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High-order accurate numerical simulations are performed to investigate the effects of wavy leading
edges on aerofoil-gust interaction (AGI) noise. The present study is based on periodic velocity dis-
turbances predominantly in streamwise (z-) and vertical (y-) directions that are mainly responsible
for the surface pressure fluctuation of an aerofoil. The perturbed velocity components of the present
gust model do not vary in the spanwise (2-) direction. In general, the present results show that wavy
leading edges lead to reduced AGI noise. Under the current incident gusts, it is found that the ratio of
the wavy leading-edge peak-to-peak amplitude (LEA) to the longitudinal wavelength of the incident
gust (Ag) is the most important factor for the reduction of AGI noise. It is observed that AGI noise

reduces with increasing LEA/)\,, and significant noise reduction can be achieved for LEA/);>0.3.

9>
The present results also suggest that any two different cases with the same LEA/), lead to a strong
similarity in their profiles of noise reduction relative to the straight leading-edge case. The wavelength
of wavy leading edges (LEW), however, shows minor influence on the reduction of AGI noise under
the present gust profiles used. Nevertheless, the present results show that a meaningful improvement
in noise reduction may be achieved when 1.0 < LEW/\, < 1.5. In addition, it is found that the bene-
ficial effects of wavy leading edges are maintained for various angles of attack and aerofoil thicknesses.
Also, wavy leading edges remain effective in reducing AGI noise for gust profiles containing multiple
frequency components. It is discovered in the current research that wavy leading edges result in in-

coherent response time to the incident gust across the span, which causes a decreased level of surface

pressure fluctuations, hence a reduced level of AGI noise.
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1 INTRODUCTION 1

1 Introduction

Aerodynamic sound is generated when a solid surface, such as a wind turbine blade, is situated in an
incident flow which is unsteady and non-uniform. Noise generated in this manner will be referred to
as aerofoil-gust interaction (AGI) noise herein. The generation of AGI noise is mainly an inviscid phe-
nomenon, where pressure fluctuations are generated to balance the momentum fluctuations that occur
due to the distortion of the velocity disturbance, or gust, by the potential flow near the obstacle. AGI
noise is an important wind turbine noise source since wind turbine blades are constantly subjected
to atmospheric wind gust and turbulent wake from other wind turbines in a wind farm. The other
important wind turbine noise is aerofoil self-noise, which is produced in the wind turbine blade surface
boundary layer and in the wake region aft of the blade trailing edges. Aerofoil self-noise has been
studied extensively [1-7]. From these studies, the dependence of various types of aerofoil self-noise
on parameters such as flow speed, angle of attack and aerofoil shape was characterised. In con-

trast, AGI noise has received much less attention. Hence AGI noise is the focus of the current research.

The largest type of wind turbine has a hub height and a rotor diameter of around 120m and
a maximum generated power of 5SMW [8]. Wind turbine noise is one of the major obstacles to the
more widespread use of wind energy. In a Dutch survey regarding the perception of wind farm
acoustic and visual impacts by a selected group of nearby residents, it was found that noise was the
most annoying aspect of wind turbines [9]. The survey also found that the most common description
of wind turbine noise by the residents were swishing or lashing [9]. Wind turbine noise can be divided
into two main types: mechanical and aerodynamic noise. Mechanical noise originates from the
relative motion of the mechanical components and the dynamic responses among them; aerodynamic
noise comes from the interaction of the wind turbine structures with the flow around them. AGI
noise and aerofoil self-noise are examples of aerodynamic noise. Nowadays, mechanical noise can
be reduced efficiently by using better gearbox and generator designs. Hence aerodynamic noise is
the dominant noise emitted from a modern wind turbine. Some types of aerodynamic noise can be
reduced or avoided without any special design of the wind turbine components. For example, by
using upwind machines, some low frequency noise and impulsive noise can be avoided. Also, since the
blade tips have the highest translational velocity due to rotation, noise can be reduced by lowering
the tip speed ratios. Variable speed operation allows lower rotational speed in low winds, which leads
to much lower noise levels in low winds than comparable constant speed turbines. Pitch control of
the rotor blades can also reduce the noise level through the reduction of the local angle of attack and
blade loading [6]. However, noise reduction by these operational means are limited. For instance, the

lower the rotor rotational speed, the lower the power produced.

To further reduce wind turbine noise without sacrificing the power output, the aerodynamic
shapes of the various wind turbine components have to be refined. The aim of the current study is
to investigate the effect of aerofoil leading-edge geometries on AGI noise. It is well known that owl’s
silent flight is attributed to their tiny saw-tooth-shaped serrations on the leading edges of the main
flight feathers [10,11]. Soderman [10] conducted experiments using rotor blades with tiny saw-tooth
serrations (0.1 to 0.5cm in height) attached to the lower surface of the leading edge. He found that
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the serrated leading edge was effective in reducing the high-frequency noise at low tip speeds (between
48 and 135m/s). However, the aerodynamic effect was highly sensitive to the attachment location
of the serrations. Small deviation from the ideal location could lead to an overall degradation in
aerodynamic performance. A more recent experimental study on owl wings by Ito [11] reported that
the post-stall aerodynamic benefit brought about by serrated leading edges was only observed at a

low Reynolds number of 2.1 x 10%.

Another type of leading-edge geometry can be found on the pectoral flippers of humpback
whales, which have tubercles. Several studies showed that leading-edge tubercles may lead to a more
gradual stall and better post-stall performance than straight leading edges at the expense of marginal
reduction in pre-stall performance [12-20]. The aerodynamic benefits of leading-edge tubercles have
been observed over a wide range of Reynolds numbers. While most of the work has focused on the
aerodynamic aspects, Hansen et al. [21] recently studied experimentally the aeroacoustic effect (tonal
noise) and found that leading-edge tubercles, particularly those with the smallest wavelength and the

largest amplitude tested, reduced the tonal noise significantly.

In light of these studies, the current study investigates a spanwise sinusoidal profile of leading
edges, which is referred to as wavy leading edges herein. Unlike the aforementioned serrations and
tubercles, the proposed wavy leading edges preserve the same aerofoil section and planform area with
those of the original straight leading-edge counterparts. It was recently shown that wavy leading
edges produce similar aerodynamic benefits that were obtained by using the tubercles [20]. It is
envisaged that wavy leading edges may also be beneficial in reducing AGI noise in the presence
of incident gust, which has not been extensively investigated to this date. A contemporary study
by Clair et al. [22] showed that wavy leading edges could reduce AGI noise. The current study
aims to deliver a fundamental understanding of the effects of wavy leading edges on AGI noise
by considering velocity disturbances predominantly in streamwise and vertical directions using

high-fidelity numerical simulations.

Wind turbine noise has been investigated theoretically, experimentally and numerically. A
popular theoretical approach is acoustic analogy, especially in the form of the Ffowcs-Williams
Hawkings (FW-H) equation, which was derived from the continuity and the Navier-Stokes (N-S)
equations. FW-H equation has been used for the prediction of rotor noise in both time and
frequency domains [2]. Another theoretical approach particularly for the study of AGI noise was
developed by Goldstein [23] utilizing the rapid distortion theory. By assuming the flow to be
inviscid and non-heat-conducting, he linearised the governing equations and rewrote them into a
linear inhomogeneous equation in terms of a perturbation potential. For a compressible flow, the
inhomogeneous wave equation derived by Goldstein has variable coefficients and functions within the
source term and boundary conditions. Hence the equation has to be solved numerically. Myers and
Kerschen [24, 25] developed approximate close-form expressions of the equation. They considered
a two dimensional (2D) irrotational compressible mean flow, which was assumed to be a small

perturbation to a uniform flow. Superposition of small-amplitude harmonic components was used to
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represent the upstream divergence-free vortical velocity. They further assumed small angle of attack
and high frequency of converted disturbances. With these assumptions, a simplified form of the
Goldstein’s equation was derived. Flat plate aerofoils with and without camber have been analysed
by Myers and Kerschen [24,25]. The theoretical models by Goldstein and Myers and Kerschen are
useful for the study of AGI noise. However, they are restricted to 2D problems.

Based on the results of some experimental and theoretical studies, some semi-empirical models
of AGI noise have been developed. One of these semi-empirical models was proposed by Lowson [26].
Lowson’s AGI noise model was based on the theoretical model by Amiet [27], who considered the
response of an infinitely thin flat plate with high aspect ratio to incident gusts. The various empirical
parameters were chosen to reflect the test conditions of a certain set of experimental data. The
major advantages of semi-empirical models are that they are computationally inexpensive, easy to
use, and fast to return results. However, the validity of using these models in various flow conditions

is questionable since they are restricted by many constraints.

Computational aeroacoustics (CAA) has made significant advancement in recent years. How-
ever, the computational cost needed to numerically simulate the whole range of wind turbine noise
sources accurately and in reasonable time remains prohibitively high. Hence, it is sensible to study
each type of noise generation mechanism separately. Aerofoil self-noise, which originates within
the boundary layer and the wake regions, is avoided in the current simulations by using the Euler
equations. There exists some fundamental work done on AGI noise based on CAA approaches and
they are mostly limited in 2D domains [28-30]. Recent three-dimensional (3D) simulations were
performed by Atassi et al. [31] and Hixon et al. [32]. The current research employs an accurate
and efficient high-order method [33] for the direct computation of AGI noise in 3D domain. The
efficiency and accuracy of the current numerical methodology has been demonstrated in a previous
study [33] concerning 2D problems. A unique sponge technique, which utilises a sponge zone around
the physical computational domain, is used to embed the incident vortical gust. Together with
generalised characteristic non-reflecting boundary conditions (BC) [34, 35], the current boundary
treatment technique has been shown to produce minimal reflections of the out-going quasi-linear
characteristic waves [33]. As a result, the domain size required by the current methodology is
small and high computational efficiency can be achieved. High-order numerical discretisations are
used. Fourth-order optimised compact finite difference (FD) schemes [36,37], in conjunction with
sixth-order compact filters [37, 38|, are used for the spatial discretisation. For time integration, a
standard fourth-order four-stage Runge-Kutta (R-K) time marching scheme is used to advance the

solution.

The current study considers an inviscid, non-heat-conducting and compressible incident flow.
The upstream velocity consists of a uniform portion and a small-amplitude unsteady motion super-
posed on it. The nature of such flow is well understood [23]. This type of flow can be decomposed
into the sum of three modes of motion. First, the vortical mode, often referred to as gust, is a velocity

disturbance. The incident vortical mode is purely convected, or frozen in the flow, divergence-free
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and produce no pressure nor any other thermodynamic property fluctuation. The second mode is the
acoustic mode. It is an irrotational disturbance that produces no entropy fluctuations, and is directly
related to the pressure fluctuation. The third mode is fluctuations in entropy, that are decoupled from
the velocity and pressure fluctuations, but produce density fluctuations, and is also purely convected.
Each of these modes of motion is a solution to the governing equations, which are the Euler equations
in the current research, and hence can be imposed independently of one another. The incident flow em-

ployed in the current study is purely vortical and divergence-free. So there is no incident acoustic field.

In summary, the principal objectives of the current research are

e to investigate the effects of wavy leading edges, particularly their peak-to-peak amplitude and

wavelength, on AGI noise;

e to study the effects of angle of attack and aerofoil thickness on AGI noise and the noise-reducing

capability of wavy leading edges;

e to explore the effects of multiple constituent gust frequency components on AGI noise and the

noise-reducing capability of wavy leading edges;
e to validate the current numerical methodology;
e to generate a high-quality grid which encompasses half a low aspect ratio wing with a tip;

e to demonstrate the capability of the current methodology for applications with more complicated

incident gusts and grid structure.

The structure of the current thesis is as follows: in Chapter 2, wind turbine aeroacoustic researches,
including experimental, theoretical and numerical studies, and the aerodynamic and aeroacoustic
researches related to wavy leading edges will be reviewed. Then, the details of the current numerical
methodology will be explained in Chapter 3. After that, in Chapter 4, four validation studies will be
shown. Then the current method and code can be used, with confidence, for the investigation of the
effects of wavy leading edges on AGI noise in Chapter 5. All the simulations in this chapter employ 3D
aerofoils. In Chapter 6, the aeroacoustic effects of wavy leading edges on a low aspect ratio wing with

tips will be studied. Finally, the conclusions of the current research will be summarised in Chapter 7.
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2 Literature Review

Wind energy has become more widespread and important in recent years. As a result, wind turbine
aeroacoustic research has received more attention. However, wind turbine AGI noise remains a largely
untouched research topic. This chapter presents a review of the recent wind turbine aeroacoustic re-
search activities. First, some experimental and theoretical studies will be reviewed in Sections 2.1
and 2.2 respectively. Then, a brief review of some wind turbine aeroacoustic prediction models de-
veloped from the results of some experimental and theoretical studies will be made in Section 2.3.
After that, some CAA methodologies for wind turbine aeroacoustic research will be discussed in Sec-
tion 2.4, which also includes a brief summary of the current CAA methodology used in this study. In
Sections 2.5 and 2.6, detailed reviews of the experimental and numerical studies on the aerodynamic
effects of leading-edge modifications, such as leading-edge tubercles and wavy leading edges, will be
given respectively. Finally in Section 2.7, the published works to-date on the aeroacoustic effects of

leading-edge modifications will be reviewed.

2.1 Experimental Wind Turbine Aeroacoustic Studies

Experimental wind turbine aeroacoustic studies include field and wind tunnel experiments. Basic
ideas regarding the noise level and some features of the noise, such as the frequency range and
dominant frequencies, can be obtained readily. Qualitative comparisons can also be made without
many difficulties. However, experimental measurements can only provide a general picture, for
example the overall sound level and the total sound spectra, rather than the specific data regarding
a particular source of noise. The relative importance of different noise generation mechanisms
is determined by predictions, based on various assumptions and judgements depending on the
experimental conditions, and is different from one study to another. Also, field measurements are
subjected to variable weather conditions, which can significantly change the relative importance of
different sources of noise. Hence it is not easy to judge the effectiveness of a new blade design in
suppressing a particular source of noise experimentally. In this section, some experimental studies of

wind turbine aeroacoustics will be discussed.

One of the most important aspects of wind turbine blade design is the aerofoil shape. Migliore and
Oerlemans [39] conducted a wind tunnel aeroacoustic experiment for aerofoils used on small wind
turbines, which usually have a rated power of less than 20kW and operate at a Re = 10° or less.
The aim of their study was to obtain a relative comparison of the prominent noise sources for the
six aerofoils tested. The measured data were used to build up an aerofoil aeroacoustic performance
database, which would be useful for wind turbine design and computational code validation. A small
open-circuit wind tunnel with a semi-open test section was used for the experiment. A microphone
array mounted in an open grid and placed outside the tunnel flow to one side of the test section was
used to record the noise. The aerofoil models were short-span wings mounted between endplates.
Hence extraneous noise could be generated by the interaction between the endplate boundary layer

and the aerofoil model-endplate juncture. The incident turbulence was generated by a turbulence
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grid mesh installed in the nozzle of the wind tunnel. The grid also generated background noise.
The method used to distinguish the extraneous noise from the noise generated by the aerofoils were

discussed by Migliore and Oerlemans [39].

The experimental results of Migliore and Oerlemans showed that when the turbulence grid
was installed, AGI noise became dominant for all the aerofoils tested. The source of AGI noise was
found to be at the leading edge. It was also found that the tripped and un-tripped aerofoils produced
identical results when the turbulence grid was installed. Migliore and Oerlemans warned that, since
the level of turbulence used in their wind tunnel experiment was much greater than what wind
turbines would encounter in the atmosphere at typical rotor speed, one should not conclude that the
presence of atmospheric turbulence would lead to AGI noise being totally dominant. They suggested
that more research was needed for wind turbine AGI noise. Hence, the results of experimental studies
like that by Migliore and Oerlemans [39] should only be used as a rough estimate and guildline in
determining wind turbine noise. Nevertheless, by comparing the six aerofoils tested, Migliore and
Oerlemans suggested that the thinner the aerofoil, the higher the AGI noise [39]. This trend was also
suggested by other studies [6,40].

To understand the mechanisms of wind turbine noise, an idea of the approximate location and
nature of the noise sources is required. This was the aim of the study by Oerlemans et al. [5]. The
goal of their study was to characterise the noise sources on a three-bladed GAMESA G58 wind turbine
with a rotor diameter of 58m and a tower height of 53.5m. Field measurements on a wind farm edge
were taken by a large horizontal microphone array positioned one rotor diameter upwind of the rotor.
Their results showed that practically all downward radiated noise was produced during the downward
movement of the blades. Additionally the blade noise was found to be significantly higher than the
hub noise. The difference between these two sources of noise increased with increasing wind speed.
An effort was made to verify whether trailing-edge noise was dominant. Oerlemans et al. [5] made use
of a directivity function, which incorporated a convective amplification factor for trailing-edge noise.
The directivity function was derived analytically for semi-infinite flat plate and was found to be
valid for finite aerofoils under some conditions. However, experimental validation of the amplification
factor was very limited. By assuming the source to be located at the trailing edge of the blade at
a radius of 25m, which was the location observed from the measured results, and using the typical
number of revolutions per minute (rpm) and wind speed values in the experiment, the directivity
function was calculated and plotted as a function of rotor azimuth. The plot showed good qualitative
agreement with the experimental results. To further show the dominance of trailing-edge noise in the
field measurements, the measured and normalised noise spectra were compared. For the normalised
spectra, the reference sound pressure level (SPL) was subtracted from the measured SPL. In the
derivation of the reference SPL, the common approximation of the sound power being in proportion
to the 5" power of the flow velocity for trailing-edge noise was used. The flow velocity was assumed
to be the undisturbed flow speed perceived by the blade at a radius of 25m. The normalised SPL
was plotted as a function of the Strouhal number, which was derived using the same flow velocity. By

normalizing in this way, the scatter in the spectral data was reduced by roughly 50%. The measured
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SPL was simply plotted against the frequency of the measured spectra. Oerlemans et al. [5] argued
that these results were convincing evidence that broadband trailing-edge noise was dominant in this
specific study. It is important to note that the field measurements were taken in calm atmospheric con-

ditions. Hence the wind gust effect was small and it is not surprising that AGI noise was not dominant.

Similar techniques can be used to assess whether AGI noise is dominant in other studies, even
numerical ones. For example, the directivity function for AGI noise [5] can be used instead; the
numerical SPL can be used for a spectral analysis similar to the one mentioned above. The 6" power

of the flow velocity, which relates to AGI noise [5,39], can be used to derive the reference SPL.

Experiments can also be used to verify the overall noise-reduction capability of new rotor
blades. An acoustic field measurement on a three-bladed wind turbine with a diameter of 94m and
tower height of 100m was conducted by Oerlemans et al. [6] The turbine was specially modified, with
one standard blade used as the baseline for comparisons, one blade with an optimised aerofoil shape
for the outer 30% spanwise section, and one standard blade with serrations mounted to the outer
12.5m section along the trailing edge. The length of the serrations was about 20% of the local chord.
A horizontal microphone array situated one rotor diameter from the turbine was used for taking the

acoustic measurements.

From the upwind measurements, average noise reductions of 0.5dB and 3.2dB were observed
for the blades with optimised aerofoil and serrated trailing edge respectively. Power and load
measurements were also taken, and it was found that the aerodynamic performance of the modified
blades were similar to the baseline blade. This study by Oerlemans et al. [6] is a good example of
a potential noise-reducing blade design that does not compromise wind turbine power production
capability. However, the measurements used for the analysis were chosen such that any large
atmospheric gust was avoided. Hence the effect of AGI noise was small compared to the trailing-edge

noise and tip noise in their study.

Many of the field studies of wind turbine noise are performed when large atmospheric gust is
absent. Also, it is not easy to isolate the effect of AGI noise experimentally. Hence there is a clear
need for more specific researches on AGI noise before any conclusion about its relative importance
can be drawn. In the next section, a review of the development and applications of theoretical

aeroacoustics for wind turbines is given.

2.2 Theoretical Wind Turbine Aeroacoustic Studies

The pioneer in theoretical aeroacoustics was Lighthill [41], who proposed an acoustic analogy in
the 1950s. The analogy relates the full non-linear fluid flow theory to the linear theory of classical
wave acoustics. It became widely used, especially for jet noise analysis [42]. Curle [43] extended the

theory to include the influence of static boundaries. Then, the Ffowcs-Williams Hawkings (FW-H)
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equation [44], which was the most general form of the original Lighthill’s theory, was derived to
include the effect of a moving solid object in the fluid. These analogies are all in the form of an
inhomogeneous wave equation. Once the flow parameters are estimated, the source terms can be

computed and the equation can be integrated to give a prediction of the sound field.

The FW-H equation can be derived from the continuity and the Navier-Stokes (N-S) equa-
tions. A control surface is defined. Inside this surface, the flow parameters have the same fluid states
as the undisturbed medium. Hence such surface represents a discontinuity for the flow parameters.
The aim is to compute the sound field in the exterior of the control surface. There are three source
terms in the FW-H equation, of which two exist on the control surface only. One of these surface
sources is the monopole source. Depending on the location of the control surface, the monopole
source either represents the noise generated by the unsteady mass flux through the control surface or
by the displacement of fluid as the body passes. This source is usually known as the thickness source.
The other surface source is the dipole source, which represents the noise generated by the unsteady
force on the fluid on the control surface location and is commonly referred to as the loading noise.
The remaining source is the quadrupole noise source, which is a volume source and represents the
noise generated by the flow alone outside the control surface. The noise sources due to shock waves,
wakes and other discontinuities can be derived from this quadrupole source term. By analysing the
quadrupole source term of Lighthill, it was shown by Farassat [45] that the jump across a shock
produced monopole and dipole sources on the shock surface. He also stated that ideally, the control
surface should be located where the contribution of the quadrupole source outside the surface to the
noise was small. Depending on the aeroacoustic problem considered, such an ideal location might
not be possible. For example, in high-speed helicopter rotor noise prediction, the accuracy of the
computational fluid dynamics (CFD) data at the ideal surface location might not be good enough and
renders this approach impossible. Farassat further commented that the quadrupole source strength
computation had high requirement on storage space and computational time. Approximate solutions
of this noise source have been derived for use in helicopter rotor design [45]. Due to the complexity
of volume integral calculation, it is common to neglect the volume distribution of quadrupole sources

in numerical implementations of the FW-H equation.

The control surface can coincide with the blade surface, this approach is referred to as the
solid FW-H formulation herein. Alternatively, the control surface can be an imaginary surface in the
flow field that contains all the desired physical noise sources [2,45]. Such approach is commonly known
as the permeable FW-H formulation. An advantage of the permeable formulation stems from the fact
that any physical acoustic sources enclosed within the f = 0 control surface only contribute through
the surface source terms. Therefore, if all the physical sources are enclosed within the permeable
control surface, the complicated and computationally expensive quadrupole source outside the surface
becomes negligible, and can be neglected without any loss of accuracy. Moreover, compared to
volume integration, much less flow-field data is required for surface integration. Regardless of the
type of formulation, the source strength is determined by the outputs of a coupled flow solver, which

can be anything from inviscid to direct numerical simulation (DNS) solvers. Once the source strength
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is determined, the solution of the FW-H equation can be found by using the free space Green’s function.

The FW-H equation is appropriate for the prediction of rotating blade noise in either the
time or frequency domain [2]. Fillos et al. [46] investigated the broadband noise emitted from a
three-bladed downwind horizontal axis wind turbine (HAWT) rotor with a radius of about 5m in
the time domain using a coupled method. The aeroacoustic modelling was based on the FW-H
equation, and the quadrupole source term was neglected. The control surface was set to coincide
with the rotor blades, and the inflow was assumed to be uniform; the aerodynamic part was based
on a three dimensional low-order panel method. The effect of compressibility was taken into account
by correction factors. The panel method was also coupled with an integral boundary layer model to
account for viscous effects. 40 and 45 panels were used in the blade chordwise and spanwise direction
respectively. A helical shape panel grid was used for the wake region. The low-order panel method,
albeit with some corrections, is a crude way to model the complicated flow around a wind turbine
rotor. Together with the various other assumptions made, the accuracy of such methodology is low,

and the results can only be used as a crude estimation of wind turbine noise.

A more advanced compressible time-accurate numerical flow simulation can be coupled di-
rectly to a FW-H noise prediction code. An example was the study of wind turbine blade tip
noise by Fleig et al. [3] and Arakawa et al. [4], who were in the same group of researchers. Two
different blade tips: the original WINDMELIII wind turbine blade tip and the so-called ogee tip,
were compared. These authors used compressible LES in the near-field to compute the flow and the
noise directly. The permeable FW-H formulation by Brentner and Farassat was used to compute the
noise in the far-field region, which stretched to 200 chord-lengths away from the blade. The fictitious
permeable control surface, which consisted of actual grid points used by the LES, was located one
reference chord-length away from the blade and encircling the blade. The near-field time-accurate
pressure, density and velocity components computed by the LES were fed into the FW-H equation
for integration on the control surface. The intense quadrupole source in the near-field due to the
strong velocity gradient and non-linearity close to the blade was taken into account by the LES.
Moreover, the surface source terms on the control surface accounted for the sound generated in the
region between the solid surface and the control surface [4]. Hence the quadrupole volume source
outside the control surface could be neglected without sacrificing accuracy. Furthermore, with
the control surface placed some distance away from the blade, the mean flow could be considered
reasonably uniform [4]. Hence, this permeable FW-H formulation could provide accurate far-field

noise predictions. The other part of their research and the results will be discussed later in Section 2.4.

Another recent study of a coupled FW-H wind turbine noise prediction code was conducted
by Tadamasa and Zangeneh [47]. The commercial CFD package ANSYS CFX 11.0 was used for
the flow simulation, which was based on RANS, to compute the FW-H inputs in the near-field.
This approach was less accurate than the LES used by Fleig et al. [3] and Arakawa et al. [4], but
the computational cost was smaller. Two FW-H codes, one based on the solid FW-H formulation

and the other on the permeable FW-H formulation, were tested. The computed results were
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validated using the measured acoustic data of a scaled helicopter rotor model in hover mode with
two different tip Mach numbers: 0.8 and 0.85; and an aircraft propeller with a tip Mach number
of 0.87. The helicopter rotor and the aircraft propeller were both two-bladed. Hence only one
blade was simulated. For both validations, the control surface for the permeable FW-H formulation
encircled the whole span of the blade, extended by certain spanwise distance from the blade tip
and had the same cross-sectional shapes, but with twice the chord-length, as the blade along the
span. The permeable FW-H code of Tadamasa and Zangeneh was able to predict the negative
peaks of the acoustic pressure time series results well for both validation cases. However, differences
were observed for the positive part of the series, particularly for the aircraft propeller case. The
authors attributed this to the high rotational speed of the propeller and the location of the control
surface, which was only able to encircle part of the volume distribution of quadrupole source at
high Mach number [47]. The inability of the RANS flow solver to resolve the separated flow region
on parts of the blade was also a factor. Tadamasa and Zangeneh then used their FW-H codes to
analyse the composition of the noise emitted from the two-bladed NREL Phase VI wind turbine
at various operating conditions. They found that the loading noise was the major noise source

at lower rotational speeds, while at higher rotational speeds the thickness noise became dominant [47].

In general, accurate aeroacoustic predictions by FW-H formulations are possible provided that
the unsteady blade loading is accurately predicted by the flow solver [2]. Alternatively, measured
blade pressure data from experiment can be used as the input for the FW-H equation for noise

prediction. The FW-H equation has been used extensively to predict rotorcraft noise.

The acoustic analogy is not the only theoretical approach that can be used to study wind
turbine noise. Goldstein developed a theoretical approach utilizing the rapid distortion theory. His
study of the unsteady inviscid compressible and vortical flow round obstacles shows insight into the
mechanism of AGI noise generation [23]. Goldstein extended the generalised rapid distortion theory
of turbulence by considering the most general type of incident disturbance that did not include
incident acoustic field. Such incident disturbance consisted of both entropic and vortical modes. By
assuming the flow to be inviscid and non-heat-conducting, he linearised the governing equations and

rewrote them into a linear inhomogeneous equation in terms of a perturbation potential ¢, i.e.

Do [ 1 Doo 1 1 o
— . = -V 1

where suffix 0 denotes background mean potential flow properties; Dy/Dt is the convective derivative
based on the mean flow velocity; ¢ is the speed of sound; p is the density; and u(?) = u®) (x,t) is the
known portion of the unsteady compressible and vortical velocity field at any point x. At upstream

infinity, u/) approaches the imposed vortical velocity field u.,. Hence, ¢, uY) and u are related by
u=Vo+ u®,

The L.H.S. of equation (1) is the wave equation for a slightly unsteady potential flow; while the
strength of the dipole source term on the R.H.S. is effectively the known incident velocity field. The
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perturbation potential is related directly to pressure fluctuations by

P Dod
Po Dt~

Since the incident velocity disturbance is divergence-free, the source term of the inhomogeneous
wave equation goes to zero at upstream infinity. Hence the potential becomes zero and no pressure
fluctuation is produced. Near the obstacle, the mean potential flow is able to distort the inci-
dent velocity disturbance field such that the initial divergence-free condition is destroyed locally.
Therefore, the source term of the inhomogeneous wave equation is non-zero. As a consequence,
the perturbation potential becomes non-zero and hence pressure fluctuations are produced near
the obstacle. Physically, pressure fluctuations are generated to balance the momentum fluctuations
that occur due to the distortion of the velocity disturbance, or gust, by the potential flow near the

obstacle. Hence AGI noise can be generated even the flow is inviscid.

The theoretical approach of Goldstein is applicable to both thin and blunt bodies. However,
when dealing with thin bodies, one has to assume that either the freestream Mach number is

sufficiently large or that the characteristic frequency of the imposed unsteady motion is large.

Myers and Kerschen [24, 25] developed a theoretical model for the sound generated when a
convected gust encounters an aerofoil. Their theory is based on that developed by Goldstein. For a
compressible flow, the inhomogeneous wave equation derived by Goldstein has variable coefficients
as well as functions within the source term and boundary conditions. Hence the equation has to
be solved numerically. Myers and Kerschen developed approximate close-form expressions of the
equation. They considered a two dimensional irrotational compressible mean flow, which was assumed
to be a small perturbation to a uniform flow. Also, since the mean flow was uniform far upstream, the
upstream unsteady disturbances satisfied linear equations whose coefficients were constant. Hence
superposition of harmonic components could be used to represent the upstream disturbances, which
consisted of small amplitude vortical and entropic disturbances. The vortical velocity at far upstream
was divergence-free. Myers and Kerschen further assumed that the frequency of the convected
disturbance was high, i.e. its wavelength was short compared to the aerofoil chord, and the angle
of attack was small. Flat plate aerofoils with and without camber have been analysed by Myers
and Kerschen [24,25]. With these assumptions, a simplified form of the Goldstein’s inhomogeneous
wave equation was derived. Perturbation terms of small magnitude were neglected and asymptotic
solutions in each of the four asymptotic regions around the aerofoil were derived. Far-field pressure
directivity patterns and total acoustic power were computed for a few combinations of mean flow
and disturbance parameters. For a flat plate without camber at a small angle of attack, Myers and
Kerschen found that at a higher gust frequency, a larger increase in the acoustic pressure level could
be caused by the same increase in angle of attack compared to a lower gust frequency. They suggested
that the effect of angle of attack scaled with O(akl/ 2), where « is the angle of attack and k is the
dimensionless gust frequency. They concluded that the radiated sound field for high frequency gust

interaction is quite sensitive to changes in a.
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Myers and Kerschen further showed that for a low Mach number, in the local leading-edge region,
identical equations governing certain components of the pressure fields could be derived using the
acoustic analogy and the rapid distortion approach. The major difference between the acoustic
analogy and the rapid distortion approach was in the treatment of the variable flow properties. In
the acoustic analogy, the quadrupole source term on the R.H.S. of the inhomogeneous wave equation
was expressed in terms of the variable flow properties, whose values were not known and needed to
be determined by heuristic models; while for the rapid distortion approach, the source term on the
R.H.S. was explicitly written in terms of the imposed upstream convected disturbance and mean
flow field quantities, which did not require source modelling. However, Goldstein’s rapid distortion
approach is only applicable to the prediction of noise generated by the interaction of unsteady
convected disturbances with steady potential flows. Acoustic analogy, on the other hand, is a much
more general formulation [24]. The theoretical results of AGI noise by Myers and Kerschen will be

used to validate the 2D results of the current code later in Chapter 4.

2.3 Wind Turbine Noise Prediction Models

Theoretical and experimental studies of wind turbine aeroacoustics can be used to develop noise
prediction models, which are inexpensive computationally and can give wind turbine designers a
rough idea of the relative importance of the different noise sources quickly. These models can be

divided into three categories according to their accuracy and range of applicability [48]:

Category 1 Models

They are the simplest models based on simple algebraic relations, also the least accurate and have the
narrowest range of applications. They relate the emitted sound power level to the main geometrical
and operational parameters of the wind turbines. The only advantage is that these models are very
fast to run. However, this advantage is more than offset by their poor accuracy and applicability, and

they have been supplanted by the category 2 models.

Category 2 Models

These are semi-empirical models deduced from the empirical relations observed in theoretical and
experimental aeroacoustic studies. They are more complicated than category 1 models. They predict
the emitted sound pressure level as well as the sound spectra. Over the years, there are many
different semi-empirical models developed for each sound generation mechanism. Depending on the
degree of empiricism as well as the deviation from the conditions of the field measurements used for

their validations, these models provide predictions of various accuracies.

An early example of the use of semi-empirical models for wind turbine noise prediction was
that by Lowson [26] mentioned in the introduction. Dassen et al. [49] employed a somewhat more
advanced AGI noise model, which took the aerofoil thickness into account, in their AGI noise and

aerofoil trailing-edge self-noise prediction code. Later, Moriarty and Migliore [50] used Lowson’s AGI
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noise model and five other self-noise semi-empirical models in their wind turbine noise prediction
code. They assumed that the overall noise spectra emitted from the rotor could be obtained by
superposing the results of each of the models. Correction factors, which took into account the
convective amplification of non-stationary sources and Doppler effects relative to the observer, were
also incorporated into the models. The semi-empirical code was then validated by comparing with
measurements from 2D aerofoil and full-scale wind turbine tests. Results from the validations were
mixed. There were many reasons for the observed discrepancies. For instance, only six semi-empirical
noise models were used. Hence some noise-producing mechanisms were neglected. Also, each of these
models was based on measurements for a NACA 0012 aerofoil only. Moreover, the flow over rotating
blades could have a significant spanwise component, which undermined the local 2D flow assumption.
Furthermore, the unsteadiness in real turbulent flow was not taken into account. This prediction code
by Moriarty and Migliore has been continuously updated over the past few years. Moriarty et al. [40]
simplified the AGI noise model so that it could be run more quickly on a normal personal computer
(PC). The simplified model was shown to produce similar SPL to the original model. Leloudas
et al. [51] used similar models to the study by Moriarty and Migliore [50] in their semi-empirical
wind turbine noise prediction code. Oerlemans and Schepers [7] used a semi-empirical method for
the prediction of the trailing-edge noise emitted from modern large wind turbines. According to
their method, the blades were first divided into radial sections. Then they estimated the sectional
aerodynamics using a model, which was based on the blade element momentum (BEM) theory and
the measured 2D aerofoil characteristics provided by the turbine manufacturer. The only inputs
needed were the blade geometry parameters and the turbine operating conditions. The AGI noise
was assumed to be negligible based on some previous studies [5,6]. Then the trailing-edge source
strength was predicted by using the semi-empirical model by Brooks et al. [52] and the estimated
sectional aerodynamics. General good agreement was found between the predicted and the measured

field results.

These codes based on semi-empirical models are easy to use and can give quick predictions of
noise level. Hence they are very useful design tools for wind turbine designers. However, their
accuracy reduces as the flow environment deviates from their designed conditions. It is also difficult
to prove the effectiveness of new blade geometric designs in suppressing noise by using these codes.
Therefore, if one wants to reduce the AGI noise by introducing changes to the blade geometry, more
sophisticated models are required. And this is only possible through the appropriate simulation of

the physics of the flow, which is the aim of the category 3 models.

Category 3 Models

These are the most accurate and most computationally expensive models in the three categories.
They take into account the complex 3D and time-dependent distribution of the acoustic sources [48].
These models are based on the fact that at low Mach number, the amplitude of the acoustic
fluctuation is several order smaller than that of the hydrodynamic fluctuation [48]. Hence the
problem can be split into the flow and the acoustic parts due to this scale difference. The set of

equations for the flow part only needs to be solved in the part of the domain where significant noise
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is generated. From the flow solutions, the acoustic source terms can be computed. Then the set of
acoustic equations can be solved. These models are commonly referred to as the hybrid methods. In
essence, the Lighthill analogy and the FW-H equation can be classified as hybrid methods. In the
case of the FW-H equation, once the acoustic source terms are computed from the flow solutions, the
inhomogeneous wave equation can be integrated analytically using a Green’s function. An example
of this type of hybrid method is the coupled method by Fillos et al. [46] mentioned in the previous
section. In many hybrid methods, the acoustic part is solved numerically. These methods can also be
classified as CAA methods. Hence they will be discussed in the next section, which gives a review of

the development and applications of CAA methods for wind turbine aeroacoustics.

2.4 Wind Turbine Computational Aeroacoustics

The compressible N-S equations describe both sound generation and propagation at all flow condi-
tions. Hence, it is natural to try to devise numerical strategies to solve them to compute the entire
sound field. Due to the nature of sound generation and propagation, ordinary CFD strategies are
not suitable for CAA applications. As a sound wave propagates, it disturbs the fluid from its mean
state. These disturbances in pressure, density and velocity are nearly always very small compared
to the mean state [44]. For example, the threshold of pain for human ear is about 130 - 140dB,
which corresponds to a pressure perturbation of approximately 1072 of the ambient atmospheric
pressure. Since the flow perturbations involved in acoustic waves are always very small, their
products are negligible. Hence the radiated sound field is typically linear [44,53]. However, the
flows that generate sound are usually non-linear, unsteady and turbulent. The sound radiation from
these flows is usually weak, except for high Mach number flows. But the presence of solid objects,
like a wind turbine, in these flows can result in a transfer of disturbance energy from the otherwise
non-radiating convected modes to those that radiate [44]. Examples of non-linear sound generation
commonly found on a wind turbine include AGI noise and aerofoil self-noise. The high-frequency
small-amplitude pressure perturbation involved has to be resolved accurately. Therefore, only the
spatial and temporal discretisation schemes with high-order truncation accuracy and high spectral
resolution are suitable. Moreover, acoustic waves are inviscid [44,53]. Hence the artificial dissipation
and dispersion level acceptable for other CFD problems might lead to unacceptable attenuation of
sound waves. Furthermore, numerical errors introduced by artificial BC can easily contaminate the
computed sound field. Therefore, different BC to those used in other CFD problems are required for
CAA. The issues of choosing the appropriate discretisation schemes, numerical stabilizing techniques
and BC will be discussed in more detail later in Chapter 3. Now we will look at some examples of

CAA research on wind turbine noise.

As mentioned in the previous section, many hybrid methods require the use of numerical dis-
cretisations to solve the set of acoustic equations. These hybrid methods, in which the acoustic
pressure fluctuation is computed indirectly, are examples of CAA methods. Scott [54] provided

the first reference solution to the category 3 problem 1 from the Third [55] and Fourth [56] CAA
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Workshops. This problem investigated numerically the acoustic responses of a Joukowski aerofoil to
an impinging small-amplitude 2D periodic vortical gust. Since the gust amplitude was small, Scott
used the linearised Euler equations to model the problem. By defining a velocity potential ®, whose
gradient was the velocity, the linearised Euler equations were reduced to a convective wave equation
in ® [54]. The unsteady pressure perturbation was then found by its relation to ®. An unsteady
aerodynamic code called GUSTSD, which utilised a frequency domain approach with second-order
central differences and a far-field pressure radiation BC, was used to solve the wave equation in ®.
The mean flow quantities required by GUSTSD were calculated separately by a potential flow solver.
There are other reference solutions to this CAA benchmark problem. Two such solutions, which were
based on the full Euler equations similar to the current study, will be used for validating the current

numerical results later in Chapter 4.

Another type of hybrid methods is the acoustic/viscous splitting method (also referred to as
incompressible/acoustic splitting in some studies) first proposed by Hardin and Pope [57]. An
advantage of their approach over the acoustic analogy is that the source strength is obtained directly

without the need of heuristic models.

Shen and Sorensen [58] later proposed a new formulation which avoided the inconsistency re-
garding the absence of source term in the rearranged acoustic equations in the original formulation of
Hardin and Pope. In their approach, the viscous incompressible flow was first computed by solving
the incompressible N-S equations. The pressure fluctuation in time was assumed to be isentropic.
Then it was shown that the energy equation was not required to describe the acoustics, and hence
was replaced by the isentropic pressure-density relation equation. In order to derive the acoustic
equations, the compressible flow variables were decomposed into two parts: the incompressible mean
flow and the perturbations. Then by substituting the decomposed variables into the governing
compressible continuity, momentum and isentropic pressure-density relation equations, and ignoring
the viscous terms, the acoustic equations were derived. The sound field was computed by solving the
inviscid acoustic equations. Shen and Sorensen used this approach to analyse the vortex shedding
noise due to the laminar flow past a circular cylinder at low Mach numbers [59]. Second-order
finite volume/finite difference (FV/FD) methods were used to solve the flow and acoustic equations.
Tam and Webb acoustic BC and slip conditions were used for the far field and the solid surfaces
respectively. The results were reasonable. They extended their algorithm and investigated the noise
due to a turbulent flow past an aerofoil at 20° angle of attack with a flow Mach number of 0.2.
RANS [60] and later LES [61] were used for the flow part of the calculations. General agreement

with experimental noise spectrum was observed.

Zhu [62] used the same acoustic/viscous splitting method as Shen and Sorensen in his study
of wind turbine aeroacoustics. However, high-order optimised compact FD scheme and high-order
dispersion-relation-preserving (DRP) scheme were used to discretise the acoustic equations. These
schemes were optimised to capture the high-frequency small-amplitude acoustic waves. The method-

ology was validated with the analytical solutions of acoustic wave scattering from a circular cylinder
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and sound generation due to a spinning vortex pair. An attempt was made to simulate the noise
emitted from a large wind turbine rotor. However, possibly due to the limited number of grid points
and the use of RANS turbulence model, only some general trends of wind turbine noise were observed

and the solution was limited to the low-frequency range.

Another similar type of hybrid method was developed by Ewert to investigate an aircraft slat
noise problem [63]. The acoustic part was based on the acoustic perturbation equations (APE),
which were derived from the linearised Euler equations (LEE). This system of equations, with
source term assumed to be a type of turbulence-related vortex noise source [63], was solved by
using the fourth-order DRP scheme of Tam and Webb for spatial discretisation and a fourth-order
Runge-Kutta (RK) method for time integration [63]. The source term in the APE was evaluated by
using the turbulent velocity fluctuation computed by Ewert’s random particle-mesh (RPM) method,
which was based on the digital filtering (DF) of random data first developed by Klein et al. [64] for
synthesizing pseudo-turbulent incident velocity field. The RPM synthesised stream-function on a
source patch where vortex sound originated within the CAA domain. Hence the generated velocity
field was divergence-free. A steady state RANS simulation was needed to determine the mean-flow
streamlines and the filter kernel parameters required by the RPM method, as well as the mean-flow
quantities required by the APE. The computed pressure spectra showed general good agreement
with experimental data [63]. A fast RPM (FRPM) discretisation approach had been developed by
Ewert [65,66]. This approach utilised a background mesh to store the mean-flow quantities computed
by the RANS simulation and the source strength. Instead of using distinct streamlines, the particles
were evenly distributed over the background mesh. Ewert’s methods were more computationally
inexpensive compared to the direct source computations by using LES or DNS. More details of the
DF method of Klein et al. [64] and the RPM/FRPM method of Ewert [65,66] for generating pseudo-
turbulence will be discussed later in Section 3.4. Other than aircraft slat noise, some examples of the

applications of Ewert’s methods included jet noise [65,66] and broadband fan interaction noise [67,68].

In contrast to the hybrid methods, the other main type of CAA methods involves computing
the unsteady flow and the acoustic field directly in one step by solving the compressible N-S or
Euler equations. These methods are known as the direct methods. Compared to direct methods,
hybrid methods allow the accuracy of the numerical methods employed for the flow part to be
relaxed. High-order numerical schemes with high spectral resolution are only required for the acoustic
part. The time step size of acoustic simulations are usually smaller than flow simulations. Also,
the computation of the sound spectrum requires long time series of solution. Hence the saving
in computational cost by the use of numerical schemes with different order of accuracy in hybrid
methods is usually significant. Hybrid methods are also advantageous since the flow computation is
only required in the region where significant noise is produced. Relatively more computational power
can be used to solve the acoustic equations, which are simpler than the compressible N-S or Euler
equations. Hence, sound can be computed over a larger acoustic grid, which does not need to coincide
with the flow grid. Moreover, the flow part of many hybrid methods is incompressible, which can be

solved faster than a compressible flow field.
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Although more computationally expensive, direct methods are used in many CAA researches.
Hybrid methods are based on the assumption that the problem can be separated into the flow
and the acoustic parts. Direct methods require no such assumption. Also with ever advancing
high-performance computing technology, flow configurations of increasing complexity are gradually
being studied by direct methods. Through these direct studies, insight into the fundamental noise

generating mechanisms of more complex flow configurations might be deduced.

An example of direct method is the study of blade tip noise by Fleig et al. [3] mentioned be-
fore. They used compressible LES in the near-field (one to two chord-lengths away from the rotor
blade) to compute the flow and the noise directly. An acoustic analogy, in the form of a permeable
surface FW-H formulation, was used for the far-field region, which stretched to 200 chord-lengths
away from the blade. For the spatial and temporal discretisations, a third-order FD upwind scheme
and a second-order implicit approximate factorization Beam-Warming scheme were used respectively.
Convective BC were used along the domain outer boundaries. The grid became coarser towards
the outer boundaries so that non-reflecting conditions could be achieved. The subgrid model used
was the Smagorinsky model. To test the accuracy of the third-order upwind scheme, Fleig et al.
performed a numerical test of the propagation of a small acoustic perturbation in a uniform flow
with Mach number 0.5. It was found that as long as the number of grid points per wavelength was

sufficiently large (25 — 30), the numerical result was accurate.

A blade of a two-bladed upwind WINDMELIII wind turbine with a rotor diameter of 15m
and a rated power of 16.5kW was modelled in the study. The tip speed ratio was 7.5 and the tip
speed was 53.3m/s, corresponding to a Mach number of 0.16. The Re based on the reference chord
length was 1.0x10°. Since the study focused on the tip region, an extremely fine grid was used there
to provide the very high resolution required. The total number of grid points was about 300 millions.
The physical time step was about 2.0x10~7 seconds. Due to the limitation in computational time,
the blade only rotated by 20.4° in the 50ms of the simulation. Hence the tip vortex was still in
the transient state. In addition to the original WINDMELIII tip geometry, which had a curved
and backward swept leading edge and a straight trailing edge in the outermost 95% of the span, a
so-called ogee tip was also simulated. The ogee tip was found in various wind tunnel experiments
and field measurements to be noise-reducing [3]. The difference in tip shape had little effect on the
aerodynamic performance of the blade, since the tip shape only changed beyond 95% distance from
the root. When compared to the reference experimental measurement, Fleig et al. found that the
LES under-predicted the power coefficient. They suggested that it was possibly due to the lack of
inflow turbulence in the simulation. By analysing the streamwise voricity, Fleig et al. found that
for the ogee tip, the tip vortex shed was reduced and the tip vortical structure was smoother and
spread further inboard. This weaker and more widespread streamwise vorticity in the tip region led
to reduced interaction with the blade trailing edge. Consequently, the sound pressure level due to the
ogee tip was also reduced - as much as 5dB for frequencies above 4kHz [3]. Fleig et al. attributed the
reduced tip vortex and the reduced tip vortex and trailing edge interaction to the curved trailing edge

of the ogee tip. Arakawa et al. [4] further showed that the original WINDMELIII tip had stronger
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surface distributions of monopole and dipole terms of acoustic pressure.

2.4.1 The Current CAA Strategy for AGI Noise Investigation

In the previous sections, we have discussed wind turbine aeroacoustic studies by using experimental,
theoretical and semi-empirical methods. For the study of AGI noise, these approaches have some
drawbacks. It is hard to isolate the effect of AGI noise from other noise-producing mechanisms under
various flow conditions by using experimental or field studies. The accuracy of the semi-empirical
wind turbine noise prediction codes is questionable in many flow conditions. The theoretical ap-

proaches based on rapid distortion theory by Goldstein, Myers and Kerschen are restricted to 2D space.

Using CAA methodology, it is possible to isolate the effect of AGI noise from other wind tur-
bine noise sources by using the Euler equations as the governing equations. In this case, aerofoil
self-noise, which originates within the boundary layer and the wake regions, cannot develop. The
current study employs the sponge layer technique and the characteristic non-reflecting BC, to
introduce the non-uniform unsteady incident flow while minimising the reflections of the out-going
quasi-linear characteristic waves at the domain boundaries. The current BC has been shown to be

able to provide a clean environment for AGI noise to develop [33].

Fourth-order optimised compact FD schemes [36, 37], in conjunction with sixth-order compact
filters [37,38], are used for the spatial discretisation. For time integration, a standard fourth-order
four-stage R-K time marching scheme is used to advance the solution. A type of multi-block
structured grid with a H-topology is used. The upstream velocity consists of a uniform portion and a
small-amplitude unsteady motion superposed on it. Since the incident disturbance is purely vortical

and divergence-free, there is no incident acoustic field.

2.5 Experimental Studies on the Aerodynamic Effects of Leading-Edge
Modifications

It has been suggested that leading-edge tubercles on the pectoral flippers of humpback whales
acted like vortex generators, which helped maintaining lift at high angle of attack during turning
maneuvers [14, 15,69, 70]. This improved aerodynamic performance at high « is important to the
humpback whales, whose feeding method involves performing tight turning maneuvers around a
school of prey. At about 28% of the total length of the animal, the flippers of the Humpback whales
are the longest among all the species of whales [14]. Their flippers are wing-like and have high
aspect ratio. There is a slight sweep-back towards the tip of a flipper. The inter-tubercular distance
in general decreases towards the tip and is fairly constant over the mid-span. The cross sectional
shape of their flippers are typical of lifting aerofoils. It has a large, blunt and rounded leading edge
and thin and tapering trailing edge. The mid-span aerofoil is similar in design to NACA 634 — 021.
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A typical flipper has an averaged thickness to chord ratio of 23% local chord, and its location of
maximum thickness varies from 49% chord at tip to 19% at mid-span [14]. Fish and Battle [14]
observed that barnacles were always absent between tubercles. This indirectly indicated the existence
of high-velocity water flows between the tubercles since barnacle larvae could not attach to areas

with high water velocity or velocity gradient.

Miklosovic et al. [12] conducted wind tunnel experiment using idealised humpback whale flip-
per models, which were constructed based on NACA 0020 section. The models were mounted
vertically in the wind tunnel with the roots attached to a rotating yaw table, which changed the angle
of attack. Leading-edge sinusoidal tubercles with decreasing inter-tubercular spacing towards the tip
were used for the outer two-thirds span of one of the models, while the other model had a smooth
leading edge. The planform area of the two models were the same. However, for the flipper model
with tubercles, the aerofoil shape varied along the span. Re used was about 5x10°. They found
that leading-edge sinusoidal tubercles were able to delay stall angle and increase total lift without
increasing drag. The performance of the two models below about o = 8.5° was near identical.
Stanway [17] performed water tunnel tests using scaled down versions of the flipper models of
Miklosovic et al. [12]. Four values of Re between 4.4x10* and 1.2x10° were tested. The result showed
that the flipper model with smooth leading edge showed more rugged lift curves as a approached
the stall angle. The model with tubercles had smoother lift curves and more gradual stall. However,
except for the highest Re case, the model with tubercles reached lower maximum lift. Only the case

with the highest Re showed the all-round performance improvement observed by Miklosovic et al. [12].

In a later work, Miklosovic et al. [71] investigated experimentally the effect of leading-edge tu-
bercles on 3D aerofoils. Similar flipper models to those used in their earlier study mentioned before
were also tested. The cross-sectional shapes of the 3D aerofoils and the flipper models were based
on NACA 0020 aerofoil. The 3D aerofoils were tested in a smaller wind tunnel with the tunnel
walls very close to the ends of the models. Hence the tunnel walls acted like end-plates and helped
restricting the flow in the spanwise direction. Unlike the flipper models, the tubercle amplitude,
wavelength and inter-tubercular distance were constant along the whole span of the 3D aerofoils. For
the 3D aerofoils tests, Re used was about 2.74x10° and the freestream Mach number M., = 0.13;
for the flipper models tests, Re was approximately 5.34x10° and M., = 0.21. Miklosovic et al.
found that leading-edge tubercles led to localised leading-edge separation and the onset of vortical
lift dominance at an « below the original stall angle of the unmodified models with straight leading
edges. Their results also showed that relative to the respective unmodified models, the 3D aerofoils
with tubercles caused a much larger loss of pre-stall lift, smaller gain in post-stall lift and bigger
pre-stall drag penalty. The flipper models with tubercles showed significant drag reduction in the
post-stall regime. They attributed this difference in aerodynamic performance to the ability of the

leading-edge tubercles in inhibiting spanwise stall progression on the flipper models.

Weber et al. [72] conducted a water tunnel experiment to investigate the effect of leading-edge

tubercles on the hydrodynamics of rudder models. The baseline aerofoil used was NACA 0016.
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Similar to the studies by Miklosovic et al. [12,71], the aerofoil shape varied along the span due to the
leading-edge tubercles. The rudder models had low aspect ratios, unswept leading edges and swept
trailing edges with the chords reducing towards the tips. Two models with leading-edge tubercles
along the whole span and one without were tested. The two models with tubercles had different
tubercle wavelengths. The Re ranged between 2x10% and 8.8 x105. Weber et al. found that tubercles
led to earlier onset of stall, lower maximum lift, less abrupt stall behaviour and a flatter post-stall
lift curve. Compared to the model with straight leading edge, the post-stall lift of the rudders with
tubercles was only higher for the lower Re tested. No pre-stall lift penalty was observed for the
rudders with tubercles. Weber et al. found that at low Re, leading-edge tubercles did not lead to any
drag penalty. However, at the higher Re of 8x10°, higher drag was observed for the modified rudder
model with smaller tubercle wavelength. By analysing the lift to drag ratio at different Re, Weber et
al. suggested that leading-edge tubercles led to the greatest improvement in hydrofoil performance
at low Re (< 7x10°). However, the all-round performance improvement suggested by Miklosovic
et al. [12] and Stanway [17], observed at Re = 5x10° and Re = 1.2x10° respectively, was never
seen in the experiment by Weber et al. This difference is to be expected since models with totally
different geometry were used by Miklosovic et al./Stanway and Weber et al. An interesting aspect of
the experiment by Weber et al. was the study of cavitation, which is an unsteady flow phenomenon
that occurs in high speed liquid flow over a surface where local flow velocity is high and pressure
is low. Hence cavitation bubbles can appear on the suction side of a lifting surface and in region
where vortices exist. Weber et al. found that the three models tested had different cavitation onset
characteristics. However, tip vortex cavitation was always the first form of cavitation observed. For
the models with tubercles, cavitations were restricted to the troughs; for the model with a straight
leading edge, sheet cavitation could be observed along much of the leading edge. This observation

showed that, along the leading-edge tubercles, the highest suction exists in the troughs.

Johari et al. [16] investigated the effect of leading-edge sinusoidal tubercles in a water tunnel
experiment. 3D aerofoils based on NACA 63, — 021 with and without tubercles of equal planform
area were used. They tested a range of tubercle amplitude and wavelength corresponded to the
morphology of the humpback whale flippers. Their results showed that at Re = 1.83x10°, the
modified aerofoils with tubercles in general had lower maximum lift, and stall occurred at an «
smaller than the NACA 634 — 021 stall angle. However, the modified aerofoils stalled more gradually
and had higher post-stall lift level. Since the modified aerofoils stalled earlier compared to NACA
634 — 021, they also showed higher level of drag between their respective stall angles and the NACA
634 — 021 stall angle. Johari et al. also found that a smaller tubercle amplitude led to relatively higher
maximum lift and stall angle. Although their results also showed that larger tubercle amplitudes
helped maintain higher lift up to a = 30°, hence resulted in more plateau-like post-stall lift curves.
This softer stall behaviour of 3D aerofoils with leading-edge tubercles was also observed by Miklosovic
et al. [71]. Johari et al. suggested that varying the wavelength had negligible effect, although only
two different wavelengths were tested. Johari et al. also performed flow visualization by tufts. They
found that the baseline NACA 634 — 021 aerofoil exhibited trailing-edge stall. For the modified 3D

aerofoils with tubercles, separated flows were first observed behind the troughs. At high «, the flow
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remained attached on the peaks of the leading-edge tubercles [16]. This led to the higher post-stall
lift observed for the modified 3D aerofoils. In a very similar follow-on study, the flow over the models
were visualised by using dye [18]. The visualization indicated the formation of counter-rotating

streamwise vortex pairs in the troughs between the tubercles at low Re.

Hansen et al. [13] investigated the effect of leading-edge sinusoidal tubercles in a wind tunnel
experiment with 3D aerofoils based on NACA 0021 and NACA 65 — 021. Both aerofoils had a
thickness to chord ratio of 21%, similar to a typical humpback whale flipper. The location of the
maximum thickness for NACA 0021 and NACA 65 — 021 were at 30% and 50% chord respectively.
NACA 65 — 021 had a lower maximum lift, larger stall angle and more gradual stall than NACA
0021. The Re used for the tests was 1.2x10°. Only two configurations of modified NACA 65 — 021
were tested, both with the same tubercle wavelength. Most results were for NACA 0021. Hansen
et al. suggested that the modified NACA 65 — 021 with tubercles led to smaller reductions in
maximum lift and stall angle compared to the modified NACA 0021. They attributed this to
the further aft position of maximum thickness of NACA 65 — 021 [13]. The general effects of
reduced maximum lift and stall angle, more gradual stall and higher post-stall lift were observed
for the 3D aerofoils with tubercles. Hansen et al. [13] agreed with Johari et al. [16] that the
smallest tubercle amplitude led to the highest maximum lift. Hansen et al. found that for the
modified NACA 0021 with tubercles, there appeared to be an optimal tubercle wavelength which
could lead to all-round lift and drag performance improvements. However, the largest tubercle
wavelength resulted in poorer lift performance throughout [13]. Another difference to the results
by Johari et al. was that beyond the stall angles of the unmodified aerofoils, the 3D aerofoils with
tubercles always showed slightly lower drag levels. Hansen et al. also performed a hydrogen-bubble

visualization, which showed the formation of streamwise vortices in the troughs between tubercles [13].

There are several reasons for the varying degree of observed aerodynamic benefits due to leading-edge
tubercles suggested by these experimental studies. First, some of these studies used flipper models
with planform shapes based on real-life humpback whale flippers; while others used 3D aerofoils. Test
results with and without wing-tip effect are obviously different. The second factor is the effect of Re.
It can be seen from the studies by Miklosovic et al. [12] and Stanway [17] that using similar idealised
whale flipper models, the all-round lift and drag performance improvements found by Miklosovic et
al. at a Re of 5x10° were not observed at the lower Re range (< 1.2x10°) by Stanway [17]. Third,
different aerofoils were used in these studies. Even when the same or similar aerofoils were used as
the baseline, none of these studies employed a single aerofoil shape along the span for the models with
leading-edge tubercles. The cross-sectional shapes at different spanwise locations are deformed or
stretched non-uniformly and differently by the leading-edge tubercles. Hence, even within one study,
aerofoils or flipper models with different tubercle wavelength and amplitude would have different
spanwise variation of aerofoil shape. This variation might contribute to the different observations

made by Johari et al. [16] and Hansen et al. [13].

Nevertheless, these experimental studies have shown that leading-edge tubercles can lead to a
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more gradual stall characteristic and better post-stall performance than straight leading edges at
the expense of marginal reduction in pre-stall performance [12-18]. The degree of performance
enhancement further depends on the Re, the tip effect and the tubercle wavelength and amplitude. It
may therefore be possible to achieve all-round lift and drag performance improvements with careful
designs. Hence potentially, leading edge tubercles, or similarly wavy leading edges, could improve the
aerodynamic performance of wind turbine blades [70,73]. Howle [73,74] designed a pair of modified
wind turbine blades with leading-edge tubercles based on the humpback whale flippers along the
outer two-thirds of the span, and fitted them to a two-bladed Wenvor upwind wind turbine with
a rated power of 25kW. The diameter of the turbine was 10.2m. A field study was conducted to
measure the electrical output power of the modified turbine [74]. Howle then compared the measured
data with the published data of the original Wenvor wind turbine. From the plot of output power
versus wind speed at hub-height, he found that the modified blades led to greater positive gradient,
i.e. the same output power was reached at a lower wind speed for the modified blades. Murray
et al. [75] investigated experimentally the effect of leading-edge tubercles on marine tidal turbine
blades. They found that the modified blades with tubercles on the outer portion of the leading edges
significantly out-performed the baseline blades with straight leading edge at low flow speeds, while
the higher-speed performance was not degraded. Hence leading-edge tubercles can potentially be
used to overcome the difficulty of extracting useful power from low-speed tidal flow encountered by

current designs.

Wavy leading edges were also found to be useful in suppressing flow separation over a delta
wing with moderate sweep angle by Goruney and Rockwell in a water channel experiment [76]. The
delta wing models were held at a = 25° and Re = 15,000 for all the tests. Stereoscopic particle
image velocimetry (PIV) was used to observe the change in the near-surface flow topology due
to a wavy leading edge. Goruney and Rockwell suggested that for small ratios of leading-edge
wavelength to amplitude, when the amplitude was increased to certain value, flow separation could
be eradicated [76]. Ozen and Rockwell conducted a water channel experiment on the effect of a wavy
leading edge on a flapping rectangular flat-plate wing [77]. The models were mounted at o = 8°
and Re = 1,300. Only one combination of leading-edge wavelength and amplitude was tested. They
found by using PIV that the wavy leading edge led to drastic changes to the flow vortical structure
inboard from the tip [77].

To understand further the finer details of the flow features that make leading-edge tubercles
and wavy leading edges very useful, numerical simulations, which will be discussed in the next

section, are required.



2 LITERATURE REVIEW 23

2.6 Numerical Studies on the Aerodynamic Effects of Leading-Edge Mod-

ifications

Watts and Fish [78] used a 3D panel code based on a first-order vortex method to study the influence
of wavy leading edges on a rectangular wing at o = 10°. They found that wavy leading edges led to
an increase in lift and a reduction in induced drag, hence reduced wing tip vorticity. They also found

no penalty in aerodynamic performance at a = 0°.

Van Nierop et al. [79] developed an aerodynamic model in their study of leading-edge tuber-
cles. In contrast to most other studies, they opposed the idea that tubercles act like vortex
generators since both the wavelength and amplitude of the tubercles were much larger than the
boundary layer thickness [79]. Their model was developed for elliptical wings with and without
leading-edge tubercles, and was based on the idea of wing circulation for a potential flow. The
wing was assumed to be thin. Downwash was taken into account by using the lifting line theory.
Although there was a spanwise variation of the flow, no actual spanwise flow was modelled. The
sectional circulations were summed along the span to estimate the lift. An empirical separation
criterion originally developed for flat plates was used to estimate the sectional stall angles. The
stalled sections did not contribute to the total lift. Based on the results of Johari et al. [16], the
fully-stall lift coefficient was simply set to 0.6 for all the wings tested in their model. Their model
predicted lowest pressure in the troughs of the leading-edge tubercles on the wing top surface.
In addition to this, the shorter chord and similar thickness compared to the sections behind the
peaks caused a more adverse pressure gradient behind the troughs. Therefore, separation happened
behind the troughs first. Their computed lift curves suggested that tubercle wavelength had nearly
no effect on the lift. This might be due to the 2D nature of the wing sectional flow in their
model. They also found that larger tubercle amplitude led to lower maximum lift and more gradual
stall. This observation was due to the earlier onset of stall behind the troughs. Van Nierop et al.
attributed the stall-delaying capability of leading-edge tubercles to the non-uniform downwash along

the span. More specifically, the stronger downwash behind the peaks delayed the overall wing stall [79].

The model developed by van Nierop et al. was subjected to a lot of assumptions and simplifi-
cations. A more detailed numerical study was that by Pedro and Kobayashi [19], who simulated
numerically the wind tunnel experiment on whale flipper models by Miklosovic et al. [12]. They
employed a detached eddy simulation (DES) method to simulate the incompressible flow around the
flippers by using the commercial CFD package Fluent. The Re used was 5x10° and the freestream
Mach number was 0.18. Their results showed the formulation of streamwise vortices behind the
tubercles. (On close examination of the vorticity magnitude plots in their paper, one can see these
vortices in the troughs.) Pedro and Kobayashi suggested that the streamwise vortices re-energised
the boundary-layer flow, particularly in the outboard region, and this delayed flow separation. Since
their flipper models had reducing chord along the span from root to tip, the local Re at the tip was
much smaller than that in the root region. Their results showed that this spanwise variation of Re led

to different types of separations: leading-edge separation at the tip and trailing-edge separation along
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the rest of the flipper span. Pedro and Kobayashi suggested that this separation pattern encouraged
the spread of fully-separated flow from the tip towards the inboard section observed on the wing
with straight leading edge. They further suggested that the vortices generated by the leading-edge
tubercles also acted like wing fences, which served as physical barriers to the spanwise motion and

prevented the inboard spread of fully separated flow from the tip.

Weber et al. [80] also conducted a numerical study of the wind tunnel experiment by Mik-
losovic et al. [12]. They employed two different commercial CFD codes: STAR-CCM+ and
SolidWorks Flow Simulation (SFS). Their simulations were based on the RANS equations. As a
natural consequence of using RANS simulations, good agreement of the predicted and measured
lift and drag coefficients were only observed for the pre-stall regime. Nevertheless, some qualitative
observations from their numerical results were similar to previous findings by other researchers.
Weber et al. also noted trailing-edge separation occurred along much of the span of the flippers, and
the presence of leading-edge tubercles prevented the spread of the fully-separated flow from the stall
regions. This led to the greater post-stall lift observed for the flipper with tubercles in the experiment
by Miklosovic et al. [12]. Weber et al. suggested that each tubercle acted like a small delta wing
with 45° sweep and a rounded apex. A leading-edge vortex then formed on the suction side of each
tubercle [80]. They further suggested that the vortices led to downwash over the peaks and upwash
in the troughs.

A numerical study on wavy leading edges was conducted recently by Yoon et al. [20]. They
investigated the 3D steady incompressible viscous flow around a low aspect ratio rectangular wing
with a tip and varying extent of leading-edge waviness from the tip. They used Fluent and their
simulations were based on the RANS equations. They defined a waviness ratio S, which was
the ratio of the spanwise length covered by the leading-edge waviness to the wing full-span. Six
different S,,: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were investigated. The wing with a straight leading edge,
ie. S, = 0.0, will be referred to as the unmodified wing. NACA 0020 aerofoil was the sole wing
cross-sectional profile. The wavy leading edges did not change the wing aerofoil shape. Fixed values
of leading-edge wavelength and amplitude were used. The simulations were performed at Re = 106
for 0° <a<40°. Yoon et al. [20] found that for o between 0° and 12°, the effect of wavy leading
edges with different waviness ratios on the lift coefficient was negligible. The wing with a waviness
ratio of 0.2 had essentially the same lift curve as the unmodified wing, which stalled at o = 20°. For
Sw = 0.4, 0.8 and 1.0, stall happened at a = 16°. The wing with S,, = 1.0 showed the most gentle
stall with the smallest loss of lift compared to its maximum lift, and it had 10 — 15% more post-stall
lift compared to the unmodified wing. For S,, = 0.4 and 0.8, the stalls were somewhat more gentle
than that of the unmodified wing. The post-stall lift for .S,, = 0.4 increased to a slightly higher level
than the unmodified wing. For S,, = 0.8, the post-stall lift eventually increased to the same level
as that of S, = 1.0 for o >32°. For the wing with S, = 0.6, stall occured the earliest at o = 12°.
Hence the lowest lift coefficient amongst all the cases was achieved at this waviness ratio at o = 16°
soon after stall. The lift eventually increased and recovered to a level in between S,, = 0.4 and 0.8

for a>32°. In general, the enhanced post-stall lift and more gradual stall observed for the wings



2 LITERATURE REVIEW 25

with more significant waviness, i.e. S, = 0.4, 0.6, 0.8 and 1.0, relative to the wings with insignificant
waviness, i.e. S, = 0.0 and 0.2, were consistent with the findings from the experimental studies

mentioned earlier.

The variations of drag with « for the unmodified wing and the wing with S, = 0.2 were
nearly identical. For S, = 0.4, 0.6, 0.8 and 1.0, due to the earlier onset of stall, especially for
Sw = 0.6, a higher level of drag between their respective stall angles and the stall angle of the
wings with S, = 0.0 and 0.2 was observed. As the « increased further, the drag of the wings with
Sw =04, 0.6, 0.8 and 1.0 reduced and eventually became nearly identical to that of the unmodified

wing.

By studying the pressure coeflicient distribution, the limiting streamlines and the spanwise
vorticity on the wing top surfaces, Yoon et al. [20] further identified some flow features. They found
the pressure coeflicient on the wavy leading-edge peaks was similar to that of the straight leading
edge, while that in the troughs was lower. This led to greater adverse pressure gradient and hence
local onset of stall behind the troughs. On the other hand, the greater suction maintained in the
troughs soon after stall occurred for the wing with S, = 1.0 reduced the lift loss and led to the
most gentle stall. Yoon et al. also found the formation of spanwise vortical structures near the
wavy leading-edge troughs. For wings with S,, > 0.2, non-localised widespread flow separation first
developed from the first trough on the inboard side. At high «, such as a = 32°, the unmodified wing
showed flow separation from the leading edge. However, the wavy leading edges were able to retain
flow attachment on its peaks. This effect is the most pronounced for the wing with S, = 1.0, which
had the highest post-stall lift as a result. The attached flow on the peaks at high « was also observed
by Johari et al. [16].

Hence, most observations from the numerical studies were consistent to those from the experi-
mental investigations. Also, wavy leading edges show the same aerodynamic benefits as leading-edge
tubercles. The formation of vortical structures in the troughs of wavy leading edges is well supported
by many researches. The higher suction in the troughs leads to a much more gentle stall behaviour.
The ability of the peaks to maintain attached flow at high « results in higher post-stall lift. In the
next section, the published works to-date on the aeroacoustic effect of leading-edge modifications will

be reviewed.

2.7 Studies on the Aeroacoustic Effects of Leading-Edge Modifications

Most studies of leading-edge modifications so far focused on the aerodynamic performance. However,
it is obvious that the aeroacoustic performance will also be affected. Hansen et al. [21] investigated
experimentally the effect of leading-edge sinusoidal tubercles on aerofoil tonal noise. This type of
tonal noise originates from the trailing edge of the aerofoil and can only be generated when laminar

boundary layer exists on the aerofoil surface. A few studies proposed a self-excited acoustic feedback
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loop as opposed to vortex shedding as the generation mechanism of aerofoil tonal noise [21]. Hansen
et al. measured the sound by using microphones. Two sets of measurements were taken: one from
the low-speed wind tunnel without any form of acoustic wall treatment, referred to as the hard-walled
wind tunnel; the other from an anechoic wind tunnel. The Re based on the freestream velocity of
25m/s and mean chord length was 1.2x10°. The incident flow in the low-speed wind tunnel had a
turbulence intensity of 0.8%, so AGI noise was not a significant source of noise. Hansen et al. [21]
found that trailing-edge tonal noise only occurred for a@ < 8°, i.e. before the aerofoils stalled, and
that no tone was present at & = 0°. The absence of tone at a = 0° might be due to the flow
symmetry about the symmetrical NACA 0021 and the modified aerofoils based on it. Their results
further showed that the tonal frequency measured in the anechoic wind tunnel was higher than that
in the hard-walled wind tunnel. The tonal noise also occurred over a much wider range of « in the
hard-walled wind tunnel. The anechoic tunnel results showed that the presence of tubercles in most
cases eliminated tonal noise altogether, and there was a small reduction of broadband noise around
the peak tone frequency of the unmodified aerofoil. Hansen et al. also found that tubercles with
smallest wavelength and largest amplitude were in general the most effective at reducing tonal and

broadband trailing-edge noise.

A contemporary experimental and numerical study by Clair et al. [22] showed that wavy lead-
ing edges could reduce AGI noise without degrading aerodynamic performance. The aim of their
study was to reduce the AGI noise generated by turbofan blades. The experimental work of Clair et
al. was conducted in an anechoic open jet wind tunnel. An upstream turbulence grid was used to
generate the incident turbulence that impinged upon a 3D NACA aerofoil model. Several flow speeds
and angles of attack were tested. Three wavy leading-edge geometries were analysed and compared
to the baseline model with a straight leading edge. Clair et al. found that among the three wavy
leading-edge geometries tested, the one with the largest leading-edge amplitude led to the biggest
AGI noise reduction. They further found that wavy leading edges remained efficient in reducing AGI
noise up to an angle of attack of 15°, and wavy leading edges are the most efficient in reducing the
mid-frequency (about 3kHz) noise. In general, wavy leading edges could lead to a noise reduction of

3 to 5dB.

Clair et al. [22] also numerically assessed their wind tunnel results. Their numerical method
was based on a CAA code which solved the non-linear Euler equations by splitting the conservative
variables into the mean and the perturbed components. High-order methods were used for the
numerical discretisations. Multi-block structured grid was employed. Their code was parallelised
using the MPI library. Clair et al. employed Tam’s inflow and outflow boundary conditions, which
were derived from the asymptotic solutions of the linearised Euler equations. For 3D calculations,
spanwise periodic boundary condition was applied. The divergence-free incident pseudo-turbulent
velocity was synthesised from a stochastic model, which simulated part of the Von Karman energy
spectrum using a number of discrete frequency modes. The streamwise and spanwise perturbed
velocity components were set to zero, only the vertical perturbed velocity was generally non-zero.

The CAA code only directly computed a narrow strip of the desired span, and one wavy leading-edge



2 LITERATURE REVIEW 27

wavelength was simulated. The near-field solutions computed by the CAA code were fed into a
FW-H equation solver for integration on a control surface to evaluate the far-field noise radiation.
The numerical solutions of Clair et al. for 2D and 3D flat plates agreed very well with the theoretical
results of Amiet. Clair et al. then applied their coupled CAA/FW-H code to 3D NACA aerofoils
with and without wavy leading edges. In order to reduce the computational cost to an acceptable
level, the incident gusts employed by Clair et al. only varied in the streamwise direction. The
perturbed velocity was convected by a uniform mean flow. The numerical and experimental results
of Clair et al. showed good agreement in terms of noise reduction due to the wavy leading edge up
to about 3.5kHz. Their numerical results over-predicted the noise reduction in the higher-frequency
range compared to the experimental measurements. Clair et al. attributed this over-prediction to
the lack of spanwise variation in the incident gust [22]. The effect of convecting the incident gust by
a more realistic sheared mean flow around the aerofoil computed by a separate RANS calculation
was also investigated. From their numerical results, Clair et al. suggested that the interaction
between the perturbed velocity and the sheared mean flow near the aerofoil surface caused strong
pressure fluctuations, which were further amplified when passing over the trailing edge. However, the
leading edge remained the most dominant sound-producing region [22]. Clair et al. found that the
use of a more realistic sheared mean flow improved the agreement between the numerical and the

experimentally-measured sound power spectra.

Wind turbine blades are constantly subjected to atmospheric wind gust and turbulent wake
from other wind turbines in a wind farm. Hence wind turbines almost always generate AGI noise.
The current study is among the first to investigate the effect of wavy leading edges on AGI noise. The
current study aims to deliver a fundamental understanding of the effects of wavy leading edges on
AGI noise by considering velocity disturbances predominantly in streamwise and vertical directions
using high-fidelity numerical simulations. Synthetic unsteady incident gust similar to that used by
Clair et al. [22] will be incorporated into the current code in the future so that the current results
could be more directly applicable for wind turbine aeroacoustic research. In the next chapter, the

current numerical methodology will be explained in detail.
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3 Numerical Methodology

In this chapter, the numerical methodology used in the current research will be explained. The aim of
the current study is to investigate the effect of wavy leading edges on AGI noise. Since the generation
of AGI noise does not require viscosity, and other types of noise source are not of interest to the
current study, the fully compressible 2D and 3D Euler equations are used as the governing equations.
The current methodology is based on the 3D Euler equations written in the conservation-form as a

compact vector equation, i.e.

0Q OE OF 0G
ot Tor Tay Ta: Y @

where Q = (p, pu, pv, pw, pe)” is the 3D conservative variables vector, with p,u,v,w and e the
density, x-velocity component, y-velocity component, z-velocity component and total energy per unit
mass respectively; t is time; E, F, G are the inviscid flux terms, which are functions of Q and are

defined as

T

E = [pu, pu® + p, puv, puw, (pe + p)u] " ;
T
F = [pv, puv, pv* + p, pow, (pe + p)v] " ;
G

T
= [pw, puw, pvw, pw® + p, (pe + p)w]"

where p is the pressure.

The spatial and temporal discretisations employed will be explained in Sections 3.1 and 3.2
respectively. Then in Section 3.3, the BC including the sponge zone technique used to introduce the
unsteady incident flow will be discussed. Finally in Section 3.5, the grid generation method used will

be shown.

3.1 Spatial Discretisation

In the current study, a fourth-order optimised compact central FD scheme developed by Kim [36] is
used for the numerical spatial differentiation. The scheme is optimised to achieve the highest spectral

resolution. It uses a seven-point stencil, i.e.

3
B+ Ofiy + Jit aflr + s = 3= 3 tmlitm — fim), g
m=1

where f; is the target function f(z) at the i*" point of interest, located at x;; and f/ is the numerical
approximation of the spatial derivative df(x)/0x at the same location. All quantities with overbar
are numerical approximations. Note that the matrix on the L.H.S. of the scheme is penta-diagonal,

which can be inverted easily by using techniques such as LU decomposition.
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Since a structured grid with a H-topology is used in the current study for 2D and 3D aerofoils, the
computational domain is divided into six natural sub-domains or blocks. The grid metrics between
these natural blocks are discontinuous. A boundary between any of these two blocks will be referred
to as a block interface from now on. It is obvious that the scheme of equation (3) can only be
applied directly to grid points in the interior of a block away from any computational boundary,
which is either a part of the domain boundary or a block interface. Hence in the current thesis,
the scheme of equation (3) is referred to as the interior scheme. Special treatments are needed for
the grid points near a computational boundary. For example, consider a one-dimensional domain
with N + 1 points designated by « = 0,1,..., N — 1, N. For the boundary and near-boundary points
1 =0,1,2and ¢t = N —2,N — 1, N, values at points outside the domain are required based on the
interior scheme. In the current study, two approaches are used to close the penta-diagonal matrix
system depending on the nature of the grid metrics across a computational boundary. For the grid
points near the domain boundaries, wall surfaces and block interfaces across which the grid metrics
are discontinuous, sophisticated extrapolations of functions beyond the boundary are used to derive
the boundary scheme [36]. This boundary scheme is compact but non-central, and is optimised to
achieve the highest spectral resolution and to maintain fourth-order accuracy up to the boundary.
Since the current study requires high computational power, parallel computing based on the MPI
library is used. The six natural blocks are further divided into sub-blocks. An interface between
any of these two sub-blocks is different to a block interface in that across which the grid metrics
are continuous. For the grid points near these sub-block interfaces, a newly developed compact FD
scheme [37] is used. This FD scheme is also fourth-order accurate and is optimised for the highest

spectral resolution. It is referred to as the halo boundary scheme in the current thesis.

When the Euler or the N-S equations are discretised by high-order compact centred FD schemes,
they are non-dissipative. If untreated, numerical instabilities can lead to large errors or even solution
failure. Hence a sixth-order optimised compact low-pass filter [38] is used in the current study.
In conjunction with the new halo boundary scheme, a new sixth-order compact optimised filter
is used. Similar to the halo boundary scheme, halo point values are exchanged between adjacent
sub-blocks and a predictor-corrector type implementation is used to compute the difference between
the unfiltered and the filtered solutions [37]. Before discussing the FD schemes and the compact
filters further, we will first explain the reasons of choosing this type of FD schemes in the next

sub-section.

3.1.1 Reasons for Using the Current FD Schemes

For CAA, FD methods are the most widely used for spatial discretisation. The major advantage that
sets FD methods apart from other methods is that FD formulation can be extended to high-order
accuracy easily. Structured grids, which are challenging to construct around complex objects, are
required. Lower-order FD schemes have higher dissipation and dispersion errors. For CAA, due to
the usually very weak acoustic waves which propagate with very little attenuation over long distances,

these large errors might mask the small pressure fluctuation that we are trying to simulate. A common
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practice to overcome the large errors of these schemes is to reduce the grid spacing between the
grid points, i.e. to increase the grid point density, so that the number of grid points per wavelength
of a single Fourier component of the simulated function is increased. Hence a prohibitively huge
number of grid points might be needed for lower-order schemes. Therefore, although higher-order FD
schemes would require more operations per grid point, due to their inherent higher-order accuracy,
much smaller numbers of grid points are required and it is more efficient computationally to use

higher-order schemes for CAA.

In a study by Colonius and Lele [53], the dispersive and dissipative characteristics of wave so-
lutions of FD schemes were analysed. They found that the maximum resolvable wavenumbers of
compact schemes, which are implicit, were far higher than those of explicit schemes. Hence compact
FD schemes are of particular interest for CAA applications. Colonius and Lele [53] also showed
that when centred schemes were used for hyperbolic systems of linear first-order partial differential
equation (PDE), they disperse and are non-dissipative. This dispersion error can be minimised by
performing Fourier analysis [36,81]. Hence a compact centred FD scheme can be optimised. Upwind
FD schemes are numerically stable since they are all dissipative. However, they are not as suitable
for CAA as compact centred FD scheme since they lead to significant dissipation error of the highest
resolved wavenumbers. Hence, high-order optimised compact centred FD schemes are very suitable

for CAA problems, which demand long time precision of the numerical solution.

There are compact FD schemes with higher-order accuracy available. However, it was shown
by Kim [36] that increasing the resolution capability rather than the truncation order could enhance
the overall accuracy more effectively. Hence, as long as the compact scheme is optimised for the
highest spectral resolution, the difference between tenth-order and fourth-order compact schemes
is negligible. In the next sub-section, some issues of using high-order compact FD schemes will be

discussed briefly.

3.1.2 Issues of High-order Compact FD Schemes

Colonius and Lele [53] conducted an analysis of the wave solutions of FD schemes and showed that
for all centred schemes at a given frequency, there were two solutions to the dispersion relation. The
long-wavelength solution was well resolved, it was called the smooth solution, and it approached the
solution to the original PDE. The short-wavelength solution was poorly resolved, and it propagated
with a group velocity of the wrong sign. The short wavelength solution was commonly known as the
spurious solution. On the contours of numerical results, these spurious solutions showed up with a

sawtooth or zigzag appearance since the Fourier component varied rapidly between the grid points [53].

Practical CAA problems have many features that can trigger the growth of the short-wavelength
spurious solution. For example the body-fitted grids are always non-uniform. Even for problems
without any solid surface, it is desirable to have a finer mesh in the source region than in the acoustic

field since the sound wavelength is large compared to the source spatial scale [53]. Hence it is common
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that meshes are non-smooth and contain regions of stretching, in which spurious waves can develop.

BC can also lead to a similar growth of the spurious solution.

When the Euler or N-S equations are discretised by high-order compact centred FD schemes,
they are non-dissipative. The non-linear instabilities due to the spurious solution can grow without
bound if untreated, and lead to large errors or even solution failure. Hence stabilising techniques
such as filtering, artificial viscosity and artificial dissipation are crucial in enforcing stability while
retaining the advantages of high-order FD schemes over low-order ones. The current study employs
sixth-order low-pass filters to enforce numerical stability. Before discussing the filters used in more
details, the optimisation strategy for the interior and boundary schemes will first be explained briefly

in the next sub-section.

3.1.3 Optimisation of the Interior and Boundary FD Schemes

The truncation order and the resolution of the schemes are analysed by the use of Taylor series
expansion and Fourier Transform respectively. We will first look at the interior scheme and then the

boundary scheme and the halo boundary scheme.

To derive the five coefficients, which are «, 8 and a,, for m = 1,2,3, in equation (3) of the
interior scheme, Taylor series expansions are used to expand both sides of equation (3) about z = x;.

For a fourth-order accuracy, we need

3
1+2(a+8)=2> man (4)
m=1
3 a+22ﬁ Zm A (5)

Three more equations are required for the five unknown coefficients. To derive the remaining
equations, first consider the continuous form of the equation of the interior scheme
3

Bf' (x—2Ax)+af (z—Azx)+f(z)+af (z+Ax)+Bf (z+2Az) = ﬁ Zam [f(z + mAz) — f(x — mAx)].

m=1

By taking the Fourier Transform of this continuous equation, we obtain
JRf(K) {1+ 20cos k + 2B cos(2k)} = 2 f(k Z am sin(km) (6)

where j = /—1; k is the wavenumber; f(k) is the Fourier transform of f(z); k = kAx is the
scaled wavenumber; and & = kAz is the scaled pseudo-wavenumber, with k being the numerical
wavenumber. Note that since the minimum solution wavelength that can be captured is 2Ax, the

maximum possible solution wavenumber is 7/Az. Hence the maximum possible range of k for any
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gridis 0 < k < . K is identical to k up to certain value. The higher the spectral resolution of
the scheme, the higher that value. Note that the L.H.S. of equation (6) represents the approximation
made in the interior scheme; while the R.H.S. includes the Fourier transform of the exact objective
function f(x) and the exact scaled wavenumber. Now write & = (1 + 0)x, where 6 is some carefully
chosen constant. Then the integrated error @, over a scaled wavenumber range of 0 < x < r,

where r is certain value less than 7, can be defined as

v 3 ?
o= / {(1 + 0)k [l + 2cccosk + 20 cos 2k] — 2Zam sin(nm)} (E)”d/ﬁ. (7)
0 r

m=1

The minimum of ® occurs when d®/do = 0, where o can be any of the five coefficients «, 8 and a,,
for m = 1,2,3. Any three of the five d®/do = 0 equations and equations (4) and (5) provide the
five equations required to find the five coefficients. The optimisation of the differencing coefficients is

driven by the minimisation of the resolution error, €, defined as

Kim [36] showed that the resolution error of the resulting scheme was insensitive to the choices of o
used in d®/do = 0. Also, he showed that the current interior scheme had better spectral resolution
characteristics than previous schemes which were optimised differently. Details of the calculation

steps for the optimisation of the interior scheme can be found in a study by Kim [36].

The boundary closure strategy is very important to the current numerical strategy. There are
many different kinds of boundary closure methods for FD schemes. Upwind/downwind FD schemes
can be used at or near a computational boundary. However, these schemes are dissipative and will
lead to loss of accuracy at a boundary. High-order one-sided difference closures can lead to instability.
There are two important types of stability which should be considered when deriving FD boundary
closures: the first is the Lax stability, which determines whether the solution remains bounded as
the grid spacing Az — 0 at a fixed time; the second is the asymptotic stability, which requires
that the error does not grow without bound [53]. It has been shown that clustering of grid points
near computational boundaries could eliminate the instabilities associated with high-order one-sided
schemes [53]. However, such approach would lead to a reduction in time step size due to the CFL

stability condition, and hence a loss in computational efficiency.

For the current research, the boundary closure strategy is based on sophisticated extrapola-
tion of the solutions beyond a boundary. Both the boundary and the halo boundary schemes use
spline functions that are linear combinations of polynomials and trigonometric series. For the
boundary scheme, from equation (3), it can be seen that extrapolation is required for the points

i=0,1,2and i =N — 2, N — 1, N. For each of these points, the spline functions used is given by

Np

Na
6@ = Fi+ S Pu@) "+ S gm cos(ém®) + o sin(Gma”)]
m=1

m=1
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and its derivative

dgi(a') _ 1 [ S
gi@) = = — =1 { > mpm (@)™ =Y b [gm sin(GmaT) = i COS(fbmx*)]} :
m=1 m=1

dz

where 2* = (x — z;)/Ax is the non-dimensional coordinate from the point of interest x;. The values of
Pm, ¢m and r,, are chosen such that the spline functions describe the interior profile of the objective
function correctly. ¢, is used to optimise the resolution characteristics of the boundary scheme. To
maintain fourth-order accuracy, N4 = 4 is required for the polynomials in the spline functions. The
details of the optimisation procedure can be found in a study by Kim [36]. Seven-point stencils are

also maintained for the boundary scheme, for example for the points ¢ = 0,1, 2,

6

_ _ _ o1
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m=0,7#0
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6
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It can be seen that the boundary scheme is non-central. For the halo boundary scheme, since halo
point values are available, extrapolation is only required for the points ¢ = 0,1 and i = N — 1, N.

Only one spline function

Na Np
g(l‘*) = me(x*)m + Z [Q'm COS(¢mx*) + Tm 51n(¢mx*)] s
m=0 m=1

and its derivative

oy d9) _ 1 [{P et N e .
g'(x*) = T = Az {Zmpm(a: ) - Z¢m [@m sin(mx™) — 1 cos(dma )]} )
m=1 m=1
is needed for the extrapolation. Note that z* = (z — z¢)/Az and is the non-dimensional distance
from a boundary. The spline function needs to match the halo and interior profile of the objective
function. This constraint provides the equations needed to solve for the unknown coefficients p.,,, ¢m
and r,,. Again, ¢, is used to optimise the resolution characteristics of the scheme and N4 = 4 to
achieve fourth-order accuracy. The details of the optimisation procedure can be found in the study
by Kim and Sandberg [37]. The resulting scheme is non-central and is based on eight-point stencils,
for example the points i =0, 1,
_ _ _ 1 4
i=0: fo+ofl+y0efi=5= Y. bom(fm—fo)

Az
m=—3,70

4
_ o . L1
i=1: qofot fitmefatosfs= oo > bim(fm = f1)-
m=—3,#1

Note that although the same letters are used for the designation of the coefficients of the boundary and
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halo boundary schemes, the two sets of coefficients (each consists of 7’s and b’s) are totally different for

the two schemes. In the next sub-section, the filters used in the current study will be explained briefly.

3.1.4 Compact Filters

In order to ensure numerical stability, compact discrete filters are used in the current study. Typically,
the filter accuracy is chosen to be at least two orders higher than the FD schemes used [82]. Hence the
use of sixth-order filters in the current study is appropriate. The basic filter applicable to the points
away from any computational boundary is based on seven-point stencils and have a penta-diagonal
matrix formulation similar to the interior FD scheme employed. It is called the interior filter in

this thesis and is given by

3
53fi72 + aﬁfifl + 3fz + aﬁfz‘ﬂ + 5£fi+2 = Zam(fz;m —2fi + fitm), (8)
m=1

where A fi = fz — f; is the difference between the filtered objective function ﬁ and the original
objective function f;. Equation (8) is in a fully differential form, which has some advantage in
computational efficiency and numerical stability over an equation in terms of ]?Z [38]. There are five
unknown coefficients in equation (8). By using the Taylor’s series expansion and the requirement of a
sixth-order accuracy, two equations are derived. A filter transfer function, which represents the ratio
of the filtered to the original value at a wavenumber k, is formed by using Fourier transform. The
transfer function, T'(k), is a function of the scaled wavenumber k = kAz. T(x) = 1 means no filtering;
while T'(k) = 0 is complete filtering. By considering the requirement of removing the irresolvable
highest wavenumbers and the filtering performance in the high wavenumber regime, another two
equations are derived. The last equation required is obtained by introducing a cut-off wavenumber,
ko, at which T'(k¢) = 0.5. Then each of the five unknown filter coefficients can be written as a
trigonometric function of k¢, which can be chosen to suit different numerical and computational
requirements. For the current differencing-filtering system, Kim showed that xc between 0.5m and

0.887 would ensure numerical stability [38].

The filter equation (8) cannot be applied directly to the points ¢ = 0,1,2 and : = N —2, N — 1, N.
Hence boundary closure treatment is needed. Similar to the strategy applied to the boundary FD
schemes, spline functions are used for the extrapolation of the original and the filtered functions
beyond the boundaries. Details of the extrapolation procedure can be found in a study by Kim [38].
The resulting boundary filters for the points ¢ = 0,1,2 are

1=0: ﬁfo +7013f1 +’702£f2 =0

i=1: m0Afo+Afi +712AF +y13Afs =0
5

i=2: y0Afot12mAf +Af+ 7258 fs + 9210 fa = D bom(fm — f2)-
m=0,#2



3 NUMERICAL METHODOLOGY 36

This type of boundary filter is non-central and is used for the domain boundaries, wall surfaces
and block interfaces. Note also that the filter coefficients v’s and b’s are completely different to the
boundary FD scheme coefficients, which are designated by the same letters for convenience only in
this thesis. All the filter coefficients are functions of the cut-off wavenumber k¢ only and can be

adjusted easily for different problems.

Since the boundary FD schemes are non-central, the solution resolution at the boundary points
(1=0,1,2and i = N —2, N —1, N) is lower than at the interior points, which use central FD scheme.
Hence Kim [38] suggested a weighting factor €, which reduced the cut-off wavenumber k¢ to lower

values k¢; for the boundary points, i.e.

kg for 3<i<<N-3;
(I1-—€) ke for i=2& N—2;
(1-2¢)ke for i=1& N-1;
(1-3¢)ke for i=0& N.

The introduction of ¢ has an effect on numerical stability. Kim showed that for the current
FD-filtering system, the range of ko which led to stable numerical solutions reduced when e was
greater than about 0.085. Kim suggested ¢ = 0.085 as the optimal value for the current schemes.
This optimal value, which corresponds to the stability range 0.57 < k¢ < 0.887 mentioned before,

is used in the current study.

For the sub-block interfaces across which the grid metrics are continuous, Kim and Sand-
berg [37] found that by applying the interior filters of equation (8) at the boundary points, the
acoustic reflections at sub-block interfaces that would otherwise appear if non-central filters were
used would be suppressed. To avoid a substantial increase in computational time, they suggested
implementing the interior filters at the boundary points by using a predictor-corrector technique
with the minimal, i.e. two, iterations. The predictor-corrector procedure starts at n = 0 with the
initial guess of ﬁfi(nzo) = 0 at the halo points ¢ = —1,—2 and ¢ = N 4+ 1, N 4+ 2. Then by solving
the penta-diagonal matrix system of equation (8), A fi(”) at the predictor and corrector steps, n = 1
and n = 2 respectively, can be found. The filtered solutions are then given by ﬁ =fi+ A fi(Q). This
filter is referred to as the halo filter in this thesis. Again, due to the lower resolution of the halo
boundary scheme, lower cut-off wavenumbers k¢ should be used for the boundary points ¢ = 0,1, 2
and i = N —2, N — 1, N. Kim and Sandberg suggested a smooth profile of the cut-off wavenumber
about the sub-block interfaces. The wavenumber reduced from k¢ at the interior points smoothly
to some value close to x5 at points ¢ = 0 and ¢ = N. This smooth profile of cut-off wavenumber

through the points ¢ = 0,1, 2 is
i=0: ko =krc+ (ks — ko) sin?(37/7);
i=1: kc=ke+ (KE— ko) sin?(27/7);

i=2: ko =keo+ (ks — ko) sin®(pi)T).
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Hence, there are three input parameters to the compact discrete filters used in the current study.
They are the cut-off wavenumbers k¢ and k¢, and the boundary weighting factor e. The discrete
filters are implemented only at the final stage of the fourth-order four-stage R-K time marching

scheme, which is described in the next section.

3.2 Temporal Discretisation

An explicit fourth-order four-stage R-K time marching scheme is used to advance the solution in
time in the current study. R-K time marching schemes have a semi-discrete formulation since the
governing equations are discretised in space first, then the system of non-linear ordinary differential
equation (ODE) obtained is integrated numerically. The general form of the ODE is

aQ

E - F(Qvt)v (9)

where Q is the solution vector, which is the discretised conservative variable vector for the current
study. F contains the discretised spatial derivatives, which are the inviscid flux derivative vectors.
These derivative vectors are non-linear vector function of Q. ¢ denotes time. To advance equation (9)
in time, one can use implicit or explicit time marching methods. For implicit methods, the R.H.S.
of equation (9) contains Q at the new time level. Hence additional iterations are required to solve
the equation and the computational cost is higher. Hence for non-linear problem such as the current
one, explicit time marching schemes are desirable. A family of widely used explicit semi-discrete
formulation is the multi-stage R-K method. The current study uses an explicit fourth-order four-stage

R-K scheme

Q* = Q"+F(Q°t)dt/4;
Q" = Q"+F(Qt)dt/3; (10)
Q° = Q"+ F(Qt)dt/2;

Q1)

Q™ = Q" +F(Q°t)dt/1,

where n is an integer denoting the time level; Q™! and Q™ denote the solution at time t = (n+1)At
and t = (n)At respectively, with At being the time step size; a, b and ¢ indicate intermediate estimate
of Q at the end of the first, second and third stage of the scheme respectively. A fourth-order
R-K scheme is used since the FD schemes used are also fourth-order accurate. It is required since
difference in the order of accuracy in the spatial and temporal discretisations can lead to dispersion
error [82]. The time step size of the current simulation is determined by the Courant-Friedrichs-Lewy
(CFL) condition

CFL = AtUg + AtU, + AtU,

where CFL is a dimensionless constant called the CFL number; At is the time step size; U, U, and
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U, are the maximum phase speed of the characteristic wave propagation normal to the n — (, £ — ¢
and £ —n planes in generalised coordinates respectively. Now the spatial and temporal discretisations

have been explained. The BC used in the current study will be discussed in the next section.

3.3 Boundary Conditions

BC are required on the solid wall surfaces, domain boundaries and block and sub-block interfaces.
The use of inappropriate BC can lead to the unbounded growth of spurious solution, which results
in unacceptably large errors and even solution failure. Hence the application of proper BC is of
tremendous importance to CAA. For the current study, an unsteady non-uniform incident flow has
to be introduced into the computational domain. This poses a challenge as the BC must allow
the mean velocity profile and the incident disturbances to be specified, and at the same time al-

lowing the outgoing characteristic waves to exit the domain without producing non-physical reflections.

There is a class of BC based on the Euler equations linearised about a relatively uniform
flow. These BC are known as the linearised BC. For the computational domain boundaries, linearised
BC such as the radiation BC might be used. The radiation BC is based on the assumption that the
domain boundaries are located far away from the source region. Hence, asymptotic solutions of the
linearised Euler equations for the propagating vortical, entropic and acoustic disturbances at large
distance from their source can be used to specify the BC. Some inflow and outflow BC based on this
approach have been derived [53,83]. However, the accuracy reduces when the domain is not large
enough. Large domain might require a much larger number of grid points, particularly for cases that
involve high-frequency gusts. A general problem of these linearised BC is that their accuracy degrades

significantly whenever non-linearity presents in the flow due to excessive non-linear reflections [53].

In an one dimensional flow, accurate non-linear and non-reflecting BC can be derived from
the classical method of characteristic solution [53]. By writing the governing equations in terms
of the characteristic variables, characteristic waves on the x — ¢ plane can be identified. BC are
applied to the incoming waves, which can be identified by the sign of the convection velocity of the
waves through the boundaries. Thompson [84] proposed that this approach could be used as an
approximation in a multi-dimensional flow. He wrote the conservative form of the Euler equations
in the characteristic form. BC were derived by specifying values to the characteristic convection
term L corresponding to the fluxes normal to the boundaries. The challenge is in the specification
of L. One way is to use the local one-dimensional inviscid (LODI) approach. In this approach, the
source terms of the characteristic wave equations, which consist of the transverse and viscous terms
of the N-S equations, are ignored. The LODI system of equations can be used to specify inflow and
outflow conditions. However, problems arise when strong vortices pass through the boundaries [34].

Moreover, the drifting of time-averaged pressure from the freestream value is also an issue. [34,53].

The current study uses a form of characteristic BC called the generalised characteristic BC
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(GCBC) based on the works of Kim and Lee [34,35]. GCBC does not use the LODI assumption.
All the source terms of the governing equations are included. Even with non-reflecting GCBC, there
would still be acoustic reflections from the boundaries. To attenuate these non-physical reflections,
sponge zone (also referred to as buffer zone/layer in some publications) BC is used in conjuction
to GCBC along the edges of the computational domain. In the next sub-section, the sponge zone

technique used will be discussed.

3.3.1 Sponge Zone BC

Sponge zone techniques can be used to derive both inflow and outflow BC [53]. They are efficient
for both inflow forcing and outflow damping. For this type of BC, the computational domain is
divided into two parts: the physical domain, in which the physical phenomena are simulated; and the
surrounding sponge zone, where a special treatment such as artificial dissipation, increased physical
viscosity, modified convection speeds or artificial damping is applied. The simplest treatment is the
use of artificial linear damping. In the conventional sponge technique, this involves an additional
source term, o(q — gref), to the R.H.S. of the governing equations. Here o is a free parameter to
control the strength of forcing/damping; ¢ is a flow variable and gyr is the reference solution desired
in the sponge zone. Usually o blends smoothly from zero in the physical domain to some positive
value at the outer boundaries of the sponge zone, where the damped disturbances interact with an
artificial BC. Even with the use of non-reflecting BC, there would still be reflected disturbances. The
sponge zone provides damping to these reflected disturbances as they propagate back towards the
physical domain. In this way, the sponge zone BC helps in further minimising the error caused by

the reflected disturbances.

The sponge zone technique discussed here is similar to the perfectly matched layer (PML) BC
in that they both require a layer of grid points adjacent to the edge of the computational domain.
However, the PML BC are based on the analytical solutions of the linearised Euler equations. For
the PML approach, the fluid properties within the layer are altered such that waves propagating in
all directions are forced to decay [53]. Hence a perfect transmission with no reflection is ensured [85].
Variable/eigenvalue splitting, which increases the computational cost, is required to accomplish this.
Furthermore, there are known stability problems with the PML BC [53], and the range of applications
of this type of BC is limited.

The use of the conventional sponge zone BC, in contrast to the PML approach, is widespread.
Freund proposed the use of sponge zone for the inflow and outflow regions, and has tested his
outflow condition by simulating the translation of a zero circulation vortex across a 2D domain [86].
He compared the performance of the sponge zone technique against the local characteristic BC of
Thompson, and showed that the sponge zone BC was vastly superior. Freund later used the sponge
technique in the inflow zone to drive the solution towards the target in his study of noise source in a
low-Re turbulent jet [87]. Bodony [85] analysed the convergence rate, the reflected wave absorption

capability and the forcing properties of the sponge zone technique. His investigation considered the
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introduction of acoustic waves and instability waves into the computational domain. Bodony and
Lele [88] utilised sponge zone around all boundaries to absorb the outgoing disturbances and to
introduce controlled disturbance at the inflow boundary to investigate the noise from cold and heated
turbulent jets. These existing publications, however, are limited to unbounded domains with no solid
body included. The present work aims to utilise sponge zone BC in the direct computation of AGI
noise on a body-fitted structured multi-block grid around a 2D or 3D aerofoil. A newly modified

form of the sponge technique, referred to as the new sponge BC herein, is utilised in the current study.

The difference between the conventional and the new sponge BC will now be discussed. If the
conventional sponge zone technique is used to impose the gust velocity, the additional source term to

the R.H.S. of the governing equation (2) is given by

P — Poo
PU - poougust
Soa = U(Q - Qref) = 0 PV — PooVUgust s

PW — PooWgust
g

PE€ — Poo€gust
with

P ugust2 + vgustz + u}gust2
+ ;
7= 1)poo 2

Egust = (

where 0 = o(z,y, ) is the sponge damping coefficient; suffices co and gust indicate freestream values
and the imposed gust properties respectively. The aims of the additional source term are to force
the density and pressure to their ambient values, and to force the velocity to some user-defined
gust velocity function within the sponge zone. For 2D and 3D cases with spanwise periodic BC,

o = o(x,y) and its spatial variation, with smooth blending over the corners, is given by

1 + cos[rA(x)B(y)]
2 )

0'(1'7y) = 0o

for

xe[xminy xmax] & ye[ymina ymax];

with

{ A(z) =1 —max[l — (£ — Tmin)/Ls,0] — max[l — (Xmax — x)/Ls, 0],
B(y) =1- max[l - (y - ymin)/LSa 0] - max[l - (ymax - y)/LS7O]'

o is zero in the physical domain and grows smoothly within the sponge zone to some specified
maximum, denoted by oq, at the domain outer boundaries. oy and the width of the sponge zone,
denoted by Lg, are free parameters and have to be determined by parametric studies. A typical
profile of o(x,y)/oo for the conventional sponge zone is plotted in Figure 1. The black dashed lines

indicate the approximate boundaries between the physical domain and the sponge zone.
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Figure 1: Conventional sponge BC damping coefficient ratio profile

The new sponge BC used in the current study is different to the conventional ones in two ways [33].
First, the last forcing term replaces total energy with pressure, which is one of the flow variable vector
elements ¢. This modification is made since the total energy forcing in the conventional sponge BC
overrides the density and velocity forcings that have already been specified by the other equations.
Second, a weighting factor W has been applied to the velocity forcing terms only, while the density
and pressure forcings maintain the original profile. W modifies the profile for velocity forcings such
that the damping strength is the strongest at the upstream inflow boundary and diminishes smoothly
to zero at a specified x location downstream of the inflow boundary. This modification is motivated
by the consideration that the velocity distribution downstream of the aerofoil no longer follows the
imposed gust function. Hence excessive constraint on the outflow condition is avoided. The new

sponge BC forcing term in this study is represented by

P — Poo
W(Pu - poougust)
Shew = © W(P'U - Poovgust) ;
W(Pw - poowgust)
P — Pco
with
W(.T) for Tmin € T < ZTmin + ¢Ld§
W= (11)
0 otherwise,
where
1 (T — Tmin)
W(x)=-qcos | ———| +1,,

2 oLq

where Ty, is the minimum =z, at which the inflow boundary is situated; Lq is the length of the
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domain along the x direction; ¢ is a free parameter and 0< ¢ <1. Different W (x) can be used as
long as it varies smoothly from unity at the inflow boundary to 0 at some z location downstream. o
blends smoothly from zero in the physical domain to some positive value ¢ at the outer boundaries
of the sponge zone, where non-reflecting GCBC [34,35] are applied. The sponge zone combined with
the non-reflecting GCBC effectively removes unwanted wave reflections. Figure 2 shows an example

of the profile of W(z)o(z,y)/oo for the velocity forcings with ¢ = 0.5.
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Figure 2: New sponge BC damping coefficient profile for velocity forcing

As a summary, the new sponge BC requires three free parameters: the maximum damping coefficient
00, the sponge zone thickness Lg and the velocity forcing length ratio parameter ¢. The values of
these three parameters were determined in the previous study [33]. In the next sub-section, the

GCBC used in the current study will be discussed.

3.3.2 Generalised Characteristic BC

The artificial BC applied along the outside edges of the sponge zone is the GCBC [34]. This type of
BC is also used for the solid wall surfaces [35] and the block interfaces across which the grid metrics
are discontinuous. The GCBC is based on transforming the governing Euler or N-S equations,
which are written in strong conservative form in generalised coordinates (£, 7, (), into a generalised
characteristic form in the direction normal to the boundary concerned. This generalised characteristic
equation is in the form of a quasi-linear wave equation with a source term. The BC can be derived
by considering the direction of propagation of the characteristic waves. To derive the GCBC, the

governing equation (2) first needs to be written in generalised coordinates

oQ OE OF 0G OE OF oG OE OF 0G B
ot =+ (affx + 876531 + 8'§£Z> + <877nx + 8777% + 87777z> + <3CC$ + %Cy + MCZ) = 0.
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Then, rearrange this equation and divide both sides by the transformation Jacobian J

l@_Fl @6 +a£§ +@§ +l 87E +8E +@ _;’_l ajc +87F<+%C =0
Jor " J\ae T ae T e )Ty o T ag™ T ey ) Ty \actt T gt T e ) T

with

J = |0(&n,Q)/0(m,y,2)] = we(ynzc — ycan) + y(Ycze — yezc) + ze(Yezn — ynze).
Now, consider
0B | OF oG
o¢ oy ¢’

where ~ indicates division by J, and E, F and G are defined as

=)

F = (B +n,F +n.G)/J; (12)
G = (GE+(F+6G)/J.

By using the metric identities

(Em)f + (ﬁ:v)n + (ZI)C = 0;

(5?/)5 + (ﬁy)n + (Cy)C =0

o~

(E)e + @)y + (C)e = 0,

and expending equations (12), it can be shown that

1 (0E
+—= 8—5&6 + 5

0B OF 0G_1
€ o ac T

OF oG
gy + 87562

on™ o™ oy )Ty Nact T ac
For non-moving grid, J is constant in time. Hence the governing Euler equation can be written in
strong-conservative form in the generalised coordinates as
9Q OE OF 0G
9Q OB OF G _,, (13)
ot o0& On  OC
Now, consider ¢ as the direction normal to a computational boundary. First, the transverse

generalised inviscid flux derivatives are moved to the R.H.S. of equation (13). Then, expanding the

normal flux derivative, we get

%? +} <5w?9? +§y88—1; +§z%§) =- [Eaag (Ex) +Fa% (&Ay) +G8% (Ez) + 21; + %?

J\ap' J @ v B¢

).
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The R.H.S. terms can be denoted by S.;. The flux term on the L.H.S. of this equation is then

re-written as

1 8Q OF 0Q
i . . — =8S..
Tor " (’5 aq "taq ¢ aQ) o
Note that (£,0E/0Q + &,0F /0Q + £.0G/0Q) is the Fluz Jacobian matriz, denoted by K here. We
then multiply this equation through by J and pre-multiply the equation by the transformation matrix

from conservative to characteristic variables, P~!, we obtain

_,0Q _ _,0Q _
pl==4 plgpp === plJs,
ot ¢ b
with
SR = P7146Q,

where §R is the 3D characteristic variables vector. Finally, P~1KP = A, where A is a 5 x 5 diagonal
matrix whose diagonal elements are the eigenvalues of the Flux Jacobian matrix K, and write
P~1JS. =S., we get

8R 8R

Equation (14) is the quasi-linear characteristic wave equation, which can be used to derive the
GCBC for the boundary normal to the ¢ direction. The idea behind the GCBC is to update the
incoming characteristic waves. Hence, one would need to identify the direction of propagation of the
characteristic waves in order to assign the BC. For that, we need to look at the diagonal elements of

A, which can be written as a vector

T
Adiagonal = [U, UUU+ce\/&+6°+65U —o/&7+ 67+ 52]

where c is the speed of sound; U = {,u + §,v + £, w is the normal velocity along the & direction, with
u, v and w being the flow velocity components in the Cartesian x, y and z directions respectively. It
can be seen that the entropic (first) and the vortical (second and third) wave-modes are propagating
at the normal velocity U with the flow. For supersonic cases, the two acoustic modes (fourth and
fifth modes) are propagating along the same direction as the flow. For subsonic cases, however, the
convection speed of the fifth mode (U — (&, 4 &,% + £.%)1/?) is negative. Hence, it is propagating in
the opposite direction to the flow.

Now the implementation procedure of the GCBC is explained. We concentrate on the charac-
teristic convection term L on the L.H.S. of equation (14), since it is this term that needs to be

updated at the boundaries. During the simulation, this term can be calculated by
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i 0 (& o (¢ o (&,
oo ([ ()£ (5) ()]}

R
L —_— Aaié_.

with

The values of L;, with ¢ = 1,2,3,4,5 for each of the five modes, are updated according to the nature
of the propagation of the wave-modes. Then the updated L, denoted by L*, is used to re-calculate

the normal flux derivative term OB /0, we obtain

OB\ 1. o (&, 2 (€ 9 (&
(ag) = grr e g (5) e (5) oz (5))

The normal velocity U to the boundaries needs to be calculated for each R-K stage of the simulation.
Then, depending on the sign of U, at the inflow and outflow boundaries, one can identify which of
the first three modes, represented by L1, L, and Ls respectively, are incoming. Since the flow is
subsonic in the current study, at the inflow boundaries, the fourth mode, which is an acoustic mode
represented by L4, is incoming; while the fifth mode, also an acoustic mode and is represented by
L5, is outgoing. At the outflow boundaries, L5 is incoming and L, is outgoing. For the outer domain
boundaries surrounding the sponge zone, L; of all the incoming wave-modes are set to zero. Hence a
type of non-reflecting GCBC is obtained. As explained before, there would still be reflected waves at
the computational boundaries. These reflected waves are damped by the sponge zone. For the block

interfaces across which the grid metrics are discontinuous, L; of the incoming modes are updated using

L;" = (Li - Sci)|neighbour + Sei,

where L;* is the updated value of L;; S are the elements of the source term vector S. in the
quasi-linear characteristic wave equation (14); and suffix neighbour indicates values from the

neighbouring block on the other side of the interface considered.

For the wall boundaries, the GCBC is based on the study by Kim and Lee [35]. This BC is
derived by writing the quasi-linear characteristic wave equation (14) in primitive variables (u, v, w,
p and p). The resulting equations in terms of the normal and transverse velocity are used to derive
the equations for the wall BC, which imposes the no-penetration condition of flow through the solid
wall and the slip/no-slip condition. Since the flow is inviscid in the current study, no-penetration of
flow and slip condition are needed. Hence only the equation in terms of the normal velocity U is
required. This equation only involves Ly and Ls. Hence there is no need to update L1, Lo and Ls

for the inviscid wall BC. For the inflow boundaries, e.g. a left-sided wall, L, is updated by

au
dt

wall

L4* = L5 + Sc4 - Sc5 -2 (15)
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While for the outflow boundaries, e.g. a right-sided wall, L5 is updated by

Ls* :L4_Sc4+sc5+2% . (16)

wall
Sca and Scs in these two equations are the source terms for the fourth and fifth acoustic modes
respectively. dU/dt|wan is the wall pulsation term and is zero if the wall is stationary. Up to this
point, the spatial and the temporal discretisations and the BC used in the current study have been
explained. In the next section, some relevant inflow generation methods which can be incorporated

eventually will be discussed.

3.4 The Inflow Generation Method

The aim of the current research is to investigate the effects of wavy leading edges on AGI noise. Hence
eventually an unsteady non-uniform incident flow with certain physical features needs to be generated.
There are many inflow generation methods, which can be divided into two categories: synthetic
methods and recycling/rescaling methods [89]. In the recycling/rescaling approach, a velocity profile
somewhere downstream of the inflow boundary is recycled and rescaled. Then, the resulting profile
is reintroduced as the inflow. This act of recycling will introduce non-physical correlations associated
with the recycling period. Nevertheless, this method is useful for many purposes. For example, it
can be used to investigate the effects of upstream wings on the acoustic response of the downstream
ones. Omne might also use the recycling/rescaling method to model the atmospheric boundary
layer in an auxiliary simulation. Then store the flow field and prescribe it as the velocity profile in

the inflow region via the sponge zone technique. However, this approach is computationally expensive.

Synthetic methods require the use of some model to prescribe the velocity fluctuation about a
mean flow profile [89]. One popular example of synthetic method is based on the digital filtering (DF)
of random data, which was first developed by Klein et al. [64]. Their DF method of inflow generation
aims to reproduce the first- and second-order one-point statistics and a locally given autocorrelation
function. However, the full autocorrelation function is often unknown. Hence Klein et al. assumed
the autocorrelation to be of a Gaussian shape, and that only the length scale needed to be prescribed.
The filter coefficients were then derived by using their relation with the autocorrelation function [64].
At each time step, a 3D digital filter was applied to three sets of 3D random data, one set for each
velocity component. Then, a slice of 2D filtered data for each velocity component was produced.
These were then imposed on the inflow y — z plane. Cross correlations between different velocity
components might be introduced by using a transformation proposed by Lund et al. [64,90]. Each
set of random data was then updated by removing the first y — z plane of data at the most negative
z-location, then shifting the remaining data in the negative z-direction, and introducing a new

y—z plane of random data to the last plane. Then the filtering process was repeated for each time step.

Xie and Castro [91] further improved the efficiency of the DF method of Klein et al.. They
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applied a 2D digital filter to three sets of 2D random data. A slice of 2D filtered data was produced
for each velocity component at each time step. By correlating the new 2D field with the old one from
the previous time step, a new slice of 2D data, whose space and time correlation functions were both

of exponential form, was produced.

Since only a slice of y — z plane velocity field is generated at each time step, the generated
velocity fields by using the approaches of Klien et al. and Xie and Castro are not divergence-free.
Ewert [63] used the DF approach in his random particle-mesh (RPM) method to produce divergence-
free pseudo-turbulent velocity field for the study of aircraft slat noise. Instead of synthesizing velocity
directly, stream-function which satisfied the divergence-free condition was generated. In his approach,
a bundle of mean flow streamlines was introduced to a part of the domain known as the source patch,
in which turbulence-related vortex sound sources originated. The streamlines started equidistantly in
the most upstream location of the source patch. They then propagated downstream according to the
local mean flow computed by a steady RANS simulation. Random values were assigned to discrete
points, known as particles, along these streamlines. Digital filtering was applied to these points to
achieve the desired statistics. Note that the filter kernel parameters had to be determined by a steady
RANS computation as well. At each CAA time step, the particles convected downstream along
the streamlines. Once the particles reached the end of the streamlines, they would be discarded.
New particles with new random values were then added at the most upstream locations. Since the
particles on the streamlines were not necessary the actual points on the CAA mesh, interpolations
were required for the CAA calculations. The filtering and interpolations happened simultaneously.
The velocity field were then obtained by computing the gradient of the resulting stream-function.
A fast RPM (FRPM) approach had been developed by Ewert [65,66]. In the FRPM, a Cartesian
background mesh was used to store the mean flow quantities computed by the RANS simulation and
the source strength. Instead of distinct streamlines, a cloud of evenly distributed particles over the
background mesh was used. Linear interpolations were used to compute the particle velocity from the
stored values at the vertices of the background cells which contained the particles. The particles were
convected according to the local mean velocity. The RPM and FRPM methods have been applied
directly to 2D simulations only [66,68]. Work is still on-going for its direct applications to more
complicated 3D geometries, which obviously will lead to a much more complicated and potentially

costly implementation procedure.

The current study requires the inflow velocity field to be divergence-free. Hence the recent
DF based approaches, although sophisticated, are not applicable. Therefore, attention is turned to
the other main type of synthetic methods. These methods prescribe a form for the inflow structure
but not its statistics. In this aspect, they are the opposite to the DF based methods. These
methods are based on the superposition of harmonic or waveform functions. An example is the
inflow generation method devised by Smirnov et al. [92], who aimed to produce a spatially developing
inhomogeneous, anisotropic turbulent flows for particle tracking applications using LES. In their
study, a flow field was generated as a superposition of harmonic functions. Independent numbers

selected from normal distributions were used as the angular frequency and wavenumbers of each
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harmonic. The amplitude of each mode was also constructed by these normally distributed numbers.
Hence the flow field is not periodic in space and time. Then an orthogonal transformation tensor,
which was used to transform the velocity correlation tensor to a diagonal matrix, and the diagonal
elements of the transformed matrix were used to transform and scale the velocity field respectively. In
this way, a flow field with the desired velocity correlation was produced. By the way the amplitudes
of the modes were constructed, the velocity field produced was divergence-free for homogeneous
turbulence. For inhomogeneous turbulence, it was nearly divergence-free since the correlation tensor

was slowly varying in space in this case.

The current inflow generation method is based on the superposition of wave-modes. Each

wave-mode is in the form of a general trigonometric function. For the j** mode
u;j = Aij COS(kljl' + kgjy + wjt) + Bij sin(kljx + kgjy + wjt), (17)

/

; Tepresents the velocity pertur-

where ¢ = 1,2 for the Cartesian x- and y-directions respectively; wu;

bation along the it" direction; k1; and ky; are the non-dimensional wavenumbers; w; = —k1; My is
the angular frequency for a wave travelling in the positive a-direction (from left to right), with M.,
being the freestream Mach number; A;; and B;; are the amplitudes for the cosine and sine parts
respectively. Note that the the z-direction is the streamwise direction, and the y-direction is vertical
direction in the current study. The spanwise ugj component of the perturbed velocity is such that it

cancels the generally non-zero divergence at every stage of the R-K time marching, i.e.

ouy,  Ouby,
Uy = — < Yoy 2]) z. (18)

Or dy

This approach of imposing velocity perturbations will be referred to as the first approach herein.
Note that the u}; and uj; components of the perturbed velocity only vary in the x- and y-directions.
An alternative approach to impose the incident flow has perturbed velocity components that vary in

the z-direction as well, i.e.

u;j = Aij Cos(k1jx + k‘gjy + k‘3jZ + wjt) + Bij sin(kljx + k‘gjy + k‘3j2 + w]‘t), (19)

for ¢ = 1,2; with non-zero k3; in general. Then for maintaining the divergence-free condition, the ugj

component has to be

U, = — krg A + kaj Az cos Q) — kijBuj + ki By sin Q (20)
3] k3] k?,] Y

with Q@ = (kijo + kojy + ks;jz + w;t). This alternative approach will be known as the alternative
approach from now on. At a first glance, the alternative approach is advantageous in that it is more
general than the first approach. However, it will be shown later that when a gust prescribed by the

alternative approach impinges upon a 3D aerofoil with straight leading edge, the AGI noise produced
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within the computational domain reduces as the spanwise length of the domain increases. This might
be the result of the spanwise variation of AGI noise due to the inclined wavefronts of |u'| to the
leading edge as seen on the x — z plane. This apparent reduction of AGI noise due to increasing
spanwise length of the domain can be avoided by using the first approach to prescribe gust. More
regarding this will be shown and discussed in Chapter 5. Examples of the instantaneous contours
'

of |u'| of gusts due to the first and the alternative approaches are shown in Figure 3. In the next

section, the grid generation method used will be explained.
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Figure 3: Examples of instantaneous contours of |u/|

3.5 The Grid Generation Method

The generation of structured grid around a complex geometry for the use of high-order compact FD
schemes in CAA is one of the most challenging parts of the whole computational process. The first
type of grid generation method for numerical studies were the coordinate transformation techniques,
such as conformal mappings, shearings and stretchings [93]. However, these transformation techniques
could not meet the demand as the complexity of the modelled geometries increased. Numerical grid
generations, which involved solving a set of PDE [93], and multi-block technique were then developed
to bypass this bottleneck. A multi-block strategy divides the domain into several smaller blocks or
sub-domains. The grid metrics can be discontinuous about the block interfaces. Separate grids are
generated in each of the blocks. The grid of a block is much simpler and can be generated by algebraic
methods, such as transfinite interpolation [94]. It is common to use an algebraic method to generate
the grid in a block, then smooth the grid by using an elliptic PDE solver. Such a strategy is utilised
by commercial grid generation software like Gridgen. Much effort has been put into automatic grid
generation, and a typical commercial grid generation software usually provides some automation.

However, because of the difficulties in changing the interface positions and the arrangement and
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connectivity of the blocks automatically without human input, the grid generation for structured

multi-block grids remains a largely manual process.

There are many commercial software packages available for grid generation, such as Gridgen.
They provide an interactive graphical user interface for researchers and engineers who are not
specialised in grid generation. For conventional lower-order numerical methods used in other CFD
areas, these commercial software packages provide a quick way to generate the grid. However, for
CAA purposes, particularly when the governing equations are discretised by high-order compact
centred FD schemes as in the current study, problems can arise. The discretised equations by
such schemes are non-dissipative. As discussed in Section 3.1, it is common in CAA that grids are
non-smooth and contain regions of stretching. Hence non-physical spurious waves can develop in
these regions. If the quality of the grid is bad, for example part of the grid contains cells that are
too skewed or have extreme aspect ratios, detrimental spread of spurious waves can occur even with
the use of stabilizing techniques such as high-order compact filters. The main problem with the
commercial packages is that even if the generated grid looks ‘good’ on the graphical user interface,
it is very likely that there exist some undetectable ‘bad’ features that could lead to the spread of
spurious solutions. Because of this, an ‘in-house’ algebraic grid generation method is used in the

current study.

In the current study, a type of multi-block structured grid is used. In 2D, the grid around
the modelled aerofoil consists of six blocks, which are arranged in a H-topology. This type of grid,
shown in Figure 4, is often referred to as the H-grid or H-mesh, and can be deformed into a set of

Cartesian grid lines. The mesh lines across the block interfaces are in general discontinuous.

Figure 4: An example of the 2D grid used
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The Cartesian coordinates of the points in a block can be written as functions of the generalised
coordinates, for example x(§). These functions are referred to as grid functions in this thesis. The
motivation behind the current algebraic approach is to have smooth second derivatives of the grid
functions, such as d?z/d¢?, between all the points within each block. This requirement arises from
the fact that in the governing Euler equations (13), there are derivatives such as d(&;)/d¢ in the
inviscid flux terms. These derivatives are related to the second derivatives of grid functions by the
way the metrics are defined. Hence if the second derivatives of grid functions are non-smooth between
some points, spurious solutions will grow and spread from these points. Therefore, in addition to
the basic requirement of smooth grid functions and their first derivatives, for example dz/d¢, their

second derivatives are required to be smooth as well.

Now, consider generating an 1D grid with n + 1 grid points, so that ¢ = 0,1,...n — 1,n.
Two polynomials z1(§) and z2(&) are used to determine the grid points distribution. This allows the
method to be more flexible in controlling the grid point spacing near the two ends of the domain.
The first derivatives dx/d¢ rather than the grid functions z(§) are considered. The method can be
illustrated more easily by plotting the first derivatives against £, as shown in Figure 5. Polynomials
x1(§) and x2(§) are used to decide the grid point distribution from point 0 to m and m to n
respectively. da/d¢ of the two polynomials are matched at point m. The value of dz/d¢ where the
two polynomials match, represented by ¢ in Figure 5, are used to ensure that d?z/d¢? of the two
polynomials at point m are the same. The grid point spacing at the two ends of the domain are
calculated such that the two polynomials are connected at the same physical location z(§ = m). In
this way, high quality grid point distribution along the block interfaces can be ensured. The mesh
of a block can then be filled by interpolations. Adjustments of other variations such as grid cell
skewness and aspect ratio are required after the provisional grid is generated. This usually involves

changing the value of n and the grid spacings at the ends of the block boundary lines.

0 m n g

Figure 5: The two polynomials considered in the current algebraic grid generation method

By using the current grid generation strategy, the grid for a 3D aerofoil with a wavy leading edge can

be generated. Note that the aerofoil shape is not changed by the changing chord length along the
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span. An example of such grid is shown in Figure 6. The real challenge in terms of grid generation for
the current study is the generation of a half low aspect ratio wing with a tip. For this purpose, using
the current grid generation method as the basis, a Fortran 90 code was written. The tip geometry
needs to change smoothly in all parts of the grid. This is particularly challenging to achieve for the
transition from the rounded leading edge to the sharp trailing edge, and the change of thickness from
the main span to the edge of the tip. Any non-smooth feature will definitely lead to computational
failure. The planform shape of the tip is elliptical. The organization of the natural blocks needs to
be changed to achieve a smooth grid with high quality. Figure 7 shows the grid structure of the tip.
The special block which is crucial to the success of the grid is also shown in the figure. Any aerofoil
can be used for the wing main span. Figure 8 shows the smooth transition from the leading edge to

trailing edge at the tip. NACA 0005 is the aerofoil used in this example.

Grid structure near the wing

Basic six-block structure

Figure 6: An example of the infinite-span wing grid with wavy leading edge
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Outline of the tip geometry
z X

Special tip block

R ——

X-y view

X-Z View y-Z view

Figure 7: Tip grid structure

Figure 8: Smooth transition from the leading edge to the trailing edge at the tip
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4 Code Validations

In this chapter, the results computed by the current Fortran 90 code, parallelised with the use of the
MPI library, will be validated. Four validation studies will be presented. In Section 4.1, a benchmark
problem regarding the acoustic responses of Joukowski aerofoils under a simple periodic gust is
chosen from the Third [55] and the Fourth [56] CAA Workshops for comparison purposes. Then
in Section 4.2, the theoretical results proposed by Myers and Kerschen [24] on AGI noise will be
compared with the current numerical results. These two validation studies involve 2D aerofoils. The
last two validation cases presented in this chapter involve 3D aerofoils. In Section 4.3, the computed
lift curves, which are plots of the total lift coefficient Cy, versus alpha, for 3D NACA 0015 aerofoils
are compared to those measured by Sheldahl and Klimas [95] experimentally. Finally in Section 4.4,
qualitative comparisons of the computed 3D aerofoil surface mean pressure and velocity distributions

with the mean aerodynamic features reported in the literature for wavy leading edges are made.

4.1 Validations by a CAA Benchmark Problem

The first validation study employs two published sets of solutions to category 3 problem 1 of the
Third [55] and the Fourth [56] CAA Workshops as references. This problem investigates numerically
the acoustic response of a Joukowski aerofoil to an impinging 2D periodic vortical gust. Two cases are
studied: case 1 with a symmetric Joukowski aerofoil at zero «; and case 2 with a Joukowski aerofoil
with 2% camber to chord ratio at 2° a. All the Joukowski aerofoils considered in this problem have

12% thickness to chord ratio. The mean flow at oo is defined as

Poo = 1.0;

Poo = P/ = 1/1.4;

oo =/ (VPo0)/Poc = 1.0;
Uoo = Mootoo = 0.5

Voo = 0.
The form of the gust imposed is given by
2
Ugust = —Elog 5~ COS [k(z 4+ y — usot)];
2
Vgust = euoog cos [k(x +y — usot)] , (21)

where € = 0.02; and k is the reduced frequency, which is defined in the original benchmark problem
by
L
k=2 (22)

Qoo

where w is the angular frequency; L is the aerofoil chord-length. All lengths are non-dimensionalised
by the semi-chord in the CAA benchmark problem. In the current computation, the lengths are non-

dimensionalised by the chord length L. Hence to maintain the same gust wavelength to chord ratio,
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the wavenumbers or reduced frequencies used in the current study are twice as large as those in the
original benchmark problem, i.e. k = 0.2, and 2.0. Also, there is a factor of a half in equations (21)
in the CAA benchmark problem. This factor is not required in the current computation as L is
used to non-dimensionalise u.,. The results to be compared are: the root mean square perturbed
pressure Pgrprs on the aerofoil surface; and the mean square perturbed pressure Py;g calculated

at a certain radial distance from the centre of the aerofoil, denoted by R. Prass and Pyss are defined as

N

PRMS = |:Z (p/2)dtn:| /tsample; (23)

n=1

Pus = (Prus)?,

where p’ is the pressure fluctuation about the mean value; dt,, is the time step size at the n** time
step; tsqmple 1S the duration of time of the sample, taken as one time period. For the benchmark
problem, the time period of the 2D periodic vortical gust is simply 27/(kus ). For all the subsequent
calculations in this thesis, the Py;g results are presented as directivity patterns which are plots that

show the angular variation of Py;g at R = 4L.

4.1.1 The Current Solution Method

The current code is written in Fortran 90 and parallelised by using the MPI library. High-order
spatial and temporal discretisation schemes described before in Chapters 3.1 and 3.2 are used to solve
the governing 2D /3D compressible Euler equations. The CFL number used is 0.95. The three filter

parameters, whose values are based on the studies by Kim [38] and Kim and Sandberg [37], are

ke = 0.87m;
k¢ = 0.80;
e = 0.085.

The sponge zone thickness Lg, the maximum damping coefficient oy and the velocity forcing length
ratio parameter ¢ described in Chapter 3.3 need to be determined by parametric studies. Similar
parametric studies can be found in two previous publications [33,96]. The parametric studies for the
3D code are presented here. The CAA benchmark problem category 3 problem 1 case 2 with k£ = 2.0
is solved in these parametric studies. The grid used is a natural extension of the basic 2D grid in the
spanwise or z-direction. The current multi-block structured grid has an H-topology around the 3D
aerofoil. The computational domain spans from —9L to 9L in the z- and y-directions, and —0.5L to
0.5L in the z-direction. There are 65 grid points on each of the aerofoil surfaces; 71 points upstream
and downstream of, and 75 points above and below the wing. The total number of grid points on a
(z,y) plane is 31,050. Seven grid points are used in the spanwise direction. Hence the total number
of grid points used is 217,350. The 3D aerofoil is located at the centre of the domain. Lg = 3, 09 = 4
and ¢ = 1.0 is the basic combination of parameters used in the parametric study. For each of the

three tests, only one parameter is changed and the other two are kept constant. Table 1 shows the
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range of each of the three parameters tested. The results of the parametric study are presented in the
form of sound or Py;g directivity patterns at R = 4L. The patterns for the Lg, o9 and ¢ tests are

shown in Figures 9, 10 and 11 respectively.

’ Lg ‘ g ‘ ¢ ‘
| 1L,2L,3L,4L | 1,2,3,4,5 | 0.25, 050, 0.75, 1.00, 1.25 |

Table 1: Range of the sponge zone parameters tested
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Figure 10: o test

It can be seen from Figure 9 that the solution converges when Lg >3L. Lg = 3L is chosen because
it is advantageous to have a larger physical domain, which allows the sound at larger radial distance
from the centre of the aerofoil to be computed directly. For the oq test, it can be seen from Figure 10
that the solution converges when o > 4. The lower value of oy = 4 is chosen since excessive damping

should be avoided. Finally, Figure 11 shows that for the ¢ test, the solution converges when ¢ > 0.75.
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Figure 11: ¢ test

¢ = 1.0 is chosen. Therefore, the new sponge BC parameters for the current 3D code are

og = 40,
Ls = 3L;
¢ =1.0.

This combination of sponge zone parameters will be used for all the subsequent calculations in this
thesis. The sound directivity patterns computed by the current 2D and 3D codes for case 2 using this
combination of sponge zone parameters are plotted in Figure 12. It can be seen from the figure that
the current 2D and 3D results are nearly identical. Since this CAA benchmark problem involves 2D

aerofoils, the 2D code will be used for this validation study.

«10° | Sound‘ Directi‘vity at ‘R:4L | |

« Current 3D
o Current 2D

PMS sin 6

-4 T T T T T T T

Pyrg cost % 10°°
Figure 12: Current solutions computed by 3D and 2D codes
A grid convergence test is performed to check if the current grid point density is enough to achieve a

converged solution. Three 2D grids with different grid density are used. The numbers of grid points

used for the three grids are shown on Table 2. The resulting sound directivity patterns at R = 4L
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are plotted in Figure 13. It can be seen from Figure 13 that all three grids produce near-identical
results. Hence the current numerical solution has already converged and the current grid point density

is sufficient.

’ Grid ‘ Up-/down-stream ‘ Above/below ‘ Aerofoil upper/lower surface ‘ Total ‘

1 70 70 65 28,700
2 71 75 65 31,0501
3 121 121 121 87,846

! The same grid density as used in the parametric study

Table 2: The grid convergence test details
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Figure 13: Grid convergence test

4.1.2 The Reference Solution Methods

There are a number of published solutions to this CAA benchmark problem. Some researchers such
as Scott [54] obtained the solutions by solving the linearised Euler equations. Others such as Hixon
et al. [97] solved the full 2D Euler equations similar to the current study. The two reference solutions
used for this validation study were obtained by solving the full Euler equations. The first set of
reference solutions is that by Golubev and Mankbadi [56], who utilised the space-time mapping
analysis (STMA) method first proposed by Hixon. Their method treated any 2D or 3D unsteady
problems as steady-state problems in 3D or 4D. Essentially, the temporal dimension was being
treated as an extra spatial dimension. They used the 7-point 4*"-order dispersion relation preserving
(DRP) scheme by Tam and Webb to solve the STMA equations. Also, 10**-order artificial dissipation
was added to ensure numerical stability. Radiation BC and Tam and Webb’s BC were used at the
inflow and outflow boundaries of each (z,y) plane respectively. They used 605 and 240 grid points
in the x— and y—directions respectively, i.e. 145,200 points altogether, for the cases with the highest

gust frequency (corresponds to k& = 2.0). The second set of reference solutions is that by Wang et
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al. [56], who used the space-time conservation element and solution element (CE/SE) method. Their
method was a type of finite volume (FV) method with second-order accuracy in both space and time.
Simple non-reflecting BC and an unstructured grid were used. The domain stretched to 23L from
the aerofoil in all directions, and a much larger number of grid points were used compared to the

high-order FD based methods. There were 427,392 triangles altogether in the grid used by Wang et al..

4.1.3 Results Comparison

Figures 14 and 15 show the surface mean and RM .S pressure distributions comparisons for case 1 and
case 2 respectively; Figure 16 shows the sound directivity comparisons for case 1 and case 2. Note
that no aerofoil surface mean and RM S pressure distributions result was provided by Golubev and

Mankbadi for case 1.

Surface Mean Pressure, Case 1, k=2 Surface Mean Pressure, Case 1, k=0.2

. 3.4

Pras

8 o Current, lower H o Current, lower
| Current, upper | Current, upper
32q¢ —CE/SE [ 3219 —CE/SE
| |
z s 2 3t —
S ® 1) ® W@M
= ® = @ ®®®'®'®®
289 288 5o |
@@QV@@&@
2.6
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c z/c
Surface RMS Pressure, Case 1, k=2 Surface RMS Pressure, Case 1, k=0.2
b ) 7 b
01+ ) . \ f 01+ A | f .
o Current, lower o Current, lower
Current, upper x Current, upper
0.08 CE/SE r 0.08 - ——CE/SE
0.06 1 © 0.06 1 93
= o)
=
0.04- A 0.04+
0.024
0

Figure 14: The surface mean and RM S pressure for case 1

It can be seen from the results that the current numerical methodology is capable of producing similar
solutions to the published reference solutions. For the aerofoil surface mean and RM S pressure
distributions for case 2, the results by the STMA method of Golubev and Mankbadi show oscillations
near the leading and trailing edges. Such oscillations are not present in the current results. For the
sound directivity patterns, the current results are also in good agreement with the reference solutions.
The patterns for case 2 with k = 2.0 show bigger variation. The current solution is closer to the
solution by the STMA method for that case. It is because similar to the current approach, Golubev
and Mankbadi used high-order FD type discretisations. The current methodology, however, is much
less computationally expensive than the STMA method. For the cases with k& = 2.0, the number of grid
points required by the current 2D code is only about 20% of that needed by the STMA method on the
(x,y) plane. Hence the current numerical methodology is well-suited to be used for more complicated

problems such as 3D simulations and simulations with more complex wing section geometries.
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Surface Mean Pressure, Case 2, k=2 Surface Mean Pressure, Case 2, k=0.2
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Figure 15: The surface mean and RM S pressure for case 2
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Figure 16: Sound directivity pattern comparisons
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4.2 Validations by Theoretical Results

In the second validation study, the theoretical prediction of far-field pressure for a 2D flat plate
aerofoil at zero a proposed by Myers and Kerschen [24] mentioned in Chapters 1 and 2.2 is used for
comparison. Their theoretical far-field pressure is denoted by Pusi, and is plotted as |Pys K|\/T]Th,
where 7, is the physical radial distance from the leading edge. To compare with the theoretical
results, the current numerical results to be plotted is Prasy/Tpn /C, where Prprs is the root mean
square pressure perturbation and ( is the perturbed velocity magnitude and is a small dimensionless
number - ¢ = 0.01 is used in this paper. The current values of Prjsg are calculated at r,, = 4L.

The computed Prars+/Tpr directivity patterns need to be divided by ¢ since Pysg is independent on (.

For the theoretical model of Myers and Kerschen, the incident gust is 2D and purely vortical,
ie.
/
“ = (U A ik ($+kn—t) (24)
’ o0 A b
v n

where u' and v’ are the z- and y-components of the perturbed velocity; ¢ is a dimensionless
parameter and is assumed to be small; Uy, is the freestream velocity; k is the reduced frequency
defined by equation (22); ¢ and ¢ are the dimensionless velocity potential and stream-function,
which form the orthogonal curvilinear coordinates system; \/m =1 for the vortical velocity
to be divergence-free, in here, A4, = A, = V0.5 ; k, = 1/ m, which corresponds to a

Prandtl-Glauert transformation, is introduced.

Since this validation study is a 2D problem, it is more convenient to use the current 2D code
to produce results for comparison. Before comparing with the theoretical solutions of Myers and
Kerschen, the results computed by the current 2D and 3D codes are compared. A 2D flat-plate
aerofoil at zero « is subjected to a mean flow with freestream Mach number M., = 0.5, and a

superposed perturbed velocity defined as
wy = (=107 D) Ay cos[k(x + y — Moot)] + Amp sin[k(z +y — Moot)]},

where ¢ = 1 and 2 for the z and y perturbed velocity components respectively, M, is the freestream
Mach number and Ay is the amplitude parameter. Hence, the magnitude of the current u; is
\/iAmp. The corresponding magnitude of u} employed by Myers and Kerschen was V0.5 Uy, where
U, was the freestream velocity. Furthermore, in the current study, the aerofoil full-chord is used
to non-dimensionalise lengths. This is different to the study by Myers and Kerschen, who used the
semi-chord. Hence in the current computation, a factor of two is added to Ay, for fair comparisons.
Therefore, App = 2(v/0.5(M..)/+/2 in the current study. Hence to maintain the same gust wavelength
to chord ratio, the wavenumbers or reduced frequencies used in the current computations are twice
as large as the corresponding values used in the model of Myers and Kerschen. All the values of k
referred to in this section from now on are the current values. The pressure directivity patterns with
k =4 and k = 8, computed by the current 2D and 3D codes are plotted in Figure 17. It can be seen

that the current 2D and 3D results are identical.
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Figure 17: 3D and 2D code results comparison

Now, the results computed by the current 2D code will be used to compared with the theoretical

solutions of Myers and Kerschen. Two tests are presented. The first test is about the effect of the

reduced frequency k, which varies from three to ten with an increment of one. The freestream Mach

number M., remains constant at 0.5 throughout. The resulting directivity patterns for the k tests

are shown in Figures 18 and 19. The second test is about the effect of M, which varies from 0.45

to 0.65 with an increment of 0.05. k is kept at 4 for this test. The results for the M., tests are

shown in Figures 20 and 21. It can be seen that the computed and theoretical results show very good

agreement with each other, particularly for the high-frequency cases since the theory of Myers and

Kerschen assumed that the frequency of the convected disturbance was high. This excellent agree-

ment shows that the current methodology is suitable and accurate for the simulations of AGI noise.

In the next section, the first of the validation studies which utilises 3D aerofoils will be presented.
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Figure 18: The effect of reduced frequency, k£ = 3, 4, 5 and 6
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Figure 19: The effect of reduced frequency, k = 7, 8, 9 and 10
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Figure 20: The effect of free-stream Mach number, M,

o = 0.4, 0.45, 0.5 and 0.55
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Figure 21: The effect of free-stream Mach number, M., = 0.6 and 0.65

4.3 Validations by Lift Coefficients Comparison

The third validation study involves comparison with experimentally measured data for lift coefficients.
Figure 22 shows the present 3D aerofoil geometry and the frame of computational domain used, where
the definitions of leading-edge amplitude and wavelength, denoted by LEA and LEW respectively,

are given. Note that LE A is peak-to-peak based, and the presence of leading-edge waviness does not

change the aerofoil shape and the wing planform area.

Amplitude

Figure 22: The grid structure and the definitions of leading-edge amplitude and wavelength

The imposed perturbed velocity components are based on the first approach and are given by
u; = A; cos(k1x + kay + wt) + B sin(k1z + kay + wt) for i = 1,2, (25)

where the amplitude parameters A; = By = 0.005 and Ay = By = —0.004 are constantly used in
the subsequent simulations in this thesis. The prescribed velocity disturbances are mainly in the
streamwise (z—) and vertical (y—) directions, whereas the spanwise component uj is used only
to satisfy the divergence-free condition avoiding unwanted pressure fluctuations to appear in the
freestream. The streamwise and vertical components are the major ones causing pressure fluctuations
on the aerofoil surface leading to AGI noise. The freestream Mach number is set to M., = 0.5 for the
rest of the thesis unless otherwise specified. The indices i = 1,2 denote the Cartesian coordinates;

u! represents the velocity perturbation along the " direction; k; and ke are the non-dimensional
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wavenumbers; and w = —k; My, is the angular frequency for a wave travelling in the positive

a-direction (from left to right).

First, a grid convergence test is performed. Two grids, one with double the grid density of
the other, are used. Then, two different sizes of the domain in the spanwise direction are tested. Two
grids of the same grid density on the z — y plane, one with two LEWSs in span and the other with
only one, are used. For these two tests, k; = ko = 27, « = 0 and the NACA 0015 aerofoil are used.
Periodic BCs are imposed on the two spanwise x — y end planes. For both tests, LEA = 0.1L and
LEW = 0.5L. The parameters for the compact filters and the sponge zone, as well as the dimensions
of the domain in the x — y plane are the same as in the previous sections. The numerical results
presented are directivity patterns of Ppsg in the z — y plane, which are averaged over the span in

z-coordinate and obtained at a radial distance R of 4L from the averaged centre of the 3D aerofoil

section.
107 Grid Convergence Test 10° Spanwise Domain Size Test
5 . | ) | . ! . . 5 . . | . . ! . . .
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Figure 23: Grid convergence and domain size tests

Figure 23 shows the resulting directivity patterns for the two tests. From the plot on the right of
Figure 23, it can be seen that the directivity patterns for the two grids of equal grid density but
with different span lengths are identical. This indicates that one leading-edge wavelength in span is
sufficient for the subsequent investigation. The plot on the left of Figure 23 shows that the two grids
with different grid density yield very little difference in solution. This result provides a baseline grid

for simulations in the case of k; = ko = 27 as shown in Table 3.

Up- or down-stream 131
Above or below 131
Upper and lower surface of aerofoil 131
Spanwise 36
Total 3,706,776

Table 3: The number of grid points used in the baseline grid

This baseline grid contains about 11 grid points per gust wavelength near the domain boundaries



4 CODE VALIDATIONS 67

where the grid is the coarsest. The same level of grid density per gust wavelength is maintained in
this thesis for all the other cases with different gust frequencies. Note that the spanwise number of

grid points varies with different values of LEW.

Since the current numerical simulations are inviscid, no meaningful drag results can be drawn.
However, the lift at low « is computed and compared with some measured data for validation
purpose. In this third validation study, the lift is calculated by integrating all the elemental surface
pressure force components around the 3D aerofoil in the vertical direction. The aerofoil used for
this validation study is also NACA 0015. For the first test, a straight leading edge is used and no
incident gust is imposed. Three freestream Mach numbers are tested: 0.1, 0.3 and 0.5. The values
of lift coefficient (Cp) are calculated for « = —1°, 0°, 1°, 2°, 3°. The computed lift coefficients are
compared with the experimental data at Re = 3.6 x 10° provided by Sheldahl and Klimas [95] for the
same aerofoil (NACA 0015).

NACAO0015 Cp, versus a NACAO0015 Cf, versus a, Incompressible

0.7

0.7

—— Current M, =0.1
0.64| —o— Current Mo, =0.3
Current My, = 0.5
Sheldahl and Klimas

—»— Current M., = 0.1
0.64| —e— Current M., = 0.3
Current My, = 0.5
Sheldahl and Klimas

0.59 0.59

0.4+ 0.4+

0.3 0.34

CrL
Cr

T T
-2 -1 0

or
o

Figure 24: Calculated lift coefficients (for a straight leading edge) compared with experimental data

The computed lift coefficients are presented in Figure 24, where the left figure is straight from the
current calculation and the right one shows the current data multiplied by the Prandtl-Glauert factor
m that converts the current compressible C, to its corresponding incompressible value. It
can be seen from the plot on the left that as Mach number increases, the slope of the current C-to-a
lines also increases. This increase in slope is due to the compressibility effect as suggested by the plot
on the right, which shows that the current C'p-to-a lines at different Mach numbers collapse onto a
single line after applying the Prandtl-Glauert factor. The discrepancy between the current and the

experimental data is conjectured to result from the omission of viscosity in the current simulation.

The second test employs wavy leading edges and an incident vortical gust given by Eq. (25)
with the same Mach number (Mo = 0.5) and wavelength (k; = k2 = 27) used in the earlier
grid-convergence test. The spanwise size of the domain is set to one LEW as mentioned earlier. The
test cases are listed in Table 4. The resulting C';, data are plotted in Figure 25 compared with the
data from a straight leading edge without the incident gust. It can be seen that all the calculated
data agree with each other very well, which indicates that the averaged aerodynamic performance of

the present 3D aerofoils with wavy leading edges is identical to that of the original 2D aerofoil.
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| | LEA [ LEW | o tested

Case 1 || 0.1L | 0.5L | 0°,1°,2°, 3°
Case 2 || 0.2L | 1.0L | 0°,2°, 4°
Case 3 || 0.3L | 1.0L | 0°,2°,4°
Case 4 || 0.4L 1.0L | 0°,2°

Table 4: Test cases for C, validation of the 3D aerofoil with wavy leading edges

NACAO0015 Cp, versus o

—6e—case 1
0.6 1| —— case 2
case 3
0.5{| —*—case 4
— St. LE, M, =0.5

0.41
0.314

Cr

0.214
0.11

-0.11

-0.2 T T
-1 0 1

on ]

Figure 25: Aerodynamic validation of the present 3D aerofoils with wavy leading edges

Since no viscosity is included in the current study, the current simulation is meaningful only in a low
range of . Given the limitation, the validation studies show that the current numerical methodology
provides an accurate, reliable and efficient ground for the investigation of AGI noise associated with

wavy leading edges.

4.4 Validations by the Mean Aerodynamics of Wavy Leading Edges

The last validation study involves comparing qualitatively the mean aerodynamic features of wavy
leading edges observed in the current simulation and reported in the literature. It has been reported
in the literature that for leading-edge tubercles and wavy leading edges, the mean pressure is lower
and the mean velocity is higher in the troughs [13,14,18-20,72,79]. The numerical surface mean
pressure and mean velocity contours from a current simulation (with LEA = 0.3L and M., = 0.5) are
plotted in Figures 26 and 27 respectively. It is obvious that for the 3D aerofoil with a wavy leading
edge, the surface mean pressure is lower and the surface mean velocity is higher in the troughs. This
indicates that the current numerical methodology is able to simulate the near-surface mean pressure

and mean velocity properly.
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Figure 26: Numerical surface mean pressure contour

Figure 27: Numerical surface mean velocity magnitude contour
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5 The Effects of Wavy Leading Edges on AGI Noise

The high accuracy and the high efficiency of the current numerical methodology have been demon-
strated by the validation studies. Now the current code can be used, with confidence, for the
investigation of the effects of wavy leading edges on AGI noise. For all the subsequent tests shown
in this thesis, unless stated otherwise, the first approach (Eq. (25)) to prescribe the incident gust,
the amplitude parameters A; = B; = 0.005 and Ay = By = —0.004, the freestream Mach number
My, = 0.5 and the NACA 0015 aerofoil are always used.

5.1 The Effects of Wavy Leading-Edge Amplitude and Wavelength

In this section, the effects of wavy leading-edge peak-to-peak amplitude (LEA) and wavelength
(LEW) with respect to the longitudinal (streamwise) wavelength of the incident gust (A;) on AGI
noise are investigated. Four different gusts with A\,/L = 2.0, 1.0, 0.5 and 1/3, which are referred
to as the wery-low-, the low-, the medium- and the high-frequency gusts respectively, are used.
The numerical results are presented in the form of spanwise-averaged x — y plane Pyg directivity
patterns plotted at R = 4L from the averaged centre of the 3D aerofoil section. Also, the percentage
differences relative to the straight leading-edge case are plotted against the sound propagation angle
0, whose definition is shown in Figure 28. The test cases in this section are listed in Table 5.

y
A

y ﬁPropagation Angle, 8

£
4
X

Centre of Aerofoil with
StraightLE, (0,0)

Figure 28: Definition of sound propagation angle 6

The low-frequency gust is used for Tests 1.0 and 2.0 to 2.3, and the high- and medium-frequency
gusts are used for Tests 1.1 and 3 respectively. Zero « is applied in this section. Tests 1.0 and 1.1
investigate the effects of LEA, and Tests 2.0 to 2.3 and 3 are for the effect of LEW, where the
geometric parameters are related with the gust wavelength (A;). Collectively, these parametric tests

should show a glimpse of when the reduction in AGI noise becomes significant.



5 THE EFFECTS OF WAVY LEADING EDGES ON AGI NOISE 72

| | ZEA LEW B
Test 1.0 || 0.1L to 0.5L* | 1.0L 1.0L
Test 1.1 || 0.1L,0.3L,0.5L | 0.3L (1/3)L
Test 2.0 || 0.3L 0.5L to 2.0LP 1.0L
Test 2.1 || 0.1L 0.5L,1.0L, 1.5L,1.75L | 1.0L
Test 2.2 || 0.2L 0.5L,1.0L 1.0L
Test 2.3 || 0.5L 0.5L,0.75L, 1.0L 1.0L

Test 3 || 0.15L 0.0L,0.5L,0.75L, 1.0L | 0.5L

2 Increments of 0.1L

b Increments of 0.25L

Table 5: The list of leading-edge and gust parameters tested in this section

5.1.1 The Effects of LEA

The resulting directivity patterns of Pyig from Test 1.0 for the low-frequency gust and the percentage
differences relative to the straight leading-edge case are plotted in Figure 29. It can be seen that
the AGI noise level reduces as the peak-to-peak LEA increases and the amount of reduction is
particularly significant at the major angles of propagation. It is shown that 80% or higher percentage
reduction in a wide range of angles can be achieved with LEA = 0.5L. However, there should be
a certain limitation to the peak-to-peak LEA value in practical wind-turbine applications due to

structural concerns.
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Figure 29: Results of Test 1.0 for the effect of LEA based on a low-frequency gust

Figure 30 shows the result of an additional test with LEA = 0.15L and LEW = 0.5L against the
medium-frequency gust. The result of Test 1.0 with LEA = 0.3L is also shown together. For both
tests, the ratio of wavy leading-edge amplitude to the longitudinal (streamwise) wavelength of the
gust, denoted by LEA/)\,, is fixed at 0.3. From Figure 30, it can be seen that, although the incident
gusts and the leading-edge geometries of the two tests are significantly different, the profiles of the
relative (normalised) reduction of AGI noise look remarkably similar. This suggests that LEA/ )\, is

the key factor that characterises the performance of wavy leading edges.

T T T T T T T T T T T T T T T T
-5 -4 -3 -2 -1 0 1 2 3 4 5 0 45 90 135 180 225 270 315 360
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Figure 30: The effect of LEA/\;: comparison of low- and medium-frequency gust cases

Figure 30 also shows that the medium-frequency gust generates a smaller level of AGI noise and more
complex directivity patterns with distinct lobes, compared to the low-frequency gust. Note that the
amplitude parameters of the low- and the medium-frequency gusts are identical. Myers and Kerschen
[6] analytically predicted for a 2D flat plate that the acoustic power of AGI noise would be inversely

proportional to the reduced frequency of the gust.

Figure 31 shows the results of Test 1.1 based on the high-frequency gust, which showcases
that a high percentage reduction of AGI noise (80% or more) uniformly in all directions may be
achieved when LEA/)\, is sufficiently larger than 0.3 at the given LEW. This test also suggests that
the amount of noise reduction may become saturated when LEA/), is around 0.9. Note that the
local data in the trailing-edge direction (§ = 0° and 360°) may not be sufficiently meaningful since
the original values of Pj;g in that region are extremely small and numerical errors associated with

the geometric singularity of the trailing-edge may have prevailed.
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Figure 31: Results of Test 1.1 for the effect of LEA/), based on a high-frequency gust

Figure 32 compares the three different cases from the low-, medium- and high-frequency gusts with
the same value of LEA/A\; = 0.3. Two additional tests, one with LEA = 0.4L and LEW = 1.0L
against the very-low-frequency gust, and the other with LEA = 0.1L and LEW = 1.0L against the
medium-frequency gust, have been performed. Both these two additional tests have LEA/\; = 0.2.
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Figure 33 compares the three different cases from the very-low-, low- and medium-frequency gusts
with the same value of LEA/)A; = 0.2. The similarity in the profiles of relative (normalised) noise
reduction at the same value of LEA/),, which was conjectured earlier from Figure 30, now looks
more convincing. This confirms that LEA/), is the key factor to predict and characterise the

aeroacoustic performance of wavy leading edges for the reduction of AGI noise.
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Figure 32: The effect of LEA/\;: comparison of low-, medium- and high-frequency gust cases
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Figure 33: The effect of LEA/\,: comparison of very-low-, low- and medium-frequency gust cases

5.1.2 The Effect of LEW

Figure 34 shows the directivity patterns of noise propagation and the profiles of relative noise
reduction for Test 2.0 where various wavelengths of the wavy leading edge are investigated. In this
test, LEA/), is kept at 0.3 and, again, the similarity in the profiles of relative noise reduction takes
place irrespective of various LEWs. Although the profiles show insignificant differences against each
other due to the similarity prevailing, the results suggest that some improvement in noise reduction

may be achieved by adjusting LEW .
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Figure 34: Results of Test 2.0 for the effect of LEW

To further investigate the effect of LEW  Tests 2.1, 2.2 and 2.3 are conducted for three different
values of LEA/), and the results are plotted on Figures 35, 36 and 37 respectively. Overall, the
results show the major dependency of LEA/\, with minor variations against LEW. It is conjectured
that the minor effect of LEW might be attributed to the present gust model with perturbed velocity
components that do not vary in the spanwise (z-) direction, which results in weak interactions with

the spanwise-varying aspect of the wavy leading edges.
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Figure 35: Results of Test 2.1 for the effect of LEW

In Figure 35 for LEA/)\; = 0.1, it can be seen that there is an additional reduction in noise between
LEW /Ay = 0.5 and 1.0. The noise reduction seems to reach the maximum at LEW/\; = 1.5 (as
hinted in Test 2.0) but returns to the initial level at LEW/A, = 1.75. The meaningful improvement
of noise reduction taking place between LEW/A, = 0.5 and 1.0 is also exhibited in the following
Figures 36 and 37 for different values of LEA/A, (0.2 and 0.5 respectively). While these results are
based on the low-frequency gust, Test 3 is carried out for the medium-frequency gust. Figure 38
shows the results of Test 3 where LEA/\, is set to 0.3 and three different cases of LEW/A, = 1.0,
1.5 and 2.0 are compared. It can be seen that the same trends found in the low-frequency gust
case still apply in the higher-frequency case. It is worth noting again that the effect of leading-edge
wavelength (albeit less significant than LEA) becomes meaningful when 1.0 < LEW/\, < 1.5 whereas

the effect diminishes outside the range.
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Figure 36: Results of Test 2.2 for the effect of LEW
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Figure 38: Results of Test 3 for the effect of LEW/A,
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5.2 The Noise Reduction Mechanism of Wavy Leading Edges

In this section, the AGI-noise-reduction mechanism of wavy leading edges is investigated. Two
different wavy leading edge geometries (LEA = 0.3L and 0.4L with both LEW = 1.0L) are employed
and the results are compared against the straight leading-edge case. The incident gust is also imposed
by using the first approach (Eq. (25)) with k; = ko = 27 which sets the longitudinal wavelength of
the gust to Ay = 1.0L. The time signals of pressure fluctuation and its rate of change are recorded
at six ‘transducer’ points located around a leading edge. The transducer locations are depicted in
Figure 39 and they are namely, Peak 1 and 2; Middle 1 and 2; and, Trough 1 and 2. Hence there
are three pairs of transducers for each geometry. Although the straight leading edge has no peak or

trough, the same names of transducers are used to indicate the corresponding locations.

z
Peak 2 I:l
Middle 2 %
y Trough 2 Locations for p’ output
| [ ]
¢ Trough 1 along a wavy LE
Middle 1 ¢ Corresponding
Peak 1 locations for a st. LE

Figure 39: Six ‘transducer’ locations for the measurement of pressure fluctuations

The time signals of pressure fluctuation and its rate of change calculated and collected at the
six transducer locations for the three leading-edge geometries are plotted in Figures 40 and 41
respectively. The results show that, for the straight leading edge, the signals are completely in-phase
and are almost identical as anticipated. In contrast, wavy leading edges produce significant phase
shifts between signals from different pairs of transducers (although no difference is observed among
each pair of transducers 1 and 2). It seems apparent that the case of LEA/)A, = 0.4 yields larger
phase shifts and lower levels of fluctuations than the case of LEA/A, = 0.3. Both wavy leading edges

show noticeably decreased fluctuations compared to the straight leading edge.

In order to check the global effect of the wavy leading edges, the pressure fluctuation data are
integrated over the aerofoil surface and the perturbed lift coefficient (C7) is calculated. The time
signals of C; and dC%/dt for the three different leading edges are plotted in Figure 42. It is
confirmed that the wavy leading edges reduce the amplitude of fluctuations compared to the straight

leading-edge case and the reduction becomes more pronounced as LEA/)\, increases.

The results indicate that the wavy leading edges yield a de-synchronised gust response (phase

shift) in span along the frontline of the aerofoil, which makes the local pressure fluctuations around
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Figure 40: Time signals of pressure fluctuation (p’) measured at the six transducer locations for three

different leading-edge geometries

St. LE

dp'/dt

77 78 79 80 81 82 83 84
Time, t

——peak 1

- - -peak 2

''''' middle 1

o middle 2
o trough 1
« trough 2

dp’/dt

dp’/dt

LEA/\, = 0.3

0.03

0.02+

0.014

—0.01+

—0.02

—-0.03 T T T T T T
76 77 78 79 80 81 82 83
Time, t

LEA/X\, =04

0.03

0.02+

0.014

—0.01+

—0.02

-0.03 T T T T T T
74 75 76 7 78 79 80 81

Figure 41: Time signals of dp’/dt measured at the six transducer locations for three different leading-

edge geometries
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Figure 42: C time signals and rates of change for three different leading edges

the leading-edge area dispersed over the retarded period of time. These local changes brought about
by the wavy leading edges in turn lead to a global reduction in the unsteady force acting on the
aerofoil surface. The consequence of the reduced AGI noise can be explained by using the loading,
or dipole, source term of the FW-H equation. Farassat [98] have derived one of the solutions to
the FW-H equation referred to as Formulation 1A. The far-field loading noise component of the

Formulation 1A solution can be written as

.

=0

(0p'/OT) cos
[ cr(1—DM.)2 ] ., a5,

where 7 is the source or retarded time (details can be found in [98]). This explains that the amplitude
of dp’/dt at the source location and time is directly proportional to the magnitude of the propagated
sound. Since wavy leading edges reduce the unsteady fluctuations both locally (dp’/dt) and globally

(dC% /dt), the reduction of AGI noise is a direct consequence as described by the above formula.

5.3 The Effects of @ and Aerofoil Thickness

In this section, the effects of o and aerofoil thickness associated with wavy leading edges on the
reduction of AGI noise is studied. The same flow-gust condition as used in the previous section is
maintained. The gust wavelength is also kept at A\; = 1L. Three different angles of attack, a = 1°, 2°
and 3°, are tested. For this test, the NACA 0015 aerofoil is used and the wavy leading-edge parame-
ters selected are LEA/A\; = 0.1 and LEW/X, = 0.5. Figure 43 shows the sound directivity patterns
and the profiles of relative noise reduction varying with a. It can be seen from the results that AGI

noise level increases with « for both the straight and the wavy leading edge, although the overall
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shape of the directivity patterns seems unchanged. Myers and Kerschen [24] analytically predicted
that the acoustic power of AGI noise (from a flat plate) increases almost linearly with the angle of
attack in 0° <a<3° for My, = 0.5 (see Figure 5 of [24]). In the meantime, the relative reduction
of noise due to the wavy leading edges remains more or less the same. This indicates that the noise
reduction capability of wavy leading edges is not significantly affected by the change of o (at least
within 0° <@ <3°). An extended study on larger values of a would be useful but nonlinear viscous

effects will need to be taken into account, which is beyond the scope of the current study.
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Figure 43: The effect of @ on AGI noise: straight LE (left) and wavy LE (right) cases

For studying the effect of aerofoil thickness associated with wavy leading edges, four different values of
thickness: NACA 0005, 0010, 0015 and 0020 are used. The same flow-gust condition and leading-edge
geometry parameters used in the earlier study are maintained and « is kept at zero. The results
are presented in Figure 44. First, it can be seen that there exist remarkable changes in the sound
directivity patterns varying with the aerofoil thickness. The main changes take place in the upper half
plane for this particular gust condition, and more sound propagates upstream as the aerofoil becomes
thicker. The second observation is that the profiles of relative noise reduction due to the wavy leading
edges (compared to the straight leading-edge case) still show a strong similarity at LEA/X\, = 0.1

despite the substantial differences in thickness.

Another observation from Figure 44 is that the directivity patterns are much closer to being sym-
metrical about the line y = 0 for the thinnest NACA 0005 aerofoil when interacting with the current
gust. To investigate this phenomenon, the perturbed vertical and streamwise force coefficients, de-
noted by C| ¢ and Cfq respectively, on the upper and lower surfaces of the 3D NACA 0005, 0010 and

0020 aerofoils are calculated. The resulting time variations of Cjq and Cfg for the three aerofoils
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Figure 44: The effect of aerofoil thickness: straight LE (left) and wavy LE (right) cases
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Figure 45: The perturbed vertical force coefficient (C{g) for the upper and lower aerofoil surfaces
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Figure 46: The perturbed streamwise force coefficient (Cf,g) for the upper and lower aerofoil surfaces
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are plotted in Figures 45 and 46 respectively. Note that these time variations have been adjusted
in time so that the signals for the upper and lower aerofoil surfaces are nearly in-phase, and any
difference in magnitude between the signals is more clearly shown. It can be seen from Figure 45 that
as aerofoil thickness increases, the difference in magnitude between the Cj g-time variations for the
upper and lower aerofoil surfaces becomes bigger. Figure 46 shows that for the NACA 0005 and 0010
aerofoils, their respective upper and lower surface Cf,q-time variations are nearly identical. For the
NACA 0020 aerofoil, the difference in magnitude between the Cf,q-time variations for the upper and
lower surfaces is more obvious. These results show that as aerofoil thickness increases, the difference
in magnitude between the perturbed force time variations for the upper and lower aerofoil surfaces
becomes bigger. This leads to the loss of the upper-lower symmetry in the sound directivity pattern

as aerofoil thickness increases under the current gust.
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Figure 47: C{q for the upper and lower surfaces of the four thinner 2D aerofoils

To further show the effects of aerofoil thickness on the radiated AGI noise directivity, the 2D code
is used to compute the AGI noise due to eight aerofoils of different thicknesses: NACA 0020, NACA
0015, NACA 0010, NACA 0005, NACA 0004, NACA 0003, NACA 0002 and a flat plate aerofoils. All
these eight aerofoils have zero camber, and « is always kept at zero. For this test, M, = 0.5 and the

perturbed velocity is defined by
u, = A; cos(k1x + koy + wt) for i = 1,2,

where k; = ko = 27 and the amplitude parameters A; = —Ay = 0.00707 for the gust to be
divergence-free. The resulting time variations of C{g for the 2D flat plate, NACA 0002, 0003 and
0004 aerofoils are plotted in Figure 47; those for the 2D NACA 0005, 0010, 0015 and 0020 aerofoils
are plotted in Figure 48. It is obvious that as aerofoil thickness increases, the difference in magnitude
between the Cj g-time variations for the upper and lower aerofoil surfaces becomes bigger. Figure 49

shows the C[,g-time variations for the 2D flat plate, NACA 0002, 0003 and 0004 aerofoils; those for
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the 2D NACA 0005, 0010, 0015 and 0020 aerofoils are plotted in Figure 50. It can be seen that the

2D flat plate aerofoil has zero Cf,q. This is expected since the flat plate aerofoil has zero thickness

and camber ratios and « is always kept at 0°. For each respective aerofoil, the Clyg-time variations

for the upper and lower aerofoil surfaces are similar. The 2D NACA 0020 aerofoil shows a somewhat

bigger difference in magnitude between the Cf g-time variations for the upper and lower surfaces.

general, these observations are consistent to those for the corresponding 3D aerofoil tests.
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Figure 48: Cfg for the upper and lower surfaces of the four thicker 2D aerofoils
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Figure 49: Cfg for the upper and lower surfaces of the four thinner 2D aerofoils



5 THE EFFECTS OF WAVY LEADING EDGES ON AGI NOISE 84

<10 2D NACA 0005 C'hg - 2D NACA 0010 Chyg
1k /\ 1 1/\ /\ 1
o \\/ \/ Sk
o | | \\/
— Lower surface —— Lower surface
83 8

i i i i i i i T
80 80.5 81 815 82 825 83 835 80 80.5 81 815 82 825
Time, t Time, t

1o 2D NACA 0015 Cyg 10 2D NACA 0020 Cg

o | \

3.5

1
DS
=)

DS

1k

| X Lower surface | | A Lower surface ||
-2 Upper surface -2 “#’| - - - Upper surface
83 8

80 80.5 81 815 82 825 83 835 80 80.5 81 815 82 825 3.5
Time, t Time, t

Figure 50: Cf,q for the upper and lower surfaces of the four thicker 2D aerofoils

The resulting Pyg for the eight 2D aerofoils are also analysed. The Pyg directivity patterns and
the absolute difference in Pyg relative to the 2D flat plate aerofoil are plotted in Figures 51 and 52
respectively. It can be seen from Figure 51 that the flat plate aerofoil produces more noise compared
to the thinnest NACA 4-digits aerofoils, and the directivity patterns for the NACA 0003 and 0002
and the flat plate aerofoils are very close to being symmetrical about the line y = 0. This upper-lower
symmetry is broken as aerofoil thickness increases. This 2D gust is the same as the 3D gust used in
this chapter in that the angle that the gust wavefronts make with the streamwise x—direction on
the x — y plane, referred to as the gust angle 0, herein, is 45°. Figure 53 shows the definition of 0,
which is related to the gust wavenumbers by ko = k;tan(f,). The current 2D results suggest that
a gust angle 6, of 45° and an aerofoil thickness of greater than 3% chord contribute to the lack of

upper-lower symmetry in the sound directivity pattern.
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Figure 51: The effect of aerofoil thickness on the upper-lower symmetry of Pyg directivity



5 THE EFFECTS OF WAVY LEADING EDGES ON AGI NOISE 85

. x10° Ab§. Diffeyence w.I.b. 2D‘ Flat P‘late ‘
- —NACA0002
D - - -NACA0003
] ! « , —— NACA0004 ||
6 Ty - - -NACAQ005
LS -=-=-NACA0010
A - = NACAQO015
41 REAEY - - NACA0020 ]|

0 45 90 135 180 225 270 315 360
0 (deg.)

Figure 52: Absolute difference in Pyg relative to the flat plate aerofoil
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Figure 53: Definition of the gust angle 0,

Two further tests are conducted to investigate the effects of 6, on the upper-lower symmetry of the
sound directivity pattern. For both tests, k2 = 0 and hence 8, = 0°, ky = 27, My, = 0.5 and a 3D
NACA 0015 aerofoil with LEA/A; = 0.3 and LEW/A, = 1.0 is used. Also, for these two simulations

uy = Ay cos(k1z + wt) + By sin(kyz + wt);

!/
ufy = — (%1;1> 2,

where u} and u} are the streamwise and spanwise perturbed velocity components respectively, 4; =

B; = 0.005. One of the tests has u = 0, and the other has uf = As cos(k1x + wt) + By sin(k1z + wt)

with Ay = By = —0.004. The resulting Pyis directivity patterns for these two tests are shown in
Figure 54. It can be seen that the directivity pattern for the test with w5, = 0 has a near-perfect
upper-lower symmetry, while that for the other test is not symmetrical about y = 0 but is closer to
achieving upper-lower symmetry than the corresponding case with 6, = 45° presented earlier in this
chapter (see Figure 29 of section 5.1.1). The effects of aerofoil thickness on AGI noise will be further

investigated at a later publication.
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Figure 54: The Pyg directivity patterns for the two tests with 6, = 0°

5.4 The Effects of Multi-mode Gusts

In this section, incident flows with two and four constituent gust-modes are implemented to investigate

their combined effects compared to the earlier single-mode cases.

The results from this analysis

may provide ground for further studies on how the wavy leading-edge geometry can be adjusted or

optimised to reduce AGI noise effectively in a real atmospheric turbulence/gust condition.

5.4.1 Two-Mode Gust Condition

The present two-mode incident gust is specified by the parameters listed in Table 6, where

fqg = M /Ay denotes the gust frequency of each mode. The first approach (Eq. (25)) is used to

generate the velocity disturbances. The same amplitudes of disturbances are applied to both modes

by using the same coefficients A

By = 0.005 and As = B»

—0.004, which is intended for

comparison purposes. The freestream Mach number M., = 0.5. The NACA 0015 aerofoil is used and
two different wavy leading edges named Wavy LE 1 and Wavy LE 2 with the same LE A but different

LEW are employed, of which the geometric parameters are specified in Table 7. The ratios of

the leading-edge parameters to the incident gust wavelengths in each mode are summarised in Table 8.

Gust mode H Ag ‘ fq ‘ k1 = ko ‘

1 1.0L

0.50

2

2 (2/3)L

0.75

3T

Table 6: Parameters for two constituent gust-modes used
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Neme | LEA| LEW |

Wavy LE 1 || 0.3L 1.0L
Wavy LE 2 || 0.3L | (2/3)L

Table 7: Wavy leading-edge parameters used for simulations with a two-mode gust

Gust mode || LEW/A, of Wavy LE 1 | LEW/), of Wavy LE 2 | LEA/, |

1 1.0 (2/3)L 0.30
2 1.5 1.0 0.45

Table 8: Parameters of the two wavy leading edges relative to each gust mode

The Pyg directivity results of the two-mode gust simulations are shown in Figure 55. It is
obvious that the two wavy leading-edge geometries lead to significantly reduced sound levels
compared to the straight leading-edge case. However, the difference of noise reduction between the
Wavy LE 1 and Wavy LE 2 cases is rather insignificant as it is discussed in Section 5.1.2 that LEW
has a much less impact on noise reduction than LE A has for the current gust configuration. Most of
the noise reduction comes from the effect of LEA as revealed in Section 5.1.1, and it is expected that
the noise reduction is more effective against the second gust mode than the first one since the ratio
of LEA/A, is higher with the second mode. To confirm this, sound pressure spectra are calculated
at four different locations shown in Figure 56, and the results are presented in Figure 57. The two
spectral peaks at f;, = 0.5 and 0.75 correspond to the first and the second gust mode respectively.
It can be seen from Figure 57 that both wavy leading edges lead to significant noise reduction at
the second mode frequency. Therefore, it is certain that LEA/), plays the major role in AGI noise

reduction against multi-mode gusts.
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Figure 55: Pyg directivity patterns from two-mode gust simulations
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Figure 56: The locations of the four observer points for the calculation of sound pressure spectra
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Figure 57: Sound pressure spectra calculated at the four observer locations: two-mode case

The wavy leading edge geometry Wavy LE 1 is also used for the simulations of AGI noise due to each
of the two gust modes prescribed as a single-mode gust. The overall sound pressure spectra due to
the two-mode incident gust and the individual spectra due to each of the gust modes as a single-mode
gust at the four observer points are plotted on Figure 58. It can be seen that the single peak of each
of the individual sound pressure spectra matches perfectly to the peak at the corresponding gust
mode frequency of the overall spectrum. This is expected since the perturbed velocity magnitude |u’|
used is small (approximately 2.5% of the freestream Mach number), hence the AGI noise produced is

linear, i.e. the peaks in the sound pressure spectra are the direct results of the individual gust modes.

A further test is performed using a two-mode gust with the same flow and gust parameters but with
larger gust amplitude parameters: A; = By = 0.040 and Ay = By = —0.032 for each of the two gust

modes. Hence the values of A; and B; are eight times larger, and the perturbed velocity magnitude
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Figure 58: Individual and overall sound pressure spectra calculated at the four observer locations:

original-amplitude gusts with Wavy LE 1
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calculated at the four observer locations:
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Figure 60: Overall sound pressure spectra at the four observer locations for the large- and the original-

amplitude two-mode gusts with straight LE

|'| is approximately 20% of the freestream Mach number. For this test, 3D NACA 0015 aerofoil

with straight leading edge is used. The overall sound pressure spectra and the individual spectra

with each of the two gust modes prescribed as a single-mode gust are computed and plotted in

Figure 59. Compared to the overall sound pressure spectra due to the original-amplitude two-mode

gust impinging on a straight leading edge (see Figure 57), the spectra due to the large-amplitude

two-mode gust have relatively larger peaks that do not correspond to any of the two constituent gust

mode frequencies. The relatively larger growth of these other peaks are evidence of non-linearity in

the AGI noise produced. Figure 60 further shows the difference between the overall sound pressure

spectra due to the large-amplitude and the original-amplitude two-mode gusts.

5.4.2 Four-Mode Gust Condition

Gustmode | A, | fy | =k | LEW/), | LEA/A, |

1 2.0L | 0.25 T 0.25 0.075
2 1.0L | 050 | 2« 0.50 0.150
3 (2/3)L | 0.75 | 37 0.75 0.225
4 05L | 1.00 | 4n 1.00 0.300

Table 9: Details of the four-mode gust and the LEA/A, and LEW/), ratios

Now a four-mode gust is employed in the calculation. One wavy leading edge with LEA = 0.15L and
LEW = 0.5L is compared to a straight leading edge in this study. The NACA 0015 aerofoil is still
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used. The details of the four constituent gust modes and the values of LEA/\, and LEW/\, against
each mode are listed in Table 9. The same amplitudes of disturbances are applied to all four modes
(A; = By = 0.005 and Ay = By = —0.004). M, = 0.5. The resulting Pygs directivity patterns at
R = 4L are shown in Figure 61 where it is clear again that the wavy leading edge leads to a reduced

level of AGI noise in every direction.
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Figure 61: Pyg directivity patterns from four-mode gust simulations

In the same way that was demonstrated in the two-mode case, the sound pressure spectra are
analyzed at the four observer locations as depicted in Figure 56 in the last section. The resulting
spectra are presented in Figure 62 comparing the wavy and straight leading-edge cases. The four
major peaks at f, = 0.25, 0.50, 0.75 and 1.00 correspond to each individual mode. The top two
spectra for observer points 1 and 2 in Figure 62 clearly show that the noise reduction of the wavy
leading edge is predominantly from the two highest frequencies. This is again because the value
of LEA/), is larger for a higher gust frequency (smaller ;). The same trend is also found in the
bottom two spectra although it is not so pronounced since observer points 3 and 4 locate within
the region with less significant noise reduction (0 >315° and 6 <45° as suggested by the directivity
patterns in Figure 61).

Next, the wavy leading edge geometry is used for a further test. The overall sound pressure spectra
due to the four-mode incident gust and the individual spectra by each of the four gust modes
introduced as a single-mode gust will be compared. The overall and the individual sound pressure
spectra at the four observer locations are plotted on Figure 63. It can be seen that the single peak
of each of the individual sound pressure spectra matches perfectly to the peak at the corresponding
gust mode frequency of the overall spectrum. Hence the AGI noise produced is linear. The ef-

fects of wavy leading edges are fully demonstrated and confirmed through multi-mode gust simulations.
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5.5 The Effects of the Alternative Gust

In this section, the alternative approach to prescribe the incident gust mentioned in Chapter 3.4 is

investigated. Based on equations (19) and (20) in Chapter 3.4, a single-mode gust defined by using

the alternative approach is given by

u, = A; cosQ + B;sin )

for i=1,2;

;L k1A + koA k1B + k2Bs\ .
ug=—| ———-"=)cosQ — | ———= | sin,
kg k3

with Q = (k1z+koy + ksz +wt), where k1 = ky = kg = 2m; w = —k1 Moo; Moo = 0.5; Ay = By = 0.005
and As = By = —0.004. For this test, four 3D NACA 0015 aerofoils with straight leading edges and
different spans: 0.05L, 0.2L, 0.5L and 1.0L are used. The resulting directivity patterns are plotted
in Figure 64. It can be seen from the results that the AGI noise level reduces as the simulated
span increases from 0.05L to 1.0L. When the simulated span is large, the spanwise variation in the
perturbed velocity is fully realised. Then the wavefronts of the perturbed velocity impinge upon the
leading edge at an angle on the x — z plane. With ks = 27, this angle is 45°. This inclination angle
between the perturbed velocity wavefronts and the leading edge leads to reduced interaction which

results in reduced AGI noise. The sound generated for the case with LEW = 1.0L is so much reduced

(in the order of 1071) that the shape of the directivity pattern is not preserved for this case.
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Figure 64: AGI noise due to a gust prescribed by the alternative approach and a st. LE

For comparison purpose, a test which uses the first approach (Eq. (25)) to prescribe the incident gust
is conducted. Two 3D NACA 0015 aerofoils with straight leading edges and spans of 0.05L and 1.0L
are used. The resulting directivity patterns are plotted in Figure 65. It is obvious that the two sets of

patterns are nearly identical. Hence the first approach to define the incident gust is more appropriate
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for the current research as the genuine effects of wavy leading edges can be studied. Examples of the

instantaneous contours of |u/|

of gusts due to the first and the alternative approaches are shown in

Figure 66, where the differences between these two types of incident gust can clearly be seen.
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Figure 66: Examples of instantaneous contours of |u/|

5.6 Concluding Remarks for 3D Aerofoil Simulations

The present computational results show that the ratio of the peak-to-peak amplitude of wavy leading
edges to the longitudinal wavelength of incident gusts, denoted by LEA/)\,, is the most important
factor to characterise the AGI-noise-reducing ability of wavy leading edges under the current type
of incident gust. The amount of noise reduction increases with LEA/A, and saturates at around
LEA/); = 1.0. It is found that the value of LEA/\, at around 0.3 leads to a significant reduction
of AGI noise up to 80% or more in a wide range of sound propagation angles. Also, it is conjectured
that there exists a strong similarity rule that any two different profiles of relative (normalised) noise

reduction (from different leading-edge geometries or incident gusts) match very well together when
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they have the same value of LEA/),. In the meantime, the effect of the ratio of the wavelength
of wavy leading edges to the longitudinal wavelength of incident gusts, denoted by LEW/\,, turns
out to be much less significant. This might be due to the fact that the current perturbed velocity
components do not vary in the spanwise direction, which results in weak interactions with the
spanwise-varying aspect of the wavy leading edges. Nevertheless, it seems that there is a meaningful
amount of extra noise reduction when 1.0 < LEW/A, < 1.5 outside which the effect diminishes. A

further study on the effects of LEW/\, will be required.

The AGI-noise-reducing mechanism of wavy leading edges has been investigated. It is found
that leading-edge waviness induces a de-synchronised gust response in span along the leading edge
of the aerofoil. This causes the local pressure fluctuations around the leading-edge area to disperse
over the retarded (or source) period of time. The dispersed pressure fluctuations at any spanwise
location on a wavy leading edge have smaller amplitudes and time derivatives compared to those at
the corresponding location on a straight leading edge. The attenuated level of pressure fluctuations
on the aerofoil surface is directly related to a reduced dipole sound according to a solution of the

FW-H equation.

Further tests on the AGI-noise-reducing capability of wavy leading edges have been carried
out. The test results demonstrate that the relative amount of noise reduction is well maintained
for various angles of attack and aerofoil thicknesses. Under the current gust, which has a 45° angle
between its wavefronts and the streamwise x-direction on the z — y plane, when the aerofoil thickness
increases beyond 3% chord, the symmetry of the sound directivity pattern about the line y = 0
will be destroyed. The effectiveness of wavy leading edges is also demonstrated through multi-mode
gust tests, which confirm that LEA/A, plays the major role in reducing the noise at a constituent
gust frequency. For a given leading-edge peak-to-peak amplitude (LEA), higher-frequency gust
components are more effectively attenuated since the value of LEA/), is larger. It has also been
shown that the first approach to define the incident gust (Eq. (25)) is more suitable than the
alternative approach for the current study. In the next chapter, which is the penultimate chapter
of the current thesis, the focus will be turned to the simulations of AGI noise for low aspect ratio

finite-span wings.
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6 Low Aspect Ratio Finite-span Wing Simulations

This chapter aims to show the capability of the current numerical methodology for applications
beyond 3D aerofoils. Low aspect ratio finite-span wings are studied. A single-mode incident gust
prescribed by using the first approach (Eq. (25)) is employed in this test. The details of the incident

gust are shown in Table 10. The freestream Mach number M, used is 0.5.

(ki=k | A | 4 [4=B ] =5

| or 1oz |os0] 0005 | -0.004 |

Table 10: The details of the incident gust

Since the current wings are symmetrical about the mid-span = — y plane. Each of them is more
like a wing floating in mid-air than an actual wind turbine blade, whose blade tip and root are of
different geometry. Significant saving in computational cost can be achieved by only simulating
the portion of the wing between the mid = — y plane of symmetry and one of the tips. No-
penetration condition is applied for the flow on each of the two spanwise = — y end-planes of the grid.

The parameters for the compact filters and the sponge zone are the same as in all the previous chapters.

6.1 Computational Grid

Wing Name || LEA | LEW | Tip Radius

Wavy LE 0.06L | 0.15L 0.5L
St. LE 0.00L | 0.15L 0.5L

Table 11: The geometric details of the two low aspect ratio finite-span wings

The current grid is generated by a Fortran90 code that utilises the grid generation method described
in Chapter 3.5. The dimensions of the domain on the x — y plane are the same as in all the previous
chapters. The main difficulty in the grid generation is the smooth transition between the main span
and the tip geometry. For the current grid, the wing tip has a simple semi-circular planform. The
cross-sections of the semi-circular tip region are not the same as the main span section. The main
span cross-section used for the two wings is the NACA 0005 aerofoil. The geometric details of the two
low aspect ratio finite-span wings used in the test are shown in Table 11. Two and a half LEW are
incorporated into the leading edge of the main span section of the wings. The wings are straight and
un-tapered. With the current grid generation method, the thickness of the wings changes smoothly
from the main span to the tip, and the shape of the edge of the tip is such that the transition from
the rounded leading edge to the sharp trailing edge occurs smoothly. The general geometry and
the shape of the tip edge of the wing with wavy leading edge are shown in Figures 67 and 68. An

example of the general block arrangement of the lower half of the grid is shown in Figure 69. The
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total number of grid points used for both grids is 23,960,020.

z

. {M ]

Figure 67: General geometry of the wing with wavy leading edge

11

Figure 68: Tip edge shape of the wing with wavy leading edge

6.2 Simulated Aerodynamic Features

I

98

For the computations concerning a low aspect ratio finite-span wing, the structure and the block

arrangement of the grid are very different to those of the simulations in the previous chapters for 3D
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Lower wing surface edi\o‘\

LE

Figure 69: Outline edges of the lower half of the computational grid

aerofoils. Therefore, before looking at the aeroacoustic results, the simulated aerodynamics need to
be analysed and compared to those reported in the literature. As reviewed before in Sections 2.5
and 2.6, the flow around a wavy leading edge has several characteristic aerodynamic features: first,
the flow velocity in the troughs is higher than that about the peaks on the upper surface of a wing
with wavy leading edge [14, 72]; second, because of the higher suction in the troughs, the pressure
coefficient in the troughs is lower than that on the peaks [20,80], about which the pressure coefficient
is similar to that of the corresponding wing with straight leading edge [20]. Figure 70 shows the
computed mean velocity magnitude contours on the top surfaces of the finite-span wings with and
without wavy leading edge. It can be seen that the mean velocity magnitude in the troughs is higher
than that about the peaks on the upper surface of the wing with wavy leading edge. This higher
top surface suction in the troughs is consistent with the observations reported in the literature. The
computed mean surface pressure contours for the two wings with and without wavy leading edge are
shown in Figure 71. The lower pressure in the troughs, as observed in many previous studies of wavy
leading edges and leading-edge tubercles, is clearly shown by the computed surface pressure contours.
These results show that the current code is able to simulate the aerodynamics about the finite-span
wing properly. Hence the data obtained from the simulations can be used for the aeroacoustic

analysis.
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Figure 70: The computed mean velocity magnitude contours on the top surfaces of the two wings
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Figure 71: The computed mean pressure contours on the top surfaces of the two wings
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6.3 Aeroacoustic Analysis

The Pyg directivity patterns at R = 4L on two x — y planes located along the main span are
computed for the two wings and presented in Figure 72. The locations of the two x — y planes
are shown in Figure 73. It can be seen from Figure 72 that the sound due to the two wings with
and without wavy leading edge are very similar. The wing with a wavy leading edge shows a very
small reduction of AGI noise. This insignificant reduction of AGI noise is due to the small value of

LEA/\g, which is 0.05 for this test.
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Figure 72: Pyg directivity patterns on two x — y planes

Figure 73: The two output  — y planes for the computation of Pyg shown in Figure 72
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By comparing the directivity patterns for the finite-span wing with a straight leading edge in
Figure 72 with that for a NACA 0005 3D aerofoil with a straight leading edge shown in Figure 44 of
Chapter 5.3, it can be observed that the magnitude of Pyg due to the finite-span wing is about 2.7
times smaller. The shapes of the directivity patterns for these two cases are similar. The similarity
can be explained by the use of the same aerofoil section. The differences are due to the presence of
the wing tip, which allows the sound energy to disperse away from the wing in the spanwise direction
and leads to a reduced sound level compared to the corresponding 3D aerofoil. The effects of the tip,
for example its proximity to the wavy leading edge and its planform shape, on AGI noise need to be

further investigated in the future.

Two iso-surfaces and the surface contours of Pgrys for the two wings with and without wavy
leading edge are shown in Figure 74 and 75 respectively. It can be seen that the Pryg distributions
of the two wings are very similar. This similarity has been shown by the Pyig directivity patterns in
Figure 72. Along the leading edges of the two wings, the level of Prygs is the highest. This shows
that for the finite-span wings tested, much of the noise is emitted from the leading edge region.
Figures 76 and 77 show planar slices of instantaneous pressure fluctuation contours for the wing with
wavy leading edge. Two x — y slices on the main span are shown in Figure 76. While in Figure 77,
three y — z slices are shown: one near the leading edge, one near the trailing edge and one slightly
aft of the wing. It is obvious from Figures 76 and 77 that the current numerical methodology is able
to provide a clean acoustic environment for the AGI noise to develop in all directions within the

physical computational domain.

Figure 74: Two iso-surfaces and surface contours of Prygs for the wavy LE wing
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Figure 76: Two = — y slices of instantaneous pressure fluctuation contours for the wavy LE wing



6 LOW ASPECT RATIO FINITE-SPAN WING SIMULATIONS 104

L ) Downstream

Figure 77: Three y — z slices of instantaneous pressure fluctuation contours for the wavy LE wing

A major difference to the 3D aerofoil cases for the simulation with a finite-span wing can be
seen in Figures 74 and 75: there is a long tail of higher Pgrygs strip, although not as high as
the Prms level along the leading edge, extending from the most distal end of the wing tip to
the downstream region. The sound produced along this long trailing strip is shown by the small

red dot on the y— z slice of instantaneous pressure fluctuation contour just aft of the wing in Figure 77.

6.4 Concluding Remarks for Finite-span Wings Simulations

The test results presented in this chapter show that the current numerical methodology can be applied
to a much more complicated grid structure without many modifications. The current methodology is
able to simulate the basic aerodynamics of the flow around a finite-span wing properly. The results
indicate that the leading edge region remains the main noise-producing area. With the presence of
the wing tip, sound energy is able to disperse away from the wing in the spanwise direction. This
leads to a reduced sound level compared to the corresponding 3D aerofoil. Hence the 3D aerofoil
simulations represent the acoustic condition far away from the tip, while the low aspect ratio finite-
span wing simulations demonstrate the condition very close to the tip. Although the test results for
the particular wavy leading edge geometry presented in this chapter do not show significant reduction
of AGI noise, it is important to note that the application of leading-edge waviness in close proximity
to the wing tip does not lead to an increased noise level. With a higher ratio of LEA/ )\, it is expected
that the wavy leading edge will be able to reduce the AGI noise more significantly. Nevertheless, the
capability and potential of the current methodology have been demonstrated clearly by the numerical

results presented in this chapter.
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7 Final Conclusions and Future Works

The current research employs an accurate and efficient numerical methodology to investigate the
AGI noise caused by the interaction of the leading edge with the incident gust. The high-order
discretisation methods used to solve the governing compressible Euler equations numerically have
been explained in details in the current thesis. The success of the current numerical methodology
relies on the ability of the current boundary conditions to provide a clean acoustic environment for
genuine AGI noise to develop. The current sponge zone boundary conditions are used to introduce the
incident gusts into the computational domain, and to minimise the non-physical characteristic wave
reflection at the domain boundaries. The current incident gusts are periodic, 3D and divergence-free.
Furthermore, the current grid generation method is able to create high-quality grids which are very
suitable for CAA applications. Therefore, the current numerical methodology is highly suitable for

the study of the effects of wavy leading edges on AGI noise.

Four validation studies for the current methodology have been presented in this thesis. The
first two validation cases involve 2D aerofoils. First, a benchmark problem regarding the acoustic
response of a Joukowski aerofoil under a simple periodic gust is chosen from the Third [55] and the
Fourth [56] CAA Workshops for comparison purposes. Then, the theoretical results proposed by
Myers and Kerschen [24] on AGI noise are compared with the current numerical results. The last two
validation cases involve 3D aerofoils. First, the computed total lift coefficients C';, at small angles of
attack (—1° < alpha <3°) for a 3D NACA 0015 aerofoil are compared to those measured by Sheldahl
and Klimas [95] experimentally. The effects of different incident flows and different wavy leading-edge
geometries on the computed C, have also been investigated. The second 3D aerofoil validation study
employs qualitative comparisons of the computed 3D aerofoil surface mean pressure and velocity
distributions with the mean aerodynamic features reported in the literature for wavy leading edges.
The results of these four validation studies show that the current methodology is accurate, efficient
and robust. Hence it can be used with confidence for the investigation of the effects of wavy leading

edges on AGI noise.

For 3D aerofoils under the current type of incident gust defined using the first approach (Eq. (25)),
the present computational results show that the ratio of the peak-to-peak amplitude of wavy leading
edges to the longitudinal wavelength of incident gusts, denoted by LEA/)\,, is the most important
factor to characterise the AGI-noise-reducing ability of wavy leading edges. The amount of noise
reduction increases with LEA/)\, and saturates at around LEA/X, = 1.0. It is found that the
value of LEA/), at around 0.3 leads to a significant reduction of AGI noise up to 80% or more in
a wide range of sound propagation angles. Also, the current results from simulations with different
leading-edge geometries and incident gusts support a strong similarity rule that any two different
profiles of relative (normalised) noise reduction match very well together when they have the same
value of LEA/),. The effect of the ratio of the wavelength of wavy leading edges to the longitudinal
wavelength of incident gusts, denoted by LEW/)\,, turns out to be much less significant. This might
be due to the fact that the current perturbed velocity components do not vary in the spanwise (z-)

direction, which results in weak interactions with the spanwise-varying aspect of the wavy leading
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edges. Nevertheless, it seems that there is a meaningful amount of extra noise reduction when
1.0 LEW/A,; < 1.5 outside which the effect diminishes. A further study on the effects of LEW/ A,

will be required.

The AGI-noise-reducing mechanism of wavy leading edges has been investigated. It is found
that leading-edge waviness induces a de-synchronised gust response in span along the leading edge
of the aerofoil. This causes the local pressure fluctuations around the leading-edge area to disperse
over the retarded (or source) period of time. The dispersed pressure fluctuations at any spanwise
location on a wavy leading edge have smaller amplitudes and time derivatives compared to those at
the corresponding location on a straight leading edge. The attenuated level of pressure fluctuations
on the aerofoil surface is directly related to a reduced dipole sound according to a solution of the

FW-H equation.

Further tests on the AGI-noise-reducing capability of wavy leading edges have been carried
out. It is found that for various angles of attack and aerofoil thicknesses, the relative amount of
noise reduction due to wavy leading edges is well maintained. Under the current gust, which has
a 45° angle between its wavefronts and the streamwise z-direction on the z — y plane, when the
aerofoil thickness increases beyond 3% chord, the symmetry of the sound directivity pattern about
the line y = 0 will be destroyed. The effectiveness of wavy leading edges is also demonstrated
through multi-mode gust tests, which confirm that LEA/\; plays the major role in reducing the
noise at a constituent gust frequency. For a given leading-edge peak-to-peak amplitude (LEA),
higher-frequency gust components are more effectively attenuated since the value of LEA/), is
larger. It has also been shown that the first approach to define the incident gust (Eq. (25)) is more

suitable than the alternative approach for the current study.

Finally, the capability of the current methodology to simulate the AGI noise due to a low as-
pect ratio finite-span wing has been demonstrated. The current methodology is able to simulate the
basic aerodynamics of the flow around the finite-span wing properly. The main aim of the low aspect
ratio finite-span wing simulations presented is to demonstrate the effect of leading edge waviness very
close to the tip. Although significant AGI noise reduction is not observed for the particular wavy
leading edge geometry tested, it is expected that a more significant reduction will be brought about

by the use of a wavy leading edge with a larger value of LEA/),.

The robustness of the current numerical methodology is also shown by the fact that for all
the validations and tests presented in the this thesis, the same filter and sponge zone parameters have
been used throughout. Hence the current numerical recipe can be used without many modifications

for a wide range of problems. The principal findings of the current research are as follows

e under the current gust defined by the first approach (Eq. (25)), the ratio of the peak-to peak
amplitude of the wavy leading edge to the longitudinal wavelength of the incident gust, denoted
by LEA/)\,, is the most important factor in reducing AGI noise;
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o the amount of noise reduction increases with LEA/), and saturates at around LEA/\, = 1.0;

o LEA/)A; > 0.3 leads to a significant AGI noise reduction of more than 80% relative to the straight

leading edge case in a wide range of sound propagation angles;

e similarity in the profiles of relative (normalised) noise reduction for cases which have the same

value of LEA/), has been identified;

e under the current gust, the effect of the ratio of the wavelength of the wavy leading edge to the
longitudinal wavelength of the incident gust, denoted by LEW/\, is much less significant than
LEA/)g;

e a meaningful amount of extra noise reduction when 1.0 < LEW/ Ag < 1.5 is observed;

e the de-synchronised gust response in span along a wavy leading edge leads to a reduced level of
both pressure fluctuation and its time derivative, which causes a reduction in the resulting AGI

noise level;

e for the various angles of attack and aerofoil thicknesses tested, the relative amount of noise

reduction due to wavy leading edges is well maintained;

e the multi-mode gust tests confirm that LEA/A, plays the major role in reducing the noise at a

constituent gust frequency;

e the close proximity of the wavy leading edge to a wing tip does not lead to higher AGI noise

level.

7.1 Future Works

The accuracy, efficient and robustness of the current numerical methodology for the study of AGI
noise have been shown. Hence, it is envisaged that with a few modifications, the current methodology
can be used for studies that are more directly relevant to wind turbine noise research. For example,
the AGI noise emitted due to the interaction of a rotating wind turbine blade with the atmospheric
wind gust, or the unsteady flow aft of a number of upstream wind turbines in a wind farm. For
these simulations, a more sophisticated atmospheric wind gust model and a more complicated grid
are required. The effects of multi-scale leading edge waviness, which employs more than one set of
LEA and LEW in a certain combination, on AGI noise can also be investigated. For a rotating
wind turbine blade, due to the variation of the linear velocity along the span, the optimal values of
LEA and LEW at different spanwise locations are different. Hence multi-scale leading edge waviness

represents an interesting future research topic.
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