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UNIBERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Fluid Structure Interactions Research Group    

Doctor of Philosophy 

INVESTIGATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD 

FOR FLUID-RIGID BODY INTERACTIONS 

by Fanfan Sun  

The aim of this project is to investigate the capability of smoothed particle 

hydrodynamics (SPH) method for fluid-rigid body interactions. SPH is one of the 

most widely used meshless methods which use particles to represent the system. The 

fluid is assumed either slightly compressible so weakly compressible SPH (WCSPH) 

is applied or truly incompressible so incompressible SPH method (ISPH) is adopted.  

    The performance of SPH method is affected by a number of modelling parameters 

including the choice of kernel functions, smoothing length, total number of particles 

and time step size. Investigations of the effect of these parameters were conducted 

using one dimensional cases and the results show that smoothing length and the total 

number of particles can influence the accuracy significantly but other parameters are 

less important.  

    In order to generate the model efficiently and maintain accuracy an appropriate 

boundary treatment is important. Two boundary treatments are investigated for ISPH 

method. Although these two boundary treatments have been used in WCSPH, they 

have not been used in ISPH method in the literature. They are easier to use for 

complicated engineering situations related to fluid structure interaction problems 

compared with the traditionally used ghost particles. Two approaches for solving 

Poisson’s equation of ISPH method are studied including the implicit solution 

approach and explicit solution approach.  

    A new method is developed for multi-phase flow by combining WCSPH method 

and truly ISPH method to study the effect from air pressure. Within this method the 

compressibility of air and incompressibility of water can be retained.  

    Based on these studies, algorithms for fluid rigid-body interaction in 2 dimensional 

and 3 dimensional cases have been developed to simulate the general engineering 

problems related to fluid rigid body interactions.  
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Chapter 1 Introduction  

Fluid structure interaction is the coupling between moveable or deformable bodies 

and fluid flows and the main physical characteristics is the relations between the 

motions and forces of both structures and fluids. Namely, fluid force acting on a 

structure induces deformation and movement of the structure and this in turn changes 

the flow and consequently the load on the solid will be further altered. The interaction 

of the structure with the surrounding or enclosed fluid gives rise to a rich variety of 

physical phenomena, for example, the response of ships or offshore structures in 

waves, the stability of aircraft and flutter of aircraft wings in flowing air, the flow of 

blood through arteries, the response of bridges and tall buildings to winds and the 

vibration of turbine and compressor blades. A good understanding of the dynamic 

interaction between the fluid and structure is very important to assess the overall 

performance and safety of structures in many engineering fields. 

1.1 Background  

1.1.1 Research of FSI in engineering fields 

In many fluid structure interaction problems involving violent fluid motion, the 

structure may experience high stresses and encounter possible structural failure. 

Besides the damage of material, the motion of the solid in the fluid environment is 

also important for engineering design. For example, strong fluid flow may cause an 

aircraft to lose its stability; the coupled motion of ship and wave may cause ship to 

capsize. On the other hand, structure motion can induce additional fluid flow and this 

may further influence the normal use of the structure. Taking water spray produced by 

the landing gear of an aircraft running on the wet runway for example, a large amount 

of ingested water may cause an engine flameout. With the knowledge of the 

behaviour of structures in the fluid, better systems can be designed to prevent these 

kinds of accidents.  

    Research of fluid structure interaction started long time ago. A review of the history 

of FSI development can be found in Xing, et al. (1997) and the research involves 

many engineering fields: 
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Aircraft engineering  

In aircraft engineering, strong air flow may affect the stability of the aircraft, and in 

some cases the structure of aircraft may be damaged under the load of the airflow. 

The problem associated with the fluid structure interaction involving air and 

deformable structures is known as aeroelasticity problem, and in fact, early research 

of fluid structure interaction started from this type of problem. Lanchester (1916) and 

Bairstow & Fage (1916) performed a set of experiments to investigate aeroelasticity 

vibration. The general theory of aerodynamic instability and the mechanism of flutter 

was established later by Theodorsen (1934).  With the rapid development of aircraft 

industry, the aeroelasticity has become a very important research area. Much of the 

work has been continued for the development of the research in aeroelasticity. 

 

Civil engineering 

In civil engineering, aeroelasticity problem can also be found when the responses of 

bridges or tall buildings are considered subject to wind loading conditions. Apart from 

air flow environment, structures surrounded by water also experience the interaction 

with fluid. A ground-breaking research of interaction between dam and water was 

conducted by Westergaard (1933) and the outcome was published in his paper entitled 

“water pressures on dams during earthquakes”. In his work the dam was assumed to 

be rigid and the problem is simplified as a hydrodynamic problem with known 

boundary conditions. In 1970, Chopra started to work on the coupling between a 

deformable dam and water (Chopra 1970). The design for the offshore structures 

under horizontal seismic loads was improved based on the researches of the coupling 

between the dam and water. 

    Sloshing of fluid in liquid storage containers is another important fluid structure 

interaction problem. It is an important design feature for large liquid storage 

containers of inflammable or explosive liquid to be used safely in earthquake 

condition. The fundamental theory on liquid storage container oscillation problem is 

reviewed by Moiseev (Moiseev 1964; Moiseev & Petrov 1964). Liquid sloshing 

inside the fuel tank of spacecraft may influence the stability of the craft and affect the 

altitude control significantly. The linear theory of small amplitude sloshing was 

developed first and it has been applied to the practical engineering problems. 

Nonlinear, large amplitude sloshing is more complicated and it is analysed mostly 

using the Arbitrary Lagrange-Euler method. 
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Marine engineering  

In a violent sea, serious hydrodynamic impact may happen when there is a large 

vertical relative motion between the ship and wave surface. This phenomenon is 

called slamming, and it may cause damages to the bottom of the ship. Slamming 

pressures are sensitive to the way the water hits the structure and these pressures are 

normally neither harmonic nor periodic (Faltinsen 1993; Faltinsen, et al. 2004). Many 

ships have reported local structural damages due to slamming loads. For example, the 

tragedy of MV Estonia in the Baltic Sea on 28 September 1994, one of the deadliest 

marine disasters of 20
th

 century, was initiated because of the breaking of the bow door 

due to the severe slamming. Other situations such as large volumes of water flowing 

onto the deck of a ship, called green water, may cause fatal damage to the structure as 

well.  

    In the early research on ship water coupling dynamics it was assumed that a ship 

was rigid so that only the disturbance caused by the motion of ship was studied. 

Haskind (1946) constructed the velocity potential of fluid due to the motion of a rigid 

ship and derived the point source Green function using Green’s theorem. The solution 

of the integral equation of velocity potential can be obtained based on the boundary 

conditions. This method is used for the research of the interaction between the 

swaying ship and water. Other research work contributing to the investigation of ship 

motion in waves includes: Denis & Pierson (1953) who used the spectral analysis 

method to calculate ship motion in irregular waves; and Korvin-Kroukovsky (1955) 

who used strip theory in ship motion problems (Du, et al. 2004).  

    The elastic deformation of a ship was studied later using hydroelasticity theory 

which is developed by Bishop & Price (1979). This theory has been employed to 

predict the responses of a wide range of marine structures. A recent review of 

hydroelasticity of ships can be found in Hirdaris & Temarel (2009).  

 

Others  

FSI can be found in many other engineering fields such as: blood interacting with 

vessels in biomechanics; metal curing process in metallurgy and casting industry; 

vibration of oil pipelines and the response of immersed structures to explosive waves. 

A good understanding of the interaction between fluid and structure is beneficial. 
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1.1.2 Research of FSI in academic disciplines 

Fluid structure interaction (FSI) in science is an interdisciplinary subject related to 

fluid mechanics and solid mechanics. Fluid structure interaction problems can be 

classified in two major categories: in the first category, the solid and fluid are well 

mixed without a clear interface between the two phases and one example is the 

saturated soil; in the second category, there is a clear interface and the interaction 

happens only on the interface. In the second category there are further three different 

cases: the first case is the aero-elasticity problem involving structure vibration in air 

flow; the second one is the slamming problem involving finite movement of fluid in a 

short duration and the third case is conventional ship motion problems involving 

oscillatory fluid motion in a long period of time. For all these types of FSI problems, 

the solution procedure has to be based on the understanding of the relationship 

between the forces.   
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Figure 1.1: Overall view of fluid structure interaction (Xing, et al. 1997) 

 

    The relationship among different types of forces in fluid solid interaction is shown 

in Figure 1.1. The two large circles represent fluid and solid regions, respectively, and 

the smaller circle in the middle represents the interface. A fluid hydrodynamic force 

influences the motion of a solid through the interface and this in turn affects the fluid. 

The hydrodynamic force and the motion of the solid are all unknown on the interface 
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and they can only be solved based on the physical descriptions of the whole system. 

In this case, it is important to consider the interactions. If the motion of the solid is 

given or the hydrodynamic force is known then the problem will become a fluid 

hydrodynamic problem under known boundary conditions or a solid dynamic problem 

under given wet interface traction.   

    Fluid structure interaction is closely related to a few scientific research areas such 

as fluid hydrodynamics, solid dynamics, nonlinear mechanics, and numerical methods, 

etc. Progress in FSI research will have an impact on these related academic areas and 

this can result in new improvement. Hence, FSI research is significant for science and 

engineering development.  

1.2 Solution approaches for fluid structure interaction 

In order to solve fluid structure interaction problems it is necessary to determine 

variables related to fluids and solids at the same time. These variables normally 

cannot be determined individually. However, an FSI problem can be simplified for 

specific research purposes. For example, the compressibility of water can be ignored 

in long term water structure interaction problems without the need to consider 

acoustics and in some cases the deformation of the solid can be ignored so that the 

solid is treated as a rigid body.  

    For almost of the fluid structure interaction problems there is no analytical solution 

because of the complexity of the problem, so numerical solutions or experimental 

studies are the only way forward (Xing, et al. 2003). Experiments are normally 

expensive to perform so numerical methods are preferred in many cases. Currently, 

finite element (FE) method and computational fluid dynamics (CFD) are the mature 

numerical methods for structure and fluid analysis respectively.  

    In FE method, the continuous problem domain is divided into a number of discrete 

subregions or “elements”, connected at discrete points called “nodes”.  The solution 

for the whole domain is represented by a collection of the solution on each element. 

The value of a generic function at one element can be derived using the known values 

at the nodes of this element according to the interpolation function. Thus, the original 

problem with infinite degrees of freedom is replaced by a problem with finite degrees 

of freedom and a function on a continuous field is approximately represented by a 



6 

 

collection of functions of each elements. In CFD, the domain is discretized as a finite 

set of control volumes or grids. General conservation equations for mass, momentum, 

energy, etc., are discretized as algebraic equations. In the discrete domain, each flow 

variable is defined only at the grid points. The values at other locations are 

determined by interpolating the values at the grid points. The set of equations are 

solved simultaneously to determine flow field.  

    FE method and CFD method are based on different descriptions. FE method for 

structure is usually described using Lagrangian formulations, whereas CFD for fluid 

is described using Eulerian formulations (Bathe & Zhang 2004). In the Lagrangian 

description, the grid or mesh is fixed on the material and it deforms with the material. 

The physical properties of a particular point of the material at a time instant are solved 

and recorded (Price 2006). In the Eulerian description, the grid or mesh is fixed in the 

space and the material moves across the grid so the physical quantities at a point fixed 

in space are recorded.  

    In fluid structure interaction problems, when a structure element moves, the 

material coordinates will move with the element to new positions in space while the 

Eulerian coordinates that describe the fluid remain unchanged. The difference of these 

two descriptions creates a separation of the mesh points between solid and fluid.  

1.2.1 Linear problems  

For small-disturbance problems, this separation can be neglected and the 

mathematical model is formed based on the original static equilibrium configuration 

of the fluid-solid interaction system on which a numerical analysis is developed. For 

these linearized problems, the superposition principle and the mode theory of 

structural analysis are applicable (Xing, et al. 2003). Mathematical equations and 

associated solution procedures for these problems are well developed in literature 

(Bishop & Price 1979; Bishop, et al. 1985; Xing & Price 1991; Xing, et al. 1996).   

1.2.2 Nonlinear problems  

For nonlinear problems Navier-Stokes (N-S) equations or Euler equations are used for 

fluid. Here, two different cases can be considered: i.e. a weak interaction case and a 

strong coupling case depending on whether there is a small or large deformation of 

the fluid and structural domain (Rugonyi & Bathe 2001). Especially for strong 

coupling cases, the difference between Lagrangian and Eulerian descriptions has to be 
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fully accounted for to ensure the validity of compatibility conditions on the coupling 

interfaces (Xing, et al. 2003).  

1.2.3 Solution with Arbitrary Lagrangian-Eulerian method  

It is difficult to enforce the kinematic compatibility on the fluid structure interface if 

there is a large structural displacement. To overcome this problem, an Arbitrary 

Lagrangian-Eulerian (ALE) numerical model was developed using finite element 

methods in both the solid and fluid domains (Donea, et al. 1977; Belytschko, et al. 

1982; Bathe, et al. 1995). Alternatively, Xing, et al. (2003) adopted the ALE finite 

difference technique proposed by Hirt, et al. (1974) to calculate the fluid at all speeds 

based on a moving coordinate system fixed in the structure. This coordinate system is 

used to describe fluid flow and to construct structure-deformation equations.  

    In the ALE description, the nodes of the computational mesh may move with the 

material in Lagrangian fashion, or they can be fixed in Eulerian manner. When ALE 

technique is used in engineering simulations, the computational mesh inside the 

domains can move arbitrarily to optimize the shapes of elements, while the mesh on 

the boundaries and interface can move with the materials to track the boundaries and 

interfaces of a multi-material system precisely.  Because of this freedom in moving 

the computational mesh offered by the ALE description, greater distortions of the 

material can be handled than would be allowed in a purely Lagrangian method and 

this is with better resolution than a purely Eulerian approach. For fluid structure 

interaction, fluid flow is described using Eulerian description so that flow calculations 

can be carried out on continuously deforming meshes while the solid motion is 

described using Lagrangian description and the mesh representing solid is glued to the 

material (Khurram & Masud 2006). 

    However, fluid elements tend to become distorted in the case of large solid 

translations and rotations. And the accuracy of solution would deteriorate due to 

increased anisotropy or uneven distribution of the grid points. In this case, remeshing 

is often required but it can be quite time consuming (Loon, et al. 2007). Besides, it is 

difficult  to use as it requires a transformation between these two different 

descriptions (Carlton 2004).  

    To summarize, these traditional numerical methods require the continuum to be 

divided into linked small elements or volumes as shown in Figure 1.2. These elements, 

called mesh or grid, allow the governing partial differential equations to be converted 
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into a set of algebraic equations. The governing equations are formulated in either 

Lagrangian or Eulerian description. Grid-based numerical methods experience 

difficulty in solving certain type of problems typically associated with large 

deformations. Especially, the grid generation is not always straightforward when 

dealing with complex problems and the mesh or grid will be distorted when the 

boundary deforms and this may result in a break-down of the computation (Jenssen, et 

al. 1998). Therefore, an alternative numerical method without grid or mesh is required 

to overcome these problems due to mesh dependency.  
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Figure 1.2: An example of water column mesh 

Water 

column

Particles 

representing 

the system

After 

some 

time

Particles move 

according to physic 

laws

 

Figure 1.3: An example of the system represented by particles 

 

1.2.4 Solution with meshless method 

In a meshless method, the system is represented by a set of discrete particles as shown 

in Figure 1.3. Each particle carries physical properties such as mass, momentum, 

energy, etc. The movement of the particles is governed by associated conservation 

laws.  

    Smoothed Particle Hydrodynamics (SPH) method is one of the earliest and most 

widely used meshfree methods. It has been combined with FE method to be applied to 

FSI problems in the literature. The problem with this hybrid method is that it is hard 

to guarantee an accurate information transmission between particles and elements on 
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the interface. Alternatively, using SPH for both fluid and structure will keep the 

system consistent so the algorithm is simplified. However, using particles to represent 

the whole system requires large memory and long computational time. Besides, 

accuracy of the results is difficult to guarantee because of the natural drawbacks of 

particle method. Since the evolution of the field depends on the distribution of 

particles, the results is sensitive to particle distribution. However, it is difficult to 

guarantee a good particle distribution once they started to move following the related 

physical laws. In addition, some of the coefficients used in the particle formulations 

are selected based on experience and their influence on the accuracy is not entirely 

clear. Further research is necessary to improve the performance of SPH method on 

FSI problem.  

1.3 Objective  

The aim of this project is to improve SPH method for fluid structure interaction 

problems involving a truly incompressible fluid and rigid body. First, the potential 

factors influencing the accuracy of SPH approximation need to be investigated to 

understand how to control or improve the performance of this method. This will be 

carried out by using SPH approximation for several 1D functions. Different from 

other research work that has been done theoretically to analysis the accuracy, 

consistency and stability of SPH method (Liu & Liu 2003b), these properties will be 

investigated through numerical experiments using various kernel functions with 

different smoothing lengths and numbers of particles so that the influence of these 

factors can be observed directly.   

    Second, methods to ensure incompressibility of the fluid will be studied in terms of 

accuracy, stability and CPU time requirement through numerical experiments and the 

preferred method will be selected. And then boundary treatment needs to be studied 

taking into consideration of the trade-off between the accuracy and efficiency for the 

selected method. Solution approaches for the algorithm of the selected method needs 

to be considered and studied to ensure an efficient simulation in terms of CPU time 

requirement and accuracy. In addition, neighbouring particle searching strategy needs 

to be formulated to reduce the computational cost.  
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    Third, air water two-phase flow will be considered to study the effect of air. A new 

approach will be developed for this case regarding that the compressibility of these 

two phases is different and large density ratio is involved. 

    Finally, an algorithm of 3D fluid rigid body interaction simulation needs to be 

accomplished based on the investigations mentioned above.  And this algorithm will 

be applied to a few examples in both 2D and 3D to demonstrate the performance.  

1.4 Layout of the thesis  

The layout of the thesis is illustrated in Figure 1.4 below.  
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   The background of fluid structure interaction and numerical method has been 

introduced. In the following chapter the fundamentals of smoothed particle 

hydrodynamics method will be discussed. Governing equations for fluids and solids 

will be given in Chapter 3. Numerical algorithm is described in Chapter 4. The 

implementation including boundary treatments, computational strategies and time 

stepping algorithm will be discussed in Chapter 5. The studies of the effect of 

modelling parameters in SPH such as kernel function and number of particles will be 

shown in Chapter 6. The performance of the two main SPH methods is compared 

using dam breaking case study in Chapter 7.  Applications to 2D fluid rigid body 

interaction and multi-phase flow will be given in Chapters 8 and 9 respectively. 3D 

examples are shown in Chapter 10. Finally, the conclusion and future work is given in 

Chapter 11.  
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Chapter 2 Literature review 

2.1 Meshless method   

The early development of meshless methods can be traced back to 1970s. The main 

aim is to develop accurate and stable numerical solution procedures using a set of 

arbitrarily distributed particles without imposing any connectivity condition on these 

particles. The initial work in developing meshless methods is mainly to modify the 

conventional grid required methods in order to make them more adaptive and robust. 

The applications of meshless methods are concentrated on problems to which the 

conventional grid based methods are difficult to apply, such as problems with free 

surface, deformable boundary, large deformation that requires complex mesh 

generation and adaptive mesh requirement, etc.  

    A number of meshfree methods have been proposed to analyse solids and fluids. 

Most of the meshless methods are inherently Lagrangian methods. According to the 

numerical discretization technique used, meshfree methods can be classified in three 

types: 1) methods based on strong form of formulations, 2) methods based on weak 

form of formulations, and 3) particle based methods. A strong form of system 

equation expressed in ordinary differential equations (ODE) or partial differential 

equations (PDE) is derived based on the theory of continuum mechanics. The strong 

form methods normally use the collocation approach and the system is represented by 

collocation points (Liu & Gu 2005). They are computationally efficient but they are 

often unstable for irregularly distributed nodes. For a weak form an integral operation 

is applied to generate the discrete system equations. Formulation based on weak 

forms can usually produce stable and accurate results. However, in the weak form 

method a background mesh is required for the integration of the weak forms so it is 

not entirely mesh free. Details of many existing meshfree methods can be found in 

monographs by  Liu (Liu 2002; Liu & Liu 2003b). 

    In a particle based method the system equation is in the strong form but its 

implementation is very similar to the weak form method and no background mesh is 

needed. The integral operation is applied in the stage when function is approximated 

rather than in the stage when the discrete system equations are generated as in the 



13 

 

normal weak form method. Smoothed Particle Hydrodynamics (SPH) method is one 

of the earliest and most widely used meshfree particle based methods. 

2.2 History and development of smoothed particle hydrodynamics 

method  

Smoothed Particle Hydrodynamics (SPH) has been developed largely in the last three 

decades since its introduction in Astrophysics in 1970s (Gingold & Monaghan 1977; 

Lucy 1977). It is based on the theory of integral interpolant (Monaghan 2001) and the 

partial differential equations are approximated by integral formulation involving a 

kernel function. A kernel function should satisfy a few conditions such as that it 

should behave like a delta function, with compact support and be integrated to unity. 

More discussion on this will be given in section 2.4. The interpolation method used in 

the particle method is closely related to the standard interpolation methods used in 

other more traditional numerical methods such as finite element method  (Monaghan 

1982).  Apart from interpolation methods, SPH formulae for governing equations can 

be derived based on Lagrangian formulation as shown by Bonet, et al. (2004).   

    In the SPH method, the system is discreticized into many particles which carry 

material properties such as density, velocity, stress and so on. The integral 

representation of the function is approximated by summing up the contribution from 

the nearest neighbour particles defined by the kernel function. A number of particle 

approximation forms of a function can be derived based on different mathematic 

manipulations and some of the details will be shown in Chapter 3.  

    Unlike traditional mesh required methods, in a particle based method, the particles 

move following the physical laws without explicit connections between each other. 

Therefore, this method is most suitable for the simulation of fragmented fluid such as 

sprays, breaking waves and explosions, flow with free surface and other large 

deformation problems. 

2.2.1 Application to incompressible fluid  

In the early applications of SPH to incompressible fluid problems (Monaghan 1994), 

the fluid such as water was assumed to be slightly compressible. Therefore, quasi-

incompressible equation of state was used to calculate pressure. The time step size 

depends on sound speed which was adjusted to restrict the fluid density variation. 
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This approach that treats the incompressible flow as a slightly compressible flow is 

named as weakly compressible SPH (WCSPH) method and it is proved to be able to 

successfully simulate Poiseuille flow as the result generated agrees well with the data 

from the finite volume method (Lobovský & Vimmr 2007).   

    However, WCSPH requires a very small time step and even small density error can 

cause significant unphysical pressure fluctuation (Lee, et al. 2008). In order to 

overcome these problems, an approximated pressure projection method was 

developed by Cummins & Rudman (1999). The incompressibility is enforced by 

solving a pressure Poisson’s equation. Afterwards, a truly Incompressible SPH 

method (ISPH) was proposed by Shao & Lo (2003) where prediction-correction 

fractional time steps are used to update the related physical properties. In this method, 

the intermediate velocity field is integrated forward in time without considering the 

pressure effect in the first step. The temporal density obtained from the first step is 

then implicitly projected onto a velocity divergence-free space to satisfy the 

incompressibility requirement in the second step. The pressure values are calculated 

through a Poisson’s equation. This truly incompressible SPH has been  used since 

then (Hosseini, et al. 2007).  

    Alternatively, the incompressibility can be enforced by setting the volume of each 

fluid particle as a constant using Lagrangian multiplier in the simulation (Ellero, et al. 

2007). However, a more straightforward way to ensure the incompressibility is to use 

constant density thus only the velocity divergence free condition is considered 

according to the continuity equation (Lee, et al. 2010).  

    The major difference between WCSPH and ISPH methods are about the pressure 

calculations. Normally, WCSPH is fully explicit and ISPH requires an iterative 

solution approach for the Poisson’s equation. It was found that pressure values 

obtained from WCSPH method are not accurate and fluctuate severely because they 

largely rely on the changes of the density, any small density change will lead to a 

large pressure oscillation (Lee, et al. 2010; Antuono, et al. 2012), this will be shown 

in Chapter 7. However, many research works have been focusing on improving the 

accuracy of density estimation and eliminating the fluctuation of pressure for WCSPH 

as it is easier to parallelize (Lee, et al. 2010; Antuono, et al. 2012) and the free surface 

condition is implicitly satisfied (Colagrossi, et al. 2009). Colagrossi & Landrini (2003) 

suggested to filter the density field through a Mean Least Square (MLS) integral 

interpolation. Alternative, diffusive terms are added in the continuity equation to 
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reduce the numerical noise inside the density field (Ferrari, et al. 2009; Molteni & 

Colagrossi 2009; Antuono, et al. 2010) or correction terms can be used to adjust the 

particle displacement to ensure uniform particle distribution (Ozbulut, et al. 2012; 

Shadloo, et al. 2012). In contrast, ISPH method can be more accurate and produce 

pressure fields effectively. However, particle distributions may become highly 

distorted as a result of simulation errors and consequently instability arises. Xu, et al. 

(2009) suggested a new stabilisation technique by shifting the particles slightly to 

avoid the instabilities due to particle stretching. Using this shifting algorithm can 

improve the results but more computation is required especially when large number of 

particles is used. In this project, the shifting algorithm is not used considering the 

computation expenses; the performance of WCSPH and ISPH is compared including 

the accuracy of results, CPU time requirement and stability of the algorithm, so that 

one of them can be selected for the investigation of fluid rigid body interaction. 

2.2.2 Application to multi-phase flow  

Multi-phase flow is common in nature. Neglecting the effect of one phase in flows 

may result in incorrect approximation. Multi-phase flow needs to be considered to 

investigate the influence of the entrapped fluid.  

    The early SPH application to multi-phase flow is for compressible fluids such as 

dusty gas. The mixed fluid is treated as a new type of fluid. The mass density of this 

new fluid can be updated based on the continuity equation and the pressure can be 

calculated based on the equation of state. A void fraction is used to account for the 

contributions of each individual fluid to the mixture. Since the densities of the dust 

and dusty gas are known, the density of gas can be obtained through the void fraction. 

With the known pressure and density values, the velocity of each phase can be 

determined based on the momentum equation. Hence, the motion of the whole fluid 

can be determined ( Monaghan & Kocharyan 1995; Johnson & Beissel 1996a).  

    It is more difficult to consider the situation when air is mixed in water. A large 

density ratio may cause instability for the algorithm since the conventional particle 

formulation is based on the assumption of a continuous material or small density 

variation. In a method developed by Ritchie & Thomas (2001) the pressure of gas is 

assumed to be constant as the sound-crossing time is shorter than the flow time across 

the smoothing sphere. The density was calculated from the equation of state so that 

the discontinuity of density would not affect the density update in the simulation. 
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Alternatively, Colagrossi & Landrini (2003) derived a modified particle evolution 

form to avoid differentiation through the interface where density discontinuity occurs. 

However, the conservation of mass is not satisfied with this evolution equation so that 

normally a density re-initialization approach is needed (Monaghan 1992). Another 

particle evolution form was derived by Hu & Adams (2006) using a Shepherd 

function to represent the particle volume which is usually represented by the 

relationship between mass and density. By doing so, the density term is removed from 

the formulas thus the large density difference is not a problem any longer. The 

derived particle evolution form is symmetric so that the momentum is conserved. 

Similar forms of particle evolution are derived based on different mathematic 

considerations (Hu & Adams 2006; Grenier & Touze 2008; Grenier, et al. 2009). Hu 

& Adams (2007) developed an incompressible multi-phase SPH method by applying 

the modified particle evolution form to ISPH algorithm. In this method the pressure of 

the fluids is calculated by solving Poisson’s equation and the density is updated 

according to the continuity equation.  

    Both WCSPH and ISPH methods can be applied to multi-phase flow successfully. 

Another consideration for incompressible fluid is that the density can be assumed to 

be constant. In this case, none of the existing multi-phase methods is applicable to the 

problem when liquid is mixed with gas. Therefore, a new method can be developed to 

combine these two methods, namely, to use WCSPH method for compressible fluid 

phase and ISPH method for incompressible fluid phase. Details of this new method 

will be included in the following chapters.  

2.2.3 Application to FSI problems and solid 

Many numerical methods have been developed to analyse the fluid structure 

interaction problems. Due to large motions normally found in fluids, a meshless 

method is a useful option for flow simulations. Finite element method can be used 

reliably for structure analysis. Therefore, it is viable to use meshless methods for 

fluids and finite element method for solids in a fluid structure interaction analysis.  

    One of the first coupling procedures for meshless particles and finite elements was 

proposed by Attawy, et al. (1994) and Johnson (1994). They adopted a commonly 

used coupling algorithm called: master-slave algorithm (Belytschko, et al. 2000), to 

couple the fluid structure interactions (Johnson & Beissel 1996a). The contact 

constraint was imposed by applying a contact force to both the slave node (particles of 
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fluid at the interface) and the master surface (finite element at the interface). This is 

used to prevent particle penetration in the time stepping procedure. Here, the force is 

normal to the corresponding element surface and sliding between particles and 

elements in tangential direction is allowed. In the algorithm, if there is a movement of 

the slave node, the master nodes will move in a manner consistent with the velocity 

changes.  When a slave node overlaps the master segment, the normal velocities of 

these three nodes involved are artificially adjusted to conserve linear momentum and 

angular momentum. Details on coupling of meshfree methods and finite elements can 

be found in Rabzuk, et al. (2000). 

    The FEM and SPH combination is capable of simulating fluid structure interaction 

successfully. However, the implementation on the interface is complicated because 

either the data need to be transferred between two different methods or a contact 

algorithm is required. The simpler approach is to apply the SPH method to the 

analysis of solid as well. The shear stress and pressure formulae can be derived by 

applying SPH method directly to the strain rate tensor. This makes the transfer of 

information between the fluid and structure domains easier as a similar method is 

used for both parts. It also makes the simulation more efficient in the case where large 

deformation happens in the solid. 

    There are two coupling models when SPH is used for both solid and fluid: one is to 

treat all the particles in the same way regardless of their nature and an XSPH 

correction is applied to stop the particle penetration (Rafiee & Thiagarajan 2008; 

Rafiee & Thiagarajan 2009) whereas the other is to determine the exact position of the 

interface and its normal direction before the force and the reaction are calculated 

(Antoci, et al. 2007). In most cases artificial viscosity and artificial stress can be used 

to improve the stability (Antoci, et al. 2007; Bui, et al. 2007). In this project, the solid 

is assumed to be rigid and the whole system of fluid-rigid body interaction is 

represented by particles. The second treatment on the interphase is used as each phase 

is computed in separated algorithms. This will be detailed in Chapter 3. 

    When SPH is applied to the solid in a state of isotropic tension, the solid is 

stretched and the SPH particles attract each other to resist the stretching. This can 

cause clumping of the particle and hence the use of the standard SPH equation in 

conjunction with explicit time stepping scheme can lead to unstable time integration 

for any time step size. This type of instability is called “tensile instability” and it is 

reported that it cannot be eliminated by introducing artificial viscosity (Bonet & Lok 
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1999). This is a major deficiency of traditional SPH. A number of methods were 

developed to improve the accuracy, stability and consistency of SPH. 

2.2.4 Variations of SPH methods 

As SPH has some drawbacks such as tensile instability for solid simulation and 

inconsistency near a boundary, various methods have been developed for different 

specific purposes to improve the original SPH method.  Liu, et al. (1995b) developed 

a reproducing kernel particle methods (RKPM) to improve the accuracy of SPH 

approximation especially around the boundaries. This method composed of a 

correction function and a window function (same as the kernel function) which was 

originally proposed in the theory of wavelets (Chui 1992). The correction function 

can be expressed as a linear combination of polynomial basis function with unknown 

coefficients determined to ensure the approximated function or the derivative of the 

approximated function to be reproduced exactly. The number of these coefficients 

involved in the definition of the correction function depends on the order of the 

highest derivative term presented in the governing equations (Aluru 1999). This 

method eliminated the tensile instability associated with SPH methods (Liu, et al. 

1995b;  Jun, et al. 1998). 

    Another method proposed to reduce the tensile instability as well as boundary 

effects uses the normalized smoothing function which is adjusted for every particle to 

normalize the kernels (Johnson & Beissel 1996a). This algorithm was applied to 

cylinder impact problems (Johnson, et al. 1996b; Johnson, et al. 1996c).  

     For the problems of unsteady boundary values such as heat conduction, a 

corrective smoothed particle method (CSPM) was developed by Chen, et al. (1999a). 

The SPH evolution formulations are derived based on the Taylor series of the function. 

The number of the terms involved in the Taylor expression depends on the order of 

the approximated function. This method is further applied to nonlinear dynamic 

problems including transient heat conduction and structure dynamics (Chen & Beraun 

2000).  

    By modifying CSPM, a modified smoothed particle hydrodynamics (MSPH) 

method was developed (Zhang & Batra 2004) to improve the accuracy of the 

approximation near the boundary but it is more time consuming since a more 

complicated solution process is required. This method is further formulated in 
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cylindrical coordinates to analyse axisymmetric deformations of a circular cylindrical 

body (Batra & Zhang 2008). 

    To adjust the resolution of the particle simulation, Lastiwka, et al. (2005) proposed 

an adaptive particle distribution method for SPH. Any number of particles can be 

removed or inserted and this was found to improve the accuracy in a shock tube 

simulation. 

    With those modifications to the formulations the performance of SPH was 

improved for specific applications accordingly. However, the implementation is more 

complicated to a certain degree. Hence, research has been focused on how to select 

the modelling parameters which may influence the performance of the original SPH 

method such as kernel function, smoothing length, and particle distribution. A brief 

understanding of the influence of different choices of kernel functions, number of 

particles and smoothing lengths are given in Chapter 6. 

2.2.6 Accuracy of implementation 

From the analysis of the truncation error of the gradient approximation carried out by 

Quinlan, et al. (2006) in a study of the robustness and accuracy of SPH formulations, 

it is concluded that 1) a uniform distribution of particles is better for obtaining 

accurate results; 2) a smaller smoothing length gives more accurate results provided 

that there are sufficient neighbouring particles in the smoothing domain and 3) for 

non-uniformly distributed particles the accuracy of SPH discretization can be 

improved if the absolute values of pressure and velocity is reduced before calculating 

the gradients. In the example of Poiseuille flow, by subtracting hydrostatic pressure 

from the absolute pressure in the momentum equation, the (absolute) value of 

pressure was reduced so was truncation error (Basa, et al. 2009).  

    In some cases, particle oscillation may happen and this can result in incorrect 

approximation. In this case, the original SPH is not able to provide accurate 

estimations therefore correction is necessary. Usually, an artificial viscosity term is 

added to the momentum equation to eliminate the instability (Monaghan 1994). 

Furthermore, in an XSPH method, the velocity is modified by artificially adding an 

averaging term from the neighbouring particles (Monaghan 1989; 1992; 2002). 

Namely, the XSPH method adjusts the velocity of a particle so each particle moves 

with a velocity closer to the average velocity of the neighbouring particles. This 

velocity corrective term is used to smooth out oscillations of particle velocities 
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calculated by integration of the momentum equation (Antoci, et al. 2007; Crespo, et al. 

2007; Lobovský & Vimmr 2007).     

    Other aspects of the numerical implementation of SPH including boundary 

treatments, construction of artificial viscosity and nearest particle searching algorithm 

can be found in the early works (Monaghan 1988; Monaghan & Lattanzio 1985b;  

Monaghan 1992). They will be explained in detail in Chapter 5. 

2.3 Kernel function  

The most important aspects of SPH method are the choice of kernel function and 

boundary treatment. The kernel choice has to be constructed first for a successful SPH 

simulation. An improper choice of the smoothing function may lead to unphysical 

structures of the system (Schussler & Schmitt 1981). A kernel function  hW ,x  is 

usually an even function of x  because of this the error terms of the kernel integral, 

when expressed in Taylor expansion, involving odd powers of x  will vanish. This is 

equivalent to liner interpolation (Monaghan 1982).  

    A kernel must satisfy several conditions in order for the SPH model to satisfy the 

requirement of interpolation theory (Monaghan 1992) 

    The first condition is the normalization condition  

 

  1, 


dxhxW         (2.4.1) 

 

    The second is the Delta function condition. Namely, when the smoothing length 

approaches to zero the kernel should approach to the Delta function:  

 

   xhxW
h




,lim
0

        (2.4.2) 

 

    And the third is the compact support condition  

 

  khxhxW  ,0,         (2.4.3) 
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where k is a constant which defines the support domain (i.e. smoothing length) of the 

smoothing function as shown in Figure 2.1. The normalization condition ensures that 

a continuum function can be approximated to the zero-th order. With an even function 

condition and the normalization condition, the kernel approximation will have second 

order accuracy  2hO . This can be proved by using Taylor series expansion for the 

SPH integral representation. The Delta function condition makes sure that the 

approximation value approaches the function value as the smoothing length tends to 

zero. The compact support condition transforms a SPH approximation from global 

operation to a local operation.  

    In addition, a kernel function must be positive within the smoothing domain. This 

is not necessary mathematically but it is important for physically. A negative kernel 

function may lead to unphysical parameters such as negative density and energy. A 

kernel aiming to produce better approximation should have smoother values of the 

function and its derivatives. This is because a smoothing function will not be sensitive 

to particle distribution (Liu & Liu 2003b).  From Equation (2.3.8), it is clear that at 

least the first derivative of the kernel function should be continuous so that derivatives 

of the function can be approximated. And if the second derivative is continuous, the 

kernel is not sensitive to particle distribution (Monaghan & Lattanzio 1985b)  

    It should be possible to use different kernels for different property calculations. 

Fulk & Quinn (1996) proposed a  measure of merit for SPH kernels in the form of 

second order integral approximation based on an analysis of kernels in 1-D case. In 

this work it was found that the shape of the kernel function and the distance ratio 

between particle spacing and smoothing length are the two key factors influencing the 

kernel approximation. Kernel functions with bell shape, hyperbolic shape, parabolic 

shape and double hump shape were considered. It concluded that the bell shaped 

kernel functions outperform other kernels and a smaller distance ratio is better for 

more accurate results. For a give function such as spline functions which satisfies the 

three conditions for a kernel function as given in Equations (2.4.1) to (2.4.3), the 

criteria for the kernel or parameter choices is to reduce the difference between the 

following two functions (Capuzzo-Dolcetta & Lisio 2000) : 

    ',''
1

xxxx dhWff     

and  

    ',''
2

xxxx dhWff   .      
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    A general kernel constructing method based on the consideration of restoring 

particle consistency is proposed by Liu, et al. (2003a).  

 

Smoothing domain  

 

Figure 2.1: Smoothing domain of a particle  

 

    For a specific particle, only the particles inside its smoothing domain contribute to 

the calculations. These particles are called neighbouring particles. An appropriate 

smoothing domain is important to ensure a correct SPH approximation. Normally, it 

should be large enough for each particle to have enough neighbouring particles but is 

should be small enough to preserve the accuracy as well as to reduce computational 

cost. The spacing between particles is also important. If the particle spacing is too 

large, the accuracy of the approximation will be affected because of the averaging 

effect whereas if it is too small the computational cost will increase. Therefore, an 

appropriate particle spacing should be selected for a specific problem to ensure the 

best performance of the simulation. The ratio between particle spacing and the radius 

of the smoothing domain is normally taken as 2.5 and this will be shown in Chapter 6 

based on the investigation of accuracy using different number of particles and 

smoothing lengths. 
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Chapter 3 Fluid-rigid body interaction problems 

3.1 General description 

In fluid structure interaction problems, the solid can be rigid or deformable. In the 

current project the point of interest is the motion rather than the material behaviour, 

the deformation of the structure is not considered so that the solid is assumed to be a 

rigid body. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  A rigid body floating on free surface 

 

    

    Figure 3.1 illustrates an arbitrary rigid body floating on the surface of water (Xing, 

et al. 2003). The water can be calm or with violent motion. The rigid body may float 

freely on the surface with given initial velocity or it may have a forced motion in the 

water. In this figure, 321 yyoy  represents a global Cartesian coordinate system;  

321 xxOx   denotes a moving coordinate system parallel to the global coordinate system 

but with its origin located at the mass centre of the rigid body; 321 XXOX  is the body-

vS  

 

Horizontal reference 

plane 03 y  

o 

3y

 

2y

 
1y

 

1X  

1x  

2X  
2x  

 
TS  

  

iT̂  

3x  
3X  

s  

 OOO yyy 321 ,,  

O 
iF̂  

p  
 pp ˆ  

2

v      0ˆ 2 iv  

if̂  

1ˆ
iv  

0p̂p   f  in  

1

v

 

iû  
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fixed coordinate system fixed on the rigid body and it is assumed to coincide with the 

moving coordinate system at the beginning. With a disturbance, the mass centre  O  

is allowed to move transnationally with acceleration o

iw , velocity o

iv  and displacement 

o

iu and the body is allowed to rotate with angular displacement i  around the mass 

centre. The moving system 321 xxOx  is used to describe the translation of the rigid 

body which can be represented by the motion of the mass centre  O . For each point 

on the rigid body, the relationship between the coordinates in the moving system and 

those in the global system is given as: 

 

i

o

ii xyy  , i

o

ii vvy         (3.1.1) 

 

where o

iy represents the coordinates of the mass centre in system 321 yyoy and iy  

and iv are the velocities at a point on the rigid body relative to the global and moving 

systems respectively.  

    On the surface of solid domain s , one part is the interface   with fluid, other part 

TS is subject to known external traction forces iT̂  and given displacement iu (which is 

ignored for rigid body case).  On the free surface f  of fluid, pressure is known as 

the atmospheric pressure 0p̂  acting in i  direction which is perpendicular to the free 

surface. The flow velocity 1ˆ
iv  is given on boundary 1

v  whereas fluid pressure p̂ is 

known on boundary p .  

    With the known forces and boundary conditions the motion of the fluid-rigid body 

interaction system can be determined. The description of the motion of a rigid body 

will be introduced first and then the governing equations for the motion of solid and 

fluid will be formulated.  

3.2 Motion of a particle in the solid 

Since there is no deformation on a rigid body, for each particle in the body, its 

position is determined by the translational motion of the body at its centroid of mass 

and the rotational motion about the centroid of mass. Namely, the motion of a particle 
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iX  in the rigid body can be calculated based on the translational displacement o

iu , 

velocity o

iv and acceleration o

iw  of its mass centre and its rotation about the mass 

centre using the following formulations 

 

i

o

ii uuu ~          (3.2.1) 

i

o

ii vvv ~          (3.2.2) 

i

o

ii www ~          (3.2.3) 

 

    Here, “~”denotes the variables describing the particle motions relative the mass 

centre due to rotation. The translation of the mass centre  O   is given in the global 

coordinate system 321 yyoy  and the relative motion of a particle is described by a 

moving coordinate system 321 xxOx . Hence, translation is straightforward to calculate, 

while the relative motion (rotation) needs to be transformed from a body-fixed 

coordinate system 321 XXOX  to a moving coordinate system and a coordinate 

transformation matrix is then required.  

  

Coordinate transformation matrix 

Assuming that the body-fixed coordinate system 321 XXOX coincides with the 

moving coordinate system 321 xxOx  initially, after a given rotation, the orientation of 

the axes will be different as shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 

Figure 3.2: Relative rotation between body-fixed coordinate and moving coordinate 

systems 
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    The new position of the rigid body in the moving system can be defined by this 

relative rotation.  The relative rotation between the two coordinate systems can be 

expressed by the direction cosine matrix R . For example, if a body-fixed coordinate 

system rotates around 3X axis by angle , the direction cosine matrix will be: 

 





































100

0cossin

0sincos

333231

232221

131211





lll

lll

lll

R      (3.2.4) 

 

where ijl  (i j =1,2,3) is the cosine of the angle between axis i of the new coordinate 

(body-fixed) and j axis of the old coordinate (moving coordinate) or the projection of i 

axis in the new coordinate on j axis of the old coordinate.      

    This matrix is the coordinate transforming matrix or rotation matrix R  for the rigid 

body. It converts points in body-fixed coordinate to points in a global coordinate as 

follows: 

 

o

iii xXx R          (3.2.5) 

 

    Details on the rotation matrix can be found in Jia (1987) and Nikravesh (1988). The 

matrix R should be orthonormal, which means that each row should have unit length, 

and all rows are perpendicular to each other. To describe the angular orientation 

efficiently, the most common technique is to use Euler angles instead of using the 

nine elements of the matrix directly (Luo, et al. 2012). In Euler angle description, the 

rotation is decomposed into three elementary rotations of the body-fixed coordinate 

system relative to the moving coordinates. They represent three decomposed 

elementary rotations of a body-fixed coordinate system relative to the global system. 

However, using this description one degree of freedom may be lost in the case when 

one elementary rotation makes two axes to coincide. In such situations the effect of 

gimbal lock can occur. The process of gimbal lock is illustrated in Figure 3.3 to 3.6. 

    Assuming that a subject is represented by its body-fixed coordinate 321 XXOX  and 

it is located in the origin of the global coordinate 321 yyoy . A rotation described using 
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Euler angle includes three decomposed rotations around the three body-fixed 

coordinate axes respectively.  

 

 

 

 

 

  

 

 

 

 

Figure 3.3: Initial orientation of an object represented by its body-fixed coordinate 

 

    First the object is rotated by an arbitrary angel, say -30
o
 around X1 axis: 

 

 

 

 

 

 

 

 

 

Figure 3.4: The object is rotated 30
o
 around X1 axis 

 

    And then it is rotated by -90
o
 around X2 axis 
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Figure 3.5: The object is rotated 90
o
 around X2 axis 

 

    Now it can be seen that the current X3 axis coincides the initial X1 axis, in an 

opposite direction. Finally the object is rotated 40
o
 around this X3 axis.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: the object is rotated 40
o
 around X3 axis 

 

    As the third rotation and the first rotation are about the same axis it is considered 

that one degree of freedom is lost. 

    To avoid this singularity and to ensure such motion is uniquely defined, Euler 

parameters are employed. 

 

Euler parameters 

According to Euler’s Theorem, the general displacement of a body with a fixed point, 

i.e. angular movement, can be accomplished by a single rotation about a certain axis 
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with a finite angle. Therefore, it is reasonable to represent the coordinate 

transformation in terms of the parameters of this single rotation, i.e. the angle of 

rotation  and a unit vector e  of the rotation axis as shown in Figure 3.7. As the 

rotation can be defined by the coordinate transformation matrix or the parameters 

( ,e ), these two must be related to each other and the matrix can be derived based on 

( ,e ).  

 

    The Euler parameters 

 

    Euler vector:   









2
sin


eQ      (3.2.6)  

    Euler parameter:   









2
cos0


Q     

    













































2
sin

2
sin

2
sin

33

22

11







eQ

eQ

eQ

    (3.2.7)  

    Here, 1e , 2e  and 3e  are the projection of rotation axis in x, y, z axes, respectively.  

 

    The four parameters 0Q , 1Q , 2Q and 3Q satisfy the following equation: 

 

12

3

2

2

2

1

2

0  QQQQ        (3.2.8)  

 

 

which means that only three of them are independent. This indicates that the there are 

three rotational degrees of freedom. The derivation of the rotation matrix is shown 

below: 
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Figure 3.7: Rotation from p  to 'p  

 

     In Figure 3.7, the transformation of vector s into 's represents a rotation from p  to 

'p .  Assuming that vector s is fixed on the rigid body, and then 's can be expressed as  

 

  abss'  sincos1         (3.2.9)  

 

where a and b are perpendicular to each other and they have the same magnitude  

which equals to the distance from p to the rotation axis: 

 

sea  , aeb          (3.2.10) 

 

    Substituting these into Equation (3.2.9), it can be re-written as: 

 

    seseess'   sincos1      (3.2.11) 

 

    Using Euler parameters given in Equation (3.2.6) and (3.2.7), the following 

equation can be obtained: 
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  sQsQQss'  022 Q       (3.2.12) 

 

    And this can be converted this to a matrix expression as 

 

 sQQQEs'
~

2
~~

2 0Q        (3.2.13) 

 

where Q
~

is the anti-symmetric matrix from Q . As mentioned before, the rotation 

from s to s’ can also be expressed with rotation matrix form 

 

sRs'           (3.2.14) 

 

    Here, the rotation matrix R is obtained as: 

 

     
     
      























2

3

2

010322031

1032

2

2

2

03021

20313021

2

1

2

0

2122

2212

2221

QQQQQQQQQQ

QQQQQQQQQQ

QQQQQQQQQQ

R   (3.2.15) 

 

    The time derivative of the rotation matrix is related to the angular velocity as 

follows 

 

i
 RR           (3.2.16) 

 

    This can be expressed using the matrix form:  
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
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
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
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012
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2

1













QQQ

QQQ

QQQ

QQQ

Q

Q

Q

Q

dt

d
     (3.2.17) 

 

    According to Equation (3.2.17), the parameters can be updated with the known 

angular velocity. To obtain angular velocity, equations of motion need to be solved. 

The governing equations for a rigid body motion will be discussed in the following 

section.  
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3.3 Governing equations of motion for rigid body  

Since the motion of a particle of a rigid body is a combination of the translational 

motion of its mass centre  O  and a rotational motion about the mass centre, 

governing equations for these two motions are needed: 

3.3.1 Translational motion of mass centre 

For the translational motion, the Newton’s second law can be applied: 

 

 i

o

i Fum           (3.3.1) 

 

where m is the mass of the body, o

iu is the acceleration of the mass centre, iF is the 

force applied on the centre of the mass  O . This equation can be re-written according 

to Figure 3.1 as 

 

 
 dSTdSTdFum i

S
iis

o

i
Ts

ˆˆ      (3.3.2) 

 

where iF̂  represents the body force,  iT̂  and iT  are the traction forces on surface 

TS and the interface   respectively. 

3.3.2 Rotation of the body about the mass centre 

For rotational motion, the theorem of moment of momentum can be used: 

 

MθIθθI           (3.3.3) 

 

where I is a second order tensor representing the moment of inertia, θ is a vector 

represented the angular velocity of the rigid body, θ is the derivative of angular 

velocity with respect to time, M is a moment vector. Equation (3.3.3) given in the 

body-fixed coordinate system. In the principle inertia axis coordinate system of a rigid 

body, the equation of motion for rotation can be rewritten as (Fossen 2002; Jia 1987): 

 

 
xzyyyzzxxx MIII     
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  yxzzzxxyyy MIII           (3.3.4) 

 
zzyxxyyzzz MIII     

 

The moment of inertia matrix is defined as follows: 

 

























zzyzxz

yzyyxy

xzxyxx

III

III

III

I        (3.3.5) 

 

    The elements of this inertia matrix are calculated by summing up the contributions 

from all the particles of mass in the body. If the mass of each particle is m , then 

these can be evaluated as:  

 

   22 zymI xx  ,    22 zxmI yy  ,    22 xymI zz     

 mxyI xy  ,  mxzI xz  ,  myzI yz     (3.3.6) 

 

    When it is necessary, this inertia matrix can be diagonalised using a transformation 

matrix made of its row Eigen vectors. This transformation matrix can be used to 

transform the coordinates of particles of the body and in this new coordinate system 

the inertia matrix will be diagonal.  

    With the angular velocity obtained from Equations (3.3.4) the Euler parameters can 

be updated. To solve Equation (3.3.4) the moment applied on the body needs to be 

known in a body-fixed coordinate system. Hence, if the moment is given in a global 

coordinate system then it needs to be transformed into a body-fixed coordinate system 

using the transpose matrix of R : 

 

g

T

b MRM          (3.3.7) 

 

    where bM is the moment in body-fixed coordinate and gM is the moment in global 

coordinate system. Sometimes moment needs to be calculated based on a known force. 

In this situation the force needs to be transformed to a body-fixed coordinate system 

first.  
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    To summarise, the moment acting on the particles of rigid body needs to be 

expressed in the body-fixed coordinate system first. And from Equation (3.3.4) the 

angular velocity can be calculated. Then the rotation matrix can be derived from the 

angular velocity using Equation (3.2.17). Finally the new positions of particles in the 

global coordinate system can be obtained using Equation (3.2.5).  

 

3.3.3 Boundary condition 

In order to derive a unique solution from a set of partial differential equations, some 

conditions are required and boundary condition is one of those. There are generally 

three types of boundary conditions from the point view of mathematics: i.e. 1) 

Dirichlet boundary condition which specifies the values of the solution on the 

boundary of the domain, 2) Neumann boundary condition which specifies the values 

of the derivative of the solution on the boundary of the domain and 3) Cauchy 

boundary condition which is a mixed condition from Dirichlet boundary condition 

and Neumann boundary condition.  

    Physically, the boundary conditions can be classified based on the nature of the 

variables.  

    As shown in Figure 3.1, on a velocity boundary vS of the rigid body, its velocity is 

assigned a prescribed value 

 

ii vv ˆ           (3.3.8) 

 

    If this value is zero, it implies a fixed boundary. The displacement boundary can be 

ignored for rigid body since no deformation is expected. 

    On the force boundary TS  of the solid, its traction equals to a prescribed force iT̂ . 

3.4 Governing equation for fluid 

Fluid can be treated as a continuum enclosed in a volume bounded by an arbitrary 

closed surface. To describe the motion of the continuum, the governing equations can 

be developed based on the principles of conservation of mass, conservation of 

momentum, and the laws of thermodynamics. 
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    Let x denote the location of a particle, v  represents the velocity. In the Lagrangian 

description, the velocity and acceleration of the particle are, respectively: 

 

dt

dx
v i

i           (3.4.1) 

 

and 

2

2

dt

xd

dt

dv ii           (3.4.2) 

 

    Where the subscripts i and j  indicates tensor index of value 1,2, or 3. The mass m 

contained in a domain V at time t is  

 


v

dVm           (3.4.3) 

where  t,x  is the density of the continuum at location x  at time t . Conservation of 

mass requires 0/ DtDm , using Reynolds transport theorem the continuity equation 

can be derived  

 

0 
sv

dSdV
dt

d
nv


       (3.4.4) 

 

where n  is the unit normal vector pointing outward from surface S . Since the results 

must hold for an arbitrary domain V , using the divergence theorem the integrand 

must vanish, i.e. 

 

  0 v


dt

d
        (3.4.5) 

 

    According to Newton’s second law, the net force on a body is equal to its mass 

multiplied by the acceleration. The force can be considered as a combination of 

surface traction and body force if . Expressing the surface force in terms of a stress 
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vector ji , the total force acting on the material occupying volume V interior to a 

closed surface S is 

 

 
v

i

s

jji dVfdSnF         (3.4.6) 

 

    According to Gauss’s theorem, F can be expressed as: 

 

dVf
x

F
v

i

j

ij

 




















        (3.4.7) 

 

    For a unit mass, we have  

 

i

j

iji f
xDt

Dv








         (3.4.8) 

 

    The governing equations for fluid include the conservation of mass and momentum. 

In a Lagrangian framework these can be written as follows 

 

0
1

 v
Dt

D


        (3.4.9) 

 

    The body force of the fluid is gravity force, and the stress tensor can be considered 

as a combination of pressure and viscous force and so:  

 

P
Dt

D




11
τg

v
       (3.4.10) 

 

where t is the time, g  is the gravitational acceleration, P  is the pressure, τ  is viscous 

stress tensor and 
Dt

D
is the material derivative. The momentum equations include 

three forcing terms, i.e. body force, forces due to divergence of stress tensor and the 
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pressure gradient. For incompressible fluids, the mass density takes a constant, so that 

Equation (3.3.9) reduces to  

 

0 v          (3.4.11) 

 

    Assuming a Newtonian fluid, the viscous stress tensor τ in the momentum 

conservative equation is related to the velocity as: 
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i

jiij
x

v

x

v
        (3.4.12) 

 

    where   is the dynamic viscosity coefficient. Hence Equation (3.3.10) can be 

written as  

 

P
Dt

D




 12
vg

v
       (3.4.13) 

 

    Using the chain rule, the gradients on the right hand-side of Equation (3.4.12) can 

be approximated as: 
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      (3.4.14) 

 

    Substituting Equation (3.4.14) into Equation (3.4.12), the formula for shear stress 

can be derived. 

  

Boundary conditions 

Boundary conditions for fluid can physically be classified as include inlet, outlet, free 

surface and solid-wall boundaries. On the free surface, the fluid motion should satisfy 

a kinematic condition  

 

 
0

,,,


Dt

tzyxDY
        (3.4.15) 
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which implies that the free surface is a material surface. Here, Y is the function 

describing the height of the free surface. However, when fluid motion is given in 

Lagrangian form, this condition is automatically satisfied.  

    It is assumed that the pressure on the free surface is an atmospheric pressure of 

value zero as the reference pressure, so that the dynamic condition on the free surface 

is given by  

 

0P           (3.4.16) 

 

    On the velocity boundaries (inlet), velocity is assigned to be a prescribed value 

 

vv ˆ           (3.4.17) 

 

    If this prescribed value is zero, this equation denotes a fixed fluid boundary 

condition. On the outlet boundary which is assumed to be infinite far away from the 

flow the pressure is assumed to be constant. 

    At the fixed solid boundary, no-slip condition is applied when the velocity of the 

fluid at the wall boundary is set to zero or free slip condition is applied when the 

tangential velocity of fluid is not zero but the normal velocity is zero. In our cases no 

slip boundary condition is applied.   

3.5 Fluid solid interaction interface  

On the wetted interface , the motion of a solid particle should be coupled with a 

fluid particle and the following conditions are to be satisfied. To ensure no 

discontinuity on the fluid solid interface, the velocity of the fluid and the velocity of 

the solid are the same at each point, i.e.  

 

s

i

f

i vv           (3.5.1) 

 

    It is necessary to satisfy the dynamic equilibrium condition at the interaction 

interface, 

0 ij

f

ij Tn          (3.5.2) 
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where f

ij  is the stress of the solid at interface, jn is the unit vector in outer normal 

direction of the fluid boundary.  

    When the fluid stress on the solid equals zero, it indicates that the fluid is separated 

from the solid and in this situation Equation (3.5.1) is not required.  

3.6 Summary 

The governing equations used to model the fluid rigid body interaction are illustrated 

in Figure 3.8. Fluid motion is governed by N-S equations expressed in continuity 

equation and momentum conservative equation. Specific boundary conditions will be 

assigned to the particles at the right position. For rigid body, the motion is a 

combination of translation of mass centre and rotation around the mass centre. 

Translation of the mass centre  O  is simply governed by Newton’s second law. For 

angular movement of particles in the solid, a transformation matrix in terms of 

quaternion is adopted. An overall chart of the content of this chapter is given below in 

Figure 3.8. 

Fluid-rigid body interaction

Fluid Rigid bodyinterface

1). Continuity equation: 

Equation (3.4.9)  for      

compressible fluid; 

Equation (3.4.11) for 

incompressible fluid;

2). Momentum equation: 

Equation (3.4.10) 

Rotation:

1). Using equation (3.3.4) to 

calculate the angular velocity;

2). Using equation (3.2.17) to 

update the Euler parameters ;

3). Using equation (3.2.14) to 

update the coordinate in moving 

coordinate system

Velocity of solid and 

fluid particles at the 

interface should be 

equal;

Interacting force for 

solid and fluid 

particles at the 

interface should have 

the same value but 

opposite direction 

Translation of mass 

center:

Using equation 

(3.3.1) to calculate the 

acceleration and then 

update the velocity

Using equation (3.2.1) to (3.2.3) to 

update the physical properties of 

each solid particle in global 

coordinate system  

 

Figure 3.8: Governing equations for the motion of fluid rigid body interaction 
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Chapter 4 SPH formulation for nonlinear fluid-rigid body 

interactions 

4.1 Basic SPH formulation  

 

The basic formulation of SPH will be discussed in this section. As mentioned before, 

SPH is based on the theory of integral interpolant (Monaghan 1987; 1988; 1989; 

Monaghan & Kocharyan 1995; Liu & Liu 2003b), a general function  xA  can be 

reproduced by an kernel approximation as  xA  (Monaghan 1982; Monaghan & 

Gingold 1983; Monaghan & Poinracic 1985a)  

 

     


 ','' xxxxx dhWAA       (4.1.1) 

 

where  'xx W  is the kernel function and h is the smoothing length which defines 

the influence domain of the kernel function. Similar process can be applied to the 

gradient of function approximation 

 

      


 ','' xxxxx dhWAA      (4.1.2) 

 

    In order to facilitate numerical approximation, the infinitesimal volume 'xd in the 

integral equation (4.1.1) is replaced by the particle volume which can be expressed 

using mass m and density  ,  

 

b

bm
dx


'          (4.1.3) 

 

    The SPH particle approximation form can be derived if the integration is 

approximated by a summation over the neighbouring particles which are located 

within the smoothing length domain 
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   



N

hW
A

mA
1b

ba

b

b

ba
,xxx


      (4.1.4) 

 

    The subscript a indicates the specific particle and b indicates neighbouring 

particles and N  is the total number of particles inside the smoothing domain. 

Similarly, the approximation for spatial derivatives can be expressed as  

 

   



N

hW
A

mA
1b

ba

b

b

ba
,xxx


      (4.1.5) 

 

    The detailed derivation process is shown in the appendices. This equation implies 

that the derivatives of any function can be found by differentiating the kernel rather 

than by using grids. As a consequence, instead of solving partial differential equations 

for hydrodynamics problems, only ordinary differential equations need to be solved 

    The derivative of the kernel function can be expressed as  

 

ab

ab

ab

ba
ab

dr

dW

r
W

xx 
        (4.1.6) 

 

where abr is the distance between particle a and b, abW is the associated kernel function.  

From Equation (4.1.6) it is clear that the gradient of a function at particle a is 

approximated with a summation of the function values at each neighbouring particle 

times the gradient of the kernel function.  

 

4.2 General SPH formulism for N-S equations 

 

In WCSPH method, Equations (3.4.9) and (3.4.10) are used as governing equations. 

SPH formulation of these two equations can be derived simply by applying equation 

(4.1.4) to the right hand-side of Equation (3.4.9)  
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    The subscripts a, b represent different particles; superscripts ji,  indicate different 

coordinate directions and N is the number of particles inside the smoothing domain, 

i.e. number of neighbouring particles. Another particle form of density gradient with 

respect to time can be derived by considering the following expressions 
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and adding Equation (4.2.2) to the right hand side of Equation (4.2.1) we can have the 

anti-symmetric formulation 

 
























N

j

j

N

j

j

j

N
j

x

W
v

m

x

W
v

m

x

Wm
v

Dt

D

1b a

ab
ab

b

b
a

1b a

ab
b

b

b
a

a

ab

1b b

b
aa

a












    (4.2.3) 

where  

jj

b vv
j

v baa           (4.2.4) 

 

    Equation (4.2.3) uses the relative velocities of particle pairs in the smoothing 

domain and it is usually preferred.  

    If the density is continuous everywhere, the continuity equation can be represented 

by SPH in another form by considering: 
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and converting the right hand side part into SPH form 
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By substituting Equation (4.2.6) into (4.2.5) and considering continuity Equation 

(3.4.5), the gradient of density with respect to time can be re-written as 
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       (4.2.7) 

 

    Compared to Equation (4.2.3), Equation (4.2.7) has a simpler form and so it is more 

widely used. However, since the derivation of (4.2.7) is based on an assumption of 

continuous density, it is not appropriate for multi-phase flows especially when the 

density ratio is large and the interface is not specified. Instead, Equation (4.2.3) 

should be applied in this situation (Monaghan 2012; Sun, et al. 2012).  An 

investigation of air water two-phase flow will be presented in Chapter 9. Different 

equations should be selected for different applications. In ISPH method if constant 

density is used all the equations to update density can be ignored. 

    The force term to update velocity in Equation (3.4.8) can be written in a symmetric 

form as 
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    (4.2.8) 

 

    This formula is the most widely used as it conserved angular and linear momentum 

because of the symmetry of the formula. However, similar to the density Equation 

(4.2.7), this formula also assumes continuous density so it is not suitable for multi-

phase flow (Colagrossi & Landrini 2003; Sun, et al. 2012). Another form should be 

used in this situation which is:  
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    The problem from density discontinuity is eliminated in this form.  

 

4.2.2 Viscosity effect  

For many fluids, the stress tensor  in the momentum conservative equation is related 

to the rate of strain as follows  
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where  is the dynamic viscosity coefficient of the fluid. 

     Using chain rule for the RHS terms 
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    For fluid such as water, the viscosity coefficient has a constant value. So the SPH 

formulation of viscosity term can be written as (Shao & Lo 2003)   
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where  is a small value used to prevent numerical divergence when two particles are 

too close to each other. Hence, normally Equation (4.2.8) is only applied to pressure.  

 

Artificial viscosity  

Sometimes an artificial viscosity is used to improve the numerical stability of SPH 

computation. This term is added in the momentum equations when calculating the 
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velocity to damp out some artificial oscillation for particles approaching each other 

(Johnson & Beissel 1996a). 

    The SPH formula for this term is as follows: 
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where 
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          (4.2.15) 

 baab
2

1
hhh   

baabbaab xxxvvv  ,         

 

where   , are constants that are typically set around 1.0 (Rabczuk, et al. 2006). 

The factor  (namely, ab1.0 h ) is added to prevent numerical divergence when two 

particles are getting too close. c and v represent the speed of sound and the particle 

velocity vector respectively.  

 

4.2.3 Pressure calculation   

From the momentum equation, it can be seen that the forces acting on fluid particles 

are from pressure, viscosity and gravity. Gravity is known whereas viscosity 

sometimes can be ignored. Hence, in order to determine the motion in a fluid, the 

most important factor is the pressure. To calculate pressure of fluid with SPH one can 

use weakly compressible SPH (WSHP) or truly incompressible SPH (ISPH) as 

discussed in Chapter 2 and the algorithm process of these two methods will be 

illustrated here.  

 

Pressure calculation in WCSPH  
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Assuming that the fluid is slightly compressible (Monaghan 1994) and Mach number 

is sufficiently small so that the density fluctuations is less than 0.01, the pressure can 

be calculated using the equation of state (Batchelor 1973).  
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where   is the polytrophic constant, normally chosen as 7 for incompressible fluid 

(water) and 1.4 for compressible fluid (air). 0 is the initial fluid density and B  is a 

constant that can be calculated as: 

 



0

2

0c
B           (4.2.17) 

 

where 0 and 0c  denote the reference density and a numerical speed of sound in the 

fluid, respectively. The influence of pressure on the velocity can be computed by 

substituting the new pressure into SPH formula (4.2.8) or (4.2.9).  

    This weakly compressible SPH is easy to complement as explicit algorithm is used 

(Monaghan 1994; Morris, et al. 1997; Hu & Adams 2006). However, since the 

pressure value depends strongly on the fluctuation of density, it lacks accuracy for 

pressure calculation.  

 

Pressure calculation in ISPH 

Another way of computing pressure is to treat the fluid as truly incompressible and a 

then a Poisson’s equation needs to be solved to obtain the pressure values (Pozorski & 

Wawrenczuk 2002). This can be done by enforcing the velocity divergence free and 

zero density variation conditions (Shao & Lo 2003; Hosseini, et al. 2007), or by using 

constant density (Lee, et al. 2010). The incompressible Navier-Stokes Equations 

(3.3.10) and (3.3.11) are used to describe the motion of water. The momentum 

equation is split into two parts to derive the equation for pressure values. The first part 

considers the effect from body force and viscosity  
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    The second part considers the effect from pressure  
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    Taking divergence of Equation (4.2.19) and substituting the outcome into 

incompressible continuity Equation (3.4.11) the Poisson’s equation for pressure can 

be derived  
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    And this Poisson’s equation is then converted to SPH formulation: 
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    Equation (4.2.21) can be solved implicitly using for example the Bi-CGSTAB 

method (Vorst 1992). Or it can be solved explicitly as (Hosseini, et al. 2007) 
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    Time step sizes allowed for implicit solution and explicit solution are similar. 

Using explicit solution approach can reduce computational time but the accuracy of 

the algorithm cannot be guaranteed for all cases as no iteration is performed. 

Comparison of the performance of these two solution approaches will be given later 

in Chapter 6. 

    Finally, the velocity of each fluid particle can be renewed for the next time step as 
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    The new positions of each particle is then updated based on the velocities 

 

tnnn 11   vxx         (4.2.24) 

 

    Pressure calculation is one of the most important parts of the algorithm since the 

motion is driven largely by the pressure force. Using WCSPH method, the pressure 

can be calculated easily based on the density variations but this lacks accuracy since it 

is sensitive to the density change. Extra correction is necessary for this method. With 

ISPH method pressure can be obtained more accurately but more computational time 

is needed for the solution of Poisson’s equation. The performance of these two 

methods will be also compared in Chapter 6. 

    The overall algorithm processes for both WCSPH and ISPH are the same as shown 

in Figure 4.1. 
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Figure 4.1: Flowchart of numerical algorithm for fluid 

4.3 SPH formulation for solid 

The solid particles on the interface are treated as boundaries for the fluid. The 

pressure values of the solid particles are obtained directly from the Poisson’s equation 

and they are considered as external force acting on the solid. Because of the numerical 

property of SPH method, the fluid and solid motion will be coupled automatically in 

the algorithm without the conventional interface conditions mentioned in section 3.4. 

    In order to solve the governing equations of sold with the particles based system, 

all the forcing terms in Equation (3.3.2) should be expressed in particle formulae. At 

Initialization of particle velocity, position, force: 0u , 0r , 0F  

Current values: n
u , n

r , nF  

Calculation of acceleration due to viscosity using equation (4.2.12) 

ISPH: solution of Poisson 

equation (4.2.21) or (4.2.22) 

to get pressure for fluid 

particles 

Correction step to get final values for fluid particles with equation 

(4.2.23) and (4.2.24) 

Check termination End 

Next time step 

NO YES 

Prediction step to get intermediate values for fluid particles 

considering the effect of gravity and viscose using equation (4.2.18) 

WCSPH: pressure 

calculation using 

equation (4.2.16) 
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time step 1n , if 1, nB

iF , 1, ns

iF , 1, nI

iF are used to represent the total body force, total 

surface force and total fluid structure interaction force, respectively  
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where N is the total number of solid particles. a, b, c and d  are indexes of adjacent 

particles as shown in Figure 4.2. abr is the vector from particle a to b and nn

acab rr  is 

equivalent to the area of the quadrilateral defined by particles a, b and c.  

 

 

 

 

 

 

 

 

 

Figure 4.2: Adjacent particle in a unit volume of solid 

 

        In our case, 1ˆ n

iF  is from the gravity (g=9.81kg/m
2
). And it is assumed that there 

is no surface traction so 1, ns

iF equals zero. The interaction force includes contribution 

from pressure and viscous forces. Viscous force v

iF is computed based on the 

acceleration obtained due to viscosity effect.  
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    And, 

 

1,11   nv

i

nn

i FinPT        (4.3.5) 

 

where n  is the normal direction of the area on which the pressure is acting. 

 

    Similarly for the momentum Equation (3.4.5) or (3.4.6), if 1, nB

iM , 1, ns

iM , 1, nI

iM  

are used to represent the moments due to total body force, total surface force and total 

fluid structure interaction force at time 1n respectively, then  
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    Since the moment is calculated relative to the mass centre so 1, nB

iM is zero, and 

surface force is assumed to be zero as well, the only moment left is due to the pressure 

and viscous force from fluid 1, nI

iM . 

    Hence, based on Equations (3.2.1) and (3.2.6), the translational and rotational 

acceleration of the mass centre can be updated. 

4.4 Summary  

N-S equations describing fluid motion are represented in SPH forms. In the 

simulations, density needs to be updated using Equation (4.2.7) for single phase flow 

or (4.2.3) for multi-phase flow if WCSPH method is used. Pressure can be calculated 

by the equation of state (4.2.16) and then substituted into (4.2.8) for pressure effect on 

the velocity in the situation of single phase and (4.2.9) for multi-phase flow. Together 

with the viscous force effect computed by (4.2.12) the acceleration can be obtained 

and then the velocity and position can be updated for the next time step. In ISPH 
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method, density is constant and pressure is calculated using Poisson’s equation 

(4.2.22). Similar to WCSPH, pressure values is substituted into Equation (4.2.8) for 

single phase flow and (4.2.9) for multi-phase flow. A scheme to be used for multi-

phase flow is to use WCSPH for compressible phase (air) and ISPH for 

incompressible flow (water) and this will be discussed in detail in Chapter 9. The total 

force and moment can be calculated by Equation (4.3.1) to (4.3.8). The interaction 

force term has two parts: one is pressure force and another is viscosity force. Pressure 

on the interface particles are calculated through Poisson’s equation directly as these 

solid particles are treated as boundary particles for fluid. Viscous force is computed 

based on the acceleration obtained due to the viscosity effect. All the kinematic 

properties of solid particles such as velocity and position are used in the physical 

property calculations of fluid particles as they are neighbouring particles so that the 

coupling at the interface is automatically accounted for. The overall SPH 

representation of fluid rigid body interaction is illustrated in Figure 4.3.  

 

Fluid-rigid body 

interaction

Fluid Rigid bodyinterface

WSPH with single 

phase flow

ISPH with single 
phase flow

Multi-phase flow using WSPH 

for compressible phase and 

ISPH for incompressible phase

Equation (4.2.7) for 

continuity equation;

Momentum equation:

1). Equation (4.2.12) for 

viscos force effect;

2). Equation (4.2.16) for 

pressure calculation;

3). Apply equation(4.2.8) 

for pressure effect

Use constant density;

Momentum equation:

1). Equation (4.2.12) for 

viscos force effect;

2). Equation (4.2.22) for 

pressure calculation;

3). Apply equation(4.2.8) 

for pressure effect

Equation (4.2.3) for continuity equation of compressible phase;

Momentum equation:

1). Equation (4.2.12) for viscous force effect;

2). Equation (4.2.16) for pressure calculation of compressible phase;

     Equation (4.2.22) for pressure calculation of incompressible phase 

3). Apply equation(4.2.9) for pressure effect

Equation (4.3.1)to (4.3.5) for 

force calculation;

Equation (4.3.6)to (4.3.8) for 

moment calculation;

Interacting force on 

solid is due to the 

pressure of fluid 

which is calculated by 

solving Poisson 

equation;

Velocity and position 

of solid at the 

interface will be 

involved in pressure, 

viscous force, and 

other physical 

property calculations 

of fluid as they are the 

neighbouring particles 

 

Figure 4.3: SPH representation of fluid rigid body interaction 
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Chapter 5 Implementation of SPH algorithm 

In SPH method, the system is represented by a set of particles. These particles possess 

material properties and move according to physical laws.  The property calculation of 

each particle is carried out by smoothing over neighbouring particles within the 

smoothing domain. The smoothing domain is the influence domain of the kernel 

function as explained in section 2.4. Because of the compact support property, the 

value of the kernel function outside the influence domain is zero. Hence, it is expected 

that no particle outside the smoothing domain should contribute to the approximation 

in particle form. 

    For the particles near boundaries, they do not have enough neighbouring particles 

as there is no particle outside the boundary. Special treatment on the boundary is 

necessary to prevent a particle from penetrating the boundaries and it is also important 

sometimes to ensure a correct calculation of flow parameters.  

    It is necessary to identify the neighbouring particles for each particle before any 

calculation can be conducted. Since the particles are arbitrarily distributed, 

neighbouring particle identification needs to be carried out for each particle at every 

time step. Searching for neighbouring particles is the most time consuming operation 

in the computation process. A proper searching algorithm is required to ensure an 

efficient simulation. 

    In this chapter, the important factors of SPH implementation including boundary 

treatments, computational strategies and time stepping algorithm will be discussed. 

5.1 Boundary treatments 

Boundary condition implementation is an important aspect of SPH implementation. 

The function may be incorrectly calculated using the particle approximation due to the 

absence of particles beyond the boundary, and instability may also occur in the 

evolution calculation for the function (Belytschko, et al. 1996).  

    Since the integral is approximated by a summation over the smoothing domain, a 

complete smoothing domain is important for a correct approximation. The particles 

within a smoothing length distance away from the boundary normally have a 

complete smoothing domain. However, for those particles near a boundary, the 
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smoothing domain is truncated and there are no particles outside the boundary as 

shown in Figure 5.1 (Liu, et al. 2003a), so the kernel condition cannot be satisfied. 

 

Figure 5.1: Kernel function for particles far away from boundaries (a), particles near 

the boundaries (b) and particles on the boundaries (c,d) 

    

    Special treatment for these particles near boundary is required in SPH method to 

resolve this problem.     

    Boundaries can belong to a solid or a fluid. Solid boundaries can be fixed or 

moving, fluid boundaries can be free surface, inlet or outlet. As the fluid is normally 

assumed to be confined the inlet and outlet boundary will not be considered.  

 

Free-surface 

The free surface conditions expressed in Chapter 3 should be satisfied and particles on 

the free surface need to be identified. In SPH method, the pressure of free surface 

particles is set to be zero to simplify the dynamic surface boundary conditions 

(Monaghan 1989). The following quantity is calculated to identify the free surface 

particles 
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    This value should equal to 2 in 2D applications or 3 in 3D cases when the 

smoothing domain is not truncated but it is far below these values for free surface 

particles. So this value is 1.6 and 2.5 in 2D and 3D cases respectively.  

 

Wall boundary 

One of the drawbacks of SPH modelling is characterized by particle penetration of the 

wall. The solid walls are represented by particles which prevent the inner particles 

from penetrating the wall. Generally, there are three different schemes to achieve this: 

1) mirror particles (Cummins & Rudman 1999) ; 2) repulsive forces (Monaghan 1994) 

or 3) dummy particles (Shao & Lo 2003; Crespo, et al. 2007). 

    Mirror particles and dummy particles are similar and they are called ghost particles 

in general. They are artificially particles placed outside the boundary. Mirror particles 

are generated at every time step. The boundary is treated as a mirror and when an 

inner fluid particle approaches the boundary a pseudo particle is generated on the 

other side of the boundary. This virtual particle has the same density and pressure but 

opposite velocity as the associated real particle (Randles & Libersky 1996). Mirror 

particles are more computationally time consuming they are not widely used. 

Alternatively, the artificial particles with fixed positions can be distributed in a 

staggered grid outside the system and they can be included in equations of continuity 

and state (Dalrymple & Knio 2001). These fixed dummy particles are commonly used.  

 

    Repulsive force is conventionally used in WCSPH method. The wall boundaries are 

modelled by a set of particles with fixed positions and zero velocities which have a 

repulsive force with the form of Lennard-Jones potential to the approaching inner 

fluid particles, as shown in Figure 5.3. This repulsive force can be calculated by  

 

 
2

00

21

rr

r

r

r
Drf

pp
r































       (5.1.2) 

 



56 

 

where D is a problem dependent constant and its value can be determined using other 

parameters of the problem. For example, one suggestion is to use gHD 5 , 

where H is the water depth (although there must be some difference between the 

bottom particles and the side particles D is taken as a unique value all through the 

particles to keep a simple algorithm) , the parameters 41 p  and 22 p (Monaghan 

1994). r is the distance from an inner particle  to a boundary particle and 0r  is the cut-

off distance normally selected to be the initial particle spacing. The value of  rf  is 

set to be zero when 0rr   so that the force is purely repulsive. This force can also be 

used as the repulsive force between different material particles for fluid flowing 

through a porous media (Monaghan & Kos 1999; Jiang, et al. 2007).  

 

    In the conventional ISPH method (Shao & Lo 2003), densities still need to be 

updated at every time step and these intermediate densities will be substitute into the 

Poisson’s equation, a complete kernel domain is necessary to ensure a correct particle 

approximation hence ghost particles which mirror the physical properties of inner 

fluid particles are the usual treatment of wall boundary conditions (Lee, et al. 2008). 

Ghost particles are used to maintain an un-truncated kernel domain for the inner 

particles near the wall. Therefore, the consistence of SPH simulation near wall 

boundaries is ensured and the physical properties such as density can be calculated 

correctly. 

    However, when dealing with problems with complex solid boundaries the ghost 

particle boundary treatment becomes difficult to apply. Taking compartment flooding 

as an example, here water can fill both inside and outside the structure and at least 

two layers of ghost particles are needed, one on the inside wall and one on the outside 

wall respectively. These ghost particles sometimes overlap the true fluid particles. 

This can lead to inaccurate neighbouring particle counting and hence result in wrong 

predictions. It is also difficult to use ghost particles for curved boundary. Special 

consideration is required to calculate the exact position of the ghost particle for the 

points on the curved boundary since the position of the ghost particle is important to 

prevent particle penetration of the wall.    If constant density is used for ISPH method 

which means density fluctuation is avoided, the boundary treatment can be simplified 

compared to the conventional ISPH method. These boundary treatments, i.e. using 

repulsive boundary force and denser wall particles on the boundary, have not been 
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used for ISPH method in the known literature although they have been used in 

WCSPH method previously. Practically, as long as the density can be kept as a 

constant, the main function of the boundary particles is to prevent inner particles from 

penetrating the walls. Therefore, repulsive force can be applied on the wall particles 

instead of using several lines of dummy particles which not only increases 

computational time but also complicates the model set-up especially in fluid structural 

interaction problems.  

    Another boundary treatment using denser wall particles is also a possibility. With 

repulsive force, all the particles can be maintained in a uniform arrangement but the 

additional force may disturb the pressure values on the boundary particles. This 

problem can be overcome by using denser wall particles with, say, half spacing of the 

inner fluid particles. These two boundary treatments can be chosen according to 

different situations. Both the boundary treatments allow efficient simulations with 

complex solid boundaries and they simplify the coupling approach for fluid structural 

interactions (Sun, et al. 2011).   

    Wall particles are used in the Poisson equation for pressure calculation. Using 

denser particles on the wall boundary can provide sufficient pressure to keep the inner 

particles away from the boundary. A halved spacing is set for the wall particles 

compared with the inner fluid particles as shown in Figure 5.2.  

 

 

Figure 5.2: Boundary treatment: using half spacing on wall particles 

 

Figure 5.3: Boundary treatment: using repulsive force 
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5.2 Computational strategies 

In SPH method, calculations of physical properties such as forces, velocity and 

densities are carried out for each particle based on summation over neighbouring 

particles located inside a cut-off radius cr  ( cr  is linear proportional to the smoothing 

length). Identification of neighbouring particles must be accomplished before the 

solution of the governing equations.  

    Searching neighbouring particles for each particle by computing the distances 

between other particles in the system can be time consuming, especially when a large 

number of particles are used. Therefore, it is necessary to adopt an efficient algorithm 

to search for the neighbouring particles.  

    Two main methods are used to reduce the unnecessary computation of the distances: 

the first is to store dynamically the neighbourhood list of each particle (Verlet list) 

and the second one is to use a framework of fixed cells (cell-linked list) (Viccione, et 

al. 2008). There are a few other methods that are used to improve the searching 

efficiency such as oct-tree methods that are used mostly in astrophysical problems 

(Stellingwerf & Wingate 1994). An algorithm combining Verlet list and cell-linked 

list has been used (Yao, et al. 2004; Dominguez, et al. 2010). For particles with 

variable cut-off distances the search methods of cell list and oct-tree can be combined 

(Awile, et al. 2012). 

    In this project, this combined list is adopted and the computational time is further 

reduced by making use of the symmetrical characteristic of neighbouring particles.  

 

5.2.1 Cell-Linked List algorithm 

Since the neighbouring particles are located within the smoothing domain, it is 

beneficial to divide the space into a number of regions (cells) to improve the search 

efficiency since neighbouring particles will only exist in the neighbouring regions. In 

the application of cell-linked list algorithm, first the problem domain is first 

partitioned into many regular cells, and every particle is assigned to a cell according 

to its position. The size of the cell can be chosen to be the same as the cut-off distance 

or slightly larger. Since the neighbours of each cell is known and fixed, and for each 

particle, only its own cell and the neighbouring cells need to be searched thus 
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substantial savings of computational time can be achieved (Hockney & Eastwood 

1981; Monaghan & Gingold 1983). 

 

    The implementation of this process can be outlined as follows: 

 

1). Divide the problem domain into zyx NNN ,,  cells in x , y , z direction. Here a 2D 

example is shown in Figure 5.4.  

 

 

Figure 5.4: Discretizing the domain into cells and storing the particles in appropriate 

cell 

 

    The number of cells in x, y and z directions are: 

czzzcyyycxxx rLNrLNrLN /,/,/  ,  

here zyx LLL  and ,  are the domain lengths, czcycx rrr  and ,  are the cell sizes, 

zyx NNN  and ,  are the number of cells in x , y , z  direction respectively.  

    The cell size can be adjusted to make the number of particles processed in the 

searching procedure as small as possible (Allen & Tildesley 1990; Mattson & Rice 

1999). Constant cut-off radius is used through the algorithm since it is more efficient 

than using a constant number of neighbour particles (Wróblewski, et al. 2007). 

    For a certain cell if the index along each direction is czcycx NNN ,, .  

    Then it is identified as 

czzcyzycx NNNNNNC  .  

    For a given particle a , its cell indices can be calculated as  
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     czczcycycxcx razNrayNraxN /][int,/][int,/][int   

 

2). Store each particle in an appropriate cell according to the positions. Two lists will 

be needed to identify particles inside one cell: 1) ][ pNlscl ( pN is the total number of 

particles) is used for particle a  pointing to particle b  and 2) ][ cNhead ( cN is the total 

number of cells) is used for storing the last particle of the cell. 

    An example of the linked-list ( lscl ) of particles is shown in Figure 5.5 

 

Figure 5.5: Example of the linked list array 

 

    This example is related to the particle distribution shown in Figure 5.4. Here, 

particle 0 points to empty as there is no particle before it in cell 0; particle 1 points to 

empty as there is no particle before it in cell 1; particle 2 points to particle 1 in cell 3 

and so on.  

The head list stores the last particle of each cell is shown in Figure 5.6 

 

Figure 5.6: Example of head list for each cell 

 

    Taking cell 3 for example, since 6]3[ head ; particles inside cell 3 can be reached 

using particle linked list starting from the head of the cell which is particle 6:  

emptylscllscllscl  ]1[1]2[2]6[  

 

3). Calculate the distances between a particle and other particles in the cell itself and 

the adjoining cells so neighbouring particles can be identified and then the physical 

calculation can be carried out. This can be done either by storing the neighbouring 

cells in an array for each cell ( with dimension of  cN9 ) or computing the 
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neighbouring cell index during the solution process (cost cN9  times computation 

for every solution loop); 

 

Summary 

In this method, at least one array with size of cN  and one array with size of pN need 

to be built for the neighbouring particle searching algorithm. The neighbouring list for 

each particle is not recorded. This neighbouring particle searching needs to be done at 

every time step. The situation will be worse if the physical properties need to be 

calculated in separate computation loops and this means that the same searching 

operation needs to be carried out several times within one time step. For example 

when an algorithm, such as predictive-corrective algorithm, uses two or more sub 

steps in one time step, the neighbouring particles need to be searched in every sub 

step before the change of particle positions. It is a waste of computational time to 

repeat the search process since the same neighbouring particles are used so the 

neighbouring list of each particle should be recorded.  

 

5.2.2 Verlet List algorithm  

The aim of Verlet list algorithm is to reduce the redundant distance computation by 

building a neighbour list which can be used for several time steps ( mN  time steps). In 

order to do so, a radius mr  slightly larger than the cut-off distance is used to identify 

the potential neighbouring particles. It looks like a “skin” outside the cut-off region as 

shown below in Figure 5.7 
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Figure 5.7: Influencing domain for Verlet list algorithm 

 

mr and mN are chosen such that  

tvNrr mcm max  

where maxv is the maximum velocity and t is the time step size. 

    The neighbouring particle list can be stored in a one dimensional array called 

istneighbourl with dimension of  
neighbourp NN max1  as shown in Figure 5.8 

 

 

Figure 5.8: Neighbouring particle list in Verlet list algorithm  

 

    And another array called point with dimension of pN is needed to point to the first 

neighbour for each particle (Ellero, et al.). For example: the number of neighbouring 

particles of particle 2 is Nnei2. In the point array,  

 2point =  1Nnei1istneighbourl =j1 

    This means that the first neighbouring particle of particle 2 is the  1Nnei1 th 

particle stored in the istneighbourl array.  
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Summary  

With this neighbouring particle list the calculation of distances between any two 

particles can be avoided for mN times so the total computation time can be reduced. 

And for the algorithm includes several correction steps within one time step the 

neighbouring list will help reduce computation time significantly. However, the 

neighbouring particle searching algorithm is still )( 2NO . 

5.2.3 Combing Cell-Linked List and Verlet List algorithm 

In this case, the problem domain is discretized into regular cells. The size of the cells 

can be larger or smaller than the cut-off distance. The particles are allocated in 

appropriate cells according to their coordinates. A neighbouring particle list of each 

particle is built by comparing the distances with the cut-off distance. Only the 

particles in the same cell and adjacent cells are assessed for the Verlet list 

construction. This combination requires one array with size of czcycx NNN   to store 

the index of cells, an array with size of czcycx NNN  to store the numbers of particle 

inside each cell; an array of size of pcczcycx NNNN   to store the actual particles 

inside of each cell ( pcN  is the maximum number of particles inside one cell); an array 

of size pN to store the number of neighbouring particles for each particle and an array 

with size of neighbourp NN max   to store the neighbouring list for each particle. It seems 

that more memory space is needed but for complex solution processing it can save 

significant computational time.  

    The efficiency can be further improved if only the neighbour cells with higher 

index are considered. As shown in Figure 5.9, sweeping through the grid along the x-

direction, around each cell, only the North-west, North, North-east and East 

neighbouring cells are checked (Gesteria, et al. 2010). Taking cell (4,4) in column 4, 

row 4 for example, the target cells are (3,5), (4,5), (5,5) and (5,4). The rest of the 

neighbouring cells have been considered previously in the process (e.g. the 

neighbouring checking between cell (4,4) and (3,4) having been previously accounted 

for when cell (3,4) was the centre cell) .  
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Figure 5.9: sweeping through grid cells considering pair-wise relation among 

neighbouring cells.  

(Starting from the lower left corner, particles inside the centre cell (4,4) interact with 

adjacent cells only in North-west, North, North-east and East directions. The 

interactions with the rest of cells in West, South, South-west and South-east were 

previously computed using reverse interactions) 

 

    Hence, distance needs to be computed only ppc NN 5 times for all the particles 

rather than pp NN  times. 

 

    Alternatively, symmetrical characteristic is considered for particle pairs directly 

rather than the cells as shown in Figure 5.10. Taking particle i  for example, all the 

particles in the nine contiguous cells are possible to be its neighbouring particles. But 

only the particles with a higher index will be checked. 

 

 

 

 

        

  North-

west 

North  North-

east 

   

   Ni  East     

        

        

        

 

(4,4) 

8 0 1 2 3 4 5 6 7 

1 

2 

3 

4 

5 

6 



65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: using pair-wise relation for particles directly instead of adjacent cells 

 

The related pseudo-code can be written as  

   

. of particleneighbour   theis 

;  of particleneighbour    theis 

   if

  do

if

22

ji

ij

rr

y[i]-y[j]x[i]-x[j]r

ij

cut





 

 

    Namely, the particles with a smaller index than i will not be included in the 

computation loop. If the distance between i  and j  is smaller than the cut-off distance, 

then j  is recorded in the neighbouring list of i , and at the same time, i  is recorded in 

the neighbouring list of j . So when j is the centre particle, its neighbouring particles 

which have a smaller index such as particle i  are already stored in its neighbouring 

list and so they will not be checked in the searching loop.  

 

    In this case when the pair-wise relation of the particles is considered, only 

ppc NN 5.4  calculations need to be performed for all the particles. This is better 

than considering the pair-wise relation of the cells.  

        

         

   i      
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5.3 Time stepping algorithm 

The same time step size is used for both fluids and solids. When ISPH method is 

applied the time stepping algorithm for fluid is divided into two steps as discussed in 

section 4.1. In the first step an intermediate velocity for fluid is computed without 

considering the effect of pressure. The values obtained from the first step will be 

adjusted in the second step through the effect of pressure. Finally the position of each 

particle would be updated according to the new velocities.  

    After the properties of the fluid are updated, the external force acting on the solid 

can be obtained by the summation of fluid force on the solid particles submerged in 

the water. So the velocity and new position of the solid can be calculated. The Euler 

method can be applied to update the physical properties of the solid as the time step 

size used for SPH method is normally very small. The Euler method is a very simple 

way to integrate a general function  tA as follows: 

    AttAttA           (5.3.1) 

 

    Since pressure is calculated implicitly in the ISPH method but other properties are 

calculated explicitly, the size of the time step must be controlled in order to generate 

stable and accurate results. The following Courant-Friedrichs-Levy (CFL) condition 

must be satisfied (Shao & Lo 2003) 

max

1.0
v

r
t            (5.3.2) 

 

where r is the initial particle spacing and maxv is the maximum particle velocity in the 

computation. The factor 0.1 is introduced to ensure that the particle moves only a 

fraction (in this case 0.1) of the particle spacing per time step. When viscous diffusion 

is considered another constraint on time step size needs to be satisfied (Cummins & 

Rudman 1999) 

 /
125.0

2h
t          (5.3.3) 

 

    The allowable time-step size should satisfy both of the above criteria. 
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Chapter 6 Studies of the effect of modelling parameters in 

SPH 

As in any numerical methods, the performance of SPH in terms of accuracy, stability 

and computational time can be influenced by a number of parameters such as the 

choice of kernel function, smoothing length, time step size, and number of particles 

and so on. In this chapter, investigation of the effect of kernel functions, number of 

particles and smoothing length is carried out in a one dimensional case by applying 

SPH approximation to represent a number of common functions.  A dam breaking 

case is used as a two dimensional example to study the effects of kernel functions, 

time step sizes and particle numbers.  

6.1 The effect of different kernels 

Kernel function is one of the key components in SPH method. This section focuses on 

the study of the effect of different kernel functions with different smoothing lengths 

and particle numbers. Nine popularly used kernel functions (Liu, et al. 2003a) are 

considered.  

 

Kernel functions investigated: 

1). Quadratic (Hicks & Liebrock 2000) 
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    This quadratic smoothing function was used in the grid free finite integration 

method. The main advantage of this kernel function is the simplicity and easy for 

computation whereas the drawback is that the first derivative is not zero on the 

boundary of the support domain, which means that it does not have compact support 

for its first derivative. 
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2). Quartic (Lucy 1977) 

 

  10,3861
4

5
,

432











































h

r

h

r

h

r

h

r

h
hrW    (6.1.2) 

 

    This quartic smoothing function and its first two derivatives satisfies the compact 

support condition. 

 

3). Johnson’s quadratic 
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    The speciality of this kernel is that the first derivative increases as the particles 

move closer and it decreases as they move apart. This is advantageous for adjusting 

the position of particles to maintain the stability. However, the derivative of this 

kernel function is not smooth at 0r .  

 

4). Gaussian (Gingold & Monaghan 1977) 
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    Gaussian kernel was used to simulate the non-spherical stars originally. It is 

sufficiently smooth even for the second order derivative. However, it is not really 

compact as it never goes to zero theoretically. This can result in a large support 

domain with an inclusion of many particles for the particle approximation.  

 

5). Super-Gaussian (Monaghan & Poinracic 1985a) 
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    This is one of the higher order smoothing functions that are devised from lower 

order forms. Its main disadvantage is that the kernel is negative in some region of its 

support domain. This may lead to unphysical results for hydrodynamics problems. 

 

6). Cubic-spline (Monaghan & Poinracic 1985a) 
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    The cubic spline function is the most widely used smoothing functions since it 

resembles a Gaussian function while having a compact support. However, the second 

derivative of the cubic spline is a piecewise linear function, the stability properties can 

be inferior to those of smoother kernels. 

 

7). Quartic-spline 
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          (6.1.7)  

 

    Higher order splines were introduced because they are better approximation of  

the Gaussian smoothing kernel and more stable.  
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8). Quintic spline 
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(6.1.8) 

 

9). New-quartic (Liu, et al. 2003a) 
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    This quadratic smoothing function satisfies the compact support for the first 

derivative and it has a smoother second derivative than the piecewise linear second 

derivative of the cubic function, and therefore the stability properties should be 

superior to those of the cubic function. However, the second derivative is not 

monotonic function of r. This may lead to an incorrect approximation. 

 

    These kernel functions are used to approximate 5 common functions in one 

dimensional case. 

Functions approximated 

Function 1: xf  ;  Function 2 : 3xf  ;  Function 3: xef  ; 

Function 4:  xf sin ; Function 5:  xf tan  

 

6.1.1Accuracy analysis  

Approximation in SPH involves two steps. First, a function is approximated in 

integral form and then transformed into particle approximation. These two 
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approximations are investigated separately. In each approximation, the effect of 

different smoothing length and different particle numbers are considered separately.  

 

Integral approximation 

Similar to many other numerical methods, discretization is required. As shown in 

Figure 6.1, the problem domain is divided uniformly into a collection of points with 

spacing of r , and then the smoothing domain of each point is further divided into a 

set of points with spacing of 'r . 

 

 

 

 

 

Figure 6.1: Discretization in integral approximation 

 

the kernel approximation is then formulated as 
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      (6.1.10) 

 

    Here, 'x is the spacing of points within the smoothing domain, i.e. '' rx   . The 

analytical result is calculated and compared with the integral approximation results, 

and then the error is obtained.  

 

Particle approximation  

In particle approximation 'x will be replaced by particle volume which is related to 

material properties. In order to keep consistent with the integral approximation, the 

volume of a particle should satisfy the following condition  

 

b

bm
x


 '          (6.1.11) 

 

b 

r  
'r  

a+1 a-1 a 

Smoothing domain of point a 
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    So the density can be expressed as  

 

'x

mb


           (6.1.12) 

 

    The mass of the system is assumed to be a unit as no specific material is considered. 

Since a uniform distribution of mass is preferred the discretization in particle 

approximation is slightly different from integral approximation. The problem domain 

is just uniformly divided into a number of particles as shown in Figure 6.2, i.e. in this 

case 'rr   .  

 

 

 

 

 

 

Figure 6.2: Discretization in particle approximation 

 

    Applying integral approximation to Equation (6.1.12) 
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    Hence, the particle approximation at each particle is expressed as 
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    The main difference between Equation (6.1.14) and (6.1.10) is the volume (spacing) 

representation. The difference of discretization between integral approximation and 

particle approximation is the results of the introduction of material property.  

 

Investigation of individual kernel functions 

It is obvious that smoothing length and particle numbers are the two key factors 

affecting the accuracy of a kernel approximation. Hence, the accuracy of each kernel 

function is tested with different smoothing length and different particle numbers by 

checking the errors from the two approximations. The values of error are calculated 

using Root Mean Square (RMS) method  

 





N

N 1b

2

b

1
         (6.1.15) 

 

where   is the RMS error, b is the error between SPH result and analytical results at 

the b th particle; N is the number of particles used for error analysis.  

    For more detailed analysis, the error is assumed to be related to the number of 

neighbouring particles and the value of smoothing length as  AN and 

 Bh respectively. Where  and   are variables to be determined, N is the 

particle numbers, h is smoothing length and A , B  are coefficients. Based on these 

assumptions, when logarithmic scales are used, the relationship between  and N will 

appear as a straight line and so is the case for   and h. 

    The gradient between RMS error and smoothing length in a log-log plot is used to 

determine how smoothing length affects the accuracy (shown in Figure 6.4 and 6.7) 

similarly, the gradient of the error against the particle numbers is used to find out how 

to improve the accuracy with particle numbers (shown in Figure 6.5 and 6.8).  

    The appropriate smoothing length can be determined based on the diagrams of 

RMS error against smoothing length; an error less than 1% is chosen to be the criteria 

and so for particle numbers. The better kernel function should give lower error.  

 

6.1.2 Results and discussions 

1). Integral approximation  
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Results obtained with SPH integral approximation and analytical results are shown 

below in Figure 6.3 
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Figure 6.3: Integral approximation results for various functions: xF  , 3xF  , 

xeF  ,  xF sin  and  xF tan  

     

    In Figure 6.3 it shows that the results obtained from integral approximation agree 

well with the analytical data except for function  xF tan  due to the singularity of 

the function. In this case the problem domain should be divided into two sections to 

avoid incorrect computation through the singular point.  

    The influence of smoothing length and the number of neighbouring particles on 

errors in integral approximation is studied next and the results are shown below in 

Figure 6.4 and 6.5 respectively.  
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Figure 6.4: Results obtained from integral approximation with changing smoothing 

length in the problem domain (N=100). The legend applies to the following figures of 

error analysis as well 
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    From Figure 6.4 it can be seen that in most cases decreasing the smoothing length 

can reduce the error. The function  xf tan is a special case. The error is high and it 

fluctuates. It is difficult to improve the results by decreasing the smoothing length. 

The reason for this is that this function is singular in the domain. Overall, the super-

Gaussian kernel function provides smaller errors and the results are not sensitive to 

the change of smoothing length.  
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Figure 6.5: Results obtained from integral approximation with particle numbers 

increasing inside the smoothing length (h=0.1) 
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    The same legend as shown in Figure 6.4 is used for all the figures on error analysis. 

From Figure 6.5 it is noted generally that to have 5 neighbouring particles can 

produce an approximation with an error under 5% for all kernel functions except for 

function  xf tan . This means that the ratio of about 2 between the spacing and the 

smoothing domain radius (kh) can provide accurate results. Increasing the number of 

neighbouring particles can slightly improve the accuracy of the approximation for 

most kernels except cubic spline kernel. It seems that quartic kernel provides the 

smallest error in most cases and cubic spline kernel is not sensitive to the decreasing 

smoothing length.  

 

2). Particle approximation  

Results obtained with SPH particle approximations and analytical results are shown 

below in Figure 6.6. 
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Figure 6.6: particle approximation results for various functions: xF  , 3xF  , 

xeF  ,  xF sin  and  xF tan  
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    The results obtained from particle approximation also agree with the analytical data 

except for function  xF tan . Influence of smoothing length and the number of 

particles on errors in particle approximation is studied and the results are shown 

below in Figure 6.7 and 6.8 respectively.  
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Figure 6.7: Results obtained from particle approximation with changing smoothing 

length (N=100) 
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    From Figure 6.7, it is clear that a smaller smoothing length provides smaller error. 

In the case of linear function approximation, the error is very small though the curves 

are not showing a clear trend. For liner function xF  , the results are normally very 

accurate even with a large smoothing length. Therefore, decreasing the smoothing 

length is not meaningful in this case. It seems that the supper Gaussian gives the best 

accuracy in this particle approximation and quartic is the second best.  
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Figure 6.8: Results obtained from particle approximation changing particle numbers 

(h=0.1) (In this method, error obtained for xF   is very small with all these kernel 

functions) 



86 

 

    In Figure 6.8, for functions 3xF  ,  xF sin  and xeF  , the accuracy can be 

improved by increasing the particle numbers same as for integral approximation. For 

function xF  the error is really small although the curve fluctuates with decreasing 

smoothing length. The supper-Gaussian kernel can provide the lowest error in most 

cases. For function  xF tan , the error is quite large with all the kernels.   

    Comparing integral approximation and particle approximation we can see that the 

error can be reduced with smaller smoothing length. The results can also be improved 

by increasing the number of particles but this is not as efficient as using smaller 

smoothing length. This indicates that a proper smoothing length is more important to 

obtain a correct approximation. For  xF tan , as the value of the function 

approaches infinite at its singular point within the problem domain, it is difficult to 

obtain an accurate approximation. In this case, the problem domain can be divided 

into two sections and error can be assessed in each section.  

    In both two approximations, all the kernels produce similar results, the choice of 

kernel is not very important in most cases.  

    More detailed data from the error analysis for the kernel functions investigated are 

listed in tables 6.1 and 6.2. In the case where the effect of smoothing length is studied, 

the particle number is fixed to 100 and in the case where the effect of the number of 

particles is examined, the smoothing length is fixed to 0.1. 

Table 6.1: Gradient of average error against particle spacing for function F=x  

 

Table 6.2: Gradient of logarithm of average error against logarithm of particle spacing 

for function  xF sin  (Here,  P-L and P-N stand for particle approximation with 

changing smoothing length and number of particles respectively, whereas I-L and I-N  

are for integral approximation with varying smoothing length and particle numbers 

inside the smoothing length respectively) 

 

kernel 

function 

Quadratic Quartic New-

quartic 

Johnson-

quadratic 

Super-

Gaussian 

Cubic-

spline 

Quadratic-

spline 

Quintic-

spline 

Gaussian 

P-L G 2.1677 1.9951 1.9990 2.0221 2.3737 2.0022 2.0028 2.0034 1.9906 
P-N G 0.0076 0.0434 0.0187 0.0377 0.0364 0.0124 0.0160 0.0148 0.011 
I-L G 2.4239 2.0003 2.0012 1.7935 0.0423 2.0013 2.0016 2.002 1.3694 
I-N G 0.4775 0.1954 0.1453 0.2036 0.1030 10

-6
 0.0340 0.0882 0.1853 

kernel 

function 

Quadratic Quartic New-
quartic 

Johnson-
quadratic 

Super-
Gaussian 

Cubic-
spline 

Quadratic-
spline 

Quintic-
spline 

Gaussian 

P-L G 2.1666 1.9945 1.9970 2.0193 2.3844 2.000 2.000 2.000 1.9873 
P-N G 0.0051 0.0066 0.0066 0.0064 0.0215 0.0066 0.0066 0.0066 0.0083 
I-L G 2.1226 2.000 2.000 1.9003 0.0844 2.000 2.000 2.000 0.9576 
I-N G 0.2322 0.1526 0.1052 0.1738 0.1043 10

-6
 0.0128 0.0531 0.0448 
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    The gradients of error against smoothing length are around 2 in both integral and 

particle approximation, which means that SPH approximation has a second order of 

accuracy with smoothing length. The influence of the number of particles on the 

errors is more noticeable in integral approximation than in particle approximation.  

This indicates that increasing the neighbouring particles is more efficient than 

increasing the total number of particles; the number of neighbouring particles 

determines the accuracy. 

    To summarise, integral approximation does not differ from particle approximation 

in most cases which means that the particle approximation is consistent with integral 

approximation. Different kernel functions give similar approximations. Especially for 

new quartic, cubic spline, quartic spline and quintic spline functions, they provide 

close results in most cases. It seems that the quartic kernel function shows the best 

performance generally. SPH approximation has a second order of accuracy with 

smoothing length. Decreasing the smoothing length or increasing the number of 

neighbouring particles is normally useful to improve the accuracy.  

 

6.2 Investigation of various factors with WCSPH  

Dam breaking problem is a classic benchmark problem for assessment of fluid 

simulations (Monaghan 1994). The model is shown in Figure 6.9. The water column 

is 0.09m (L=0.09m) by 0.18m (H=0.18m). At the starting moment of computation, 

the right side wall is removed instantaneously and the water column suddenly 

collapses as a result of gravity effect. The particles are assumed in hydrostatic state at 

the initial time instant. No-slip boundary condition is applied. 
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Figure 6.9: Dam breaking model 

 

    Simulations are carried out with different kernel functions, time step sizes and 

number of particles. The particles are assumed to be uniformly distributed in the 

domain initially. Lennard-Jones form of repulsive force given in Equation (5.1.2) is 

applied for the left and bottom wall as boundary treatments. Velocity, pressure and 

position are calculated according to Predictor-corrector algorithm in WCSPH method. 

Kernels including Cubic spline, quartic, quadratic, Johnson quartic and Gaussian are 

used. The time step size is s4105.0   and the number of particles is 30 x 60 in these 

cases. The position of the leading edge of the fluid is recorded and compared with 

experimental data (Martin & Moyce 1952) as shown in Figure 6.10. 
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Figure 6.10: Results obtained by using different kernel functions 

 

    From Figure 6.10 we can see that the results obtained by using quartic kernel are 

closest to the experimental data and quadratic kernel produces the worst results. Other 

kernels produce similar results.  

    To investigate the stability, various time step sizes are considered. The maximum 

time step size is decided to be s4100.1   based on the CFL stability condition. New 

quartic and quartic kernels are utilized in this case with 30 x 60 particles;  
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Figure 6.11: Quartic kernel using different time step size 

 

Figure 6.12: New quartic kernel using differetn time step size 

 

    It can be seen from Figures 6.11 and 6.12 that time step size does not affect the 

results significantly. However, during simulation, it was found that when larger time 

step of s4100.1  is used, only the simulations using the new quartic and quartic 

kernel were successfully completed. For the other kernel functions some inner fluid 

particles were found to penetrate the boundary with this time step size. This means 
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that time step size influences the stability of the algorithm and quartic kernel 

functions have better stability. 

    Different numbers of particles with quartic and new quartic kernels with a time step 

size of s4105.0   are used to see the possibility to improve the accuracy by 

increasing the particle numbers.  

 

Figure 6.13: Quartic kernel with different number of particles 

 

Figure 6.14: New quartic kernel with different number of particles 
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    It is observed from Figure 6.13 and 6.14 that the results are closer to the 

experimental data with increased number of particles. Especially in the early stage of 

the fluid motion, a larger number of particles provide better agreement with the 

experimental data especially in the early stage of the fluid motion. It is expected that a 

better results can be achieved during the entire process with more number of particles. 

However, when the particle numbers doubled, the computational time will also 

increase, and this makes the computation more expensive.  

6.3 Summary 

SPH approximation has second order of accuracy with smoothing length. Decreasing 

the smoothing length or increasing the number of neighbouring particles is useful to 

improve the accuracy. A ratio of 0.5 between particle spacing and the smoothing 

domain radius, i.e. 5.0
kh

dl
, can provide accurate results. Different kernel functions 

may result in some difference for the simulation but generally they produce similar 

approximations. A dam breaking case study further confirmed that increasing particle 

numbers can improve the accuracy of simulations. Time step size does not influence 

the accuracy significantly but it influences the stability of the algorithm. 

    Although these investigations are based on the WCSPH method, the conclusion is 

applicable for ISPH method as the general principle is the same. The difference of the 

performances of these two methods will be discussed in the next chapter.  
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Chapter 7 Performance comparison of ISPH and WCSPH  

As discussed in Chapter 4, the pressure of fluid can be computed through two 

approaches. One is WCSPH method which uses the equation of state to calculate the 

pressure and another is ISPH method in which the Poisson’s equation is solved. In 

order to determine which method should be selected for future applications a 

comparison of the performances of these two methods is carried out using a dam 

breaking flow simulation as a test case. In ISPH method the fluid density is assumed 

to be constant. The two solution approaches for Poisson’s equation, explicit solution 

approach and implicit solution approach, are both considered. After the determination 

of the preferred method, boundary treatments are investigated for the selected method. 

CPU time and flow patterns obtained from these two methods are compared.  

7.1 Dam breaking case 1 

The same model for dam breaking case study as presented in Chapter 6 is used again 

to compare the performance of ISPH and WCSPH methods. Two solution approaches 

for ISPH methods are both considered. To clarify the difference and to eliminate the 

influence from other factors such as smoothing length, kernel function choice, particle 

numbers and so on, same parameters are adopted for these different algorithms. The 

results of the position of leading edge of the fluid is shown in Figure 7.1 
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Figure 7.1: Results obtained from WCSPH and ISPH with explicit solution and 

implicit solution approach   

 

    It seems that the results obtained using ISPH method with explicit solution 

approach are closer to the experiment data although all the numerical results in Figure 

7.1 are very similar. In addition to the velocity, to be able to predict pressure correctly 

is also important. Hence, a simple case with a tank of hydrostatic water is simulated to 

investigate the pressure predictions of these methods.  

7.2 Prediction of hydrostatic pressure  

In the previous section the velocity prediction of ISPH and WCSPH is compared. In 

this section, the pressure distribution produced by these two methods will be 

investigated using a simple case with a tank of water in hydrostatic state. In order to 

obtain comparable simulations, the numerical model is set to be the same for these 

different methods. The tank size is 1.2m wide and 1.0m high, water depth is 0.6m. 

The particle spacing is 0.01m. Flow patterns at time t=0.5s and t=1s are shown in 

Figure 7.2 to Figure 7.4, with different colour representing different pressure values.  
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Figure 7.2: Pressure distribution from ISPH with explicit solution approach at 0.5s 

and 1s 

 

Figure 7.3: Pressure distribution from ISPH with implicit solution approach at 0.5s 

and 1s 

 

Figure 7.4: Pressure distribution from WCSPH at 05s and 1s 

 

    In Figure 7.2, coloured layers representing different pressure values can be 

observed at different water level. Similarly in Figure 7.3, pressure distribution is 

clearly defined. By contrast, it is difficult to recognize the coloured layers in Figure 

7.4, thus the pressure distribution does not seem to be well predicted. Furthermore, 

the value range appears to be incorrect as well. 

    Pressure values of one particle close to the middle point of the bottom of the tank is 

shown below: 
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                     Time (s)                        WCSPH          ISPH-explicit            ISPH-implicit 

0 5786 5786 5786 

0.05 -47020 4215 4500 

0.1 2534 5339 4934 

0.15 -2416 5005 5042 

0.2 43050 4548 5113 

0.25 -47890 5060 5167 

0.3 -18590 5512 5203 

0.35 664.8 5210 5242 

0.4 -8680 4811 5271 

0.45 13540 5371 5291 

0.5 34740 5571 5326 

0.55 8442 5036 5351 

0.6 -35530 5192 5368 

0.65 7605 5630 5382 

0.7 -24480 5455 5392 

0.75 32560 5036 5410 

0.8 -23690 5340 5395 

0.85 -21140 5741 5431 

0.9 -69940 5316 5435 

0.95 7157 5130 5429 

1 27060 5544 5406 

    

Table 7.1: pressure values (N/m
2
) of a fixed point on the bottom of the tank 

     

    In table 7.1, the pressure values obtained using WCSPH method change erraticly at 

different time and some unphysically negative values are obverved. This is because 

the pressure is calculated according to the equation of state which strongly depends on 

the change of density. A slightly reduced value of density may lead to a large negative 

value of pressure. in contrast, the pressure values obtained using ISPH method with 

both solution approaches are very stable.  

    The relative error of pressure is calculated and compared in Figure 7.5 
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Figure 7.5: Relative error of pressure obtained from different methods in hydrostatic 

state 

    From Figure 7.5 it is obvious that the error of pressure values obtained from 

WCSPH method is high and the values fluctuate irregularly. In contrast, ISPH method 

with both solution approaches provides smoother pressure values and the error is 

smaller than 0.01. The CPU time for different methods is shown in table 7.2.  

 

METHOD Time step size CPU time per step 

WCSPH 0.00001s 0.015584s 

ISPH-implicit 0.0005s 0.159695s 

ISPH-explicit 0.0005s 0.0281665s 

Table 7.2: CPU time for hydrostatic tank simulation of 1s with different methods 

 

    From table 7.2 we know that a larger time step size can be allowed for ISPH 

method regardless of which solution approach is used. The longest CPU time for one 

time step is using ISPH method with implicit solution approach, which is almost ten 

times of the time needed in WCSPH method. However, the total CPU time for a 

simulation of 1s is 319.39s in ISPH and 1558.4s in WCSPH method, which means the 

total CPU time can be reduced by using ISPH. The shorted CPU time is required 

when explicit solution approach is applied for ISPH method, which is one fifth of the 

time required in implicit solution approach. 
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    In order to further confirm that ISPH is able to perform better, another dam 

breaking case with a barrier in the middle of the tank is simulated in the next section. 

7.3 Dam breaking case 2 

In this section a dam breaking case with a barrier in the middle of the tank is 

simulated using WCSPH and ISPH with the implicit solution approach. The model is 

set up with a tank size of 0.8m wide and 0.6m high, the water column size is 0.3m x 

0.3m. Three cases with different number of particles are considered: the first one has 

15 x 15 particles; the second one 30 x 30 particles and the third one 60 x 60 particles. 

The time step size allowed for WCSPH is s5100.1  and for ISPH it is s4105  . The 

motion of water flow at different time is displayed and the pressure distribution is 

shown with different colours. In addition, CPU time for these two methods is 

compared. 

CASE 1: Using 15 x 15 particles with spacing of 0.02m in WCSPH  
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Figure 7.6: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s 

and 1s using 15 x 15 particles 

 

Using 15 x 15 particles with a spacing of 0.02m in ISPH 
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Figure 7.7: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s and 

1s using 15 x15 particles 

 

    Comparing Figures 7.3 and 7.4, the spray generated as the results of water impact 

on the barrier using WCSPH method is not as violent as that using ISPH. The pressure 

distribution as indicated by the colour difference of the particles looks more realistic 

in the ISPH data than in WCSPH results.  

 

CASE 2: Using 30 x 30 particles with a spacing of 0.01m in WCSPH 
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Figure 7.8: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s 

and 1s using 30 x 30 particles 

 

Using 30 x 30 particles with a spacing of 0.01m in ISPH 
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Figure 7.9: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s and 

1s using 30 x 30 particles 

 

    The flow patterns of the fluid in the second case obtained as shown in Figures 7.8 

and 7.9 are more realistic than in the first case. This is a further confirmation of the 

previous conclusion that the results of a simulation can be improved by using more 

particles. At 0.15s, the flow shown in these two Figures is similar regarding to 

position and form. At 0.25s, the front of the flow is stopped by the barrier and the rest 

of the fluid keeps moving because of the gravity. The large difference of the velocity 

in the fluid causes a splash. As the front of the fluid flowing over the barrier at 0.4s 

and reaching the other side of the barrier at 0.55s, the difference of the velocity in the 

rest fluid becomes smaller. At 0.8s, the fluid is divided into two parts. One part is 
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sloshing slightly behind the barrier. The other part as the front of the flow currently is 

contained on the other side of barrier. Comparing Figure 7.8 and Figure 7.9, some 

obvious differences of the flow patterns can be seen. The pattern of the splash 

generated in ISPH method is more violent than in WCSPH method.  In ISPH method 

some of the particles fly like a fragment of the spray while in WCSPH simulation it 

seems that the particles of the spray are held together. The cause of this is likely the 

pressure difference on the free surface of these two methods. In ISPH method, 

pressure is enforced to be zero for the particles on the free surface as a boundary 

condition whereas in WCSPH method, pressure values are calculated using the 

equation of state. Hence the pressure is not necessarily zero on the free surface in 

WCSPH. At 1s, there is more fluid over the barrier in ISPH than in WCSPH 

simulation. This indicates that the velocity of the fluid obtained in ISPH method is 

larger than WCSPH. 

 

    Looking at the colours of the particles which represents pressure distribution, it 

seems that only one single colour is shown in WCSPH which means the pressure is 

almost the same everywhere while in ISPH it can be seen that the colour on the 

bottom is brighter which means a higher pressure is in the deeper water. Hence, 

pressure distribution produced by using ISPH method is more reasonable.  

 

CASE 3: Using 60 x 60 particles with a spacing of 0.005m in WCSPH 
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Figure 7.10: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s 

and 1s using 60 x 60 particles 

 

Using 60 x 60 particles with a spacing of 0.005m in ISPH: 
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Figure 7.11: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s 

and 1s using 60 x 60 particles 

 

    The flow patterns of the flow and spray shown in Figure 7.10 and 7.11 are much 

clearer than the previous two cases. Same as the second case, the results produced by 

using WCSPH method are still different from the results produced by using ISPH 

method.  Several levels of different colours can be seen in Figure 7.8, which 

represents different pressure values at different water level. In contrast there is no 

clear colour level shown in Figure 7.7. This means that the pressure values obtained 

by using ISPH are more reasonable and better than WCSPH.  
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The CPU time for these three cases is given in table 7.3 

 

                spacing (m) 

SPH method 

 

dl=0.02m 

 

dl=0.01m 

 

dl=0.005m 

WCSPH 199.16(s) 246.17(s) 933.29(s) 

ISPH 7.471(s) 28.326(s) 124.6(s) 

  Table 7.3: total CPU time used with WCSPH and ISPH method by using different 

particle spacing (Time step size used is s4105  for ISPH and s510 for WCSPH) 

 

    It can be concluded from the figures above from 7.5 to 7.11 that a more realistic 

motion can be obtained by using more particles for both WCSPH and ISPH methods. 

To achieve a comparable simulation fewer particles are needed in ISPH method than 

in WCSPH method. Pressure distribution obtained from ISPH method is more 

accurate than WCSPH method. Considering the CPU time required for these two 

methods, ISPH is faster.  

    In conclusion, with the same algorithm process ISPH method can produce more 

accurate pressure values than WCSPH and also it requires less CPU time. Therefore, 

in this project ISPH method is preferred. The explicit solution approach for ISPH 

method is able to provide similar accuracy with the conventionally used implicit 

solution approach but the CPU time required is much less than the implicit solution 

approach. 

    The boundary treatment is now investigated for ISPH method to ensure easy model 

generation and efficient simulation.  

 

7.4 Boundary treatment investigation  

Two boundary treatments were proposed for ISPH method in Chapter 5. Although 

they have been used in WCSPH before, it is the first time they are used in ISPH 

method. These two boundary treatments are easy to implement and they are expected 

to be efficient for fluid structure interaction problems. They are applied to a dam 

breaking case to investigate the pressure calculations. 
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    In this case, the overall height of water column is set to be 0.6m and the width is 

1.2m. The size of the solid container is 3.22m long. The initial spacing of fluid 

particles is 0.01m, smoothing length is determined as 1.33 times of the spacing. The 

pressure values at a point 0.16m from the bottom on the right wall are recorded.  The 

results are obtained using ghost particle treatment, half spacing of wall boundary 

particles treatment and repulsive force boundary treatment and they are compared 

with experimental data (Zhou, et al. 1999) and the numerical data produced using 

Navier-stokes solver  (Abdolmaleki, et al. 2004) . 

 

Analysis of Pressure values 

Results obtained from different boundary treatments with SPH methods are compared 

with experimental data as shown below in Figure 7.12.  

 

  

Figure 7.12: Pressure history at point (3.22, 0.16) from different boundary treatments 

 

    From Figure 7.12 it is clear that all these three boundary treatments provide the first 

pressure peak around the right time compared with experimental data. The first peak 

values obtained from a Navier-Stokes solver are slightly higher than the observed in 

the experiment. Boundary treatments with repulsive force and ghost particles produce 

similar results and a denser wall particle boundary treatment gives slightly higher 
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peak value than the other two treatments. The overall curves agree well with 

experimental data except the second peak value. There is no obvious second peak 

pressure in the simulations. But compared with other numerical methods such as 

Navier-Stokes solver, SPH gives values closer to the experimental data.  

 

    Investigation of using different numbers of particles with these two boundary 

treatment is also carried out and the results are shown below in Figure 7.13.  

 

 

Figure 7.13: Investigation of repulsive force treatment with different particle spacing 

     

    From Figure 7.13 it can be seen that the curve with particle spacing of 0.0067m is 

closer to the experimental data. The values obtained with particles spacing of 0.01m 

fluctuates more than the others, which implies that decreasing the particle spacing 

does not always improve the accuracy. Since the ratio between particle spacing and 

smoothing length is fixed, so the number of neighbouring particles of a particle is 

fixed but the smoothing length is reduced accordingly. Decreasing smoothing length 

should lead to an improvement of the accuracy according to the previous investigation. 

This may imply that with the particle spacing reduced the number of particles will 

increase and the time step size should decrease to ensure results convergence.  
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Figure 7.14: Investigation of repulsive force boundary treatment with different 

time stepping sizes 

 

    Figure 7.14 shows the difference between the curve representing the results using 

time step size of s4105  and the other two curves especially in the predicted period 

of the first peak. The rest of the curves are almost the same and this means all the time 

step sizes are appropriate. When time stepping size of 0.0001s is used, the results are 

close enough to the experiment data. Considering the results shown in Figure 7.13, a 

time stepping size of 0.0001s seems to be a better choice for the simulation. However, 

with smaller time step it seems that the values of pressure fluctuate more severely 

than using a larger time step. This may imply that there are some other factors which 

influence the convergence such as the disturbance from the boundary treatment.  
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Figure 7.15: Investigation of denser wall particles treatment with different particle 

spacing 

 

    Comparing Figure 7.15 with Figure 7.13, similar observation can be made. The 

results obtained using a particle spacing of 0.01m seem to be worse than the one 

obtained using a spacing of 0.02m. To clarify this, the effect of using different time 

step sizes is studied and the results are shown below in Figure 7.16.  

 

Figure 7.16: Investigation of denser wall particles treatment with different time 

stepping sizes 
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    From Figure 7.16 we can see that similar to the repulsive force treatment, using a 

time step size 0.0001s provides better results than using 0.0005s. Only small 

difference can be observed when the time step size is further reduced. In this case a 

second peak can be observed when time step size of s5105  , which may indicate 

that using denser wall particles is a better boundary treatment compared to repulsive 

force treatment.  

 

7.5 Summary 

From the results of dam breaking simulations it is clear that ISPH produces better 

results than in WCSPH method. Another dam break case with a barrier in the middle 

of the tank was studied to further investigate the difference of the performance of 

these two methods. Water flow motions and the pressure at different times with 

different particle numbers were compared. Pressure distribution and water motion can 

be captured more realistically in an ISPH simulation. Similar performances are 

observed by using the two solution approaches for ISPH method. The explicit solution 

approach has a great potential for ISPH although it is not conventionally used.  The 

CPU time required needed in using WCSPH. Hence, ISPH is preferred. As the 

traditional boundary treatment for ISPH requires ghost particles, it is hard to use for 

complex geometries, two boundary treatments including repulsive force and denser 

wall particles are investigated. Pressure values obtained using these two boundary 

treatments are studied. The results show that these two boundary treatments work well 

with ISPH method. Applications of ISPH method to fluid solid interaction and multi-

phase flow will be discussed in the following chapters. 
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Chapter 8 Application to 2D fluid-rigid body interactions 

Based on the outcome of the investigation of different SPH methods in the previous 

chapter, ISPH is selected for the simulation of incompressible fluid. And two 

boundary treatments have been found to be suitable to produce good pressure values 

with ISPH method. They should be efficient for the modelling of the interface of fluid 

structure interaction problems. In this chapter, two fluid rigid body interaction 

examples, water entry of a wedge and the dam breaking problem involving a spring 

supported rigid wall, are simulated to demonstrate the performance of this method. At 

the interface, the solid is treated as a wall boundary to ensure no penetration. The 

physical properties carried by the solid particles contribute to the corresponding 

quantity calculations of the inner fluid particles within the smoothing domain. 

Therefore, the influence of the solid particles on the inner fluid particles is considered 

in the particle approximation, and the coupling condition between the fluid and the 

solid is automatically satisfied. The force acting on the solid is determined by the 

summation of the pressure on all the solid particles.  

8.1 Wedge dropping simulation 

Water impact is a common problem found in marine and offshore engineering. Wedge 

dropping test is used to study the reaction of ship slamming. The understanding of the 

influence of the fluid on the body is of interest for the safety consideration in the 

design of the marine structures.  

    As the velocity of the dropping wedge depends on the interactions with fluid, 

simulation could be difficult for the grid based methods due to the treatment of free 

surfaces and moving solid boundaries. Oger, et al. (2006) applied WCSPH method to 

wedge dropping simulation using denser particles in the impact area and the 

smoothing length was changed depending on the requirement of accuracy to ensure an 

acceptable level of density fluctuation in the fluid. Gong, et al. (2009) proposed an 

alternative method by using a sponge layer on the bottom of the tank to adjust the 

density calculation of the fluid particles. When Shao’s ISPH method was applied to 

water entry of free-falling wedge, mirror particles were used on the moving solid 
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(Shao 2009). With Lee’s ISPH method, the proposed two boundary treatments can be 

applied which will simplify the model generation and reduce computation time.  

    In this section, a symmetric wedge with a dead-rise angle θ of 30  (an angle 

measured upward from a horizontal plane at keel level) dropping into water as shown 

in Figure 8.1 is simulated using ISPH with the denser wall particle boundary 

treatment. The weight of the dropping wedge is 241kg, the width of the wedge is 0.5m 

and the length is 1m. The tank size is 2m x 1m. In the simulation, the wedge is placed 

just above the free surface of the calm water with a dropping velocity of 6.15m/s 

given from the 2D experiment (Zhao, et al. 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Figure 8.1: Water entry of wedge 

 

    The wedge is only allowed to move in the vertical direction and its motion follows 

the equation of motion for rigid body. The resultant water pattern is compared with 

the photo from the experiment (Tveitnes, et al. 2008). 

 

 

 

 

θ 

2m 

1m 

0.5m 

1m 
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Figure 8.2: Water pattern during wedge dropping 

 

    The vertical acceleration of the wedge will decrease when it entries the water. 

When the falling wedge hits on the water surface, the surface will be break because of 

the strong impact and water is pushed up around the wedge and water jets are 

generated in this stage as shown in Figure 8.2. The wave pattern obtained from SPH 

simulation is remarked with black lines for easy compare with the experiment. The 

velocity of the dropping wedge after impact and the impact forces on the wedge from 

water are compared with experimental data and analytical result given by Zhao, et al. 

(1997) in Figure 8.3 and 8.4 respectively. 
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Figure 8.3: Wedge dropping velocity in the water 

 

    Figure 8.3 shows a good agreement between velocity values obtained from 

experiment and the current SPH method. 

 

 

Figure 8.4: Impacting force on wedge 
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    In Figure 8.3 it shows that the dropping velocity decreases more rapidly after 

0.007s. Initially, the fluid force increases steadily and then slows down before 

reaching the peak at around 0.015s. After that the force starts to decrease. The 

dropping velocities obtained based on SPH method are slightly lower than the 

experimental values in the later stage with a maximum error of 2%. For the vertical 

fluid force shown in Figure 8.4, the computed values are slightly over-predicated at 

first and then it is under-predicated for a short period of time, but it is higher than 

experimental values at the last stage. Overall, both the dropping velocity and vertical 

fluid force obtained from the proposed SPH method agree well with experimental 

values. To investigate the effect of different parameters on the water entry process the 

following 3 cases are studied 

 

Case 1: different wedge masses with dead-rise angle of 30  and initial dropping 

velocity of 6.15m/s 

Case 2: different initial dropping velocities with wedge mass of 241kg and dead-rise 

angle of 30  

Case 3: different dead-rise angles with wedge mass of 241kg and initial dropping 

velocity of 6.15m/s 
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Figure 8.5: Time history of dropping velocities (top) and fluid forces (bottom) for 

different wedge mass 

 

    From Figure 8.5, it is clear that the heavier the wedge is, the slower the velocity 

decreases with higher peak fluid force. This is because the initial velocity is in the 

same direction as gravity force and the gravity force is larger for a heavier weight. So 

the results are reasonable.  
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Figure 8.6: Time history of dropping velocities (top) and fluid forces (bottom) for 

different initial velocities 

 

    As shown in Figure 8.6, the dropping velocity decreases more rapidly with a larger 

initial value. The three curves representing the velocities appear to be parallel to each 

other at the later stage, which means that deceleration is almost the same. For the fluid 

force, larger initial velocity generates higher fluid force at the early stage and a larger 

peak value. By contrast, the force values become almost the same at the later stage 

and this results in a same deceleration as observed in top figure of Figure 8.6.  
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Figure 8.7: Time history of dropping velocities (top) and fluid forces (bottom) for 

different dead-rise angles 

 

    From Figure 8.7 we can see that fluid force acting on a wedge is smaller for the 

wedge with a larger dead rise angle and consequently the velocity decreases much 

slower. This is because the vertical force on the wedge is a projection of pressure 

from the fluid. This projection is based on the cosine of the dead rise angle. A larger 

dead rise angle will lead to a smaller value. 

8.2 Dam breaking flow with a spring supported wall 

 

In practice, large fluid impact force on the solid may result in movement of structure. 

It is interesting to know how the fluid force on the solid is affected due to the 

movement of solid. A spring supported rigid wall as shown in Figure 8.8 is selected as 
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an example to investigate the influence of solid movement on the fluid interaction 

force.  

 

 

Figure 8.8: Spring supported rigid wall 

 

    In the simulation 120 x 60 particles with initial spacing of 0.01m are used for the 

inner fluid particles and for the spacing of boundary particle is 0.005m. All the 

settings in this case are the same as those used in the previous dam breaking case as 

discussed in section 7.3 (water column is 0.6m high and 1.2m wide, the wall is 3.22m 

long and 2m high). The only difference is that the right wall is attached to a spring 

which allows a limited rotational for the structure. The right wall stays stationary until 

the arrival of the fluid. It then starts to oscillate because of the combined effect of the 

fluid pressure and the restoring force of the spring. For a 3 second simulation the total 

CPU time is 5586.2s with time step size of 0.0001s, which is more than the CPU time 

of 1989.8s taken for the fixed wall.  

    The right rigid wall is only allowed to rotate and the following equation is used as 

the governing equation for the rotation (Xing, et al. 2003).  

 

fMKMgHI   sin        (8.2.1) 

 

θ 



121 

 

where 23/4 MHI  is the moment of inertia, M is the mass with values of 1kg, H is 

the distance between the centre of mass of the wall and the pivotal point of the 

rotation with value of 1m, K is the stiffness constant of the spring of value of 20 and 

fM is the moment produced by the fluid pressure. In the simulation, the moment 

fM is calculated from the fluid pressure as: 

 


N

b

b cos dllPM f          (8.2.2) 

 

    Here, b is the solid particle in contact with water; bP is the pressure at particle b, l is 

the distance from spring to particle b and dl is the particle spacing and   is the spring 

angle. 

    Fluid flow motion with the fixed wall and rotational wall are depicted in Figures 

8.9 and 8.10. 

 

Figure 8.9: Motion of fluid pattern with fixed wall at t=0.8s, 1.4s, 1.7s, 1.9s, 2.2s and 

2.45s 
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Figure 8.10: Motion of fluid pattern with spring supported wall at t=0.8s, 1.4s, 1.7s, 

1.9s, 2.2s and 2.45s 

 

Comparing Figure 8.9 and Figure 8.10 we can see that before 1.4s the motions of the 

water are similar for the two cases, but stronger waves are generated afterwards 

because of the rotation of the dam. 
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Figure 8.11: Impact pressure against downstream wall at point (3.22m, 0.16m) which 

is the initial coordinate for rotational wall 

 

    It is shown is Figure 8.11, before the second peak pressure values obtained in the 

situation when the dam can rotate are smaller. At the time around the second peak, the 

spring supported dam provides higher pressure values than the fixed case because 

after the first peak the fluid force on the solid decreases but the dam continues to 

rotate as a result of inertia. The spring keeps storing energy during this period. When 

the fluid pressure starts to increase again the spring achieves the maximum angle and 

then it forces the dam to return back, resulting in a stronger second peak. The values 

of these repeated peaks will be different with different spring stiffness. If the stiffness 

is large enough the wall could be treated as fixed. The vibration of the wall depends 

on the natural frequency of the spring (equals 0.71 in this case) as well as the 

impacting force. In fluid structure interaction cases, vibration and impacting force 

influence each other at the same time. 
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Figure 8.12: Early stage of impact fluid force momentum on the dam 

 

    Here, when the wall moves with the flow, the pressure peak is delayed as shown in 

Figure 8.11 but when the wall moves against the flow pressure peak is sped up as 

shown in Figure 8.12. 

8.3 Summary  

ISPH method is applied to fluid solid interaction in 2 dimensional cases. The two 

boundary treatments, i.e. repulsive force and denser wall particles on the boundary, 

discussed in the previous chapter are applied. The examples of wedge dropping and 

spring supported dam are used to demonstrate the performance of the method. The 

results show close agreement with experimental data. The influence of the parameters 

of wedge dropping problem including initial velocities, masses and dead rise angles 

are analysed. It was found that a larger dead rise angle or a larger weight would result 

in a slower deceleration; a larger mass or a larger initial velocity or a smaller dead rise 

angle would result in a higher vertical force. The flow involving spring supported wall 

is compared with that of a fixed wall and it shows that the movement of the all will 

delay the pressure peak.  
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Chapter 9 Application to air-water two phase flow 

In marine and coastal engineering fields, violent fluid-structure interactions can lead 

to air entrapment. Simplifying these problems as incompressible fluid interacting with 

a solid will not capture the true physical nature of the problem. The air phase may 

have a large influence on the water flow evolution and subsequently on loads on 

structures. Therefore, the application of the SPH method on incompressible fluid is 

extended to two phase flows involving air and water. The advantage of SPH for multi-

phase flow is that each phase of fluid follows its Lagrangian motion therefore the 

material interface is represented in a self-adaptively manner without the need for 

complex interface-capturing or front-tracking algorithm (Adami, et al. 2010). To 

model the compressible property of air and the incompressibility of water, a new 

method is proposed for air-water two phase flow simulation. These two different fluid 

phases are treated separately within the same time step. Air is solved using WCSPH 

and water is solved using ISPH with constant density. The time stepping algorithm is 

shown in Figure 9.1. No special treatment is required on the interface. The SPH 

formulations for multi-phase flow were given in Chapter 4. The standard SPH 

formulation for density and pressure gradient derived based on the assumption of 

continuous density of the material cannot be used for multi-phase flows especially for 

the cases when the density difference is large.  
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Figure 9.1: Time stepping algorithm for two phase flow using combined ISPH-

WCSPH methods 

 

    In this chapter, the dam breaking flow with air-water two phase fluids is used to 

demonstrate the performance of the proposed algorithm. Results obtained from single 

phase flow and air-water two phase flow simulations are compared. Two typical 

multi-phase flow examples, i.e. rising air bubble in water and Rayleigh-Taylor 

instability are investigated to test the proposed method.  
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9.1 Air-water two phase dam breaking 

The dam breaking case which has been studied in section 6.2 is simulated in this 

section taking into consideration of air-water two phase flow and the results are 

compared with the previous single phase case as shown in Figure 9.2.   

 

 

 

Figure 9.2: Position of the leading edge 

 

    The flow patterns of the fluid motion at different time instants are shown in Figure 

9.3 
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Figure 9.3: Fluid motion of dam-break in single phase case and multi-phase case at 

time 0.13s, 0.2s and 0.5s 

 

    From Figure 9.3 it is clear that in the dam breaking case, there is no significant 

difference on the fluid motion whether the effect from air is considered. This indicates 

that the velocity in a single phase case and a multi-phase case should be similar. A 

different initial air density is considered to simply test the behaviour of the algorithm. 

According to common experience, increasing the density of air should slow down the 

movement of water. When the initial air density is set to equal to that of the water, the 

whole fluid system is like a single phase fluid so that the water should stay stationary.  
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Figure 9.4: Multi-phase dam-break with air density increasing from 10 (kg/m
2
) to 100 

(kg/m
2
) and 1000 (kg/m

2
) at time 0.13s 

 

    Comparing Figure 9.4 with Figure 9.3, it is obvious that as expected the water flow 

is influenced by the density of the air. Increasing the air density will slow down the 

water movement. In the case when air and water have the same density, the water will 

hardly move. But because of the compressibility of air, the water column is deformed 

slightly under the pressure. This is consistent with our practical experience, which 

gives a certain qualitative validation of the proposed new approach.  

    To further prove the applicability of the proposed method for multi-phase flows, 

rising air bubble in water and Rayleigh-Taylor instability problems are simulated. 

Both the explicit and implicit solution approaches are used for the ISPH method. 

 

9.2 Rising bubble   

The model of the rising bubble example is sketched in Figure 9.5: a circular air bubble 

is free to rise through the initially stationary water. The number of particles used in 

this simulation is 60 x 100, with a particle spacing dl=0.01. The proposed method 

which combines ISPH and WCSPH methods is applied. And also WCSPH method is 

used for both fluids as a comparison. Repulsive force and denser wall particles are 

used on the boundary. The density ratio specified is around 0.001. Here the subscript 

a stands for air and w  stands for water; the parameter used for the equation of state is 

4.1 for air. 001.0t for ISPH-WCSPH method and 0001.0t for WCSPH. 
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Figure 9.5: Sketch of the problem of air bubble rising in water 

 

    The results obtained by Sussman, et al. (1994) using different number of grids and 

different Bond numbers at 0.44s are displayed in Figures 9.6 and 9.7 as a reference. 

Here the Bond number is a dimensionless number used in the study of atomization 

involving bubbles and drops. By definition, Bond number equals to    /' 2 gL , 

where  is the density of a bubble or drop, '  is the density of the surrounding 

medium, L is a characteristic dimension, g is the acceleration of gravity, and  is the 

surface tension of the bubble or drop. 
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Figure 9.6: Convergence test for rising bubble with different grids form Sussman, et 

al.(1994) (t in the picture is non-dimension time defined as   2
1

/' Rgt , 't is the 

dimensional time) 

 

 

Figure 9.7: Results from Sussman, et al. (1994) of bubble rising with different Bond 

numbers: (a) Bond number 200.0 (b) bond number 25.0 (t in the picture is non-

dimension time computed as   0001.0/ 2
1

 Rgt ) 

 

    It can be seen that the state of air bubble is influenced by various factors such as the 

numbers of grids. The exact state of the bubble is also sensitive to Reynolds number, 

surface tension, and density ratio, etc. In this project, three methods are applied: 1) 

ISPH-WCSPH with explicit solution process; 2) ISPH-WCSPH with implicit solution 

process and 3) WCSPH methods. The results are slightly different when different 

values of modelling parameters are used. A selection of results are shown in Figures 

9.8 to 9.13 including the state of the bubble and the pressure distribution.  
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Figure 9.8: Motion at t=0.2 and t=0.45 with WCSPH method 

 

 

Figure 9.9: Pressure distribution at time of t=0.2 and t=0.45 with WCSPH method 
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Figure 9.10: Motion at time of t=0.2 and t=0.45 using ISPH-WCSPH with explicit 

solution approach 

 

Figure 9.11: Pressure at time of t=0.2 and t=0.45 using ISPH-WCSPH with explicit 

solution approach 
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Figure 9.12: Motion at time of t=0.2 and t=0.45 using ISPH-WCSPH with implicit 

solution approach 

 

Figure 9.13: Pressure distribution at time of t=0.2 and t=0.45 using ISPH-WCSPH 

with implicit solution approach 

 

    The positions of bubble obtained using different methods are compared in the 

following figure  
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Figure 9.14: Bubble position comparation 

 

    From these figures it can be concluded that all three methods are able to provide 

reasonable predictions for the positions of the rising bubble. As time passes, the 

bubble rises, deforms and forms a horseshoe shape. Since the shape of the rising 

bubble is sensitive to many factors such as Bond number or the number of grids for 

the level set approach, the difference between SPH methods and the level set 

approach is expected as different parameters are used in those two different methods. 

It seems that the particles are distributed unevenly along a dragged interface. To 

improve the performance more particles can be used as shown in Figure 9.15 and 9.16. 

Also, a higher order of time stepping algorithm can be considered to improve the 

accuracy of SPH simulation. The combined ISPH and WCSPH method provides a 

better defined interface than the others. Pressure distribution is continuous in these 

two fluids except at the interface. It seems that there is a pressure jump at the interface 

especially when these two fluids are modelled with different methods. It indicates that 

there is a pressure difference produced by different methods but this difference is 

relatively small so that the whole system is still consistent.  
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method Time-step size (s) CPU time per time step(s) 

WCSPH 0.00001 0.0219 

explicit ISPH-WCSPH 0.0001 0.0739 

implicit ISPH-WCSPH 0.0001 0.4874 

Table 9.1 CPU time for rising bubble with different methods 

 

    The CPU time requirement for each method is given in table 9.1. Although the 

combined ISPH-WCSPH method can produce the smoothest results under the same 

conditions, it needs much more computation time than the other two methods. 

Generally, the combines ISPH-WCSPH method with the explicit solution approach 

has more potential to be widely used in the future.   

    As it is known that the accuracy of the SPH method can be improved by using more 

particles, it is interesting to see how the bubble will deform with more particles. Since 

WCSPH is the least time consuming approach and the result from the three methods 

are similar under the same model setting; only WCSPH is used in the following 

simulation to study the effect of particle spacing. 

 

 

 Figure 9.15: Motion at t=0.2 and t=0.45 with WCSPH method with particle 

spacing=0.005m (CPU time: 0.0445s per time step) 



137 

 

 

Figure 9.16: Motion at t=0.2 and t=0.45 with WCSPH method with particle 

spacing=0.001m (CPU time: 0.0923s per time step) 

 

   Comparing Figures 9.15 and 9.16, the shape of the deformation of the bubble with 

more particles is closer to the results obtained from the level set approach especially 

for the bottom side of the bubble. However, the CPU time is much higher due to the 

increased number of the particles.   

9.3 Rayleigh-Taylor Instability  

Rayleigh-Taylor instability is a classical testing case for the flow of two fluids of 

different densities. At the beginning, the heavier fluid is on top of the lighter fluid. 

The heavier fluid will descend and the lighter fluid will rise. Rayleigh-Taylor 

instability is considered in this section since this test case requires an accurate 

modelling of the interface between two different fluids. The model with a sinusoidal 

interface which is widely used is selected (Cummins & Rudman 1999; Hu & Adams 

2007; Grenier & Touze 2008). The computational domain is rectangular as shown in 

Figure 9.17, a lighter fluid is filled in the lower part and a heavier fluid whose density 

is 1.8 times of the lighter fluid is filled above the interface located at  xy 2sin1 . 

No slip boundary condition is applied. Five methods are used in this case: 1) ISPH 

with implicit solution; 2) ISPH with explicit solution; 3) ISPH-WCSPH with implicit 

solution; 4) ISPH-WCSPH with explicit solution and 5) WCSPH method. In the 
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equation of state, 7  is used for both fluids. 60 x 120 particles are used in the 

simulation. The initial state of the fluid and pressure distribution is shown in Figure 

9.17. 

 

 

Figure 9.17: Initial state and pressure distribution of Rayleigh-Taylor instability 

 

    The result obtained using level-set method (Grenier & Touze 2008) is shown in 

Figure 9.18 as a reference. 

 

Figure 9.18: Rayleigh-Taylor instability problem simulated using Level-set method at 

time t=5 (Grenier & Touze 2008) 

1 
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    The interface positions and related pressure distribution at times t=3 and t=5 for 

each SPH method are shown in Figures 9.19 to 9. 28. 

 

 

Figure 9.19: Flow pattern at time t=3 and t=5 using ISPH with explicit solution 

approach 

    The overall shape of the two-phase flow system at t=5 shown in Figure 9.19 is 

similar to Figure 9.18 and the interface is clearly defined.   

 

Figure 9.20: Pressure distribution at time t=3 and t=5 using ISPH with explicit 

solution approach 
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    The pressure is distributed continuously as shown in Figure 9.20. As the legend 

indicates, a brighter colour represents a higher pressure. Hence, it is reasonable to see 

the brighter colour on the bottom of the fluid rather than on the top. At time t=5 the 

darker colour turns to cover more area than at time t=3. This means that the pressure 

of the system is reduced as the velocity of the fluid increases.  

 

 

Figure 9.21: Motion at time of t=3 and t=5 using ISPH with implicit solution 

approach 

 

    From Figure 9.21 we can see that the heavier fluid moves down and the lighter 

fluid rises up and the interface is still clearly defined. However, comparing Figure 

9.21 with Figure 9.19, it is seen that the volume of the heavier fluid sinking into the 

lighter fluid is reduced when ISPH method with implicit solution approach is used.  
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Figure 9.22: Pressure distribution contour at time t=3 and t=5 using ISPH with 

implicit solution approach 

 

    Comparing Figure 9.22 to Figure 9.20, it is noted that the pressure distribution 

obtained from explicit solution approach is different from the results obtained from 

the implicit solution approach. Except in the area near interface, the pressure 

distribution in the rest of the fluid seems only slightly changed from time t=3 to t=5 in 

Figure 9.22 and the overall height of the fluid is decreased. This may be related to free 

surface treatment as the implicit solution approach requires boundary values. In the 

cases when the space is fully filled with fluid no particles will be identified as free 

surface particles and hence no boundary values will be specified. Therefore, special 

treatment on the initial model setting is required to improve the performance of this 

approach.  
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Figure 9.23: Motion at time of t=3 and t=5 using ISPH-WCSPH with explicit solution 

approach 

    The overall flow shape shown in Figure 9.23 is similar to Figure 9.18 although the 

volume of the incompressible fluid seems slightly larger.  

 

Figure 9.24: Pressure distribution contour at t=3 and t=5 using ISPH-WCSPH with 

explicit solution approach 

 

    Pressure distribution shown in Figure 9.24 is generally continuous. Pressure values 

of incompressible fluid seem slightly lower than the compressible fluid at the same 

level. The accuracy of pressure prediction still needs to be improved.  
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Figure 9.25: Motion at time of t=3 and t=5 using ISPH-WCSPH with implicit solution 

approach 

    Comparing Figure 9.25 and Figure 9.18, the shapes of the flow are similar and the 

interface is clearly defined. However, in contrast to the previous case in which 

explicit solution approach is used, the volume of the compressible fluid (lighter fluid) 

at time t=5 seems expanded slightly.   

 

Figure 9.26: Pressure distribution at t=3 and t=5 using ISPH-WCSPH with implicit 

solution approach 
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    The overall pressure distribution shown in Figure 9.26 is clearly continuous except 

in the area near the interface. Some lower pressure values are observed at the interface 

especially for the incompressible fluid at t=3. By contrast, pressure values of 

incompressible fluid are slightly higher than the compressible fluid at the same level 

at t=5. Slight difference of pressure values is acceptable because the values are 

obtained from two different algorithms. 

 

 

Figure 9.27: Motion at time of t=3 and t=5 using WCSPH 

 

    The shape of the flow shown in Figure 9.27 is reasonable as it is similar to Figure 

9.18. However, the interface is less sharply defined compared to the results obtained 

from other methods.  
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Figure 9.28: Pressure distribution contour at t=3 and t=5 using WCSPH 

 

    The pressure distribution is not clear in Figure 9.28. The pressure at different height 

cannot be read based on the colour.   

    From Figure 9.19 to Figure 9.28 and compared to Figure 9.18, although there are 

differences in the details of the results produced by these different methods, the 

overall motion of the fluid is reasonable. The interface is clearly identified from the 

simulation. Particle motions obtained from ISPH methods and ISPH-WCSPH with 

implicit solution approach are smoother than the others. Pressure distribution is 

clearly shown in ISPH method and ISPH-WCSPH method in contrast with WCSPH 

method where the pressure distribution is not clear.  

 

method Time-step size (s) CPU time per step (s) 

ISPH-explicit 0.0005 0.1889 

ISPH-implicit 0.0005 0.4442 

ISPH-WCSPH-explicit 0.0005 0.0264 

ISPH-WCSPH-implicit 0.0005 0.6696 

WCSPH 0.00005 0.0219 

Table 9.2: CPU time for Rayleigh-Taylor instability simulation with different 

methods 
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    It is clear from table 9.2 that the implicit solution approach for ISPH combined 

with WCSPH takes more computational time than the others. The ISPH method alone 

with the implicit solution approach requires the second most computational time. This 

implies that extra iteration is required for dealing with two phase flows. Besides, 

when ISPH combines with WCSPH, the pressure value needs to be transferred from 

the WCSPH solution in the Poisson’s equation which leads to more iteration to reach 

the convergence. The interesting point is that the computational time is reduced as 

much as thirty times when WCSPH is combined with ISPH using explicit solution 

approach. This combination requires the least computational time. This indicates that 

the ISPH method with explicit solution approach has more potential in the future. 

9.3 Discussion  

A new method which combines ISPH and WCSPH methods for air-water two-phase 

flow is developed. For incompressible fluid, constant density is used, while for 

compressible fluid the change of density due to compressibility is calculated. The 

initial consideration for this method is to reduce computational time as well as to 

preserve accuracy. However, from the results it is clear that combining ISPH using 

the implicit solution approach with WCSPH method will increase the computational 

time because of extra iteration. By contrast, the computational time can be reduced 

significantly when WCSPH is combined with ISPH using the explicit solution 

approach.  

    Two testing examples: rising bubble in water and Rayleigh-Taylor instability 

problem have been simulated using the proposed methods. Although minor 

differences can be seen from the different methods, the fluid motion is well predicted 

by all methods used. Hence, it can be concluded that the new method developed is 

capable for simulating air water two-phase flows. However, the results can be further 

improved by using different parameters or a higher order of time stepping algorithm. 

In addition, certain correction methods such as XSPH can be considered. In dam 

breaking simulation, no significant change is observed when effect of air is 

considered. 

    In short, the proposed new method which combines ISPH and WCSPH methods 

has shown great potential for multi-phase flow simulations with large density ratios.  
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Chapter 10 Application to 3D fluid rigid body interactions 

 

To obtain more realistic results for simulating a general fluid solid interaction 

problem, a 3D algorithm with ISPH method has been developed. The solid is assumed 

to be rigid so it can be considered as moving boundaries for fluid. Since repulsive 

force has been proved to be efficient for ISPH method with 2D examples it will be 

used for 3D simulations in this chapter. The advantage of this boundary treatment will 

be more important in 3D simulations of fluid-structure interaction problems as it 

requires the least number of particles on the boundaries compared to other boundary 

treatments. The algorithm can be extended to deformable solid interacting with fluid 

by using elastic or plastic theories for solid.   

    Due to the limitations of memory space and CPU time consumption only single 

phase flow is considered for fluid. Some examples including dam breaking and water 

entry of wedge which have been studied in the previous chapters are simulated again 

in 3D for comparison purpose. Finally, aircraft ditching and landing gear running on 

the wet runway are investigated. 

10.1 3D dam breaking 

The experimental model for dam breaking case study used in section 6.2, 7.1.and 9.1 

will be adopted here. The only addition in the model setting is along the third 

direction there is a depeth of 1m. The initial particle spacing is 0.01m. Quartic kernel 

funciton is used, smoothing length is 1.33 times of the spacing.  The patterns of the 

flow at time 0.005s and 0.007s are shown in Figure 10.1. 
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Figure 10.1: Fluid patterns at time 0.005s and 0.007s 

     

    A smooth flow pattern is shown in Figure 10.1 whearas in Figure 10. 2 the position 

of the leading edge of the fluid predicted using 3D SPH method is shown together 

with 2D results and experimental data.    
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Figure 10.2: Position of leading edge of dam break 

 

    From Figure 10.2 it is clear that the results obtained from 3D simulation is closer to 

the experimental data compared to 2D case, although the difference is not significant 

since the flow is in fact largely 2D. But this gives a preliminary verification of the 3D 

algorithm. In the next section, the wedge dropping example will be studied in the 3D 

case to provide more evidence for the performance of the algorithm.  

 

10.2 3D wedge dropping 

The wedge dropping model is the same as the one used in section 8.1 with an 

additional consideration of the third direction. Particles are distributed uniformly with 

spacing of 0.01m and time step size is 0.0001s. The motion of wedge and wave 

pattern generated during dropping are shown below in Figure 10.3.  



150 

 

 

 

Figure 10.3: Motion of wedge dropping at time 0.035s viewing from above and front 

 

    From Figure 10.3 we can see that at the moment of the wedge entery, the surface of 

the water breaks into two parts symmetrically, with the water splash running along the 

edge of the wedge. This is the same as in 2D simulation. From the top view it is clear 

that the splashing water is forced up by the dropping wedge and then it plunges back 

into the rest of the water surface. The velocity and vertical force on the dropping 

wedge are compared with experimental data as well as the results from 2D simulation 

in Figures 10.4 and10.5. 
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Figure 10.4: Velocity of wedge dropping 

 

 

Figure 10.5: Vertical force profile for wedge dropping 

 

    From Figure 10.4 it is clear that the velocities obtained from 3D simulation are 

closer to the experimental data. From Figure 10.5 it seems that the force on the wedge 

obtained from 2D simulation is closer to the experiment data whereas the 3D results 

are closer to the analytical results.  



152 

 

10.3 Water spray generated by landing gear 

All aircraft designed to take-off or land on conventional runway must have ability to 

operate when the runway is wet.  As it is known that a wet runway may affect the 

braking and manoeuvring capability and also it may lead to a reduction of the take-off 

acceleration. Water spray thrown up by the aircraft tyres could be ingested into the 

engine especially for those large multiengine aircraft with aft-fuselage-mounted 

turbojet engines. If sufficient water is ingested, a jet engine can experience 

compressor stalls or even flameout. This stall or flameout situation can be especially 

dangerous if it occurs when approaching the moment of take-off. Typically, the 

requirements of the commercial aircraft certification includes a section that the 

aircraft manufacturer demonstrate the capability to operate on a runway with one-half 

inch of standing water without experiencing any spray ingestion problems. Some 

aircraft have a configuration that is free of spray problems regardless of external 

conditions such as water depth and speed. Other aircraft have configurations that 

make spray ingestion a common problem over a wide range of conditions. These 

aircraft must fit with chained tyres or nose wheel spray deflectors. Numerous studies 

have been conducted to determine whether aircraft are susceptible to water spray 

ingestion, but they were usually carried out after construction of the aircraft. Although 

the design of aircraft and engine type and location are dependent on many variables, it 

is desirable to configure an aircraft and its engine in a geometry that eliminates the 

spray ingestion potential (Daugherty & Stubbs 1987).  

 

    Simulation of landing gear running on a wet runway is carried out in this section to 

study the water spray pattern.  

 

    As a simplified model, a single rotating wheel is used to represent the landing gear 

and the fuselage is not included in the model. In the simulation, the radius of the 

wheel is 0.15m and its width is 0.1m. The gear model is hollow inside to reduce the 

number of particles. The side view and top view of the model are shown in a) and b) 

of Figure 10.6.  
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a): side view of the gear model 

 

b): top view of the gear model 

Figure 10.6: SPH model of the gear 

 

    The overall length of the runway is 8m, its width is 0.5m, and standing water height 

is 0.05m. Particle spacing of the inner fluid particles and boundary particles are the 

same which is 0.01m. The total number of particles is 442662. No-slip boundary 

condition is applied using the ISPH method with repulsive boundary force. The 

motion of each particle on the rotating wheel is a combination of a rotation about the 

mass centre and a forward translation. The theory of solid motion introduced in 

Chapter 3 is adopted. Different rolling velocities are considered. The pattern of the 

water spray with a rolling speed of 12.192m/s at different time instants is shown 

below in Figures 10.7 to 10.10. 
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Figure 10.7: Initial state of the landing gear 
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Figure 10.8: Pattern of water spray at time 0.05s, 0.1s, 0.15s, 0.2s and 0.25s 
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Figure 10.9: Top view of the water spray pattern at 0.25s 

 
 

Figure 10.10: Front view of the water spray pattern at 0.25s 

 

 

    The pattern of water spray shown in the figures above is consistent with the 

description of water trajectory given in Daugherty & Stubbs (1987): ‘The water in the 

path of the tyre footprint is almost completely displaced. Some of the water is expelled 
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forward out of the footprint (bow wave) with low density. The major contributor to the 

volume of water which might be ingested by the engine is the water ejected laterally 

from the tyre footprint. As water is expelled laterally from the tyre footprint, it 

encounters an adjacent wall of water next to the tyre footprint edge, which absorbs 

some of the lateral energy. The collision causes the original laterally moving unit of 

water to change direction and to be thrown upwards. The next unit of water on the 

surface, having absorbed lateral impacting energy, undergoes the same process and 

is thrown upwards but with less initial velocity. Such action induced by the tyre 

produces a sheet of spray, as opposed to a circular jet, and the wake from the tyre on 

the surface, much like that from a boat, has enough lateral energy to propel a much 

larger amount of surface water into the air than in the direct path of the tyre 

footprint.’ 

 

    It is the benefit of the meshless nature of the SPH method that the water spray can 

be simulated realistically. With the boundary treatment proposed for the ISPH method 

the fluid structure interaction problems can be simulated efficiently.  

 

 

    The maximum spray height from different rolling velocity is presented in table 10.1 

and the related values of lateral and vertical components are shown in Figure 10.11. 

 

Tire  speed Maximum spray height CPU time  

6.096m/s 0.608m 56484s 

12.192m/s 1.168m 52968s 

18.288m/s 1.9004m 51952s 

24.384m/s 2.6582m 50369s 

Table 10.1: spray height and CPU time for different rolling velocities 
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Figure 10.11: Spray rate caused by different tyre speeds 

 

    Naturally, higher rolling speed will produce higher water spray and therefore it is 

more likely that the water will be ingested into the engine. From the simulation point 

of view, higher velocity requires less computational time. 

    The influence of water depth is also considered. The spray patterns obtained based 

on three different water depths of 0.05m, 0.08m and 0.1m with the same rolling speed 

of 6.096m/s are depicted in Figure 10.12.  

 

(a). water depth is 0.05m 
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(b). water depth is 0.08m 

 

 

 

(c). water depth is 0.1m 

Figure 10.12: water spray at t=0.25s with different water depths 

     

    The most noticeable difference that can be seen in Figure 10.12 is the height and 

volume of the “bow wave” which is the amount of water expelled forward out of the 

footprint. 

    Comparing Figure (a), (b) and (c) in Figure 10.12, it is clear that a shallow water 

depth will produce a weak bow wave. As the water depth increases the bow wave 

becomes stronger. The bottom of the fuselage will be impacted and the windscreen 

will be affected by the large amount of water spray. This will cause difficulties for the 

operation of the aircraft. The amount of the lateral spray rises with the increase of 

water depth as well. Hence, it is important to reduce the water depth on the runway as 

far as possible.  
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    The maximum spray height as well as the CPU time required due to different water 

depth is listed in table 10.2  

 

Water depth Maximum spray height Number of particles CPU time 

0.05m 0.608m 241656 25228s 

0.08m 0.897m 327840 45642s 

0.1m 0.956m 384642 60965s 

Table 10.2: spray height and CPU time for different water depths 

 

    The CPU time required increases with the water depth and this is reasonable since 

more particles are used in the computation for a greater water depth. According to the 

values of the maximum spray height, the spray becomes stronger as the water depth 

increases. For a specific case in practice, the water spray pattern can be predicted 

using the numerical method developed so its impact to the operation and safety can be 

assessed. 

10.4 Aircraft ditching simulation 

Ditching is an emergency landing of an aircraft on water. The ability of an aircraft to 

remain afloat is important especially for rescue operations. In addition, the high 

impact loads created when the aircraft comes into contact with water may lead to 

damage of the structure and together with the violent decelerations this presents a 

substantial risk of severe injuries for passengers (Streckwall, et al. 2007). Thus the 

loads and motions of the aircraft during ditching need to be determined. The 

conventional approach to investigate aircraft ditching is either to carry out 

experiments in model scale or to adopt numerical approaches that deliver equivalent 

data.  

 

    Since SPH has advantage in simulating violent free surface flows, it should be 

suited for aircraft ditching simulation. And on the other hand, it is noted that the 

ditching process is a forward speed dominated flow problem involving structure 

moving on the surface of water. So it is appropriate to use this as an example to test 

the performance of SPH method for this type of problem.  
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    The numerical model is based on the model aircraft tested by McBride & Fisher 

(1953) as shown in Figure 10.13. The test model is designed with a high-wing in 

order to eliminate the influence from the wing. The full model is 1.22m long, has a 

maximum radius of 0.1m for the cross section of the fuselage, the main wing spans 

1.68m and the weight is 5.67kg. The mass centre is located at a distance of 0.53m 

away from the nose and the moments of inertia in the principle axes are also given in 

the report of the test, which are  

2293352.0 kgmI x  , 2293352.0 kgmI x  , 2527952.0 kgmI x  .  

 

 

Figure 10.13: Original model configuration (McBride & Fisher April 1953) 

 

    In the simulation, the water block is 16m long, 2m wide and 0.5m deep. The 

aircraft and water are both represented using particles with a same particle spacing of 

0.05m. The time step size is 410 s. No-slip boundary condition is applied. On the 

fixed wall, repulsive force and wall pressure are both used whereas on the aircraft 

only the pressure of the particles is considered.  

    In order to test the capability of the developed algorithm for ditching simulation, a 

simplified situation of a floating aircraft having zero speed, with an attitude of 0
o
 and 

10
o
, as shown in Figures 10.14 and 10.15 are considered first. The basic numerical 
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model setting is the same as that in the ditching test, only the length of the water block 

is reduced to 8m to reduce the particles involved in the computation.  

 
Figure 10.14: floating aircraft with an attitude of 0

o
 

 
Figure 10.15: floating aircraft with an attitude of 10

o
 

 

 

    In theory, the aircraft floating on the surface of water will start to sink because of 

the gravity force. After it goes into water it will experience pressure force from the 

water. Thus, the velocity of the aircraft will change as a result of these forces. Besides, 

since the geometry of the aircraft is not symmetric in both x and z directions, there 

will be a resultant moment from the pressure about the mass centre, which will cause 

the aircraft to rotate. The calculated velocities and attitude during the floating process 

are shown in Figures 10.15 and 10.16.   
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Figure 10.16: Velocity of the aircraft with different initial attitude 

 

    From Figure 10.16 we can see that the downward velocity increases in the 

beginning because of the gravity force. After some time the aircraft sinks deeper into  

the water and the downward velocity decreases because of the increased buoyancy. 

And then the overall vertical velocity fluctuates slightly around zero. This means the 

gravity force and buoyancy balances each other. The surge velocity is negative and 

the value increases from the beginning to 0.9s for both two cases. The acceleration is 

larger and fluctuates more frequently when the initial attitude is 10
o
.  

 

 

Figure 10.17: Attitude of the aircraft with different initial attitude 
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    It shows in Figure 10.17 that for the case with an initial attitude of 10
o
 the attitude 

of the aircraft decreases rapidly in the beginning. Afterwards the value of the attitude 

fluctuates slightly around zero just the same as the vertical velocity. For the case with 

an initial attitude of 0
o
, the value of the attitude does not change significantly.  

    In brief, the values of velocity and attitude look reasonable so the simulation of the 

floating aircraft is regarded to be successful. 

 

    Next, a ditching process with s a landing speed of 9.14m/s and an initial attitude of 

10
o
 is simulated using the algorithm. The total number of particles is 190722, total 

CPU time is 43555s for 1s simulation. The snapshots of the aircraft and the flow 

pattern during ditching are shown in Figure 10.18.   
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Figure 10.18: snapshots of ditching at time t=0, t=0.1s, t=0.2s, t=0.3s, t=0.4s, t=0.5s, 

t=0.6s, t=0.7s, t=0.8s, t=0.9s, t=1s 

         

    From Figure 10.18 it seemd that the aircraft bounces up and down after it made 

contact with the water during the process. Typically, in the period between 0.5s and 

0.6s, the aircraft is out of water flying in the air. The value of velocity and attitute of 

the aircraft is recorded and dispalyed in curves shown in Figures 10.19 and 10.20. 
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Figure 10.19: Forward velocity during ditching 

 

 

Figure 10.20: Attitude during ditching 

 

    Figure 10.19 shows the variation of the velocity during both ditching simulations  

the test whereas Figure 10.20 depicts the attitude of the aircraft model. It can be 

observed that during the experiment, the aircraft attitude increases strongly from 0.1s 

till 0.35s and then decreases to minus 10
o
 at 1s. Correspondingly, the velocity 

decreases rapidly from the beginning till 0.35s, and then decreases less rapidly 

afterwards. By contrast, the attitude of the aircraft obtained from the ISPH simulation 

fluctuates more. It decreases rapidly in the first 0.1s and then increases to 28
o
 at 0.35s. 
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Afterwards it decreases till 0.5s and another increase is observed. It seems that the 

aircraft flies up into air at that moment. The attitude increases and decreases in the 

next period of 0.4s. The corresponding velocity decreases more slowly in the 

simulation than in the experiment.  

 

    The difference between the results from the experiment and ISPH simulation can be 

attributed to the problem that no suction force is modelled by the current ISPH 

algorithm (Climent, et al. 2006; Streckwall, et al. 2007; Toso 2009; Zhang, et al. 

2012). In reality, the velocity of the water flow increases around the immersed part of 

the fuselage, which causes the pressure to decrease according to Bernoulli’s equation. 

Although same principle applies to air flow too, the presure on the wetted part of the 

fuselage should decrease more as water has a larger density and so a suction force is 

generated. The results obtained by Toso (2009) considering the effect of the suction 

force is displayed in Figure 10.21 as a reference. 
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Figure 10.21:  Reference results obtained by Toso (2009) 

 

    From the results shown in Figure 10.21, it is clear that suction force is a crutial 

factor for an correct simulation. It was reported that SPH method could not produce 

negative pressure hence it failed in the prediction of suction force (Climent, et al. 

2006); more research is still required to eliminate the deficiencies of SPH method for 

modelling of fluid solid coupling motions dominated by forward speed.   
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Chapter 11 Conclusion and Future work 

 

SPH is a promising tool for FSI simulations because of the meshless nature of the 

method. The understanding of the concept is easy and it can be efficiently applied to 

incompressible fluid flows. This project focuses on the capability of the SPH method 

for simulating incompressible fluid flows interacting with a rigid body.   

 

    The fundamental concept of SPH is reviewed including the approximation 

formulizations and implementations. The neighbouring particle search algorithm is 

very important for the computational efficiency of SPH method since it is the most 

time consuming operation in a SPH simulation. The cell-link Verlet list method is 

selected. Unlike the conventional method which considers only half of the adjacent 

cells, the pairing characteristic of the particles is considered so only half of the 

particles inside the adjacent cells are searched and this is more efficient. 

 

    First of all, the effect of the key factors of SPH method such as the choice of kernel 

functions, smoothing length of the kernel function, particle numbers and time step 

size is studied in detail with one dimensional cases. It is found that increasing particle 

numbers normally leads to better results but different kernel functions and different 

time step sizes do not significantly affect the result. SPH has a second order accuracy 

with respect to smoothing length and reducing smoothing length can improve the 

accuracy but the smoothing length needs to be given in a certain range in relation to 

the particle spacing to ensure that there are enough neighbouring particles.  

 

    The performances of weakly compressible SPH method and incompressible SPH 

method with explicit solution approach and implicit solution approach are compared 

according to flow patterns, pressure distributions and CPU time consumptions in the 

dam breaking case studies and multi-phase flow examples. All these methods can 

provide reasonable flow patterns of the specific motions but the distribution of 

particles in WCSPH is normally less uniform than ISPH methods. Pressure 

distribution obtained from the WCSPH method is quite erratic even for water in 

hydrostatic equilibrium whereas correct pressure distributions can be produced by 
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using ISPH with either the explicit or implicit solution approach. Using the explicit 

solution approach for ISPH method requires the least CPU time in most cases so it is 

considered to have great potential for the future applications. 

 

    Two boundary treatments, namely to use repulsive force or to use denser wall 

particles, are proposed for the incompressible SPH method. Although these two 

boundary treatments have been used in WCSPH, they have not been used for ISPH in 

the known literature. The accuracy of the prediction of pressure obtained from ISPH 

method using these two boundary treatments are investigated in a dam breaking flow 

simulation. Subsequently, the performance of these two boundary treatments with 

ISPH method is demonstrated with two 2D examples including wedge dropping and 

spring supported dam. The results obtained agree with experimental data. These two 

treatments can be used efficiently for more complicated engineering problems related 

to fluid structure interaction problems as the model can be generated just the same as 

the geometry without additional ghost particles. The difficulty associated with model 

generation is thus largely reduced and fewer particles need to be used compared to 

ghost particles treatment especially in 3 dimensional problems.  

 

    A new method combining WCSPH and ISPH for multi-phase flow is developed to 

study the effect of air on the flow. Dam breaking case is studied under this situation 

but no significant influence is found from the air. Rising air bubble in water and 

Rayleigh-Taylor instability problem are simulated to test the performance of this new 

combined method. It is clear that this new method is able to provide a good prediction 

of the fluid motion. The initial idea of this method is to retain the compressible nature 

of each fluid and to save computation time at the same time. However, it requires 

more computational time than any of the individual methods, when the ISPH method 

with implicit solution approach is combined with the WCSPH method. Hence, this 

approach is not recommended. On the other hand, the combined method of WCSPH 

with ISPH method using explicit solution approach produces good results and 

requires less computational time.  

 

    A 3D computer code is developed for a more realistic simulation of general fluid 

rigid body interactions. Dam breaking and wedge dropping cases are simulated to test 

the performance of the algorithm. The spray caused by aircraft landing gear running 
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on a wet runway, a typical case which is difficult for the traditional mesh required 

numerical method, is studied using SPH. Different standing water depth and rolling 

speed are considered. It is found that with greater water depth or higher rolling speed, 

the amount of spray generated is also greater both in lateral and vertical directions. 

Aircraft ditching is simulated using this 3D algorithm as well. However, the forward 

speed dominated motion remains a challenge to SPH method because it is difficult to 

capture the correct suction force.  

 

Contributions: 

 The performance of two simple boundary treatments, i.e. repulsive force and 

denser wall particles, proposed for the ISPH method is investigated and the 

efficiency confirmed. 

 The explicit solution approach is investigated for the ISPH method. 

 A new method is proposed for air water two-phase flow by combining 

WCSPH for compressible fluid and ISPH for incompressible fluid.  

 A 3D computer code has been developed for general fluid rigid body 

interaction problems using SPH for the entire system.  

 

Future work 

 

In order to improve the overall performance of the SPH method for different 

engineering problems, more in-depth analysis and assessment should be conducted in 

the following areas. 

    Energy dissipation and momentum conservation of the methods need to be 

analysed systematically. 

    Stability and consistency of the algorithm using existing boundary treatments 

should be tested thoroughly.  

    Higher order time stepping scheme and correction terms such as the ones used in 

XSPH (Monaghan 1989; 1992; 2002) can be considered to improve the newly 

developed method in order to produce more accurate results for simulation of multi-

phase flows. 
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    Different values rather than zero can be adopted as the reference pressure in the 

calculation and an investigation of such modification to the prediction of suction force 

can be conducted. 

    For complex 3D problems, small particle spacing and large number of particles are 

required, which demands high computational resources. Therefore, the current 

program needs to be converted into a parallel code and computer cluster can be used 

in the simulation. 

    To expand the applicability of the current program to a wider range of 

hydrodynamic problems, implementation of inlet and outlet boundary conditions 

should be considered. 

    Models for deformable solid and coupling strategy should be developed to extend 

the application of these algorithms. 

 

 



173 

 

Appendices 

Formulation of SPH  

The basic formulation of SPH will be discussed in this section. As mentioned before, 

SPH is based on the theory of integral interpolant (Monaghan 1987; 1988; 1989; 

Monaghan & Kocharyan 1995; Liu & Liu 2003b), a general function  xA  can be 

reproduced as   

 

     


 ''' xxxxx dAA          (A.1) 

 

where   is the volume of the integration, and  'xx   is the Dirac delta function 

defined as  

 









'..........0

'.........
'

xx

xx
xx        (A.2) 

and it also satisfies the following unity condition 

 

  1' 



xxx d         (A.3) 

 

    Equation (A.1) is exact but not practically useful. The concept of SPH is to replace 

Dirac delta function with a kernel function to obtain an approximation (Monaghan 

1982; Monaghan & Gingold 1983; Monaghan & Poinracic 1985a; Liu & Liu 2003b) 

and the kernel estimation denoted by  xA , is defined as  

 

     


 ','' xxxxx dhWAA       (A.4) 

 

where  'xx W  is the kernel function and h is the smoothing length which defines 

the influence domain of the kernel function. Similar process can be applied to the 

gradient of function approximation 

 

      


 ','' xxxxx dhWAA      (A.5) 
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    Via integration by part, this can be expressed as 

 

           
 

 ',''','' xxxxxxxxx dhWAdhWAA   (A.6) 

 

    Applying divergence theorem (Batchelor 1973) to the first integral in Equation (A.6)  

 

          



s

dhWAdhWAA ',''','' xxxxxnxxxx   (A.7) 

 

where n is the unit vector normal to the surface,   is  the volume of the integral. The 

first item on the right hand side is normally zero due to the compact property of kernel 

function which will be discussed in section 2.4. Therefore, Equation (A.5) becomes 

 

     


 ','' xxxxx dhWAA      (A.8) 

 

    On the left hand side of the Equation (A.8) the derivative is taken with respect to x  

while one the right hand side it is taken with respect to 'x . From the above equation, it 

can be seen that the differential operation on a function is transferred to a differential 

operation on the smoothing function. And the SPH integration allows the spatial 

derivative of a function to be calculated based on the values of the function and the 

derivative of the kernel function which can be calculated analytically, instead of the 

function derivative itself. This reduces the consistency requirement and produces 

more stable solutions for PDE (Liu 2002).  

    In order to facilitate numerical approximation, the infinitesimal volume 'xd in the 

integral Equation (A.8) is replaced by the particle volume which can be expressed 

using mass m and density  ,  

b

bm
dx


'          (A.9) 

The SPH particle approximation form can be derived if the integration is 

approximated by a summation over the neighbouring particles which are located 

within the smoothing length domain 
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   



N

hW
A

mA
1b

ba

b

b

ba
,xxx


      (A.10) 

 

    The subscript a indicates the specific particle and b indicates neighbouring 

particles and N  is the total number of particles inside the smoothing domain. 

Similarly, the approximation for spatial derivatives is obtained by representing the 

integration in Equation (A.8) with the sum of the contribution from discrete particles  

 

   



N

hW
A

mA
1b

ba

b

b

ba
,xxx


      (A.11) 

 

    The minus sign in Equation (A.8) is removed because the derivative is in terms of 

bx  instead of ax . This equation implies that the derivatives of any function can be 

found by differentiating the kernel rather than by using grids. As a consequence, 

instead of solving partial differential equations for hydrodynamics problems, only 

ordinary differential equations need to be solved 
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