee kinetics. The methods used to
create these SMs are presented in this chapter. Further to this, the process of implanting each
tibia with a tibial tray and preparing the models for FE analysis is also presented. Because a

population of hundreds of models is being used, the challenge is to automate this process.

6.2 Statistical model of the tibia

The method used to generate a SSIM of the tibia follows that of Bryan et al. (2010). It is
a mesh based SSIM and requires that all the training models are registered such that they
all have the same mesh before PCA. The training data for the SSIM were taken from an
available set of 32 full lower limb clinical CT scans of varying resolutions (slice resolution was
0.3 mm to 1.0 mm by 0.3 mm to 1.0 mm, with slice distances ranging from 0.3 mm to 2.0
mm). Unfortunately, the population demographics are unknown because patient information

is incomplete.
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Figure 6.1: Segmentation of a tibia from a CT scan. The region of interest in the stack of CT slices (left) is
labelled and then the stack of labels is used to create a surface (right).

6.2.1 Preparation of the training tibiae

The full tibia from each CT scan was segmented manually and a triangulated surface mesh of
each was generated (figure 6.1) using Avizo (Visualization Sciences Group, Bordeaux, France).
The tibia with length closest to the mean length of the training set was chosen as the baseline
shape. The surface was split into two regions, the proximal third, and the distal two thirds. A
tetrahedral FE mesh was generated using Ansys ICEM CFD (Ansys Inc., PA, USA). Different
mesh sizes were set for the proximal and distal regions, the maximum element size was 1.5 mm
and 5 mm respectively. The mesh size was chosen to allow accurate enough surface matching
and capture enough detail of material properties in the proximal region, the region of interest.
The volume mesh has 65,655 nodes forming 337,205 tetrahedra. The extracted surface of this
mesh has 16,261 nodes forming 32,518 triangles.

The other surface meshes were required to have a similar number of nodes as the baseline
surface for the elastic matching, and were simplified in Avizo to approximately 27,000 triangles.
The reason for this is that it is necessary for the baseline surface to have a sufficient number of
vertices and triangle patches to allow it to deform to the target surface (Moshfeghi et al., 1994).
For example, if trying to morph a single triangle to the shape of a sphere, the triangle will
become distorted. However, if the triangle is split into more triangles than those representing

the sphere, it becomes possible to deform the triangle to the approximate shape of the sphere.

Before registration, all of the training surfaces were rigidly aligned to the same orientation as
the baseline surface using the Iterative Closest Point (ICP) algorithm (Besl et al., 1992).

6.2.2 Surface elastic matching

The first step of registration is elastic matching of the surface meshes. The elastic matching
takes two triangle surface meshes, a baseline (or reference) and a target (or goal), and deforms

the baseline to match the target (figure 6.2). The algorithm described in this report is based
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(a) 1 iteration (b) 50 iterations (c) 100 iterations

Figure 6.2: Elastic matching of the baseline (light) to target (dark) and different iterations.

on that used by Bryan et al. (2010) and is a combination of parts of several algorithms. ICP
(Besl et al., 1992) is used to identify the closest triangle on the target for each point on the
baseline. A Gaussian smoothing function is then applied to calculate the displacement vector
(Moshfeghi et al., 1994). These two parts formed the original algorithm, and an additional step
of Laplace smoothing (Vollmer et al., 1999) is used to smooth the mesh after the displacement
vector is applied. This helps to maintain the quality of the baseline surface as it is iteratively

morphed to the target surface.

The elastic matching is described using the terminology as per Moshfeghi et al. (1994). The

baseline surface S1 is represented by an ordered vertex list and triangle list

—

S1(i,¢) = {(#1s, yli, 215), A}, 1<i < N1, 1 <c¢<TI, (6.1)

where (z1;,y1;,21;) is vertex ¢ with corresponding vector notation ﬁl(i), A, is triangle patch
¢, N1 is the number of vertices, and T'1 is the number of triangles. The same representation

is used for the target surface 52, such that

—

S2(j,d) = {(224,924,22;),Aa}, 1 <j< N2, 1<d<T2 (6.2)

Similarly, ﬁQ( j) represents vertex j, N2 is the number of vertices, and 72 is the number of

triangles.

The steps of the registration algorithm to elastically deform the baseline surface 51 to the

target surface 52 are described below and a flow chart of the algorithm is shown in figure 6.5.

Step 1: Scaling. S1 is scaled to match the size of the S2. The bounding box of each surface
is used to compute the scaling factors. This scaling is necessary because of the large difference
in ratio of length to width of the tibia.
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(a) Inside triangle (b) Outside triangle

Figure 6.3: How a point is determined to be in or outside the triangle patch (image reproduced from
Moshfeghi et al., 1994, © 1994 IEEE).

Step 2: Initialise iterations. To deform S1 to S_’Q, iterative deformation is required. The

-k -
iteration counter, k, is set to 1, and the starting baseline surface S1 is equivalent to S1.

Step 3: Surface similarity measure. The similarity of the two surfaces is determined by
best matching the points of one surface to those on the other surface. To best match the
points of S 1k to S_’Q, a kd-tree is constructed of the triangle centroids of S2. The n nearest
triangles of S2 to vertex P1 (1) are found using an n-nearest neighbour search. A similarity

measure (section 4.2.1) ¢ is computed,
(i, d) = pli, ) + reo(i, d), (6.3)

to determine which of the n triangles is the best match to ﬁl(z) The positional difference,
p, is dependent on if the perpendicular point of intersection G between ﬁl(z) to the current

nearest triangle Ay, lies inside or outside A4 (figure 6.3). If inside
pli,d) = |G - P1(i)], (6.4)

otherwise, the nearest triangle vertex P to G must be found, and
pi,d) = |G — P1(i)| + |P - G). (6.5)

The directional incompatibility, w, is computed as the average of the sines of the angles
between the plane of Ay and the planes of the triangles that share P1 (7). Hence, if the planes

are parallel, w = 0. The weighting of the directional measure is set by k.

—k -

For all the points of S1 , the n nearest triangles of S2 are determined, and the best match is

taken as the one for which § is minimum. This step is then repeated, reversing the roles of
ok - . iy

S1 and S2, to best match the points of 52 to those of S1 .

Step 4: Calculate displacement vectors. After determining the best matching points,
displacement vectors mapping one surface to the other are computed. To compute the
displacement vector 51, which maps Sqlk to S_‘Q, the actual displacement of point ﬁl(z) in
S_’lk to the best matching triangle Ay in 52 is dependent on whether G lies inside or outside
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Ay (figure 6.3). If it is inside

D1(i,d) = G — P1(3), (6.6)

and if it is outside

—

D1(i,d) = P — P1(3). (6.7)
The displacement vector 52, which maps S2 to S_)lk, is similarly computed.

Step 5: Smoothen displacement. A smoothed displacement vector D5 is computed by

weighting the displacement of each point as the average displacement of neighbouring points

- 1 [zfiﬁ Gli(z,y,2)D1(i,d) X3 G24(w,y, 2) D2(j, q)l 68

DS(z,y,z) =

where G'1 and G2 are weighting functions. As suggested by Moshfeghi et al. (1994), these are

defined as Gaussian functions
1
G1 =exp (—2 [(az — L)+ (y—yl)* + (2 — zli)ZD (6.9)

o [(z — 22; — D2,(j,¢;))* + (y — y2; — D2,(j, ¢;))*
k (6.10)
+ (2= 22y - D20 ey)) ).

The amount of smoothing is controlled by two factors: (i) a damping factor v, and (ii) a

smoothing parameter o. The smoothing parameter is calculated each kth iteration by
ox = oof ", (6.11)

where o is the initial value, and f is a constant 1 < f < 2. This gradually decreases each

iteration, allowing more local deformation.

- k
Step 6: Apply deformation. The current baseline surface S1 is then deformed by the

smoothed displacement vector DS , such that

s1°7 = §1° 4 D5, (6.12)

Step 7: Mesh smoothing. Although the displacement field of the baseline surface is
smoothed and increased gradually, there is no guarantee that mesh integrity will be maintained.
Points can be moved into a position that breaks the original mesh connectivity or creates
distorted triangles, resulting in mesh folding (figure 6.4a). It is hard to identify exactly what
causes this, but it is thought that too many points on S1 are being matched to the same
patch, or near the same patch in S_'Z, resulting in bunching of the points. Thus, smoothing

the displacement field results in the points being folded over each other.

- k+1
To help maintain the mesh integrity, the deformed mesh S1 " is smoothed. An improved

Laplacian smoothing algorithm is used (Vollmer et al., 1999) because it avoids volume shrinkage
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(a) Mesh folding (b) Smooth mesh

Figure 6.4: (a) shows evidence of mesh folding when no Laplace smoothing is applied during elastic matching.
(b) is the same model but with 5 iterations of Laplace smoothing applied after each iteration of deformation.
The colours represent triangle quality: light for low quality, red for high quality.

of the shape. Small features can be lost if too much smoothing is applied, and there is a

trade-off between mesh quality and shape accuracy.

Step 8: Iterate. The algorithm iterates, repeating steps 3 to 7, to slowly deform S1 towards
S2. Criteria can be applied to stop the iterations of elastic matching. For example, this could
be either after a prescribed number of iterations kyax, or if the magnitude of the deformation

is less than a given tolerance e, for example

1 M

N

i=1

DS(x14,yl;, 21;)

< e (6.13)

6.2.3 Parameters of elastic matching

The elastic matching algorithm is controlled by a set of input parameters. A balance is required
between the parameters to achieve the necessary accuracy and mesh quality. Parameter
testing was performed on a single model to heuristically establish a set of working parameters
(table 6.1). Registration was run for all models using these parameters and no models required

adjustment of the parameters.

The accuracy of registration is affected by the similarity measure, the sum of the positional
difference distance and directional compatibility measures. The positional difference, effectively
the Euclidean distance between two points, is the dominant measure. The directional

compatibility measure is the likelihood that two vertices correspond, and is used to help
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/ Baseline surface S1 Target surface 52 /

Step 8: Stopping
criteria met No, k=k+1
(k = kmax or
|DS| < €)?

Yes

Output S 1k.

Figure 6.5: Flow chart of the steps of the elastic matching algorithm.
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Table 6.1: Parameters for the elastic matching code.

Parameter Value Description

~ 2.0 Damping factor of displacement field. Values < 1 result in overshoot, and values > 1
result in undershoot.

0o 10.0 Initial value of smoothing parameter. If og is large, deformations will start rigid and
slowly become non-rigid.

f 1.0715 Must be 1 < f < 2. Controls the rate at which the smoothing parameter o changes,
influencing the rate of deformation (equation 6.11).

Kmax 100 Maximum number of iterations for the surface matching algorithm.

K 0 Weighting of directional incompatibility measure. If £ > 0 then the orientation of the
triangles is used to determine the nearest triangle.

k1 5 Number of Laplace smoothing iterations.

« 0.8 Laplace smoothing ‘pull’ factor. Weights the inclusion of the original point and/or

previous smoothed point in computing the point displacement.

163 0.2 Laplace smoothing ‘push’ factor. Weights the computed point displacement and/or
the average displacement of the neighbouring points, in computing the point
displacement correction.

decide the best matching triangle to the vertex in consideration. Heuristic testing showed
that using the directional compatibility measure reduced the quality of the registered mesh
and resulted in mesh folding. For this reason, directional compatibility was ignored (x = 0),

and the nearest triangle patch was determined by Euclidean distance only.

The parameters og, f, kmax, and « influence the deformation. By increasing oy or f, greater
deformation can be achieved but mesh quality is reduced. It was found that a relatively high
value of og and a low value of f, over a large number of iterations kmax, was a good trade
off between achieved deformation and mesh quality. The damping factor v was set to give

undershoot.

Both registration accuracy and mesh quality are affected by the Laplacian smoothing parame-
ters a, (B, and k. Small features can be lost if too much smoothing is applied, and this must
be balanced with mesh quality. The number of iterations of smoothing is kept low to avoid
loss of shape features, the pull factor « is high, weighting the position of the original point,
and the push factor § is low, weighting the average displacement of surrounding points to

obtain better smoothing quality.

6.2.4 Volume morphing

The second step of registration is volume morphing of the tetrahedral mesh. The baseline
surface has been registered to each of the target surfaces, giving known displacements of
the baseline tetrahedral mesh surface. This can be used to compute the internal vertex
displacements. Previously, decoupled Laplace equations were used to calculate the internal
vertex displacements (Bryan et al., 2010). This is a simple and efficient solution for volume

morphing, but can produce very distorted elements.
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Figure 6.6: Volume morphing of the baseline tetrahedra mesh to fit a target surface mesh

An alternative is to solve the equations of linear elasticity, applying the displacement of the

surface vertices as Dirichlet boundary conditions. For each element

E—k (%)7 (6.14)

where F is the stiffness, V is the volume of the element, v is a stiffening parameter, and &
is a scaling constant. Solving the internal vertex displacements using the linear elasticity
equations reduces the number of distorted tetrahedra!. For volume morphing of the tibia, v
was set to 0 so that each element was fully elastic. A custom parallel Fortran code was used
to solve the elasticity equations, decreasing the computational time from 45 minutes to 30

seconds.

To complete the registration, the baseline tetrahedral mesh was morphed to fit each of the
registered training surfaces. All tibiae in the training set are then described by a tetrahedral

mesh with point and element correspondence.

6.2.5 Material properties sampling

A feature of the tibia SSIM model is that the elastic modulus distribution (or field) of the
tibia is included. The elastic modulus of each element in the tibia can be computed from the

CT intensity. It is known that the density of bone p is related to the CT intensity g by

p=mg+ec. (6.15)

Normally, the calibration constants m and ¢ are determined using a phantom which contains
two materials of known densities and, ideally, would be included in the CT scan. The

calibration constants can be computed by solving equation 6.15 simultaneously. Unfortunately,

'F. Galloway, R. Bryan, et al. (2010). “An improved registration scheme with application to statistical
shape modelling of the human femur”. In: Computer Methods in Biomechanics and Biomedical Engineering.
Valencia.
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Calibration lines of all tibia
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Figure 6.7: Relationships of CT intensity to bone density for all tibiae.

phantom blocks are not routinely used in clinical CT scans and are not present in any of the
data sets available for this study. Instead, the CT scans are calibrated sampling the intensity

of two distinct regions of bone:

(i) Bone marrow. Found in the medullary canal, it has the lowest modulus in bone. This is

assumed to be water and have a relative density of 0g/cm?.

(ii) Cortical bone. This region of bone is the strongest and has the highest modulus. This

is assumed to have a density of 1.73 g/cm?.

An average of ten samples each covering a small area were taken in a region of bone marrow
and cortical bone, where the lowest and highest intensity values were found respectively. For
marrow bone, the intensity values ranged from —164 HU to —22 HU (mean —76 HU), and for
cortical bone, the intensity values ranged from 1255HU to 1781 HU (mean 1616 HU), and
the calibration lines for all the tibiae are shown in figure 6.7. All the calibration lines have
a similar gradient, which indicates that the intensity of each CT scan represents a similar
density. There is one outlier in the data, where the high density cortical bone has was found
to have a lower intensity value of 1255 HU in comparison to the other data. In the case, it
might be that the tibia actually has a lower bone density, and an intensity of 1255 HU does

not represent a density of 1.73 g/cm3.

As the tibia will be modelled as a linear elastic material (see section 2.1.9), density of the
tibia needs to be converted to elastic modulus. From experimental testing, density-modulus
relationships have been found for many different anatomic sites (Helgason et al., 2008). The
dependence of the relationship on anatomic site means it is necessary to use a density-modulus
relationship for bone in the proximal tibia, because the region of interest in the FE studies is

the proximal tibia. Therefore, the relationship from Linde et al. (1992) was used

E = 4778p™%, (6.16)
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Figure 6.8: Volume rendered false colour image of a model in the training set. Lighter yellow regions are
representative of cortical bone and darker red regions are representative of bone marrow.

where the elastic modulus E is in MPa, and the density p is in g/cm3. For each registered tibia
volume mesh, the CT intensity value was sampled at each element using Avizo. The intensity
values were converted to density using the computed calibration relationship (figure 6.7), and
then to elastic modulus. An example tibia, volumed rendered using elastic modulus as the

colour field, is shown in figure 6.8.

To avoid FE solver problems, which can occur if elements have a modulus of around 0 MPa (e.g.
the elements representing marrow bone), elements with a modulus < 10 MPa were assumed to
have a modulus of 10 MPa. This threshold was chosen so that the elements did not significantly
affect the strength of the tibia or load transfer through the tibia. For example, low modulus
marrow bone is found in the medullary canal in the shaft of the tibia. If this were modelled
with too high a modulus (e.g. 250 MPa), the strength of the shaft of the tibia would be
artificially increased, changing the load distribution through the tibia. Cancellous bone has a
relative density of 0.05 to 0.7 of cortical bone, corresponding to a density of 0.09 g/cm? to
1.21 g/cm?, assuming the density of cortical bone is 1.73 g/cm3. A modulus value of 10 MPa

corresponds to a density value of 0.045g/cm?, representative of extremely weak bone.
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6.2.6 Principal component analysis

The SSIM of the tibia is created using PCA following the method described in section 4.4.
The vertex positions and element elastic modulus data for each tibia must be expressed as a
vector

Xi:[xla"'7xp7y17"'7yp7zl7"'7zp7E17"'7Eq2‘]T 1§2§m, (617)

where p is the number of vertices in the mesh, and ¢ is the number of elements in the mesh

(the elastic modulus is defined on each element). These are combined in a training matrix
X = [Xl,XQ,--- ,Xi}‘ (618)

Because the training data has mixed units (there is both positional and modulus data) it is
preferable to compute the PCs from the correlation matrix (see section 4.4). The size of the
training matrix is also large (the length of a model vector is 3p + ¢), and it is inefficient to
explicitly compute the eigenvectors and eigenvalues of the correlation matrix. By using SVD,

they can be efficiently computed.

The training matrix was normalised by row-wise standard deviation (equation 4.4) and
mean centred (equation 4.5) to give X. PCA was carried out using SVD such that X =
UXVT (equation 4.7). The columns U correspond to the eigenvectors (representing the PC
coefficients), the diagonal of ¥ are the eigenvalues (the square of which represent the variance
of each PC), and the PC weights were computed by b = XV,

6.2.7 Assessment of registration
Surface elastic matching assessment

The surface registration was assessed by the accuracy of the elastic matching and the quality
of the mesh. Checks for holes and intersecting triangles were also done, and none of the

registered surfaces were found to have holes or intersecting triangles.

The accuracy of the elastic matching algorithm was characterised by the ‘magnitude of
deformation’, computed from the smoothed displacement vector (D_’S ) of the final iteration.
The displacement of each point was normalised and then the mean was taken. This gives an
idea of the surface to surface distance. As the algorithm iterates, the deformations become
smaller and more localised, hence the magnitude the deformation is an indication of how well
matched the shapes are. As an independent measure, the mean ‘surface to surface distance’
between the registered surface and the target surface was also computed using Avizo. Both
measures were computed for all tibia and were of a similar order of magnitude. The mean
‘magnitude of deformation’ was 0.06 mm, and the mean ‘surface to surface distance’ was

0.03 mm.
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Figure 6.9: Triangle quality distribution of the registered surfaces compared to the baseline surface.

The registered surface mesh quality was checked by computing the triangle quality

r

Gtri = 2@, (6.19)
where r is the inscribed radius and R is the circumscribed radius. This measures triangle
quality in terms of the diameter ratio; 0 is the worst and 1 is the best. The triangle quality of
each registered surface was binned into 25 bins. The distribution of the triangle quality of
registered surfaces and baseline surface is shown in figure 6.9. A surface score was computed
by summing the upper limits of the bins multiplied by the percentage of elements in the bin,

hence, a surface with perfect equilateral triangles will have a score of 100.

The registered surface score is comparable to the baseline score, 96.2 compared to 99.0
respectively. The distribution of triangle quality shows that the for the registered surfaces,
the average percentage of triangles with the best quality is 54% compared to 85% for the
baseline surface. Despite this, the quality of the majority of triangles was between 0.7 and 1.0

for the registered surfaces.

Volume morphing assessment
The volume mesh quality was checked by computing the tetrahedron quality

r
Qtet = 3— (620)

R 9
where r is the inscribed radius of the sphere and R is the circumscribed radius of the sphere.
This is the diameter ratio of a tetrahedron; 0 is the worst possible tetrahedron quality, and

1 is the best. As per the triangle quality, for each registered mesh, the tetrahedron quality
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Figure 6.10: Tetrahedron quality distribution of the registered meshes compared to the baseline mesh.

was binned into 25 bins. The distribution of the tetrahedron quality of registered meshes and
baseline mesh is shown in figure 6.10. A mesh score was computed by summing the upper
limits of the bins multiplied by the percentage of elements in the bin, hence, a mesh with

perfect equilateral tetrahedra will have a score of 100.

The distribution of the registered meshes tetrahedra quality, shows an increase in the percentage
of elements with a lower quality compared to the baseline mesh. This is expected, because the
shape and size of the target surface can be very different from the baseline shape, resulting
in large boundary vertex displacements. This can result in the tetrahedra becoming more
distorted. However, the majority of elements have a quality above 0.5, well above the limit of
0.1 which many FE codes require. The mesh scores are also comparable, an average of 79.4

for the registered meshes, and 82.8 for the baseline mesh.

6.2.8 Assessment of statistical model
Variance of principal components

A feature of PCA is that the PCs are ordered by the variance of the training data. It
would be hoped that the majority of the variance is retained in the first few PCs. When
sampling a SSIM, it is important to include enough PCs so that the training data is adequately

represented. This could be done using a cumulative percentage variance threshold.

The choice of variance threshold to select the PCs is somewhat arbitrary, Jolliffe (2002)
suggests from 70% to 90%, and others have used 95% (Bryan et al., 2010; Bryan et al., 2009;
Cootes et al., 1995; Edwards et al., 1998; Yang et al., 2006). For the tibia SSIM, 24 out of 32

PCs are required to represent 95% variance (figure 6.11).
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Figure 6.11: Cumulative variance of the PCs for the tibia SSIM. The dashed line marks 95% variance.

However, just selecting the number of PCs to include when sampling should not be based
on percentage variance alone. It is also important to consider how accurately the SSIM can

reconstruct the training data, and the predictive capability of the SSIM.

Reconstruction test

The accuracy of the SSIM was assessed using a reconstruction test. FEach tibia in the training
set was reconstructed using an increasing number of PCs (equation 4.9). As the SSIM includes
both mesh vertex positions and element modulus, it is necessary to separate this data when
computing the error between the ‘original’ and ‘reconstructed’ data. The vertex position
error was computed as the mean Euclidean distance error between the corresponding vertex
positions, and the modulus error was computed as the mean absolute error between the

corresponding element moduli.

The median and inter-quartile range of the vertex position error decreased as the the number
of included PCs used to reconstruct the data increased (figure 6.12a). At PC 1, the median
vertex position error was 3.5 mm with an inter-quartile range of 2.7-4.2mm. Including 24
PCs (which represents 95% variance), the median vertex position error is 0.4 mm with an

inter-quartile range of 0.2-0.7 mm.

The SSIM is worse at reconstructing the element moduli accurately. The median modulus
error decreases linearly with the increasing number of included PCs. The inter-quartile range
decreases in the first few PCs, but then increases again in the later PCs. This indicates that
there is a poor correlation between the element moduli in the SSIM. Including 24 PCs, the

median modulus error is 227 MPa with an inter-quartile range of 144-501 MPa.
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Figure 6.12: Reconstruction test error: (a) is the Euclidean distance error between vertex positions; (b) is
the absolute modulus error between elements.

Leave-one-out test

A leave-one-out test was performed to assess the predictive capability of the SSIM. Each tibia
model x; was left out in turn, and a SSIM was created using the remaining training tibiae Y.

The PC weights a; of x; are then computed,
a; =UT (D 'x; - 3). (6.21)
The ‘left-out’ tibia x; can then be estimated using ¢ PCs,
x; # D(y + Uiay). (6.22)

This is how data is normally reconstructed (equation 4.9), except that y is the mean of
normalised Y, and the PCA weights by; are replaced by the ‘left-out’ PCA weights ay;.
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The ‘left-out’ tibia was then estimated using an increasing number of PCs. As per the
reconstruction test, the vertex position error and modulus error was then computed between
the ‘left-out’ tibia and ’estimated’ tibia.

Both the vertex position error and modulus error were larger in the leave-one-out test than
the reconstructed test. This is expected as the ‘left-out’ tibia is only being estimated by the
SSIM. However, in the higher PCs, the median and inter-quartile range of the errors remain

relatively large (figure 6.13).
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Figure 6.13: Leave-one-out test error: (a) is the Euclidean distance error between vertex positions; (b) is the
absolute modulus error between elements.

The vertex position error has a median of 3.9 mm with an inter-quartile range of 3.1-4.5 mm
at PC 1. Including 24 PCs, the median is 2mm with an inter-quartile range of 1.6-2.3 mm.
Including 11 or more PCs, the median and inter-quartile range of the error remains relatively

constant (figure 6.13a).

The modulus error has a median of 1493 MPa with an inter-quartile range of 1249-1730 MPa
at PC 1. Including 24 PCs, the median is 1069 MPa with an inter-quartile range of 928-
1130 MPa. Again, when the ‘left-out’ data is estimated using 11 or more PCs, the median

and inter-quartile range of the error remain relatively constant (figure 6.13b).
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6.2.9 Interpretation of the principal components

The PCs of the SMs represent physical changes of the tibia. The changes of each PC can be
seen by varying the value of the associated PC weight between an upper and lower limit. For
the tibia SSIM it was seen that the distribution of the weight for the first 24 PCs (representing
95% variance) was approximately Gaussian (figure 6.14). It was assumed that for the kth PC,
the weights had a Gaussian distribution with a mean pj and a standard deviation oy. In this

case, p = 0 because the training data is normalised and mean-centred.
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Figure 6.14: The distribution of the PC weights for the tibia model. Generally, the weights have a Gaussian
distribution. Only the first 24 PCs are plotted because they represent 95% variance.



Statistical model of the tibia 75

To visualise the first three PCs in isolation, a new tibia was generated with the PC weights set
at —3o0p, 0ok, and +30y. The generated tibiae are shown in figure 6.15. Each main column of
the figure shows the changes of the tibia for a particular PC as the weights change from —3oy,
to +30). Three views of the tibia are shown, the top row looks down on the condyles, the
second row looks at anterior of the tibia, and the third row looks at the medial side of the
tibia. The anterior and medial views are volume rendered to show the elastic modulus; lighter

yellow regions represent cortical bone, and darker red regions represent marrow bone.

The first PC (left column of figure 6.15) shows changes in the scaling of the tibia. This is
expected as the largest visible variation of the tibia is length. The tibia increases in size as
the PC weight is changed from —30% to +30;. There is also a change in the size ratio of
the medial to lateral condyles (top row of left column in figure 6.15). At —30y, the lateral
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Figure 6.15: Changes of the tibia shape and elastic modulus distribution of the first 3 PCs in isolation. The
main columns left to right show PC1 to PC3, and within these columns, left to right, show the PC weighted at
—30, 00, and +30. The rows show different views of the tibia for each PC, top is the condyles, middle is the
anterior of the tibia, and bottom is the medial side of the tibia.
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condyle is smaller than the medial condyle, particularly in the A-P dimension, and at +30}
the two condyles are more equal in size. In the second PC (middle column of figure 6.15),
significant increase in the strength of the tibia can be seen; the mean elastic modulus of the
tibia increases from a mean of 1350 MPa at —30}, to a mean of 6000 MPa at +30j. As the
elastic modulus changes, the cortical bone of the shaft also thickens, and there is a small
increase in length of the tibia. The third PC (right column of figure 6.15) shows changes in
the size of the condyles and shaft diameter of the tibia. As the PC weight increases from
—30} to +30y, the condyles decrease in overall size, also becoming more equal in size (top
row of right column in figure 6.15). This is coupled with an increase in the posterior slope
of the condyles (bottom row of right column in figure 6.15). There is also a decrease in the
diameter of the shaft, coupled with an increase in the strength of the cortical bone. It is also

noticeable that the tibia tubercle becomes less prominent.

It is important to note that the changes do not occur in isolation, a random instance of the
tibia will actually be the combined effect of several PCs, with features of a particular PC
cancelled out or exaggerated further. Looking at an individual PC gives an insight as to how

the size, shape, and elastic modulus distribution of the tibia varies.

6.2.10 Sampling the model

The target use of the tibia SSIM in this thesis is to be able generate a population of tibia,
and it is possible to do this by sampling a selected number of PC weights. In the previous
section, it was seen that the distribution of the weights for the first 24 PCs was approximately
Gaussian (figure 6.14). Hence, the PC weights were randomly sampled assuming that each

had a Gaussian distribution with a mean uj and standard deviation oy.

A population of 500 tibiae was generated, the first 20 of which are shown in figure 6.16.
The length of the generated tibiae ranged from 28 cm to 47 cm. This was within £5cm of
the training tibiae lengths, which ranged from 32 cm to 44 cm. The elastic modulus of the
generated tibiae was also similar to the training tibiae, with ranges of 10 MPa to 33.1 GPa
and 10 MPa to 26.7 GPa respectively. It should be noted that for the generated tibiae, it was
necessary to assign elements with an elastic modulus less than 10 MPa to have a modulus of
10 MPa to avoid solver problems during FE analysis, as was done for the training tibiae (see
section 6.2.5). In terms of shape, each generated tibia shown in figure 6.16 has a cylindrical
shaft and two expanded ends. At the proximal end, there are two distinct condylar regions
separated by the intercondylar notch. The modulus distribution of each is as might be
expected, the shaft consists of stronger cortical bone with a central medullary canal. The ends
of each bone are weaker where only a thin cortical shell exists surrounding ‘spongy’ cancellous
bone, made up of a network of trabeculae. Regions of high and low density cancellous bone

are also visible.
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6.2.11 Discussion

The registration scheme captures the shape of the training set accurately. There is only a small
error in the surface to surface distance between the registered and target surfaces. The surface
mesh quality is acceptable for volume morphing, with Laplace smoothing helping to maintain
mesh integrity. The average tetrahedral mesh quality reduced after volume morphing, but

was still found to be acceptable for FE analysis.

A limitation of the registration scheme is that point to point correspondence is not guaranteed.
Ideally, by registering all the meshes, each will have the same number of vertices and elements
in the same relative position. With a suitable mesh density, it is likely that points will end up
approximately in the same anatomical position and landmarks can be identified by taking the

average position of sets of points.

Point correspondence could be improved by landmarking each tibia. However, this relies on
the landmarks being accurately defined. The automatic point correspondence uses Euclidean
distance as a similarity metric and could potentially be improved by using surface curvature
or triangle normals. This was tested in the current algorithm, but it was seen to reduce the

mesh quality.

The SSIM is capable of reconstructing a tibia with reasonable accuracy. From the reconstruc-
tion test, the median vertex position error was 0.4 mm and the median modulus error was
227 MPa using 24 PCs. The SSIM is not as accurate at predicting new data, when 24 PCs
were included, the leave-one-out test errors were was higher than those of the reconstruction
test. The median position vertex error was 2 mm and the median modulus error was 1069

MPa, over four times larger than that of the reconstruction test.

Both the reconstruction test and leave-one-out test show that there is a weak correlation
of elastic modulus between models. The median modulus error is of the order of hundreds
of MPa and there is a wide inter-quartile range in the higher PCs. There could be several

reasons for this:

(i) Correspondence between elements is not guaranteed. The position of an element in one

mesh might be within cortical bone and in another within cancellous bone.

(ii) The size of the training set is small, with only 32 tibiae in the training set, and over
500,000 variables in the PCA matrix, limiting the accuracy of the SSIM.

(iii) Bone strength is related to many factors such as age, sex, disease, and activity levels.

The natural variability of bone strength will be high, even within the small training set.

(iv) To compute the density of the CT scan, it is assumed that the region of highest intensity
in the cortical bone has a density of 1.73 g/cm? and the lowest intensity in the marrow
region has a density of 0g/cm?. These two regions of bone are manually identified and

the sampled intensity is not necessarily correct for the assumed density.

The size of the training set and registration correspondence will also affect the vertex position

error. The cumulative variance (figure 6.11) also indicates that the training set is small. The
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first five PCs only capture 60% of the training data variance and to represent 95% variance of
the training tibiae, 24 PCs are required. More training tibiae would be required to better

capture population variation.

Despite only adequate reconstruction and predictive capability of the SSIM, it is intended
that the SSIM is sampled to generate a large population of tibiae. In this case, it is not
necessary for each tibia to be accurate or represent an real patient. The requirement is that
the generated population of tibiae are representative of the training population. Although
only the first three modes of change are visualised, realistic physical changes can be seen
(figure 6.15), and by sampling the SSIM, a large variable population of tibiae can be generated
(figure 6.16).

6.3 Statistical model of tibiofemoral joint gait cycle loads

Pre-clinical testing of TKRs currently relies on limited kinematic and kinetic data to establish
boundaries of design and durability (see section 3.2). The problem is that many computational
studies only apply simplified loads at an instance in an activity cycle (table 3.1). Those
studies which simulate a complete activity cycle tend to apply loading based on a published
testing standard (ISO 14243-1, 2009). The few studies which use models of multiple patients
only scaled the loading by body weight between patients. By doing this, the ratios between
the load components remain fixed; the variation in the ratio of force components (e.g. A-P to

AX force) is not captured.

The knee is exposed to 6 degree-of-freedom time varying loads and large inter-patient variability
has been observed from in vivo measurements (see section 2.1.8). Therefore, a population-
based study of the tibial tray not only needs to incorporate variation of the tibia, but also
of the kinetics to fully represent inter-patient variability. Using a SM, a large population of
kinetic data could be generated without the time and expense of collecting motion capture

data of hundreds of patients?.

6.3.1 Training data collection and preparation

The internal tibiofemoral joint loads (anterior-posterior (F,p), medial-lateral (F,), and
axial (F,x) forces; flexion-extension (Myyg), varus-valgus (Myy ), and internal-external (M)
moments) of a single gait cycle (heel strike to heel strike of the same leg) were taken from
musculoskeletal models of 31 pre-operative TKR patients (table 6.2). These data were
obtained from a separate project, Worsley (2011). An outline of the method used to create

the musculoskeletal model follows.

Step 1: Motion capture. Motion capture data of an activity were taken using a 12 camera

T-series Vicon motion analysis system (Vicon, Oxford, UK) using retroreflective markets.

2The method described in this section has been published as F. Galloway, P. Worsley, et al. (2012).
“Development of a statistical model of knee kinetics for applications in pre-clinical testing”. In: Journal of
Biomechanics 45(1), pp. 191-195.
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Table 6.2: Summary of participants used in study.

Age ‘Weight BMI
(vears)  (kg)  (kg/m?)

Mean 64.3 84.9 30.8
Standard deviation 9.5 17.7 5.9
Max 81.0 127.0 42.2
Min 39.0 54.0 19.1

These were placed on key anatomical landmarks using a modified Helen Hayes marker set
to be able to identify segment and joint centre locations during dynamic movement. Two
Kistler force plates (Kistler Instrument AG, Winterthur, Switzerland) were used to measure
the ground reaction forces during the activity. Anthropometric measurements (e.g height,

leg length) were also taken.

Step 2: Model setup. The musculoskeletal model was then created using inverse dynamics
musculoskeletal modelling software, AnyBody (AnyBody, Aalbord, Denmark). Using a
static trial—where the patient was standing in a neutral position with arms folded at chest
height—motion capture data, a baseline model of the patient was created. The rigid body
model was then linearly scaled using the anthropometric measures, motion capture data,
and digital camera feedback. After scaling, the model was then correctly positioned by
adjusting the global position of the model, and position of the joints (by changing joint
flexion, abduction, and rotation angles). The marker positions were then estimated by
adjusting the position of local nodes on each segment to the position of the motion capture
markers. The scaling parameters and marker positions were then used for all subsequent

dynamic models of the patient.

Step 3: Kinematic analysis. The model was driven by the marker positions from the
motion capture data to compute the kinematics. To minimise the error of the marker
locations, a Global Optimisation Method (Andersen et al., 2009) was used. The kinematics

include the position, velocity, and acceleration of each segment during the activity cycle.

Step 4: Kinetic analysis. From the kinetics and ground reaction forces, the net joint forces
can be computed. The net joint forces consist of two components, the internal joint forces
(joint loads) and the muscle forces. To determine the muscle forces, a min-max recruitment
solver (Rasmussen et al., 2001) was used, optimising the recruitment of the muscles. The

internal joint forces can then be computed.

To compute the internal tibiofemoral joint loads, patients performed three trials of walking
and a gait cycle from each trial was identified using the associated force and kinematic data.
Joint loads were computed for each trial, time normalised from 0-100% of gait sampled at 1%
intervals and normalised by BW. The load data were collated and averaged for each patient
(figure 6.17). There is no need for registration of the data, because all the load data are time

normalised and each point of the load waveform naturally corresponds between patients.
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Patient knee loads over a gait cycle
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Figure 6.17: Gait cycle knee loads of all patients time normalised from 0-100% sampled at 1% intervals and
normalised by body weight. The shown data are of forces in the right knee, defined in a coordinate system
such that the +x is in the lateral direction, +y is in the anterior direction, and +z is in the superior direction.
+Fap, +FuL, and +Fax act in the +x, +y, and +z directions. The + Mg, +Myv, and +Mig all act clockwise
around the +x, +y, and 4z axes respectively.
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6.3.2 Principal component analysis

PCA has been applied to gait waveform data to differentiate between groups of patients of
different pathologies (Deluzio et al., 2007; Deluzio et al., 1997) and ages (Reid et al., 2010)
using the PCs. These studies apply PCA to each individual load components. In the SM of
knee kinetics all the load component waveforms are included. As before, following the method
described in section 4.4, PCA is used to compute a set of coefficients and weights which can

be sampled to generate new instances of gait cycle loads.

Each set of patient data were arranged in a vector, x; = [Fap, Fuw, Fax, Meg, Myy, Mig] T,
and combined in a training matrix X = [x1,X2, -+ ,X;]. As the data were of mixed units
(forces are xBW and moments are xBWm), X was normalised by row-wise standard deviation
(equation 4.4) and then mean centred (equation 4.5) giving X. PCA was carried out using
SVD such that X = UESVT. The columns of U correspond to the eigenvectors (representing
the PCs), the diagonal of ¥ are the eigenvalues (the square of which represent the variance of
each PC), and the PC weights are computed by b = ZVT,

6.3.3 Assessment of statistical model
Variance of principal components

To represent 95% variance of the SM, 17 out of 31 PCs are required (figure 6.18). As per
the tibia SM, it is not only important to consider the variance of the PCs, the accuracy and

predictive capability of the SM must also be examined.
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Figure 6.18: Cumulative variance of the PCs for the gait cycle SM. The dashed line marks 95% variance.
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Reconstruction test

The accuracy of the model was assessed using a reconstruction test. The subject gait cycles
were reconstructed (equation 4.9) using an increasing number of PCs and the root-mean-
squared (RMS) error between the ‘original’ and ‘reconstructed’ data was computed for each

load component.

From the reconstruction test, both the median and inter-quartile range of the RMS error
between the ‘original’ and ‘reconstructed’ data decreased as the number of included PCs
increased for each load component (figure 6.19). Assuming a mass of 84.9 kg (mean of the
patients mass table 6.2), at 17 PCs, which represents 95% variance of the model, the median
RMS error of the A-P force is 28 N, M-L force is 6.8 N, AX force is 73N, F-E moment is
2.5Nm, V-V moment is 4.2 Nm, and I-E rotation moment is 0.6 Nm.

Reconstruction test load RMS errors
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Figure 6.19: Boxplots of the knee forces and moments RMS error from the reconstruction test. The error is
between the ‘original’ data and ‘reconstructed’ data.
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Leave-one-out test

A leave-one-out test was performed to assess the predictive capability of the SM. Each set
of patient data x; was left out in turn forming a new normalised training set Y. PCA was
applied to this training set and the PC weights «; for x; (equation 6.21). The ‘left-out’ data
was estimated using an increasing number of PCs (equation 6.22) and the RMS error between

the ‘left-out’ and ‘estimated’ data was computed for each load component.

From the leave-one-out test, both the median and inter-quartile range of the RMS error
between the ‘left-out’ and ‘estimated’ data decreased as the number of included PCs increased
for each load component (figure 6.20). Again, assuming a mass of 84.9kg and including 17
PCs, the median RMS error of the A-P force is 73N, M-L force is 20.4 N, AX force is 173.2N,
F-E moment is 5.1 Nm, V-V moment is 10.2 Nm, and I-E rotation moment is 1.7 Nm. However,
the inter-quartile range of the forces and moments remains relatively large as the number of

included PCs increases, particularly for the A-P force and F-E moment (figure 6.20).

Sampling

Like the tibia SM, it is intended that the gait cycle SM will be used to generate a population
of gait cycle loads by sampling the model. The assumption made for the tibia SM was that
weights of the kth PC had a Gaussian distribution with a mean p; and standard deviation
0. This assumption should also hold for the gait cycle SM as the training data is normalised
and mean centred. The distributions of the first 17 PC weights are shown in figure 6.21, and

the majority are approximately Gaussian.

To show that the generated data is representative of the training data, 100 new gait cycles
were generated by pseudo-randomly sampling the distribution of the first 17 PCs weights,
truncated at +30%. As expected, the ‘sampled’ gait cycle loads are representative of the

‘original’ gait cycle loads (figure 6.22).
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Figure 6.20: Boxplots of the knee forces and moments RMS error from the leave-one-out test. The error is
between the ‘left-out’ data and ‘estimated’ data.
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Figure 6.21: The distribution of the PC weights for the gait cycle SM. Only the first 17 PCs are plotted
because they represent 95% variance. It can be seen that the weights generally have a Gaussian distribution.
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‘Sampled’ data compared to ‘original’ data
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Figure 6.22: ‘Sampled’ gait cycle loads (light) compared to ‘original’ gait cycle loads (dark). As expected,

the ‘sampled’ data are representative of the training data.
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6.3.4 Discussion

The SM of the gait cycle combines all three forces and three moments of the tibiofemoral joint
and applies PCA to compute a set of weights which can be sampled to generate a population
of gait cycles, representative of the training data. The generated population could be used as
load input in a population-based study of a TKR. This is unlike previous studies (Deluzio
et al., 2007; Reid et al., 2010) where PCA was applied to each separate component and the

PC scores were used to differentiate between groups.

Although the MS modelling was not performed as part of this thesis, it is important to note

some of the sources of error and uncertainty of the method (Worsley et al., 2011):

o Soft tissue artefacts, caused by the movement of the skin markers relative to the bone,
result in marker positional errors (Leardini et al., 2005). Optimisation techniques can
be employed to reduce the uncertainty of marker positions as a result of soft tissue
artefacts, but the kinematics can only be accurately predicted for gross movement
patterns (Leardini et al., 2005).

¢ Inaccurate identification of anatomic landmarks and marker positioning can affect the
predicted kinematics (Della Croce et al., 2005).

e Scaling of the MS model is generic and affects the accuracy of the estimated segment
parameters (e.g. mass, centre of mass, moment of inertia), and joint parameters (e.g.
joint centre). Studies have shown that the placement of the hip centre is crucial to
reduce the error in hip and knee kinematics (Kadaba et al., 1990). The scaling relies on

accurate identification of anatomic landmarks.

o Simplification of segments in the MS model, e.g. the foot is only modelled as a single

segment.

o To reduce the complexity of the MS model and complete the inverse dynamics efficiently,
constraints are applied to the joints to reduce the number of DOFs. The knee is modelled
as a hinge joint, allowing only 1 DOF, but in reality the knee has 6 DOFs (section 2.1.5).
This constraint is perhaps acceptable, as the errors from marker placement and soft
tissue artefacts are much larger than the magnitude of secondary knee motions seen

during an activity.

e The muscle forces are computed by globally optimising the muscle recruitment such
that the loads on muscles are minimised. Further constraints are applied to the muscles,
so that they can only work by ‘pulling’, and that they do not work beyond the limit of
their power. The idea of doing this is to replicate the behaviour of the central nervous

system.

These limitations of the MS modelling, means that the predicted kinematics can be overesti-
mated in comparison to telemeterised implant data (section 2.1.8). A SM could have been
created using the 5 sets of knee load data from Orthoload. However, significant inter-patient

variability of knee loads was observed (Kutzner et al., 2010), and it was considered that the 5
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sets of data were not enough to create a SM. Instead, the next best available set of data was

used, taken from 31 MS models of pre-operative TKR patients.

For the gait SM, 17 out of 31 PCs were required to represent 95% variance, over half the
total number, and the higher PC have only a small variance, likely to introduce noise when
sampling the SM. However, the magnitude of the RMS error of each load component was

considered acceptable at 17 PCs for both the reconstruction and leave-one-out tests.

The leave-one-out test indicates that the SM is less accurate at estimating data, particularly
for the A-P force and F-E moment (figure 6.20). The median RMS error of the A-P force
only decreases from 0.13 BW at PC 1 to 0.09 BW at PC 17 and the inter-quartile range also
remains relatively large, 0.09-0.18 BW at PC 1 and 0.05-0.12 BW at PC 17 (figure 6.20).

‘Estimated’ data with maximum RMS error compared to ‘original’ data
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Figure 6.23: Comparison of the ‘estimated’ gait cycle with the maximum RMS error at 17 PCs compared to
the ‘original’ gait cycle.
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To further investigate, the ‘estimated’ data using 17 PCs with the maximum RMS error was
examined. This shows that the ‘left-out’ data is perhaps an outlier of the training set; the
A-P force does not fit the trend of the training data, the peaks of the FE moment are larger
than average, and the peak of the AX force occurs 10% earlier in the gait cycle compared
to the training data (figure 6.23). The error in the ‘estimated’ data is partly caused by the
extreme variation in the training data and the predictive accuracy is limited by the small size

of the training set.

However, the intended use of the gait cycle SM is to generate a new population of gait cycle
loads. The accuracy and predictive ability is not of high importance, provided that the
generated population is representative of the training data. The example sampled gait cycles
(figure 6.22) show that the SM can be used to generate a new population which adequately
captures the variation of the training data. There are cases where the load components of
the ‘sampled’ gait cycles have a peak magnitude greater than the ‘original’ gait cycles. This
is likely because a large interval is used in sampling, increasing the chance of generating an
‘outlier’ case. These cases are of interest, particularly in testing of a TKR, where the more

extreme loads might increase the risk of failure.

6.4 Creating a population of finite element models

A large scale, population-based study requires automatic creation of the the FE models. In
the context of a study assessing a tibial tray, the process to generate the models is as follows:
(i) sample both the SMs (see sections 6.2 and 6.3) to generate a population of tibiae and
a population of gait cycle loads; (ii) position and implant the tibial tray in the tibia; (iii)
combine the implanted tibia with the gait cycle loading to create the FE model for analysis.
This section describes the automated process of creating an FE model which is then used to

create the population of models in the following case studies.

6.4.1 Creating the statistical models and generating the data

The tibia SM was created as described in section 6.2 using the 32 left tibiae as training data.
The gait cycle SM used training data of 20 healthy elderly subjects? collected and processed
as described in Worsley et al. (2011). It was observed that in comparison with telemetric
implant data (Kutzner et al., 2010), the A-P force, F-E and V-V moments, appeared to be
overestimated. Therefore, these load components were scaled by a factor of 0.5 to bring them
into line with the telemetric implant data (figure 6.24). The gait cycle SM was then created

as described in section 6.3.

3The initial paper, Galloway, Worsley, et al. (2012), submitted to Journal of Biomechanics used this set of
data. In the review process the size of data set was queried, and as a result the data set used in the paper was
changed to one of 31 pre-operative TKR patients, collected and processed using the same method (Worsley,
2011). However, the work for this thesis had progressed using a gait cycle SM based on 20 healthy elderly
subjects and it was decided that this should not be changed.
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Figure 6.24: Comparison of the internal joint reaction forces from Orthoload (light) and musculoskeletal
models (dark). The A-P force, F-E moment, and V-V moment of the musculoskeletal data have been scaled by
0.5. The heavy line represents the mean of each component and the shaded area is £1 standard deviation.
The forces and moments act in the directions defined in figure 6.28.

To obtain a large number of possible models, the tibia SM and gait cycle SM were sampled
separately to generate an initial set of 500 tibiae and gait cycles (see sections 6.2.10 and 6.3.3).
Each generated tibia was associated with a gait cycle. A threshold of 95% variance was used
to select the number of PCs used to sample the SMs. The first 24 of 32 PCs were used for the
tibia SM, and the first 13 of 20 PCs were used for the gait cycle SM. For both the SMs, the
PC weights were assumed to have a Gaussian distribution, truncated to +30;. A limitation
using two separate SMs is that there is a dissociation between the generated tibia and gait

cycle.

The limited predictive accuracy of the tibia SSIM meant it was possible that elements of
generated tibiae could have an elastic modulus near or less than 0 MPa. Elements with low
modulus values could also potentially cause problems during FE analysis. Therefore, if an
element had a modulus less than 10 MPa, it was assigned a value of 10 MPa. This modulus
threshold was for reasons given in section 6.2.5. No adjustments were made to the generated

gait cycles.
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Figure 6.25: Correlation between the femur and tibia lengths with the linear regression shown.

6.4.2 Predicting model weight

The load components of the gait cycle were normalised in terms of body weight. To convert back
to a force or moment, a weight of the model is required. Unfortunately, patient information
corresponding to the training tibiae was not available and the weight of each sampled model
had to be estimated.

Stature estimation from long bones is often used in forensic science when only partial skeletal
data is available. To do this, generic limb ratios can be used (Winter, 1990). Studies have
also found relationships between long bone length and stature for specific populations, e.g.
Turkish (Duyar et al., 2003) or Japanese (Hasegawa et al., 2009). The limitation of these
studies is that the relationships are for specific populations; the training tibiae for the SM
are of an unknown demographic. Despite a published relationship between tibia length and
stature (Duyar et al., 2003), this was not used as it applied to young Turkish males, who
may have a very different stature compared to the average TKR patient. One study found a
generic, combined race and gender, ratio between femur length and stature (Feldesman et al.,

1996), and was used by Bryan et al. (2009) to estimate the height of a population of femurs.

In the current study femur length is unknown for the generated models. As the training
tibiae were taken from CT scans of the full lower limb, a linear regression between the tibia
and femur length was found (figure 6.25). Combined with the generic femur-stature ratio
(Feldesman et al., 1996), the relationship between tibia length ¢ and height h is

1327716 + 0.82¢

h= = 496.3426 + 3.0654¢. 2
267 96.3426 + 3.065 (6.23)

A body mass index (BMI) for each model was randomly sampled from a distribution based
on the National Healthy and Nutritional Examination Survey (NHANES, 1999), carried out
by the US Center for Disease Control and Prevention. The mass of each model was then

calculated by
m = bh? (6.24)
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Figure 6.26: Tibia aligned to the coordinate system axes in a medial view (left) and inferior view (right).

where m is mass in kg, h is height in m, and b is BMI in kg/m?. The sampling of the BMI
distribution means that the estimated weight of the model is effectively random, and there is

no link between tibia, joint loads, and patient weight.

6.4.3 Positioning and implantation of the tibial tray

To be able to position the tibial tray correctly, each tibia was aligned in a coordinate system
such that +x is medial, +y is anterior, and +z is superior (figure 6.26) using the transformation
described by Fitzpatrick et al. (2007). The tibial tray was then positioned as follows:

(i) From landmark sets defining the medial and lateral condyles, the lowest condylar point
is identified.

(ii) The cutting plane is positioned the desired depth below the lowest condylar point

(normally around 2mm), parallel to the transverse plane. A resected surface is created.

(iii) The M-L width of the resected surface is measured, taken as the distance between the

most medial and most lateral points of the resected surface.

(iv) The size of tibial tray is chosen, such that it is the largest size with an M-L width less
than the resected surface M-L width.

(v) The tibial tray is positioned such that the bottom surface is on the same plane as the
resected surface. In the M-L direction, it is centred on the central point of the M-L

width vector. In the A-P direction is centred on the central point of the resected surface.
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Figure 6.27: The steps to position and implant the tibial tray.
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To create a new mesh of the tibia implanted with the tibial tray, mesh operations were required.
A custom extension was developed for ZIBAmira in collaboration with Zuse Institute Berlin

(ZIB), specifically to do the necessary mesh operations to implant the tibial tray:
(i) The tibia surface was resected using mesh cutting operations.
(ii) The implant surface was merged using a mesh union operation.

(iii) The surface was remeshed to ensure good element quality (Kahnt et al., 2011; Zilske
et al., 2008).

(iv) A tetrahedral mesh is generated from the implanted tibia surface using an advancing

front algorithm.

(v) The elastic modulus was mapped to the new tetrahedral mesh from the original tibia

tetrahedral mesh.

An overview of the position and implantation process is show in figure 6.27. All the positioning
and implantation of the tibial tray was done using ZIBAmira 2010.07-rc3 (Zuse Institute Berlin
(ZIB), Berlin, Germany—http://amira.zib.de). The scripting capability of ZIBAmira
meant that all of the processes could be automated. A ZIBAmira TCL script was used
to run the positioning and implantation process. If geometric errors occurred during the
mesh operations or mesh generation, the tibial tray was translated alternately forwards and
backwards by increasing increments of 0.1 mm. If a geometric error still occurred after 40
position adjustments (allows the tray to be moved up to 2mm anterior or posterior from the

initial position), the implantation was considered failed, and the model was excluded.

6.4.4 Pre-processing the finite element models

The mesh of the combined tibia and tibial tray was imported into Abaqus 6.9-2 (Simulia,
RI, USA). An Abaqus/CAE Python script was used to pre-process the model, applying the

appropriate material properties, loads, and boundary conditions.

To model the heterogeneity of bone, the mesh was grouped into many homogeneous sections,
each having a different material property. The elements were grouped by modulus in 10 MPa
bands to define the material sections. This reduced the number of material sections in the
model to approximately 1,500. The tibial tray was modelled as a single homogenous section

and appropriate material properties were assigned (see the case studies).

The contact surfaces of the bone and tray were detected, defining the bone-tray interface. In
all the case studies, it was assumed that the tray was debonded from the tibia, simulating
initial post-operative conditions, modelled as hard contact with Coulomb friction. It was

also assumed that the tibial tray was porous-coated and a friction coefficient of 0.6 was used
(Chong et al., 2010).

The gait cycle loads from the SM were time normalised from 0% to 100% in 1% intervals.
Every other time point in the gait cycle was taken as a load step (i.e. 2% intervals resulting in

51 load steps) to reduce computational time of the analysis. All loads were assumed to act at
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Figure 6.28: The directions in which the forces and moments act on the tibia.

Table 6.3: Loads split over the four groups of nodes on the tibial tray. The fraction and direction of a load
is given for the positive direction. 7a, rp, ™m, and r are the moment arms from the centre to the anterior,
posterior, medial, and lateral node groups respectively.

Node set
Load Medial Lateral Anterior Posterior
Anterior-posterior force (Fap) +0.5y +0.5y
Medial-lateral force (Fur) +0.5x +0.5x
Axial force (Fax) +0.52 +0.52
Flexion-extension moment (Mpx) +0.5722 —0.5rp2
Varus-valgus (Mvv) —0.57mz +0.5712

Internal-external moment (MIE) +0.25rmy  —0.25my  —0.25r,x +0.257rpx

the centre of the knee relative to the tibia. The three forces, +Fap, +Fur, and +Fax, act in
the medial (+x), anterior (+y), and superior (+z) directions (figure 6.28). The three moments,
+ Mg, +Myy, and +Mg, act clockwise in the medial (y-z), frontal (x-z), and horizontal (x-y)
planes (figure 6.28).

The position of the four load points were initially manually landmarked medial, lateral, anterior,
and posterior relative to the centre of the tibial tray. The landmarks were transformed to the
tray position and surface nodes within a 2.5 mm radius are found to create four sets of nodes
(figure 6.28). The forces were equally split between the appropriate node sets (table 6.3). The
moments were converted to a force, taking the moment arm as the distance from the centre of
the tibial tray to the centre of a set of nodes, and then split equally between the appropriate
node sets (table 6.3).

6.4.5 Running the finite element analysis

An Abaqus job was created for successfully implanted tibiae. The jobs were submitted on a
Linux cluster, using four processors and 4GB of RAM per node. This allowed multiple jobs to

run simultaneously, with each one taking 5-7 hours to solve.
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6.4.6 Post-processing the finite element models

Post-processing of the FE results was automated using Abaqus Python. Results were extracted
for the region of interest, the bone-implant interface?. For all case studies, two metrics were
computed, the strain and micromotion. The equivalent strain (e, referred to as strain) was

computed from the principal strains (€1, €2, and €3) of the bone-implant interface tetrahedra,

(6.25)

¢ — \/(61 —€2)2 + (€2 —€3)2 + (€1 — €3)?
5 )

The strain of the bone-implant interface surface was assumed to be the strain in the tetrahedra
which contained the triangle as a face. The micromotion of the bone-implant interface was
computed as the magnitude of the relative displacement between every matched pair of nodes
at the bone-implant interface. This is actually the resultant micromotion, and in further
analysis of the results, it was not possible to identify lift-off or shear motions. For each triangle

of the bone-implant interface, the micromotion was averaged from the nodes.

In the analysis of the FE results, only the resection interface was considered. This was defined
as the bone of the resected surface directly in contact with the tibial tray, excluding the stem
of the tray. The performance of the tibial tray was assessed using the mechanical response
of the resection interface. Strain of the bone gives an indication of the risk of migration,
and micromotion affects the amount of bone ingrowth, important for long-term stability
(section 3.2.1). The peak strain and micromotion over the gait cycle therefore represent the

worst mechanical response during the load cycle.

For each step of the gait cycle, the strain and micromotion were computed, and from these
data the ‘composite peak’ was computed for both metrics. The composite peak strain (CPS)
is the peak strain of each element which occurs during the complete gait cycle (an example
of how the CPS is computed is shown in figure 6.29). The CPS can be computed for all
elements in the model. The composite peak micromotion (CPM) is the peak micromotion
of each element which occurs during the complete gait cycle. This can only be computed
for the nodes and/or elements of the contact interface. From computing the CPS and CPM,
it is also known when in the gait cycle the peak strain and peak micromotion occurred in
each element. From this information, two further metrics were output, the ‘CPS percent gait’,
defined as the time in the gait cycle (in terms of % gait) at which the peak strain occurs, and
the ‘CPM percent gait’, defined as the time in gait cycle (in terms of % gait) at which the

peak micromotion occurs.

When referring to an interface, the first named part is the side of interest. The bone-implant interface
refers to the elements of the bone in contact with the implant, and the implant-bone interface would be the
elements of the implant in contact with the bone.
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6.4.7 Discussion

An overview of the method is shown in figure 6.30, highlighting the complexity of the system.
Significant consideration has to be given to how to manage and store the data, run processes
in parallel, and catch processing errors. Much of the data management and processing was
controlled using Python. To reduce disk usage, it was also necessary to restrict the FE model
output to only the strain and displacements of bone-implant interface region (although other

outputs in the model could be requested), compressing the output database when necessary.

The size of the training sets for each SM were 32 tibiae and 20 healthy subjects for the
tibiae SM and the gait cycle SM respectively. These sets represent only a small proportion
of the general population, and sampling the PC weights to 30 increases the chances of
‘outlier’. However, these cases are of interest, because they represent the ‘worst-case’ scenarios.
Increasing the size of the training sets would improve the representation of the sampled

population.

By sampling the two SMs separately, assigning a tibia a gait loading cycle, and then predicting
the weight of a model by sampling an independent BMI distribution, the link between the
tibia and applied loads was broken. This neglects the two-way interaction which exists; bone
strength is affected by loading, and loading is affected by bone morphology. To capture this
link, and the further link to patient information (e.g. height, weight, BMI, age), a data set of

CT scans, motion capture data, and patient information would be required for a SM.

The positioning of the tibial tray follows a typical surgical procedure as much as possible.
The automation of the procedure will result in cases where the tibial tray is likely to be badly
positioned, whereas a surgeon would make the necessary adjustments. An image of the tibial
tray was taken for each model, and, by observation, it was judged that the tray was well
positioned for the majority of models: central on the resected surface, minimal overhang, and

no excessive I-E rotation.

To allow for cases where there was an overhang between the tibial tray and tibia, it was
necessary to define the region of the base of the tibial tray which could be remeshed. Two
contours defined this region, the exterior contour was around the boundary of the tibial tray,
and the interior contour, offset by up to 2-5 mm from the exterior contour. This means that
the implantation process is sensitive to the position of the tibial tray relative to the tibia. If
the tray overhangs the bone too much, such that the boundary of the tibia is inside the interior
contour, the implantation process would fail. If the initial implantation attempt failed, the
tibial tray was alternately moved anterior and posterior by an increasing increment. Although
this meant that some tibiae could not be implanted with a tibial tray, the requirement to
define such a region means that models where the tray might excessively overhang the tibia
were rejected. Clinically, excessive overhang could mean the tray impinges on ligaments

causing the patient pain.

The surface mesh based approach used to create the mesh of the implanted tibia has several

advantages over other approaches. One method is to convert the geometry to parametric
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surfaces, commonly used in computer aided design packages. This allows for reliable and
accurate Boolean operations, but converting a polygonal mesh to a parametric surface is
not always reliable for complex shapes and it is not always suited to automation. Another
method is to convert the geometry to an image space and perform image Boolean operations.
This conversion is reasonably robust when dealing with large connected geometries, but the
accuracy of the conversion is reliant on the resolution of the image. A high image resolution
can unnecessarily increase the number of elements. Problems can also occur if there are
small disconnected regions of geometry in the image. The advantage of using mesh based
intersection and union operations is that the operations are relatively easy to handle and
automate. The accuracy of the operations is also better because there is no need to convert

the geometry to another form.

In vivo data from telemeterised TKRs is considered the ‘gold standard’ measurement of the
internal forces and moments in the knee. However, given the observed inter-patient variability
of the telemetric data (Kutzner et al., 2010), the five available sets of data (Bergmann, 2008)
were not considered enough to create a SM. The next best available data of internal knee
loads for this study were from musculoskeletal models of 20 healthy subjects. These were
used to create the gait cycle SM from which the load cycles for the models were sampled.
However, errors and assumptions inherent the MS modelling process (see section 6.3.4) limit
the accuracy of the predicted kinematics. It is often found that the forces and moments are
overestimated in comparison to in vivo data (tables 2.2 and 2.3). One of the largest source
of errors is soft tissue artefacts (leading to movement of the markers relative to the bone),
affecting the accuracy to which the movements can be captured. Further to this, assumptions
made in the MS model such as modelling the knee with 1 DOF, use of a generic linear scaling
law, and not taking into account the surface interaction of the femur and tibia may also

contribute to the overestimation of the loads (Worsley, 2011).

When comparing the MS modelling and in vivo data, it was seen that the pattern of the
loading knee between the data were similar (figure 6.24). Therefore, to bring the magnitude of
the MS modelling loads more inline with the in vivo data, selected loads were scaled. Only the
A-P force, F-E moment, and V-V moment were scaled by a factor 0.5 as these were seen to be
the most overestimated. From initial testing of models with unscaled loads, peak micromotion
greater than 500 pm was seen at the interface in the majority of models, significantly larger
than the threshold at which fibrous tissue forms (150 pm). By scaling the loads, the majority
of models had a peak micromotion closer to the fibrous tissue threshold. Alternative methods
could have been used to scale the MS modelling loads. The ratio between the peak in vivo
data to the peak of the MS model data could have been used to determine the scaling factor.
The MS modelling loads could also be scaled such that they are within +1 or +2 standard

deviations of the in vivo loads.

There are also other limitations in the FE model. In this study, the gait cycle loads are
assumed to be evenly distributed and the tibiofemoral contact area is static. This is not the
case in vivo, where the tibiofemoral contact area moves as the knee flexes and extends (Iwaki

et al., 2002) and soft tissue constraints influence the load distribution.
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In processing the results of the FE analysis, only the resected interface of the model was
considered. The assumption is that for the tibial tray to migrate or subside, this interface
must fail, and because the bone supporting the base of the tibial tray is likely to be stronger
than that at the base of the stem, it will support higher loads. Another reason for ignoring
the stem is that abnormally high strain and micromotion was often seen at the base of the
stem. This is likely for two reasons (i) the bone is much weaker and has a lower modulus
at the base of the stem, and (ii) the perfect fit between the tray and tibia might cause an
increase in strain, particularly around sharp features. A surgeon might drill a slightly deeper

hole for the post, relieving distal load transfer, reducing the strain.

The method for creating and analysing a population of models is demonstrated using three
case studies. In chapter 7 the effect of under sizing the tibial tray on the primary fixation
is investigated. Chapter 8 shows how a population-based study can be used to investigate
a surgical factor, looking at the effect that changing the resection level of the tibia has on
the predicted success of a tibial tray. The final case study, in chapter 9, investigates if the
population-based model can be used to compare the ‘performance’ of three different designs

of tibial tray.
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Chapter 7

The effect of under sizing a

cementless tibial tray on primary
stability

7.1 Introduction

TKRs are commonly used to treat a diseased knee, replacing the articulating surfaces of
the femur, tibia, and patella with metal and polyethylene components (section 2.2). When
performing a TKR, a surgeon must decide where to place the components and which size of
components to use. The components of a TKR are available in a series of sizes, designed to
account for population variability. Generally, for a primary TKR, a surgeon selects a size
of tibial tray to maximise the coverage of the tibial plateau. It is possible that the surgeon
might have to down size the tibial tray to match the size of the femoral component. Most
manufacturers allow for at least one difference in size between the components, but, for
example, if the femoral component needs to be made two sizes smaller, then under sizing the
tibial tray could be beneficial to avoid post-operative problems reduced range of motion and
joint instability (Gonzalez et al., 2004).

By maximising coverage of the tibial plateau, the most even load distribution is obtained and
optimal fixation can be achieved (Incavo et al., 1994; Lemaire et al., 1997). In doing this, the
amount of supporting cortical bone is increased. Because it is stronger than cancellous bone,
it is more able to support the loads transferred from the tibial tray. This would reduce the
stress and strain in the cancellous bone supporting the tibial tray. It is has been proposed
that the migration of an implant is related to the strain distribution in the bone (Taylor et al.,
1997), and early migration of the tibial tray has been linked to later aseptic loosening of the
tibial tray (Grewal et al., 1992; Ryd et al., 1995).

Long-term reliable fixation of the tibial tray largely depends on the primary stability of the
fixation. High micromotion (> 150 pm) at the bone-tray interface have been found to promote

fibrous tissue formation, whereas low micromotion (< 50 pm) allowed bone in-growth (Jasty
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Table 7.1: Load distribution in two different sections of the proximal tibia; a section at the bone-implant
interface, and a section below the fixation pegs of the tray. Results for three models are shown: (3) ‘large’ tray
and high cortical modulus; (4) ‘large’ tray and reduced cortical modulus; and (5) ‘small’ tray and reduced
cortical modulus (source Cheal et al., 1985).

Model Tray size Cortical modulus (MPa) Axial load distribution in bone (%)

Cortical Cancellous
Section at bone-cement interface
3 Large 15,000 62.2 16.5
4 Large 7,000; 450 9.3 56.4
5 Small 7,000; 450 1.9 55.4
Section distal to implant pegs
3 Large 15,000 83.2 16.8
4 Large 7,000; 450 68.1 31.9
5 Small 7,000; 450 62.4 37.6

et al., 1997; Pilliar et al., 1986). Regions of fibrous tissue, and hence high micromotion, show
as radiolucent lines (RLLs) on X-rays. The incidence of RLLs gives the surgeon an indication
of the quality of fixation of the tibial tray. For some tray designs, the incidence of RLLs
has been at over 90% (Aebli et al., 2004; Fuiko et al., 2003) suggesting that the mechanical

conditions for fixation are not optimal.

It has been seen that the majority of tibial tray designs can offer between 80-90% coverage
of the tibial plateau (Incavo et al., 1994; Westrich et al., 1997), and it is suggested that the
optimum is around 85% (Incavo et al., 1994). There is very little literature investigating
what effect reduced coverage has on the outcome of a TKR. Cheal et al. (1985) investigated
the structural importance of the cortical bone using FE analysis observing the pattern of
load transfer in the proximal tibia for a fully osseointegrated tibial tray. Compressive axial
loads were directly transferred to the proximal cancellous bone, and the highest bone stresses
occurred at the distal end of the fixation posts. Below this region, at the interface between the
metaphysis and diaphysis, the loads were transferred to the cortical bone. Reducing the size
of the tray had no significant effect on the load distribution in either the cortical or cancellous

bone (table 7.1), but the peak stresses did increase in the cancellous bone.

It has been reported that the failure of a tibial tray is related to BMI and tibial tray size
(Berend et al., 2008). However, the stress in the tibia was simply estimated as the ratio of
patient weight to tibial tray area, hence a larger mass and smaller implant will increase stress.
This fits with the findings of Cheal et al. (1985), but because it was a clinical based study, no

information was obtained about the stress distribution.

As discussed in chapter 3, computational testing of TKRs often only uses a model of a single
patient or a limited number of patients. In this study, a population of models is used to assess
the performance of a cementless tibial tray (P.F.C.® Sigma®, DePuy® Inc, USA). To do this,
the strain and micromotion of the bone-tray interface are examined as they influence the

migration risk and quality of initial fixation respectively. This study will, first, demonstrate
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that a population-based study can be used to identify model factors that increase the risk of
failure of the tibial tray and explore whether the factors influencing strain and micromotion
are similar. Second, the effect of under sizing the tibial tray on primary stability will be

investigated.

7.2 Methods

A large population of tibia and associated gait cycles were generated using the method as
described in section 6.4.1. The population of tibiae were implanted with a ‘correct size’ tibial
tray using the method described in section 6.4.3. The same population of tibiae were also
implanted with an ‘under size’ tibial tray, where the size of tibial tray was one smaller than
used for the corresponding ‘correct size’ model. All models were processed as described in
sections 6.4.4 to 6.4.6. In the the post-processing of the FE results, the strain and micromotion
were computed for each point in the gait cycle. From these data, the ‘composite peak’ was
computed. The CPS is the peak strain of each each element which occurs during the complete
gait cycle, and the CPM is the peak micromotion of each element which occurs during the
complete gait cycle (section 6.4.6). The point in the gait cycle at which the CPS and CPM
occurred for each element was also recorded. These are termed the ‘CPS percent gait’ and
‘CPM percent gait’ respectively (section 6.4.6). Only the resection interface was considered in
the analysis of the results. This was defined as the bone of the resected surface directly in

contact with the tibial tray, excluding the stem of the tray.

The stability of the analysis was checked by computing the population median of the median
and 95th percentile of the CPS and CPM for an increasing number of models. Before analysis
of the FE results, ‘extreme outliers’, classified as models with a median CPS greater than
ultimate strain (11 000 microstrain), and median CPM greater than 500 microns were excluded.
It was considered that if the bone supporting the tibial tray had a strain exceeding ultimate
strain then it would fail, causing migration of the tibial tray. If the micromotion at the
bone-tray interface was over three times the fibrous tissue limit of 150 pm, then no bone
ingrowth would occur to ensure good fixation of the tibial tray. It was also necessary to exclude
models found to have a positive AX force during the gait cycle. Physically, a positive AX
force acts upwards, and would therefore pull the tibial tray out of the bone. Physiologically,
the internal forces experienced in the knee are from the femur acting on the tibia or vice versa,

and therefore the tibia would not experience an upwards force.

Metrics based on the CPS and CPM were computed: area of CPS above yield strain, area of
CPM < 50 pm, area of CPM > 50 pm and < 150 pm, and area of CPM > 150 pm. To assess
the risk of failure, only the ‘correct size’ models were considered!. The models were separated

into two groups, ‘higher risk’ and ‘lower risk’. A model was considered ‘higher risk’ if the

!This analysis is similar to that of another study carried out during this thesis investigating an osseointegrated
tray, which served as a pilot study. A manuscript of the osseointegrated tibial tray study has been submitted
for publication as F. Galloway, M. Kahnt, H. Ramm, et al. (2012). “A large scale finite element study of a
cementless osseointegrated tibial tray”. In: Journal of Biomechanics Submitted.
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CPM area with a micromotion > 150 pm was above 15%, and if the CPS area with a strain

>7300 microstrain was above 20%.

A Mann-Whitney U-test was used to test if model factors were significantly different between
the two groups (o = 5%). The factors considered were the median elastic modulus of the
interface, model weight, model BMI, tibia length, condylar width (as measured to size the
tibial tray), and the peak forces and moments in all directions (e.g. the peak anterior force
is the maximum of F,p and the peak posterior force is the minimum of F,p). Two further
factors were also compared between the two groups, the peak of the absolute ratio of My to
F,x, and the peak of the absolute ratio of Mg to Fax.

To investigate the effect of down sizing the tibial tray on primary stability the ‘correct size’

and ‘under size’ populations were compared. In this comparison, only models common to both
populations were included in the analysis. Models for which the tibial tray could not be down
sized (i.e. the ‘correct size’ model was implanted with the smallest possible size tray) were
excluded. A U-test (v = 5%) was used determine if there were significant differences between
CPS and CPM metrics of the two populations. Additionally, the percentage area of cortical
bone supporting the tibial tray, defined as the percentage area of the resection interface with
a modulus > 2500 MPa, and the percentage area of the tibial plateau covered by the tibial
tray (called area coverage) were also included in the metrics. The resection interface surface
was visualised for selected models to see if there were visual differences in the distribution of
the CPS, ‘CPS percent gait’, CPM, and ‘CPM percent gait’.

7.3 Results

The results of this study are presented in two parts. In the first part, the risk of failure
analysis is described, which only considers the ‘correct size’ population. The second part is
a comparison between the ‘correct size’ population and the ‘under size’ population. Before
presenting these results the number of models which were successfully implanted and analysed
using FE are noted. From the initial population of 500 models, it was necessary to exclude
models at each stage of the analysis. For the ‘correct size’ population, 451 (90.2%) tibiae were
implanted with a tibial tray, and FE analysis was completed for 449 (89.8%) models. For the
‘under size’ population, 481 (96.2%) tibiae were implanted with a tibial tray, and FE analysis
was completed for 478 (95.6%) models. The main reason the implantation process failed was

due to geometric limitations. FE analysis failed because the analysis did not converge.

Determining the number of required models was done by computing the stability of the CPS
and CPM for both the ‘correct size’ and ‘under size’ populations. For both populations it can
be see that the change in the population median of the median CPS and CPM reduces as
the number of models included increases (figure 7.1). At around 250 models and above, both
the population median of the median CPS and CPM remain relatively constant, indicating

stability. A similar trend was also seen for the population median of the 95th percentile CPS
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Figure 7.1: Stability of the CPS and CPM. The stability is computed as the cumulative median of the median
CPS, 95th percentile CPM, median CPM, and 95th percentile CPS.

and CPM. Therefore, further analysis of the results should be done with over 250 models to

reduce the likelihood of outlier data affecting the analysis.

The analysis of the models only considers the CPS of the resection interface. This only
shows the strain at the surface of the tibia and may not reflect the internal strain in the
tibia. To show the distribution of internal strain in the tibia, the CPS of the proximal tibia
was visualised for three example models (figure 7.2). The three selected models were chosen
based on the median CPS: figure 7.2(a) is the model with the population 25th percentile of
median CPS (‘25th percentile’ model), figure 7.2(b) is the model with the population median
of median CPS (‘median’ model), and figure 7.2(c) is the model with the 75th percentile of
median CPS (‘75th percentile’ model).
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(a) ‘Correct size’ model with 25th percentile of median interface CPS
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Figure 7.2: Visualisation of the CPS through sections of the proximal tibia. Three models were selected by
value of the median CPS of the resection interface: (a) has a value equal to the population 25th percentile, (b)
has a value equal to the population median, and (c) has a value equal to the population 75th percentile. For
each model, the geometry, a frontal section (anterior view), sagittal section (lateral view), and three transverse
sections (inferior view) are shown. The top transverse section is the resection interface, the middle is 2mm

below the interface, and the bottom is 5 mm below the interface.
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For each model in figure 7.2, the geometry, a frontal section (anterior view), sagittal section
(lateral view), and three transverse sections (inferior view) are shown. The transverse sections
show that the distribution of peak strains distal to the interface (middle and bottom transverse
sections) is similar to the interface (top transverse section), the regions where bone tends to
yield are around the anterior edge and on the medial side. However, noticeably for the ‘75th
percentile’ model, there is a visible increase in the amount of bone which has a strain above
yield (the light coloured regions) at more distal sections in the tibia. This is likely because
the more distal bone is weaker in comparison to the interface bone. The frontal and sagittal
sections show that the peak strains occur around the stem of the implant, particularly at the

bottom of the stem and medial to the stem.

To better show where the high magnitude CPS occurs, the strain colour field was changed such
that the dark regions (blue) represent strains less than yield strain (7300 microstrain), and the
light regions (light green) represent strains greater than ultimate strain (11000 microstrain).
The transverse sections of ‘75th percentile’ model are shown in figure 7.3, and this shows that
the areas of very high magnitude CPS are found in similar locations and are also similar in

size in all the transverse sections.

(a) Interface (b) 2 mm below interface (c) 5 mm below interface

N
7300 microstrain 11000

Figure 7.3: Transverse sections of the ‘75th percentile’ model from figure 7.2c. The key of the strain field has
been changed such that dark colours represent 7300 microstrain (yield strain) and below, and light colours
represent 11000 microstrain (ultimate strain) and above.

7.3.1 Risk of failure analysis

Only the ‘correct size’ models were used in the risk of failure analysis and it was necessary
to exclude models from this analysis. A further 65 models were excluded because they were
identified as ‘extreme outliers’, or they had a positive axial force during gait. The remaining
384 models were then divided into two groups; ‘lower risk” and ‘higher risk’. Models at risk of
failure were considered to be those for which the area of CPS >yield strain (7300 microstrain)

was above 20% or the area of CPM >150 microns was above 15%.

Using these thresholds, there were 106 models in the ‘higher risk’ group. The majority of
models in the ‘higher risk’ group had a median CPS >3000 microstrain and a median CPM
>50 microns (figure 7.4). These limits are below yield strain of bone and above the level of
micromotion at which fibrous tissue forms respectively. The median elastic modulus of the
‘higher risk’ group was 240 MPa compared to 460 MPa of the ‘lower risk’ group (table 7.2).
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Many studies assume that there is a correlation between the peak strain and peak micromotion
at the bone-tray interface. Only a weak correlation was found between the median CPS and
median CPM (figure 7.4). Generally, as the median CPS increases, the CPM increases, but
the spread of the data also increases. Also seen is that models with a low resection interface
modulus are generally classified as ‘higher risk’; the majority of models in this group had
a resection interface modulus of < 400 MPa (figure 7.4). A strong correlation between the
median CPS and median modulus was seen (figure 7.5a), as the strength of the interface
surface increases, the median CPS decreases. Between the modulus of the interface surface
and median CPM, the correlation is weaker (figure 7.5b). Models with a low interface modulus
tend to have a higher median CPM.

Median CPS vs Median CPM grouped by modulus
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Figure 7.4: The influence of the median modulus of the interface surface on the median CPS and median
CPS. The light markers are the ‘lower risk’ group, and the dark markers are the ‘higher risk’ group.

To test the significance in difference between models factors of the two groups, a U-test was
used. The factors which were not significantly different between the two groups were the peak
M, to Fax ratio, model weight, peak lateral force, peak anterior force, peak valgus moment,
and peak external moment (table 7.2). The factors which had the most significance were the

median modulus, model BMI, and peak extension moment.
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Figure 7.5: Correlation of the median CPS and median CPM with median modulus of the interface surface.
Light markers are the ‘lower risk’ group, and dark markers are the ‘higher risk’ group.

Table 7.2: Comparison of factors between the ‘lower risk’ and ‘higher risk’ groups. * denotes the metric was
significantly different between the two groups (p < 0.05).

‘Lower risk’, n = 268 ‘Higher risk’, n = 106

Metric P Min Median Max Min Median Max
Median modulus (MPa)* 0.0000 120.0 460.0 950.0 20.0 240.0 590.0
Model BMI (kg/m2)* 0.0001  17.0 27.9 477 17.7 30.7 435
Peak extension moment (Nm)*  0.0027  —30.7 —6.9 —-1.6 —26.5 —8.6 —2.0
Peak medial force (N)* 0.0037 33.4 120.5 269.0 49.4 138.9 282.3
Condylar width (mm)* 0.0040 60.2 79.6 94.7 65.6 76.8 93.0
Peak internal moment (Nm)* 0.0045 1.3 6.9 21.7 2.0 8.4 22.5
Tibia length (mm)* 0.0053 284.5 380.5 469.4 301.7 370.6 450.7
Peak axial force (N)* 0.0062 —4543.4 —2581.1 —1135.5 —4402.6 —2747.3 —1319.8
Peak varus moment (Nm)* 0.0078 10.8 25.6 52.9 12.1 28.1 47.4
Peak flexion moment (Nm)* 0.0111 5.9 18.1 35.7 7.2 20.8 51.4
Peak Mig:Fax ratio* 0.0144 0.004 0.014 3.800 0.006 0.016 1.333
Peak posterior force (N)* 0.0445 —775.0 —331.5 —108.6 —887.8 —374.3 —118.1
Peak Mvyv:Fax ratio 0.0546 0.007 0.012 10.800 0.007 0.013 1.167
Model weight (kg) 0.0581 36.4 76.1 149.2 42.8 79.2 123.4
Peak lateral force (IN) 0.1480 —125.1 —18.1 23.6 —125.7 —11.2 24.1
Peak anterior force (N) 0.2349 —3.5 13.2 329.6 —11.4 16.1 297.2
Peak valgus moment (Nm) 0.3110 —-9.8 -1.0 1.5 —-12.3 —-1.2 1.5
Peak external moment (Nm) 0.6639  —15.1 —4.7 0.4 —14.4 —4.4 —-0.4
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7.3.2 Population comparison analysis

In the comparison analysis, the models common to both the ‘correct size’ and ‘under size’
populations were selected leaving only 432 models. From these 67 models were excluded from
the analysis analysis because they were identified as ‘extreme outliers’, had a positive axial

force during gait, or the tray was not down sized. This left 365 models for the comparison

analysis.
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Figure 7.6: Boxplots of the metrics comparing correct size models with under size models. On each box, the
red line is the median, the lower and upper edges of the box are the 25th and 75th percentiles, the whiskers
mark the most extreme data not considered outliers, and the red crosses are the data considered outliers.
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To compare the two populations a U-test was used to test for significant differences between
the CPS and CPM metrics. The metrics compared were: median CPS, area CPS > yield
strain, median CPM, area CPM <50 microns, area CPM >50 microns and <150 microns,
area CPM >150 microns, median elastic modulus, and area cortical bone (figure 7.6). Only

the median CPS was significantly different between the two populations (table 7.3).

In general the inter-quartile range of all the metrics was similar for the populations (figure 7.6).
The ‘under size’ population experienced higher peak strains and peak micromotion; the
population median of the median CPS and median CPM were higher (table 7.3), and the
population maximum of the median CPS and median CPM were also higher (table 7.3). The
area of the interface surface experiencing different levels of micromotion were similar for the
two populations, as was the area of the interface surface greater than yield strain (figure 7.6
and table 7.3).

The area of supporting cortical bone was similar for the two populations (median (min-max)
of 2.8% (0-15.4%) and 2.9% (0-15.9%) for the ‘correct size’ and ‘under size’ populations
respectively), but the average coverage of the tibial plateau was 86% for the ‘correct size’
population and 77% for the ‘under size’ population. However, the area of supporting cortical
bone was also found to reduce the median CPS (figure 7.7a) and median CPM (figure 7.7b).

To see if the there was a difference in the distribution of the CPS and CPM between the
‘correct size’ and ‘under size’ populations, the resection interface was visualised (figure 7.8).
The rows of figure 7.8 are the models with a value of median CPS equal to the minimum
extreme, 25th percentile, median, 75th percentile, maximum extreme, and outlier (as defined
in figure 7.6) values of the ‘correct size’ population. The visualised models represent the
distribution of the median CPS in the ‘correct size’ population. To be able to compare the
changes between the populations, the same models from the ‘under size’ population were also

selected.

In the first column of figure 7.8, the interface surface CPS of the models from the ‘correct
size’ population are visualised. In the second column the interface surface CPS of the ‘under

size’ models are shown. It can be seen that there is little difference in the distribution of

Table 7.3: Comparison of metrics between the ‘correct size’ and ‘under size’ populations. A Wilcoxon-Mann-
Whitney test was used to test for significant differences between metrics. * denotes significant (p < 0.05).

‘Correct size’ ‘Under size’

Metric D Min Median Max Min Median Max

Median CPS (microstrain)* 0.0003 706.2 2682.6 9788.8 875.5 3045.4 10826.1
Area CPS > yield strain (%) 0.0566 0.0 3.0 72.4 0.0 4.4 77.9
Median elastic modulus (MPa) 0.0681 30.0 410.0 950.0 20.0 390.0 970.0
Area CPM < 50 pm (%) 0.2111 0.7 59.9 100.0 0.0 57.6 100.0
Median CPM (pm) 0.2249 5.2 37.7 283.9 5.7 39.6 363.5
Area CPM > 50 pm & < 150pum (%)  0.3409 0.0 31.7 85.8 0.0 32.2 89.7
Area CPM > 150 pm (%) 0.4837 0.0 0.0 89.0 0.0 0.0 96.4

Area cortical bone (%) 0.6738 0.0 2.8 15.4 0.0 2.9 15.9
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(a) Area cortical bone vs median CPS (b) Area cortical bone vs median CPM
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Figure 7.7: Correlation of the area of supporting cortical bone with (a) median CPS and (b) median CPM
for both populations.

CPS between the two populations; regions of high and low peak strains correspond. There
is also little difference between in the distribution of the CPM between the two populations
(columns 5 & 6). A correlation between the distribution of CPS and modulus of the interface
surface can be seen, higher strains occur in regions of lower modulus. For example, for the
“75th percentile’ model there is a region of high modulus on the medial side of the interface
surface (column 9 & 10). This corresponds to the regions of low CPS (columns 1 & 2). It
is also observed that for models with a low median CPS (e.g. ‘min extreme’ model), the
interface surface has a larger proportion of higher modulus bone (indicated by the area of

lighter colours), compared to models with a higher median CPS (e.g. ‘75th percentile’ model).

When computing the CPS and CPM of the interface surface, it is known which load step
in the FE analysis the peak strain and peak micromotion occurs. Each load step of the FE
analysis corresponds to a point in time of the gait cycle. The ‘CPS percent gait’ was defined
as the the time in the gait cycle (in terms of % gait) at which the peak strain of the interface
surface occurs. The ‘CPM percent gait’ was defined as the time in gait cycle (in terms of %

gait) at which the peak micromotion occurs.

It was found that the CPS and CPM of the interface surface occur at different times during
the gait cycle. The third column of figure 7.8 shows the ‘CPS percent gait’ and the seventh
column shows the ‘CPM percent gait’ In these columns, the dark colours represent the stance
phase of gait (from 0% to around 60%), and light colours represent the swing phase of gait
(approximately 60% onwards). It can be seen that the CPS tends to occur earlier in the gait
cycle (mainly darker colours on the interface surface) than the CPM (interface surface is
mostly light colours) for all the selected models. For the ‘correct size’ population, the median

‘CPS percent gait’ was 54% gait, whereas the median ‘CPM percent gait’ was 62% gait.
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7.4 Discussion

Demonstrated in this case study was the use of a large population of models incorporating
inter-patient variability of the tibia and loading to examine the effect of under sizing the
tibial tray on primary stability. To see if enough models were included in the population, the
stability of the median CPS and median CPM was used as a guide (figure 7.1). The metrics
stabilised at 250 models, and in the analysis of the populations, over 350 models were used,

reducing the effect noisy data might have on the analysis.

It is necessary to draw some comparison between the strain and micromotion estimated in this
study to other studies considering only the ‘correct size’ population. Strain in the resected
interface is not well reported in the literature. Perillo-Marcone et al. (2007) reported the
peak maximum and minimum principal strains over the gait cycle (equivalent to CPS) for a
single patient. The pattern of strain was similar to the current study, with higher strains seen
around the lateral and anterior edges. Between 59-70% of the resection interface was found
to exceed compressive yield strain, a much larger area than found in this study. A reason for
this is that the patient modelled by Perillo-Marcone et al. (2007) weighed 116 kg which would

increase the joint loads, resulting in higher strain in the tibia.

The magnitude of the micromotion is similar to that observed in other studies, the range of
the median CPM was 5 um to 284 pm for the ‘correct size’ population. Chong et al. (2010)
reported a peak of 133 um during gait, and Taylor et al. (2012) reported a peak of 180 pm
for the P.F.C.® Sigma® tray during gait. The median area of CPM < 50 pnm is also similar,
Chong et al. (2010) reported an area of 44%, and Taylor et al. (2012) reported an area of
40%, compared to 58% in this study. The variability of the tibia shape, size, and modulus

distribution, as well as variable loading cycles is likely to be the cause of the differences.

From the visualisation of the resection interface (figure 7.8), it is noticeable that the models
with higher strain (e.g. ‘75th percentile’ model) have poorer bone quality. This is also seen
comparing the ‘lower risk’ and ‘higher risk’ groups (figure 7.5a), the median modulus of
the resection interface was significantly larger in the ‘lower risk’ group (460 MPa) than the
‘higher risk’ group (240 MPa). Models in the ‘higher risk’ group had a larger median CPS
(4970 microstrain) compared to the ‘lower risk’ group (2260 microstrain). Between the ‘correct
size’ and ‘under size’ population the median CPS is significantly different and the median
modulus of the resection interface is also lower in the ‘under size’ group (table 7.3). Clinical
studies have found that the tibial tray is more likely to experience continuous migration,
particularly in the first few months post-operatively, in patients with a lower pre-operative
bone density (Li et al., 2000; Petersen et al., 1999). The migration of the tibial tray is thought
be related to the initial strain in the bone (Taylor et al., 1997) and has been linked to failure
of the tray in the long-term (Ryd et al., 1995). Therefore, models with a lower interface

modulus would be expected to have a higher risk of failure.

In this study, only a weak correlation was found between the median CPS and median CPM
(figure 7.4). A reason for the poor correlation between strain and micromotion is perhaps

related to the load cycle. The assumption made by many studies is that the peak strain



Discussion 117

and micromotion occur with the peak axial load. Visualisation of the point in the gait cycle
at which the CPS and CPM occurred showed that the CPS occurs earlier in the gait cycle
(figure 7.8). For the ‘correct size’ population, the median ‘CPS percent gait’ was 56% gait
corresponding to the second peak of axial force. The median ‘CPM percent gait’ was 62%
gait, which is approximately the beginning of swing phase where the axial load is low and
there are moderate moments. This supports Taylor et al. (2012) who also found that the peak
micromotion tended to occur in the swing phase of gait. Further, as part of an RSA study,
the inducible displacements of the tibial tray were computed by taking radiographs of the
knee unloaded and loaded with the patient standing putting weight on the knee (Petersen
et al., 1999). No correlation between pre-operative bone density and inducible displacements
of the tibial tray was found. To compare to the results of this study, the bone density can
be considered as the modulus of the interface surface, and the inducible displacements can
be considered as the CPM of the interface surface, and it was found that there was a weak

correlation between the median CPM and modulus of the interface surface (figure 7.5b).

This evidence suggests that the peak strain of the resection interface is dependent on the bone
quality and axial force during gait. This is supported by Rawlinson et al. (2005), who found
that tibiae with poor bone quality benefited from an augmented stem to increase stability and
reduce bone strain. The peak micromotion, however, seems to be independent of bone quality

and dependent on the moments during gait as it occurs later in the gait cycle (figure 7.8).

Before the analysis of the results, models considered ‘extreme outliers’ were excluded. The
reason for doing this was to avoid the results becoming skewed by models which experienced
extremely high strains and micromotions. It was considered that if a model had a median CPS
greater than ultimate strain, or if the median CPM was greater than 0.5 mm, the model could
be considered a failure. Investigation of the characteristics of these models found that the
majority had an interface modulus of < 100 MPa, and for some models the median interface
modulus was as low as 20 MPa. The low modulus of the interface surface would mean that
the tibial tray would be poorly supported, increasing the risk of failure of the tibial tray. In
these cases, the surgeon might consider an alternative fixation such as cemented or using
screws. The geometry of the ‘extreme outlier’ models was comparable to the ‘correct size’
population. The lengths of the ‘extreme outlier’ tibiae ranged from 307 mm to 419 mm and
the lengths of the ‘correct size’ population ranged from 284 mm to 469 mm. The condylar
widths (as measured to size the tibial tray) ranged from 71 mm to 82 mm for the ‘extreme

outlier’ tibiae, and from 60 mm to 95 mm for the ‘correct size’ population.

One of the assumptions made in this study, is that for the tibial tray to migrate or subside, the
bone directly supporting the tibial tray must fail first. Strain is used to determine the failure
of bone and as a factor to determine the risk of failure of a model. However, the resection
interface might not be the location the highest strain, higher strains could be generated in
softer bone more distally located in the tibia. Visualisation of the CPS through transverse
sections of the proximal tibia (figure 7.2) showed that the CPS of the interface was indicative
of the CPS more distally in the tibia. Although a larger area of bone experienced a strain

greater than yield in the more distal transverse sections, the regions of very high peak strains
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(greater than ultimate strain) were found to be in similar locations in all the transverse
sections (figure 7.3). Importantly, this holds true for the different models. For a comparative

analysis it is reasonable to use the peak strain of resection interface.

7.4.1 Risk of failure analysis

The first analysis performed only considered the ‘correct size’ population and was divided
into two groups representing ‘lower risk’ and ‘higher risk’ of failure. Figure 7.6 shows that
if the area CPS > yield strain is over 35%, or if the area CPM > 150 microns is above
35%, the model was an outlier (figure 7.6). It is argued here that if over one third of the
resection interface experiences micromotion greater than 150 pm the risk of failure is increased
as fibrous tissue would form. Clinically, these regions would show as RLLs (Fuiko et al., 2003)
and a surgeon is likely to be concerned if the incidence of RLLs is high and they progressed.
Similarly, if over one third of the resection interface experiences strain greater than 7300
microstrain (yield strain), then the risk of migration is higher (Taylor et al., 1997), which
could lead to aseptic loosening (Ryd et al., 1995). Models at ‘higher risk’ were identified using
more conservative thresholds—if area CPS >yield strain was above 20% or the area CPM

> 150 pm was above 15%.

Grouping the models using these criteria resulted in 278 models classified as ‘lower risk’ and
106 as ‘higher risk’. In the ‘higher risk’ group, almost all the models have a median CPS below
yield strain (figure 7.4), with a group median of 4426 microstrain. This level of strain suggests
that the strain threshold is perhaps too low. The majority ‘higher risk’ models have a median
CPM greater than the osseointegration limit of 50 pm (group median is 80 um). With this
level of micromotion, fibrous tissue is more likely to form at the interface increasing the risk

of failure. The threshold used for area CPM > 150 pm seems appropriate.

In comparison to long-term survivorship rates of cementless TKRs, reported at >95% (National
Joint Registry for England and Wales, 2011), the proportion of models in the ‘higher risk’
group is overestimated. Although a direct comparison is not possible, reported survivorship
rates also include failure of the other TKR components experiencing a varied loading cycle,
whereas in this study only the tibial tray was modelled with gait cycle loading. Also, the
strain in the bone, used as a criteria to determine the ‘higher risk’ models, is influenced by
the modulus of the tibia. The modulus distribution of the tibia is dependent on the chosen
modulus-density relationship and further inaccuracies are introduced when sampling the SSIM.
Establishing better threshold limits is a challenging problem. One way to do this could be to
perform a study using multiple tray designs with known detailed clinical histories. It would
then be possible to correlate the patient characteristics and clinical outcomes with model

characteristics and the predicted biomechanical response.

Comparing peak loads between the two groups, the ‘higher risk’ group was generally subjected
to larger peak loads (table 7.2), implying a greater contact force in the knee. Part of the
reason for this is that the model mass and BMI are larger in the ‘higher risk’ group, increasing

the magnitude of the loads. It was also found that the models in the ‘higher risk’ group were
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smaller than the ‘lower risk’ group, the tibiae were 9.9 mm shorter, and the condyles were
2.8 mm narrower. The strength of the interface was also weaker for the ‘higher risk’ group.
Larger loads, applied to a smaller, weaker tibia, would result in a higher strain in the bone,
leading to increased risk of failure. Berend et al. (2008) reported that the risk of failure of a
tibial tray was dependent on BMI and tray size, but did not consider factors such as such
as bone modulus in the stress calculation and simply estimated stress as the ratio of patient
weight to tray area. In this study, the size of the tibial tray did not influence the risk of failure
of a model. The distribution of tray sizes between the ‘lower risk’ and ‘higher risk’ groups

was similar.

There is evidence as to why a few of the factors might be significantly difference between
the ‘lower risk’ and ‘higher risk’ groups. Previous studies of multiple patients have suggested
that the variability of bone quality and loading affected the volume of bone at risk of damage
(Wong et al., 2010). Varus alignment of the tibial tray increases the likelihood of revision
(Fang et al., 2009; Ryd et al., 1995), and the peak varus moment is larger in the ‘higher risk’
group. FE studies have also shown that with varus alignment, a larger volume of bone is at
risk of failure (Perillo-Marcone et al., 2004; Wong et al., 2010). In this study, the ‘higher risk’

group had a larger peak varus moment and could be considered in varus alignment.

7.4.2 Population comparison analysis

The second analysis compared the ‘correct size’ and ‘under size’ populations. It was found
that only the median CPS was significantly different between the two populations (table 7.3).
It is expected that the ‘under size’ population has a lower modulus because the tray has a
smaller area and by positioning it centrally on the resected surface it is not supported by the
cortical shell. This would therefore lead to an increase in the strain. However, the area of
cortical bone was approximately 3% for both populations, and both populations had a similar
distribution of area of cortical bone (figure 7.7a). This is further evidence that it is the overall

quality of the resection interface which influences the strain.

Accurately identifying the metaphyseal shell of the proximal tibia is difficult because it is very
thin, the metaphyseal cortical shell is perhaps only 1 mm thick. It would be expected that
by down sizing the tray, the area of supporting cortical bone would be reduced. A tray one
size smaller is 2-4 mm smaller in M-L width. It was assumed that the cortical bone had a
modulus of > 2500 MPa, low in comparison to experimentally measured values (Guo, 2001).
However, error is introduced by sampling the density of the elements from the CT scan (as
was done for the SM training tibiae, section 6.2.5). An element might be positioned over
both cancellous and cortical bone, or the boundary of cortical bone and air, and because the
density is averaged at several positions in the element it is underestimated. Further error is
introduced from sampling the SM. The modulus is not accurately reconstructed or estimated

in comparison to the shape (section 6.3.3).

The micromotion was not significantly different between ‘correct size’ and ‘under size’ popula-

tions. To achieve a similar absolute magnitude of micromotion, the rotation of the smaller
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tray must be larger, resulting in larger lift-off of the tray, likely caused by a shortened moment
arm. The regions of high micromotion (> 50 pm) are found around the anterior, lateral, and
posterior regions of the interface (figure 7.8). This suggests that the periphery of the tray does
not contribute to stability of the tray and that the keel is providing most of the resistance

against micromotion.

Visualisation of the CPS and CPM (figure 7.8) shows that the distribution of the CPS and
CPM is similar for both populations. This supports the findings of Cheal et al. (1985) that
down sizing the tibial tray increased the peak stress in the proximal tibia bone, but did
not affect the stress distribution. Cheal et al. (1985) found that the largest change in load
distribution was in the cortical bone at the bone-cement interface, where it reduces from 9.3%
to 1.9% (table 7.1), and more of the load is transferred through the fixation posts. It is likely

that a similar effect occurs in this study although the post of the tray was ignored.

7.5 Conclusions

This case study has assessed the effect of under sizing the tibial tray has on the primary
stability, using SMs to generate a large population of models. The key findings of this case

study were:

e Peak strain was seen to be dependent on the bone quality and axial loading, occurring

during stance phase of gait.

e Peak micromotion was dependent on the knee moments and independent of bone quality

and occurred at the beginning of swing phase of gait.

e Models considered at higher risk of failure had a smaller tibia with lower bone quality,

higher weight, and larger peak loads.

e Under sizing the tibial tray caused a 1.1 percentage increase in strain, and a 1.05
percentage increase in the micromotion of the resection interface. This suggests that
under sizing the tibial tray has minimal influence on the predicted strain and micromotion
in the tibia.



Chapter 8

The effect of resection level on the

fixation of a cementless tibial tray

8.1 Introduction

The depth to which the tibia is resected is dependent on many factors including bone quality
and knee deformities. The effect of resection depth on the initial mechanical response of the
tibia is relatively unknown. Berend et al. (2010) has examined the effect of resection depth
on strain in the cortical shell of the proximal tibia. Using composite models of tibiae, tibial
trays were implanted at 5 mm and 15 mm below the joint line, which represent the extreme
resection levels used depending on bone quality and knee deformities observed clinically. With
a neutral axial load, the shear strains increased by up to 281% at the more distal resection
level in the peripheral regions directly below the tibial tray. Berend et al. (2010) suggests
that the reason for the increase in the peripheral strain is due to increased edge loading. By
making a more distal resection, the geometry of the resected surface changes meaning that a
smaller tibial tray is required. The position of the tray had to be more posterior, resulting in

an increase in posterior strain.

One of the factors which might affect the fixation of the tibial tray is the strength of bone
quality. In the previous case study (chapter 7), the modulus of the resection interface affected
the strain. A limitation of the work by Berend et al. (2010) is that by using a composite tibia,
the modulus of the cortical and cancellous bone are homogeneous throughout. Experimental
studies have found that the modulus of the cancellous bone changes with resection depth.
Goldstein et al. (1983) measured the strength of the subchondral bone at 4 resection levels up
to a depth of 40 mm below the subchondral plate. At the most distal resection, the strongest
bone was adjacent to the cortex. These concentrated regions of strength extended proximally
and inward beneath the tibial condyles. At the proximal resection, the medial side was found
to be stronger and stiffer than the lateral side. A central column of low modulus trabecular
bone was also found, extending from the the intramedullary space to the intercondylar space.

The pattern of variation in strength was similar in the sample population, although the
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(b) 4 mm resection

(¢) 7 mm resection (d) 15 mm resection

Figure 8.1: Slices from a CT scan of the left tibia at different resection levels. The cortical shell thickens at
deeper resections. Orientation of the scans is such that left is lateral, and top is anterior.

magnitude of strength could vary by up to two orders of magnitude.

Hvid et al. (1986) measured the penetration strength of the subchondral bone in five valgus
and seven varus human tibiae. Each tibia was resected as if for a TKR procedure and a 2 cm
thick section of bone was further resected. The penetration strength was then measured at 2
mm intervals up to a depth of 10 mm. At the most proximal resection level, the mean sample
values show that the bone is stronger on the medial side (13-35 MPa) and the central bone
was weaker (3MPa). The strength of cancellous bone on the side of the stronger condyle
reduced by 40-60 % relative to the central condylar value of the most proximal resection,
and was more pronounced within the first 6 mm. Below the weaker condyle the decrease in

strength is less noticeable, only 0-25 %.

Although the strength of cancellous bone decreases with resection depth, the cortical shell
thickens from the epiphysis (proximal resection, figure 8.1a) to the diaphysis (distal resection,
figure 8.1d). Because the cortical bone is much stronger than cancellous bone, the overall
modulus of the resection interface might increase, providing better support for the tibial tray.
However, the change in geometry of the proximal tibia, which narrows from the metaphysis
to the diaphysis means that it might be necessary to down size the tibial tray. This could
mean that the tray is not supported by the peripheral cortical bone, reducing the fixation

quality and primary stability.

In this study, it is hypothesised that the decrease in modulus with resection depth will increase

the peak strain. However, this may be confounded by two factors, the change in amount of
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supporting cortical bone and the change in size of the tray. Population-based FE analysis will
be used to investigate the effect of resection depth on the fixation of a cementless tibial tray
(P.F.C.® Sigma®, DePuy® Inc, USA). As per the previous case study, the investigation will

focus on the strain and micromotion of the bone-tray interface.

8.2 Methods

As per the previous case study, a large population of tibia and associated gait cycles was
generated (section 6.4.1). The population tibiae were implanted with a tibial tray at four
different resection levels (RLs), 2 mm, 4.5 mm, 7 mm, and 15 mm below the lowest point of
the condyles (section 6.4.3). Each of these population of tibiae are referred to as RL1, RL2,
RL3, and RL4 respectively, and RL1 is considered standard surgical procedure. All models
were pre-processed for FE as described in section 6.4.4, run as an FE job as described in
section 6.4.5, and post-processed as described in section 6.4.6. For further analysis, the CPS

and CPM of the resection interface were computed for each model.

The stability of the analysis was checked by computing the median and 95th percentile of the
CPS and CPM and then calculating the population median of each metric as an increasing
number of models were included. Before analysis, ‘extreme outliers’ were excluded from the
population. ‘Extreme outliers’ were classified as models with a median CPS greater than
ultimate strain, and median CPM greater than 500 pm. In chapter 7, it was found that models
classed as ‘extreme outliers’ had lower bone quality compared to the remaining population.
If the bone quality is very bad, then a surgeon might choose an alternative fixation method
(e.g. cemented or screws) to achieve better fixation of the tibial tray. The shape and size of
the ‘extreme outlier’ tibiae was similar to the rest of the population. It was also necessary to
exclude models from the analysis which had a positive axial force during the gait cycle as this

is non-physiological loading.

Metrics based on the CPS and CPM were computed; median CPS, area of CPS above yield
strain, median CPM, area of CPM < 50 pm, area of CPM > 50 pm and < 150 pm, and area
of CPM > 150 pm. The amount of cortical bone supporting the tibial tray was also computed
for all populations. This was taken as the percentage area of the resection interface with a
modulus >2500 MPa. The area of the tibial plateau covered by the tibial tray (called area
coverage) was also computed as the actual area and the percentage area. Further to this
analysis, the interface surface was visualised for selected models to see if there were visual
differences in the distribution of the CPS and CPM between the populations.

8.3 Results

In each population the number of models successfully implanted and then analysed were:
RL1, 451 (90.2%) implanted, 449 (89.8%) analysed; RL2, 434 (86.8%) implanted, 429 (85.8%)
analysed; RL3, 451 (90.2%) implanted, 448 (89.6%) analysed; RL4, 355 (71.0%) implanted,
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352 (70.4%) analysed. The main reason the implantation process failed was due to geometric
limitations, and FE analysis failed because the solution did not converge. The analysis of the
FE results only included 228 out of the initial 500 tibiae. This was the number of models
in common between all the populations, after the 58 outliers were excluded. The outliers

included those models where the axial load was positive during the gait cycle.

The stability of the analysis was computed for both the CPS and CPM. Stability of the results
was judged to be when the population median of the CPS and CPM were relatively constant.
It was seen that the population median of the CPS stabilised at about around 150 models
(figure 8.2a), and the population median of the median CPM stabilised around 200 models
(figure 8.2b).

(a) Stability of CPS
14000 T T T T T

12000 b

10000

Strain (microstrain)

—@—R1 population median CPS

R1 population 95th percentile

CPS

—@—R2 population median CPS

2000 1 1 1 1 1

50 100 150 200 250 R2 |ation 95th til
v population percentile
Number of models CPS
(b) Stability of CPM R3 population median CPS
0.25 T T T T T R3 population 95th percentile
CPS
R4 population median CPS
0.2 |
} R4 population 95th percentile
CPS
z
£ 015 |
3 —
o
§ 0.1 nr g
=
0.05| Lo ‘ N 5

50 100 150 200 250
Number of models

Figure 8.2: Stability of the CPS and CPM for all the populations. The stability is computed as the cumulative
median of the median CPS, 95th percentile CPS, median CPM, and 95th percentile CPM.
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Comparing the CPS metrics between the resection levels, the population median CPS increases
from 2430 microstrain at RL1 to 3920 microstrain at RL4 (figure 8.3 and table 8.1). This
is coupled with an increase in the area above yield strain from 2% at RL1 to 8% at RL4
(table 8.1). There is little difference in the micromotion between the resection levels, the
median CPM was 35num at RL1, 37.5 nm at RL2, 38 pm at RL3, and 40.8 pm at RL4. The
area of the resected surface with a CPM < 50 pm decreases by 10% from RL1 to RL4.
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Figure 8.3: Boxplots of the metrics for all populations. On each box, the red line is the median, the lower
and upper edges of the box are the 25th and 75th percentiles, the whiskers mark the most extreme data not
considered outliers, and the red crosses are the data considered outliers.
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Increasing the resection depth reduced the population median elastic modulus of the interface
from 430 MPa at RL1 to 310 MPa at RL4, with a reduction of 100 MPa between RL1 and
RL2. The change in area of cortical bone does not follow this pattern, from RL1 to RL2 there
is a decrease from 3.2% to 0.2%, a small increase of 0.1% at RL3, and a further increase of
0.2% to RL4. Noticeably, the inter-quartile range of area of cortical bone is large at RL1 and
significantly reduced at RL2, RL3, and RL4 (figure 8.3). The distribution plot of modulus
(figure 8.6) shows that there is an increase in modulus around the periphery of the interface
surface at RL4.

The number of size changes of tibial tray between resection levels is shown in figure 8.5. The
majority of models do not require a change of tibial tray with the change in resection depth
from RL1 to RL2 and RL2 to RL3. The tray was one size smaller for 9 models at RL2
compared to RL1, and 26 models for RL3 compared to RL2. At RL4, the majority of models
required a tray one size smaller from RL3, with 37 models requiring a tray two or more sizes

smaller.

Visualisation of the CPS through sections of the proximal tibia showed that the distribution
of strain was similar at each resection level (figure 8.4). The same model is shown for all
resections levels, and it has a median CPS equal to the RL1 population median. At all
resection levels, higher strains are found on the medial side of the tibia. A region of high peak
strain is found around the distal part of the stem of the implant, as seen in the sagittal and
frontal sections (anterior and lateral views respectively). The distal end of the tibial tray
stem would likely be located close to the intramedullary canal. This was modelled with very
low modulus elements, and under small loads these would generate high strain. The sharp
features at the distal end of the stem may also cause increased strain. There is also a region
of high peak strain running down the posterior side of the stem of the implant (lateral view).
The more distal transverse sections (middle and bottom images), show that the distribution of
the strain is similar to the interface (top image), higher strains are found on the medial side,
and the peak occurs around the anterior edge and posterior of the tibial tray. Importantly, at
all resection levels, in all the transverse sections, the area of the section experiencing different
levels of strain (e.g. greater than yield) appears to be approximately equal. This indicates

that the resection interface CPS is representative of the strain more distally in the tibia.

Figure 8.6 shows how the CPS, CPM, and modulus change at different resection levels. Each
row is a model with a value of the median interface CPS equal to minimum extreme, 25th
percentile, median, 75th percentile, maximum extreme, and outlier CPS of the RL1 population
(as defined in figure 8.3). For each selected model, the CPS, CPM, and modulus of the
resection interface was visualised at each resection level. These are shown in the columns of
figure 8.6.

The first four columns are plots of the resection interface CPS at the different resection levels:
the first column is RL1, the second column is RL2, the third column is RL3, and the fourth
column is RL4. At RL1, the distribution of the CPS is similar for all models, regions of high
strain are found around the anterior periphery of the interface, and for models with a higher

median CPS strain (e.g. ‘maximum extreme’ model) on the lateral side of the interface. As
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Figure 8.4: CPS visualised in sections of the proximal tibia. The model shown has the median value of
resection interface median CPS in the RL1 population. The views from left to right are: the geometry with the
view planes shown, frontal section (anterior view), sagittal section (lateral view), and three transverse sections
(inferior view). The top transverse section is the resection interface, the middle is 2 mm below the interface,
and the bottom is 5 mm below the interface.
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the resection depth is increased from RL1 to RL4, the CPS of the interface increases; the area
of bone with a strain greater than yield (shown by the lighter colours) becomes larger. The
distribution of the CPS also changes, regions of high strain spread to the medial side of the

interface.

The next four columns are the CPM of the resection interface at RL1 (fifth column) to
RL4 (eighth column). The distribution of the CPM is similar at all resection levels. With
the exception of the ‘outlier’ model (last row), peak micromotions are found towards the
periphery of the resection interface. As the resection level decreases, the area of the resection
interface experiencing higher micromotion (e.g. between 50 pm and 150 pm as indicated by
the green/light green colour) increases. This can be seen for the ‘median’ model (third row),

where at RL1 there are lower micromotions on the lateral side compared to R1.4.

In the last group of four columns, the modulus of the resection interface is visualised. Again,
the four resection levels of the selected models are shown from RL1 (ninth column) to RL4
(twelfth column). At RL1, the strongest bone of the interface surface is found on the medial
side of the interface. As a deeper resection is made, the strength of the medial bone reduces.
This change in modulus is seen for all models. The decrease in modulus on the medial side
from RL1 to RL4 corresponds to an increase in strain. As found in chapter 7, models with a

high median CPS have a low interface modulus.

It was also found that the peak strain and micromotion occurred at different times during the
gait cycle. For the RL1 population, the peak CPS occurred earlier, at approximately 54%
gait, and the peak CPM occurred later at 62% gait. This was inline with the findings from
chapter 7.



Table 8.1: Summary of metrics for each resection level.

RL1 RL2 RL3 RL4
Metric Min Median Max Min Median Max Min Median Max Min Median Max
Median CPS (microstrain) 706.2 2432.8 8456.2 880.3 2991.5 9487.8 833.0 3301.3 9836.2 1056.5 3917.8 10280.5
95th percentile CPS (microstrain)  1625.2 5975.2 32017.1 1978.7 7075.4 29614.7 2076.6 7593.5 26064.1 2348.4 8388.6 33529.7
Area above yield strain (%) 0.0 241 57.6 0.0 3.9 67.1 0.0 5.3 75.1 0.0 8.3 74.1
Median CPM (pm) 5.2 35.0 283.9 5.6 37.5 306.5 6.5 38.0 334.7 7.0 40.8 282.3
Area < 50um (%) 1.0 65.2 100.0 0.8 60.6 100.0 0.9 57.9 100.0 1.1 58.0 100.0
Area > 50 um and < 150 pm (%) 0.0 30.0 84.1 0.0 32.9 86.4 0.0 34.3 88.8 0.0 36.1 92.1
Area > 150 pm (%) 0.0 0.0 89.0 0.0 0.0 92.5 0.0 0.0 93.9 0.0 0.0 91.8
Median elastic modulus (MPa) 80.0 430.0 920.0 60.0 330.0 740.0 30.0 305.0 690.0 20.0 310.0 720.0
Area coverage (%) 76.5 86.3 93.0 74.6 84.1 91.5 71.4 82.9 90.6 70.4 81.3 91.2
Actual area coverage (mm2) 1929.7 2606.1 3723.9 1938.8 2628.0 3724.0 1943.8 2618.9 3722.8 15274 2262.5 3635.9
Area cortical bone (%) 0.0 3.2 15.4 0.0 0.2 3.5 0.0 0.3 3.7 0.0 0.5 4.9
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Figure 8.5: The number of tibial tray size changes each time the resection depth increased.
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8.4 Discussion

In this study the effect of resection level on the primary stability of the tibial tray was
examined using a large population of models. As per the previous case study (chapter 7), to
check the stability of the system, the population median CPS and CPM were computed with
an increasing number of models (figure 8.2). For all populations, both the median CPS and
CPM had stabilised when approximately 150 models were included. At RL1 the population
median CPS was lowest. This is expected because the resection interface modulus at RL1 is
100 MPa greater than other resection levels. This is consistent with the findings of chapter 7
where the lowest strain was found in models with the highest modulus. Between RL1 and
RL2, the difference in median CPS is 500 microstrain and there is also a decrease the interface
modulus. However, the difference in median CPS between RL3 and RL4 is 600 microstrain

but there is no change in the median modulus (table 8.1).

From RL3 to RL4, a large proportion of models required the tray to be at least one size smaller
(figure 8.5). Although this is due to the change in geometry of the resected surface, the tray
coverage of the resected surface also reduced from 86% at RL1 to 81% at RL4. In terms of
actual area, at RL1, RL2, and RL3, the median area of coverage was around 2600 mm?, and
at RL4 this reduces to 2260 mm?. With an increase in the resection depth there is a decrease
in the area of supporting cortical bone. From RL2 downwards, less than 1% of the supporting
bone is classified as cortical. It is hypothesised that the increase in strain when the resection
depth changes from RL1 to RL2 is due to the decrease in modulus of the resection interface.
However, the increase in strain when the resection depth changes from RL3 to RL4 is likely
because the majority of tibial trays were down sized by at least one size (figure 8.5). A smaller
size of tibial tray carrying the same loads over a smaller area would lead to an increase in the

strain.

The distribution of the CPS changes as the resection depth increases; there is an increase
in strain in the medial and lateral regions of the interface (figure 8.6). Berend et al. (2010)
also found that a more distal resection increased the strain in the proximal tibia, but direct
comparison was not possible because only cortical shear strains were reported. The percentage

area with a strain above yield strain also increases with resection depth.

There was an increase in the median CPM at more distal resection levels. The highest
micromotion was found at RL4, with a median CPM of 40.8 ym (min. 7.0 pm and max.
282.3 um), close to the fibrous tissue threshold. It is thought that this is also due to the
reduction in tray size. As the micromotion occurs when there are moderate moments and
low axial force, the shorter moment arms about the centre of the tray would likely cause a
greater rotation of a smaller tibial tray. A greater rotation of the tibial tray would mean that
a larger proportion of the interface would experience a larger resultant micromotion. At RL1,
the median of the interface area with CPM < 50 pm was 65.2%, which decreased to 58% at
RL4 (table 8.1). However, the median of the interface area with CPM > 50 pm and < 150 pm
increased from 30% at RL1 to 36.1% at RL4 (table 8.1).
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Figure 8.7: Plots of the resection interface CPS, ‘CPS percent gait’, CPM, ‘CPM percent gait’, and modulus
of an excluded model which experienced a positive axial force during the gait cycle.

The pattern of change in resection interface modulus with resection depth matches the in vivo
patterns found by Goldstein et al. (1983) and Hvid et al. (1986). The bone on the medial side
was strongest, particularly in more proximal locations (e.g. at RL1 in figure 8.6). There was a
greater reduction in strength on the medial side from RL1 to RL4 compared to the lateral
side, as Hvid et al. (1986) observed, and stronger bone is found around the periphery at more
distal resection levels. The similarity in the pattern of modulus shows that the population
of models sampled from the SM are representative of real tibiae. However, the magnitude
of the modulus differs. For example, at RL1, there are regions of modulus exceeding 2500
MPa. This is an order of magnitude higher than the modulus of the most proximal resection
reported by Goldstein et al. (1983). In this case study, RL1 could be more proximal as it was
taken just below the condyles and stronger cortical bone could be exposed. Inaccuracy of
the density-modulus relationship used, and inaccuracy in the modulus estimation from the

statistical model could also be a cause of the difference in modulus.

It was only briefly discussed in chapter 7 the reason why models with a positive axial force
were excluded from the analysis. The reason given was because a positive AX force acts
upwards to pull the tray out of the bone. Physiologically this would not occur. In models
with a positive axial force, most of the resection interface experienced a peak micromotion
> 150 pm, and the load step at which this occurred correlated with the point in the gait cycle
at which a positive axial force occurred. Shown in figure 8.7 is an excluded model from the
RL1 population which experienced a positive axial force. The median modulus of the resection
interface was 520 MPa, greater than the median of the population. The median CPS was 2450
microstrain, again around the median of the population, and the distribution of the CPS is
comparable to the ‘median’ model shown in figure 8.6. However, 74% of the resection interface

of the model experiences a peak micromotion > 150 pm and the CPM occurs at either 2%
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or 72% gait. Examining the gait cycle loads, at 2% gait, there is a positive axial load, and
hence the tibial tray is pulled upwards breaking the contact between the tray and bone. At
72% gait, the axial load is low (0.5 BW), and there is a varus moment acting. This means
that there is a large axial load on the medial side and a low axial load on the lateral side.
Hence, at the anteromedial of the tray experiences high micromotion early in the gait cycle
and the posterolateral of the tray experiences high micromotion during swing phase. This
skews the CPM of the interface (median of 174 um) and therefore it was considered necessary

to exclude these models from the analyses.

8.5 Conclusions

This case study has shown the effect of changing the resection level on the primary stability
of the tibial tray. By making a more distal resection, both the peak strain and micromotion
increased but the reason for these changes depend on the depth of resection. From RL1 to RL2
there was a significant decrease in modulus, coupled with a decrease in the area of supporting
cortical bone, causing an increase in strain. From RL3 to RL4 there was also an increase in
the strain, despite only a small change in modulus and area of supporting cortical bone. The
cause of this was thought to be due to the tray after being down sized to fit the tibial plateau
at RL4, meaning the loads were transferred across a smaller area. It was also hypothesised
that by down sizing the tray, the moments caused an increase in the peak micromotion. In
conclusion, the decrease in the bone quality of the interface, coupled with the increase in
strain and micromotion at more distal resection levels, suggests that a minimal resection

should be taken to obtain the good primary stability.






Chapter 9

Comparison of three tibial tray

designs

9.1 Introduction

There are a large number of TKR designs on the market today for a surgeon to choose from,
each advertised with features designed to improve the outcome for the patient. More often
than not, a surgeon will use an implant they have clinical experience with, to provide the best
possible treatment for the patient. Many of the TKR designs share common features. They
invariably consist of four components, a metal tibial tray, a polyethylene tibial insert, a metal
femoral component, and a patella resurfacing (see section 2.2.2). There are variations in the
size and shape of the components dependent on the type of TKR, fixed bearing or mobile
bearing, PCL retaining or PCL resecting.

Another aspect to consider for a TKR is the fixation technique, whether it is cemented or
cementless. There are mixed reports about the survivorship of cemented and cementless TKRs.
Some report less than 75% survivorship of cementless implants (e.g. Duffy et al., 1998), but
more recent studies report greater than 95% survivorship (e.g. Baker et al., 2007; Cossetto
et al., 2010). Discussed in section 2.2.2, was the use of cementless fixation, particularly
for younger more active patients, as it is thought to provide long-term fixation without the
problems associated with cement degradation. To achieve successful long-term fixation of a
cementless TKR, osseointegration is necessary. Micromotion at the bone-implant interface has
been seen to inhibit bone ingrowth, above 150 pm and fibrous tissue can form (Jasty et al.,
1997; Pilliar et al., 1986). There is evidence of a correlation between the initial stability and
migration of the tray of the tibial tray (Fukuoka et al., 2000). Measurements of the tray
‘micromovement’ were made during a TKR procedure using sensors attached to the tibial
cortex. Patients were then followed-up for two years, and using RSA the migration of the
tray was measured. Clinical studies have also found a link between early migration and late
aseptic loosing (Grewal et al., 1992; Ryd et al., 1995), and therefore long-term stability of the

tibial tray has been linked to initial fixation.
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In post-operative radiographic assessment, the presence of radiolucent lines (RLLs) at the
bone-tray interface can indicate poor fixation. A RLL represents a gap between the tray and
surrounding bone, perhaps due to imperfect cuts of the tibial plateau (Aebli et al., 2004), or
micromotion at the bone-tray interface (Fuiko et al., 2003). Reports of radiolucencies are more
commonly associated with cementless fixation and vary widely for different TKRs. Despite
reports of high incidences of RLLs for a particular tibial tray (Aebli et al., 2004; Fuiko et al.,
2003), most were non-progressive and did not affect fixation. However, as Taylor et al. (2012)

notes, the presence of RLLs is an indication that the conditions for fixation are not optimal.

To improve the primary stability of the tibial tray, pegs and keels can be added to provide
additional stability. Few computational studies have investigated the effect that such features
have on primary stability. Hashemi et al. (2000) investigated two designs of the Howmedica
porous coated anatomic tibial tray fixed, one fixed using three screws, and one fixed using
a single anterior screw and two posterior pegs. Micromotion and lift-off were reduced when
the three screw design was used. Au et al. (2005) looked at the effect the shape of the stem
and addition of pegs had on the bone stress for a cemented tibial tray. A tapered stem was
found to reduce the overall stress and compressive stress at the base. Pegs also helped to
reduce the stress around the central stem. Stability of the tibial tray can also be improved by
extending the length of the stem (Albrektsson et al., 1990; Lee et al., 1991; Stern et al., 1997;
Yoshii et al., 1992) and is often necessary in cases where bone quality is poor (Rawlinson
et al., 2005).

In experimental tests, Walker et al. (1981) tested twelve designs of a generic tibial tray made
of both metal and plastic implanted in foam. The relative deflections were measured under
three loading conditions: (i) an axial force with anterior-posterior force, (ii) an axial force
with internal-external rotation moment, and (iii) an axial force with a varus-valgus moment.
Based on the combined relative displacements of all three load cases, the metal trays with

either a single post or two pegs generated the least displacement.

Taylor et al. (2012) compared three commercially available tibial trays (P.F.C.® Sigma®,
LCS® Complete™ MBT, and LCS® Complete™ Duofix®, all DePuy® Inc, USA) in a single
patient model simulating five ADLs. The implant designs were ranked by the magnitude of
micromotion and the rank order was found to be similar to the reported incidence of RLLs
in survivorship studies. The Duofix tray generated the lowest micromotion and is reported
to have a low incidence of RLLs (6%, Cossetto et al., 2010). The PFC Sigma had higher
micromotion than the Duofix and literature reports the incidence of RLLs—for tibial trays
where the RLLs were cause for concern—to be 16% (Khaw et al., 2002) and 28% (Duffy et al.,
1998). The micromotion of the LCS was highest and a high incidence of RLLs is reported
(>90%, Aebli et al., 2004; Fuiko et al., 2003). A similar rank order is found in joint register
data, from the National Joint Registry for England and Wales (2011), the PFC Sigma has
a lower revision rate than the LCS, 1.08% and 1.76% respectively. The limitation of this
comparison is that the joint register data includes all cemented and cementless trays, and all

variations of the implant designs.
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(a) PFC Sigma (b) LCS (c) Duofix

Figure 9.1: The base features of the three tibial trays.

The three trays have different stem designs which likely affect the generated micromotion.
The stem of the LCS is conical, with four small flanges running down the post. The PFC
Sigma has three flanges (medial, lateral, and posterior) extending from mid-way down the
stem to the base of the tray. The Duofix stem has no additional keels or flanges, but has four
short peripheral pegs. Because peak micromotion has been found at the beginning of swing
phase (Taylor et al., 2012, chapter 7), when there is a low axial load and moderate moments,
the addition of the flanges and pegs are likely to provide better resistance to the moments,
enhancing the stability of the tray. Further to this, Taylor et al. (2012) suggests that as the
four pegs on the Duofix tray are likely to be located in stronger cancellous bone, they provide

better support and resistance to the moments.

The aim of this study is to evaluate three tibial tray designs, comparing mechanical response of
each design in a population. The tibial tray designs to be compared are the P.F.C.® Sigma®,
LCS® Complete™ MBT, and LCS® Complete™ Duofix® (all DePuy® Inc, USA), referred to
as PFC Sigma, LCS, and Duofix respectively. In contrast to Taylor et al. (2012), the three
tray designs are tested in a large population, accounting for variation of tibia shape and
modulus, and loading. By using a large population, it can be seen how sensitive each implant

design is to population variation.

9.2 Methods

The method for this case study follows that of chapters 7 and 8. A large population of tibiae
and associated gait cycles were generated from two separate SMs (see section 6.4.1). The
population of tibiae were each implanted with the three commercially available tibial trays
the PFC Sigma, LCS, and Duofix. The sizing, positioning, and implantation, of the trays
was done as described in section 6.4.3. For FE analysis, all the models were processed as
described in sections 6.4.4 and 6.4.5. In the post-processing of the FE results, as described in
section 6.4.6, the strain and micromotion were computed for each step in the load cycle and
from this the CPS and CPM were computed. The point in the gait cycle at which the CPS
and CPM occurred for each element was also recorded, termed the ‘CPS percent gait’ and

‘CPM percent gait’ respectively.
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As in the previous case studies, the stability of the analysis was checked by computing the
population median of the median and 95th percentile CPS with an increasing number of
models. The same was done using the median and 95th percentile CPM. Before analysis of
the FE results, the common models in each population were identified. ‘Extreme outliers’,
classified as models with a median CPS greater than ultimate strain (11 000 microstrain), and
median CPM greater than 500 microns, were then excluded from the analysis. These limits
were chosen for reasons given in chapter 7, where it was found that the ‘extreme outlier’
generally had a very low modulus compared to the population. This could mean that the
surgeon may choose an alternative fixation method (e.g. cemented) to ensure good primary
fixation of the tibial tray. Further to excluding models considered ‘extreme outliers’, it was
also necessary to exclude models found to have a positive AX force at any point in the load

cycle as this is a non-physiological load.

To compare the populations, only the resection interface between the bone and tibial tray,
excluding the stem of the tibial tray was considered. For this region of bone, metrics based
on the CPS and CPM were computed: median CPS, area of CPS above yield strain, area
of CPM < 50um, area of CPM > 50 pm and < 150 pm, and area of CPM > 150 nm. The
median elastic modulus, area of coverage, actual area coverage, and area of cortical bone of

the interface surface were also computed.

The resection interface CPS, ‘CPS percent gait’, CPM, and ‘CPM percent gait’ were also
visualised to see the variation in the distribution of the peak strain and micromotion. From
each population, only the models the population minimum extreme, 25th percentile, median,

75th percentile, maximum extreme, and outlier value of median CPS were visualised.

9.3 Results

For each tray design the number of models successfully implanted and then analysed were:
PFC Sigma, 451 (90.2%) implanted, 449 (89.8%) analysed; LCS, 421 (84.2%) implanted and
analysed; Duofix 418 (83.6%) implanted, 417 (83.4%) analysed. Errors due to geometric arte-
facts were the main cause of models failing during the implantation process, and convergence
problems were the main cause of models failing during FE analysis. Of the initial 500 tibiae
only 300 models were included in the analysis, the number of models in common between
all the populations, excluding 67 outliers. The outliers included 48 models for which the
AX force was positive at a point the gait cycle. As found in the previous case studies, the

extreme outliers’ did not differ from the population in terms of shape or size of the tibia, but

did generally have a lower bone strength.

In determining the stability of the CPS and CPM, all the models were included. For all
populations, the population median CPS stabilised when approximately 250 models were
included (figure 9.2). Similarly, the population median CPM stabilised at approximately 250

models (figure 9.2). Therefore, a sufficient number of models were included in the analysis.
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Figure 9.2: Stability of the CPS and CPM for all the populations. The stability is computed as the cumulative
median of the median CPS, 95th percentile CPM, median CPM, and 95th percentile CPS.

Of the three tray designs, the PFC Sigma had the lowest peak strains (population median
CPS 2560 microstrain) and the smallest area greater than yield strain (population median
2.6%). The LCS tray had the highest peak strains (population median CPS 3920 microstrain)
and the largest area greater than yield strain (population median 10.7%) (table 9.1). The
inter-quartile range of the area greater than yield strain was also wider for the LCS tray
(figure 9.3).

The Duofix tray generated the least micromotion, having the lowest population median CPM
(16.8 pm) and largest area of CPM < 50 um (75%). Again, the LCS generated the largest
micromotion, with a population median CPM of 60 pm and area of CPM < 50 ym of 46%
(table 9.1). It also had the largest CPM area > 150pm of 17%. It is notable that the
inter-quartile range of the micromotion metrics for Duofix is often smaller than the PFC
Sigma and LCS (figure 9.3). For all three trays, the elastic modulus, coverage, and area of

cortical bone was comparable and all had a similar inter-quartile range (figure 9.3).
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Figure 9.3: Boxplots of the metrics for all populations. On each box, the red line is the median, the lower
and upper edges of the box are the 25th and 75th percentiles, the whiskers mark the most extreme data not
considered outliers, and the red crosses are the data considered outliers.

The CPS in the proximal tibia for an example model from each population is shown in
figure 9.4. The models have a the median CPS value for the respective populations. The
top transverse section shows the CPS of the interface surface. The second section is 15 mm
below the interface and higher strains around the post can be seen, likely because the bone is
softer. In the shaft of the tibia, the magnitude of the strain reduces as the load is transferred

through stronger cortical bone. The same pattern is seen for all the models.

Visualisation of the CPS, ‘CPS percent gait’, CPM, and ‘CPM percent gait’ of the interface
surface for each of the populations is shown in figure 9.5. The top row shows the CPM plots
from Taylor et al. (2012) for the three tray designs. The remaining rows of the show the
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Figure 9.4: Peak strain in transverse sections of the proximal tibia for each population. The shown models
have a median CPS value equal to the respective population median.

results from this study. Each column are the models from the specified population (PFC
Sigma, LCS, or Duofix), and these are grouped by metric (CPS, ‘CPS percent gait’, CPM, and
‘CPM percent gait’). From top to bottom, the rows are the model which had the population
minimum extreme, 25th percentile, median, 75th percentile, and maximum extreme values of
median CPS. This means that, for each of the metrics the same model is shown for each of the
populations. For example, in the first, fourth, seventh, and tenth columns of the second row,
the resection interface CPS, ‘CPS percent gait’, CPM, and ‘CPM percent gait’ are visualised
for the same model from the PFC Sigma population. The resection interface of this model

has a median CPS equal to the population 25th percentile of the PFC Sigma population.

From figure 9.5, it is seen that the CPS distribution of the interface surface (columns 1-3)
is similar for all three trays. Higher strains are found on the lateral side in the region of
weaker bone and around the stem of the tray. For the Duofix tray (column 3), concentrated
strains occur around the pegs, particularly on the anterior side. This more apparent in the
‘minimum extreme’, ‘25th percentile’; and ‘median’ models (rows 1-3). The CPM plots of
the interface surface (columns 7-9) show that the peak micromotion generally occurs on the
anterior edge of the tray, particularly in models experiencing lower strain (rows 1-3). For
the PFC Sigma and LCS models experiencing higher strain (columns 7 & 8, rows 4 & 5),
the micromotion increases in lateral region, whereas for Duofix (column 9, rows 4 & 5), the

micromotion increases in the anterior region.

Also shown in figure 9.5 is the ‘CPS percent gait’ and ‘CPM percent gait’ of the resection
interface for each population (columns 4-6 and columns 10-12 respectively). The peak strain
tends to occur earlier in the gait cycle than the peak micromotion. The median load step for
CPS is 52% gait, 54% gait, and 52% gait for PFC Sigma, LCS, and Duofix respectively, all
towards the end of stance phase. The median load step for CPM is 60% gait, 58% gait, and
56% gait for the PFC Sigma, LCS, and Duofix respectively, all approximately the beginning

of swing phase.



Table 9.1: Summary of metrics for each tray design.

PFC Sigma LCS Duofix
Metric Min Median Max Min Median Max Min Median Max
Median CPS (microstrain) 706.2 2599.8 9042.6 1132.6 3918.9 10895.9 945.2 3003.5 8555.9
95th percentile CPS (microstrain) 1625.2 6304.9 32017.1 2318.2 8841.0 38196.2 2059.8 7583.1 31760.1
Area above yield strain (%) 0.0 2.6 57.3 0.0 10.7 81.2 0.0 5.4 57.0
Median CPM (microns) 5.2 37.7 283.9 10.7 59.8 364.5 3.6 16.8 152.6
Area <50 microns (%) 1.0 60.4 100.0 0.0 45.7 97.1 1.4 74.9 100.0
Area > 50 microns and <150 microns (%) 0.0 31.8 85.8 1.1 33.9 98.3 0.0 20.1 79.3
Area >150 microns (%) 0.0 0.0 89.0 0.0 17.1 98.9 0.0 1.7 53.2
Median elastic modulus (MPa) 90.0 415.0 950.0 120.0 470.0 1000.0 120.0 480.0 1040.0
Mean coverage (%) 76.5 86.6 93.0 78.1 87.8 93.8 78.1 87.8 93.9
Area cortical bone (%) 0.0 3.3 13.2 0.0 3.6 15.1 0.0 3.7 15.4
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9.4 Discussion

This case study demonstrates the use of a population-based analysis of three different tibial
tray designs in order to compare the rank order of the designs. Again, the use of SMs allowed
the generation of a population of 500 models that were automatically implanted with three
different tibial tray designs. From the initial population of each tray design, models were
excluded if the implantation process failed, FE analysis failed, the model was considered an
‘extreme outlier’, or the model experienced a positive AX force. This left only 300 models
in common between the populations which were used in the analysis. The stability analysis
using all possible models, showed that the population median CPS and CPM for all tray
designs stabilised when 250 models were used. It was considered, that despite excluding
a large number of models from the analysis, 300 models were sufficient and the remaining

‘outliers” would not skew the population metrics.

Taylor et al. (2012) investigated the primary stability of the same three tray designs as used
in this study, reporting the CPM and associated metrics. The rank order of the implants
in terms of micromotion is the same between this study and Taylor et al. (2012), Duofix
generated the least micromotion and LCS the most. Although only a model of a single patient
was used by Taylor et al. (2012), the mean CPM is comparable to the population mean for
all the tray designs (table 9.2). Taylor et al. (2012) reported a smaller area of the resection
interface with a CPM < 50 pm and a smaller area of the resection interface with a CPM
> 150 pm compared to the populations. However, the maximum peak micromotion found in
the population is 2-3 times larger than Taylor et al. (2012) reports for all implant designs.
Because of the variation in the population, it is likely that models with high loads or very low

bone modulus generate the very large peak micromotion.

These differences could also be related to the FE models. Taylor et al. (2012) assumes the

PFC Sigma is manufactured from a titanium alloy with a modulus of 110 GPa. In this study,

Table 9.2: Comparison of CPM metrics for the three implant designs between this study and Taylor et al.
(2012). For the population, the meantstandard deviation of the population is given for each metric.

Implant Metric Population Taylor et al.
PFC Sigma Mean (microns) 56 + 38 65
Maximum (microns) 612 180
Area <50 microns (%) 58 + 27 40
Area >150 microns (%) T+14 2
LCS Mean (microns) 95 £ 57 86
Maximum (microns) 797 225
Area <50 microns (%) 42+ 23 39
Area >150 microns (%) 20 £+ 20 16
Duofix Mean (microns) 46 + 27 61
Maximum (microns) 639 198
Area <50 microns (%) 72416 46

Area >150 microns (%) 7+9 5
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it is assumed the PFC Sigma is cobalt-chrome with a modulus of 210 GPa. The stiffer tray
is less likely to flex under load resulting in smaller micromotions as seen in the population.
For the Duofix tray, Taylor et al. (2012) assumed a coefficient of friction of 0.8 for the porous
coated tray and pegs, and 0.4 for the stem, whereas a coefficient of 0.6 was assumed for the
entire interface in this study affecting the strength of the contact interface and resultant
micromotion. The gait cycle loading used by Taylor et al. (2012) was taken from telemetric
implant data (Kutzner et al., 2010). For the population study, the loading is sampled from a
SM based on data from musculoskeletal models. The predicted loads from musculoskeletal
models are known to be overestimated in comparison to telemetric data (Worsley et al., 2011)
and in this study the A-P force and V-V moment were scaled by 0.5 to bring them inline with

telemetric data (see section 6.4.7).

One advantage of a population-based study is that the distribution of the peak strain and
micromotion can be seen. Considering only micromotion, an ideal implant would have a low
median CPM and the spread of the median CPM would be narrow. The low median CPM is
advantageous in terms of clinical performance indicating that the chance of bone in-growth is
higher. A low spread of median CPM suggests that the device has a more predictable response
independent of patient variability. For the three implants, the Duofix tray had the lowest
population median CPM and the narrowest inter-quartile range, whereas the LCS tray had the
highest population median CPM and the widest inter-quartile range (figure 9.3). This suggests
that the Duofix tray is less sensitive to population variability perhaps because of features of
the tray design. For strain, the PFC Sigma tray had the lowest population median CPS with
the smallest inter-quartile range. Again, the LCS had the highest population median CPS
with the largest inter-quartile range (figure 9.3). The LCS tray was more sensitive to the

population variability.

The distribution of the CPM showed that the largest micromotion was found on the anterior
and lateral side of interface for all three trays. This is different to Taylor et al. (2012), where
all three trays generated higher micromotion on the lateral side (figure 9.5). This perhaps is a
result of differences in the loading, where in this study the overestimation of loads by the MS
modelling, high F-E moments are generating the anterior micromotion. This is particularly
apparent for the Duofix tray, where the micromotion is almost completely in the anterior
region between the two pegs (figure 9.5) and is likely anterior lift-off generated by the F-E
moment. Chong et al. (2008) show a similar distribution of peak micromotion at toe-off for a
tray with a central stem and anterior keel. The peak micromotion was found in the anterior
region of the bone-tray interface. This design was compared to one similar to the PFC Sigma,
and the anterior keels helps to reduce the peak micromotion, a similar effect the pegs have on
the Duofix tray.

The clinical performance of all three tibial tray designs is widely reported in literature: PFC
Sigma (Baker et al., 2007; Duffy et al., 1998), LCS (Aebli et al., 2004; Fuiko et al., 2003), and
Duofix (Cossetto et al., 2010; Holloway et al., 2010). These studies often report the incidence
of radiolucencies at the bone-tray interface, which is an indication of the micromotion and

poor osseointegration. The lowest incidence of RLLs was reported for the Duofix tray, between
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4 and 6% (Cossetto et al., 2010; Holloway et al., 2010). The majority of the RLLs were on the
medial side and did not extend around the adjacent pegs (Cossetto et al., 2010), whereas in
this study the highest micromotion was predicted in the anterior region of the interface and
there is evidence of high micromotion around the anterior pegs (figure 9.5). The difference
in the pattern is likely due to the loading applied to the FE models, which is based on MS
model data. It has been seen that the predicted moments from MS models are overestimated
in comparison to in vivo telemetric implant data (figure 6.24). This would affect the load
distribution in the models, and the F-E moment is likely generating the anterior micromotion.
For the PFC Sigma, the literature found reporting radiolucencies refer to the previous design
of tibial tray, the P.F.C.® (DePuy Inc, USA). The reported incidence of RLLs were 16%
(Khaw et al., 2002) and 28% (Duffy et al., 1998).

In contrast, for the LCS, two studies reported over a 90% incidence of RLL (Aebli et al.,
2004; Fuiko et al., 2003). Both studies report the highest incidence of RLLs at the tibial
plateau around the periphery of the implant, and Fuiko et al. (2003) also reports that they
are wedge shaped, increasing in width from the centre to the periphery. The micromotion
pattern generated by the LCS is similar to this. Generally the lowest micromotion is found

around the stem and the highest at the periphery, particularly on the lateral side (figure 9.5).

The design features of each tray also affect the pattern of strain and micromotion. Much of
the literature focuses on the parameters of the central stem, investigating the effect of stem
length on stability (Albrektsson et al., 1990; Lee et al., 1991; Stern et al., 1997; Yoshii et al.,
1992), or the shape of the stem (Au et al., 2005). In this study, all the tray designs have
a stem of a similar length and should provide a similar amount of stability. It is suggested
that the four peripheral pegs used for the Duofix help to resist the V-V moment (Taylor
et al., 2012). Walker et al. (1981) also saw this effect and suggesting that the tray is stiffened
by the pegs. Evidence for this can be observed from the composite peak plots (figure 9.5).
As previously discussed, the largest micromotion are generated in the anterior region, not
laterally as for the PFC Sigma and LCS, hence there is better resistance to the V-V moment.
Increased strain is often seen around the pegs which often occurs later in the gait cycle (e.g.
25th percentile model) which would be expected if the pegs are supporting a greater load.
Stability of the implant could also be increased because the because the pegs are likely to
be located in better quality peripheral cancellous bone, which provides better support for
load transfer. Clinical evidence also suggests the pegs help to provide better stability, the
survivorship rate for the Duofix is reported at >95% (Cossetto et al., 2010; Holloway et al.,
2010). This is further shown by a case series using a cemented pegged tibial tray with no
central stem in which only 1% of patients required revision due to aseptic loosening (Miller
et al., 2001).

The LCS tray only has flanges running down the stem to provide extra stability, and it is likely
that these provide most resistance against the I-E moment and shear forces. The pattern of
micromotion from the CPM plot suggests that there is anterolateral lift-off. As the LCS relies
on the stem for stability, resistance to lift-off, particularly in poor quality bone under V-V
load is a function of the length of the stem (Lee et al., 1991; Walker et al., 1981; Yoshii et al.,
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1992). The reduction of micromotion of the PFC Sigma tray suggests that the flanges from
the stem provide extra stability. A disadvantage of the CPM plots is that only the resultant
micromotion is computed, and therefore the difference between lift-off and rotation can not
be identified.

The contribution made by this study is that a population of models is used, introducing
intra-patient variability. This is important in the evaluation of an implant design, as the
mechanical response of the tibia can be assessed considering the variation of the tibia geometry,
density, and knee loads. The sensitivity of the implant design to changes in the population
can also be assessed, whereas this is not possible when only using a model of a single patient.
However, there are still a number of limitations to be considered, similar to those of Taylor
et al. (2012). The same load profile was applied to all three implants, but the kinetics of the
knee are a function of the kinematics, which would be a function of the geometry of the TKR.
The differences in geometry between TKR designs means that, for example, the loads in the
knee with a Duofix TKR would be different to the PFC Sigma TKR. Applying the same load
to all three trays allows a direct comparison of the tray design in isolation of the loading. In
this study, all three trays were assumed to be manufactured from the same material and the
coefficient of friction of the bone-tray interface was the same. Again, this allows a comparison
of the tray designs in isolation of the variables. Actually, the PFC Sigma and LCS trays are
manufactured with a porous coating, whereas the Duofix has a HA porous coating. Clinically,
the Duofix HA coating would affect the long-term fixation, and, as Taylor et al. (2012) notes,

could be the reason why a reduced incidence of RLLs are seen.

9.5 Conclusions

In this final case study a robust evaluation of three tibial trays was performed. The use of
a population-based study meant that that sensitivity of each implant design to population

variability could be seen. From the comparison analysis, the key conclusions are:

e The LCS tray was most sensitive to the population variation, for both strain and
micromotion. The population median CPS and median CPM were both larger than for
the PFC Sigma and Duofix trays.

e The Duofix tray generated the least micromotion, with the lowest population median
CPM and smallest inter-quartile range, indicating it was least sensitive to population
variation. It is thought that this is perhaps due to the four peripheral pegs supporting

the tray, which help to resist micromotion.

e In terms of strain, the PFC Sigma was least sensitive to the population variation. It

had the smallest population median CPS and narrowest inter-quartile range of the CPS.

e The rank order of the implants by micromotion agreed with the reported incidence of

radiolucent lines.






Chapter 10

Discussion, conclusions, and future

work

10.1 Significant findings

The aim of this thesis was to create, develop, and implement a framework to assess the
performance of a cementless tibial tray in a large population. The use of population-based
analysis was a unique approach compared to current computational studies. SMs were
used to generate a population of models that incorporated variability of both the tibia and
complete loading cycle. An automated workflow was used to process the population of models,
involving implanting the tibial tray in the tibia and running FE analysis. Three case studies
demonstrated the use of a population-based analysis to assess the fixation of the tibial tray,
looking at the effect of surgical variability and implant design. The significant findings of the

case studies are summarised here.

The first case study (chapter 7) examined the effect of under sizing the tibial tray. It was
observed that there was a weak correlation between peak strain and micromotion. Models
which experienced high strain had low bone quality, but not necessarily low micromotion. It
was also found that the peak strain occurred during the stance phase of gait when axial loads
were high, whereas peak micromotion occurred at the beginning of swing phase of gait when
low axial loads and moderate moments acted. This is contrary to the assumption that many
previous studies have made that peak strain and micromotion occur with peak axial load.
Models considered to be at higher risk of failure had lower bone quality, higher weight, and
larger peak loads. Further to this, the results suggested that under sizing the tibial tray did

not necessarily increase the risk of failure of the tibial tray.

In the second case study (chapter 8), the effect of changing the resection level on the primary
stability of the tibial tray was examined. By making a more distal resection, both the peak
strain and micromotion increased, but the reason for these changes depended on the depth of
resection. There was a large change in the modulus with a small change in resection depth,

which resulted in an increase in strain. At the most distal resection, it was hypothesised that
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the down sizing of the tibial tray caused the increase in peak strain and micromotion. The

results suggest that a minimal resection should be taken to obtain optimal primary stability.

In the third case study (chapter 9), three designs of cementless tibial trays were compared. It
was seen that the LCS tray had a worse micromotion response than either the PFC Sigma
or Duofix trays, suggesting it is more sensitive to population variability. The peripheral
pegs on the Duofix tray improved the primary stability, reducing the variability of the
micromotion response. The rank order of the three tray designs in terms of peak micromotion
was comparable with the incidence of RLLs seen clinically. This finding shows that there is

potential for using population-based analysis to be used to predict clinical outcomes.

10.2 Discussion

Computational modelling has become a fundamental tool in orthopaedic biomechanics and is
widely used in the testing of new implant designs. The advantage of computational evaluation
is that it allows the same model to be tested under multiple conditions quickly and easily, not
always possible with experiments. For example, in the context of implant design, it is possible
to test and compare different design configurations to identify those which perform best. A
significant limitation of the majority of published computational studies is that only a single
patient model or small number of models are used and, in many cases, idealised conditions
are assumed such as perfect implant position, non-eccentric loading, and simplified material
properties. More often than not, it is assumed that the results can be extrapolated to the

general population, despite the variability of the population.

To date, few studies have incorporated inter-patient variability in testing the tibial tray and
those that do use a small number of models: Perillo-Marcone et al. (2004) and Wong et al.
(2010) used four models, and Rawlinson et al. (2005) used 9 paired models. Significantly, the
loading of each model was the same, despite known population variability (Kutzner et al.,
2010). A small population of 16 patients was used in the testing of a hip resurfacing (Radcliffe
et al., 2007a; Radcliffe et al., 2007b), where all the models were manually created and analysed.
Although these studies only used a small population, the importance of inter-patient variability

was apparent.

Recently, a SM of the femur has been used for population-based analysis of hip fracture
risk (Bryan et al., 2009) and to assess the performance of a hip resurfacing (Bryan, 2010).
In this thesis, SMs were used to assess the performance of a TKR in a large population,
using methods similar to Bryan (2010). However, the case studies (chapters 7 to 9) include
variability of both the tibia and complete load cycle of level gait. The relative complexity of
the knee kinetics and kinematics, which are dependent on the knee geometry, in comparison
to the hip meant that it was important to include loading variation in the population analysis.
To do this a second SM of the gait cycle loads was developed (section 6.3). The use of a full
activity load cycle is also unique compared to the majority of other computational studies,

where often only the peak force(s) during an activity cycle are applied.
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An important question for this thesis is why use a SM to generate a population of models
rather than a large set of ‘real’ data? The advantage of a SM is that there is a statistical link
in the data. For example, the link between the shape and modulus distribution of the tibia,
or between the axial force and varus-valgus moment is maintained, whereas individual sets
of data would not hold this information. Another advantage of a SM is that since the data
is available in parametric form, it becomes possible to use the results of the simulations to
construct surrogate models or emulators (Gorisse et al., 2010) that map the input parameters
varied in the simulation to outputs of interest. These kinds of models have potential use
for pre-clinical decision support and provide deeper insights into the relationship between
the biomechanical response of the tibia, patient metrics, and clinical variables. A further
benefit of using a SM is that only a small set of training data is required to generate a large
population of models; a population of 500 tibiae were generated from a training set of only
32 CT scans. Obtaining high quality CT scans of 500 patients would be a time consuming
process requiring ethical approval. SMs overcome a primary limitation in using models of
multiple patients for implant testing; the availability of enough high quality CT data required

to create the models.

Issues relating to the methodology used to create the SM of both the tibia and gait cycle
loads are dealt with elsewhere (see sections 6.2.11, 6.3.4 and 6.4.7). There are a broader set
of issues relating to the use of a SM to generate models for a population-based analysis. It is
not known how well the generated data, from either the tibia SM or the gait cycle SM, really
represents the general population. To obtain variation in the generated data, the PC weights
were assumed to have a normal distribution and were sampled with an interval of 3 standard
deviations (see sections 6.2.10 and 6.3.3). A wide sampling interval was chosen to maximise
variability of the generated data. For the evaluation of an implant design, large variability
in the population is desired as the implant would be assessed in more extreme cases. These
cases are of interest because they are the cases in which an implant is more likely to fail. The
disadvantage of using such a large sampling interval is that it more likely that invalid data is

generated.

Ensuring the generated data is valid is a significant problem, particularly from the tibia SM.
Bryan (2010) attempted validation of the population of femurs by comparing geometric metrics
of a ‘real’ population to those of the ‘generated’ population, showing that the shape and
size of the femur broadly correlates. Unfortunately, no set of ‘real’ population measurements
of the tibia to compare to the ‘generated’ population could be found. Validating the bone
modulus distribution is far more challenging. To do this, Bryan (2010) ran a FE analysis on a
selection of femurs and examined the distribution of strain generated in the bone. Given that
elastic isotropic behaviour of bone is assumed, the strain will be related to the modulus of
the bone. The selection of the bone-modulus relationship could therefore affect the strain
distribution. Provided the comparisons are made between models in the same study, this is

not a problem, but comparison with experimental and clinical data is limited.

Using FE analysis to help validate the SM can certainly identify problems with the generated

data. In all three case studies in this thesis, anomalous patterns of peak micromotion were
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observed for some models. The peak micromotion was found to be occurring very early in
the gait cycle where loads were very low (see chapter 8). Investigation of these cases showed
that the axial force was positive, i.e. acting as a force pulling the tibial tray out of the bone.
This tended to occur at two points in the gait cycle, the beginning of stance phase and the
end of stance phase/beginning of swing phase, the points at which the axial force changes
the most. This suggests that some of the training data is out of phase, perhaps because of
the natural variability of the length of the two phases of gait or the start and end of the gait
cycle has not been accurately identified. In this thesis, the models with a positive axial force
were simply excluded from the analyses because it is a non-physiological load case. It would
have perhaps been better to inspect the generated load profiles and resample the SM if a load
profile was generated with a positive axial force, increasing the number of models analysed in

the cases studies.

The idea of PCA is that the data is transformed into a set of PCs so that the first few retain
most of variance in the training data. The first three PCs of the tibia SM and gait cycle SM
capture 46% and 48% of the total variance respectively. For both models, over half the total
number of PCs are required to represent 95% of the total variance. For both the SMs, the size
of the training sets are relatively small-—32 tibia for the tibia SSIM and 20 healthy subjects for
the gait cycle SM—with high variability between data sets. This limits the compactness and
the predictive accuracy of the SMs. For the tibia SSIM, this is confounded by the accuracy
of the registration scheme and quality of data sources. For example, the lack of phantom
data to calibrate the density of the training data CT scans is likely to introduce errors in
the material properties. The higher PCs with a small variance are likely to represent noise
of the training data, and including them when sampling the SM may introduce artefacts
in the generated data. Using a larger set of training data might improve the compactness
and predictive accuracy of the SM. However, unless the size of the training set is sufficiently
increased, the variability of the training data might also increase with the effect of reducing
the compactness of the SM. It is noted that both SMs are based on linear PCA. In reality,
there may be non-linear correlations in the training data. By using non-linear transformations,

the variance of the data might be better captured.

The motivation for using SMs to generate a population for a large FE study was due to the
lack of clinical data. In this thesis, the best available sets of data were used to create the SMs.
It was found that the SMs could sufficiently represent the training data and by sampling the
SMs a population of models was generated, representing the variability of the training data.
Sampling the SM might create ‘outlier’ data, but these cases are of interest when evaluating a

medical device. The ideal device would be robust to the large variation of the population.

One of the main aims of this thesis was to perform population-based analysis of the tibia
implanted with a tibial tray using SMs to generate the initial population of models. Three
cases studies showed the use of population-based FE analysis for the assessment of the primary
stability of the tibial tray. A specific discussion about each case study was previously given.
Not discussed were the wider limitations of the population-based FE analysis which all the

case studies have in common.
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Perhaps the largest limitation of the case studies is that the population of data is generated
from two separate models (mentioned very briefly in section 6.4.7). The population of tibiae
were generated from a SM of the tibia and the load cycles were generated from a SM of the
gait cycle. Because the two SMs were based on completely separate training data, the link
between the shape, size, and density distribution of the tibia and the loading is lost. According
to Wolff’s law, bone adapts to the loads it carries, strengthening along paths of high loads.
The random association of a tibia with a load cycle means that a tibia with an even bone
density distribution of the medial and the lateral condyles could be associated with gait cycle
loads representing a varus knee. In a varus knee, it is expected that the bone density of
lateral condyle is lower than that of the medial condyle which experiences higher loading.
The morphology of the tibia will also affect the loads in the knee; a tibia with larger flatter
condyles will not experience the same loads as a tibia with smaller deeper condyles. Further
to the random association of tibiae and gait cycles, the weight estimated for each model
is also random. Whilst, effort was made to provide a link between tibia length and height
(figure 6.25), the BMI of each model was sampled from a distribution based on published data.

This could mean that a model has an inappropriate weight for the size of tibia and load cycle.

The only reason for these dissociations is the lack of a data set of a single series of patients
containing CT scans, computed knee loads, and patient information (e.g. height, weight, BMI,
age). It is perfectly feasible to combine all this information in a single SM so that sampling

the model would generate a tibia, a load cycle, and patient information which were linked.

In all the case studies, it is assumed that the loading cycle generated from the gait cycle SM
can be applied to all knee configurations, irrespective of whether it is implanted with a TKR,
and of implant design. In reality, the kinetics are highly dependent on the kinematics, which
in turn depend on the geometry and soft tissue of the knee. This means that healthy patients
will generate different load patterns than TKR patients and load patterns will not be the
same for different implant designs. However, there is little data on in vivo loads and that
which does exist is of multiple patients with the same implant design (Heinlein et al., 2009;
Kutzner et al., 2010). It is also important to note that the results of the cases studies are

specific to the TKR modelled (other assumptions aside).

The analysis of the models only considered the resection interface, the bone at the resected
surface directly in contact with the tray, ignoring the stem. The resection interface is not
necessarily the region of bone which experiences the highest strain, more distal weaker bone
could experience higher strain, but for the tibial tray to migrate, it is assumed that the bone
directly in contact with the tibial tray must fail first. The strain in the proximal tibia could
be analysed, but it is the mechanical conditions of the bone-tray interface which will affect
the primary stability of the implant the most. If processes such as bone remodelling were

being considered, then it would be necessary to consider a larger region of the proximal tibia.

In large analyses like these, it is necessary to know if enough models have been included in the
population. A simplistic approach was taken in this thesis by simply computing the stability
of the population median and 95th percentile CPS and CPM with an increasing number of
models. In all case studies it was found that the CPS and CPM stabilised at around 150
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models (figures 7.1, 8.2 and 9.2). There was no significant change in the median CPS or CPM
using more than 150 models, suggesting that the analysis of the population will not be so
affected by anomalies in the data. The number of models analysed in all the case studies was

greater than 200 after outliers were excluded, above the point at which stabilisation occurs.

None of the case studies included all of the generated population in the analysis. The main
reason for excluded models from the analysis was because a positive axial force occurred
during the gait cycle. However, for all the case studies, the tibial tray was not implanted in
10 to 15% of the tibiae. For 20-30% of these failures, there was too much overhang between
the tray and bone (see section 6.4.7) and the rest of the failures were due to geometric errors.
The implantation process was based on surface mesh intersection and union operations. These
types of operation are sensitive to the mesh geometry and can introduce intersecting triangles,
triangles with small angles, or narrow inter-boundary regions (Kahnt et al., 2011). This can
cause problems when remeshing the surface (which was done to improve triangle quality) or
generating a tetrahedral mesh using an advancing front algorithm (as used to mesh model).
The implantation method used in this thesis was developed in collaboration with ZIB, and
development of the method continued separately from this thesis. A new method has since
been developed, based on an ‘oracle’ mesh generation procedure (Kahnt et al., 2011). The
advantage of this method is that no Boolean operations are necessary before generating the
tetrahedral mesh and features, such as sharp edges, are preserved. If future studies were to

be performed, it would be advantageous to use this method to generate the mesh.

A potential use of population-based studies is to assess how sensitive an implant design is
to variation in the population. In the current work results can only be compared between
populations within the same study, to say otherwise requires validation of the studies. This
would not be validation in the traditional sense which checks that the FE models are predicting
accurate results in comparison to experimental data, but rather comparing the trends found
in the population study to trends in clinical data. For example, if clinical data might show
that a particular size of the implant tends to fail, then it would be necessary to investigate if
the population study were able to predict that the same size implant was at a higher risk of
failure. A major hurdle in doing this is obtaining a large set of clinical data which provides
this information. One source is joint registers, which now record nearly 10 years of data for
some implants. With access to such data, it would become possible to show that a population

study can predict trends seen clinically.

Beyond the limitations of the SMs and with the FE analysis, much time and effort was spent
in developing the pipeline to automate the processing of the models and the data analysis.
However, it is still a somewhat ad-hoc workflow with three distinct parts. The registration and
SM workflow was based on that of Bryan (2010), using MATLAB to integrate the separate
software components. The workflow to then create and analyse a model (involving implanting
the tibia with a tibial tray (ZIBAmira), pre-processing the model for FE analysis (Abaqus),
FE analysis (Abaqus), and post-processing of the FE analysis (Abaqus), each of which was
automated) was integrated using Python scripts. Analysis of the FE results was done using
MATLAB. Better integration of the workflow would help reduce the time take to run a study
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and make it easier to catch and fix models with errors.

A further challenge of the data processing was in the analysis and interpretation of the results.
A relatively simplistic approach was taken to analyse the results, choosing to focus on metrics
relating to the peak strain and micromotion generated in each model. This (partially) ignores
the time-history of how the strain and micromotion change during the gait cycle. With a large
number of models methods to efficiently process and visualise this information are required.
Also, in this thesis, potential links between the tibia morphology and performance of the
tibial tray were not investigated. Whilst not the aim of the case studies in this thesis, the

advantage of performing a population-based analysis is that these links could be investigated.

10.3 Future work

Currently, the use of population-based studies in the evaluation of joint replacements is very
limited. This thesis has demonstrated the use of population-based FE analysis to evaluate
the primary fixation of the tibial tray extending the work of Bryan (2010). There is certainly
future potential for using this type of analysis to help inform surgical decisions and evaluate

new implant designs.

There are numerous improvements which could be made to the methodology and workflow
used in this thesis. Further work is required to improve the accuracy of the registration scheme
used to register the tibiae, perhaps focussing on how better automatic correspondence can be
found between models or how intensity information can be incorporated in the registration
algorithm. Changes in registration scheme could also be coupled with the use of a minimum
description length algorithm (e.g. Davies et al., 2002) to automatically select the “best”
parameters to create the SM. This method aims to minimise the number parameters required
to build the SM to maximise the variance of the first few PCs. This results in a model with
better compactness, specificity, and generalisation ability (Davies et al., 2010). Improvements
can also be made to the gait cycle SM. One improvement could be to create the gait SM using
frequency response of the force and moments, instead of the time waveforms. The force and
moment waveforms can be transformed to the frequency domain using a Fourier transform.

This could potentially remove the phase errors found in the generated gait cycles.

The model processing workflow also needs refining to better integrate all the tools used. This
would provide a much better framework within which a population analyses can be performed,
with a more flexible interface for analysis of the results, perhaps incorporating data mining

tools to investigate relationships in the data.

Perhaps the most important aims for the future are to provide better validation of the SM and
population-based FE analysis. It would be advantageous if a larger set of training data could
be collected for generating the SM, ideally including CT scans, load cycle data, associated
patient information (e.g. height, weight), and follow-up clinical data. More knowledge about
the population being modelled and analysed would help to show that the SM is generating

realistic models and the FE analysis is predicting realistic outcomes. More sophisticated
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techniques to construct a statistical model of the PC weights based on Markov chain Monte
Carlo simulation (Ghanem et al., 2006) could be used to improve the sampling of the SM.
This would help ensure that the SM is more fairly sampled and the generated population

better represents the training data.

Population analysis offers the opportunity to investigate many more surgical conditions and
tray designs than those presented in this thesis. The method presented allows for this and,
for example, the effect of anterior-posterior position or varus-valgus alignment could easily
be investigated. There is also the potential to increase the complexity of the SM model to
include other structures of the knee such as the femur and soft tissues, thus also increasing
the complexity of the FE analysis. Of course, this would raise many new challenges, but it

would provide an even more realistic evaluation of a TKR.
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