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ABSTRACT
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Fluid Structure Interactions Research Group
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INVESTIGATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD
FOR FLUID-RIGID BODY INTERACTIONS

by Fanfan Sun

The aim of this project is to investigate the capability of smoothed particle
hydrodynamics (SPH) method for fluid-rigid body interactions. SPH is one of the
most widely used meshless methods which use particles to represent the system. The
fluid is assumed either slightly compressible so weakly compressible SPH (WCSPH)
is applied or truly incompressible so incompressible SPH method (ISPH) is adopted.

The performance of SPH method is affected by a number of modelling parameters
including the choice of kernel functions, smoothing length, total number of particles
and time step size. Investigations of the effect of these parameters were conducted
using one dimensional cases and the results show that smoothing length and the total
number of particles can influence the accuracy significantly but other parameters are
less important.

In order to generate the model efficiently and maintain accuracy an appropriate
boundary treatment is important. Two boundary treatments are investigated for ISPH
method. Although these two boundary treatments have been used in WCSPH, they
have not been used in ISPH method in the literature. They are easier to use for
complicated engineering situations related to fluid structure interaction problems
compared with the traditionally used ghost particles. Two approaches for solving
Poisson’s equation of ISPH method are studied including the implicit solution
approach and explicit solution approach.

A new method is developed for multi-phase flow by combining WCSPH method
and truly ISPH method to study the effect from air pressure. Within this method the
compressibility of air and incompressibility of water can be retained.

Based on these studies, algorithms for fluid rigid-body interaction in 2 dimensional
and 3 dimensional cases have been developed to simulate the general engineering

problems related to fluid rigid body interactions.
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Chapter 1 Introduction

Fluid structure interaction is the coupling between moveable or deformable bodies
and fluid flows and the main physical characteristics is the relations between the
motions and forces of both structures and fluids. Namely, fluid force acting on a
structure induces deformation and movement of the structure and this in turn changes
the flow and consequently the load on the solid will be further altered. The interaction
of the structure with the surrounding or enclosed fluid gives rise to a rich variety of
physical phenomena, for example, the response of ships or offshore structures in
waves, the stability of aircraft and flutter of aircraft wings in flowing air, the flow of
blood through arteries, the response of bridges and tall buildings to winds and the
vibration of turbine and compressor blades. A good understanding of the dynamic
interaction between the fluid and structure is very important to assess the overall

performance and safety of structures in many engineering fields.

1.1 Background

1.1.1 Research of FSI in engineering fields

In many fluid structure interaction problems involving violent fluid motion, the
structure may experience high stresses and encounter possible structural failure.
Besides the damage of material, the motion of the solid in the fluid environment is
also important for engineering design. For example, strong fluid flow may cause an
aircraft to lose its stability; the coupled motion of ship and wave may cause ship to
capsize. On the other hand, structure motion can induce additional fluid flow and this
may further influence the normal use of the structure. Taking water spray produced by
the landing gear of an aircraft running on the wet runway for example, a large amount
of ingested water may cause an engine flameout. With the knowledge of the
behaviour of structures in the fluid, better systems can be designed to prevent these
kinds of accidents.

Research of fluid structure interaction started long time ago. A review of the history
of FSI development can be found in Xing, et al. (1997) and the research involves

many engineering fields:



Aircraft engineering

In aircraft engineering, strong air flow may affect the stability of the aircraft, and in
some cases the structure of aircraft may be damaged under the load of the airflow.
The problem associated with the fluid structure interaction involving air and
deformable structures is known as aeroelasticity problem, and in fact, early research
of fluid structure interaction started from this type of problem. Lanchester (1916) and
Bairstow & Fage (1916) performed a set of experiments to investigate aeroelasticity
vibration. The general theory of aerodynamic instability and the mechanism of flutter
was established later by Theodorsen (1934). With the rapid development of aircraft
industry, the aeroelasticity has become a very important research area. Much of the

work has been continued for the development of the research in aeroelasticity.

Civil engineering

In civil engineering, aeroelasticity problem can also be found when the responses of
bridges or tall buildings are considered subject to wind loading conditions. Apart from
air flow environment, structures surrounded by water also experience the interaction
with fluid. A ground-breaking research of interaction between dam and water was
conducted by Westergaard (1933) and the outcome was published in his paper entitled
“water pressures on dams during earthquakes”. In his work the dam was assumed to
be rigid and the problem is simplified as a hydrodynamic problem with known
boundary conditions. In 1970, Chopra started to work on the coupling between a
deformable dam and water (Chopra 1970). The design for the offshore structures
under horizontal seismic loads was improved based on the researches of the coupling
between the dam and water.

Sloshing of fluid in liquid storage containers is another important fluid structure
interaction problem. It is an important design feature for large liquid storage
containers of inflammable or explosive liquid to be used safely in earthquake
condition. The fundamental theory on liquid storage container oscillation problem is
reviewed by Moiseev (Moiseev 1964; Moiseev & Petrov 1964). Liquid sloshing
inside the fuel tank of spacecraft may influence the stability of the craft and affect the
altitude control significantly. The linear theory of small amplitude sloshing was
developed first and it has been applied to the practical engineering problems.
Nonlinear, large amplitude sloshing is more complicated and it is analysed mostly

using the Arbitrary Lagrange-Euler method.



Marine engineering

In a violent sea, serious hydrodynamic impact may happen when there is a large
vertical relative motion between the ship and wave surface. This phenomenon is
called slamming, and it may cause damages to the bottom of the ship. Slamming
pressures are sensitive to the way the water hits the structure and these pressures are
normally neither harmonic nor periodic (Faltinsen 1993; Faltinsen, et al. 2004). Many
ships have reported local structural damages due to slamming loads. For example, the
tragedy of MV Estonia in the Baltic Sea on 28 September 1994, one of the deadliest
marine disasters of 20" century, was initiated because of the breaking of the bow door
due to the severe slamming. Other situations such as large volumes of water flowing
onto the deck of a ship, called green water, may cause fatal damage to the structure as
well.

In the early research on ship water coupling dynamics it was assumed that a ship
was rigid so that only the disturbance caused by the motion of ship was studied.
Haskind (1946) constructed the velocity potential of fluid due to the motion of a rigid
ship and derived the point source Green function using Green’s theorem. The solution
of the integral equation of velocity potential can be obtained based on the boundary
conditions. This method is used for the research of the interaction between the
swaying ship and water. Other research work contributing to the investigation of ship
motion in waves includes: Denis & Pierson (1953) who used the spectral analysis
method to calculate ship motion in irregular waves; and Korvin-Kroukovsky (1955)
who used strip theory in ship motion problems (Du, et al. 2004).

The elastic deformation of a ship was studied later using hydroelasticity theory
which is developed by Bishop & Price (1979). This theory has been employed to
predict the responses of a wide range of marine structures. A recent review of

hydroelasticity of ships can be found in Hirdaris & Temarel (2009).

Others

FSI can be found in many other engineering fields such as: blood interacting with
vessels in biomechanics; metal curing process in metallurgy and casting industry;
vibration of oil pipelines and the response of immersed structures to explosive waves.

A good understanding of the interaction between fluid and structure is beneficial.



1.1.2 Research of FSI in academic disciplines

Fluid structure interaction (FSI) in science is an interdisciplinary subject related to
fluid mechanics and solid mechanics. Fluid structure interaction problems can be
classified in two major categories: in the first category, the solid and fluid are well
mixed without a clear interface between the two phases and one example is the
saturated soil; in the second category, there is a clear interface and the interaction
happens only on the interface. In the second category there are further three different
cases: the first case is the aero-elasticity problem involving structure vibration in air
flow; the second one is the slamming problem involving finite movement of fluid in a
short duration and the third case is conventional ship motion problems involving
oscillatory fluid motion in a long period of time. For all these types of FSI problems,

the solution procedure has to be based on the understanding of the relationship
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Figure 1.1: Overall view of fluid structure interaction (Xing, et al. 1997)

The relationship among different types of forces in fluid solid interaction is shown
in Figure 1.1. The two large circles represent fluid and solid regions, respectively, and
the smaller circle in the middle represents the interface. A fluid hydrodynamic force
influences the motion of a solid through the interface and this in turn affects the fluid.

The hydrodynamic force and the motion of the solid are all unknown on the interface



and they can only be solved based on the physical descriptions of the whole system.
In this case, it is important to consider the interactions. If the motion of the solid is
given or the hydrodynamic force is known then the problem will become a fluid
hydrodynamic problem under known boundary conditions or a solid dynamic problem
under given wet interface traction.

Fluid structure interaction is closely related to a few scientific research areas such
as fluid hydrodynamics, solid dynamics, nonlinear mechanics, and numerical methods,
etc. Progress in FSI research will have an impact on these related academic areas and
this can result in new improvement. Hence, FSI research is significant for science and

engineering development.

1.2 Solution approaches for fluid structure interaction

In order to solve fluid structure interaction problems it is necessary to determine
variables related to fluids and solids at the same time. These variables normally
cannot be determined individually. However, an FSI problem can be simplified for
specific research purposes. For example, the compressibility of water can be ignored
in long term water structure interaction problems without the need to consider
acoustics and in some cases the deformation of the solid can be ignored so that the
solid is treated as a rigid body.

For almost of the fluid structure interaction problems there is no analytical solution
because of the complexity of the problem, so numerical solutions or experimental
studies are the only way forward (Xing, et al. 2003). Experiments are normally
expensive to perform so numerical methods are preferred in many cases. Currently,
finite element (FE) method and computational fluid dynamics (CFD) are the mature
numerical methods for structure and fluid analysis respectively.

In FE method, the continuous problem domain is divided into a number of discrete
subregions or “elements”, connected at discrete points called “nodes”. The solution
for the whole domain is represented by a collection of the solution on each element.
The value of a generic function at one element can be derived using the known values
at the nodes of this element according to the interpolation function. Thus, the original
problem with infinite degrees of freedom is replaced by a problem with finite degrees

of freedom and a function on a continuous field is approximately represented by a



collection of functions of each elements. In CFD, the domain is discretized as a finite
set of control volumes or grids. General conservation equations for mass, momentum,
energy, etc., are discretized as algebraic equations. In the discrete domain, each flow
variable is defined only at the grid points. The values at other locations are
determined by interpolating the values at the grid points. The set of equations are
solved simultaneously to determine flow field.

FE method and CFD method are based on different descriptions. FE method for
structure is usually described using Lagrangian formulations, whereas CFD for fluid
is described using Eulerian formulations (Bathe & Zhang 2004). In the Lagrangian
description, the grid or mesh is fixed on the material and it deforms with the material.
The physical properties of a particular point of the material at a time instant are solved
and recorded (Price 2006). In the Eulerian description, the grid or mesh is fixed in the
space and the material moves across the grid so the physical quantities at a point fixed
in space are recorded.

In fluid structure interaction problems, when a structure element moves, the
material coordinates will move with the element to new positions in space while the
Eulerian coordinates that describe the fluid remain unchanged. The difference of these

two descriptions creates a separation of the mesh points between solid and fluid.

1.2.1 Linear problems

For small-disturbance problems, this separation can be neglected and the
mathematical model is formed based on the original static equilibrium configuration
of the fluid-solid interaction system on which a numerical analysis is developed. For
these linearized problems, the superposition principle and the mode theory of
structural analysis are applicable (Xing, et al. 2003). Mathematical equations and
associated solution procedures for these problems are well developed in literature
(Bishop & Price 1979; Bishop, et al. 1985; Xing & Price 1991; Xing, et al. 1996).

1.2.2 Nonlinear problems

For nonlinear problems Navier-Stokes (N-S) equations or Euler equations are used for
fluid. Here, two different cases can be considered: i.e. a weak interaction case and a
strong coupling case depending on whether there is a small or large deformation of
the fluid and structural domain (Rugonyi & Bathe 2001). Especially for strong

coupling cases, the difference between Lagrangian and Eulerian descriptions has to be
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fully accounted for to ensure the validity of compatibility conditions on the coupling
interfaces (Xing, et al. 2003).

1.2.3 Solution with Arbitrary Lagrangian-Eulerian method

It is difficult to enforce the kinematic compatibility on the fluid structure interface if
there is a large structural displacement. To overcome this problem, an Arbitrary
Lagrangian-Eulerian (ALE) numerical model was developed using finite element
methods in both the solid and fluid domains (Donea, et al. 1977; Belytschko, et al.
1982; Bathe, et al. 1995). Alternatively, Xing, et al. (2003) adopted the ALE finite
difference technique proposed by Hirt, et al. (1974) to calculate the fluid at all speeds
based on a moving coordinate system fixed in the structure. This coordinate system is
used to describe fluid flow and to construct structure-deformation equations.

In the ALE description, the nodes of the computational mesh may move with the
material in Lagrangian fashion, or they can be fixed in Eulerian manner. When ALE
technique is used in engineering simulations, the computational mesh inside the
domains can move arbitrarily to optimize the shapes of elements, while the mesh on
the boundaries and interface can move with the materials to track the boundaries and
interfaces of a multi-material system precisely. Because of this freedom in moving
the computational mesh offered by the ALE description, greater distortions of the
material can be handled than would be allowed in a purely Lagrangian method and
this is with better resolution than a purely Eulerian approach. For fluid structure
interaction, fluid flow is described using Eulerian description so that flow calculations
can be carried out on continuously deforming meshes while the solid motion is
described using Lagrangian description and the mesh representing solid is glued to the
material (Khurram & Masud 2006).

However, fluid elements tend to become distorted in the case of large solid
translations and rotations. And the accuracy of solution would deteriorate due to
increased anisotropy or uneven distribution of the grid points. In this case, remeshing
is often required but it can be quite time consuming (Loon, et al. 2007). Besides, it is
difficult to use as it requires a transformation between these two different
descriptions (Carlton 2004).

To summarize, these traditional numerical methods require the continuum to be
divided into linked small elements or volumes as shown in Figure 1.2. These elements,

called mesh or grid, allow the governing partial differential equations to be converted
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into a set of algebraic equations. The governing equations are formulated in either
Lagrangian or Eulerian description. Grid-based numerical methods experience
difficulty in solving certain type of problems typically associated with large
deformations. Especially, the grid generation is not always straightforward when
dealing with complex problems and the mesh or grid will be distorted when the
boundary deforms and this may result in a break-down of the computation (Jenssen, et
al. 1998). Therefore, an alternative numerical method without grid or mesh is required

to overcome these problems due to mesh dependency.

The system needs to be
re-meshed after the
deformation

Water Mesh the After
column water column some
time

Figure 1.2: An example of water column mesh

Particles move
according to physic
laws

Water Partlcle_s After
column representing some

the system time

Figure 1.3: An example of the system represented by particles

1.2.4 Solution with meshless method

In a meshless method, the system is represented by a set of discrete particles as shown
in Figure 1.3. Each particle carries physical properties such as mass, momentum,
energy, etc. The movement of the particles is governed by associated conservation
laws.

Smoothed Particle Hydrodynamics (SPH) method is one of the earliest and most
widely used meshfree methods. It has been combined with FE method to be applied to
FSI problems in the literature. The problem with this hybrid method is that it is hard

to guarantee an accurate information transmission between particles and elements on
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the interface. Alternatively, using SPH for both fluid and structure will keep the
system consistent so the algorithm is simplified. However, using particles to represent
the whole system requires large memory and long computational time. Besides,
accuracy of the results is difficult to guarantee because of the natural drawbacks of
particle method. Since the evolution of the field depends on the distribution of
particles, the results is sensitive to particle distribution. However, it is difficult to
guarantee a good particle distribution once they started to move following the related
physical laws. In addition, some of the coefficients used in the particle formulations
are selected based on experience and their influence on the accuracy is not entirely
clear. Further research is necessary to improve the performance of SPH method on

FSI problem.

1.3 Objective

The aim of this project is to improve SPH method for fluid structure interaction
problems involving a truly incompressible fluid and rigid body. First, the potential
factors influencing the accuracy of SPH approximation need to be investigated to
understand how to control or improve the performance of this method. This will be
carried out by using SPH approximation for several 1D functions. Different from
other research work that has been done theoretically to analysis the accuracy,
consistency and stability of SPH method (Liu & Liu 2003b), these properties will be
investigated through numerical experiments using various kernel functions with
different smoothing lengths and numbers of particles so that the influence of these
factors can be observed directly.

Second, methods to ensure incompressibility of the fluid will be studied in terms of
accuracy, stability and CPU time requirement through numerical experiments and the
preferred method will be selected. And then boundary treatment needs to be studied
taking into consideration of the trade-off between the accuracy and efficiency for the
selected method. Solution approaches for the algorithm of the selected method needs
to be considered and studied to ensure an efficient simulation in terms of CPU time
requirement and accuracy. In addition, neighbouring particle searching strategy needs

to be formulated to reduce the computational cost.



Third, air water two-phase flow will be considered to study the effect of air. A new
approach will be developed for this case regarding that the compressibility of these

two phases is different and large density ratio is involved.

Finally, an algorithm of 3D fluid rigid body interaction simulation needs to be

accomplished based on the investigations mentioned above. And this algorithm will

be applied to a few examples in both 2D and 3D to demonstrate the performance.

1.4 Layout of the thesis

The layout of the thesis is illustrated in Figure 1.4 below.
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Chapter 9
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Chapter 10
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Chapter 11
Conclusion and Future wrok

Figure 1.4: Layout of thesis
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The background of fluid structure interaction and numerical method has been
introduced. In the following chapter the fundamentals of smoothed particle
hydrodynamics method will be discussed. Governing equations for fluids and solids
will be given in Chapter 3. Numerical algorithm is described in Chapter 4. The
implementation including boundary treatments, computational strategies and time
stepping algorithm will be discussed in Chapter 5. The studies of the effect of
modelling parameters in SPH such as kernel function and number of particles will be
shown in Chapter 6. The performance of the two main SPH methods is compared
using dam breaking case study in Chapter 7. Applications to 2D fluid rigid body
interaction and multi-phase flow will be given in Chapters 8 and 9 respectively. 3D
examples are shown in Chapter 10. Finally, the conclusion and future work is given in
Chapter 11.
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Chapter 2 Literature review

2.1 Meshless method

The early development of meshless methods can be traced back to 1970s. The main
aim is to develop accurate and stable numerical solution procedures using a set of
arbitrarily distributed particles without imposing any connectivity condition on these
particles. The initial work in developing meshless methods is mainly to modify the
conventional grid required methods in order to make them more adaptive and robust.
The applications of meshless methods are concentrated on problems to which the
conventional grid based methods are difficult to apply, such as problems with free
surface, deformable boundary, large deformation that requires complex mesh
generation and adaptive mesh requirement, etc.

A number of meshfree methods have been proposed to analyse solids and fluids.
Most of the meshless methods are inherently Lagrangian methods. According to the
numerical discretization technique used, meshfree methods can be classified in three
types: 1) methods based on strong form of formulations, 2) methods based on weak
form of formulations, and 3) particle based methods. A strong form of system
equation expressed in ordinary differential equations (ODE) or partial differential
equations (PDE) is derived based on the theory of continuum mechanics. The strong
form methods normally use the collocation approach and the system is represented by
collocation points (Liu & Gu 2005). They are computationally efficient but they are
often unstable for irregularly distributed nodes. For a weak form an integral operation
is applied to generate the discrete system equations. Formulation based on weak
forms can usually produce stable and accurate results. However, in the weak form
method a background mesh is required for the integration of the weak forms so it is
not entirely mesh free. Details of many existing meshfree methods can be found in
monographs by Liu (Liu 2002; Liu & Liu 2003b).

In a particle based method the system equation is in the strong form but its
implementation is very similar to the weak form method and no background mesh is
needed. The integral operation is applied in the stage when function is approximated

rather than in the stage when the discrete system equations are generated as in the
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normal weak form method. Smoothed Particle Hydrodynamics (SPH) method is one

of the earliest and most widely used meshfree particle based methods.

2.2 History and development of smoothed particle hydrodynamics
method

Smoothed Particle Hydrodynamics (SPH) has been developed largely in the last three
decades since its introduction in Astrophysics in 1970s (Gingold & Monaghan 1977;
Lucy 1977). It is based on the theory of integral interpolant (Monaghan 2001) and the
partial differential equations are approximated by integral formulation involving a
kernel function. A kernel function should satisfy a few conditions such as that it
should behave like a delta function, with compact support and be integrated to unity.
More discussion on this will be given in section 2.4. The interpolation method used in
the particle method is closely related to the standard interpolation methods used in
other more traditional numerical methods such as finite element method (Monaghan
1982). Apart from interpolation methods, SPH formulae for governing equations can
be derived based on Lagrangian formulation as shown by Bonet, et al. (2004).

In the SPH method, the system is discreticized into many particles which carry
material properties such as density, velocity, stress and so on. The integral
representation of the function is approximated by summing up the contribution from
the nearest neighbour particles defined by the kernel function. A number of particle
approximation forms of a function can be derived based on different mathematic
manipulations and some of the details will be shown in Chapter 3.

Unlike traditional mesh required methods, in a particle based method, the particles
move following the physical laws without explicit connections between each other.
Therefore, this method is most suitable for the simulation of fragmented fluid such as
sprays, breaking waves and explosions, flow with free surface and other large
deformation problems.

2.2.1 Application to incompressible fluid

In the early applications of SPH to incompressible fluid problems (Monaghan 1994),
the fluid such as water was assumed to be slightly compressible. Therefore, quasi-
incompressible equation of state was used to calculate pressure. The time step size

depends on sound speed which was adjusted to restrict the fluid density variation.
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This approach that treats the incompressible flow as a slightly compressible flow is
named as weakly compressible SPH (WCSPH) method and it is proved to be able to
successfully simulate Poiseuille flow as the result generated agrees well with the data
from the finite volume method (Lobovsky & Vimmr 2007).

However, WCSPH requires a very small time step and even small density error can
cause significant unphysical pressure fluctuation (Lee, et al. 2008). In order to
overcome these problems, an approximated pressure projection method was
developed by Cummins & Rudman (1999). The incompressibility is enforced by
solving a pressure Poisson’s equation. Afterwards, a truly Incompressible SPH
method (ISPH) was proposed by Shao & Lo (2003) where prediction-correction
fractional time steps are used to update the related physical properties. In this method,
the intermediate velocity field is integrated forward in time without considering the
pressure effect in the first step. The temporal density obtained from the first step is
then implicitly projected onto a velocity divergence-free space to satisfy the
incompressibility requirement in the second step. The pressure values are calculated
through a Poisson’s equation. This truly incompressible SPH has been used since
then (Hosseini, et al. 2007).

Alternatively, the incompressibility can be enforced by setting the volume of each
fluid particle as a constant using Lagrangian multiplier in the simulation (Ellero, et al.
2007). However, a more straightforward way to ensure the incompressibility is to use
constant density thus only the velocity divergence free condition is considered
according to the continuity equation (Lee, et al. 2010).

The major difference between WCSPH and ISPH methods are about the pressure
calculations. Normally, WCSPH is fully explicit and ISPH requires an iterative
solution approach for the Poisson’s equation. It was found that pressure values
obtained from WCSPH method are not accurate and fluctuate severely because they
largely rely on the changes of the density, any small density change will lead to a
large pressure oscillation (Lee, et al. 2010; Antuono, et al. 2012), this will be shown
in Chapter 7. However, many research works have been focusing on improving the
accuracy of density estimation and eliminating the fluctuation of pressure for WCSPH
as it is easier to parallelize (Lee, et al. 2010; Antuono, et al. 2012) and the free surface
condition is implicitly satisfied (Colagrossi, et al. 2009). Colagrossi & Landrini (2003)
suggested to filter the density field through a Mean Least Square (MLS) integral

interpolation. Alternative, diffusive terms are added in the continuity equation to
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reduce the numerical noise inside the density field (Ferrari, et al. 2009; Molteni &
Colagrossi 2009; Antuono, et al. 2010) or correction terms can be used to adjust the
particle displacement to ensure uniform particle distribution (Ozbulut, et al. 2012;
Shadloo, et al. 2012). In contrast, ISPH method can be more accurate and produce
pressure fields effectively. However, particle distributions may become highly
distorted as a result of simulation errors and consequently instability arises. Xu, et al.
(2009) suggested a new stabilisation technique by shifting the particles slightly to
avoid the instabilities due to particle stretching. Using this shifting algorithm can
improve the results but more computation is required especially when large number of
particles is used. In this project, the shifting algorithm is not used considering the
computation expenses; the performance of WCSPH and ISPH is compared including
the accuracy of results, CPU time requirement and stability of the algorithm, so that

one of them can be selected for the investigation of fluid rigid body interaction.

2.2.2 Application to multi-phase flow

Multi-phase flow is common in nature. Neglecting the effect of one phase in flows
may result in incorrect approximation. Multi-phase flow needs to be considered to
investigate the influence of the entrapped fluid.

The early SPH application to multi-phase flow is for compressible fluids such as
dusty gas. The mixed fluid is treated as a new type of fluid. The mass density of this
new fluid can be updated based on the continuity equation and the pressure can be
calculated based on the equation of state. A void fraction is used to account for the
contributions of each individual fluid to the mixture. Since the densities of the dust
and dusty gas are known, the density of gas can be obtained through the void fraction.
With the known pressure and density values, the velocity of each phase can be
determined based on the momentum equation. Hence, the motion of the whole fluid
can be determined ( Monaghan & Kocharyan 1995; Johnson & Beissel 1996a).

It is more difficult to consider the situation when air is mixed in water. A large
density ratio may cause instability for the algorithm since the conventional particle
formulation is based on the assumption of a continuous material or small density
variation. In a method developed by Ritchie & Thomas (2001) the pressure of gas is
assumed to be constant as the sound-crossing time is shorter than the flow time across
the smoothing sphere. The density was calculated from the equation of state so that

the discontinuity of density would not affect the density update in the simulation.
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Alternatively, Colagrossi & Landrini (2003) derived a modified particle evolution
form to avoid differentiation through the interface where density discontinuity occurs.
However, the conservation of mass is not satisfied with this evolution equation so that
normally a density re-initialization approach is needed (Monaghan 1992). Another
particle evolution form was derived by Hu & Adams (2006) using a Shepherd
function to represent the particle volume which is usually represented by the
relationship between mass and density. By doing so, the density term is removed from
the formulas thus the large density difference is not a problem any longer. The
derived particle evolution form is symmetric so that the momentum is conserved.
Similar forms of particle evolution are derived based on different mathematic
considerations (Hu & Adams 2006; Grenier & Touze 2008; Grenier, et al. 2009). Hu
& Adams (2007) developed an incompressible multi-phase SPH method by applying
the modified particle evolution form to ISPH algorithm. In this method the pressure of
the fluids is calculated by solving Poisson’s equation and the density is updated
according to the continuity equation.

Both WCSPH and ISPH methods can be applied to multi-phase flow successfully.
Another consideration for incompressible fluid is that the density can be assumed to
be constant. In this case, none of the existing multi-phase methods is applicable to the
problem when liquid is mixed with gas. Therefore, a new method can be developed to
combine these two methods, namely, to use WCSPH method for compressible fluid
phase and ISPH method for incompressible fluid phase. Details of this new method

will be included in the following chapters.

2.2.3 Application to FSI problems and solid

Many numerical methods have been developed to analyse the fluid structure
interaction problems. Due to large motions normally found in fluids, a meshless
method is a useful option for flow simulations. Finite element method can be used
reliably for structure analysis. Therefore, it is viable to use meshless methods for
fluids and finite element method for solids in a fluid structure interaction analysis.
One of the first coupling procedures for meshless particles and finite elements was
proposed by Attawy, et al. (1994) and Johnson (1994). They adopted a commonly
used coupling algorithm called: master-slave algorithm (Belytschko, et al. 2000), to
couple the fluid structure interactions (Johnson & Beissel 1996a). The contact

constraint was imposed by applying a contact force to both the slave node (particles of
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fluid at the interface) and the master surface (finite element at the interface). This is
used to prevent particle penetration in the time stepping procedure. Here, the force is
normal to the corresponding element surface and sliding between particles and
elements in tangential direction is allowed. In the algorithm, if there is a movement of
the slave node, the master nodes will move in a manner consistent with the velocity
changes. When a slave node overlaps the master segment, the normal velocities of
these three nodes involved are artificially adjusted to conserve linear momentum and
angular momentum. Details on coupling of meshfree methods and finite elements can
be found in Rabzuk, et al. (2000).

The FEM and SPH combination is capable of simulating fluid structure interaction
successfully. However, the implementation on the interface is complicated because
either the data need to be transferred between two different methods or a contact
algorithm is required. The simpler approach is to apply the SPH method to the
analysis of solid as well. The shear stress and pressure formulae can be derived by
applying SPH method directly to the strain rate tensor. This makes the transfer of
information between the fluid and structure domains easier as a similar method is
used for both parts. It also makes the simulation more efficient in the case where large
deformation happens in the solid.

There are two coupling models when SPH is used for both solid and fluid: one is to
treat all the particles in the same way regardless of their nature and an XSPH
correction is applied to stop the particle penetration (Rafiee & Thiagarajan 2008;
Rafiee & Thiagarajan 2009) whereas the other is to determine the exact position of the
interface and its normal direction before the force and the reaction are calculated
(Antoci, et al. 2007). In most cases artificial viscosity and artificial stress can be used
to improve the stability (Antoci, et al. 2007; Bui, et al. 2007). In this project, the solid
is assumed to be rigid and the whole system of fluid-rigid body interaction is
represented by particles. The second treatment on the interphase is used as each phase
is computed in separated algorithms. This will be detailed in Chapter 3.

When SPH is applied to the solid in a state of isotropic tension, the solid is
stretched and the SPH particles attract each other to resist the stretching. This can
cause clumping of the particle and hence the use of the standard SPH equation in
conjunction with explicit time stepping scheme can lead to unstable time integration
for any time step size. This type of instability is called “tensile instability” and it is

reported that it cannot be eliminated by introducing artificial viscosity (Bonet & Lok
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1999). This is a major deficiency of traditional SPH. A number of methods were

developed to improve the accuracy, stability and consistency of SPH.

2.2.4 Variations of SPH methods

As SPH has some drawbacks such as tensile instability for solid simulation and
inconsistency near a boundary, various methods have been developed for different
specific purposes to improve the original SPH method. Liu, et al. (1995b) developed
a reproducing kernel particle methods (RKPM) to improve the accuracy of SPH
approximation especially around the boundaries. This method composed of a
correction function and a window function (same as the kernel function) which was
originally proposed in the theory of wavelets (Chui 1992). The correction function
can be expressed as a linear combination of polynomial basis function with unknown
coefficients determined to ensure the approximated function or the derivative of the
approximated function to be reproduced exactly. The number of these coefficients
involved in the definition of the correction function depends on the order of the
highest derivative term presented in the governing equations (Aluru 1999). This
method eliminated the tensile instability associated with SPH methods (Liu, et al.
1995b; Jun, et al. 1998).

Another method proposed to reduce the tensile instability as well as boundary
effects uses the normalized smoothing function which is adjusted for every particle to
normalize the kernels (Johnson & Beissel 1996a). This algorithm was applied to
cylinder impact problems (Johnson, et al. 1996b; Johnson, et al. 1996c¢).

For the problems of unsteady boundary values such as heat conduction, a
corrective smoothed particle method (CSPM) was developed by Chen, et al. (1999a).
The SPH evolution formulations are derived based on the Taylor series of the function.
The number of the terms involved in the Taylor expression depends on the order of
the approximated function. This method is further applied to nonlinear dynamic
problems including transient heat conduction and structure dynamics (Chen & Beraun
2000).

By modifying CSPM, a modified smoothed particle hydrodynamics (MSPH)
method was developed (Zhang & Batra 2004) to improve the accuracy of the
approximation near the boundary but it is more time consuming since a more

complicated solution process is required. This method is further formulated in
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cylindrical coordinates to analyse axisymmetric deformations of a circular cylindrical
body (Batra & Zhang 2008).

To adjust the resolution of the particle simulation, Lastiwka, et al. (2005) proposed
an adaptive particle distribution method for SPH. Any number of particles can be
removed or inserted and this was found to improve the accuracy in a shock tube
simulation.

With those modifications to the formulations the performance of SPH was
improved for specific applications accordingly. However, the implementation is more
complicated to a certain degree. Hence, research has been focused on how to select
the modelling parameters which may influence the performance of the original SPH
method such as kernel function, smoothing length, and particle distribution. A brief
understanding of the influence of different choices of kernel functions, number of

particles and smoothing lengths are given in Chapter 6.

2.2.6 Accuracy of implementation

From the analysis of the truncation error of the gradient approximation carried out by
Quinlan, et al. (2006) in a study of the robustness and accuracy of SPH formulations,
it is concluded that 1) a uniform distribution of particles is better for obtaining
accurate results; 2) a smaller smoothing length gives more accurate results provided
that there are sufficient neighbouring particles in the smoothing domain and 3) for
non-uniformly distributed particles the accuracy of SPH discretization can be
improved if the absolute values of pressure and velocity is reduced before calculating
the gradients. In the example of Poiseuille flow, by subtracting hydrostatic pressure
from the absolute pressure in the momentum equation, the (absolute) value of
pressure was reduced so was truncation error (Basa, et al. 2009).

In some cases, particle oscillation may happen and this can result in incorrect
approximation. In this case, the original SPH is not able to provide accurate
estimations therefore correction is necessary. Usually, an artificial viscosity term is
added to the momentum equation to eliminate the instability (Monaghan 1994).
Furthermore, in an XSPH method, the velocity is modified by artificially adding an
averaging term from the neighbouring particles (Monaghan 1989; 1992; 2002).
Namely, the XSPH method adjusts the velocity of a particle so each particle moves
with a velocity closer to the average velocity of the neighbouring particles. This

velocity corrective term is used to smooth out oscillations of particle velocities
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calculated by integration of the momentum equation (Antoci, et al. 2007; Crespo, et al.
2007; Lobovsky & Vimmr 2007).

Other aspects of the numerical implementation of SPH including boundary
treatments, construction of artificial viscosity and nearest particle searching algorithm
can be found in the early works (Monaghan 1988; Monaghan & Lattanzio 1985b;
Monaghan 1992). They will be explained in detail in Chapter 5.

2.3 Kernel function

The most important aspects of SPH method are the choice of kernel function and
boundary treatment. The kernel choice has to be constructed first for a successful SPH
simulation. An improper choice of the smoothing function may lead to unphysical
structures of the system (Schussler & Schmitt 1981). A kernel function W(x, h) is
usually an even function of x because of this the error terms of the kernel integral,
when expressed in Taylor expansion, involving odd powers of x will vanish. This is
equivalent to liner interpolation (Monaghan 1982).

A kernel must satisfy several conditions in order for the SPH model to satisfy the
requirement of interpolation theory (Monaghan 1992)

The first condition is the normalization condition

W (x h)dx =1 (2.4.1)

Q

The second is the Delta function condition. Namely, when the smoothing length
approaches to zero the kernel should approach to the Delta function:

limW (x,h) = 5(x) (2.4.2)

h—0

And the third is the compact support condition

W(x,h)=0,|x| = kh (2.4.3)
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where Kk is a constant which defines the support domain (i.e. smoothing length) of the
smoothing function as shown in Figure 2.1. The normalization condition ensures that
a continuum function can be approximated to the zero-th order. With an even function

condition and the normalization condition, the kernel approximation will have second
order accuracy O(hz). This can be proved by using Taylor series expansion for the

SPH integral representation. The Delta function condition makes sure that the
approximation value approaches the function value as the smoothing length tends to
zero. The compact support condition transforms a SPH approximation from global
operation to a local operation.

In addition, a kernel function must be positive within the smoothing domain. This
is not necessary mathematically but it is important for physically. A negative kernel
function may lead to unphysical parameters such as negative density and energy. A
kernel aiming to produce better approximation should have smoother values of the
function and its derivatives. This is because a smoothing function will not be sensitive
to particle distribution (Liu & Liu 2003b). From Equation (2.3.8), it is clear that at
least the first derivative of the kernel function should be continuous so that derivatives
of the function can be approximated. And if the second derivative is continuous, the
kernel is not sensitive to particle distribution (Monaghan & Lattanzio 1985b)

It should be possible to use different kernels for different property calculations.
Fulk & Quinn (1996) proposed a measure of merit for SPH kernels in the form of
second order integral approximation based on an analysis of kernels in 1-D case. In
this work it was found that the shape of the kernel function and the distance ratio
between particle spacing and smoothing length are the two key factors influencing the
kernel approximation. Kernel functions with bell shape, hyperbolic shape, parabolic
shape and double hump shape were considered. It concluded that the bell shaped
kernel functions outperform other kernels and a smaller distance ratio is better for
more accurate results. For a give function such as spline functions which satisfies the
three conditions for a kernel function as given in Equations (2.4.1) to (2.4.3), the
criteria for the kernel or parameter choices is to reduce the difference between the
following two functions (Capuzzo-Dolcetta & Lisio 2000) :

(V) = j f(x')- VW (x'—x, h)dx'
and
(V) = VI f (X)W (x—x',h)dx'.
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A general kernel constructing method based on the consideration of restoring

particle consistency is proposed by Liu, et al. (2003a).

Smoothing domain

Figure 2.1: Smoothing domain of a particle

For a specific particle, only the particles inside its smoothing domain contribute to
the calculations. These particles are called neighbouring particles. An appropriate
smoothing domain is important to ensure a correct SPH approximation. Normally, it
should be large enough for each particle to have enough neighbouring particles but is
should be small enough to preserve the accuracy as well as to reduce computational
cost. The spacing between particles is also important. If the particle spacing is too
large, the accuracy of the approximation will be affected because of the averaging
effect whereas if it is too small the computational cost will increase. Therefore, an
appropriate particle spacing should be selected for a specific problem to ensure the
best performance of the simulation. The ratio between particle spacing and the radius
of the smoothing domain is normally taken as 2.5 and this will be shown in Chapter 6
based on the investigation of accuracy using different number of particles and
smoothing lengths.
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Chapter 3 Fluid-rigid body interaction problems

3.1 General description

In fluid structure interaction problems, the solid can be rigid or deformable. In the
current project the point of interest is the motion rather than the material behaviour,
the deformation of the structure is not considered so that the solid is assumed to be a

rigid body.

(yo,y2,y?)

A
—p FZ \7I2 :O y3

\'

— / / 0
Horizontal reference Y,
plane y, =0 v,

v

Figure 3.1: A rigid body floating on free surface

Figure 3.1 illustrates an arbitrary rigid body floating on the surface of water (Xing,
et al. 2003). The water can be calm or with violent motion. The rigid body may float
freely on the surface with given initial velocity or it may have a forced motion in the

water. In this figure, oy,y,y, represents a global Cartesian coordinate system;
Ox,X,X, denotes a moving coordinate system parallel to the global coordinate system

but with its origin located at the mass centre of the rigid body; OX, X, X, is the body-
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fixed coordinate system fixed on the rigid body and it is assumed to coincide with the

moving coordinate system at the beginning. With a disturbance, the mass centre (O)
is allowed to move transnationally with accelerationw?, velocityv; and displacement
u’and the body is allowed to rotate with angular displacement . around the mass
centre. The moving system Ox; X, X, is used to describe the translation of the rigid

body which can be represented by the motion of the mass centre (O) For each point

on the rigid body, the relationship between the coordinates in the moving system and

those in the global system is given as:

Yi=Y + X, Vi =V 4y, (3.1.1)

where y; represents the coordinates of the mass centre in system oy,y,Yy,and y;
andyv, are the velocities at a point on the rigid body relative to the global and moving
systems respectively.

On the surface of solid domainQ, one part is the interface > with fluid, other part
S, is subject to known external traction forces T, and given displacement u, (which is
ignored for rigid body case). On the free surface I'; of fluid, pressure is known as
the atmospheric pressure p, acting in i direction which is perpendicular to the free
surface. The flow velocity V' is given on boundary T'} whereas fluid pressure p is
known on boundary T, .

With the known forces and boundary conditions the motion of the fluid-rigid body
interaction system can be determined. The description of the motion of a rigid body
will be introduced first and then the governing equations for the motion of solid and

fluid will be formulated.

3.2 Motion of a particle in the solid

Since there is no deformation on a rigid body, for each particle in the body, its
position is determined by the translational motion of the body at its centroid of mass
and the rotational motion about the centroid of mass. Namely, the motion of a particle
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X, in the rigid body can be calculated based on the translational displacementu’,

velocity v and acceleration w; of its mass centre and its rotation about the mass

centre using the following formulations

u, =u’ +U; (3.2.1)
v, =V +V, (3.2.2)
W, =W + W, (3.2.3)

Here, “~”denotes the variables describing the particle motions relative the mass

centre due to rotation. The translation of the mass centre (O) is given in the global
coordinate system oy,y,y, and the relative motion of a particle is described by a
moving coordinate system Ox, X, X,. Hence, translation is straightforward to calculate,

while the relative motion (rotation) needs to be transformed from a body-fixed

coordinate system OX,X,X, to a moving coordinate system and a coordinate

transformation matrix is then required.

Coordinate transformation matrix

Assuming that the body-fixed coordinate system OX,X,X, coincides with the
moving coordinate system OXx, X, X, initially, after a given rotation, the orientation of

the axes will be different as shown in Figure 3.2.

1& X3
X3n

X

Figure 3.2: Relative rotation between body-fixed coordinate and moving coordinate

systems
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The new position of the rigid body in the moving system can be defined by this
relative rotation. The relative rotation between the two coordinate systems can be
expressed by the direction cosine matrix R . For example, if a body-fixed coordinate

system rotates around X,axis by angle @, the direction cosine matrix will be:

L, 1, 1 cosd singd O
R=[l,, I,, l,;|=|-sin@ cosé O (3.2.4)
ST P S 0 0 1

where 1 (i j =1,2,3) is the cosine of the angle between axis i of the new coordinate

(body-fixed) and j axis of the old coordinate (moving coordinate) or the projection of i
axis in the new coordinate on j axis of the old coordinate.

This matrix is the coordinate transforming matrix or rotation matrix R for the rigid
body. It converts points in body-fixed coordinate to points in a global coordinate as

follows:

X; =RX, + X (3.2.5)

Details on the rotation matrix can be found in Jia (1987) and Nikravesh (1988). The
matrix R should be orthonormal, which means that each row should have unit length,
and all rows are perpendicular to each other. To describe the angular orientation
efficiently, the most common technique is to use Euler angles instead of using the
nine elements of the matrix directly (Luo, et al. 2012). In Euler angle description, the
rotation is decomposed into three elementary rotations of the body-fixed coordinate
system relative to the moving coordinates. They represent three decomposed
elementary rotations of a body-fixed coordinate system relative to the global system.
However, using this description one degree of freedom may be lost in the case when
one elementary rotation makes two axes to coincide. In such situations the effect of
gimbal lock can occur. The process of gimbal lock is illustrated in Figure 3.3 to 3.6.

Assuming that a subject is represented by its body-fixed coordinate OX, X, X, and

it is located in the origin of the global coordinate oy,y,Y,. A rotation described using
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Euler angle includes three decomposed rotations around the three body-fixed

coordinate axes respectively.

\ 4

— Y3

Figure 3.3: Initial orientation of an object represented by its body-fixed coordinate

First the object is rotated by an arbitrary angel, say -30° around X; axis:

A

Y1

Xz \*\3‘0 — Y;

Y, Xs
Figure 3.4: The object is rotated 30° around X; axis

And then it is rotated by -90° around X; axis
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Y1

Y,

V.

Figure 3.5: The object 1s rotated 90° around X, axis

Now it can be seen that the current X3 axis coincides the initial X; axis, in an

opposite direction. Finally the object is rotated 40° around this X3 axis.

A

Yi
X2
- —> Y3
& 4——%
Xl

v

X3

Figure 3.6: the object is rotated 40° around X3 axis

As the third rotation and the first rotation are about the same axis it is considered
that one degree of freedom is lost.

To avoid this singularity and to ensure such motion is uniquely defined, Euler

parameters are employed.

Euler parameters
According to Euler’s Theorem, the general displacement of a body with a fixed point,

i.e. angular movement, can be accomplished by a single rotation about a certain axis
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with a finite angle. Therefore, it is reasonable to represent the coordinate
transformation in terms of the parameters of this single rotation, i.e. the angle of
rotation dand a unit vector e of the rotation axis as shown in Figure 3.7. As the
rotation can be defined by the coordinate transformation matrix or the parameters
(6,e), these two must be related to each other and the matrix can be derived based on
(6,e).

The Euler parameters

Euler vector: Q= esm(%} (3.2.6)
0
Euler parameter: = 003(5)
. (0
Q, =e;sin Ej
=e sm(%} (3.2.7)

Q; = essm(zj

Here, e, ,e, ande, are the projection of rotation axis in X, y, z axes, respectively.
The four parametersQ,, Q,, Q, and Q,satisfy the following equation:

Q +Q7 +Q) +Qf =1 (3.2.8)

which means that only three of them are independent. This indicates that the there are
three rotational degrees of freedom. The derivation of the rotation matrix is shown

below:
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Figure 3.7: Rotation from p to p’

In Figure 3.7, the transformation of vector sinto s'represents a rotation from p to
p'. Assuming that vectorsis fixed on the rigid body, and then s'can be expressed as

s'=s+(1—cos&)o +sinGa (3.2.9)

where aand b are perpendicular to each other and they have the same magnitude
which equals to the distance from p to the rotation axis:

a=exs, b=exa (3.2.10)
Substituting these into Equation (3.2.9), it can be re-written as:
s'=s+(1-cos@ex(exs)+sinéexs (3.2.11)

Using Euler parameters given in Equation (3.2.6) and (3.2.7), the following
equation can be obtained:
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s'=5+2Q x(Qx5s)+2Q,Q xS (3.2.12)

And this can be converted this to a matrix expression as
- (E+2Q0+2Q,0F (3.2.13)

where é is the anti-symmetric matrix from Q. As mentioned before, the rotation

from s to s’ can also be expressed with rotation matrix form
s'=R-s (3.2.14)

Here, the rotation matrix R is obtained as:

1-2(Q2+Q?) 2(QQ, -QQ,) 2QQ, +Q,Q,)
R=(2QQ, +QQ;) 1-2(Q+Q) 2(Q,Q, -QQ,) (3.2.15)
2QQ -QQ,) 2Q,Q, +QQ,) 1-2Q%+Q?)

The time derivative of the rotation matrix is related to the angular velocity as

follows
R =R, (3.2.16)
This can be expressed using the matrix form:
Qo - Q1 - Qz - Qs 9’1
i Ql _ l QO _Q3 QZ X 9'2 (3.2.17)
dt|Q, | 2| Q. Q -Q p
Q3 - Qz Ql Qo ’

According to Equation (3.2.17), the parameters can be updated with the known
angular velocity. To obtain angular velocity, equations of motion need to be solved.
The governing equations for a rigid body motion will be discussed in the following

section.
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3.3 Governing equations of motion for rigid body

Since the motion of a particle of a rigid body is a combination of the translational
motion of its mass centre (O) and a rotational motion about the mass centre,

governing equations for these two motions are needed:

3.3.1 Translational motion of mass centre

For the translational motion, the Newton’s second law can be applied:

mi;’ = F, (3.3.1)

where m is the mass of the body, U is the acceleration of the mass centre, F is the

force applied on the centre of the mass (O) This equation can be re-written according

to Figure 3.1 as

mi; = | pFd+ | Tds+ | Tds (3.3.2)

where F, represents the body force, T. and T, are the traction forces on surface

S;and the interface > respectively.

3.3.2 Rotation of the body about the mass centre

For rotational motion, the theorem of moment of momentum can be used:
1-0+0x1-6=M (3.3.3)

where | is a second order tensor representing the moment of inertia, 0 is a vector

represented the angular velocity of the rigid body, 6 is the derivative of angular
velocity with respect to time, Mis a moment vector. Equation (3.3.3) given in the
body-fixed coordinate system. In the principle inertia axis coordinate system of a rigid

body, the equation of motion for rotation can be rewritten as (Fossen 2002; Jia 1987):

16, +(1,-1,)8,6, =M,
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1,6, +(1,, —1,,)0,6, =M, (3.3.4)

W

1,6, +(1,, -1, )8,6, =M,

The moment of inertia matrix is defined as follows:

| =|—1 | —1 (3.3.9)

The elements of this inertia matrix are calculated by summing up the contributions
from all the particles of mass in the body. If the mass of each particle isom, then

these can be evaluated as:

Lo = S am(y? +22), 1, =S am(x® +22), 1, = am(y? +x2)

I, = omxy, l, =Y omxz, l,, = omyz (3.3.6)

When it is necessary, this inertia matrix can be diagonalised using a transformation
matrix made of its row Eigen vectors. This transformation matrix can be used to
transform the coordinates of particles of the body and in this new coordinate system
the inertia matrix will be diagonal.

With the angular velocity obtained from Equations (3.3.4) the Euler parameters can
be updated. To solve Equation (3.3.4) the moment applied on the body needs to be
known in a body-fixed coordinate system. Hence, if the moment is given in a global
coordinate system then it needs to be transformed into a body-fixed coordinate system
using the transpose matrix of R :

M, =R"-M (3.3.7)

9

where M, is the moment in body-fixed coordinate and M is the moment in global

coordinate system. Sometimes moment needs to be calculated based on a known force.
In this situation the force needs to be transformed to a body-fixed coordinate system
first.
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To summarise, the moment acting on the particles of rigid body needs to be
expressed in the body-fixed coordinate system first. And from Equation (3.3.4) the
angular velocity can be calculated. Then the rotation matrix can be derived from the
angular velocity using Equation (3.2.17). Finally the new positions of particles in the

global coordinate system can be obtained using Equation (3.2.5).

3.3.3 Boundary condition

In order to derive a unique solution from a set of partial differential equations, some
conditions are required and boundary condition is one of those. There are generally
three types of boundary conditions from the point view of mathematics: i.e. 1)
Dirichlet boundary condition which specifies the values of the solution on the
boundary of the domain, 2) Neumann boundary condition which specifies the values
of the derivative of the solution on the boundary of the domain and 3) Cauchy
boundary condition which is a mixed condition from Dirichlet boundary condition
and Neumann boundary condition.

Physically, the boundary conditions can be classified based on the nature of the

variables.

As shown in Figure 3.1, on a velocity boundary S, of the rigid body, its velocity is

assigned a prescribed value
V. =V (3.3.8)

If this value is zero, it implies a fixed boundary. The displacement boundary can be

ignored for rigid body since no deformation is expected.

On the force boundary S; of the solid, its traction equals to a prescribed force'fi .

3.4 Governing equation for fluid

Fluid can be treated as a continuum enclosed in a volume bounded by an arbitrary
closed surface. To describe the motion of the continuum, the governing equations can
be developed based on the principles of conservation of mass, conservation of

momentum, and the laws of thermodynamics.
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Let x denote the location of a particle, v represents the velocity. In the Lagrangian

description, the velocity and acceleration of the particle are, respectively:

v, = % (3.4.1)
and

dv. d?x

Eak 042

Where the subscriptsiand j indicates tensor index of value 1,2, or 3. The mass m

contained in a domain V at time t is

m= j odV (3.4.3)

v
where p(x,t) is the density of the continuum at location x at time t. Conservation of

mass requires Dm/ Dt = 0, using Reynolds transport theorem the continuity equation
can be derived

I(:j—'fdv +jpv~nd5=o (3.4.4)

\

where n is the unit normal vector pointing outward from surface S . Since the results

must hold for an arbitrary domain V , using the divergence theorem the integrand
must vanish, i.e.

9, v ()=
Y (pv)=0 (3.4.5)

According to Newton’s second law, the net force on a body is equal to its mass

multiplied by the acceleration. The force can be considered as a combination of

surface traction and body force f,. Expressing the surface force in terms of a stress
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vector o ., the total force acting on the material occupying volume V interior to a

i

closed surface S is

sz'ajinjds +IfidV (3.4.6)

According to Gauss’s theorem, F can be expressed as:

oo
F=f] S04t v (3.4.7)
v\ OX;

For a unit mass, we have

DVi . 60'“

= + T
Dt Ox,

]

(3.4.8)

The governing equations for fluid include the conservation of mass and momentum.

In a Lagrangian framework these can be written as follows

1bp v.voo (3.4.9)

p Dt

The body force of the fluid is gravity force, and the stress tensor can be considered

as a combination of pressure and viscous force and so:

BV gilvie_top (3.4.10)

Dt p p

where tis the time, g is the gravitational acceleration, P is the pressure, T is viscous
D . . R . .
stress tensor and — is the material derivative. The momentum equations include

three forcing terms, i.e. body force, forces due to divergence of stress tensor and the
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pressure gradient. For incompressible fluids, the mass density takes a constant, so that

Equation (3.3.9) reduces to
V-v=0 (3.4.11)

Assuming a Newtonian fluid, the viscous stress tensor t in the momentum

conservative equation is related to the velocity as:
ov, OV

where u is the dynamic viscosity coefficient. Hence Equation (3.3.10) can be

written as
BV _gifvey_Lyp (3.4.13)
Dt p p

Using the chain rule, the gradients on the right hand-side of Equation (3.4.12) can

be approximated as:

iyl iy
OX; . Fap (o

Substituting Equation (3.4.14) into Equation (3.4.12), the formula for shear stress

can be derived.

Boundary conditions
Boundary conditions for fluid can physically be classified as include inlet, outlet, free
surface and solid-wall boundaries. On the free surface, the fluid motion should satisfy

a kinematic condition

DY(x, y,z1)

=0 3.4.15
Dt (3.4.15)
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which implies that the free surface is a material surface. Here, Y is the function
describing the height of the free surface. However, when fluid motion is given in
Lagrangian form, this condition is automatically satisfied.

It is assumed that the pressure on the free surface is an atmospheric pressure of
value zero as the reference pressure, so that the dynamic condition on the free surface

is given by

P=0 (3.4.16)
On the velocity boundaries (inlet), velocity is assigned to be a prescribed value

v=V (3.4.17)

If this prescribed value is zero, this equation denotes a fixed fluid boundary
condition. On the outlet boundary which is assumed to be infinite far away from the
flow the pressure is assumed to be constant.

At the fixed solid boundary, no-slip condition is applied when the velocity of the
fluid at the wall boundary is set to zero or free slip condition is applied when the
tangential velocity of fluid is not zero but the normal velocity is zero. In our cases no

slip boundary condition is applied.

3.5 Fluid solid interaction interface

On the wetted interface 2., the motion of a solid particle should be coupled with a
fluid particle and the following conditions are to be satisfied. To ensure no
discontinuity on the fluid solid interface, the velocity of the fluid and the velocity of

the solid are the same at each point, i.e.
vi=vs (3.5.1)

It is necessary to satisfy the dynamic equilibrium condition at the interaction

interface,

rin, +T,=0 (3.5.2)
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where rijf is the stress of the solid at interface, n;is the unit vector in outer normal

direction of the fluid boundary.
When the fluid stress on the solid equals zero, it indicates that the fluid is separated
from the solid and in this situation Equation (3.5.1) is not required.

3.6 Summary

The governing equations used to model the fluid rigid body interaction are illustrated
in Figure 3.8. Fluid motion is governed by N-S equations expressed in continuity
equation and momentum conservative equation. Specific boundary conditions will be
assigned to the particles at the right position. For rigid body, the motion is a
combination of translation of mass centre and rotation around the mass centre.

Translation of the mass centre (O) is simply governed by Newton’s second law. For

angular movement of particles in the solid, a transformation matrix in terms of
quaternion is adopted. An overall chart of the content of this chapter is given below in

Figure 3.8.

Fluid-rigid body interaction

Fluid interface Rigid body
— r A /S —
; Rotation:
inui ion: Translation of mass . .

é)' uizgt;n(tg?gﬁlgtrlon. Velocity of solid and center: 1). Using equation (3.3.4) to
ccc)]mpressibl'e .fluid' fluid particles at the ' calculate the angular velocity;
Equation (3.4.11) for mterfgce should be Using equation 2). Using equation (3.2.17) tg
. . L equal; update the Euler parameters ;
incompressible fluid; . (3.3.1) to calculate the . .
2 L Interacting force for - 3). Using equation (3.2.14) to

). Momentum equation: ; ; acceleration and then . ) ;
Equation (3.4.10) solid and fluid update the velocity update the coordinate in moving

g o particles at the coordinate system

interface should have
the same value but
opposite direction

. )
Using equation (3.2.1) to (3.2.3) to
update the physical properties of
each solid particle in global
coordinate system

Figure 3.8: Governing equations for the motion of fluid rigid body interaction
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Chapter 4 SPH formulation for nonlinear fluid-rigid body
interactions

4.1 Basic SPH formulation

The basic formulation of SPH will be discussed in this section. As mentioned before,
SPH is based on the theory of integral interpolant (Monaghan 1987; 1988; 1989;
Monaghan & Kocharyan 1995; Liu & Liu 2003b), a general function A(x) can be

reproduced by an kernel approximation as (A(x)) (Monaghan 1982; Monaghan &
Gingold 1983; Monaghan & Poinracic 1985a)

(A(x)) = I AW (X — X', h)dx’ (4.1.1)

Q

where W (x —x') is the kernel function and h is the smoothing length which defines

the influence domain of the kernel function. Similar process can be applied to the

gradient of function approximation

(V- Alx)) = _[(V -AX)W (x —x', h)dx’ (4.1.2)

In order to facilitate numerical approximation, the infinitesimal volume dx'in the
integral equation (4.1.1) is replaced by the particle volume which can be expressed

using mass mand density p,
dx'= —= (4.1.3)

The SPH particle approximation form can be derived if the integration is
approximated by a summation over the neighbouring particles which are located

within the smoothing length domain
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N

>m, %W(jxa ~%,,h) (4.1.9)
b=1 b

T
>
A~~~
X
N4
Q0
Il

The subscript a indicates the specific particle and b indicates neighbouring
particles and N is the total number of particles inside the smoothing domain.

Similarly, the approximation for spatial derivatives can be expressed as
(VA(X)), =>"m, ivw(xa —X,,h) (4.1.5)

The detailed derivation process is shown in the appendices. This equation implies
that the derivatives of any function can be found by differentiating the kernel rather
than by using grids. As a consequence, instead of solving partial differential equations
for hydrodynamics problems, only ordinary differential equations need to be solved

The derivative of the kernel function can be expressed as

_ Xy — Xy dWab

VW,
r-ab d r-ab

(4.1.6)

where r,, is the distance between particle a and b, W, is the associated kernel function.

From Equation (4.1.6) it is clear that the gradient of a function at particle a is
approximated with a summation of the function values at each neighbouring particle

times the gradient of the kernel function.

4.2 General SPH formulism for N-S equations

In WCSPH method, Equations (3.4.9) and (3.4.10) are used as governing equations.
SPH formulation of these two equations can be derived simply by applying equation
(4.1.4) to the right hand-side of Equation (3.4.9)
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Dp, Nm, ; OW,
T o py oy T (4.2.1)
Dt bl Py OXg

The subscripts a, b represent different particles; superscripts i, j indicate different

coordinate directions and N is the number of particles inside the smoothing domain,
i.e. number of neighbouring particles. Another particle form of density gradient with

respect to time can be derived by considering the following expressions

IVW()_( —x',h)dx' = V1
Q

imb oW,
b=1 Pp axj
=0

(4.2.2)

and adding Equation (4.2.2) to the right hand side of Equation (4.2.1) we can have the

anti-symmetric formulation

Do i oy S, ) W,
Dt & ox] Vs ax‘
. br_; P 6W b=1 Pp (4.2.3)
:paz : ab Ejib
b=1 Pb axa
where
vi=v) v (4.2.4)

Equation (4.2.3) uses the relative velocities of particle pairs in the smoothing
domain and it is usually preferred.
If the density is continuous everywhere, the continuity equation can be represented

by SPH in another form by considering:

i i )
L, a<p"_ )_V,‘ap_ (4.2.5)
ox! ox’ ox’

and converting the right hand side part into SPH form
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By substituting Equation (4.2.6) into (4.2.5) and considering continuity Equation

(3.4.5), the gradient of density with respect to time can be re-written as

Dpa N j
= 2 PoVay *
bt

oW,
Dt X

- 4.2.7)

a

Compared to Equation (4.2.3), Equation (4.2.7) has a simpler form and so it is more
widely used. However, since the derivation of (4.2.7) is based on an assumption of
continuous density, it is not appropriate for multi-phase flows especially when the
density ratio is large and the interface is not specified. Instead, Equation (4.2.3)
should be applied in this situation (Monaghan 2012; Sun, et al. 2012). An
investigation of air water two-phase flow will be presented in Chapter 9. Different
equations should be selected for different applications. In ISPH method if constant
density is used all the equations to update density can be ignored.

The force term to update velocity in Equation (3.4.8) can be written in a symmetric

form as

_my o AW, o) Shm, W,
> R D (4.2.8)

This formula is the most widely used as it conserved angular and linear momentum
because of the symmetry of the formula. However, similar to the density Equation
(4.2.7), this formula also assumes continuous density so it is not suitable for multi-
phase flow (Colagrossi & Landrini 2003; Sun, et al. 2012). Another form should be

used in this situation which is:
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The problem from density discontinuity is eliminated in this form.

4.2.2 Viscosity effect

For many fluids, the stress tensor 7z in the momentum conservative equation is related

to the rate of strain as follows

ov, OV,

where g is the dynamic viscosity coefficient of the fluid.

Using chain rule for the RHS terms

ox; ) 0y ) 0X;
C(vi=vy | X=X
r-ab rab

For fluid such as water, the viscosity coefficient has a constant value. So the SPH

(4.2.11)

formulation of viscosity term can be written as (Shao & Lo 2003)

N . _
(iv.rj ( v vJ _ oo VW;b(Va Vo) (4.2.12)
P a P a b1 +pb) |rab| +gz)2

where ¢ is a small value used to prevent numerical divergence when two particles are

too close to each other. Hence, normally Equation (4.2.8) is only applied to pressure.

Artificial viscosity
Sometimes an artificial viscosity is used to improve the numerical stability of SPH

computation. This term is added in the momentum equations when calculating the
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velocity to damp out some artificial oscillation for particles approaching each other
(Johnson & Beissel 1996a).
The SPH formula for this term is as follows:

= 2
—aCy Py, t+ ﬁn¢ab

B & VX, <0
I, = P (4.2.13)
0 V- Xy >0
where
h, Ve - X,
By = (4.2.14)
|Xab| +(D
_ 1
Cab :E(Ca +Cb)
_ 1
P ==, +p,) (4.2.15)

2

1
hab :E(ha +hb)

Vab = Va =V Xgp = X3 — X

where o, B are constants that are typically set around 1.0 (Rabczuk, et al. 2006).
The factor ¢ (namely, ¢ =0.1h, ) is added to prevent numerical divergence when two

particles are getting too close. cand vrepresent the speed of sound and the particle

velocity vector respectively.

4.2.3 Pressure calculation

From the momentum equation, it can be seen that the forces acting on fluid particles
are from pressure, viscosity and gravity. Gravity is known whereas viscosity
sometimes can be ignored. Hence, in order to determine the motion in a fluid, the
most important factor is the pressure. To calculate pressure of fluid with SPH one can
use weakly compressible SPH (WSHP) or truly incompressible SPH (ISPH) as
discussed in Chapter 2 and the algorithm process of these two methods will be
illustrated here.

Pressure calculation in WCSPH
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Assuming that the fluid is slightly compressible (Monaghan 1994) and Mach number
is sufficiently small so that the density fluctuations is less than 0.01, the pressure can

be calculated using the equation of state (Batchelor 1973).

pB[ﬂE} _ J (4.2.16)
Po

where y is the polytrophic constant, normally chosen as 7 for incompressible fluid
(water) and 1.4 for compressible fluid (air). p,is the initial fluid density and B is a

constant that can be calculated as:

B = Yo (4.2.17)

where p,and c, denote the reference density and a numerical speed of sound in the

fluid, respectively. The influence of pressure on the velocity can be computed by
substituting the new pressure into SPH formula (4.2.8) or (4.2.9).

This weakly compressible SPH is easy to complement as explicit algorithm is used
(Monaghan 1994; Morris, et al. 1997; Hu & Adams 2006). However, since the
pressure value depends strongly on the fluctuation of density, it lacks accuracy for

pressure calculation.

Pressure calculation in ISPH

Another way of computing pressure is to treat the fluid as truly incompressible and a
then a Poisson’s equation needs to be solved to obtain the pressure values (Pozorski &
Wawrenczuk 2002). This can be done by enforcing the velocity divergence free and
zero density variation conditions (Shao & Lo 2003; Hosseini, et al. 2007), or by using
constant density (Lee, et al. 2010). The incompressible Navier-Stokes Equations
(3.3.10) and (3.3.11) are used to describe the motion of water. The momentum
equation is split into two parts to derive the equation for pressure values. The first part

considers the effect from body force and viscosity
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V.T“J& (4.2.18)
ye,

The second part considers the effect from pressure

N+l 1

Y _—yp™ (4.2.19)
a P

Taking divergence of Equation (4.2.19) and substituting the outcome into
incompressible continuity Equation (3.4.11) the Poisson’s equation for pressure can
be derived

AP =Py (4.2.20)
&
And this Poisson’s equation is then converted to SPH formulation:

N n+l,.n N
PRl ML M, P "o yw) = —iz vV VW (4.2.21)
b=1 rab + 77 26 b=1

Equation (4.2.21) can be solved implicitly using for example the Bi-CGSTAB
method (Vorst 1992). Or it can be solved explicitly as (Hosseini, et al. 2007)

N N n.,.n
- L Z me;b : VWark; + Z ljl_);ab VWaE
b=1

(4.2.22)

Time step sizes allowed for implicit solution and explicit solution are similar.
Using explicit solution approach can reduce computational time but the accuracy of
the algorithm cannot be guaranteed for all cases as no iteration is performed.
Comparison of the performance of these two solution approaches will be given later
in Chapter 6.

Finally, the velocity of each fluid particle can be renewed for the next time step as
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(4.2.23)
. N Pn+l Pn+1
:va—&Zmb( e +Habj-V\N(xa—xb,h)
b-1 Pa P

The new positions of each particle is then updated based on the velocities

X" =x" + v (4.2.24)

Pressure calculation is one of the most important parts of the algorithm since the
motion is driven largely by the pressure force. Using WCSPH method, the pressure
can be calculated easily based on the density variations but this lacks accuracy since it
is sensitive to the density change. Extra correction is necessary for this method. With
ISPH method pressure can be obtained more accurately but more computational time
is needed for the solution of Poisson’s equation. The performance of these two
methods will be also compared in Chapter 6.

The overall algorithm processes for both WCSPH and ISPH are the same as shown

in Figure 4.1.
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Initialization of particle velocity, position, force: u,, r,, F,
v
Current values: u", r", F

n

v

A 4
Calculation of acceleration due to viscosity using equation (4.2.12)

A 4
Prediction step to get intermediate values for fluid particles
considering the effect of gravity and viscose using equation (4.2.18)

l

WCSPH: pressure ISPH: solution of Poisson
calculation using equation (4.2.21) or (4.2.22)
equation (4.2.16) to get pressure for fluid
particles
Next time step l

Correction step to get final values for fluid particles with equation
(4.2.23) and (4.2.24)

A 4

NO Check termination |__,| YES End

A

Figure 4.1: Flowchart of numerical algorithm for fluid

4.3 SPH formulation for solid

The solid particles on the interface are treated as boundaries for the fluid. The
pressure values of the solid particles are obtained directly from the Poisson’s equation
and they are considered as external force acting on the solid. Because of the numerical
property of SPH method, the fluid and solid motion will be coupled automatically in
the algorithm without the conventional interface conditions mentioned in section 3.4.
In order to solve the governing equations of sold with the particles based system,

all the forcing terms in Equation (3.3.2) should be expressed in particle formulae. At
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time stepn+1, if F>™ F>"™ F'"™are used to represent the total body force, total

surface force and total fluid structure interaction force, respectively

ot =], pEran= 3 p B (g rd) 3.
Fis,n+1 _ L—I’-‘inﬂds _ i-l’-‘;;rl r.anb % ranc (432)
Fil,n+1 _ '[ZTin+ldS _ iTar,]iﬂ r.anb « ranC (433)

where N is the total number of solid particles. a, b, c and d are indexes of adjacent

particles as shown in Figure 4.2. r, is the vector from particle a to b and IS

n n
rab X rac

equivalent to the area of the quadrilateral defined by particles a, b and c.

Figure 4.2: Adjacent particle in a unit volume of solid

In our case, F,"** is from the gravity (g=9.81kg/m?). And it is assumed that there
is no surface traction so F,>"* equals zero. The interaction force includes contribution

from pressure and viscous forces. Viscous force F.'is computed based on the

acceleration obtained due to viscosity effect.

v,n+1 : 1 n
i = zm{_v.r ] 434)
a P
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And,
T =P™n.ji+ R (4.3.5)
where n is the normal direction of the area on which the pressure is acting.

Similarly for the momentum Equation (3.4.5) or (3.4.6), if M2>™, M>"™ M/

are used to represent the moments due to total body force, total surface force and total

fluid structure interaction force at time n+1respectively, then

N
M iB,n+l — J-Q pseijk X Jn ~ Fkn+ldQ — Zpaeijk XanYJ % Farjlrlrand . (r;b X ranc) (436)
A N A
M S = L e X TS =D ey X KT ND <l (4.3.7)
N
M= .[z €y X | XTdS =D ey X,y STy x 1 (4.3.8)

Since the moment is calculated relative to the mass centre so M >"*"is zero, and
surface force is assumed to be zero as well, the only moment left is due to the pressure
and viscous force from fluid M,""**.

Hence, based on Equations (3.2.1) and (3.2.6), the translational and rotational

acceleration of the mass centre can be updated.

4.4 Summary

N-S equations describing fluid motion are represented in SPH forms. In the
simulations, density needs to be updated using Equation (4.2.7) for single phase flow
or (4.2.3) for multi-phase flow if WCSPH method is used. Pressure can be calculated
by the equation of state (4.2.16) and then substituted into (4.2.8) for pressure effect on
the velocity in the situation of single phase and (4.2.9) for multi-phase flow. Together
with the viscous force effect computed by (4.2.12) the acceleration can be obtained
and then the velocity and position can be updated for the next time step. In ISPH
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method, density is constant and pressure is calculated using Poisson’s equation
(4.2.22). Similar to WCSPH, pressure values is substituted into Equation (4.2.8) for
single phase flow and (4.2.9) for multi-phase flow. A scheme to be used for multi-
phase flow is to use WCSPH for compressible phase (air) and ISPH for
incompressible flow (water) and this will be discussed in detail in Chapter 9. The total
force and moment can be calculated by Equation (4.3.1) to (4.3.8). The interaction
force term has two parts: one is pressure force and another is viscosity force. Pressure
on the interface particles are calculated through Poisson’s equation directly as these
solid particles are treated as boundary particles for fluid. Viscous force is computed
based on the acceleration obtained due to the viscosity effect. All the kinematic
properties of solid particles such as velocity and position are used in the physical
property calculations of fluid particles as they are neighbouring particles so that the
coupling at the interface is automatically accounted for. The overall SPH

representation of fluid rigid body interaction is illustrated in Figure 4.3.

Fluid-rigid body

interaction
Fluid interface Rigid body
N /—/\ﬁ ﬁ/%

/ N

ISPH with single
phase flow

Interacting force on
solid is due to the
pressure of fluid

Equation (4.3.1)to (4.3.5) for
force calculation;
Equation (4.3.6)to (4.3.8) for

WSPH with single
phase flow

Equation (4.2.7) for
continuity equation;
Momentum equation:

1). Equation (4.2.12) for
viscos force effect;

2). Equation (4.2.16) for
pressure calculation;

3). Apply equation(4.2.8)
for pressure effect

\

Use constant density;
Momentum equation:

1). Equation (4.2.12) for
viscos force effect;

2). Equation (4.2.22) for
pressure calculation;

3). Apply equation(4.2.8)
for pressure effect

J

Multi-phase flow using WSPH
for compressible phase and
ISPH for incompressible phase

which is calculated by
solving Poisson
equation;

Velocity and position
of solid at the
interface will be
involved in pressure,
viscous force, and
other physical
property calculations
of fluid as they are the

moment calculation;

neighbouring particles

Equation (4.2.3) for continuity equation of compressible phase;

Momentum equation:

1). Equation (4.2.12) for viscous force effect;

2). Equation (4.2.16) for pressure calculation of compressible phase;
Equation (4.2.22) for pressure calculation of incompressible phase

3). Apply equation(4.2.9) for pressure effect

Figure 4.3: SPH representation of fluid rigid body interaction
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Chapter 5 Implementation of SPH algorithm

In SPH method, the system is represented by a set of particles. These particles possess
material properties and move according to physical laws. The property calculation of
each particle is carried out by smoothing over neighbouring particles within the
smoothing domain. The smoothing domain is the influence domain of the kernel
function as explained in section 2.4. Because of the compact support property, the
value of the kernel function outside the influence domain is zero. Hence, it is expected
that no particle outside the smoothing domain should contribute to the approximation
in particle form.

For the particles near boundaries, they do not have enough neighbouring particles
as there is no particle outside the boundary. Special treatment on the boundary is
necessary to prevent a particle from penetrating the boundaries and it is also important
sometimes to ensure a correct calculation of flow parameters.

It is necessary to identify the neighbouring particles for each particle before any
calculation can be conducted. Since the particles are arbitrarily distributed,
neighbouring particle identification needs to be carried out for each particle at every
time step. Searching for neighbouring particles is the most time consuming operation
in the computation process. A proper searching algorithm is required to ensure an
efficient simulation.

In this chapter, the important factors of SPH implementation including boundary

treatments, computational strategies and time stepping algorithm will be discussed.

5.1 Boundary treatments

Boundary condition implementation is an important aspect of SPH implementation.
The function may be incorrectly calculated using the particle approximation due to the
absence of particles beyond the boundary, and instability may also occur in the
evolution calculation for the function (Belytschko, et al. 1996).

Since the integral is approximated by a summation over the smoothing domain, a
complete smoothing domain is important for a correct approximation. The particles
within a smoothing length distance away from the boundary normally have a

complete smoothing domain. However, for those particles near a boundary, the
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smoothing domain is truncated and there are no particles outside the boundary as

shown in Figure 5.1 (Liu, et al. 2003a), so the kernel condition cannot be satisfied.

A A
w w
Boundary
e Particles
|
|
6o o 4 —e +l_)
X X
() (b)
A A
w w
Boundary / Boundary
Y rY Y ; )
X X

(c) (d)

Figure 5.1: Kernel function for particles far away from boundaries (a), particles near
the boundaries (b) and particles on the boundaries (c,d)

Special treatment for these particles near boundary is required in SPH method to
resolve this problem.

Boundaries can belong to a solid or a fluid. Solid boundaries can be fixed or
moving, fluid boundaries can be free surface, inlet or outlet. As the fluid is normally

assumed to be confined the inlet and outlet boundary will not be considered.

Free-surface

The free surface conditions expressed in Chapter 3 should be satisfied and particles on
the free surface need to be identified. In SPH method, the pressure of free surface
particles is set to be zero to simplify the dynamic surface boundary conditions
(Monaghan 1989). The following quantity is calculated to identify the free surface

particles
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N
v, =T vw, (5.1.1)
b=1 Ly

This value should equal to 2 in 2D applications or 3 in 3D cases when the
smoothing domain is not truncated but it is far below these values for free surface
particles. So this value is 1.6 and 2.5 in 2D and 3D cases respectively.

Wall boundary

One of the drawbacks of SPH modelling is characterized by particle penetration of the
wall. The solid walls are represented by particles which prevent the inner particles
from penetrating the wall. Generally, there are three different schemes to achieve this:
1) mirror particles (Cummins & Rudman 1999) ; 2) repulsive forces (Monaghan 1994)
or 3) dummy particles (Shao & Lo 2003; Crespo, et al. 2007).

Mirror particles and dummy particles are similar and they are called ghost particles
in general. They are artificially particles placed outside the boundary. Mirror particles
are generated at every time step. The boundary is treated as a mirror and when an
inner fluid particle approaches the boundary a pseudo particle is generated on the
other side of the boundary. This virtual particle has the same density and pressure but
opposite velocity as the associated real particle (Randles & Libersky 1996). Mirror
particles are more computationally time consuming they are not widely used.
Alternatively, the artificial particles with fixed positions can be distributed in a
staggered grid outside the system and they can be included in equations of continuity
and state (Dalrymple & Knio 2001). These fixed dummy particles are commonly used.

Repulsive force is conventionally used in WCSPH method. The wall boundaries are
modelled by a set of particles with fixed positions and zero velocities which have a

repulsive force with the form of Lennard-Jones potential to the approaching inner

fluid particles, as shown in Figure 5.3. This repulsive force can be calculated by
Py P2
r, r r
f(r)=D| 2| -2 — 512
o-of(s) (2] ) oz
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where D is a problem dependent constant and its value can be determined using other

parameters of the problem. For example, one suggestion is to use D=5gH ,

where H is the water depth (although there must be some difference between the
bottom particles and the side particles D is taken as a unique value all through the

particles to keep a simple algorithm) , the parameters p, =4 and p, =2 (Monaghan
1994). ris the distance from an inner particle to a boundary particle andr, is the cut-
off distance normally selected to be the initial particle spacing. The value of f(r) is
set to be zero when r > r, so that the force is purely repulsive. This force can also be

used as the repulsive force between different material particles for fluid flowing

through a porous media (Monaghan & Kos 1999; Jiang, et al. 2007).

In the conventional ISPH method (Shao & Lo 2003), densities still need to be
updated at every time step and these intermediate densities will be substitute into the
Poisson’s equation, a complete kernel domain is necessary to ensure a correct particle
approximation hence ghost particles which mirror the physical properties of inner
fluid particles are the usual treatment of wall boundary conditions (Lee, et al. 2008).
Ghost particles are used to maintain an un-truncated kernel domain for the inner
particles near the wall. Therefore, the consistence of SPH simulation near wall
boundaries is ensured and the physical properties such as density can be calculated
correctly.

However, when dealing with problems with complex solid boundaries the ghost
particle boundary treatment becomes difficult to apply. Taking compartment flooding
as an example, here water can fill both inside and outside the structure and at least
two layers of ghost particles are needed, one on the inside wall and one on the outside
wall respectively. These ghost particles sometimes overlap the true fluid particles.
This can lead to inaccurate neighbouring particle counting and hence result in wrong
predictions. It is also difficult to use ghost particles for curved boundary. Special
consideration is required to calculate the exact position of the ghost particle for the
points on the curved boundary since the position of the ghost particle is important to
prevent particle penetration of the wall.  If constant density is used for ISPH method
which means density fluctuation is avoided, the boundary treatment can be simplified
compared to the conventional ISPH method. These boundary treatments, i.e. using

repulsive boundary force and denser wall particles on the boundary, have not been
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used for ISPH method in the known literature although they have been used in
WCSPH method previously. Practically, as long as the density can be kept as a
constant, the main function of the boundary particles is to prevent inner particles from
penetrating the walls. Therefore, repulsive force can be applied on the wall particles
instead of using several lines of dummy particles which not only increases
computational time but also complicates the model set-up especially in fluid structural
interaction problems.

Another boundary treatment using denser wall particles is also a possibility. With
repulsive force, all the particles can be maintained in a uniform arrangement but the
additional force may disturb the pressure values on the boundary particles. This
problem can be overcome by using denser wall particles with, say, half spacing of the
inner fluid particles. These two boundary treatments can be chosen according to
different situations. Both the boundary treatments allow efficient simulations with
complex solid boundaries and they simplify the coupling approach for fluid structural
interactions (Sun, et al. 2011).

Wall particles are used in the Poisson equation for pressure calculation. Using
denser particles on the wall boundary can provide sufficient pressure to keep the inner
particles away from the boundary. A halved spacing is set for the wall particles

compared with the inner fluid particles as shown in Figure 5.2.

Fluid particle

O O O %)

4

Wall boundary particle

Figure 5.2: Boundary treatment: using half spacing on wall particles

2 2 2 i~ = Repulsive
ALY

Figure 5.3: Boundary treatment: using repulsive force
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5.2 Computational strategies

In SPH method, calculations of physical properties such as forces, velocity and
densities are carried out for each particle based on summation over neighbouring

particles located inside a cut-off radiusr, (r, is linear proportional to the smoothing

length). Identification of neighbouring particles must be accomplished before the
solution of the governing equations.

Searching neighbouring particles for each particle by computing the distances
between other particles in the system can be time consuming, especially when a large
number of particles are used. Therefore, it is necessary to adopt an efficient algorithm
to search for the neighbouring particles.

Two main methods are used to reduce the unnecessary computation of the distances:
the first is to store dynamically the neighbourhood list of each particle (Verlet list)
and the second one is to use a framework of fixed cells (cell-linked list) (Viccione, et
al. 2008). There are a few other methods that are used to improve the searching
efficiency such as oct-tree methods that are used mostly in astrophysical problems
(Stellingwerf & Wingate 1994). An algorithm combining Verlet list and cell-linked
list has been used (Yao, et al. 2004; Dominguez, et al. 2010). For particles with
variable cut-off distances the search methods of cell list and oct-tree can be combined
(Awile, et al. 2012).

In this project, this combined list is adopted and the computational time is further

reduced by making use of the symmetrical characteristic of neighbouring particles.

5.2.1 Cell-Linked List algorithm

Since the neighbouring particles are located within the smoothing domain, it is
beneficial to divide the space into a number of regions (cells) to improve the search
efficiency since neighbouring particles will only exist in the neighbouring regions. In
the application of cell-linked list algorithm, first the problem domain is first
partitioned into many regular cells, and every particle is assigned to a cell according
to its position. The size of the cell can be chosen to be the same as the cut-off distance
or slightly larger. Since the neighbours of each cell is known and fixed, and for each

particle, only its own cell and the neighbouring cells need to be searched thus
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substantial savings of computational time can be achieved (Hockney & Eastwood
1981; Monaghan & Gingold 1983).

The implementation of this process can be outlined as follows:

1). Divide the problem domain into N,,N,,N, cells inx,y, zdirection. Here a 2D

example is shown in Figure 5.4.

Cell 1 Cell 3

OO

Cell 0 @ <;ell 2
@ @

Figure 5.4: Discretizing the domain into cells and storing the particles in appropriate

cell

The number of cells in x, y and z directions are:
N, =L, /r,,N, =L, /r, N, =L,/r,,

cx? C

here L,,L, and L, are the domain lengths, r,r,, and r, are the cell sizes,

v oTex ey
N,,N, and N, are the number of cellsinx,y, z direction respectively.

The cell size can be adjusted to make the number of particles processed in the
searching procedure as small as possible (Allen & Tildesley 1990; Mattson & Rice
1999). Constant cut-off radius is used through the algorithm since it is more efficient
than using a constant number of neighbour particles (Wrdblewski, et al. 2007).

For a certain cell if the index along each direction isN_,, N, N, .

Then it is identified as
C=NgxN, xN, +N,xN, +N.

For a given particlea, its cell indices can be calculated as
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N, =int(x[al/r, ), N, =int(ylal/r, ) N, =int(z[al/r,)

2). Store each particle in an appropriate cell according to the positions. Two lists will
be needed to identify particles inside one cell: 1) Iscl[N J(Nis the total number of
particles) is used for particle a pointing to particle b and 2) head[N.](N. is the total

number of cells) is used for storing the last particle of the cell.

An example of the linked-list (Iscl ) of particles is shown in Figure 5.5

lgc] |Empty |empty | 1 | O 3 |empty| 2 | 3

Figure 5.5: Example of the linked list array

This example is related to the particle distribution shown in Figure 5.4. Here,
particle 0 points to empty as there is no particle before it in cell O; particle 1 points to
empty as there is no particle before it in cell 1; particle 2 points to particle 1 in cell 3
and so on.

The head list stores the last particle of each cell is shown in Figure 5.6

0 1 2 3

head £ empty 7 &

Figure 5.6: Example of head list for each cell

Taking cell 3 for example, since head[3] = 6; particles inside cell 3 can be reached

using particle linked list starting from the head of the cell which is particle 6:
Iscl[6] =2 — Iscl[2] =1 — Iscl[1] = empty

3). Calculate the distances between a particle and other particles in the cell itself and
the adjoining cells so neighbouring particles can be identified and then the physical
calculation can be carried out. This can be done either by storing the neighbouring

cells in an array for each cell ( with dimension of 9xN_) or computing the
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neighbouring cell index during the solution process (cost 9x N_ times computation

for every solution loop);

Summary

In this method, at least one array with size of N and one array with size of N need

to be built for the neighbouring particle searching algorithm. The neighbouring list for
each particle is not recorded. This neighbouring particle searching needs to be done at
every time step. The situation will be worse if the physical properties need to be
calculated in separate computation loops and this means that the same searching
operation needs to be carried out several times within one time step. For example
when an algorithm, such as predictive-corrective algorithm, uses two or more sub
steps in one time step, the neighbouring particles need to be searched in every sub
step before the change of particle positions. It is a waste of computational time to
repeat the search process since the same neighbouring particles are used so the
neighbouring list of each particle should be recorded.

5.2.2 Verlet List algorithm

The aim of Verlet list algorithm is to reduce the redundant distance computation by

building a neighbour list which can be used for several time steps (N, time steps). In
order to do so, a radius r,, slightly larger than the cut-off distance is used to identify

the potential neighbouring particles. It looks like a “skin” outside the cut-off region as
shown below in Figure 5.7
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Figure 5.7: Influencing domain for Verlet list algorithm

r.and N are chosen such that
r,—r. >N,V
where v, is the maximum velocity and &t is the time step size.

The neighbouring particle list can be stored in a one dimensional array called

neighbourlist with dimension of N, x (1+ Nmneighbour) as shown in Figure 5.8

Fneil il] 42 iHneil | Mneiz | 1| j2 Hneid | 1] 52 e

neighbours Dfpﬂ.t_‘ticﬂ 1 neightours of particle 2 neighbiours of particle N

Figure 5.8: Neighbouring particle list in Verlet list algorithm

And another array called point with dimension of N jis needed to point to the first

neighbour for each particle (Ellero, et al.). For example: the number of neighbouring
particles of particle 2 is Nnei2. In the point array,
point[2]= neighbourlist[Nnei1+1]=j1

This means that the first neighbouring particle of particle 2 is the [Nneil+1]th

particle stored in the neighbourlist array.
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Summary
With this neighbouring particle list the calculation of distances between any two

particles can be avoided for N, times so the total computation time can be reduced.

And for the algorithm includes several correction steps within one time step the

neighbouring list will help reduce computation time significantly. However, the

neighbouring particle searching algorithm is still O(N ?) .

5.2.3 Combing Cell-Linked List and Verlet List algorithm

In this case, the problem domain is discretized into regular cells. The size of the cells
can be larger or smaller than the cut-off distance. The particles are allocated in
appropriate cells according to their coordinates. A neighbouring particle list of each
particle is built by comparing the distances with the cut-off distance. Only the
particles in the same cell and adjacent cells are assessed for the Verlet list

construction. This combination requires one array with size of N, x N, x N, to store
the index of cells, an array with size of N, x N, x N, to store the numbers of particle
inside each cell; an array of size of N, xN_, x N, x N to store the actual particles
inside of each cell (N . is the maximum number of particles inside one cell); an array
of size N to store the number of neighbouring particles for each particle and an array

with size of N, xN to store the neighbouring list for each particle. It seems

max neighbour
that more memory space is needed but for complex solution processing it can save
significant computational time.

The efficiency can be further improved if only the neighbour cells with higher
index are considered. As shown in Figure 5.9, sweeping through the grid along the x-
direction, around each cell, only the North-west, North, North-east and East
neighbouring cells are checked (Gesteria, et al. 2010). Taking cell (4,4) in column 4,
row 4 for example, the target cells are (3,5), (4,5), (5,5) and (5,4). The rest of the
neighbouring cells have been considered previously in the process (e.g. the
neighbouring checking between cell (4,4) and (3,4) having been previously accounted

for when cell (3,4) was the centre cell) .

63



6
@) @) @) @) @) O O
@) @) @) o @) o o
5 O
North- | North | North- | o ol o
O @)
OO o | west east SRS o
4
East
0O |o
o @) (4.4) @) O 0 O
@)
3 O O
@) @) @) @)
o |oo | o © ©o| ©
2 O
O o) O o oO © © O O
o o)
1 @) @)
@) OO O @) © © @) @)
@)
0 1 2 3 4 5 6 7 8

Figure 5.9: sweeping through grid cells considering pair-wise relation among
neighbouring cells.
(Starting from the lower left corner, particles inside the centre cell (4,4) interact with
adjacent cells only in North-west, North, North-east and East directions. The
interactions with the rest of cells in West, South, South-west and South-east were

previously computed using reverse interactions)

Hence, distance needs to be computed only 5x N . x N times for all the particles

rather than N o <N ptimes.

Alternatively, symmetrical characteristic is considered for particle pairs directly
rather than the cells as shown in Figure 5.10. Taking particle i for example, all the
particles in the nine contiguous cells are possible to be its neighbouring particles. But

only the particles with a higher index will be checked.
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Figure 5.10: using pair-wise relation for particles directly instead of adjacent cells

The related pseudo-code can be written as
if j>i
do r = /(x1-x0] ) +(y0il-y0il

if r<r,,

j is theneighbour particleof i;
i is the neighbour particle of j.

Namely, the particles with a smaller index than i will not be included in the

computation loop. If the distance between i and j is smaller than the cut-off distance,
then j is recorded in the neighbouring list of i, and at the same time, i is recorded in
the neighbouring list of j. So when jis the centre particle, its neighbouring particles

which have a smaller index such as particle i are already stored in its neighbouring

list and so they will not be checked in the searching loop.

In this case when the pair-wise relation of the particles is considered, only

4.5xN . x N calculations need to be performed for all the particles. This is better

than considering the pair-wise relation of the cells.
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5.3 Time stepping algorithm

The same time step size is used for both fluids and solids. When ISPH method is
applied the time stepping algorithm for fluid is divided into two steps as discussed in
section 4.1. In the first step an intermediate velocity for fluid is computed without
considering the effect of pressure. The values obtained from the first step will be
adjusted in the second step through the effect of pressure. Finally the position of each
particle would be updated according to the new velocities.

After the properties of the fluid are updated, the external force acting on the solid
can be obtained by the summation of fluid force on the solid particles submerged in
the water. So the velocity and new position of the solid can be calculated. The Euler
method can be applied to update the physical properties of the solid as the time step
size used for SPH method is normally very small. The Euler method is a very simple

way to integrate a general function A(t)as follows:

Alt+at)= Alt)+ SA (5.3.1)

Since pressure is calculated implicitly in the ISPH method but other properties are
calculated explicitly, the size of the time step must be controlled in order to generate
stable and accurate results. The following Courant-Friedrichs-Levy (CFL) condition
must be satisfied (Shao & Lo 2003)

At<01—— (5.3.2)
\/

max

where r is the initial particle spacing and v, is the maximum particle velocity in the

computation. The factor 0.1 is introduced to ensure that the particle moves only a
fraction (in this case 0.1) of the particle spacing per time step. When viscous diffusion
is considered another constraint on time step size needs to be satisfied (Cummins &
Rudman 1999)

2

At <0.125 h

(5.3.3)
ulp

The allowable time-step size should satisfy both of the above criteria.
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Chapter 6 Studies of the effect of modelling parameters in
SPH

As in any numerical methods, the performance of SPH in terms of accuracy, stability
and computational time can be influenced by a number of parameters such as the
choice of kernel function, smoothing length, time step size, and number of particles
and so on. In this chapter, investigation of the effect of kernel functions, number of
particles and smoothing length is carried out in a one dimensional case by applying
SPH approximation to represent a number of common functions. A dam breaking
case is used as a two dimensional example to study the effects of kernel functions,

time step sizes and particle numbers.

6.1 The effect of different kernels

Kernel function is one of the key components in SPH method. This section focuses on
the study of the effect of different kernel functions with different smoothing lengths
and particle numbers. Nine popularly used kernel functions (Liu, et al. 2003a) are
considered.

Kernel functions investigated:
1). Quadratic (Hicks & Liebrock 2000)

W(r,h):i(l_[iﬂ, os%gl (6.1.1)

This quadratic smoothing function was used in the grid free finite integration
method. The main advantage of this kernel function is the simplicity and easy for
computation whereas the drawback is that the first derivative is not zero on the
boundary of the support domain, which means that it does not have compact support

for its first derivative.
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2). Quartic (Lucy 1977)

W(r,h):££1—6[£j2 +8(£j3 —3(LJ4J, 0<l<1 (6.1.2)
ah h h h h

This quartic smoothing function and its first two derivatives satisfies the compact
support condition.

3). Johnson’s quadratic

2
w(rh)=2[ 3] 35,31 o<feo (6.1.3)
hl16\h) 4h 4 h

The speciality of this kernel is that the first derivative increases as the particles
move closer and it decreases as they move apart. This is advantageous for adjusting
the position of particles to maintain the stability. However, the derivative of this

kernel function is not smooth at r =0.

4). Gaussian (Gingold & Monaghan 1977)

<2 (6.1.4)

Gaussian kernel was used to simulate the non-spherical stars originally. It is
sufficiently smooth even for the second order derivative. However, it is not really
compact as it never goes to zero theoretically. This can result in a large support

domain with an inclusion of many particles for the particle approximation.

5). Super-Gaussian (Monaghan & Poinracic 1985a)

W(r,h):ﬁ[g—(%j ]e_[“) , OS%Q (6.1.5)
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This is one of the higher order smoothing functions that are devised from lower

order forms. Its main disadvantage is that the kernel is negative in some region of its

support domain. This may lead to unphysical results for hydrodynamics problems.

6). Cubic-spline (Monaghan & Poinracic 1985a)

3
W(r,h)= 6—1(2—%) h<r<2h
0 r>2h

(6.1.6)

The cubic spline function is the most widely used smoothing functions since it

resembles a Gaussian function while having a compact support. However, the second

derivative of the cubic spline is a piecewise linear function, the stability properties can

be inferior to those of smoother kernels.

7). Quartic-spline

W(r h)= Elh (2.5-%)4—5(1.5—97

4
L 2.5—£j

24h h

4 4 4
o8] 28 "y15) v10 Fio0s 0<r<05h
24h| h h

0.5h <r <1.5h

1.5h < % <25h

r > 2.5h
(6.1.7)

Higher order splines were introduced because they are better approximation of

the Gaussian smoothing kernel and more stable.
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8). Quintic spline

1 r\’ r\’ r\’
——||3-——| -6/ 2—-—| +151-—— O<r<h
120h h h h
1 r\’ r\’
——||3—=| -6 2—— h< 2h
W(r,h)=1120n ( hj ( hj] r<
1210_h 3_9 2h< X <3n
0 r >3h
(6.1.8)
9). New-quartic (Liu, et al. 2003a)
2 3 4
w(r,h)=1 E—Q(LJ +E(£) —i(ﬁj . 0<f<2 (6.1.9)
h{3 8\h 24\ h 32\ h h

This quadratic smoothing function satisfies the compact support for the first

derivative and it has a smoother second derivative than the piecewise linear second

derivative of the cubic function, and therefore the stability properties should be

superior to those of the cubic function. However, the second derivative is not

monotonic function of r. This may lead to an incorrect approximation.

These kernel functions are used to approximate 5 common functions in one

dimensional case.
Functions approximated
Function 1: f =x; Function 2: f = x*; Function3: f =e™;

Function 4: f =sin(x); Function 5: f = tan(x)

6.1.1Accuracy analysis

Approximation in SPH involves two steps. First, a function is approximated in

integral form and then transformed into particle approximation. These two
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approximations are investigated separately. In each approximation, the effect of

different smoothing length and different particle numbers are considered separately.

Integral approximation

Similar to many other numerical methods, discretization is required. As shown in
Figure 6.1, the problem domain is divided uniformly into a collection of points with
spacing of or , and then the smoothing domain of each point is further divided into a

set of points with spacing of or'.

s or
! A
4 N
a-1 ™ b a a+l
s e i i . e i i
N J

~
Smoothing domain of point a

Figure 6.1: Discretization in integral approximation

the kernel approximation is then formulated as

(6.1.10)

Here, ox'is the spacing of points within the smoothing domain, i.e. ox'=&". The
analytical result is calculated and compared with the integral approximation results,
and then the error is obtained.

Particle approximation
In particle approximation ox'will be replaced by particle volume which is related to

material properties. In order to keep consistent with the integral approximation, the
volume of a particle should satisfy the following condition

X'=—2 (6.1.11)
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So the density can be expressed as

_m,

= 6.1.12
X' ( )

Yo,

The mass of the system is assumed to be a unit as no specific material is considered.
Since a uniform distribution of mass is preferred the discretization in particle
approximation is slightly different from integral approximation. The problem domain
is just uniformly divided into a number of particles as shown in Figure 6.2, i.e. in this
case o =or'.

5 or
r' A
e N
a-1 ~ a a+1
— 000 0090000000000
N\ J

~
Smoothing domain of point a

Figure 6.2: Discretization in particle approximation

Applying integral approximation to Equation (6.1.12)

%3

(0)=3

b=1

b "V
yOX'=

o al

MW, (6.1.13)

53

N
b=1

Hence, the particle approximation at each particle is expressed as

- i £ (x, W, Mo (6.1.14)
P
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The main difference between Equation (6.1.14) and (6.1.10) is the volume (spacing)
representation. The difference of discretization between integral approximation and

particle approximation is the results of the introduction of material property.

Investigation of individual kernel functions

It is obvious that smoothing length and particle numbers are the two key factors
affecting the accuracy of a kernel approximation. Hence, the accuracy of each kernel
function is tested with different smoothing length and different particle numbers by
checking the errors from the two approximations. The values of error are calculated

using Root Mean Square (RMS) method

l N
= /WZ (6.1.15)

where ¢ is the RMS error, g, is the error between SPH result and analytical results at

the b th particle; N is the number of particles used for error analysis.

For more detailed analysis, the error is assumed to be related to the number of
neighbouring particles and the value of smoothing length as &oc AN“ and
& = Bh” respectively. Where o« and S are variables to be determined, N is the
particle numbers, his smoothing length and A, B are coefficients. Based on these
assumptions, when logarithmic scales are used, the relationship between ¢and N will
appear as a straight line and so is the case for ¢ and h.

The gradient between RMS error and smoothing length in a log-log plot is used to
determine how smoothing length affects the accuracy (shown in Figure 6.4 and 6.7)
similarly, the gradient of the error against the particle numbers is used to find out how
to improve the accuracy with particle numbers (shown in Figure 6.5 and 6.8).

The appropriate smoothing length can be determined based on the diagrams of
RMS error against smoothing length; an error less than 1% is chosen to be the criteria

and so for particle numbers. The better kernel function should give lower error.

6.1.2 Results and discussions

1). Integral approximation
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Results obtained with SPH integral approximation and analytical results are shown

below in Figure 6.3

function vavlue

function vavlue

function vavlue
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F=sin(x) integral approxiamtion vs analytical
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Figure 6.3: Integral approximation results for various functions: F = x, F = x®,

F=e™, F=sin(x) and F =tan(x)

In Figure 6.3 it shows that the results obtained from integral approximation agree
well with the analytical data except for function F = tan(x) due to the singularity of

the function. In this case the problem domain should be divided into two sections to
avoid incorrect computation through the singular point.
The influence of smoothing length and the number of neighbouring particles on

errors in integral approximation is studied next and the results are shown below in
Figure 6.4 and 6.5 respectively.
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error VS smoothing length in integral approximation F=sin(x)
-4 T L L L

In(average error)
&%
I

_10 ~ -

11k i

12 r r r r b
-4 -3.5 -3 -2.5 -2 -1.5

In(smoothing length)
error VS smoothing length in integral approximation F=tan(x)

In(average error)
w
1

2 i
1r- -
o- i

_1 - L L r r L

4 3.5 3 2.5 2 15

In(smoothing length)

—*—— quadratic

quartic

new-quartic

N

©—— Johnson-quadratic

super-Gaussian
cubic-spline

% Gaussian

Figure 6.4: Results obtained from integral approximation with changing smoothing
length in the problem domain (N=100). The legend applies to the following figures of

error analysis as well
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From Figure 6.4 it can be seen that in most cases decreasing the smoothing length
can reduce the error. The function f = tan(x)is a special case. The error is high and it
fluctuates. It is difficult to improve the results by decreasing the smoothing length.
The reason for this is that this function is singular in the domain. Overall, the super-
Gaussian kernel function provides smaller errors and the results are not sensitive to

the change of smoothing length.

error VS the number of neighbouring particles in integral approximation F=x
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Figure 6.5: Results obtained from integral approximation with particle numbers
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The same legend as shown in Figure 6.4 is used for all the figures on error analysis.
From Figure 6.5 it is noted generally that to have 5 neighbouring particles can
produce an approximation with an error under 5% for all kernel functions except for

function f = tan(x). This means that the ratio of about 2 between the spacing and the

smoothing domain radius (kh) can provide accurate results. Increasing the number of
neighbouring particles can slightly improve the accuracy of the approximation for
most kernels except cubic spline kernel. It seems that quartic kernel provides the
smallest error in most cases and cubic spline kernel is not sensitive to the decreasing

smoothing length.

2). Particle approximation
Results obtained with SPH particle approximations and analytical results are shown
below in Figure 6.6.
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F=exp(-x) particle approxiamtion VS analytical
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Figure 6.6: particle approximation results for various functions: F = x, F =x2,

F=e™, F=sin(x) and F =tan(x)



The results obtained from particle approximation also agree with the analytical data

except for function F =tan(x). Influence of smoothing length and the number of

particles on errors in particle approximation is studied and the results are shown

below in Figure 6.7 and 6.8 respectively.
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error VS smoothing length in particle approximation F=exp(-x)
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Figure 6.7: Results obtained from particle approximation with changing smoothing
length (N=100)
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From Figure 6.7, it is clear that a smaller smoothing length provides smaller error.
In the case of linear function approximation, the error is very small though the curves
are not showing a clear trend. For liner function F = x, the results are normally very
accurate even with a large smoothing length. Therefore, decreasing the smoothing
length is not meaningful in this case. It seems that the supper Gaussian gives the best

accuracy in this particle approximation and quartic is the second best.
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error VS the number of particles in particle approximation F=exp(-x)
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Figure 6.8: Results obtained from particle approximation changing particle numbers
(h=0.1) (In this method, error obtained for F = x is very small with all these kernel

functions)
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In Figure 6.8, for functions F = x*, F =sin(x) and F =e™, the accuracy can be

improved by increasing the particle numbers same as for integral approximation. For
function F = x the error is really small although the curve fluctuates with decreasing
smoothing length. The supper-Gaussian kernel can provide the lowest error in most

cases. For function F = tan(x), the error is quite large with all the kernels.

Comparing integral approximation and particle approximation we can see that the
error can be reduced with smaller smoothing length. The results can also be improved
by increasing the number of particles but this is not as efficient as using smaller
smoothing length. This indicates that a proper smoothing length is more important to

obtain a correct approximation. For F =tan(x), as the value of the function

approaches infinite at its singular point within the problem domain, it is difficult to
obtain an accurate approximation. In this case, the problem domain can be divided
into two sections and error can be assessed in each section.

In both two approximations, all the kernels produce similar results, the choice of
kernel is not very important in most cases.

More detailed data from the error analysis for the kernel functions investigated are
listed in tables 6.1 and 6.2. In the case where the effect of smoothing length is studied,
the particle number is fixed to 100 and in the case where the effect of the number of

particles is examined, the smoothing length is fixed to 0.1.

kernel Quadratic Quartic New- Johnson- Super- Cubic- Quadratic- | Quintic- Gaussian
. quartic quadratic Gaussian spline spline spline

function

P-L |G 2.1677 | 1.9951 | 1.9990 | 2.0221 | 2.3737 | 2.0022 | 2.0028 | 2.0034 | 1.9906

P-N | G 0.0076 | 0.0434 | 0.0187 | 0.0377 | 0.0364 | 0.0124 | 0.0160 | 0.0148 | 0.011

I-L | G 2.4239 | 2.0003 | 2.0012 | 1.7935 | 0.0423 | 2.0013 | 2.0016 | 2.002 1.3694

I-N | G 0.4775 | 0.1954 |0.1453 | 0.2036 | 0.1030 | 10° 0.0340 | 0.0882 | 0.1853
Table 6.1: Gradient of average error against particle spacing for function F=x

kernel Quadratic Quartic New- Johnson- Super- Cubic- Quadratic- | Quintic- Gaussian
. quartic quadratic Gaussian spline spline spline

function

P-L |G 2.1666 | 1.9945 | 1.9970 | 2.0193 | 2.3844 | 2.000 |2.000 |2.000 |1.9873

PN | G 0.0051 | 0.0066 | 0.0066 | 0.0064 | 0.0215 | 0.0066 | 0.0066 | 0.0066 | 0.0083

I-lL |G 2.1226 [2.000 |2.000 |1.9003 |0.0844 |2.000 |2.000 |2.000 |0.9576

I-N | G 0.2322 | 0.1526 | 0.1052 | 0.1738 | 0.1043 | 10° 0.0128 | 0.0531 | 0.0448

Table 6.2: Gradient of logarithm of average error against logarithm of particle spacing
for function F =sin(x) (Here, P-L and P-N stand for particle approximation with
changing smoothing length and number of particles respectively, whereas I-L and I-N
are for integral approximation with varying smoothing length and particle numbers
inside the smoothing length respectively)
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The gradients of error against smoothing length are around 2 in both integral and
particle approximation, which means that SPH approximation has a second order of
accuracy with smoothing length. The influence of the number of particles on the
errors is more noticeable in integral approximation than in particle approximation.
This indicates that increasing the neighbouring particles is more efficient than
increasing the total number of particles; the number of neighbouring particles
determines the accuracy.

To summarise, integral approximation does not differ from particle approximation
in most cases which means that the particle approximation is consistent with integral
approximation. Different kernel functions give similar approximations. Especially for
new quartic, cubic spline, quartic spline and quintic spline functions, they provide
close results in most cases. It seems that the quartic kernel function shows the best
performance generally. SPH approximation has a second order of accuracy with
smoothing length. Decreasing the smoothing length or increasing the number of

neighbouring particles is normally useful to improve the accuracy.

6.2 Investigation of various factors with WCSPH

Dam breaking problem is a classic benchmark problem for assessment of fluid
simulations (Monaghan 1994). The model is shown in Figure 6.9. The water column
is 0.09m (L=0.09m) by 0.18m (H=0.18m). At the starting moment of computation,
the right side wall is removed instantaneously and the water column suddenly
collapses as a result of gravity effect. The particles are assumed in hydrostatic state at

the initial time instant. No-slip boundary condition is applied.
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Figure 6.9: Dam breaking model

Simulations are carried out with different kernel functions, time step sizes and
number of particles. The particles are assumed to be uniformly distributed in the
domain initially. Lennard-Jones form of repulsive force given in Equation (5.1.2) is
applied for the left and bottom wall as boundary treatments. Velocity, pressure and
position are calculated according to Predictor-corrector algorithm in WCSPH method.

Kernels including Cubic spline, quartic, quadratic, Johnson quartic and Gaussian are

used. The time step size is 0.5x10~*s and the number of particles is 30 x 60 in these
cases. The position of the leading edge of the fluid is recorded and compared with

experimental data (Martin & Moyce 1952) as shown in Figure 6.10.
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Figure 6.10: Results obtained by using different kernel functions

From Figure 6.10 we can see that the results obtained by using quartic kernel are
closest to the experimental data and quadratic kernel produces the worst results. Other
kernels produce similar results.

To investigate the stability, various time step sizes are considered. The maximum
time step size is decided to be 1.0x10™*s based on the CFL stability condition. New

quartic and quartic kernels are utilized in this case with 30 x 60 particles;

89



- 1.2 7 + experiment (Martin & Moyce 1952)

% L —m—delta t=5e-5s

ﬁ delta t=1e-5s

%ﬂ 08 - —<—(delta t=5e-6s .

£

S 06 -

E

S 04 -

2

b}

.g 02 -

=

o]

z 0 T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2

non-dimensional time T=t(g/H)!"?

Figure 6.11: Quartic kernel using different time step size
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Figure 6.12: New quartic kernel using differetn time step size

It can be seen from Figures 6.11 and 6.12 that time step size does not affect the
results significantly. However, during simulation, it was found that when larger time
step of1.0x10*sis used, only the simulations using the new quartic and quartic
kernel were successfully completed. For the other kernel functions some inner fluid

particles were found to penetrate the boundary with this time step size. This means
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that time step size influences the stability of the algorithm and quartic kernel

functions have better stability.

Different numbers of particles with quartic and new quartic kernels with a time step

size of 0.5x10*s are used to see the possibility to improve the accuracy by

increasing the particle numbers.
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Figure 6.13: Quartic kernel with different number of particles
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Figure 6.14: New quartic kernel with different number of particles
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It is observed from Figure 6.13 and 6.14 that the results are closer to the
experimental data with increased number of particles. Especially in the early stage of
the fluid motion, a larger number of particles provide better agreement with the
experimental data especially in the early stage of the fluid motion. It is expected that a
better results can be achieved during the entire process with more number of particles.
However, when the particle numbers doubled, the computational time will also

increase, and this makes the computation more expensive.

6.3 Summary

SPH approximation has second order of accuracy with smoothing length. Decreasing
the smoothing length or increasing the number of neighbouring particles is useful to
improve the accuracy. A ratio of 0.5 between particle spacing and the smoothing

domain radius, i.e. % = 0.5, can provide accurate results. Different kernel functions

may result in some difference for the simulation but generally they produce similar
approximations. A dam breaking case study further confirmed that increasing particle
numbers can improve the accuracy of simulations. Time step size does not influence
the accuracy significantly but it influences the stability of the algorithm.

Although these investigations are based on the WCSPH method, the conclusion is
applicable for ISPH method as the general principle is the same. The difference of the

performances of these two methods will be discussed in the next chapter.
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Chapter 7 Performance comparison of ISPH and WCSPH

As discussed in Chapter 4, the pressure of fluid can be computed through two
approaches. One is WCSPH method which uses the equation of state to calculate the
pressure and another is ISPH method in which the Poisson’s equation is solved. In
order to determine which method should be selected for future applications a
comparison of the performances of these two methods is carried out using a dam
breaking flow simulation as a test case. In ISPH method the fluid density is assumed
to be constant. The two solution approaches for Poisson’s equation, explicit solution
approach and implicit solution approach, are both considered. After the determination
of the preferred method, boundary treatments are investigated for the selected method.

CPU time and flow patterns obtained from these two methods are compared.

7.1 Dam breaking case 1

The same model for dam breaking case study as presented in Chapter 6 is used again
to compare the performance of ISPH and WCSPH methods. Two solution approaches
for ISPH methods are both considered. To clarify the difference and to eliminate the
influence from other factors such as smoothing length, kernel function choice, particle
numbers and so on, same parameters are adopted for these different algorithms. The

results of the position of leading edge of the fluid is shown in Figure 7.1
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Figure 7.1: Results obtained from WCSPH and ISPH with explicit solution and

implicit solution approach

It seems that the results obtained using ISPH method with explicit solution
approach are closer to the experiment data although all the numerical results in Figure
7.1 are very similar. In addition to the velocity, to be able to predict pressure correctly
is also important. Hence, a simple case with a tank of hydrostatic water is simulated to
investigate the pressure predictions of these methods.

7.2 Prediction of hydrostatic pressure

In the previous section the velocity prediction of ISPH and WCSPH is compared. In
this section, the pressure distribution produced by these two methods will be
investigated using a simple case with a tank of water in hydrostatic state. In order to
obtain comparable simulations, the numerical model is set to be the same for these
different methods. The tank size is 1.2m wide and 1.0m high, water depth is 0.6m.
The particle spacing is 0.01lm. Flow patterns at time t=0.5s and t=1s are shown in

Figure 7.2 to Figure 7.4, with different colour representing different pressure values.
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Figure 7.2: Pressure distribution from ISPH with explicit solution approach at 0.5s

and 1s
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Figure 7.3: Pressure distribution from ISPH with implicit solution approach at 0.5s
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Figure 7.4: Pressure distribution from WCSPH at 05s and 1s

In Figure 7.2, coloured layers representing different pressure values can be
observed at different water level. Similarly in Figure 7.3, pressure distribution is
clearly defined. By contrast, it is difficult to recognize the coloured layers in Figure
7.4, thus the pressure distribution does not seem to be well predicted. Furthermore,
the value range appears to be incorrect as well.

Pressure values of one particle close to the middle point of the bottom of the tank is
shown below:
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Time (s) WCSPH ISPH-explicit ISPH-implicit

0 5786 5786 5786
0.05 -47020 4215 4500
0.1 2534 5339 4934
0.15 -2416 5005 5042
0.2 43050 4548 5113
0.25 -47890 5060 5167
0.3 -18590 5512 5203
0.35 664.8 5210 5242
0.4 -8680 4811 5271
0.45 13540 5371 5291
0.5 34740 5571 5326
0.55 8442 5036 5351
0.6 -35530 5192 5368
0.65 7605 5630 5382
0.7 -24480 5455 5392
0.75 32560 5036 5410
0.8 -23690 5340 5395
0.85 -21140 5741 5431
0.9 -69940 5316 5435
0.95 7157 5130 5429
1 27060 5544 5406

Table 7.1: pressure values (N/m?) of a fixed point on the bottom of the tank

In table 7.1, the pressure values obtained using WCSPH method change erraticly at
different time and some unphysically negative values are obverved. This is because
the pressure is calculated according to the equation of state which strongly depends on
the change of density. A slightly reduced value of density may lead to a large negative
value of pressure. in contrast, the pressure values obtained using ISPH method with
both solution approaches are very stable.

The relative error of pressure is calculated and compared in Figure 7.5
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Figure 7.5: Relative error of pressure obtained from different methods in hydrostatic
state
From Figure 7.5 it is obvious that the error of pressure values obtained from
WCSPH method is high and the values fluctuate irregularly. In contrast, ISPH method
with both solution approaches provides smoother pressure values and the error is
smaller than 0.01. The CPU time for different methods is shown in table 7.2.

METHOD Time step size CPU time per step
WCSPH 0.00001s 0.015584s
ISPH-implicit 0.0005s 0.159695s
ISPH-explicit 0.0005s 0.0281665s

Table 7.2: CPU time for hydrostatic tank simulation of 1s with different methods

From table 7.2 we know that a larger time step size can be allowed for ISPH
method regardless of which solution approach is used. The longest CPU time for one
time step is using ISPH method with implicit solution approach, which is almost ten
times of the time needed in WCSPH method. However, the total CPU time for a
simulation of 1s is 319.39s in ISPH and 1558.4s in WCSPH method, which means the
total CPU time can be reduced by using ISPH. The shorted CPU time is required
when explicit solution approach is applied for ISPH method, which is one fifth of the

time required in implicit solution approach.

97




In order to further confirm that ISPH is able to perform better, another dam

breaking case with a barrier in the middle of the tank is simulated in the next section.

7.3 Dam breaking case 2

In this section a dam breaking case with a barrier in the middle of the tank is
simulated using WCSPH and ISPH with the implicit solution approach. The model is
set up with a tank size of 0.8m wide and 0.6m high, the water column size is 0.3m X
0.3m. Three cases with different number of particles are considered: the first one has
15 x 15 particles; the second one 30 x 30 particles and the third one 60 x 60 particles.
The time step size allowed for WCSPH is 1.0x10°sand for ISPH it is5x10™s. The
motion of water flow at different time is displayed and the pressure distribution is
shown with different colours. In addition, CPU time for these two methods is
compared.

CASE 1: Using 15 x 15 particles with spacing of 0.02m in WCSPH
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Figure 7.6: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s

and 1s using 15 x 15 particles

Using 15 x 15 particles with a spacing of 0.02m in ISPH
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Figure 7.7: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s and
1s using 15 x15 particles

Comparing Figures 7.3 and 7.4, the spray generated as the results of water impact
on the barrier using WCSPH method is not as violent as that using ISPH. The pressure
distribution as indicated by the colour difference of the particles looks more realistic

in the ISPH data than in WCSPH results.

CASE 2: Using 30 x 30 particles with a spacing of 0.01m in WCSPH
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Figure 7.8: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s
and 1s using 30 x 30 particles

Using 30 x 30 particles with a spacing of 0.01m in ISPH
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Figure 7.9: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s and
1s using 30 x 30 particles

The flow patterns of the fluid in the second case obtained as shown in Figures 7.8
and 7.9 are more realistic than in the first case. This is a further confirmation of the
previous conclusion that the results of a simulation can be improved by using more
particles. At 0.15s, the flow shown in these two Figures is similar regarding to
position and form. At 0.25s, the front of the flow is stopped by the barrier and the rest
of the fluid keeps moving because of the gravity. The large difference of the velocity
in the fluid causes a splash. As the front of the fluid flowing over the barrier at 0.4s
and reaching the other side of the barrier at 0.55s, the difference of the velocity in the

rest fluid becomes smaller. At 0.8s, the fluid is divided into two parts. One part is
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sloshing slightly behind the barrier. The other part as the front of the flow currently is
contained on the other side of barrier. Comparing Figure 7.8 and Figure 7.9, some
obvious differences of the flow patterns can be seen. The pattern of the splash
generated in ISPH method is more violent than in WCSPH method. In ISPH method
some of the particles fly like a fragment of the spray while in WCSPH simulation it
seems that the particles of the spray are held together. The cause of this is likely the
pressure difference on the free surface of these two methods. In ISPH method,
pressure is enforced to be zero for the particles on the free surface as a boundary
condition whereas in WCSPH method, pressure values are calculated using the
equation of state. Hence the pressure is not necessarily zero on the free surface in
WCSPH. At 1s, there is more fluid over the barrier in ISPH than in WCSPH
simulation. This indicates that the velocity of the fluid obtained in ISPH method is
larger than WCSPH.

Looking at the colours of the particles which represents pressure distribution, it
seems that only one single colour is shown in WCSPH which means the pressure is
almost the same everywhere while in ISPH it can be seen that the colour on the
bottom is brighter which means a higher pressure is in the deeper water. Hence,

pressure distribution produced by using ISPH method is more reasonable.

CASE 3: Using 60 x 60 particles with a spacing of 0.005m in WCSPH
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Figure 7.10: Motion of water flow with WCSPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s
and 1s using 60 x 60 particles

Using 60 x 60 particles with a spacing of 0.005m in ISPH:
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Figure 7.11: Motion of water flow with ISPH at time 0.15s, 0.25s, 0.4s, 0.55s, 0.8s
and 1s using 60 x 60 particles

The flow patterns of the flow and spray shown in Figure 7.10 and 7.11 are much
clearer than the previous two cases. Same as the second case, the results produced by
using WCSPH method are still different from the results produced by using ISPH
method. Several levels of different colours can be seen in Figure 7.8, which
represents different pressure values at different water level. In contrast there is no
clear colour level shown in Figure 7.7. This means that the pressure values obtained

by using ISPH are more reasonable and better than WCSPH.
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The CPU time for these three cases is given in table 7.3

acing (m) di=0.02m di=0.01m dl=0.005m
SPH method
WCSPH 199.16(s) 246.17(s) 933.29(s)
ISPH 7.471(s) 28.326(s) 124.6(s)

Table 7.3: total CPU time used with WCSPH and ISPH method by using different
particle spacing (Time step size used is 5x107*s for ISPH and 10~°s for WCSPH)

It can be concluded from the figures above from 7.5 to 7.11 that a more realistic
motion can be obtained by using more particles for both WCSPH and ISPH methods.
To achieve a comparable simulation fewer particles are needed in ISPH method than
in WCSPH method. Pressure distribution obtained from ISPH method is more
accurate than WCSPH method. Considering the CPU time required for these two
methods, ISPH is faster.

In conclusion, with the same algorithm process ISPH method can produce more
accurate pressure values than WCSPH and also it requires less CPU time. Therefore,
in this project ISPH method is preferred. The explicit solution approach for ISPH
method is able to provide similar accuracy with the conventionally used implicit
solution approach but the CPU time required is much less than the implicit solution
approach.

The boundary treatment is now investigated for ISPH method to ensure easy model

generation and efficient simulation.

7.4 Boundary treatment investigation

Two boundary treatments were proposed for ISPH method in Chapter 5. Although
they have been used in WCSPH before, it is the first time they are used in ISPH
method. These two boundary treatments are easy to implement and they are expected
to be efficient for fluid structure interaction problems. They are applied to a dam

breaking case to investigate the pressure calculations.
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In this case, the overall height of water column is set to be 0.6m and the width is
1.2m. The size of the solid container is 3.22m long. The initial spacing of fluid
particles is 0.01m, smoothing length is determined as 1.33 times of the spacing. The
pressure values at a point 0.16m from the bottom on the right wall are recorded. The
results are obtained using ghost particle treatment, half spacing of wall boundary
particles treatment and repulsive force boundary treatment and they are compared
with experimental data (Zhou, et al. 1999) and the numerical data produced using
Navier-stokes solver (Abdolmaleki, et al. 2004) .

Analysis of Pressure values
Results obtained from different boundary treatments with SPH methods are compared

with experimental data as shown below in Figure 7.12,

2.0 4 Plool] + experimental (Zhou, et al. 1999)
PE - - —uniform particle spacing with repulsive force
denser wall particles on wall particles
15 - AT uniform particle spacing plus ghost particles
—— Navier-stokes solver (Abdolmaleki, et.al, 2004)

t(gﬂ_:[)lf?

-0.5 -

Figure 7.12: Pressure history at point (3.22, 0.16) from different boundary treatments

From Figure 7.12 it is clear that all these three boundary treatments provide the first
pressure peak around the right time compared with experimental data. The first peak
values obtained from a Navier-Stokes solver are slightly higher than the observed in
the experiment. Boundary treatments with repulsive force and ghost particles produce

similar results and a denser wall particle boundary treatment gives slightly higher
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peak value than the other two treatments. The overall curves agree well with
experimental data except the second peak value. There is no obvious second peak
pressure in the simulations. But compared with other numerical methods such as

Navier-Stokes solver, SPH gives values closer to the experimental data.

Investigation of using different numbers of particles with these two boundary

treatment is also carried out and the results are shown below in Figure 7.13.
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Figure 7.13: Investigation of repulsive force treatment with different particle spacing

From Figure 7.13 it can be seen that the curve with particle spacing of 0.0067m is
closer to the experimental data. The values obtained with particles spacing of 0.01m
fluctuates more than the others, which implies that decreasing the particle spacing
does not always improve the accuracy. Since the ratio between particle spacing and
smoothing length is fixed, so the number of neighbouring particles of a particle is
fixed but the smoothing length is reduced accordingly. Decreasing smoothing length
should lead to an improvement of the accuracy according to the previous investigation.
This may imply that with the particle spacing reduced the number of particles will

increase and the time step size should decrease to ensure results convergence.
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Figure 7.14: Investigation of repulsive force boundary treatment with different

time stepping sizes

Figure 7.14 shows the difference between the curve representing the results using

time step size of 5x10™*sand the other two curves especially in the predicted period
of the first peak. The rest of the curves are almost the same and this means all the time
step sizes are appropriate. When time stepping size of 0.0001s is used, the results are
close enough to the experiment data. Considering the results shown in Figure 7.13, a
time stepping size of 0.0001s seems to be a better choice for the simulation. However,
with smaller time step it seems that the values of pressure fluctuate more severely
than using a larger time step. This may imply that there are some other factors which

influence the convergence such as the disturbance from the boundary treatment.
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Figure 7.15: Investigation of denser wall particles treatment with different particle

spacing

Comparing Figure 7.15 with Figure 7.13, similar observation can be made. The

results obtained using a particle spacing of 0.01lm seem to be worse than the one

obtained using a spacing of 0.02m. To clarify this, the effect of using different time

step sizes is studied and the results are shown below in Figure 7.16.
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Figure 7.16: Investigation of denser wall particles treatment with different time

stepping sizes
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From Figure 7.16 we can see that similar to the repulsive force treatment, using a
time step size 0.0001s provides better results than using 0.0005s. Only small

difference can be observed when the time step size is further reduced. In this case a

second peak can be observed when time step size of 5x107°s, which may indicate
that using denser wall particles is a better boundary treatment compared to repulsive

force treatment.

7.5 Summary

From the results of dam breaking simulations it is clear that ISPH produces better
results than in WCSPH method. Another dam break case with a barrier in the middle
of the tank was studied to further investigate the difference of the performance of
these two methods. Water flow motions and the pressure at different times with
different particle numbers were compared. Pressure distribution and water motion can
be captured more realistically in an ISPH simulation. Similar performances are
observed by using the two solution approaches for ISPH method. The explicit solution
approach has a great potential for ISPH although it is not conventionally used. The
CPU time required needed in using WCSPH. Hence, ISPH is preferred. As the
traditional boundary treatment for ISPH requires ghost particles, it is hard to use for
complex geometries, two boundary treatments including repulsive force and denser
wall particles are investigated. Pressure values obtained using these two boundary
treatments are studied. The results show that these two boundary treatments work well
with ISPH method. Applications of ISPH method to fluid solid interaction and multi-

phase flow will be discussed in the following chapters.
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Chapter 8 Application to 2D fluid-rigid body interactions

Based on the outcome of the investigation of different SPH methods in the previous
chapter, ISPH is selected for the simulation of incompressible fluid. And two
boundary treatments have been found to be suitable to produce good pressure values
with ISPH method. They should be efficient for the modelling of the interface of fluid
structure interaction problems. In this chapter, two fluid rigid body interaction
examples, water entry of a wedge and the dam breaking problem involving a spring
supported rigid wall, are simulated to demonstrate the performance of this method. At
the interface, the solid is treated as a wall boundary to ensure no penetration. The
physical properties carried by the solid particles contribute to the corresponding
quantity calculations of the inner fluid particles within the smoothing domain.
Therefore, the influence of the solid particles on the inner fluid particles is considered
in the particle approximation, and the coupling condition between the fluid and the
solid is automatically satisfied. The force acting on the solid is determined by the

summation of the pressure on all the solid particles.

8.1 Wedge dropping simulation

Water impact is a common problem found in marine and offshore engineering. Wedge
dropping test is used to study the reaction of ship slamming. The understanding of the
influence of the fluid on the body is of interest for the safety consideration in the
design of the marine structures.

As the velocity of the dropping wedge depends on the interactions with fluid,
simulation could be difficult for the grid based methods due to the treatment of free
surfaces and moving solid boundaries. Oger, et al. (2006) applied WCSPH method to
wedge dropping simulation using denser particles in the impact area and the
smoothing length was changed depending on the requirement of accuracy to ensure an
acceptable level of density fluctuation in the fluid. Gong, et al. (2009) proposed an
alternative method by using a sponge layer on the bottom of the tank to adjust the
density calculation of the fluid particles. When Shao’s ISPH method was applied to

water entry of free-falling wedge, mirror particles were used on the moving solid
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(Shao 2009). With Lee’s ISPH method, the proposed two boundary treatments can be

applied which will simplify the model generation and reduce computation time.

In this section, a symmetric wedge with a dead-rise angle 6 of 30° (an angle
measured upward from a horizontal plane at keel level) dropping into water as shown
in Figure 8.1 is simulated using ISPH with the denser wall particle boundary
treatment. The weight of the dropping wedge is 241kg, the width of the wedge is 0.5m
and the length is 1m. The tank size is 2m x 1m. In the simulation, the wedge is placed
just above the free surface of the calm water with a dropping velocity of 6.15m/s

given from the 2D experiment (Zhao, et al. 1997).

1m

v

A

2m

Figure 8.1: Water entry of wedge
The wedge is only allowed to move in the vertical direction and its motion follows

the equation of motion for rigid body. The resultant water pattern is compared with

the photo from the experiment (Tveitnes, et al. 2008).
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Figure 8.2: Water pattern during wedge dropping

The vertical acceleration of the wedge will decrease when it entries the water.
When the falling wedge hits on the water surface, the surface will be break because of
the strong impact and water is pushed up around the wedge and water jets are
generated in this stage as shown in Figure 8.2. The wave pattern obtained from SPH
simulation is remarked with black lines for easy compare with the experiment. The
velocity of the dropping wedge after impact and the impact forces on the wedge from
water are compared with experimental data and analytical result given by Zhao, et al.

(1997) in Figure 8.3 and 8.4 respectively.
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Figure 8.3: Wedge dropping velocity in the water

Figure 8.3 shows a good agreement between velocity values obtained from

experiment and the current SPH method.
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Figure 8.4: Impacting force on wedge
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In Figure 8.3 it shows that the dropping velocity decreases more rapidly after
0.007s. Initially, the fluid force increases steadily and then slows down before
reaching the peak at around 0.015s. After that the force starts to decrease. The
dropping velocities obtained based on SPH method are slightly lower than the
experimental values in the later stage with a maximum error of 2%. For the vertical
fluid force shown in Figure 8.4, the computed values are slightly over-predicated at
first and then it is under-predicated for a short period of time, but it is higher than
experimental values at the last stage. Overall, both the dropping velocity and vertical
fluid force obtained from the proposed SPH method agree well with experimental
values. To investigate the effect of different parameters on the water entry process the

following 3 cases are studied

Case 1: different wedge masses with dead-rise angle of 30" and initial dropping
velocity of 6.15m/s

Case 2: different initial dropping velocities with wedge mass of 241kg and dead-rise
angle of 30°

Case 3: different dead-rise angles with wedge mass of 241kg and initial dropping

velocity of 6.15m/s
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Figure 8.5: Time history of dropping velocities (top) and fluid forces (bottom) for

different wedge mass

From Figure 8.5, it is clear that the heavier the wedge is, the slower the velocity
decreases with higher peak fluid force. This is because the initial velocity is in the
same direction as gravity force and the gravity force is larger for a heavier weight. So
the results are reasonable.
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Figure 8.6: Time history of dropping velocities (top) and fluid forces (bottom) for
different initial velocities

As shown in Figure 8.6, the dropping velocity decreases more rapidly with a larger
initial value. The three curves representing the velocities appear to be parallel to each
other at the later stage, which means that deceleration is almost the same. For the fluid
force, larger initial velocity generates higher fluid force at the early stage and a larger
peak value. By contrast, the force values become almost the same at the later stage

and this results in a same deceleration as observed in top figure of Figure 8.6.
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Figure 8.7: Time history of dropping velocities (top) and fluid forces (bottom) for
different dead-rise angles

From Figure 8.7 we can see that fluid force acting on a wedge is smaller for the
wedge with a larger dead rise angle and consequently the velocity decreases much
slower. This is because the vertical force on the wedge is a projection of pressure
from the fluid. This projection is based on the cosine of the dead rise angle. A larger

dead rise angle will lead to a smaller value.

8.2 Dam breaking flow with a spring supported wall

In practice, large fluid impact force on the solid may result in movement of structure.
It is interesting to know how the fluid force on the solid is affected due to the

movement of solid. A spring supported rigid wall as shown in Figure 8.8 is selected as
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an example to investigate the influence of solid movement on the fluid interaction

force.

Figure 8.8: Spring supported rigid wall

In the simulation 120 x 60 particles with initial spacing of 0.01m are used for the
inner fluid particles and for the spacing of boundary particle is 0.005m. All the
settings in this case are the same as those used in the previous dam breaking case as
discussed in section 7.3 (water column is 0.6m high and 1.2m wide, the wall is 3.22m
long and 2m high). The only difference is that the right wall is attached to a spring
which allows a limited rotational for the structure. The right wall stays stationary until
the arrival of the fluid. It then starts to oscillate because of the combined effect of the
fluid pressure and the restoring force of the spring. For a 3 second simulation the total
CPU time is 5586.2s with time step size of 0.0001s, which is more than the CPU time
of 1989.8s taken for the fixed wall.

The right rigid wall is only allowed to rotate and the following equation is used as

the governing equation for the rotation (Xing, et al. 2003).

16 —MgHsind+ Ko =M, (8.2.1)
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where | =4/3MH ?is the moment of inertia, M is the mass with values of 1kg, H is
the distance between the centre of mass of the wall and the pivotal point of the
rotation with value of 1m, K is the stiffness constant of the spring of value of 20 and

M is the moment produced by the fluid pressure. In the simulation, the moment

M  is calculated from the fluid pressure as:
N

M, =) P,lcosal (8.2.2)
b

Here, b is the solid particle in contact with water; P, is the pressure at particle b, | is

the distance from spring to particle b and dl is the particle spacing and & is the spring
angle.

Fluid flow motion with the fixed wall and rotational wall are depicted in Figures
8.9 and 8.10.

Figure 8.9: Motion of fluid pattern with fixed wall at t=0.8s, 1.4s, 1.7s, 1.9s, 2.2s and
2.45s

121



Figure 8.10: Motion of fluid pattern with spring supported wall at t=0.8s, 1.4s, 1.7s,
1.9s, 2.2s and 2.45s

Comparing Figure 8.9 and Figure 8.10 we can see that before 1.4s the motions of the

water are similar for the two cases, but stronger waves are generated afterwards

because of the rotation of the dam.
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Figure 8.11: Impact pressure against downstream wall at point (3.22m, 0.16m) which

is the initial coordinate for rotational wall

It is shown is Figure 8.11, before the second peak pressure values obtained in the
situation when the dam can rotate are smaller. At the time around the second peak, the
spring supported dam provides higher pressure values than the fixed case because
after the first peak the fluid force on the solid decreases but the dam continues to
rotate as a result of inertia. The spring keeps storing energy during this period. When
the fluid pressure starts to increase again the spring achieves the maximum angle and
then it forces the dam to return back, resulting in a stronger second peak. The values
of these repeated peaks will be different with different spring stiffness. If the stiffness
is large enough the wall could be treated as fixed. The vibration of the wall depends
on the natural frequency of the spring (equals 0.71 in this case) as well as the
impacting force. In fluid structure interaction cases, vibration and impacting force

influence each other at the same time.
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Figure 8.12: Early stage of impact fluid force momentum on the dam

Here, when the wall moves with the flow, the pressure peak is delayed as shown in
Figure 8.11 but when the wall moves against the flow pressure peak is sped up as
shown in Figure 8.12.

8.3 Summary

ISPH method is applied to fluid solid interaction in 2 dimensional cases. The two
boundary treatments, i.e. repulsive force and denser wall particles on the boundary,
discussed in the previous chapter are applied. The examples of wedge dropping and
spring supported dam are used to demonstrate the performance of the method. The
results show close agreement with experimental data. The influence of the parameters
of wedge dropping problem including initial velocities, masses and dead rise angles
are analysed. It was found that a larger dead rise angle or a larger weight would result
in a slower deceleration; a larger mass or a larger initial velocity or a smaller dead rise
angle would result in a higher vertical force. The flow involving spring supported wall
is compared with that of a fixed wall and it shows that the movement of the all will

delay the pressure peak.
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Chapter 9 Application to air-water two phase flow

In marine and coastal engineering fields, violent fluid-structure interactions can lead
to air entrapment. Simplifying these problems as incompressible fluid interacting with
a solid will not capture the true physical nature of the problem. The air phase may
have a large influence on the water flow evolution and subsequently on loads on
structures. Therefore, the application of the SPH method on incompressible fluid is
extended to two phase flows involving air and water. The advantage of SPH for multi-
phase flow is that each phase of fluid follows its Lagrangian motion therefore the
material interface is represented in a self-adaptively manner without the need for
complex interface-capturing or front-tracking algorithm (Adami, et al. 2010). To
model the compressible property of air and the incompressibility of water, a new
method is proposed for air-water two phase flow simulation. These two different fluid
phases are treated separately within the same time step. Air is solved using WCSPH
and water is solved using ISPH with constant density. The time stepping algorithm is
shown in Figure 9.1. No special treatment is required on the interface. The SPH
formulations for multi-phase flow were given in Chapter 4. The standard SPH
formulation for density and pressure gradient derived based on the assumption of
continuous density of the material cannot be used for multi-phase flows especially for

the cases when the density difference is large.
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Figure 9.1: Time stepping algorithm for two phase flow using combined ISPH-
WCSPH methods

In this chapter, the dam breaking flow with air-water two phase fluids is used to
demonstrate the performance of the proposed algorithm. Results obtained from single
phase flow and air-water two phase flow simulations are compared. Two typical
multi-phase flow examples, i.e. rising air bubble in water and Rayleigh-Taylor

instability are investigated to test the proposed method.
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9.1 Air-water two phase dam breaking

The dam breaking case which has been studied in section 6.2 is simulated in this
section taking into consideration of air-water two phase flow and the results are
compared with the previous single phase case as shown in Figure 9.2.

e experimental (Martin & Moyce 1952)

097 —&—single phase

0.8 © ———multi-phase ®

=x/H

non-dimensional leading edge X

0 0.2 0.4 0.6 0.8 1 1.2

non-dimensional time T=t(g/H)?

Figure 9.2: Position of the leading edge

The flow patterns of the fluid motion at different time instants are shown in Figure
9.3
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Figure 9.3: Fluid motion of dam-break in single phase case and multi-phase case at
time 0.13s, 0.2s and 0.5s

From Figure 9.3 it is clear that in the dam breaking case, there is no significant
difference on the fluid motion whether the effect from air is considered. This indicates
that the velocity in a single phase case and a multi-phase case should be similar. A
different initial air density is considered to simply test the behaviour of the algorithm.
According to common experience, increasing the density of air should slow down the
movement of water. When the initial air density is set to equal to that of the water, the

whole fluid system is like a single phase fluid so that the water should stay stationary.
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Figure 9.4: Multi-phase dam-break with air density increasing from 10 (kg/m?) to 100
(kg/m?) and 1000 (kg/m?) at time 0.13s

Comparing Figure 9.4 with Figure 9.3, it is obvious that as expected the water flow
is influenced by the density of the air. Increasing the air density will slow down the
water movement. In the case when air and water have the same density, the water will
hardly move. But because of the compressibility of air, the water column is deformed
slightly under the pressure. This is consistent with our practical experience, which
gives a certain qualitative validation of the proposed new approach.

To further prove the applicability of the proposed method for multi-phase flows,
rising air bubble in water and Rayleigh-Taylor instability problems are simulated.
Both the explicit and implicit solution approaches are used for the ISPH method.

9.2 Rising bubble

The model of the rising bubble example is sketched in Figure 9.5: a circular air bubble
is free to rise through the initially stationary water. The number of particles used in
this simulation is 60 x 100, with a particle spacing dI=0.01. The proposed method
which combines ISPH and WCSPH methods is applied. And also WCSPH method is
used for both fluids as a comparison. Repulsive force and denser wall particles are
used on the boundary. The density ratio specified is around 0.001. Here the subscript
astands for air and w stands for water; the parameter used for the equation of state is
y =1.4for air. At=0.001for ISPH-WCSPH method and At =0.0001for WCSPH.
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Figure 9.5: Sketch of the problem of air bubble rising in water

The results obtained by Sussman, et al. (1994) using different number of grids and
different Bond numbers at 0.44s are displayed in Figures 9.6 and 9.7 as a reference.

Here the Bond number is a dimensionless number used in the study of atomization
involving bubbles and drops. By definition, Bond number equals to (p - p')L.’g/ o,
where p is the density of a bubble or drop, p' is the density of the surrounding
medium, L is a characteristic dimension, g is the acceleration of gravity, and o is the

surface tension of the bubble or drop.

130



(a) t= 440 || (b) t= 440 || (c) t= 4.40

Figure 9.6: Convergence test for rising bubble with different grids form Sussman, et

al.(1994) (t in the picture is non-dimension time defined as t'(g/R)’, t'is the

dimensional time)

(a) t=4.00 || (b) t= 4.00

Figure 9.7: Results from Sussman, et al. (1994) of bubble rising with different Bond

numbers: (a) Bond number 200.0 (b) bond number 25.0 (t in the picture is non-

dimension time computed as At(g / R)*2 = 0.0001)

It can be seen that the state of air bubble is influenced by various factors such as the
numbers of grids. The exact state of the bubble is also sensitive to Reynolds number,
surface tension, and density ratio, etc. In this project, three methods are applied: 1)
ISPH-WCSPH with explicit solution process; 2) ISPH-WCSPH with implicit solution
process and 3) WCSPH methods. The results are slightly different when different
values of modelling parameters are used. A selection of results are shown in Figures

9.8 t0 9.13 including the state of the bubble and the pressure distribution.
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Figure 9.9: Pressure distribution at time of t=0.2 and t=0.45 with WCSPH method
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Figure 9.10: Motion at time of t=0.2 and t=0.45 using ISPH-WCSPH with explicit
solution approach
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Figure 9.11: Pressure at time of t=0.2 and t=0.45 using ISPH-WCSPH with explicit
solution approach
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Figure 9.12: Motion at time of t=0.2 and t=0.45 using ISPH-WCSPH with implicit

solution approach
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Figure 9.13: Pressure distribution at time of t=0.2 and t=0.45 using ISPH-WCSPH

with implicit solution approach

The positions of bubble obtained using different methods are compared in the

following figure
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Figure 9.14: Bubble position comparation

From these figures it can be concluded that all three methods are able to provide
reasonable predictions for the positions of the rising bubble. As time passes, the
bubble rises, deforms and forms a horseshoe shape. Since the shape of the rising
bubble is sensitive to many factors such as Bond number or the number of grids for
the level set approach, the difference between SPH methods and the level set
approach is expected as different parameters are used in those two different methods.
It seems that the particles are distributed unevenly along a dragged interface. To
improve the performance more particles can be used as shown in Figure 9.15 and 9.16.
Also, a higher order of time stepping algorithm can be considered to improve the
accuracy of SPH simulation. The combined ISPH and WCSPH method provides a
better defined interface than the others. Pressure distribution is continuous in these
two fluids except at the interface. It seems that there is a pressure jump at the interface
especially when these two fluids are modelled with different methods. It indicates that
there is a pressure difference produced by different methods but this difference is

relatively small so that the whole system is still consistent.
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method Time-step size (S) CPU time per time step(s)
WCSPH 0.00001 0.0219
explicit ISPH-WCSPH 0.0001 0.0739
implicit ISPH-WCSPH 0.0001 0.4874

Table 9.1 CPU time for rising bubble with different methods

The CPU time requirement for each method is given in table 9.1. Although the

combined ISPH-WCSPH method can produce the smoothest results under the same

conditions, it needs much more computation time than the other two methods.

Generally, the combines ISPH-WCSPH method with the explicit solution approach

has more potential to be widely used in the future.

As it is known that the accuracy of the SPH method can be improved by using more

particles, it is interesting to see how the bubble will deform with more particles. Since

WCSPH is the least time consuming approach and the result from the three methods

are similar under the same model setting; only WCSPH is used in the following

simulation to study the effect of particle spacing.

Figure 9.15: Motion at t=0.2 and t=0.45 with WCSPH method with particle
spacing=0.005m (CPU time: 0.0445s per time step)
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Figure 9.16: Motion at t=0.2 and t=0.45 with WCSPH method with particle
spacing=0.001m (CPU time: 0.0923s per time step)

Comparing Figures 9.15 and 9.16, the shape of the deformation of the bubble with
more particles is closer to the results obtained from the level set approach especially
for the bottom side of the bubble. However, the CPU time is much higher due to the

increased number of the particles.

9.3 Rayleigh-Taylor Instability

Rayleigh-Taylor instability is a classical testing case for the flow of two fluids of
different densities. At the beginning, the heavier fluid is on top of the lighter fluid.
The heavier fluid will descend and the lighter fluid will rise. Rayleigh-Taylor
instability is considered in this section since this test case requires an accurate
modelling of the interface between two different fluids. The model with a sinusoidal
interface which is widely used is selected (Cummins & Rudman 1999; Hu & Adams
2007; Grenier & Touze 2008). The computational domain is rectangular as shown in
Figure 9.17, a lighter fluid is filled in the lower part and a heavier fluid whose density

is 1.8 times of the lighter fluid is filled above the interface located at y =1 sin(27x).

No slip boundary condition is applied. Five methods are used in this case: 1) ISPH
with implicit solution; 2) ISPH with explicit solution; 3) ISPH-WCSPH with implicit
solution; 4) ISPH-WCSPH with explicit solution and 5) WCSPH method. In the
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equation of state, y =7 is used for both fluids. 60 x 120 particles are used in the

simulation. The initial state of the fluid and pressure distribution is shown in Figure
9.17.
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Figure 9.17: Initial state and pressure distribution of Rayleigh-Taylor instability

The result obtained using level-set method (Grenier & Touze 2008) is shown in
Figure 9.18 as a reference.

15

0.5

Figure 9.18: Rayleigh-Taylor instability problem simulated using Level-set method at
time t=5 (Grenier & Touze 2008)
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The interface positions and related pressure distribution at times t=3 and t=5 for
each SPH method are shown in Figures 9.19 to 9. 28.

Figure 9.19: Flow pattern at time t=3 and t=5 using ISPH with explicit solution
approach
The overall shape of the two-phase flow system at t=5 shown in Figure 9.19 is
similar to Figure 9.18 and the interface is clearly defined.
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Figure 9.20: Pressure distribution at time t=3 and t=5 using ISPH with explicit
solution approach
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The pressure is distributed continuously as shown in Figure 9.20. As the legend
indicates, a brighter colour represents a higher pressure. Hence, it is reasonable to see
the brighter colour on the bottom of the fluid rather than on the top. At time t=5 the
darker colour turns to cover more area than at time t=3. This means that the pressure

of the system is reduced as the velocity of the fluid increases.

Figure 9.21: Motion at time of t=3 and t=5 using ISPH with implicit solution

approach

From Figure 9.21 we can see that the heavier fluid moves down and the lighter
fluid rises up and the interface is still clearly defined. However, comparing Figure
9.21 with Figure 9.19, it is seen that the volume of the heavier fluid sinking into the

lighter fluid is reduced when ISPH method with implicit solution approach is used.
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Figure 9.22: Pressure distribution contour at time t=3 and t=5 using ISPH with

implicit solution approach

Comparing Figure 9.22 to Figure 9.20, it is noted that the pressure distribution
obtained from explicit solution approach is different from the results obtained from
the implicit solution approach. Except in the area near interface, the pressure
distribution in the rest of the fluid seems only slightly changed from time t=3 to t=5 in
Figure 9.22 and the overall height of the fluid is decreased. This may be related to free
surface treatment as the implicit solution approach requires boundary values. In the
cases when the space is fully filled with fluid no particles will be identified as free
surface particles and hence no boundary values will be specified. Therefore, special

treatment on the initial model setting is required to improve the performance of this

approach.
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Figure 9.23: Motion at time of t=3 and t=5 using ISPH-WCSPH with explicit solution
approach
The overall flow shape shown in Figure 9.23 is similar to Figure 9.18 although the

volume of the incompressible fluid seems slightly larger.

5 B40e+000
& 076e+000
B4 51204000
B3 543e+000
3.384+000
2 820+000
Bz 256:+000

5 G40e+000
5.078e+000
B4 512e+000
3.948+000
3.384e+000
2 820e+000
Bz z56e+000

1.692e+000 1.692e+000
01 125:+000 01 123e+000
s 6a0:-001 05 Gan:-001

e-+000
Figure 9.24: Pressure distribution contour at t=3 and t=5 using ISPH-WCSPH with

explicit solution approach
Pressure distribution shown in Figure 9.24 is generally continuous. Pressure values

of incompressible fluid seem slightly lower than the compressible fluid at the same
level. The accuracy of pressure prediction still needs to be improved.
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Figure 9.25: Motion at time of t=3 and t=5 using ISPH-WCSPH with implicit solution
approach

Comparing Figure 9.25 and Figure 9.18, the shapes of the flow are similar and the
interface is clearly defined. However, in contrast to the previous case in which
explicit solution approach is used, the volume of the compressible fluid (lighter fluid)
at time t=5 seems expanded slightly.
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Figure 9.26: Pressure distribution at t=3 and t=5 using ISPH-WCSPH with implicit

+000

solution approach
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The overall pressure distribution shown in Figure 9.26 is clearly continuous except
in the area near the interface. Some lower pressure values are observed at the interface
especially for the incompressible fluid at t=3. By contrast, pressure values of
incompressible fluid are slightly higher than the compressible fluid at the same level
at t=5. Slight difference of pressure values is acceptable because the values are

obtained from two different algorithms.

Figure 9.27: Motion at time of t=3 and t=5 using WCSPH
The shape of the flow shown in Figure 9.27 is reasonable as it is similar to Figure

9.18. However, the interface is less sharply defined compared to the results obtained

from other methods.
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Figure 9.28: Pressure distribution contour at t=3 and t=5 using WCSPH

The pressure distribution is not clear in Figure 9.28. The pressure at different height
cannot be read based on the colour.

From Figure 9.19 to Figure 9.28 and compared to Figure 9.18, although there are
differences in the details of the results produced by these different methods, the
overall motion of the fluid is reasonable. The interface is clearly identified from the
simulation. Particle motions obtained from ISPH methods and ISPH-WCSPH with
implicit solution approach are smoother than the others. Pressure distribution is
clearly shown in ISPH method and ISPH-WCSPH method in contrast with WCSPH
method where the pressure distribution is not clear.

method Time-step size (S) CPU time per step (s)
ISPH-explicit 0.0005 0.1889
ISPH-implicit 0.0005 0.4442
ISPH-WCSPH-explicit 0.0005 0.0264
ISPH-WCSPH-implicit 0.0005 0.6696
WCSPH 0.00005 0.0219

Table 9.2: CPU time for Rayleigh-Taylor instability simulation with different

methods
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It is clear from table 9.2 that the implicit solution approach for ISPH combined
with WCSPH takes more computational time than the others. The ISPH method alone
with the implicit solution approach requires the second most computational time. This
implies that extra iteration is required for dealing with two phase flows. Besides,
when ISPH combines with WCSPH, the pressure value needs to be transferred from
the WCSPH solution in the Poisson’s equation which leads to more iteration to reach
the convergence. The interesting point is that the computational time is reduced as
much as thirty times when WCSPH is combined with ISPH using explicit solution
approach. This combination requires the least computational time. This indicates that

the ISPH method with explicit solution approach has more potential in the future.

9.3 Discussion

A new method which combines ISPH and WCSPH methods for air-water two-phase
flow is developed. For incompressible fluid, constant density is used, while for
compressible fluid the change of density due to compressibility is calculated. The
initial consideration for this method is to reduce computational time as well as to
preserve accuracy. However, from the results it is clear that combining ISPH using
the implicit solution approach with WCSPH method will increase the computational
time because of extra iteration. By contrast, the computational time can be reduced
significantly when WCSPH is combined with ISPH using the explicit solution
approach.

Two testing examples: rising bubble in water and Rayleigh-Taylor instability
problem have been simulated using the proposed methods. Although minor
differences can be seen from the different methods, the fluid motion is well predicted
by all methods used. Hence, it can be concluded that the new method developed is
capable for simulating air water two-phase flows. However, the results can be further
improved by using different parameters or a higher order of time stepping algorithm.
In addition, certain correction methods such as XSPH can be considered. In dam
breaking simulation, no significant change is observed when effect of air is
considered.

In short, the proposed new method which combines ISPH and WCSPH methods

has shown great potential for multi-phase flow simulations with large density ratios.
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Chapter 10 Application to 3D fluid rigid body interactions

To obtain more realistic results for simulating a general fluid solid interaction
problem, a 3D algorithm with ISPH method has been developed. The solid is assumed
to be rigid so it can be considered as moving boundaries for fluid. Since repulsive
force has been proved to be efficient for ISPH method with 2D examples it will be
used for 3D simulations in this chapter. The advantage of this boundary treatment will
be more important in 3D simulations of fluid-structure interaction problems as it
requires the least number of particles on the boundaries compared to other boundary
treatments. The algorithm can be extended to deformable solid interacting with fluid
by using elastic or plastic theories for solid.

Due to the limitations of memory space and CPU time consumption only single
phase flow is considered for fluid. Some examples including dam breaking and water
entry of wedge which have been studied in the previous chapters are simulated again
in 3D for comparison purpose. Finally, aircraft ditching and landing gear running on

the wet runway are investigated.

10.1 3D dam breaking

The experimental model for dam breaking case study used in section 6.2, 7.1.and 9.1
will be adopted here. The only addition in the model setting is along the third
direction there is a depeth of 1m. The initial particle spacing is 0.01m. Quartic kernel
funciton is used, smoothing length is 1.33 times of the spacing. The patterns of the

flow at time 0.005s and 0.007s are shown in Figure 10.1.
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Figure 10.1: Fluid patterns at time 0.005s and 0.007s
A smooth flow pattern is shown in Figure 10.1 whearas in Figure 10. 2 the position

of the leading edge of the fluid predicted using 3D SPH method is shown together

with 2D results and experimental data.

148



experimental (Martin & Moyce 1952)
—a— SPH-2D

x/H
o)
()
®

== SPH-3D

0.7 -

0.6 -

0.5 A

0.3 A

0.2 ~

non-dimensional leading edge X

0.1

0 0.2 0.4 0.6 0.8 1 1.2

non-dimensional time T=t(g/H)!?

Figure 10.2: Position of leading edge of dam break

From Figure 10.2 it is clear that the results obtained from 3D simulation is closer to
the experimental data compared to 2D case, although the difference is not significant
since the flow is in fact largely 2D. But this gives a preliminary verification of the 3D
algorithm. In the next section, the wedge dropping example will be studied in the 3D

case to provide more evidence for the performance of the algorithm.

10.2 3D wedge dropping

The wedge dropping model is the same as the one used in section 8.1 with an
additional consideration of the third direction. Particles are distributed uniformly with
spacing of 0.01m and time step size is 0.0001s. The motion of wedge and wave
pattern generated during dropping are shown below in Figure 10.3.
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Figure 10.3: Motion of wedge dropping at time 0.035s viewing from above and front

From Figure 10.3 we can see that at the moment of the wedge entery, the surface of
the water breaks into two parts symmetrically, with the water splash running along the
edge of the wedge. This is the same as in 2D simulation. From the top view it is clear
that the splashing water is forced up by the dropping wedge and then it plunges back
into the rest of the water surface. The velocity and vertical force on the dropping
wedge are compared with experimental data as well as the results from 2D simulation
in Figures 10.4 and10.5.
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Figure 10.5: Vertical force profile for wedge dropping

From Figure 10.4 it is clear that the velocities obtained from 3D simulation are
closer to the experimental data. From Figure 10.5 it seems that the force on the wedge
obtained from 2D simulation is closer to the experiment data whereas the 3D results

are closer to the analytical results.
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10.3 Water spray generated by landing gear

All aircraft designed to take-off or land on conventional runway must have ability to
operate when the runway is wet. As it is known that a wet runway may affect the
braking and manoeuvring capability and also it may lead to a reduction of the take-off
acceleration. Water spray thrown up by the aircraft tyres could be ingested into the
engine especially for those large multiengine aircraft with aft-fuselage-mounted
turbojet engines. If sufficient water is ingested, a jet engine can experience
compressor stalls or even flameout. This stall or flameout situation can be especially
dangerous if it occurs when approaching the moment of take-off. Typically, the
requirements of the commercial aircraft certification includes a section that the
aircraft manufacturer demonstrate the capability to operate on a runway with one-half
inch of standing water without experiencing any spray ingestion problems. Some
aircraft have a configuration that is free of spray problems regardless of external
conditions such as water depth and speed. Other aircraft have configurations that
make spray ingestion a common problem over a wide range of conditions. These
aircraft must fit with chained tyres or nose wheel spray deflectors. Numerous studies
have been conducted to determine whether aircraft are susceptible to water spray
ingestion, but they were usually carried out after construction of the aircraft. Although
the design of aircraft and engine type and location are dependent on many variables, it
is desirable to configure an aircraft and its engine in a geometry that eliminates the
spray ingestion potential (Daugherty & Stubbs 1987).

Simulation of landing gear running on a wet runway is carried out in this section to

study the water spray pattern.

As a simplified model, a single rotating wheel is used to represent the landing gear
and the fuselage is not included in the model. In the simulation, the radius of the
wheel is 0.15m and its width is 0.1m. The gear model is hollow inside to reduce the
number of particles. The side view and top view of the model are shown in a) and b)
of Figure 10.6.
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Figure 10.6: SPH model of the gear

T

The overall length of the runway is 8m, its width is 0.5m, and standing water height
is 0.05m. Particle spacing of the inner fluid particles and boundary particles are the
same which is 0.01lm. The total number of particles is 442662. No-slip boundary
condition is applied using the ISPH method with repulsive boundary force. The
motion of each particle on the rotating wheel is a combination of a rotation about the
mass centre and a forward translation. The theory of solid motion introduced in
Chapter 3 is adopted. Different rolling velocities are considered. The pattern of the
water spray with a rolling speed of 12.192m/s at different time instants is shown
below in Figures 10.7 to 10.10.
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Figure 10.7: Initial state of the landing gear
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Figure 10.8: Pattern of water spray at time 0.05s, 0.1s, 0.15s, 0.2s and 0.25s
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Figure 10.10: Front view of the water spray pattern at 0.25s

The pattern of water spray shown in the figures above is consistent with the
description of water trajectory given in Daugherty & Stubbs (1987): ‘The water in the
path of the tyre footprint is almost completely displaced. Some of the water is expelled
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forward out of the footprint (bow wave) with low density. The major contributor to the
volume of water which might be ingested by the engine is the water ejected laterally
from the tyre footprint. As water is expelled laterally from the tyre footprint, it
encounters an adjacent wall of water next to the tyre footprint edge, which absorbs
some of the lateral energy. The collision causes the original laterally moving unit of
water to change direction and to be thrown upwards. The next unit of water on the
surface, having absorbed lateral impacting energy, undergoes the same process and
is thrown upwards but with less initial velocity. Such action induced by the tyre
produces a sheet of spray, as opposed to a circular jet, and the wake from the tyre on
the surface, much like that from a boat, has enough lateral energy to propel a much
larger amount of surface water into the air than in the direct path of the tyre
footprint.’

It is the benefit of the meshless nature of the SPH method that the water spray can
be simulated realistically. With the boundary treatment proposed for the ISPH method
the fluid structure interaction problems can be simulated efficiently.

The maximum spray height from different rolling velocity is presented in table 10.1
and the related values of lateral and vertical components are shown in Figure 10.11.

Tire speed Maximum spray height CPU time
6.096m/s 0.608m 56484s
12.192m/s 1.168m 52968s
18.288m/s 1.9004m 51952s
24.384m/s 2.6582m 50369s

Table 10.1: spray height and CPU time for different rolling velocities
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Figure 10.11: Spray rate caused by different tyre speeds

Naturally, higher rolling speed will produce higher water spray and therefore it is
more likely that the water will be ingested into the engine. From the simulation point
of view, higher velocity requires less computational time.

The influence of water depth is also considered. The spray patterns obtained based
on three different water depths of 0.05m, 0.08m and 0.1m with the same rolling speed
of 6.096m/s are depicted in Figure 10.12.
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(b). water depth is 0.08m
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Figure 10.12: water spray at t=0.25s with different water depths

The most noticeable difference that can be seen in Figure 10.12 is the height and
volume of the “bow wave” which is the amount of water expelled forward out of the
footprint.

Comparing Figure (a), (b) and (c) in Figure 10.12, it is clear that a shallow water
depth will produce a weak bow wave. As the water depth increases the bow wave
becomes stronger. The bottom of the fuselage will be impacted and the windscreen
will be affected by the large amount of water spray. This will cause difficulties for the
operation of the aircraft. The amount of the lateral spray rises with the increase of
water depth as well. Hence, it is important to reduce the water depth on the runway as

far as possible.
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The maximum spray height as well as the CPU time required due to different water
depth is listed in table 10.2

Water depth | Maximum spray height Number of particles CPU time

0.05m 0.608m 241656 25228s
0.08m 0.897m 327840 45642s
0.1m 0.956m 384642 60965s

Table 10.2: spray height and CPU time for different water depths

The CPU time required increases with the water depth and this is reasonable since
more particles are used in the computation for a greater water depth. According to the
values of the maximum spray height, the spray becomes stronger as the water depth
increases. For a specific case in practice, the water spray pattern can be predicted
using the numerical method developed so its impact to the operation and safety can be

assessed.

10.4 Aircraft ditching simulation

Ditching is an emergency landing of an aircraft on water. The ability of an aircraft to
remain afloat is important especially for rescue operations. In addition, the high
impact loads created when the aircraft comes into contact with water may lead to
damage of the structure and together with the violent decelerations this presents a
substantial risk of severe injuries for passengers (Streckwall, et al. 2007). Thus the
loads and motions of the aircraft during ditching need to be determined. The
conventional approach to investigate aircraft ditching is either to carry out
experiments in model scale or to adopt numerical approaches that deliver equivalent
data.

Since SPH has advantage in simulating violent free surface flows, it should be
suited for aircraft ditching simulation. And on the other hand, it is noted that the
ditching process is a forward speed dominated flow problem involving structure
moving on the surface of water. So it is appropriate to use this as an example to test

the performance of SPH method for this type of problem.
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The numerical model is based on the model aircraft tested by McBride & Fisher
(1953) as shown in Figure 10.13. The test model is designed with a high-wing in
order to eliminate the influence from the wing. The full model is 1.22m long, has a
maximum radius of 0.1m for the cross section of the fuselage, the main wing spans
1.68m and the weight is 5.67kg. The mass centre is located at a distance of 0.53m
away from the nose and the moments of inertia in the principle axes are also given in

the report of the test, which are

|, =0.293352kgm?, 1, =0.293352kgm?, I, = 0.527952kgm?.

Figure 10.13: Original model configuration (McBride & Fisher April 1953)

In the simulation, the water block is 16m long, 2m wide and 0.5m deep. The
aircraft and water are both represented using particles with a same particle spacing of
0.05m. The time step size is 10™*s. No-slip boundary condition is applied. On the
fixed wall, repulsive force and wall pressure are both used whereas on the aircraft
only the pressure of the particles is considered.

In order to test the capability of the developed algorithm for ditching simulation, a
simplified situation of a floating aircraft having zero speed, with an attitude of 0° and

10° as shown in Figures 10.14 and 10.15 are considered first. The basic numerical
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model setting is the same as that in the ditching test, only the length of the water block

is reduced to 8m to reduce the particles involved in the computation.

Figure 10.14: floating aircraft with an attitude of 0°

Figure 10.15: floating aircraft with an attitude of 10°

In theory, the aircraft floating on the surface of water will start to sink because of
the gravity force. After it goes into water it will experience pressure force from the
water. Thus, the velocity of the aircraft will change as a result of these forces. Besides,
since the geometry of the aircraft is not symmetric in both x and z directions, there
will be a resultant moment from the pressure about the mass centre, which will cause
the aircraft to rotate. The calculated velocities and attitude during the floating process

are shown in Figures 10.15 and 10.16.
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Figure 10.16: Velocity of the aircraft with different initial attitude

From Figure 10.16 we can see that the downward velocity increases in the
beginning because of the gravity force. After some time the aircraft sinks deeper into
the water and the downward velocity decreases because of the increased buoyancy.
And then the overall vertical velocity fluctuates slightly around zero. This means the
gravity force and buoyancy balances each other. The surge velocity is negative and
the value increases from the beginning to 0.9s for both two cases. The acceleration is
larger and fluctuates more frequently when the initial attitude is 10°.

12

10 4 = = ini_attitude=0
——ini_attitude=10

attitute

T 0.2 0.4 0.6 0.8 1 1.2
time (s)

Figure 10.17: Attitude of the aircraft with different initial attitude
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It shows in Figure 10.17 that for the case with an initial attitude of 10° the attitude
of the aircraft decreases rapidly in the beginning. Afterwards the value of the attitude
fluctuates slightly around zero just the same as the vertical velocity. For the case with
an initial attitude of 0°, the value of the attitude does not change significantly.

In brief, the values of velocity and attitude look reasonable so the simulation of the

floating aircraft is regarded to be successful.

Next, a ditching process with s a landing speed of 9.14m/s and an initial attitude of
10° is simulated using the algorithm. The total number of particles is 190722, total

CPU time is 43555s for 1s simulation. The snapshots of the aircraft and the flow

pattern during ditching are shown in Figure 10.18.
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Figure 10.18: snapshots of ditching at time t=0, t=0.1s, t=0.2s, t=0.3s, t=0.4s, t=0.5s,
t=0.6s, t=0.7s, t=0.8s, t=0.9s, t=1s

From Figure 10.18 it seemd that the aircraft bounces up and down after it made
contact with the water during the process. Typically, in the period between 0.5s and
0.6s, the aircraft is out of water flying in the air. The value of velocity and attitute of
the aircraft is recorded and dispalyed in curves shown in Figures 10.19 and 10.20.
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Figure 10.20: Attitude during ditching

Figure 10.19 shows the variation of the velocity during both ditching simulations
the test whereas Figure 10.20 depicts the attitude of the aircraft model. It can be
observed that during the experiment, the aircraft attitude increases strongly from 0.1s
till 0.35s and then decreases to minus 10° at 1s. Correspondingly, the velocity
decreases rapidly from the beginning till 0.35s, and then decreases less rapidly
afterwards. By contrast, the attitude of the aircraft obtained from the ISPH simulation

fluctuates more. It decreases rapidly in the first 0.1s and then increases to 28° at 0.35s.
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Afterwards it decreases till 0.5s and another increase is observed. It seems that the
aircraft flies up into air at that moment. The attitude increases and decreases in the
next period of 0.4s. The corresponding velocity decreases more slowly in the

simulation than in the experiment.

The difference between the results from the experiment and ISPH simulation can be
attributed to the problem that no suction force is modelled by the current ISPH
algorithm (Climent, et al. 2006; Streckwall, et al. 2007; Toso 2009; Zhang, et al.
2012). In reality, the velocity of the water flow increases around the immersed part of
the fuselage, which causes the pressure to decrease according to Bernoulli’s equation.
Although same principle applies to air flow too, the presure on the wetted part of the
fuselage should decrease more as water has a larger density and so a suction force is
generated. The results obtained by Toso (2009) considering the effect of the suction

force is displayed in Figure 10.21 as a reference.

T T T
| | |
| | |
| | |
4 ——— = - — — — ]
| | |

1
—é#—Test data :
1

=—g= Simulation with suction forces |-——-—————

== Simulation without suction forces

1
1
1
1 1
e i E————t————t—————
1 1 | 1 1
.§ 1 1 | 1 1
= 1 1 | 1 1
z A ___ Ll _d_____
1 1 | 1 1
[} 1 | 1 1
1 1 1
1 | 1 1
T T T T
D:w 1 "1:2 14 ' p
| 1

Time [sec]

167



T T T T T T T T T
I I I I I I I I I
< I I I I I I I I I
| | | | | | | | |
| | | | | | | | |
I i L1 _| ——Testdata - -l
—w— Simulation with suction forces
== Simulation without suction forces
T
Lol - SR 5 VU U . - — — — — b — — = — ]
C .
e |
=y |
Q I
5 I
- . N S m—-———t ===
|
|
I
I
I
2+--——7-—"-"—"—-"\—-"—-"-"-"™=. ™44 __ 4 - - - ———————— el il
|
I
I
0 } } } } } } } } } -+
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [sec]

Figure 10.21: Reference results obtained by Toso (2009)

From the results shown in Figure 10.21, it is clear that suction force is a crutial
factor for an correct simulation. It was reported that SPH method could not produce
negative pressure hence it failed in the prediction of suction force (Climent, et al.
2006); more research is still required to eliminate the deficiencies of SPH method for

modelling of fluid solid coupling motions dominated by forward speed.
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Chapter 11 Conclusion and Future work

SPH is a promising tool for FSI simulations because of the meshless nature of the
method. The understanding of the concept is easy and it can be efficiently applied to
incompressible fluid flows. This project focuses on the capability of the SPH method
for simulating incompressible fluid flows interacting with a rigid body.

The fundamental concept of SPH is reviewed including the approximation
formulizations and implementations. The neighbouring particle search algorithm is
very important for the computational efficiency of SPH method since it is the most
time consuming operation in a SPH simulation. The cell-link Verlet list method is
selected. Unlike the conventional method which considers only half of the adjacent
cells, the pairing characteristic of the particles is considered so only half of the
particles inside the adjacent cells are searched and this is more efficient.

First of all, the effect of the key factors of SPH method such as the choice of kernel
functions, smoothing length of the kernel function, particle numbers and time step
size is studied in detail with one dimensional cases. It is found that increasing particle
numbers normally leads to better results but different kernel functions and different
time step sizes do not significantly affect the result. SPH has a second order accuracy
with respect to smoothing length and reducing smoothing length can improve the
accuracy but the smoothing length needs to be given in a certain range in relation to

the particle spacing to ensure that there are enough neighbouring particles.

The performances of weakly compressible SPH method and incompressible SPH
method with explicit solution approach and implicit solution approach are compared
according to flow patterns, pressure distributions and CPU time consumptions in the
dam breaking case studies and multi-phase flow examples. All these methods can
provide reasonable flow patterns of the specific motions but the distribution of
particles in WCSPH is normally less uniform than ISPH methods. Pressure
distribution obtained from the WCSPH method is quite erratic even for water in

hydrostatic equilibrium whereas correct pressure distributions can be produced by
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using ISPH with either the explicit or implicit solution approach. Using the explicit
solution approach for ISPH method requires the least CPU time in most cases so it is

considered to have great potential for the future applications.

Two boundary treatments, namely to use repulsive force or to use denser wall
particles, are proposed for the incompressible SPH method. Although these two
boundary treatments have been used in WCSPH, they have not been used for ISPH in
the known literature. The accuracy of the prediction of pressure obtained from ISPH
method using these two boundary treatments are investigated in a dam breaking flow
simulation. Subsequently, the performance of these two boundary treatments with
ISPH method is demonstrated with two 2D examples including wedge dropping and
spring supported dam. The results obtained agree with experimental data. These two
treatments can be used efficiently for more complicated engineering problems related
to fluid structure interaction problems as the model can be generated just the same as
the geometry without additional ghost particles. The difficulty associated with model
generation is thus largely reduced and fewer particles need to be used compared to

ghost particles treatment especially in 3 dimensional problems.

A new method combining WCSPH and ISPH for multi-phase flow is developed to
study the effect of air on the flow. Dam breaking case is studied under this situation
but no significant influence is found from the air. Rising air bubble in water and
Rayleigh-Taylor instability problem are simulated to test the performance of this new
combined method. It is clear that this new method is able to provide a good prediction
of the fluid motion. The initial idea of this method is to retain the compressible nature
of each fluid and to save computation time at the same time. However, it requires
more computational time than any of the individual methods, when the ISPH method
with implicit solution approach is combined with the WCSPH method. Hence, this
approach is not recommended. On the other hand, the combined method of WCSPH
with ISPH method using explicit solution approach produces good results and

requires less computational time.

A 3D computer code is developed for a more realistic simulation of general fluid
rigid body interactions. Dam breaking and wedge dropping cases are simulated to test

the performance of the algorithm. The spray caused by aircraft landing gear running
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on a wet runway, a typical case which is difficult for the traditional mesh required
numerical method, is studied using SPH. Different standing water depth and rolling
speed are considered. It is found that with greater water depth or higher rolling speed,
the amount of spray generated is also greater both in lateral and vertical directions.
Aircraft ditching is simulated using this 3D algorithm as well. However, the forward
speed dominated motion remains a challenge to SPH method because it is difficult to

capture the correct suction force.

Contributions:

e The performance of two simple boundary treatments, i.e. repulsive force and
denser wall particles, proposed for the ISPH method is investigated and the
efficiency confirmed.

e The explicit solution approach is investigated for the ISPH method.

e A new method is proposed for air water two-phase flow by combining
WCSPH for compressible fluid and ISPH for incompressible fluid.

e A 3D computer code has been developed for general fluid rigid body

interaction problems using SPH for the entire system.

Future work

In order to improve the overall performance of the SPH method for different
engineering problems, more in-depth analysis and assessment should be conducted in
the following areas.

Energy dissipation and momentum conservation of the methods need to be
analysed systematically.

Stability and consistency of the algorithm using existing boundary treatments
should be tested thoroughly.

Higher order time stepping scheme and correction terms such as the ones used in
XSPH (Monaghan 1989; 1992; 2002) can be considered to improve the newly
developed method in order to produce more accurate results for simulation of multi-

phase flows.
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Different values rather than zero can be adopted as the reference pressure in the
calculation and an investigation of such modification to the prediction of suction force
can be conducted.

For complex 3D problems, small particle spacing and large number of particles are
required, which demands high computational resources. Therefore, the current
program needs to be converted into a parallel code and computer cluster can be used
in the simulation.

To expand the applicability of the current program to a wider range of
hydrodynamic problems, implementation of inlet and outlet boundary conditions
should be considered.

Models for deformable solid and coupling strategy should be developed to extend
the application of these algorithms.
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Appendices

Formulation of SPH

The basic formulation of SPH will be discussed in this section. As mentioned before,
SPH is based on the theory of integral interpolant (Monaghan 1987; 1988; 1989;
Monaghan & Kocharyan 1995; Liu & Liu 2003b), a general function A(x) can be

reproduced as
Ax)= I A(X)S(x —x)dx’ (A1)

where Q is the volume of the integration, and §(x —x') is the Dirac delta function

defined as
c‘)‘(x—x'):{OO """"" X:XI (A.2)

and it also satisfies the following unity condition
f S(x—xpx =1 (A.3)

Equation (A.1) is exact but not practically useful. The concept of SPH is to replace
Dirac delta function with a kernel function to obtain an approximation (Monaghan
1982; Monaghan & Gingold 1983; Monaghan & Poinracic 1985a; Liu & Liu 2003b)

and the kernel estimation denoted by (A(x)), is defined as

(A(x)) = I AW (x — X', h)dx’ (A4)

Q

where W(x—x') is the kernel function and h is the smoothing length which defines

the influence domain of the kernel function. Similar process can be applied to the

gradient of function approximation

(V- Alx)) = I(V - AX)W (x —x', h)dx’ (A5)
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Via integration by part, this can be expressed as

(V- Alx)) = I V- (AX W (x—x',h))dx'— J. A(X')- VW (x —x', h)dx' (A.6)

Q Q

Applying divergence theorem (Batchelor 1973) to the first integral in Equation (A.6)

(V- AKX))

I AXW (x = x', h)- ndx'—j A(X')- VW (x - x',h)dx’ (A7)

S

wherenis the unit vector normal to the surface, Q is the volume of the integral. The
first item on the right hand side is normally zero due to the compact property of kernel
function which will be discussed in section 2.4. Therefore, Equation (A.5) becomes

(V- Alx)) = - I A(X')- VW(x - x',h)dx' (A.8)

Q

On the left hand side of the Equation (A.8) the derivative is taken with respect to x
while one the right hand side it is taken with respect to x'. From the above equation, it
can be seen that the differential operation on a function is transferred to a differential
operation on the smoothing function. And the SPH integration allows the spatial
derivative of a function to be calculated based on the values of the function and the
derivative of the kernel function which can be calculated analytically, instead of the
function derivative itself. This reduces the consistency requirement and produces
more stable solutions for PDE (Liu 2002).

In order to facilitate numerical approximation, the infinitesimal volume dx'in the
integral Equation (A.8) is replaced by the particle volume which can be expressed

using mass mand density p,

dx'= Mo (A.9)

Po
The SPH particle approximation form can be derived if the integration is
approximated by a summation over the neighbouring particles which are located

within the smoothing length domain
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imb %qua ~X,|,h) (A.10)
b=1 b

T
2
X
S~
Qo

I

The subscript a indicates the specific particle and b indicates neighbouring
particles and N is the total number of particles inside the smoothing domain.
Similarly, the approximation for spatial derivatives is obtained by representing the

integration in Equation (A.8) with the sum of the contribution from discrete particles
(VA(X)), =>m, iVW(Xa ~X,,h) (A.11)

The minus sign in Equation (A.8) is removed because the derivative is in terms of
X, instead of x,. This equation implies that the derivatives of any function can be
found by differentiating the kernel rather than by using grids. As a consequence,
instead of solving partial differential equations for hydrodynamics problems, only

ordinary differential equations need to be solved
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