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ABSTRACT
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A NUMERICAL STUDY OF IMPULSIVELY GENERATED VORTICES
BETWEEN NON-DEFORMABLE STRESS-FREE LAYERS

by Watchapon Rojanaratanangkule

A wake behind an unsteady moving submerged vehicle is of interest and impor-
tance in a broad variety of engineering disciplines, ranging from underwater to
aecronautical engineering. When the vehicle changes its speed or direction, un-
der certain conditions, it can lead to the appearance of a coherent kilometre-scale
quasi-planar counter-rotating vortical structure which persists for the order of
days. The aims of this work are to determine the conditions under which such a
large coherent vortex can appear and to obtain deeper understanding of its dy-
namics by investigating the evolution of a turbulent patch created by either an
impulsively accelerating axisymmetric self-propelled body or an impulsive jet in

the small-scale upper ocean via direct numerical simulation.

A non-conservative body force is applied to the governing equations to rep-
resent an impulsive jet, while an accelerating motion of a self-propelled body is
emulated by the combination of an immersed boundary method and the body
force. Criteria for the occurrence of a vortex dipole are found to depend on a
dimensionless parameter, called the confinement number. Once the confinement
number is higher than about unity, the vertical growth of an impulsively gener-
ated turbulent patch is restricted by the top and bottom layers of the upper ocean
leading to the formation of a vortex dipole at the free surface. The contrast and
strength of a surface signature increase linearly with increasing confinement num-
ber. The late-time dynamical structures, i.e. the propagation velocity, size and the
decay rate of maximum vorticity, of the dipolar eddy induced by the presence of
vertical confinement can be predicted by scaling laws relevant to a stratified fluid,

even though the dipole possesses a Reynolds-number dependence.


http://www.soton.ac.uk
http://www.southampton.ac.uk/engineering
http://www.southampton.ac.uk/engineering/research/groups/afm.page
http://www.personal.soton.ac.uk/wr1e09
mailto:wr1e09@soton.ac.uk




Contents

Abstract

Contents

List of Figures

List of Tables

Declaration of Authorship
Acknowledgements
Nomenclature

1 Introduction
1.1 Motivation . . . . . . ...
1.2 Characteristics of a Vortex Dipole . . . . . . . . .. ... ... ...
1.3 Interaction of Momentum Sources with a Free Surface . . . . . . . .
1.4 Vortical Structures Generated by Body Forces . . . . . .. ... ..
1.5 Objectives and Thesis Outline . . . . .. ... ... ... ... ...

2 Governing Equations and Numerical Method
2.1 Governing Equations . . . . . .. ... oo oL
2.2 Spatial and Temporal Discretisation . . . . . . . .. ... ... ...
2.3 Numerical Procedure . . . . . . . ... ... 0oL
2.4 Immersed Boundary Method . . . . . . .. .. ... ...
2.5 Boundary Conditions . . . . . . .. .. ... L0
2.6 Emulation of an Accelerating Self-Propelled Body . . . . . . . . ..
2.7 Domain Resizing . . . . . . . ... oo o
2.8 Moving Reference Frame Attached to a Vortex . . . . . . . . .. ..

3 Validation for Generating a Virtual Body and Numerical Strategies
3.1 Generate a Virtual Body using Single and Doublet Forces . . . . . .
3.1.1  Asymptotic Solutions . . . . . . . ... oL
3.1.2  Numerical Approach . . . . ... ... ... ... . .....
3.1.3 2D Finite-Momentum Wakes Generated by a Single Force .
3.1.4 2D Zero-Momentum Wakes behind a Force Doublet . . . . .
3.2 Generate a Virtual Body using Immersed Boundary Method . . . .

iii

iii

ix

xi

xiii

XV

13
13
14
16
16
20
21
21
23

25
25
26
29
30
33
36



Contents v

3.2.1 Proportional-Integral Feedback . . . . ... .. ... .. .. 37
3.2.2 Proportional Feedback . . . . . ... ... ... ... .. .. 39
3.3 Validation of Domain Resizing . . . . . . . .. ... ... ... ... 45
3.4 Validation of Moving Reference Frame Attached to a Vortex . . . . 47
3.5 Chapter Summary . . . . . . . . ... 48

4 Evolution of Impulsively Generated Turbulent Patches: I. Self-Similar
Dipole 51
4.1 Mathematical Background . . . . . . . . ... ... L. 51
4.2 Results. . . . . . . 52
4.2.1 Jet-Induced Dipole . . . . . . . .. ... ... 54
4.2.2  Manoeuvring-Body Wake . . . . . .. ... ... ... 61
4.2.2.1 Early-Time Behaviour . . . . ... ... ... ... 62
4.2.2.2 Late-Time Behaviour . . . . . ... ... ... ... 65
4.3 Chapter Summary . . . . . . . .. . ... 71

5 Evolution of Impulsively Generated Turbulent Patches: I1. Effect of Con-
finement Number 73
5.1 Physical Meaning of the Confinement Number . . . . . . . . .. .. 73
5.2 Numerical Approach . . . . . . ... ... oL 76
5.3 Simulation Parameters . . . . . .. .. ..o 78
54 Results . . . . . ..o 79
5.4.1 Resolution Check . . . . . .. ... .. ... ... 80
5.4.2 Early-Time Characteristics and Breakdown to Turbulence . 81
5.4.3 Effect of Confinement Number on the Turbulent Patch . . . 86
5.5 Chapter Summary . . . . . .. .. ..o 98
6 Concluding Remarks 99
6.1 Conclusions . . . . . . . ... 99
6.2 Recommendations for Future Work . . . . ... .. ... ... ... 101
References 103

Appendix A Reprint of Published Article 111



List of Figures

1.1
1.2

2.1
2.2

2.3
2.4

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18

Schematic of a dipole vortex. . . . . . . . . . . ... ... ... ..
The evolution of a turbulent patch created by an impulsive jet in a
linearly stratified fluid. . . . . . . . . .. ...

Schematic of geometry of a manoeuvring-body wake. . . . . . . ..
Schematic of computational domain for an impulsively generated

turbulent patch. . . . . ... .o
Schematic of the immersed boundary method. . . . . . . . ... ..
Schematic of domain resizing. . . . . . .. ... ... oL

Schematic of geometry of a 2D momentumless wake. . . . . . . . . .
Contours of vorticity of 2D finite-momentum wake. . . . . .. . ..
Distribution of the streamwise velocity deficit along its axis of a 2D
finite-momentum wake. . . ... ..o
Strouhal number versus II, of a 2D finite-momentum wake. . . . . .
Contours of vorticity of 2D momentumless wake. . . . . . . . . . ..
Distribution of the streamwise velocity deficit along its axis of a 2D
zero-momentum wake. . .. ... oL
Strouhal number versus 11, of a 2D zero-momentum wake. . . . . .
Evolution of vortical structure of flow past a sphere at Re, = 300. .
Contours of the streamwise velocity at Re, = 300 from the simula-
tion using the PI feedback. . . . . . . . ... .. ... ... ... ..
Histories of the cylindrical velocity components from the simulation
using the PI feedback. . . . . . . ... ... ... 0.
Contour of the streamwise velocity at Re, = 300 of the simulation
using the P feedback. . . . . . . .. ...
Histories of the cylindrical velocity components from the simulation
using the P feedback. . . . . . . .. ... ...
(a) History of the azimuthal velocity at late time and (b) its power
spectrum. . . ..o
Histories of (a) Cp and (b) Cp. . . . ... ... ... ... ... ..
Time-averaged streamwise velocity u, along its axis. . . . . . . . ..
Vortex street behind sphere at Re, =300. . . . ... ... .....
Contours of w, at the free surface from (left) Case JS3a and (right)
Case JS3aDR. . . . . . . ..

Comparison of dipole characteristics between Case JS3a and Case

4



List of Figures vi
3.19 Contours of w, at the free surface from (a) Case JS3a and (b) Case
JS3aMF (co-moving reference frame). . . . . ... ... L. A7
3.20 Comparison of dipole characteristics between Case JS3a and Case
JS3aMF (co-moving reference frame). . . . . . ... ... 48
4.1 History of rate of change of volume-integrated kinetic energy dK /dt
for Case JD. . . . . . . .o 55
4.2 Vortical structure in deep and shallow layers at Re; = 2000. 56
4.3 Histories of the lateral and vertical vortex sizes for impulsive-jet
flow in (a) a deep layer (Case JD) and (b) a shallow layer (Case JS1). 57
4.4 History of the volume-integrated kinetic energy K. . . . .. .. .. 58
4.5 Contours of vorticity at the free surface showing the jet signature
at Re; =2000. . . ..o 59
4.6 Histories of characteristics of jet-induced dipole. . . . . . . . .. .. 60
4.7 History of rate of change of volume-integrated kinetic energy dK /dt
for Case JS3F. . . . . . . .. 61
4.8 Histories of characteristics of jet-induced dipole at Re; = 1250 from
four different realisations. . . . . . . . . ... ... 62
4.9 (a) Histories of the momentum flux, thrust, drag and speed of
the body for manoeuvring-body wake. (b) History of the volume-
integrated streamwise momentum flux. . . . ... ..o 63
4.10 Vortical structure of a manoeuvring-body wake. . . . . . . . .. .. 64
4.11 The projected vortical structure with the window function at ¢ = 20. 66
4.12 The evolution of the vortical structure generated by the manoeu-
vring body at late time. . . . . ... ..o 67
4.13 Contours of vertical vorticity at the free surface showing the pene-
tration of a wake signature of a manoeuvring self-propelled body. 68
4.14 Histories of characteristics of dipole induced by manoeuvring body. 69
4.15 Histories of maximum vertical vorticity at the free surface. . . . . . 70
5.1 Schematic of side view of (left) a conical turbulent jet at ¢t = Aty,
and (right) a round turbulent patch at ¢ > Aty . . . .. . ... .. 74
5.2 Schematic of computational domain for a disk-like body force. 75
5.3 (a) Time evolution of the body force. (b) Distribution of the body
force in axial () and radial (r) directions. . . . . . ... ... ... 76
5.4 History of rate of change of volume-integrated kinetic energy d K /dt
for Case C1p0. . . . . . . . . 80
5.5 Isosurfaces of () showing the evolution of the momentum patch
during the forcing duration for Case C1p0. . . . . . . . . . ... .. 81
5.6 Side view of contours of w, at the centreline (y = 0) during the
forcing duration for Case C1p0. . . . . . . . ... .. .. ... ... 82
5.7 Azimuthal modal energies for Case C1p0 at selected times. . . . . . 83
5.8 Evolution of selected azimuthal modal energies for Case C1p0. . . . 84
5.9 Top view of isosurfaces of (), coloured by w,, showing the develop-
ment of the turbulent patch. . . . . .. .. ... ... ... 87
5.10 Histories of the ratio of the lateral to the vertical sizes (¢,/¢,). . . . 88



List of Figures vii
5.11 Histories of (a) size of the patch d; and (b) non-dimensional size §}. 89
5.12 Contours of w, at the free surface showing the penetration of the

signature. . . ... ... Lo 90
5.13 Decay of maximum value of non-dimensional vertical vorticity w}

at the free surface. . . . . . .. ..o 91
5.14 Surface signature contrast versus the confinement number. . . . . . 92
5.15 Maximum value of w} .. (¢) versus the confinement number C. . . . 93
5.16 (a) Effect of low-pass filters on the evolution of the maximum value

of the vertical vorticity of Case C2p0. (b) History of the maximum

amplitude of the filtered vertical vorticity compared with the data

in a range of C' from Voropayev et al.’s (2007) PIV measurements. . 95
5.17 Contour of (filtered) vertical vorticity w, at the free surface at C' = 2.0. 95
5.18 Histories of non-dimensional eddy strength at the free surface. 96
5.19 Peak value of the non-dimensional surface signature strength versus

the confinement number. . . . . . .. ..o 97






List of Tables

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

Run parameters for a 2D finite-momentum wake. . . . . . . . . .. 30
Run parameters for a 2D zero-momentum wake. . . . . . . . . . .. 33
Comparison of time-averaged values of Cp, C, and St at Re, = 300. 42
Relative error between the values of Cp, Cp and St. . . . . .. .. 42
Impulsive-jet-induced wake run parameters. . . . . .. . ... ... 53
Valuesof A. . . . . . . . . . 70
Run parameters. . . . . . . . ..o 79
Growth rates «,, of selected azimuthal modes together with the

viscous predicted growth rate ag, applied to the leading ring. . . . . 85

1X






Declaration of Authorship

I, Watchapon Rojanaratanangkule, declare that the thesis entitled “A Numeri-

cal Study of Impulsively Generated Vortices between Non-Deformable Stress-Free

Layers” and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

Signed:

Date:

this work was done wholly or mainly while in candidature for a research

degree at this University;

where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has

been clearly stated;

where I have consulted the published work of others, this is always clearly
attributed;

where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;
I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed

myself;
parts of this work have been published as:

— ROJANARATANANGKULE, W., THOMAS, T. G. & COLEMAN, G. N.
2011 Numerical study of turbulent manoeuvring-body wakes: Interac-

tion with a free surface. In 7th International Symposium on Turbulence
and Shear Flow Phenomena (TSFP-7). Ottawa, Canada.

— ROJANARATANANGKULE, W., THOMAS, T. G. & CoOLEMAN, G. N.
2012 Numerical study of turbulent manoeuvring-body wakes: Interac-
tion with a non-deformable free surface. J. Turbul. 13 (N17), 1-22.

— ROJANARATANANGKULE, W., THOMAS, T. G. & COLEMAN, G. N.
A numerical investigation of impulsively generated vortical structures

in deep and shallow fluid layers, In preparation.

x1


http://www.personal.soton.ac.uk/wr1e09
mailto:wr1e09@soton.ac.uk




Acknowledgements

First and foremost, I wish to express my sincerest thanks to my thesis supervisors,
Professor Gary Coleman and Dr Glyn Thomas, for their invaluable guidance, help
and support through the years. Their expertise in theoretical and computational
fluid dynamics has improved my own understanding in the fields. In particular,
I would like to thank Gary for giving me an opportunity to do a PhD under his
supervision. Gary has always been available for consultation and has continually
been the source of inspiration and enthusiasm. I would like to thank Glyn par-
ticularly for his time, patience and ability to answer and explain my questions no

matter how obscure or obvious the questions are.

I would like to gratefully acknowledge Professor Sergey Voropayev of Univer-
sity of Notre Dame, who visited Southampton during the second year of my study,
for his careful reading of my journal manuscript and many helpful suggestions. I
would also like to thank him for sharing his amazing knowledge and experience of

vortical flows.

This work was made possible by the benefit from the UK Engineering and
Physical Sciences Research Council (EPSRC) under grant EP/G05035X, as part
of the UK Turbulence Consortium (EP/G069581/1), who provided not only the
financial support but also the computational time on the HECToR facilities, the
UK’s national high-performance computing service. I am grateful to the University

of Southampton for the access to its high-performance computer, Iridis 3.

Plenty of thanks to my fellow students of vortex dynamics, Shankar Bal-
akrishnan and Daniel Mulvaney. Many timely discussions with them were very
enlightening. My office mates Alex Lau and Brian Gruncell were a constant source
of humour during the long hours I spent in the office. Special thanks to all friends
who made my stay in Southampton more enjoyable, especially Yusik Kim, Patrick

Bechlars, Khemapat Tontiwattanakul and Woraluck Wongse-EXk.

Finally, I would like to express my heartfelt gratitude to my parents for their
continuous love, support and encouragement throughout the entire period of my

study, and to my brother and sister who always stand beside me.

Watchapon Rojanaratanangkule
University of Southampton
May 2013

xiii


http://www.personal.soton.ac.uk/wr1e09
mailto:wr1e09@soton.ac.uk
http://www.soton.ac.uk




Nomenclature

Roman Symbols

A empirical constant for the decay rate of vertical vorticity
B boundary force vector, B = (B,, By, B,)

C confinement number, C' = J/2At;/h?

Ch drag coefficient

Cr lateral force coefficient

Cn contrast number

D, diameter of the body

E, azimuthal modal energies

fi external body force

Fy net volume-integrated kinetic energy flux
Fy net volume-integrated momentum flux

Fn formation number, Fn = At;J'Y? /2 R?r!/?
fs shedding frequency

fuw window function

G low-pass filter in Fourier space

h depth of the fluid domain

I impulse vector, I = (I,, 1, 1.)

T linear interpolation operator

J 3D forcing intensity (force per unit volume)

XV



Nomenclature xvi

J 2D forcing intensity (force per unit area)

K volume-integrated kinetic energy

ly lateral length of vortical structure

l, vertical length of vortical structure

L, L, L, domain lengths in the z, y and z-directions

L reference length scale

Mg sum of the actual and added/virtual mass

n modal number

Nz, Ny, N, number of grid cells in the x, y and z-directions

P pressure

PE Pyi, Pt boundaries of the domain in the +x, +y and +z-directions

Q second invariant of the velocity gradient tensor, @ = —3 (u; ju;,;)

R radius of the disk-like body force

r radial coordinate

Ty /2 jet/wake half-width

Rey, Reynolds number based on the terminal/free-stream velocity and
the diameter of the body, Re, = Uy, Dy/v = Uso Dy /v

Re; Reynolds number based on the forcing intensity, Re; = J 12y

Reyef reference Reynolds number, Re,os = UL /v

Sij rate of strain tensor, S;; = (u;; + u;;)/2

St Strouhal number

t time

T thrust force vector, T = (7,0, 0)

U, U, W Cartesian velocity components in the x, y and z-directions

U, Uy, Ug cylindrical velocity components in the x, r and #-directions



Nomenclature

XVil

Us, 1

Lys

Xa

Greek Symbols

o
By
)

dd

On

mean velocity components in the x, y and z-directions
fluctuating velocity components in the x, y and z-directions
provisional velocity

velocity deficit

velocity vector at virtual body surface, tys = (Uys, Vys, Wys)
velocity of the body

terminal velocity of the body

dipole propagation velocity vector, U, = (Uy, Vg, Wy)
time-dependent reference-frame speed (i.e. uniform inflow veloc-
ity)

free-stream velocity

reference velocity scale

desired velocity vector at virtual body surface

Cartesian coordinates in streamwise, lateral and vertical direc-

tions

cylindrical coordinates in streamwise, radial and azimuthal di-

rections
vector location of virtual body surface, @ys = (s, Yvs, 2vs)

dipole centroid vector, X4 = (Xg, Yy, Zq)

growth rate of azimuthal modes
proportional gain of the feedback forcing
boundary-layer thickness

dipole size

three-dimensional discrete delta function



Nomenclature

XViil

€K

Ke

Subscripts
b

Cr

def

i,k

volume-integrated rate of kinetic energy dissipation
wavenumber

filter cutoff wavenumber

kinematic viscosity

vorticity vector, w = (wy, wy, w,)

vector stream function, ¢ = (¢, 1y, 1.)
density

Gaussian semi-width

azimuthal coordinate

integral gain of the feedback forcing
perturbation amplitude

time step

forcing duration

circulation

strength of surface eddy signature
volume-integrated enstrophy

rate of rotation tensor, ;; = (u;; — u;;)/2

body

critical number
dipole

velocity deficit
drag

tensor indices



Nomenclature

XIX

jet
max

rms

VS

Other Symbols
\Y%

V-

Acronyms
2D

3D

CFL

DNS

FFT

IB

LES

LHS

MPI

jet

maximum value
root-mean-square value
thrust

virtual body surface

gradient operator

divergence operator

curl operator

Laplace operator

mean quantity

magnitude

quantity normalised by J and Aty

quantity in Fourier space

two-Dimensional
three-Dimensional
Courant—Friedrichs-Lewy number
Direct Numerical Simulation
Fast Fourier Transform
Immersed Boundary

Large Eddy Simulation
Left-Hand Side

Message Passing Interface



Nomenclature

XX

PID

PIV

RHS

TDMA

Proportional-Integral-Derivative controller
Particle Image Velocimetry
Right-Hand Side

Tridiagonal Matrix Algorithm



Chapter 1

Introduction

1.1 Motivation

Large-scale vortical structures have been a fascinating problem for engineers and
physicists since they are the basic features of many turbulent flows. Some well-
known examples of coherent structures found in engineering and nature are a chain
of vortex rings behind an aircraft (Crow, 1970), a kilometre-scale Kérmén vortex
street downstream of an island (Cahalan et al., 2001), and a mushroom-like vortex
of an atomic bomb (Sigurdson, 1991). These organised vortical structures appear
due to the momentum being transported into a fluid. Depending on the type
of localised momentum sources (e.g. continuous or impulsive) and backgrounds,
different formation and dynamics of coherent structures can be obtained. In this
work, we focus on a large-scale turbulent vortical structure generated by a sudden
horizontal acceleration of a self-propelled body in the upper ocean. This accelerat-
ing motion is frequently idealised as a finite-duration momentum source (impulsive
jet) in experiments due to the simplicity of controlling the forcing intensity and

forcing duration.

Even though both experimental and numerical studies of turbulent wakes be-
hind bluff bodies have received much attention by many researchers in order to gain
better understanding of their dynamics, almost all of the studies have focused on
wakes behind towed or self-propelled objects moving at constant velocity. Only few
studies were concerned with the physics of turbulent wakes behind manoeuvring
self-propelled bodies (e.g. Voropayev et al., 1999, 2007). The constant-velocity
wakes can be classified into two categories based on the momentum of the flow:
(i) finite-momentum, and (ii) momentumless wakes. A finite-momentum wake oc-
curs behind a towed body that imparts momentum, equal to the drag of the body,
to the wake. On the other hand, a zero-momentum wake can be observed behind

a self-propelled body moving at constant velocity. A self-propelled body has to

1



1. Introduction 2

provide enough momentum (thrust) through its jet engine/propeller to balance
its drag in order to move, such that no net momentum is produced to the wake.
Moreover, a self-propelled wake decays much more rapidly compared with a towed
wake (Brucker & Sarkar, 2010).

A wake behind a manoeuvring body can contain the characteristics of both
finite- and zero-momentum wakes at the same time. In practice, a submerged
vehicle (aircraft or submarine) leaves a finite-momentum wake when it accelerates
or changes direction, and a momentumless wake only when it moves at constant
speed (Tennekes & Lumley, 1972). A manoeuvring-body wake is of interest be-
cause it can introduce dynamics that are absent from the constant-velocity case,
especially when the wake is influenced by stable stratification or by the presence of
an adjacent free surface. For example, dipolar vortices produced by the interaction
of manoeuvring-body wakes with either stable background density stratification
or a free surface can be observed in geophysical flows (e.g. Ahlnés et al., 1987;
Sous et al., 2004; Voropayev et al., 1999, 2007). The practical importance of dipo-
lar vortices is that they are very large, compared with the size of the body, and
long-lived. Voropayev et al. (1999) estimate that a coherent kilometre-scale vorti-
cal structure that persists for the order of days can be observed behind a typical
submarine manoeuvre in the ocean. Moreover, due to the self-induced motion of
the dipole vortex, it can transport mass, momentum and other scalar properties

such as heat and salinity.

1.2 Characteristics of a Vortex Dipole

In the past two decades, a lot of meso- and synoptic-scale (i.e. with horizontal scale
10 — 100 and of O(1000) km) vortical structures, called mushroom-like currents
(dipole vortices), have been observed from the satellite images of the atmosphere
and the ocean surface (e.g. Fedorov & Ginsburg, 1989). For example, seventeen
dipole vortices were determined in the Alaska Coastal Current by Ahlnas et al.
(1987). The main characteristics of a dipolar vortex are that it consists of two
closely packed counter-rotating vortices (see Figure 1.1), and that its horizontal
length is much larger than the vertical scale due to the vertical motion of a dipole
being suppressed by a vertical force. Due to the latter reason, a vortex dipole is

usually considered as a quasi-two-dimensional coherent structure.

The formation and evolution of vortex dipoles have been widely studied in a

linearly stratified fluid, in which the vertical growth of a dipole is confined by the
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FIGURE 1.1: Schematic of a dipole vortex.

buoyancy force (e.g. van Heijst & Flér, 1989; Voropayev et al., 1991; Flér & van
Heijst, 1994). In those experiments, vortex dipoles were generated by injecting mo-
mentum into a fluid via an impulsive jet. Generally, when momentum is imparted
into a flow, it leads to an isolated region which possesses a high concentration
of vorticity and non-zero net linear momentum, often referred to as a turbulent
patch (or turbulent blob). The evolution of the patch in a linearly stratified fluid
is illustrated in Figure 1.2. It can be seen that, initially, the turbulent patch is
fully three-dimensional (Figure 1.2a). At this stage, the patch does not feel the
stratification. While the patch is propagating away from its origin, its vertical
and horizontal sizes increase due to the entrainment process of the surrounding
fluid as in an unbounded homogeneous fluid, where the patch can transform into
a toroidal vortical structure (Maxworthy, 1977). When the kinetic energy of the
patch balances the potential energy, it starts feeling the effect of stratification.
Hence, the vertical growth of the patch is rapidly suppressed by the buoyancy
force (Figure 1.2b). In contrast, its horizontal size is still able to expand contin-
uously due to lateral entrainment, which leads to a quasi-planar counter-rotating
dipole vortex-structure (Figures 1.2b — 1.2f). Once the formation of the dipole is
complete, the dipole still translates along a straight line while preserving its shape

because its net linear momentum is being conserved.

During the collapse of the turbulent patch, internal waves were also observed
in some experiments. Even though the internal waves can cause the energy to
radiate away from the centre of the collapse region, they decay very quickly and
are believed to play no significant role in the subsequent evolution of a dipole
(Voropayev et al., 1991; Flér & van Heijst, 1994).

The characteristics of a vortex dipole were compared with a theoretical Lamb—
Chaplygin dipole (Flér & van Heijst, 1994). It was found that a laminar-jet-

induced dipole exhibits a linear relationship between the vorticity (w) and the
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FI1GURE 1.2: The evolution of a turbulent patch created by an impulsive jet
in a linearly stratified fluid from Flér & van Heijst (1994). Each photograph
displays side and top views (upper and lower part of the picture) of the flow.
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stream function (1)), whereas the (w,1)-relationship of a dipole generated by a
turbulent jet can be described by a sinh-like profile. In spite of the nonlinear (w, 1)-
relationship, the dynamical structures (i.e. size, position of maximum vorticity,
cross-sectional distributions of velocity and vorticity, and translation speed) of
both laminar- and turbulent-jet-induced dipoles are in good agreement with a

theoretical Lamb—Chaplygin dipole.

In order to investigate the decay of a dipole, Flér & van Heijst (1994) defined
the horizontal Reynolds number Re, = Uyd4/v, based on the dipole translation
velocity Uy and the dipole size d; (which was defined as the maximum horizon-
tal size of the dyed fluid in the literature), and the vertical Reynolds number
Re, = UjH,/v (where H, is the dipole thickness). Soon after the dipole forma-
tion is complete, the values of these Reynolds numbers were initially Re;, = 1000
and Re, = 300 and then decreased to Rep, = O (100) and Re, = O (10) while
the dipole was propagating along a straight line. This suggests that the vertical
diffusion of vorticity and the horizontal entrainment of the surrounding fluid are
the most important factors in the decay of a dipolar vortex because both phys-
ical phenomena increase the size of a dipole, whilst its translation velocity has
to decrease to conserve the momentum. Flér et al. (1995) extended this study
by comparing their experimental results with two simple theoretical models based
on a viscous decaying Lamb—Chaplygin vortex. The difference between these two
theoretical models is that the thickness and radius of a dipole were assumed to be
constant in the first model, whilst the growth in a dipole thickness was considered
in the second model. The comparisons between the experimental results and both
models showed reasonable agreement although both models neglect the effect of
horizontal entrainment and the decay is modelled only by the vertical diffusion of
vorticity. Flor et al. (1995) concluded that slightly better results would be achieved
by adding the effect of horizontal entrainment and that the most dominant factor
for the decay of a planar dipolar vortical structure is the diffusion of the vertical

vorticity.

The self-similarity of a dipolar vortex was experimentally studied by Voro-
payev et al. (1991, 2008). Using dimensional analysis with the assumption that
the impulse per unit dipole thickness P = I/Hy is conserved, the propagation
velocity U, and size d4 of a dipole induced by an impulsive jet can be written in
terms of t and P as Uy ~ PY3t2/3 and 6, ~ PY3t'/3. It was noted by Voro-
payev et al. (2008) that these estimated power laws would be changed within only
+10%, when a change in a dipole thickness is about 2 times. The evolution of the

vertical vorticity can also be approximated using the same arguments. It is found
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that the maximum magnitude of the vertical vorticity w. max is independent of P
and decays only with time as w, ma, = At™!, where A is an empirical constant.
Voropayev et al. (2008) determined the constant A by performing experiments
in a linearly stratified fluid with a range of impulse and found that w, max from
different I collapsed well with A = 17.

van Heijst & Flor (1989) performed experiments on colliding vortex dipoles
in a stratified fluid in order to study the mass transfer between the vortex dipoles
during their mutual interactions. In the first experiment both dipoles were set
to have the same size and strength, whereas these characteristics were slightly
different in the second experiment. After the dipoles collide with each other, it was
observed that the dipoles exchange partners without any mass transfer between

the dipoles for both cases.

The effect of background vertical shear on a dipole vortex was experimentally
studied by Voropayev et al. (2001). Continuous and impulsive body forces were
used to create a dipole vortex in a linearly stratified fluid. It was found that if
the value of the background vertical shear is higher than the inverse of the forcing
duration for the case of impulsive forcing or higher than the inverse of the time
when the flow starts feeling the stratification for the case of continuous forcing,
the dipole vortex does not form. Moreover, the lifetime of the formed dipole is

shorten by the background vertical shear.

In general, it is not only the buoyancy force in a stratified fluid that can
suppress the vertical motion of a turbulent patch and transform it into a quasi-
two-dimensional vortical structure; it could be any kinds of vertical suppression,
e.g. the magnetohydrodynamic force in a thin layer of mercury (Nguyen Duc &
Sommeria, 1988), the surface tension force in a thin soap film (Couder & Bas-
devant, 1986), the Coriolis force in a rotating homogeneous fluid (Flierl et al.,
1983), or the suppression from flow geometry as in a shallow fluid (Jirka, 2001;
Sous et al., 2004; Voropayev et al., 2007). (The vertical confinement from flow
geometry is the subject of this work and will be detailed later in § 1.3.) The most
important parameters that govern the characteristics of the flow are the forcing
intensity J (kinematic momentum flux) and the forcing duration At; (Voropayev
et al., 1991). Moreover, a dipole vortex can form in spite of using different types
of momentum sources. For example, pancake-like vortex streets, whose character-
istics are very similar to a dipole vortex, have been observed in late-time stratified
wakes behind both towed and self-propelled bodies moving at constant speed; see,

e.g., a comprehensive review by Lin & Pao (1979).
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Voropayev et al. (1999) extended the complexity of the wake motion to the
case of a turbulent wake created by a sudden horizontal acceleration of a self-
propelled body in a stratified fluid. In their experiment, a moving force doublet
was used to model the drag and the thrust generated by a manoeuvring submarine.

In this method, the drag intensity Jp of a moving body can be approximated as

 CpSUR

JD 9 )

(1.1)

where Cy is the drag coefficient, S is the area of the body and U, is the horizontal
velocity of the body. The thrust can be modelled from the jet of the body and its
intensity Jr is estimated as

_qlg—sUy)

g — 284 — s0) 1.2
T s ) ( )

where g = suje is the volume flux of the nozzle, u;e is the jet velocity and s is the

area of the nozzle.

When the volume flow rate increases, the body thus accelerates resulting in
an increase in the horizontal velocity of the body U,. The Newton’s second law of
motion can be used to find U,(t). The balance of momentum can be written as

dU,

A+ kM- =p(Jr = Jp), (1.3)

where M = pSL is the mass of the body, p is the fluid density, L is the length of
the body, and k is the virtual mass coefficient. Substituting the thrust and drag
from Equations (1.1) and (1.2) into Equation (1.3), the balance of momentum
becomes U U O 512

(L+k)SL* = (4 SS ) _ o (1.4)

Once the jet has reached its terminal speed, the volume flux ¢ is presumably

constant, thus the solution for U, is

Gt (e[ (Do, 0s

where a = (14 k)SL, b= CpS/2, Uy and U, are the real roots of the equation

N _ 2
bU3+qu—%:o, (1.6)
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and U is the initial velocity of the body. Let n be

sl an] o

the horizontal velocity of the body can be written as

_ Ui —nU,

Ut) = ==,

(1.8)

It was observed by Voropayev et al. (1999) that a momentumless wake was
produced behind the submarine when the submarine moved at constant speed
implying that the thrust is equal to the drag. The zero-momentum wake was
observed to decay rapidly without any formation of a coherent vortical structure
in the late wake. In contrast, when the submarine accelerated, it left behind a

finite-momentum wake which eventually transformed to a large vortex dipole.

1.3 Imnteraction of Momentum Sources with a Free Surface

The study of the formation and evolution of a vortex dipole has recently been
extended to the case of shallow water above a solid no-slip surface, for which the
vertical size of a turbulent patch is suppressed by the flow geometry (Sous et al.,
2004, 2005). The term shallow layeris defined as a layer in which the lateral size of

a coherent structure is much larger than the vertical dimension of a fluid domain.

It appears that under certain conditions the vertical growth of a turbulent
patch is confined by the flow geometry, leading to the formation of a quasi-planar
counter-rotating vortex which produces a dipolar eddy at the free surface. Sous
et al. (2004) studied the effect of two dimensionless parameters on the evolution of
the momentum disturbance. The dimensionless parameters are the jet Reynolds

number Re; = J'2 /v, and the confinement number C, defined as

O JY2 At

1 (1.9)

where J is the forcing intensity, Aty is the forcing duration and A is the thickness
of a fluid domain. The confinement number is the ratio of an impulsive force to
the thickness of a fluid domain and can be interpreted as how big the vertical size
of a vortical structure generated by an impulsive force is compared to the depth
of the domain. (The physical meaning of the confinement number will be detailed

more in §5.1.) It was found that this condition depends only on the confinement
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number, such that it can be used as a threshold for the appearance of a dipole
vortex at the free surface. In Sous et al.’s (2004) experiment, the dipole vortex
was clearly observed when C' > 2. The dipole was still visible when 1 < C' < 2,
but it was not seen when C' < 1. The formation and evolution of the vortex
dipole formed in shallow water are similar to that in a stratified fluid except that
three-dimensional small-scale turbulence appears at the dipole front. Sous et al.
(2004) stated that the vertical motion at the frontal region might appear due to

the effect of bottom friction.

Voropayev et al. (2007) performed experiments in a two-layer fluid, where
unstratified water was placed above a layer of salt water, in order to reduce the
effect of the bottom surface. Their flow environment is similar to the real upper
ocean (depth 50 — 100 m), in which denser water rests underneath a nominally
constant density gradient. In addition, Voropayev et al. (2007) defined another
dimensionless parameter, namely the contrast number C'n, to describe the intensity
of a surface signature. In their experiment, the contrast number is defined as the
ratio of the maximum vertical vorticity w, max of the dipole vortex to the root-
mean-square (rms) value of the background vertical vorticity w, ;ms, which had
been measured prior to the experiments and was identical for all of their runs,

o Wz, max(t)

Cn(t) = =22 (1.10)

Wz, rms

They classified the intensity of their surface signature into three regimes, which
are high, significant, and insignificant, depending on the maximum value of the
contrast number. The intensity of the surface signature is high when Cny,,, > 50
and in this regime the dipole is systematically formed. The dipole vortex can
still be observed when 5 < Cnpae < 50, and this regime is termed significant.
When Cnp,.e < 5, the contrast is insignificant indicating that the dipole is hardly

observed or cannot be observed at all.

The empirical relationship between the confinement number C' and the con-

trast number C'n was also determined by Voropayev et al. (2007) as
Cliax = B [1 — X9 | (1.11)

where the constants B and Cj were obtained from the curve fitting of their exper-
imental data and are B ~ 65, Cy &~ 0.65. This phenomenological model suggests
that the intensity of a surface signature increases exponentially with confinement

number.
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1.4 Vortical Structures Generated by Body Forces

In order to emulate the motion of a jet nozzle injecting momentum into a fluid,
one can apply an external body force directly to the Navier—Stokes equations.
This method can be viewed as a generic vortex generator, which is independent of
the shape of a nozzle. It was previously used to numerically study the dynamics
of vortex rings with different purposes, e.g. the interaction between a ring and a
no-slip wall (Swearingen et al., 1995), vortex ring pinch-off (Mohseni et al., 2001),
and sound radiated from a compressible turbulent ring (Ran & Colonius, 2009). In
those studies, the amplitude of the body force was adjusted to obtain the desired
circulation of a vortex ring. However, since it appears that the characteristics of
this type of flow are subject to the initialised bulk integral momentum, one can
make this approach more general by defining the impulse I of the flow via the
magnitude of a body force rather than specifying the circulation. (Recall that
impulse is a true conserved quantity for this type of flow and I = JAt;.)

A spatially localised force can also be used to generate a far wake as exper-
imentally demonstrated by Voropayev & Smirnov (2003). In their experiment,
the body force was created by a jet ejected from a nozzle moving horizontally in a
stratified fluid. The force was considered as a point force because the size of the jet
was negligibly small. Vortex streets were observed behind the moving point source
and their characteristics were in good agreement with those appearing behind a
towed body. It was concluded that the evolution and formation of such late-wake
vortical structures can be described by the total momentum flux injected into the
fluid and are independent of the size and shape of a particular object. Based on
Voropayev & Smirnov’s (2003) experiment, one can expect to emulate a far-field
wake behind a towed or self-propelled body by specifying the magnitude of a lo-
calised forcing to get the desired impulse rather than the details of a blunt body.
The effect of a towed object on the wake can be modelled by a force whose magni-
tude equals the drag and is acting in the opposite direction. Since a self-propelled
body consists of two different types of forcing, a force doublet (two forces) should
be used to model the thrust and the drag of the body. In general, the drag is

applied in front of the thrust and these forces act in the opposite directions.

Analytical solutions that describe the steady-state velocity field of finite- and
zero-momentum wakes respectively generated by a single force and a force doublet
were proposed using the boundary-layer and Oseen’s approximations by Smirnov
& Voropayev (2003). In that study, the forcing was considered as a point force
and hence represented by the Dirac delta function. On the other hand, Afanasyev
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(2004) derived the time-dependent solutions for the vorticity and stream function
of the point-force-induced finite- and zero-momentum wakes. The velocity field of
Afanasyev’s (2004) method can be obtained by differentiating the stream function
equation. It was found that the velocity profiles of the finite- and zero-momentum
wakes obtained from both asymptotic solutions are in close agreement with those

generated by towed and self-propelled bodies.

The numerical simulation of two-dimensional finite-momentum wakes and vor-
tex streets induced by a spatially localised force was performed by Afanasyev &
Korabel (2008). A smoothly varying finite function (e.g. the Gaussian function)
was used to represent the body force rather than the Dirac delta function. The
Gaussian distribution was selected since it can provide the bell-like distribution
similar to the electromagnetic force used in their previous experiments (Afanasyev
& Korabel, 2006). Moreover, the use of the Dirac delta function (the point force) in
a numerical simulation can cause some discontinuities in the flow field and cannot
be accurately represented (Maxey & Patel, 2001). The stable and unstable wakes
(vortex streets) similar to those observed behind a towed body were obtained in
Afanasyev & Korabel’s (2008) numerical experiment. The conditions under which
the wake changes its regime from stable to irregular (vortex-shedding phase) were
found to depend on the following flow parameters; the forcing intensity, the size

of the forcing area, the free-stream velocity and the kinematic viscosity.

1.5 Objectives and Thesis Outline

When a submersible self-propelled vehicle undergoes a diving manoeuvre, it leaves
behind a turbulent coherent structure which, under certain conditions, may be al-
tered to a large long-lived pancake-like counter-rotating vortex (a dipole) and pro-
duce its signature at the water surface. Determining such conditions is of practical
importance since we can indicate, for example, the possibility that a manoeuvring
motion of a submarine could be detected by remote sensing. Additionally, some
fundamental issues of dipole dynamics, such as self-similarity and universality of

a dipole, are not well understood and remain to be learned.

This work focuses on investigating the formation and evolution of large-scale
coherent structures generated from submerged impulsive momentum sources in the
small-scale upper ocean mimicked by non-deformable stress-free top and bottom
layers, using direct numerical simulation (DNS). An accelerating motion from rest

of a self-propelled body is chosen as the momentum source and will be idealised
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using an impulsive jet. The aim for this study is to determine the conditions
under which the three-dimensional turbulent vortex can be altered to a quasi-two-
dimensional counter-rotating structure which produces a dipolar eddy at the free
surface. We will also assess how accurately the late-time behaviour of a dipole
can be predicted by simple scaling laws and verify if the empirical constant for the
decay rate of the vertical vorticity, A, is universal. The accuracy of the existing
phenomenological model (from experimental work of Voropayev et al., 2007) that
measures the surface signature contrast as a function of the confinement number

will also be tested.

The present work intends to compute spatially developing flows rather than
the more commonly studied temporal wakes. In spite of achieving a degree of
realism and generality, this leads to some rather stiff technical challenges. The
computational challenges associated with this work are: (i) How to emulate an
accelerating motion of a self-propelled body in a spatially evolving frame? (ii)
How to capture the entire process of the dipole formation which requires a very

long computational domain?

The thesis is organised as follows. The next chapter (§2) will introduce the
governing equations and the numerical approach to solve them. In particular,
the implementation of an immersed boundary method and an external body force
used to emulate an accelerating motion of a self-propelled body, and the numerical
techniques that allow us to investigate the entire process of the dipole formation
will be detailed. The validation of these numerical tools will then separately
be presented in §3. The following chapter (§4) will be devoted for the late-
time behaviour of dipole vortices induced by an impulsive turbulent jet and a
manoeuvring-body wake. The numerical results will be compared with the dipole
scaling laws. The universality of the constant A will also be verified. Finally, the
physical meaning and the effect of the confinement number will be explored in § 5.
The relationship between the confinement number and the intensity of a surface
signature will also be determined and compared with the phenomenological model
of Voropayev et al. (2007). Conclusions and future extension of this study will be

given in § 6.



Chapter 2
Governing Equations and Numerical Method

The numerical code used in this work, CgLES, has been developed in C/C++.
One of the most advanced features of this code is that it can be used to run on
a large numbers of processors efficiently. In this code, the main computational
domain is split into several blocks by means of a multiblock technique. Each block
is then computed simultaneously on distributed memory machines architecture.
Message Passing Interface (MPI) libraries are also used to transfer data between
blocks located on different processors. The code has been validated (Thomas &
Williams, 1997) and previously used in many applications with both Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS); for example LES of
vortex shedding behind an inclined cubic obstacle (Thomas & Williams, 1999),
DNS of a turbulent trailing edge flow (Yao et al., 2001; Thomas et al., 2003), DNS
of flow over groups of urban-like cubic obstacles (e.g. Coceal et al., 2006, 2007,
Branford et al., 2011), DNS of a vortex ring (Archer et al., 2008, 2010) and DNS
of a breaking internal gravity wave over a two-dimensional cosine hill (Yakovenko
et al., 2011).

2.1 Governing Equations

Since we need to maintain the location of either an accelerating self-propelled
body or a turbulent patch within the computational box, the calculations are
performed in a moving reference frame. The sketches of the computational domain
for a spatially developing wake and an impulsively generated turbulent patch are
respectively shown in Figures 2.1 and 2.2. The non-dimensional continuity and
incompressible Navier—Stokes equations in a non-inertial moving reference frame

can be written in Cartesian tensor notation as

0ui
5 =0 (2.1)

13
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FIGURE 2.1: Schematic of geometry of a manoeuvring-body wake. The
boundaries of the domain in the +x;-direction are denoted by P;E.
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where z; = (z,y, z) and u; = (u,v,w) are respectively Cartesian coordinates and
the corresponding velocity vector in the streamwise, lateral and vertical directions,
t denotes the time, p is the kinematic pressure, and d;; is the Kronecker delta. The
velocity of an unsteady moving reference frame Up (i.e. the time-dependent inflow
velocity) is set equal to the velocity of the virtual (wake-generating) body U,
or the propagation velocity of the momentum patch U,;. The quantity f; is the
external body forces due to the virtual body surface B = (B,, By, B,) and/or
thrust T' = (7,,0,0).

The non-dimensional reference Reynolds number Re,os = UL /v is written in
terms of the reference length £ and velocity scale U (which both vary from flow
to flow, as illustrated below) and v is the kinematic viscosity. In the subsequent

chapters, all variables are non-dimensionalised by ¢/ and £ unless otherwise stated.

2.2 Spatial and Temporal Discretisation

The Navier—Stokes equations are advanced in time with the second-order explicit
Adams-Bashforth scheme. A second-order central finite-difference scheme is used
to discretise the spatial derivatives on a staggered grid, where the velocity com-
ponents are defined at the cell faces while the scalar quantity (pressure) is located
at the cell centre. The staggered grid is employed in order to prevent any spatial
oscillations in velocity and pressure fields, which may occur due to the use of the

central differencing scheme.
The Adams—Bashforth scheme can be formulated as

3At Op}
ntl _ v 020D ntl_ gy (2.3)
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FIGURE 2.2: Schematic of computational domain for an impulsively gener-
ated turbulent patch. A non-initial moving frame of reference is attached to
the patch moving in a positive z-direction with the propagation speed Uy.
The quantity 20 illustrates the size of the body force.

where the superscripts n + 1 and n respectively denote the next and current time
steps, At is the time step size, and the provisional velocity «! is defined as
3AtL At

YL Bt = £ U — & U
uZ uZ+ 2 (3 2 T +

3At,, At Atop

. (2.4)

where the quantity H;, containing the convective and viscous terms in Equa-
tion (2.2), is defined as
82ui au,

=V — U; .
J
&rjﬁxj aZL‘j

Note that since the Adams—Bashforth scheme is a multiple-step method and is

it (2.5)

not a self-starting method, an explicit Euler method is used to start the calcu-
lation for the first time step. The velocity of the moving reference frame Up in
Equation (2.3) is determined explicitly via either Equation (2.22) (for a manoeu-
vring self-propelled body) or Equation (2.32) (for a co-moving frame attached to

a vortex).

To determine the pressure at the current time step, a Poisson equation for the
pressure is constructed by taking the divergence of Equation (2.3) and then using
the divergence-free condition from the continuity equation (Equation 2.1). The

resulting Poisson equation for the pressure is in the form

Pp" 2 Ouy
0x?  3AtOx;

(2.6)

In general, Equation (2.6) can be solved when the pressure at the boundaries is
prescribed (i.e. using a Dirichlet condition). If the pressure at the boundaries is
not provided, the Poisson solver used will enforce a Neumann condition for the

pressure equation, i.e. Vp-n = 0, where n is the unit normal vector. To make the
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solution of the Poisson equation with the Neumann conditions on all boundaries
unique, the pressure is defined to within an arbitrary constant. Since the iterative
process conserves the constant, the iteration is started with a normalised pressure

whose average is zero to make this property persist during the iteration.

2.3 Numerical Procedure

In order to find the velocity field at the next (n + 1) time step, the provisional
velocity uf is first calculated via Equation (2.4) to create the source term for the
Poisson equation (RHS of Equation 2.6). After that, the Poisson equation (2.6)
is solved using a parallel multigrid algorithm to obtain the pressure field at the
current time step (Thomas & Williams, 1997). Finally, the velocity field at the
next (n+1) time step can be obtained by substituting the provisional velocity and

the gradient of the pressure field into Equation (2.3).

2.4 Immersed Boundary Method

In order to embed an axisymmetric body into a computational grid, an immersed
boundary (IB) technique is employed. This approach was first proposed by Peskin
(1972), who did a two-dimensional simulation of the blood flow in a human heart
valve at a very low Reynolds number. The concept of an IB method is to add an
extra force, called the ‘boundary force’ B = (B,, By, B.), to the Navier-Stokes
equations in order to emulate the effect of a virtual object on the surrounding
fluid. The most advanced feature of an IB method is that the simulation of flow
over complex geometries can be carried out in a Cartesian grid, in which the
computational cost is much cheaper than using a body-fitted or an unstructured
mesh. In the original IB approach of Peskin (1972), an immersed elastic body was
mimicked by a set of virtual surface (Lagrangian) points moving in the fixed com-
putational (Eulerian) points. The boundary force was directly computed at the
Lagrangian markers using Hooke’s law (the spring force) and was then distributed

to the Eulerian points via a discrete delta function (Peskin, 1972).

Goldstein et al. (1993) extended an IB technique to the case of flow over
a rigid body by applying the concept of a proportional-integral (PI) feedback
control to determine the boundary force. This type of the IB method is often
referred to as a ‘feedback forcing approach’. Goldstein et al. (1993) implemented
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the feedback forcing approach into a pseudo-spectral solver to compute a two-
dimensional startup flow past a circular cylinder and to perform DNS of a three-
dimensional turbulent channel flow. In their simulations, the location of the virtual
surface points was set to coincide with the computational points and a narrow
Gaussian distribution was used to blur the location of the immersed (virtual)
boundary in order to generate a smooth surface. Goldstein et al. (1993) observed
spurious oscillations caused by the discontinuity of the boundary force in a spectral
representation of a flow field when the forcing was not applied over several (3-4)
computational points across an immersed boundary. In fact, it was demonstrated
that the use of a finite-difference scheme can avoid the appearance of the spurious
oscillations although the boundary force was spread to the Eulerian points by using
an area-weighted average function (Saiki & Biringen, 1996). The feedback forcing
approach contains two free parameters, which are the proportional and integral
gains, that need to be adjusted and these parameters are flow dependent. When
computing unsteady flows, the magnitude of the gains must be large enough to
drive the boundary force to respond correctly to the changing flow field. The major
drawback of the feedback forcing approach is that large values of the proportional
and integral gains make the discrete-time Navier—Stokes equations stiff, leading to

the severe restriction on the computational time step.

To avoid the restriction on the time step size, Mohd-Yusof (1997) introduced
an alternative way to determine the boundary force, called a ‘direct forcing ap-
proach’; for a pseudo-spectral scheme. This approach was later extended to the
context of a finite-difference method by Fadlun et al. (2000). The concept of the
direct forcing approach is that the boundary force is directly computed from the
discrete-time Navier—Stokes equations, which can be written as

utl —

— " = RHSVS BVS ) 2.7

where RHS regroups the convective, viscous and pressure gradient terms and the
subscript ‘vs’ represents the variables at the virtual boundary surface. Assuming
that a Dirichlet boundary condition is used and V4 is the desired velocity at
the virtual body surface, we can simply set "' = Vi, to impose the boundary
condition on the immersed boundary. Thus the forcing term can be obtained by

Ve —u

B _ vs H . 2.
vs A7 RHS, (2.8)

In the initial works of the direct forcing approach (see, e.g., Fadlun et al.,
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FIGURE 2.3: Schematic of the IB method showing the locations of the
Lagrangian markers (®) and the computational points (O).

2000; Kim et al., 2001), the boundary force at the Lagrangian points was never
computed. The effect of a virtual body was represented by reconstructing the
velocity field of the computational points immediately inside the interface of the
virtual body via interpolation procedures. For example, the velocity field at point
1 in Figure 2.3 is obtained from the values of points 2 and 3 (exterior to the
virtual surface) together with the wall value (point 0) using linear interpolation.
The comprehensive reviews of the boundary reconstruction and the IB method are
given by laccarino & Verzicco (2003) and Mittal & Iaccarino (2005).

However, it was shown by Uhlmann (2003) that the use of an interpolation
procedure to obtain the velocity field at the computational points can lead to
unphysical force oscillations when computing flow past a moving body. This prob-
lem led to a new procedure of the direct forcing scheme, described as follows. The
boundary force is first calculated at the Lagrangian points via Equation (2.8),
and are then spread to the Eulerian markers using a discrete delta function (e.g.
Uhlmann, 2005; Yang et al., 2009; Pinelli et al., 2010).

The IB approach used in this work is based on the concept of the feedback
forcing scheme of Goldstein et al. (1993). The major difference between our ap-
proach and Goldstein et al. (1993) is that we mimic a virtual body by a set of
Lagrangian (virtual surface) points that do not coincide with the computational
points as shown in Figure 2.3. The magnitude of the Lagrangian grid spacing
|Ax| is set approximately equal to the grid spacing of the computational points
Ax. A discrete delta function is used to spread the effect of the virtual body
to the neighbouring Eulerian points. Since the boundary force B is determined

directly at the virtual surface points, the velocity field needs to be interpolated to
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the immersed boundary

Uy =T (u) , (2.9)
where the interpolation operator Z is the linear interpolation.

The values of u,s are used to compute the boundary force that restores the
desired boundary values V s on the virtual boundary surface via a proportional-

integral (PI) feedback controller as

By (t) = ¢y /0 [uys (1) = Vs (8)] dE + Frlus () = Vs ()] (2.10)

where ¢y and 5 are respectively the integral and the proportional gains and are
negative constants. In this work, the integral term is simply approximated as a

Riemann sum, viz.
t Nt
/ (uvs - Vvs) dt = Z (uvs - VVS) Ata (211)
0 i=1

where At is the time step size and N, is the total number of steps.

The boundary force is then distributed to the Eulerian points by using a

three-dimensional discrete delta function dy,
Ne
B =) 05(x—xy) B AV, (2.12)
i=1
where N, is the total number of Lagrangian markers and AV, = Az, AyysAzys.

In general, the three-dimensional discrete delta function can be constructed

by a product of one-dimensional discrete delta functions @ in the following manner

1 T — Tyg Y — Yys 2= Zys
)= — & ® o 2.1
O (@ =) = 7y ( Ax ) ( Ay ) ( Az ) (2.13)

where AV = AzAyAz. A three-point discrete delta function, which involves only

three grid points in each coordinate direction, proposed by Roma et al. (1999) as

(14 VT3 | <05,
o) =14 (5-30- 3= 1). 0s<hi<is, ()

o

, 1.5 <r|,
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is used throughout this work. An extensive review on the construction of a discrete
delta function is available in Peskin (2002).

As mentioned earlier that computing the boundary force by means of the PI
controller can influence the stability of the discrete-time Navier—Stokes equations
(the example of the stability issue of the PI controller will be shown in §3.2.1),
we simply remedy this issue by neglecting the integral term in Equation (2.10).

Hence the boundary force is determined via a proportional controller as
B (t) = By uws (t) — Vs (B)] - (2.15)

The proportional gain f; is chosen equal to the inverse of the time step size At, to
obtain the maximum gain while maintaining the stability. Note that this choice
of the proportional gain (8; = —1/At) makes Equation (2.15) equivalent to the
direct forcing approach (Equation 2.8) except that the term RHSs is not included.

2.5 Boundary Conditions

To study the evolution of a submerged momentum source induced by an acceler-
ating motion of a self-propelled body in the small-scale upper ocean, inflow and
outflow boundary conditions are employed in the streamwise direction. The body
moves from right to left (see Figure 2.1), such that the inflow plane is at © = P,
and the exit plane is at = P;. At the inflow plane, Dirichlet boundary conditions

are used as follows
ulp- =Up=U(t),  v|p- =wl|p-=0. (2.16)

The exit boundary condition is a zero gradient condition written as

8ui
=0. (2.17)
61’ P;‘
The body is placed midway between an idealised thermocline and a free surface.
Stress-free boundary conditions are specified at the top and bottom as an ideal-
isation of the non-deformable free surface and the top of a region of a stratified

fluid. The velocities at the no-stress surfaces are

@
0z

_31}

P 0z

=0. (2.18)

w|7)2::07 i_
Pz

In the lateral direction (y), periodic boundary conditions are specified.



2. Governing Fquations and Numerical Method 21

2.6 Emulation of an Accelerating Self-Propelled Body

We emulate a self-propelled body manoeuvre by imposing a thrust f; = T; = T,61;,
which is modelled as a jet from the body, as illustrated in Figure 2.1. The intensity

of the thrust is estimated as
Jr = Ujer SN [ujer — Up(2)] (2.19)

where uje; is the jet velocity, s is the area of the nozzle, and N is a free parameter
used to adjust the jet Reynolds number and the confinement number. A three-
dimensional Gaussian function is used to distribute the intensity of the thrust to
the computational grids as

Jr (x —20)* + (y — 0)* + (2 — 20)?

exp | —

TIZW o2 '

(2.20)

where ¢ is the Gaussian semi-width, and zq, y9, 2o are the centre of the thrust.
Note that Equation (2.20) is determined such that Jr is associated with the total
integrated force, not its maximum. The velocity of the body can be found via the
balance of momentum between a manoeuvring object and the total force acting

on the fluid, with
dU,

MQHE = p(JT - JD) i (221)
where Mg is the sum of the actual and added/virtual mass, p is the fluid density
(taken to be constant) and Jp is the intensity of the drag, which can be calculated
from the volume integral of the streamwise boundary force B,. An explicit Euler

method is used to update Uy(t) at every time step, viz.

pAt
Meff

Uptt = Up + (Jr — Jp) . (2.22)

2.7 Domain Resizing

Since the length scale of the flow of interest increases with time while its Reynolds
number decreases, the computational box and the grid spacing need to be resized
in order to effectively capture the largest and smallest scales of the flow. During
the domain-resizing process, some parts of the flow are allowed to be omitted, i.e. a
portion of a near-field momentumless wake or the wake shed from a vortex, because
they are assumed to have negligible effect on the development of a momentum

patch. To avoid any discontinuity of the flow field in a new domain especially in
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FIGURE 2.4: Schematic of domain resizing: old domain; ---- new

domain; - window function f,.

the clipping region and the edge of an old computational box (see Figure 2.4), we
project the vorticity field to a new computational domain rather than the velocity
field since vorticity has a finite extent. A window function f, is also introduced
in order to smoothly decay the last few planes of vorticity in an old domain to be

zero in a new domain. It is defined as

fuw (7,9) = gu(®)hw(y) , (2.23)

where the streamwise g,,(z) and lateral h,(y) windowing functions are defined as

gw(z) = % {[tanh (04, (z — Tem)) + 1] — [tanh (o, (x — 24)) + 1]}, (2.24a)
() = 5 [sanh (0 (1,/2 — [y1)) +1] (2.20)

and o, is a smoothing coefficient, z.,,, and z., are respectively the cutoff positions

(see Figure 2.4), and [, controls the lateral length of the window function.

The new velocity field is obtained via a vorticity—vector stream function (often
called vector potential) method (see, e.g., Richardson & Cornish, 1977; Tutty,
1986; E & Liu, 1997). The Poisson equation for the vector stream function ¢ =
(¢s, 1y, 1,) whose source term is the projected vorticity vector w = (wy,wy, w,)
can be constructed as follows. Using Helmholtz’s theorem, we first decompose
the velocity vector uw = (u,v,w) into a vector stream function (divergence-free

component) and a scalar potential ¢ (curl-free component) (Saffman, 1995), viz.

u=V x+Vo. (2.25)
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Taking the curl of Equation (2.25) and using V -1 = 0 (the verification of this

condition can be seen in Saffman, 1995), we then achieve the Poisson equation
Vi = —w. (2.26)

Recall that w = V x u. If there is no potential flow (no flow through boundary of
the domain), V¢ = 0 (Richardson & Cornish, 1977). The new velocity field can
then be obtained from

u=V x1. (2.27)

In this work, a Fourier series is used to solve Equation (2.26) in the stream-
wise and lateral directions, while a second-order central finite-difference scheme
is employed in the vertical direction since it cannot be treated as periodic (re-
call that stress-free boundary conditions are being employed in this direction).

Equation (2.26) thus becomes
@Ek,l + (—/ﬁ:iAZQ - lizAZQ - 2) ;bk + ;bkﬂ = —AZ2@y,, (2.28)

where @Ab (K, Ky, 2) and @ (ky, ky, 2) are respectively the vector stream function
and vorticity vector in Fourier space, k, and k, are respectively the streamwise
and lateral wavenumbers, and the subscripts k, £ — 1 and k + 1 denote grid points
in the vertical direction. At each wavenumber, @Ab at every vertical grid node is
solved simultaneously using the Tridiagonal Matrix Algorithm (TDMA) (e.g. see
Ferziger & Peri¢, 2002; Press et al., 2007). A set of boundary conditions that
represent a stress-free condition (cf. Equation 2.18) for %) is given by Hirasaki

(1967) as
o,

0z Pt

ww|7>z :wy‘Pz =

=0. (2.29)

2.8 Moving Reference Frame Attached to a Vortex

Since the momentum patch moves from left to right as displayed in Figure 2.2,
the inflow boundary of a co-moving frame of reference attached to the momentum
patch is at x = P}, while the outflow boundary is at z = P, . The time-dependent
uniform inflow velocity, adjusted to be equivalent to a propagation speed of the

patch U, via a simple control algorithm, is employed at the inflow plane, viz.

ulps = =Up(t), (2.30)
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to keep the patch at the fixed streamwise position. Additionally, the vorticity
field at the inflow plane is set to zero to avoid introducing any spurious vorticity
into the domain, we thus specify Neumann conditions to the other two velocity

components as

@
ox

_8w

= — =0. 2.31
LT (231)

P

At the outflow plane (z = P, ), a zero gradient condition is applied as given earlier
in Equation (2.17).

The time-dependent reference-frame speed Upr that minimises the difference
between the streamwise position of the patch X4(t) (cf. Equation 4.2) and the
target location X,., ¢ = X,4(t) — X, is determined via a proportional-integral (PI)

controller,

t
Up(t) = cie + 3 / edt, (2.32)
0

where ¢; and ¢y are respectively the proportional and integral gains that control
the damping and oscillation time scales (cf. Archer et al., 2008). The constant ¢;
is chosen to give a critically damped response, such that ¢; = 2¢,. The integral

term is approximated via the trapezoidal rule,

N

/tsdt:gZ(enJﬂsn_l) (2.33)
0 2 ’ '

i=1

where the superscripts n and n — 1 respectively denote the current and previous

time steps, At is the time step size and N, is the total number of step.



Chapter 3

Validation for Generating a Virtual Body and

Numerical Strategies

This chapter presents the validation of two new features added to CgLES, which
are an external body force that is to generate an impulsive momentum source
and an immersed boundary method used to embed a virtual body. Additionally,
the accuracy of the numerical strategies (i.e. the domain-resizing technique and
the moving reference frame attached to a vortex) is presented. The external body
force is validated by calculating two-dimensional finite- and zero-momentum wakes
as given in §3.1, while flow past a sphere is computed to test the ability of the
immersed boundary method as shown in §3.2. The correctness of the numerical
approach used to adjust the size of the computational domain is presented in § 3.3,
while the proportional-integral controller that computes the speed of the moving
frame of reference attached to a vortical structure is tested in §3.4. Finally, the

summary and conclusions of the validation are offered in § 3.5.

3.1 Generate a Virtual Body using Single and Doublet Forces

For a purpose of validation, single and doublet forces were used to create 2D finite-
and zero-momentum wakes since there exist experimental and numerical works of
Afanasyev & Korabel (2006, 2008), who used single and doublet forces to gener-
ate the wakes with various input momentum flux. Afanasyev & Korabel (2006)
performed a set of experiments to study towed and self-propelled wakes induced
by an electromagnetic force in a stratified fluid. The main role of the stratifica-
tion is to generate a two-dimensional vortical structure, i.e. a vortex street. They
observed that the behaviour of the wakes induced by the localised forces depends
on four quantities, which are the forcing intensity, the size of the forcing area,

the free-stream velocity U, and the kinematic viscosity v. These quantities were

25
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grouped together in terms of two dimensionless parameters as

J

I, = . (3.1)
J

Ha — m 3 (32)

where o is the Gaussian semi-width and J is the 2D forcing intensity equal to the
forcing intensity of the thrust or the drag. The parameter II, can be considered
as an analogue of a Reynolds number, whilst II, can be interpreted as the ratio of
the momentum flux transported by the forcing to the momentum flux delivered

by the velocity of the fluid through the forcing area.

This section is started by introducing the asymptotic solutions of plane wakes
behind point single/doublet forces in §3.1.1, followed in §3.1.2 by the implemen-
tation of single and doublet forces. The results compared with the theoretical
solutions and the data of Afanasyev & Korabel (2006, 2008) are then reported in
§3.1.3 and §3.1.4.

3.1.1 Asymptotic Solutions

Full details of deriving the analytical solutions of 2D finite- and zero-momentum
wakes created by a point momentum source are given by Smirnov & Voropayev
(2003) and Afanasyev (2004). Smirnov & Voropayev (2003) derived the steady-
state solutions of the streamwise velocity deficit based on the boundary-layer and
Oseen’s approximations, whilst the time-dependent solutions of the vorticity w
and the stream function v of the towed and self-propelled wakes are proposed by
Afanasyev (2004). In this work, we follow the asymptotic solutions of Afanasyev
(2004) because they can provide not only the streamwise velocity but also the

vertical velocity.

Afanasyev (2004) obtained the solutions of the vorticity and stream function
of the wakes behind single/doublet point forces acting continuously in time by

integrating the solutions of those induced by the impulsive forces as

[wJ,Q] (2,9,t) = /Ot [wI’M] [© — U, y, 7] dT, (3.3)

V50 1M

where the subscript I (or M) represents an impulsive single (or doublet) force,

and the subscript J (or ) denotes a continuous single (or doublet) force. The
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vorticity and the stream function of a plane (2D) wake induced by an impulsive

point force can be obtained from Stokes’ approximation (Cantwell, 1986),

I 2
wr (xayvt) = S (it)Q 675 ) (34)
I )
Ur (@, y,t) = Wigﬂ) (1 —e ¢ ) : (3.5)

where [ is the 2D impulse ([I] = L*T~'), L and T are respectively units of
length and time, v is the kinematic viscosity and €2 = (% + y?) /4vt. Substituting
Equations (3.4) and (3.5) into Equation (3.3) will change the type of the forcing
from impulsive to continuous and the steady-state solutions can be obtained by

letting ¢ — oo

ono U Us
Wi (a?,y) = Y 1/26Xp( )Kl <_ V x? + y2) ) (36)

ATV? (22 4 42) 2v 2v

Jy /°° 1—e?
r,y) = —

2

dr, (3.7)

where .J is the 2D forcing intensity of the continuous single force ([J] = L3T?),
P = [(z = Uxr)? +4?] J4vr and K, (z) is a modified Bessel function of the
second kind. Let ugef = Uy — u be the streamwise velocity deficit. Using the
Oseen’s approximation, i.e. uqer/Usx < 1, and the differentiation of the stream
function with respect to y, uqer = 9 /Jy, the distribution of the streamwise ve-
locity deficit of a finite-momentum wake generated by a point force along its axis

can be obtained as

2

J [ 1—e7~
Udef (3?, 0) = %/0 m dT, (38)

where 32 = [(z — U7)?] /4vT.
[( )/

The asymptotic solution of a momentumless wake induced by a point force
doublet can be obtained by the same manner and will be described as follows.
The vorticity field of the wake generated by two forces can simply be obtained by
the sum of the vorticity of each force. Assuming that both forces are separated
by distance ¢ and act in the opposite directions with the same magnitude, the

vorticity field is then given by

Wm (:E:yat) = wr (I’,y,t) — Wi (I’ - G,y,t) . (39)
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One may use a standard limiting procedure to obtain the forcing intensity of an
impulsive force doublet M (Afanasyev, 2004), as
M = lim [e. (3.10)

e—0
I—o00

The vorticity and the stream function of the wake induced by an impulsive force

doublet are also given by Afanasyev (2004) as

M >
wy (z,y,t) = _W(xuyt)?’ et (3.11)
M 2
Yur (2, 1) = _n(a:?—fy?f - (re)ee] . (3.12)

where M is the 2D forcing intensity of the impulsive force doublet ([M] = LAT—1).
We then change the type of the forcing (from impulsive to continuous) by using
the integral operator in Equation (3.3) and perform the integration until time is
large enough to obtain the steady-state solutions. The steady-state solutions of

the vorticity and stream function of the wake behind a point force doublet are

U2 Uy Uy
wo (x,y) = oo _1y exp<x >Ko(—\/x2+y2)

16m08 (22 4 12) 2v 2v

QU Yy exp(ono)lﬁ (%\/W)

A2 (22 4 42)%/? 2v 2v

U2 Uy Uy
+ QU i exp(x—>K1 (—V\/xz +y2) , (3.13)

1671—]/3 (xQ + y2)1/2 2]/

dr. (3.14)

v () = - /OOO (2= User) [1= (14 0%) ]

i [(z = Usr)’ + 7]
where @ is the 2D forcing intensity of the continuous force doublet ([Q] = L*T?).
Finally, the distribution of the velocity deficit of a zero-momentum wake induced

by a point force doublet along its centreline is obtained by the differentiation of

the corresponding stream function as

Q [l
T Jo (x—UooT)3

Ugef (2,0) = dr. (3.15)
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U

Drag, forcing area 20, (D,,0,0)
y Thrust, forcing area 20,
(T,,0,0)
L> T _>l € I<_

F1GURE 3.1: Schematic of geometry of a 2D momentumless wake.

3.1.2 Numerical Approach

Since a force doublet consists of both thrust and drag, we prefer to describe the
numerical approach based on the implementation of the force doublet used to
generate a two-dimensional momentumless wake. Note that the thrust is not active
when a 2D finite-momentum wake behind a single force is computed. The drag
D = (D,,0,0) and the thrust T' = (7},0,0) are added to the RHS of the Navier—
Stokes equations and their forcing intensity is distributed to the computational

grids via a 2D Gaussian function

J _ 2 _ 2
o o
J - 2 )2
T, = TT exp |:_ (ZE xO,T) _’; (y yO,T) } : (317)
o o
where xop = (2op,Yo,p) and xor = (201, Yyor) are respectively the centre of

the drag and the thrust, and o is the Gaussian semi-width. The 2D thrust Jp
and drag intensity Jp are defined to be of equal magnitude while acting in the
opposite directions to create a momentumless wake. The drag is applied slightly
in front of the thrust with the distance ¢/20 = 5. The Gaussian semi-width
o in Equations (3.16) and (3.17) is set to have the same size to reproduce the

experimental work of Afanasyev & Korabel (2006) and is chosen as o = 0.2.

The schematic of the flow geometry is displayed in Figure 3.1. The boundary
condition at the upstream boundary is a constant free-stream velocity U, with the
forces being stationary, whilst the convective outflow boundary condition is applied
at the outlet. Stress-free boundary conditions are specified in the vertical direction.
In order to use the three-dimensional code, CgLES, to simulate a two-dimensional
flow, free-slip boundary conditions are used in the lateral direction and the grid

spacing in this direction is chosen to be extremely large compared to the other
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Case I, =J/oU% 11, =J/vUs
M1 1.1 75
M2 1.4 125
M3 2.1 120
M4 2.6 130
M5 3.2 160
M6 6.0 300

TABLE 3.1: Run parameters for a 2D finite-momentum wake.

directions. The simulations of finite- and zero-momentum wakes were performed in
the 2D domain size of —50 < /20 < 190 and —40 < y/20 < 40, with 3072 x 1024
grid cells in the streamwise (z) and vertical (y) directions, respectively. It should
be noted that the grid spacing used in this validation is close to a minimum mesh
size of Afanasyev & Korabel’s (2008) simulation, in which an unstructured grid

was employed.

3.1.3 2D Finite-Momentum Wakes Generated by a Single Force

We generated finite-momentum wakes by applying a single force which acts against
the incoming stream into a flow domain. This problem is similar to a towed wake
behind a bluff body. Six values of forcing intensity were selected to study the
dynamics of the wake and are given in terms of II, and II, in Table 3.1. It was
observed by Afanasyev & Korabel (2006, 2008) that there are two regimes of the
wake induced by a localised force: (i) a stable regime when II, and II, are quite

low, and (ii) a vortex shedding regime when II, and II, exceed their critical values.

Figure 3.2 depicts the vorticity distribution at late time. At II, = 1.1 and
IT, = 75, we observed that the wake behind the forcing is stable and is in the
form of a jet-like flow (Figure 3.2a). We also compare the distribution of the
streamwise velocity deficit along its centreline for these values of II, and II, with
the theoretical solution (Equation 3.8), as shown in Figure 3.3. Good quantitative
agreement can be seen in both upstream and downstream of the body force, in
spite of the appearance of the differences in the forcing region due to the fact that

we applied a finite force whereas a point force is used in the analytical solution.

When the values of 11, and II, are increased to II, = 1.4 and II, = 125, the
wake is not stable anymore. It can be seen from Figure 3.2(b) that the vorticity

is periodically shed from the body force and is visually similar to the well-known
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FIGURE 3.2: Contours of vorticity of 2D finite-momentum wake with dif-
ferent forcing intensity: (a) II, = 1.1 and II, = 75, (b) II, = 1.4 and II,
= 125, (c) II, = 6.0 and II, = 300. Vorticity varies from —0.2 |w.|,,. to
0.2 |w,|

Karman vortex street. In order to compare our results with Afanasyev & Kora-
bel’s (2008) data, we collected history of the vorticity at x/2c = 7.5 and then
used a Fast Fourier Transform (FFT) to analyse the time series of the vorticity to
obtain the shedding frequency f;. The non-dimensional frequency, Strouhal num-
ber St = foJ JU2 . versus T1, is illustrated in Figure 3.4. Our shedding frequency
is in excellent agreement with the results of Afanasyev & Korabel (2008). It is of
interest to note that Afanasyev & Korabel (2008) reported that the vortex street
underwent from regular to irregular shedding when the shedding frequency rapidly
dropped. The transition to the irregular shedding regime was observed to occur
around II, = 2.6 (see Figure 3.4). The distribution of the vorticity in the irregular
shedding regime is illustrated in Figure 3.2(c), where II, = 6.0 and II, = 300.
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FIGURE 3.4: Strouhal number versus I, of a 2D finite-momentum wake: ®
Present; 0 Afanasyev & Korabel (2008).
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Case I, =J/oU% 11, =J/vUs
Z1 1.0 50
72 2.1 120
73 3.0 150
74 4.0 200
75 6.0 300
76 8.0 400
77 11.0 230

TABLE 3.2: Run parameters for a 2D zero-momentum wake.

3.1.4 2D Zero-Momentum Wakes behind a Force Doublet

The strategy to impose a force doublet (drag of a body plus thrust) was validated
by performing a two-dimensional (2D) simulation of zero-momentum wakes. The
results are compared with both an analytical solution of Afanasyev (2004), which
was explained earlier in §3.1.1, and experimental results of Afanasyev & Korabel
(2006). The run parameters II, and II, for this study are provided in Table 3.2.
Note that this range of II, contains the wakes in both stable and vortex shedding

regimes.

The distribution of the vorticity at late time is displayed in Figure 3.5. In
the stable regime (Figure 3.5a), the momentumless wake is in the from of a jet
convecting downstream similar to that in the simulation with the single force.
Figure 3.6 displays the distribution of the streamwise velocity deficit along the
axis of the flow at II, = 1 and II, = 50, compared with an analytical solution
provided in Equation (3.15). Away from the expected near-field deviation (due
to comparing finite versus singular dipoles), the agreement is satisfactory. The
balance of the streamwise momentum flux was also checked to make sure that the
net momentum flux of the zero-momentum wake in this direction is identically zero
(recall that no net momentum is imparted into the wake by the force doublet).

The conservation of z-momentum can be written as,

d
—(/udxdydz)—l—FM:/(Dz—i—Tx) drdydz, (3.18)

dt
where F); is the net volume-integrated momentum flux, including the difference
between the momentum, pressure and viscous fluxes at the inlet and outlet planes.
If was found that the LHS terms of Equation (3.18) is of O (107°).
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FIGURE 3.5: Contours of vorticity of 2D momentumless wake with different
forcing intensity: (a) II, = 1.0 and II,, = 50, (b) II, = 2.1 and II,, = 120, (c)
IT, = 11.0 and II, = 230. Vorticity varies from —0.2 |w,| t0 0.2 |w,|
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For higher value of II, and II, (II, = 2.1,1I, = 120), the vortex street was
observed to appear behind the doublet (see Figure 3.5b). The vortex street in
this simulation is visually similar to the mushroom-like vortex sheet observed in
Afanasyev & Korabel’s (2006) experiment. For a quantitative comparison with
the laboratory experiment of Afanasyev & Korabel (2006), the shedding frequency
was measured by performing a FFT of the vorticity at x/20 = 12.5. A plot of St
versus I, for the zero-momentum wakes is displayed in Figure 3.7, showing that
the numerical results are in good agreement with the experimental data. Note
that we could not observe any sign of a rapid drop of the shedding frequency for
the zero-momentum wake. Once the magnitude of the forcing intensity increases
to I1, = 11 and II,, = 230, the size of the mushroom-like vortex is bigger, while its

shape is similar to that in the lower magnitude as illustrated in Figure 3.5(c).
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F1GUuRrE 3.8: Evolution of vortical structure of flow past a sphere at Re, =
300 at every quarter period from Johnson & Patel (1999): (a) side view; (b)
top view.

3.2 Generate a Virtual Body using Immersed Boundary Method

Flow past a sphere at Re, = 300 was selected to validate the implementation of the
IB approach in CgLES. The Reynolds number is defined in terms of the free-stream
velocity Uy, and the sphere diameter Dy, i.e. Re, = Uy Dp/v. At this Reynolds
number, the flow is still laminar, but it is unsteady and planar symmetric. It is
thus expected to observe a coherent vortical structure periodically shed with a
constant strength in the same orientation (Johnson & Patel, 1999; Tomboulides &

Orszag, 2000), as displayed in Figure 3.8.

The simulations with both the PI and the P controllers were carried out in
the domain of size —10 < /Dy, < 26, =5 < y/D, < 5 and —5 < z/D, < 5, with
the number of grid cells 576 x 160 x 160. The sphere is located at (0,0,0) and
is mimicked by using 931 equally spaced Lagrangian points whose grid spacing
is equal to the Eulerian grid spacing. Inflow and convective outflow boundary
conditions are employed in the streamwise (x) direction, whilst free-slip boundary

conditions are applied in the lateral (y) and vertical (z) directions.
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FIGURE 3.9: Contours of the streamwise velocity at x/Dy = 0, tUs /Dy =
40 and Rep, = 300 from the simulation using the proportional-integral feed-
back: (a) Case PI1 (p;D2/U2% = —3947.8418, 84D} /Us = —125.6637); (b)
Case PI2 (¢;D?/UZ = —246.7401, BfDy/Us = —31.4159). The edge of
the sphere is represented by the black circle. The streamwise velocity varies
from —1 < uy/Us < 1.

3.2.1 Proportional-Integral Feedback

Since Equation (2.10) represents a simple mass-spring-damper system (Fadlun
et al., 2000), the integral ¢; and proportional §; gains can be obtained from the

angular frequency of the oscillator wy and the damping ratio ¢ as

(pf = —w]%, ﬂf = —QCWf. (319)

where wy can be obtained from the oscillation time scale Ty, i.e. wy = 27/T,, and

¢ is chosen to be 1 to give a critically damped response.

The simulation of flow past a sphere was first carried out with ¢,;D?/U2 =
—3947.8418 and 57D, /U, = —125.6637, labelled as Case PI1, to test the efficiency
of the PI feedback. The simulation was performed until tU,,/D, = 40 with the
time step size AtUy /D, = 0.002. It was observed that the PI feedback could
not represent a smooth axisymmetric sphere as shown in Figure 3.9(a). This
happened because the time step size used in this simulation is higher than the

numerical stability limit.

To improve the stability limit, we decreased ¢y and 3 rather than reducing

the time step size in order to maintain the computational cost. The values of
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FIGURE 3.10: Histories of the cylindrical velocity components at z/Dj =
5.78, r/Dy = 0.4 and Rep, = 300 from the simulation using the proportional-
integral feedback with ¢ ;D2 /U2 = —246.7401, B¢ D, /Us = —31.4159 (Case
PI2): (a) ug, (b) u, and (c) up.

the proportional and integral gains were decreased to p;D7/U% = —246.7401
and [;Dy,/Us = —31.4159 (labelled as Case PI2) at which the PI feedback can
represent a smoother axisymmetric sphere (Figure 3.9b). To make the comparison
between Figures 3.9(a) and 3.9(b) more quantitative, the mean error €ean, which
is the azimuthal average of the difference between the streamwise velocity and the
desired velocity (set to zero to represent the no-slip surface of the virtual sphere)
at /Dy, = 0.5, and the root-mean-square error &,,,s were determined. It was found
that €pean = —0.0414 and e, = 0.0318 for Case PI1, while the values of ccan
and e, for Case PI2 reduce to —0.0383 and 0.0182, respectively. The significant
drop (about 1.75 times) in &,y is important in this work since it can prevent
the occurrence of spurious small-scale turbulence (as can be seen in Figure 3.9a)
that might affect the formation and evolution of a far-field coherent structure.

The simulation with the new values of the proportional and integral gains was
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FIGURE 3.11: Contour of the streamwise velocity at /Dy = 0, tUs /Dy =
40 and Rep, = 300 from the simulation using the proportional feedback. The
edge of the sphere is represented by the black circle. The streamwise velocity
varies from —1 < u, /Uy < 1.

advanced for a total of 200 time units. Histories of the streamwise u,, radial wu,
and azimuthal uy velocity components in the near field region are displayed in
Figure 3.10. The histories of all the velocity components do not show any sign of
a fluctuation that would appear at tU.,, D, ~ 100 (see Figure 3.12), implying that
the vortex shedding could not be observed behind the sphere in this simulation
because the gains used are not high enough to drive the boundary force to react

as fast as the biggest frequency of the flow.

3.2.2 Proportional Feedback

The proportional gain gy in Equation (2.15) was chosen as the inverse of the time
step size (fy = —1/At), in such a way that maximises gain while maintaining
stability. The simulation was performed with the time step size AtU,, /Dy, = 0.004,
corresponding to ;Dy,/Us = 250 (two times higher than that in §3.2.1). Even
though the time step size used in this simulation is two times higher than that in
§3.2.1, the proportional feedback can still produce a smooth axisymmetric sphere
with €pean = —0.0317 and e, = 0.0169, as shown in Figure 3.11.

Histories of the cylindrical velocity components are plotted in the near wake at
x/Dy, = 5.78 and r/D, = 0.4 and are displayed in Figure 3.12. It can be observed
that the fluctuating velocities begin to appear at tUy /Dy, ~ 100, suggesting that
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FIGURE 3.12: Histories of the cylindrical velocity components at z/Dj =
5.78, /Dy = 0.4 and Rep, = 300 from the simulation using the proportional
feedback: (a) ug, (b) u, and (c) up. At this Reynolds number, the velocity
field periodically oscillates due to the appearance of the vortex shedding.
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FIGURE 3.13: (a) History of the azimuthal velocity at late time and (b)
its power spectrum at /Dy = 5.78, /Dy = 0.4 and Re, = 300 from the
simulation using the proportional feedback.
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FIGURE 3.14: Histories of (a) the drag Cp and (b) the lateral force Cp, co-
efficients at Rep = 300 from the simulation using the proportional feedback.

the vortex shedding would be observed around that time. After the flow reached
its statistically steady state, the simulation was further carried out for the next 400
time units giving the total time steps of 800. The simulation was time averaged
for the last 200 time units, corresponding to about 25 shedding periods. History
of the azimuthal velocity and its power spectrum at late time are illustrated in
Figure 3.13. The non-dimensional shedding frequency, Strouhal number St =
fsDy/Us, found in this work is St = 0.1238. Note that we also observed the second
and the third superharmonics of the shedding frequency as shown in figure 15 of
Tomboulides & Orszag (2000).

Figure 3.14(a) shows a plot of the drag coefficient Cp versus time, whilst
history of the lateral force coefficient C}, is displayed in Figure 3.14(b). The drag

and the lateral force coefficients are calculated as

B,dxdydz B,dxdydz
— C, = y g7

Cp = . O = , (3.20)
027D} 27D}

where B, and B, are the streamwise and lateral boundary forces, respectively.

The coefficients of the drag and lateral force and the Strouhal number are
compared with the values reported by Johnson & Patel (1999), Tomboulides &
Orszag (2000) and Ploumhans et al. (2002), and are displayed in Table 3.3. A
relative error of those quantities is also computed and is given in Table 3.4. It was
found that the relative difference between our values and those reported by the
references is lower than 10%. It is of importance to note that the correctness of
predicting the drag coefficient and the Strouhal number — in which more accuracy

can be obtained by increasing the number of points in the boundary layer of
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CD CL St
Present
(immersed boundary, 0.7148 —0.0658 0.1238
proportional feedback)
Johnson & Patel (1999)
(finite-difference, body-fitted) 0-656 —0-069 0137
Tomboulides & Orszag (2000) B
(spectral element, body-fitted) 0.6714 0136
Ploumhans et al. (2002) 0.683 _0.061 0.135

(vortex method)

TABLE 3.3: _Comparison of time-averaged values of the drag C'p and the
lateral force C'y, coefficients, and the Strouhal number St at Re, = 300 from
the simulation using the proportional feedback.

Cp Cy St
Johnson & Patel (1999)
(finite-difference, body-fitted) 8.96% 464% 9.64%
Tomboulides & Orszag (2000) B
(spectral element, body-fitted) 6.46% 8.97%
Ploumhans et al. (2002) A66% 7879 8.30%

(vortex method)

TABLE 3.4: Relative error between the values of Cp, Cr, and St, from the
simulation using the proportional feedback, and the values reported by the
references listed in Table 3.3.

the virtual sphere — is not important in this work since we assume that the
late-time characteristics of a dipole depend only on the bulk integral momentum,
i.e. independent of the small-scale shear layers associated with the boundary layer
of the virtual body. The main role of the virtual body is just to impart the drag
into the flow in order to provide the desired amount of the net momentum flux
(the difference between the thrust and the drag). The proof of this assumption

will be shown later in §4.

Figure 3.15 displays the time-averaged streamwise velocity u, along its centre-
line compared with the DNS result of Tomboulides & Orszag (2000) at the same
Reynolds number. The distribution of %, in the near wake was found to agree

well with Tomboulides & Orszag’s (2000) data although some discrepancies were
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FIGURE 3.15: Time-averaged streamwise velocity u, along its axis, obtained
from the simulation using the proportional feedback, compared with the
numerical result from Tomboulides & Orszag (2000) at Rep, = 300:
Present; © Tomboulides & Orszag (2000).

observed in the far field due to the fact that the number of grid points used in this
simulation is not fine enough to fully resolve the flow within the boundary layer.
The boundary-layer thickness of a sphere at Re, = 300 can be approximated as
§=1.13/ Re;/ ® = 0.065, where § is the non-dimensional boundary-layer thickness
(Schlichting, 1979). It can be seen from this approximation that only one grid

point was placed within the boundary layer.

Finally, the vortex shedding mechanism is studied by visualising the isosurface
of the second invariant of the velocity gradient tensor () proposed by Hunt et al.
(1988). The second invariant of the velocity gradient tensor is defined as

@= _53%' ox; "2 (€805 — Si554) (3.21)

where €;; = (u;; —u;;)/2 is the rate of rotation tensor and S;; = (u;; + u;;)/2 is
the rate of strain tensor. Hence, () represents whether the rotation rate exceeds
the shear strain rate. More details of the ()-definition and the other markers of
a vortical structure can be found in Jeong & Hussain (1995) and in a review of
Chakraborty et al. (2005).
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FIGURE 3.17: Contours of w, at the free surface from (left) Case JS3a and
(right) Case JS3aDR at (a) the projected time (¢t = 50) and (b) ¢t = 3000.
Vorticity varies from —0.2 < w,/ |w.|,. < 0.2. Blue (light) and red (dark)
patches show negative and positive vorticity, respectively. Plots at ¢ = 50
show only selected region of the streamwise and lateral domains, while the
full domain is displayed for the plots at ¢ = 3000.

The vortical structure behind the sphere is shown in Figure 3.16 and each
frame is 20 time units apart. It can be seen that the hairpin-like vortex forms
very close to the sphere (about five diameters downstream of the sphere centre).
While it convects downstream, the legs of the vortex stretch and are connected to
the head of the next vortex, which is shed in the same orientation as the previous
one. Our flow visualisation is in very good agreement with the hairpin vortex of
Johnson & Patel (1999), which is illustrated in Figure 3.8.

3.3 Validation of Domain Resizing

The accuracy of the vector-potential solver (Equations 2.26 and 2.27) and the
boundary conditions used (Equation 2.29) was validated as described below. We
first computed a turbulent patch induced by an impulsive jet, which acts over a
short time period Aty with a forcing intensity Jr, at Re; = J%/ 2 /v = 1250 in a
shallow fluid domain corresponding to the confinement number (see Equation 1.9)
of 2 (cf. Case JS3a; see Table 4.1 for details of the grid resolution and the domain
size). At this value of C| the vertical growth of the patch is limited, leading to
a vortex dipole at late time. Note that more details of the dynamics of a vortex
dipole will be given later in §4. At ¢t = 50, the vorticity field of Case JS3a was

projected to another computational domain whose size and resolution are exactly
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FiGURE 3.18: Comparison of dipole characteristics between Case JS3a and
Case JS3aDR: Case JS3a; --0-- Case JS3aDR. (a) Maximum vertical
vorticity at the free surface. (b) Dipole propagation velocity. (c) Dipole size.
Case JS3aDR starts at ¢ = 50.

the same. We labelled the simulation started from the projected vorticity field
as Case JS3aDR. The velocity field of Case JS3aDR was obtained by solving
Equations (2.26) — (2.27). The simulations of both cases were continued until
t = 3000, at which the dipole is fully formed.

The vorticity contours in Figure 3.17 are used to visually quantify any differ-
ence between the vertical vorticity w, at the free surface from Case JS3aDR and
that of Case JS3a. It is of importance to note that w, at t = 50 of Case JS3aDR,
displayed in Figure 3.17, is obtained by taking the curl of its velocity field (i.e. tak-
ing the curl of Equation 2.27), not the projected vorticity field from Case JS3a.
It can be seen that w, at the free surface from the present simulation is visually
similar to that from Case JS3a at both the projected time (f = 50) and ¢ = 3000.

The dipole characteristics (i.e. the maximum vertical vorticity at the free surface
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FIGURE 3.19: Contours of w, at the free surface from (a) Case JS3a and (b)
Case JS3aMF (at which a co-moving frame of reference attached to a vortex
is employed) at ¢ = 3000. Vorticity varies from —0.2 < w,/ |w,| < 0.2.

max

Blue (light) and red (dark) patches show negative and positive vorticity,
respectively. Only selected region of the streamwise domain of Case JS3a is
shown here, while the full domain of Case JS3aMF is illustrated.

W max, the dipole size ¢, (Equation 4.1), and the dipole translation velocity Uy
(Equation 4.4)) of Case JS3aDR are determined to ensure the correctness of the
vector-potential solver and are compared with the baseline case (Case JS3a), as
displayed in Figure 3.18. For all the quantities, very close agreement was obtained

with the maximum relative difference being within 2%.

3.4 Validation of Moving Reference Frame Attached to a Vortex

We validated the PI controller used to adjust the speed of the co-moving reference
frame by projecting the vorticity field of Case JS3a (see Table 4.1) at ¢ = 50 to
a smaller computation domain using a window function given in Equation (2.23).
The new velocity field of this validation was obtained using Equations (2.26) —
(2.27). The simulation (labelled as Case JS3aMF) was performed in a domain of
size =7 < x <23, -8 <y < 8and —0.5 < 2z < 0.5, with 960 x 512 x 32 grid cells

resulting in the same grid resolution as Case JS3a.

The PI controller and the proportional and integral gains used locate the co-
herent structure to within 5 x 107° of the target position by 8 time units. Once
locked in place, the vortex remains at this position, in spite of changing its trans-
lation speed. Contours of the vertical vorticity at the free surface from Case JS3a
and the present calculation are given in Figure 3.19, showing exactly the same
counter-rotating vortical structure at late time (¢ = 3000). The characteristics
of the coherent structure of the present computation, compared with Case JS3a,

are illustrated in Figure 3.20. Despite a decrease in the impulse (about 9%) due
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FiGURE 3.20: Comparison of dipole characteristics between Case JS3a and
Case JS3aMF (at which a co-moving frame of reference attached to a vortex
is employed): Case JS3a; --0-- Case JS3aMF. (a) Dipole impulse.
(b) Maximum vertical vorticity at the free surface. (¢) Dipole propagation
velocity. (d) Dipole size. Case JS3aMF starts at ¢t = 50.

to the loss of the wake shed from the vortex (Figure 3.20a), excellent agreement
was found for w, max at the free surface and the others integral measures with the

maximum relative difference of these quantities less than 2%.

3.5 Chapter Summary

In summary, this chapter validated the concept of applying an external body force
to generate finite- and zero-momentum wakes, the implementation of an immersed
boundary method, the domain-resizing approach and the PI controller used to
adjust the reference-frame speed. The validation of the domain resizing and the

moving reference frame attached to a vortex shows excellent agreement with the
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baseline case. The test of the moving reference frame attached to a vortex also
confirms that the wake shed from the vortex can be allowed to go out of the

computational domain since it has very little effect on the dipole dynamics.

The body force seems to work well for generating two-dimensional large-scale
vortical structures, such as a Karmén vortex street (induced by a single force) or
an inverted Karman vortex street (generated by a force doublet). However, when
the magnitude of the drag is too large (i.e. Jp/0.570?UZ% > 1), it would drive the
velocity in the forcing region to become negative such that the energy flux (E; =
u;D;) in that region is increased. This is contradictory to the definition of drag
force, which decreases the energy flux, and is thus unphysical. Moreover, when
the body force is applied to a three-dimensional problem, the negative velocity
provides fine-scale turbulence, which needs very fine grid resolutions to fully resolve
it. Therefore, an immersed boundary method is implemented to emulate a virtual

body, which imparts the drag to the flow, to avoid these problems.

An immersed boundary method used in this work is based on the concept
of a proportional-integral (PI) feedback. We observed that the integral term can
cause the stability issue when the gains are relatively large, such that only the
proportional term will be used throughout this work. The proportional gain used
is chosen to be related to the time step size to obtain the maximum gain (to make
sure that the error from the feedback loop is close to zero) while maintaining
stability. The validation shows that the accuracy of the IB approach used is
reasonable although only one grid point was placed within the boundary layer of

the virtual sphere.






Chapter 4

Evolution of Impulsively Generated Turbulent
Patches: I. Self-Similar Dipole

In this chapter!, the late-time formation of large-scale coherent structures gen-
erated from either an impulsive turbulent jet or an accelerating motion of a self-
propelled body between non-deformable stress-free layers is reported. This chapter
begins with a brief detail of the mathematical formulation used to study vortex
dynamics in §4.1. The late-time behaviour of a dipole induced by an impulsive
turbulent jet is described in §4.2.1, whilst the evolution of a turbulent patch gen-
erated by an accelerating motion of a self-propelled body is detailed in §4.2.2. The

conclusion of this study is given in §4.3.

4.1 Mathematical Background

In order to determine the evolution of a submerged impulsive momentum source,
the characteristics of the vortical structure, i.e. the dipole propagation velocity
and the dipole size, are defined in terms of the integral parameters proposed for
vortex-ring geometry by Saffman (1970). The dipole size 64 and the dipole centroid
X = (Xy, Yy, Zy) are defined using the first moment of enstrophy via

2

dy = O /7’ w|* dzdy dz, (4.1)
1 2

X, = ﬁ/ lw|” dzdy dz, (4.2)

IMuch of the material in this chapter has been presented in Rojanaratanangkule et al. (2012);
see Appendix A.

51
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where r = \/y? + 22, |(,u|2 =w?+ wg +w? and  is the total integrated enstrophy,
defined as
0= / |w|? dady dz. (4.3)

Thus the dipole propagation velocity Uy = (Uy, Vg, Wy) can be obtained as

_dX,

U
T

(4.4)

We also define lateral ¢, and vertical £, length scales of the vortical structure as

2
l, = —/ ylw|® dedydz, (4.5)
Qy Ju

2
l, = —/ z|w|? dzdydz, (4.6)
Q. Jy

where €2, ., = fH |w|2 dx dy dz and the subscript H denotes that the integration
is performed over the half-positive y- or z-domain. Note that Equations (4.1),
(4.5) and (4.6) all require the origin of the y- and z-axes systems to be in the
centre of the computational domain. These definitions give the dipole sizes that
are roughly the distance between the vorticity extrema (maximum and minimum)
of the dipole (Saffman, 1995).

The impulse I = (I,,1,,I,) and the xy-plane circulation I' of the dipole are

also defined via their usual forms as

I:/a: X wdrdydz, (4.7)

F:/wzdxdy, (4.8)
H

where w = (W, wy, w,).

4.2 Results

The evolution of the impulsively submerged momentum disturbance in the small-
scale upper ocean, which is mimicked by stress-free top and bottom layers, is
reported in this section. Two different types of momentum sources are chosen to
investigate the self-similarity of a dipolar vortex created by: (i) an impulsive jet,

and (ii) an accelerating motion of a self-propelled body.
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Case

Domain depth (H?)

Rej

Domain size

N, x Ny, x N,

JD

JS1

JS2

JS3a

JS3bP

JS3LD

JS3FS,

JS3FS,

JS3F¢,

JS4

Deep (4)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

Shallow (0.5)

2000

2000

2000

1250

1250

1250

1250

1250

1250

625

—5 <z <25,
—4 <y <4,
—4<z2<4
—5 <z <25,
-8 <y <8,
—05<2<05
—5 <z < 55,
—8 <y <3,
—05<2<05
—5 < z < 55,
—8 <y <3,
—05<2<05
—5 < o < 55,
-8 <y <38,
—05<2<05
—5 <z < 55,
—16 <y < 16,
—05<2<05
=5 <z <15,
—3<y<3,
—05<2<05
—20 < = < 20,
—6 <y <6,
—05<2<05
—20 < = < 20,
—12<y <12,
—05<2<05
—5 <z < 55,
-8 <y <38,
—05<2<05

960 x 256 x 256

960 x 512 x 32

1920 x 512 x 32

1920 x 512 x 32

1920 x 512 x 32

1920 x 1024 x 32

2560 x 768 x 128

2560 x 768 x 64

1280 x 768 x 32

1920 x 512 x 32

2H is the vertical distance from the centreline of the forcing to the free surface.
PThis case is equivalent to Case JS3a except that low-level random noise is added to the initial

condition.

¢This case was initially computed using the finest grid resolution (labelled as P1) to prove the
assumption made about the self-similarity of a dipole. The domain was resized twice at ¢t = 20
(the beginning time of phase P2) and ¢ = 100 (the beginning time of phase P3) to ensure that
the lateral domain width is always at least four times bigger than the lateral size of the dipole.

A co-moving frame of reference attached to a vortex was also employed for the simulation in

phases P2 and P3 to fix the streamwise position of the vortical structure.

TABLE 4.1: Impulsive-jet-induced wake run parameters.
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4.2.1 Jet-Induced Dipole

We first investigate the evolution and formation of a turbulent patch generated by
an impulsive jet as a test case. The jet acts over a short time interval At; with
a forcing intensity Jr, distributed to the computational grid via the 3D Gaussian
function with semi-width o (cf. Equation 2.20). We choose Aty =4 and Jp = 1/4,
in units of £/U and U?L?, respectively, with £ = 8o (such that U = J%/2/40).
When the code described in §2 is used to study the evolution of an impulsive
jet, the boundary force from the virtual body B; is not active. Recall that the
calculations are carried out in a stationary frame of reference. To study the effect
of a (non-deforming) free surface, we consider two distinct canonical flows: an
impulsive jet in a deep layer and another in a shallow layer. These are simulated
for a jet Reynolds number of 2000 based on the forcing intensity, i.e. Re; = J%/ 2 iz
Free-slip boundary conditions are applied in the vertical direction for the jet in
both deep and shallow layers, whilst the lateral direction is assumed to be periodic.
The main difference between these two cases is that the vertical growth of the
vortical structure created by the jet in a deep layer is not confined by the stress-
free boundaries. The number of grid cells and the domain size for both cases,
labelled as Cases JD and JS1 respectively, are given in Table 4.1. For the shallow-
layer case, the forcing interval and the height of the computational domain were
selected to correspond to the confinement number C' = 2, for which the vortex
dipole has been observed at the free surface (Voropayev et al., 2007). Note that
the lateral domain width L, for all cases in this section was chosen to be at least
2.7 times larger than the maximum lateral size ¢, of the coherent structure (see
Equation 4.5 above). That this value is sufficient is implied by the agreement
of the dipole characteristics for Cases JS3a and JS3LD (which is equivalent to
Case JS3a, apart from using L, that is twice as large); see Figure 4.8. However, it
should be noted that since the length of the initial momentum-containing region is
relatively large, some of the pre-dipole dynamics may be influenced by the lateral

domain size.

A check of the spatial resolution was performed by comparing the difference
between the left- and right-hand sides of the volume-integrated instantaneous

kinetic-energy equation, written such that (Pope, 2000)

dK

o KT Fr + /uZTZ drdydz, (4.9)

where K is the volume-integrated kinetic energy, € is the volume-integrated rate

of kinetic energy dissipation and F is the net volume-integrated kinetic energy
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FIGURE 4.1: History of rate of change of volume-integrated kinetic energy
dK/dt for Case JD (jet in deep layer): dK/dt; -—-- —ex — F +
f u; Ty doe dy dz.

flux. This check indicates whether the grid is fine enough to resolve the smallest
turbulence scales. History of the rate of change in the volume-integrated kinetic
energy is provided in Figure 4.1. Although the smallest scales of the flow (i.e. the
small-scale shear layers associated with, e.g., the boundary layer of the virtual
body) generated by the jet impulse are not well captured before ¢ ~ 10 (which
leads to the differences between the left- and right-hand sides of Equation 4.9),
after this time the flow is fully resolved. For all cases in this section except for
Case JS3F, the maximum difference after 10 time units was less than 1.53% of
the maximum value of dK/d¢t. The early under-resolution (when the calculation
was effectively a large-eddy simulation in the context that the large turbulence
scales are well resolved, while the small scales are not) corresponds to ambiguity
of the details of the geometry of the wake-generating body. Since it appears that
a vortex dipole is universal, i.e. a self-similar dipole can be obtained naturally
from different initial conditions and paths (see Figure 4.8), a full resolution of the
early-time small-scale turbulence (as used for Case JS3F; see Figure 4.7 below) is

not necessary to obtain the correct long-time behaviour of the dipole.

The development of an impulsive jet in deep and shallow layers is shown in
Figure 4.2 by the second invariant of the velocity gradient tensor @ (cf. Equa-
tion 3.21). After the relatively strong jet (Re; > 1) is imparted into the fluid, it
generates a vortical structure with azimuthal vorticity in the frontal region. The
frontal region propagates away from its origin with speed U,, which is half the
local fluid velocity behind the front (Stern & Voropayev, 1984). Thus the jet fluid
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FIGURE 4.2: Top and side views (upper and lower part of each picture,
respectively) of the vortical structure in (left) a deep layer (Case JD) and
(right) a shallow layer (Case JS1) at Re; = 2000 with level Q = 2.5 x 10~
(a, b) t =10, (c, d) t =50, (e, ) t = 250. Isosurfaces of @) are coloured by

vertical vorticity component w,.
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FIGURE 4.3: Histories of the lateral (¢,) and vertical (£,) vortex sizes nor-
malised by the domain depth for impulsive-jet flow in (a) a deep layer (Case
JD) and (b) a shallow layer (Case JS1): ---- ¢, /h; 0. /h. The domain
depth h of Cases JD and JS1 is different.

merges into the vorticity front. At this stage, the ambient fluid is entrained in the
frontal region, resulting in increasing the sizes of the coherent structure. When
the vertical growth of the turbulent patch is not restricted (as for Case JD), the
vertical and horizontal sizes of the patch increase, while decreasing the propaga-
tion speed to conserve momentum. With time the turbulent patch transforms into

a toroidal vortex, as shown in Figure 4.2(e).

When the vertical growth of the turbulent patch is suppressed by the stress-
free layers (Case JS1), the frontal region can only expand horizontally due to
lateral entrainment (Figure 4.2d). A quasi-two-dimensional counter-rotating vor-
tical structure eventually forms at late times, as illustrated in Figure 4.2(f). A
plot of the lateral and vertical vortex sizes (¢, (,) versus time for Cases JD and
JS1 is displayed in Figure 4.3. The agreement of the £, and /£, histories for Case
JD underlines the axisymmetric nature of the turbulent patch observed in Fig-
ures 4.2(a), 4.2(c) and 4.2(e), throughout the simulation (and indirectly validates
the choices made for the sizes [and boundary condition] for the vertical and lateral
domains). For Case JS1, the ¢, and /¢, histories imply that the turbulent patch is
affected by the free-surface confinement for ¢t > 10 (see Figures 4.2b, 4.2d, 4.2f).

The volume-integrated kinetic energy K of both cases is displayed in Fig-
ure 4.4. The kinetic energy of the vortical structure resulting from the jet in a
deep layer decreases faster than the vortex suppressed by a free surface. This sug-
gests that the toroidal vortex decays more rapidly than the vortex dipole, which

can be confirmed by the theoretical scaling laws. Based on the ring and the dipole
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FIGURE 4.4: History of the volume-integrated kinetic energy K: ---- Case

JD (deep layer); Case JS1 (shallow layer).

power laws, the volume-integrated kinetic energy of the ring and the dipole de-
creases with time as t=3/4 and t~%/3, respectively. Note that most of the kinetic
energy of the flow is provided by the large-scale structures, hence the small scales
observed from the ring at t = 250 (Figure 4.2e) do not have much effect on the

kinetic energy.

Figure 4.5 illustrates the signature of the momentum disturbance caused by
an impulsive jet. Initially, it can be seen from Figure 4.5(a) that the concentrated
momentum disturbance at the free surface does not form a vortex dipole. With
time, the patch propagates away from its origin, while increasing its horizontal
size and decreasing its propagation speed, transforming into a quasi-planar dipole,
as displayed in Figure 4.5(c). This is consistent with Voropayev et al.’s (2007)
prediction that a dipole will be visible on the free surface when the confinement

number (which for Case JS1 is 2) is greater than about 2.2.

To study the self-similar behaviour of the dipole at late time, the simulation
at Re; = 2000 was re-computed in a longer streamwise domain to avoid any ef-
fect of the outflow boundary condition. The length of the streamwise domain was
increased from L, = 30 to L, = 60, with a corresponding increase in the number
of grid cells to N, = 1920. In addition, two more Reynolds numbers (Re; = 625
and 1250) were considered (see Table 4.1). After the dipole is fully formed, Fig-

ure 4.6(a) shows that the intensity of the vertical vorticity at the free surface
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F1Gure 4.5: Contours of vorticity at the free surface showing the penetra-
tion of the momentum source created by an impulsive jet at Re; = 2000
(Case JS1): (a) t = 10, (b) ¢ = 50, (¢) t = 300. Vorticity varies from
—0.2 < w./ |w:|,pax < 0.2. Blue and red patches show negative and positive
vertical vorticity, respectively.

reduces with time as w, max ~ t~*. The temporal evolution of the dipole propaga-
tion velocity U, and the dipole size ¢, are illustrated in Figures 4.6(b) and 4.6(c),
respectively. The dipole propagation speed decreases with time as Uy ~ t=2/3,
while its size increases as dq ~ t'/3. The power laws of the dipole in this simu-
lation are the same as those in the previous measurements in a linearly stratified
fluid (Voropayev et al., 1991) and in a shallow layer (Sous et al., 2004; Voropayev

et al., 2007). The dipole at a lower Reynolds number requires less time to achieve
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FIGURE 4.6: Histories of characteristics of jet-induced dipole:

Rej =
2000 (Case JS2); ---- Re;j = 1250 (Case JS3a); ----- Re; = 625 (Case JS4).
(a) Maximum vertical vorticity at the free surface. (b) Dipole propagation
velocity. (c) Dipole size.

power-law behaviour. For example, the dipole propagation velocity at Re; = 625
starts to follow ¢~%/% at ¢t ~ 150, while about 500 and 1800 time units are required
for the dipoles at Re; = 1250 and 2000, respectively. It should be noted that
the theoretical scaling laws are based on the idea of the flow similarity and they
satisfactorily describe the results of experiments and our numerical simulations at
an intermediate asymptotic state only — but they are not useful in describing the
whole flow evolution. Additionally, using only one realisation might not be enough
to obtain close agreement between DNS results and the theoretical scaling laws,
especially during the transformation process leading to a dipole. An ensemble of

realisations is needed to address this point.

To investigate the sensitivity of the intermediate-time behaviour (about 200 —

500 time units; see Figure 4.8) to small changes in the initial conditions (including
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FIGURE 4.7: History of rate of change of volume-integrated kinetic energy
dK /dt for Case JS3F (jet in shallow layer using finest resolution):
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the full resolution of the small-scale turbulence at the early time) and domain size,
Case JS3a (jet-induced dipole at Re; = 1250) was repeated, first in the same com-
putational domain but with low-amplitude (maximum value of 107%) random
seeding (Case JS3b), second in a two times larger lateral domain (Case JS3LD),
and third using many more grid points (Case JS3F). Note that the resolution
for the first three cases is identical, while the resolution for Case JS3F during
the forcing duration is four times finer, which results in the difference between
dK/dt and its RHS terms (see Equation 4.9) during the breakdown to turbulence
(t ~ 2.5) being about 5% of the maximum value of dK/dt as displayed in Fig-
ure 4.7. Histories of the dipole characteristics from these four cases are illustrated
in Figure 4.8. Although their initial development is different, all four cases nev-
ertheless converge to very similar dipole flows. This suggests that the dipole is a
robust two-dimensional limit that is relatively insensitive to the path taken during

its development.

4.2.2 Manoeuvring-Body Wake

We limit attention here to wakes in a shallow layer of same depth used for Cases
JS1 — JS4. In order to capture the entire process of a late wake eddy behind
a manoeuvring body, the simulation of a spatially developing wake needs to be
performed in a very long domain, which is computationally inefficient. To over-

come the problem, the simulation is split into two phases. The first phase of the
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FIGURE 4.8: Histories of characteristics of jet-induced dipole at Re; = 1250
from four different realisations: Case JS3a; ----- Case JS3b; —---
Case JS3LD; ------- Case JS3F. (a) Maximum vertical vorticity at the free
surface. (b) Dipole propagation velocity. (c¢) Dipole size.

simulation is concerned with the early-time behaviour of the wake, including both
the near-field wake and the starting vortex, whilst the final phase contains only
the late-time dipole behaviour (see §4.2.2.2)

4.2.2.1 Farly-Time Behaviour

We select a sphere with diameter D;, as the manoeuvring body. The Reynolds
number based on the diameter and the terminal velocity U, of the sphere is
Re, = U, +Dy/v = 826. The simulation is performed in the domain given by
-5 < <30, 4<y<4and —0.5 < z < 0.5, with 2240 x 512 x 64 grid cells.
Here the reference length £ is 2.5D,, and the reference velocity U is 2.05U, ;.
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FIGURE 4.9: (a) Histories of the momentum flux, thrust, drag

and speed of the body for manoeuvring-body wake: F/Fax;
————— Thrust/Fnax; ---—- Drag/Fuax; = Up/Up . (b) History
of the volume-integrated streamwise momentum flux: —— F); ©O

[ (=0u/dt + By + T, — dU,/dt) dezdydz. The simulation parameters for
this case are Re, = U, Dy/v = 826, Re; = J1/2/V = 785 and C =
JY2Aty/h? = 1.62.

At t = 0, the body accelerates from rest. The forcing time scale in Equa-
tion (2.21) was chosen such that the density of the object associated with Mg is
552 times that of the fluid. At this stage, the thrust is greater than the drag, lead-
ing to a momentum flux F' being transported to the fluid. After some time, the
body reaches and maintains its terminal speed. Histories of the momentum flux,
the thrust, the drag and the velocity of the body are displayed in Figure 4.9(a).
The jet Reynolds number Re; and the confinement number C' for this case are of
785 and 1.62, respectively. Note that we do not fully resolve the boundary layers of
the sphere because we assume that the dipole will eventually become self-similar,
such that the late-time characteristics of the dipole do not depend critically on
the near-field wake (supported by the evidence in Figure 4.8) and only a mo-
mentum flux imparted into the fluid is important (compare comments following
Equation 4.9, above). Thus, it is necessary to check if the net volume-integrated
momentum flux F);, which is the difference between the momentum, pressure and
viscous fluxes at the inlet and outlet planes, is balanced by the forces added to the
Navier—Stokes equations. The streamwise momentum balance in the non-inertial

moving reference frame can be written such that

ou dUb
Fy = / <_E +B,+T, — E) drdydz. (4.10)
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FIGURE 4.10: Top and side views (upper and lower part of the picture,
respectively) of the vortical structure of a manoeuvring-body wake with
level @ = 2.5 x 107%: (a) t =5, (b) t = 10, (c) t = 20. Isosurfaces of @ are
coloured by vertical vorticity component w,.
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A plot of the balance of the volume-integrated streamwise momentum flux versus
time is displayed in Figure 4.9(b), showing good agreement between the flux terms
Iy and the external forces. The difference is less than 0.11% of the maximum
value of Fy; during the acceleration period (¢t < 9) and less than 2 x 1073% when
the body moves at its terminal speed. The adequacy of the spatial resolution was
also checked in the same way as described in §4.2.1. It was found that the error

remaining after five time units was lower than 0.12% of the maximum value of

dK/dt.

The second invariant of the velocity gradient tensor () is again used to visualise
the vortical structure of the manoeuvring-body wake, as displayed in Figure 4.10.
It is found that a large-scale vortical structure, resulting from the acceleration of
the body, appears in the late wake. The horizontal size of this vortical structure
increases with time, due to lateral entrainment, while the vertical growth is re-
stricted by the top and bottom free-slip walls. When the body is moving at its
terminal velocity, a momentumless wake is observed in the near-field region. The
zero-momentum wake decays very quickly without the formation of any coherent
vortical structures. Note that the momentumless wake at the early time is still
laminar, despite the relatively high Reynolds number, because the near-field wake
is convectively unstable, i.e. has no strong reversed-flow region. Hence this flow
compares to that over a streamlined body in which no flow separation occurs and
it thus needs a very long time to become turbulent. If we were to use a high-
intensity body force (i.e. Jp/0.5m0*U;, > 1) to represent the drag instead of the
virtual body, the instability of the near-field wake would change to an absolute-
type instability and would thus quickly break down to turbulence with a lot of
small-scale eddies, which require very fine grid resolutions to fully resolve them.
We did not follow that strategy, since the objective of this work is to study the

characteristics of the late-wake eddy.

4.2.2.2  Late-Time Behaviour

After the body has reached its terminal velocity (at ¢ = 20), the vorticity field was
projected to a smaller computation domain using a window function f,, defined in
Equation (2.23). The objective of using the window function is to remove a portion
of the near-field wake, allowing computational resources to capture only the far-

wake portion of the flow, as illustrated in Figure 4.11. Note that the removal of
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FIGURE 4.11: The projected vortical structure with the window function
at t = 20: (Upper) top view, (Lower) side view.

the momentum source does not affect the formation and evolution of the late-
wake eddy because negligible net momentum is imparted into the flow by the self-
propelled body after it has achieved its terminal speed, when the drag is practically
cancelled by the thrust. In order to obtain the new velocity field, we first solve
the Poisson equation for the vector stream function ¥ = (v, 1, 1,) whose source
term is the projected vorticity field w = (w, wy, w,) (cf. Equation 2.26). The new
velocity field can then be obtained directly by taking the curl of the vector stream
function as given in Equation (2.27). Full details of the domain-resizing approach

including a corresponding set of boundary conditions are given in §2.7.

The simulation in this phase is first carried out in a domain of size 4 < x < 24,
—8 <y <8and —0.5 < z < 0.5, with 1280 x 1024 x 64 grid cells. Since the coher-
ent structure propagates in the positive z-direction and could leave the domain if
the domain length in that direction is not long enough, we employ a proportional-
integral-derivative (PID) controller, described in §2.8, to keep the vortical struc-
ture at a fixed streamwise location within the domain. This also significantly
reduces the computational cost. The PID controller locates the vortex dipole to
within 107* of the desired location by 20 time units. We allow the wake shed
from the vortex to go out of the computational domain in the negative (outflow)
z-direction (note that in the frame of reference attached to the vortex/dipole struc-
ture, the inflow boundary is at * = 24 and the outflow at x = 4), since its effect
on the dipole dynamics is assumed to be negligible (supported by Figure 3.20).
At very late time, high resolution is no longer required, since the global Reynolds
number, based on the dipole translation speed U, and the dipole size d4, decreases
with time as ¢~/3 (Voropayev et al., 1999), but the size of the domain has to be
increased to capture the dipole as its lateral size increases. Thus, the computa-
tional domain was expanded at t = 200, with —2 < x < 30, —16 < y < 16 and
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FIGURE 4.12: Top (upper) and side (lower) views of isosurfaces of ) showing
the evolution of the vortical structure generated by the manoeuvring body
at late time: (a) ¢ = 50, (b) ¢ = 100, (c) t = 200. Isosurfaces of @ are
coloured by w. and the surface level is Q = 2.5 x 1075,
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F1GURE 4.13: Contours of vertical vorticity w, at the free surface showing

the penetration of a wake signature of a manoeuvring self-propelled body:

(a) t =30, (b) t =100, (¢) t =200 (the computational domain is resized as

described in §2.7), (d) t = 1000. Vorticity varies from —0.2 < w./ |w2|,,.. <

0.2. Blue and red patches show negative and positive vertical vorticity,

respectively.
—0.5 < z < 0.5, and the resolution reduced to 1024 x 1024 x 32 grid cells. It
should be noted that during the entire simulation, the lateral domain width L, is
at least six times larger than the lateral size of the coherent structure created by

the manoeuvring body.

The isosurfaces of @) displayed in Figure 4.12 show the evolution of the vortical
structure. Only the horizontal size of the late-wake eddy can expand, yielding a
coherent structure in the form of two patches of opposite-signed vortices, as shown
in Figure 4.12(c). The evolution of the vortical structure at the free surface is
displayed in Figure 4.13. Figure 4.13(a) shows that the momentum disturbance
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FIGURE 4.14: Histories of characteristics of dipole induced by manoeuvring
body. (a) Maximum vertical vorticity at the free surface. (b) Dipole prop-
agation velocity. (c) Dipole size. The computational domain is resized as
described in §2.7 at t = 200.

penetrates upward and produces its signature at the free surface at an early time.
At this stage the wake signature is not yet in the form of a dipole. With time,
the horizontal size of the surface eddy grows as it propagates away from the body,
and the wake signature finally transforms into a vortex dipole (Figure 4.13¢ and
4.13d). The late-time coherent eddy generated by the manoeuvring body is similar
to the jet-induced dipole.

The late-time characteristics of the dipole created by the accelerating motion
of the body are given in Figure 4.14, along with the theoretical scaling laws. The
comparison shows good agreement between the DNS and the power laws. These
scaling laws are obtained with the assumption that the impulse of the dipole is

conserved (Voropayev et al., 1991, 2008). Based on this assumption, the decay of
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Case Re; C A

JS2 2000 2.0 58.69
JS3a 1250 2.0 41.52
JS4 625 2.0 23.53

Manoeuvring body 785 1.62 21.28

TABLE 4.2: Values of A.
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FIGURE 4.15: Histories of maximum vertical vorticity at the free surface:
Case JS2 (Rej = 2000); ---- Case JS3a (Re; = 1250); - Case
JS4 (Rej = 625); - Manoeuvring body (Re; = 785).

the vertical vorticity is inversely proportional to time, with
Wz, max — At_l s (411)

where A is an empirical constant. The constant A was determined experimentally
by Voropayev et al. (2008) to be A = 17. In order to check whether or not this
constant is universal, we compute A for all four cases (the jet-induced dipole at
Rej = 625,1250,2000 and the manoeuvring-body wake at Re; = 785) by finding
the slope and the virtual orgin of w_ .. = (t —to) /A. The resulting values of A
from our data are given in Table 4.2, and a plot of w, max versus (t—ty) is displayed
in Figure 4.15. Although the vorticity at large times decays in a similar manner
as 1/(t — o), a Reynolds-number dependence is indicated, calling the universality
of A into question. The consistency of the estimates for A seen in Figure 4.8(a),

which shows the decay of w, max from different realisations, yields a unique value
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of A for the jet-induced dipole at Re; = 1250. Note that some difference between
numerical and experimental values of A may be expected because the experiments
(Voropayev et al., 2008) were conducted in a stratified fluid, while a confined

homogeneous fluid is used in the present simulations.

4.3 Chapter Summary

The formation and evolution of the large-scale coherent structure produced by
both an impulsive jet and an accelerating self-propelled body have been examined
using DNS. It is found that when the vortex is constrained by the stress-free top
and bottom layers, a quasi-planar counter-rotating structure is formed. The vortex
dipole persists for a longer time than a typical toroidal vortex. The characteristics
of the dipole vortices induced by the presence of vertical confinement are similar
to those in a stratified fluid. Qualitatively similar pancake-like vortices can be
obtained via different initialisations, which support the assumptions made about
the self-similarity of a dipole. The expected scaling laws are satisfied although
the dipoles appear to possess a Reynolds-number dependence. Next chapter (§5)
will investigate how the formation of the submerged momentum disturbances is
affected by the thickness of the fluid domain. The ability of the confinement
number to predict the effect of a submerged coherent vortex on, for example, the

free surface will also be explored.






Chapter 5

Evolution of Impulsively Generated Turbulent
Patches: II. Effect of Confinement Number

This chapter focuses on formulating the conditions under which an impulsively
generated turbulent patch can be transformed to a pancake-like counter-rotating
vortex which penetrates and produces a vortex dipole at the free surface and de-
termining the relationship between the characteristics of a surface signature and
the input parameters. We first explain the most important external dimensionless
parameter, the confinement number, in §5.1, followed in §5.2 by the numerical
approach employed to compute the evolution of the momentum patch. The simu-
lation parameters are given in § 5.3. The major results from this study are reported

in §5.4. This chapter is then concluded with a brief summary in §5.5.

5.1 Physical Meaning of the Confinement Number

It was found that the condition under which a three-dimensional vortex can be

altered to a vortex dipole and produces a signature at the free surface depends

only on the dimensionless parameter called the confinement number C' (Sous et al.,

2004, 2005; Voropayev et al., 2007). The confinement number was first obtained

by performing dimensional analysis (Sous et al., 2004) and is defined as
_JMY2Aty

C="7r (5.1)

where J is the forcing intensity, Aty is the forcing duration and h is the depth
of the fluid domain. Voropayev et al. (2007) estimated the critical value of the
confinement number, and assuming the momentum was provided by a round tur-
bulent jet (the eddy viscosity and the jet’s half width provided in Schlichting,
1979) as shown below.

73
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t = Aty t> Aty

FIGURE 5.1: Schematic of side view of (left) a conical turbulent jet at
t = Aty, and (right) a round turbulent patch at ¢t > Aty (adapted from
Voropayev et al., 2007).

After the relatively strong jet (Re; > 1) is imparted into the fluid, it generates

a conical vortical structure with a spherical vorticity of diameter d,4, which will grow

with time, in the frontal region (see Figure 5.1). The frontal region propagates

away from its origin with speed U, which is half the local fluid velocity in the
trailing jet u;, behind the front (Stern & Voropayev, 1984)

_dX, 1

U=—2="u, 5.2

dt 2u] Y ( )

where X, is the distance from the origin. For a circular turbulent jet, the velocity

of the jet can be estimated from the eddy viscosity €, (Schlichting, 1979) as

3 1
B 87"-EO)EVd (]. + %52)2 ’

u; (€) (5.3)

where § is the radial distance normalised by the jet’s half-width r;/,. The eddy
viscosity is parameterised as €, = 0.0161.J'/2 (Schlichting, 1979). Thus the jet
maximum velocity that occurs at the centreline (£ = 0) is

J1/2

X
Substituting u; into Equation (5.2) and integrating it over the period of the forcing,
the distance X, of the vorticity front at the end of the forcing action (¢ = Aty) is

- 1 [Aty
X dX,; == 7.4141 JY2 dt
2 0

X~ 27229 JVAAL)? (5.5)
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FIGURE 5.2: Schematic of computational domain for a disk-like body force
during the forcing period (¢ < Aty).

The diameter of the vorticity front 64 can be approximated from the half-width of
a self-similar turbulent jet, with ry, = 0.0848 X, (Schlichting, 1979), as

0q ~ 271/ ~ 04618 JVAAL? (5.6)

After t > Aty, the trailing jet of the conical structure continues to merge into
the frontal region (recall that u; is two times faster than U), leading to a nearly
spherical turbulent patch of diameter 4, which is usually bigger than by (cf. Fig-
ure 5.1). Since a change in the volume of the vortex during this transformation
is assumed to be negligible (Voropayev et al., 2007), the size of the patch can be
obtained by equating the volume of the patch (V, = 763/6) and the conical vortex
(V, = m02X4/12),

04 ~ 143396, ~ 0.6622 JV/AALY?. (5.7)

From this estimation, one can expect that a large-eddy signature will appear at a
free surface when 0; > h. The critical value of the confinement number C., can
then be obtained by combining the above approximations with the definition of

the confinement number and setting d; = h, such that

0.6622 J'/* Aty

h )
JUVAA 12
hz  0.66222°
Cop m=23. (5.8)

Based on this estimation, it can be seen that only the forcing intensity J and
forcing period At control the initial shapes (horizontal length X, and its size d4)
of the turbulent patch. Voropayev et al. (2007) thus suggested that (the square

root of) the confinement number can be interpreted as the ratio of the initial
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FIGURE 5.3: (a) Time evolution S(t) of the body force. (b) Distribution
of the body force in axial G(z) and radial H(r) directions: G/ Gax;
T H/Hmax-

size of the patch, defined by J and Aty, to the depth of the fluid domain. Once
the given initial size is bigger than the domain depth, the vertical growth of the
turbulent patch is restricted by the flow geometry and the patch may be altered

to a quasi-two-dimensional counter-rotating vortical structure.

5.2 Numerical Approach

The numerical approach used in this chapter is similar to that described in §2
except that only a stationary impulsive momentum source (an impulsive turbu-
lent jet) is chosen to generate a turbulent patch since it has been shown in §4
that qualitatively identical quasi-2D counter-rotating coherent structures can be
obtained from using either moving (a manoeuvring body) or stationary (an im-
pulsive jet) momentum sources. Hence, the boundary force from a virtual body
B; is not active and the calculations are first performed in a stationary frame of
reference during the forcing period (¢ < Aty), as illustrated in Figure 5.2. Stress-
free boundary conditions are applied in the vertical (z) direction to represent a
non-deformable free surface, while periodic boundary conditions are employed in

the lateral (y) direction.

Once t > Aty, a co-moving frame of reference attached to a vortex, described
in §2.8, is employed to maintain the position of the turbulent patch (see Fig-
ure 2.2). The computational domain is increased several times as the flow develops
to accommodate the growth in the sizes of the momentum patch. In brief, the

domain length is expanded in the streamwise (z) and lateral (y) directions, while
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the resolution in all three directions is reduced to decrease the net computational
cost. The reduction in the grid resolution is done without the loss of accuracy,
since the Reynolds number of the flow, based on the vortex translation speed Uy
and its size dg4, decreases with time. Details of the domain-resizing technique and

its validation are respectively provided in §2.7 and §3.3.

An impulsive momentum source T' = (7,0, 0), applied directly to the Navier—
Stokes equations, is modelled as a thin axisymmetric disk (e.g. see Mohseni et al.,
2001) with radius R and has the form

To(z,y,2,t) = JS(t)G(x)H(r), (5.9)

where J is the forcing intensity.

A step function, whose distribution is illustrated in Figure 5.3(a), is used to

o] o

where C; = 0.02 is a time offset to ensure that S (0) = 0, and o, = 16/C} is an
inverse of a time scale that controls the smoothness and is set to be compatible
with the choice of C;. The body force is centred at (z,y,z) = 0. The functions
G(z) and H(r) respectively control the spatial variation of the body force in the
streamwise () and radial (r = \/y2 + 22) directions and are defined as

represent the time evolution S(t) of the body force as

1 x?
1 r— R
H(r) = 20 erfc ( p > ; (5.12)

where C, = 0.5Ro,m"/2e~ 7177 1 0.25m[erf (R /0,) + 1][0? + 2R?] is a normalisation
constant chosen to ensure unit total force; the smoothing coefficients o, and o,
are assigned the value of 0.2R, which results in the distribution displayed in Fig-
ure 5.3(b). Note that Equations (5.11) and (5.12) are determined in such a way
that J is equal to the volume integrated force (J = [ T, dzdydz), such that the

total impulse I can be obtained as

I= /Jdt: NINTS (5.13)
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Azimuthal instability is introduced by adding azimuthal perturbation g(0)
with amplitude ¢ = 5 x 1073 to the body-force radius R, such that

R'(0) « R[1+<g(0)] . (5.14)

We follow Shariff et al. (1994) and Archer et al. (2008) by using g(6) as the sum

of the first 32 Fourier modes, written as

g(0) = A, cos(nf) + B, sin(nf) (5.15)

n=1

where A,, and B, are random numbers with A% + B2 =1, and 6 is the azimuthal
coordinate. Note that the level of the azimuthal perturbation used is higher than
that from the numerical error that excites only some particular azimuthal modes.
Therefore, the first 32 azimuthal modes each have approximately the same initial
level of energy, allowing the flow to naturally select the most dominant azimuthal
mode. When the value of < is too large (greater than about 10~ for this case), the
transition to turbulence of a momentum patch bypasses a linear instability stage.

The patch thus becomes turbulent only by a nonlinear instability process.

5.3 Simulation Parameters

Numerical simulations were designed to study the effect of the confinement number
C on the formation of the turbulent patch by varying the forcing duration Aty,
which results in a range of C' from 0.2 — 6.0, as listed in Table 5.1. The forcing
intensity and the domain depth were fixed at J = 1/16 and h = 0.3 (corresponding
to h/2R = 6), in units of U*L? and L, respectively, with £ = 40R and U =
JY2/10R. TFor all cases, the simulations were conducted at Re; = JY2/v =
1250 and used the time step At that provides the maximum Courant—Friedrichs—
Lewy (CFL) number, based on local maximum velocity and grid size, well below
0.2. During the forcing duration, the simulations were performed in the finest
grid resolution (phase one, labelled as superscript 1 in Table 5.1) to ensure that
the smallest scales of the flow are fully resolved (supported by the evidence in
Figure 5.4 below). A few times after the forcing stopped, the computational
domain was resized and the simulations continued into phase two and phase three,
in which a co-moving frame of reference attached to the vortex structure was
employed to lock the streamwise position of the turbulent patch. It should be

noted that the lateral domain width L, for the simulations in all phases of each
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Case C Aty Fn Domain size N.x Ny x N, i/At;
Ts  Te Ys Ye Zs Ze

Cop2! 0.2 0.072 81 —05 1.0 —02 02 —0.15 0.15 960 x 256 x 192 4.17

C0p2? 0.2 0.072 81 —1.0 1.6 —0.6 0.6 —0.15 0.15 832 x 384 x 128  50.0

Cop5! 0.5 0.18 20.3 —0.5 1.5 —0.3 0.3 —0.15 0.15 1280 x 384 x 192 4.0
Cop52 0.5 0.18 20.3 —1.0 24 —0.8 0.8 —0.15 0.15 1088 x 512 x 128 10.0
Cop5® 0.5 0.18 20.3 —2.0 3.0 —1.6 1.6 —0.15 0.15 832 x512x64  50.0

Clp0! 1.0 0.36 40.6 —0.5 2.0 —0.4 04 —0.15 0.15 1600 x 512 x 192 2.5
Cip0? 1.0 0.36 40.6 —1.0 3.0 —1.0 1.0 —0.15 0.15 1280 x 640 x 128 8.34
C1p0® 1.0 0.36 40.6 —2.0 4.0 —24 24 —0.15 0.15 960 x 768 x 64  50.0

Clp5' 1.5 054 60.9 —0.5 25 —0.5 0.5 —0.15 0.15 1920 x 640 x 192  2.22
Clp5? 1.5 054 60.9 —1.0 3.6 —1.2 1.2 —0.15 0.15 1472 x 768 x 128 6.67
Clp5® 1.5 0.54 60.9 —2.0 4.8 —2.8 2.8 —0.15 0.15 1088 x 896 x 64  50.0

C2p0! 2.0 0.72 81.2 —0.5 29 —0.6 06 —0.15 0.15 2176 x 768 x 192  2.08
C2p0? 2.0 0.72 81.2 —1.0 3.6 —1.4 1.4 —0.15 0.15 1472 x 896 x 128  6.25
C2p03 2.0 0.72 81.2 —2.0 48 —-3.2 3.2 —0.15 0.15 1088 x 1024 x 64 50.0

C2p5! 2.5 0.9 101.6 —0.5 3.1 —0.65 0.65 —0.15 0.15 2304 x 832 x 192 2.0
C2p52 2.5 0.9 101.6 —1.0 4.0 —1.4 1.4 —0.15 0.15 1600 x 896 x 128 6.0
C2p5% 2.5 0.9 101.6 —2.0 5.2 —3.2 3.2 —0.15 0.15 1152 x 1024 x 64  50.0

C4p0! 4.0 1.44 1625 —0.5 4.0 —0.8 0.8 —0.15 0.15 2880 x 1024 x 192 1.46
C4p0? 4.0 1.44 1625 —1.0 4.6 —2.0 2.0 —0.15 0.15 1792 x 1280 x 128 6.25
C4p0® 4.0 1.44 162.5 —2.0 6.0 —4.0 4.0 —0.15 0.15 1280 x 1280 x 64 50.0

C6p0t 6.0 2.16 243.7 —0.5 4.0 —1.0 1.0 —0.15 0.15 2880 x 1280 x 192 1.25
C6p0? 6.0 2.16 243.7 —1.0 5.0 —2.0 2.0 —0.15 0.15 1920 x 1280 x 128 4.63
C6p03 6.0 2.16 243.7 —2.0 7.2 —4.0 4.0 —0.15 0.15 1472 x 1280 x 64  50.0

TABLE 5.1: Run parameters. The superscripts denote the simulations in
phase one, phase two and phase three of each case, as described in §5.3.
The formation number Fn is defined at the end of the forcing period (see
§5.4.2). The time  denotes the end of each phase of the simulation. All
lengths and times listed here are respectively given in units of £ and L/U,
where £ = 40R and U = J'/2/10R.

case was at least three times larger than the lateral size of the turbulent patch,
since it has been demonstrated in Figure 4.8 that this value of L, is sufficiently

large that the effects of periodicity can be neglected.

5.4 Results

Below we present DNS results from simulations for a range of C'. The adequacy
of grid resolution is first verified in §5.4.1, followed in §5.4.2 by the early-time

development which includes the breakdown process of the elongated momentum
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FIGURE 5.4: History of rate of change of volume-integrated kinetic energy
dK /dt for Case C1p0: dK/dt; ---- —ex — Fx + [u;T;dedydz.

patch. Finally, the effect of the confinement number on the evolution of the patch

is explored in §5.4.3.

5.4.1 Resolution Check

It can be checked whether the grid resolution used is fine enough to capture
the smallest turbulence scales by comparing the difference between the rate of
change of the volume-integrated instantaneous kinetic energy! K and the volume
integrated rate of kinetic energy dissipation ex, together with the net volume-
integrated kinetic energy flux Fj and the volume integrated work due to the
external force [u;T;dxdydz (see Equation 4.9), as shown in §4.2.1. Case C1p0
is used to demonstrate the adequacy of the spatial resolution, since the resolution
for all cases is identical during the forcing period. Figure 5.4 displays the history
of dK/dt versus the RHS of Equation (4.9) during phase 1 (including the forcing
duration) and phase 2 of Case C1p0. It was found that the difference was less than
0.26% of the maximum value of dK/dt up to the point of transition to turbulence
(t/Aty < 0.25, see §5.4.2 below). During the breakdown to turbulence, the vortex
filaments are stretched to fine scale, which results in an enstrophy peak. Even
during this most difficult to resolve phase, reasonable accuracy was obtained with

the maximum difference of about 5%. After the forcing has stopped, the turbulent

"When the co-moving frame of reference is being used, the pseudo force due to the frame
acceleration of —dUp/dt must be taken into account, such that K = %f (umZ — UI%) dzdydz.
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FIGURE 5.5: Isosurfaces of @, coloured by w,, showing the evolution of the
momentum patch during the forcing duration for Case Clp0: (a) t/At; =
0.06, (b) t/Aty = 0.25, (c) t/Aty = 0.33, (d) t/Aty = 0.5. The formation
number at each time is: (a) Fn = 2.26, (b) Fn = 10.16, (¢) Fn = 13.54, (d)
Fn = 20.31.

patch starts to decay, leading to a decrease in the error after ¢t/At; > 2 being less
than 0.32%.

5.4.2 Early-Time Characteristics and Breakdown to Turbulence

It is now well known that the formation of a vortical structure generated by an
impulsive momentum source can be classified into two regimes depending on the
value of the dimensionless formation number F'n, defined in experiments of Gharib
et al. (1998) (who used a round-piston-driven jet nozzle to create a vortex ring),
as Fn = L/D, where L is the piston stroke and D is the nozzle diameter. They
observed that when F'n > 4, the vortex ring does not gain any further circulation
and thus disconnects from a portion of vorticity behind it (called a trailing jet).

This process is usually referred to as vortex ring pinch-off.
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FIGURE 5.6: Side view of contours of w, at the centreline (y = 0) during
the forcing duration for Case C1p0: (a) t/Aty = 0.06, (b) t/Aty = 0.25, (c)
t/Aty = 0.33, (d) t/Aty = 0.5. Vorticity varies from —0.2 < wy/ |wyl, .. <
0.2. Blue (light) and red (dark) patches show negative and positive vorticity,
respectively. See Figure 5.5 for information regarding the formation number
at each time.

To explain the very early-time behaviour of the momentum patch created
by the disk-like body force, we can define the equivalent formation number by
equating its impulse / = JAt; (cf. Equation 5.13) with the impulse of the coherent
nD?L? /4At; (Gharib et al.,

1998), such that the formation number at the end of the forcing duration can be

1/2
P — 2Atf i .
D?2 \«

structure induced by the piston mechanism I, =

written as

(5.16)

The nozzle diameter is assumed to be equal to the diameter of the body force
D = 2R. For all cases considered here, the formation number at the end of the
forcing period is larger than its critical value Fn. ~ 4 (see Table 5.1) and the
momentum patch becomes fully turbulent before hitting the free surface, such
that the evolution of the momentum patch during the forcing period is identical.
Hence, Case Clp0 is again selected to explain the evolution of the momentum
patch during the forcing duration (¢ < Aty), including the breakdown process of
the patch.

The development of the momentum patch is visualised by means of the second

invariant of the velocity gradient tensor ) = —0.5u; ju;; depicted in Figure 5.5,
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FIGURE 5.7: Azimuthal modal energies for Case C1p0 at selected times: (a)
t/Aty = 0.06, (b) t/At; = 0.25, (c) t/At; = 0.33, (d) t/At; = 0.5.

and the contours of the lateral vorticity w, at the centreline y = 0, illustrated
in Figure 5.6. Immediately after the forcing is active, an axisymmetric laminar
vortex ring is formed, as displayed in Figures 5.5(a) and 5.6(a). At this time, the
momentum flux is still being injected into the fluid while the ring is propagating
in the streamwise direction. Once the formation time is larger than its critical
value (Fng, = 4), the leading vortex ring begins detaching from its trailing jet,
resulting in the roll-up of the trailing vorticity to form a series of vortices similar
to the well-known Kelvin—Helmholtz instability. This phenomena can be clearly

seen in the plots of vorticity contours (Figures 5.6b and 5.6¢).

Since the Reynolds number considered here is high enough, the leading vortex
ring and its trailing jet develop three-dimensional instabilities and undergo transi-

tion to turbulence. The breakdown mechanism of this elongated vortical structure
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FIGURE 5.8: Evolution of selected azimuthal modal energies for Case C1p0:
On=10n=40n=5 An=6mn=8, ®n=10; A n=12.

is described as follows. While the elongated momentum patch is moving down-
stream, the leading vortex ring develops an azimuthal instability (often called the
Widnall instability), which leads to the distortion of the leading ring into station-
ary waves, of an integer number n, around the ring circumference. As can be
seen from Figure 5.5(c), six waves appear around the leading ring, suggesting that
n = 6 mode is the most dominant azimuthal mode for this part of the flow (de-
tails of vortex ring instabilities can be found in, for example, Shariff et al., 1994;
Archer et al., 2008). It is of interest to note that while the leading ring breaks
down subject to a Widnall-like instability, the trailing jet also becomes turbulent
through a classical Kelvin-Helmholtz breakdown, depicted in Figure 5.6(c). At
later times, the finer-scale structures develop due to the stretching of the vortex
filaments, such that the momentum patch becomes fully turbulent, as illustrated

in Figures 5.5(d) and 5.6(d).

To determine the most dominant azimuthal mode (i.e. the mode with the
largest growth rate during the linear instability phase) of the elongated vortex,
we extracted the modal energy spectrum by performing a Fourier transform in
the azimuthal direction. Note that we computed the azimuthal modal energies of
the whole momentum patch, not just the leading ring. Note also that, in order
to calculate the azimuthal modal energies, the velocity field on the Cartesian
grid needs to be interpolated onto cylindrical coordinates. Figure 5.7 shows the
modal kinetic energies of the first twenty azimuthal modes, while evolution of some

azimuthal modes of the kinetic energy is provided in Figure 5.8. During the initial
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a (%) a3 Qg (€75 Qg a7 ag ags

32.64 20.34 41.21 44.89 5244 56.18 46.03 44.62 58.85

TABLE 5.2: Growth rates «, of selected azimuthal modes together with
the viscous predicted growth rate ag of Shariff et al. (1994), applied to the
leading ring. Growth rates are given in units of U/L.

laminar phase, all the azimuthal modes have about the same level of the kinetic
energy (Figure 5.7a). This also validates the choice made about the level of the
azimuthal perturbation. With time, the kinetic energy of each mode FE,, increases
individually with different growth rates «,, as shown in Figure 5.8. We determined

the growth rate,
1 dFE,

‘T oE, dt
by averaging it over 0.0417At; time units centred at ¢/At¢; = 0.2083. The growth

rates of some azimuthal modes are reported in Table 5.2. It can be seen that the

(5.17)

n = 6 mode is still the most amplified mode for the whole elongated vortex over
the time window considered, with ag = 56.18. This mode also has the highest
kinetic energy during the linear phase as illustrated in Figure 5.7(b).

The highest growth rate (ag) is then compared with the estimated growth rate
of a single vortex ring, first proposed by Widnall & Tsai (1977) for the inviscid
case and modified to account for the effect of viscosity by Shariff et al. (1994).
The viscous estimated growth rate ag of Shariff et al. (1994) is

&
= 1 — — 5.18
ag awr [ Reg] ) ( )

where a7 is the inviscid prediction of Widnall & Tsai (1977), defined as

1/2

SR, 2
0.856 In —0.9102 » —0.4535 , (5.19)
3]

@ is a non-dimensional coefficient, Reg = ea? /v is the internal Reynolds number,
with e the local induced strain field (Saffman, 1978)

3T, SR\ 17
— 1 el 2
“~ 16nr? [n< a ) 12] ’ (5:20)

I', and R, are respectively the circulation and radius of the leading ring, a; =

r

awT = 4t R?2

T

1.12140, and a, = 1.36070, are measures of the leading ring core radius (Shariff
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et al., 1994) and o, is the leading ring core thickness. Note that the last coefficient
in Equation (5.19) is different from that in Widnall & Tsai (1977) due to the error
corrected by Shariff et al. (1994). We calculated aig the same way as Archer et al.
(2008) did by using the instantaneous I';, R,, a; and a. at /Aty = 0.2083 with
& = 8, and found that the relative difference between the present growth rate of
the most dominant mode («g) and Shariff et al.’s (1994) prediction applied to the
leading ring (ag) was about 4.54%. This suggests that the elongated momentum
patch breaks down to turbulence due to the azimuthal instability of the leading

ring.

During the nonlinear instability phase, the most dominant mode and its neigh-
bouring modes interact nonlinearly with each other resulting in the rapid growth
of their harmonics and the lower modes (see Figures 5.7c and 5.8). All of the
modes saturate at t/A; ~ 0.5, when the leading ring and its trailing jet become
fully turbulent. The spectrum at this time (Figure 5.7d) is consistent with the
Kolmogorov turbulence cascade, with energy presumably transferred from larger

scales (lower wavenumbers) to smaller scales (higher wavenumbers).

5.4.3 Effect of Confinement Number on the Turbulent Patch

To illustrate the effect of the confinement number, we compare the development
of the turbulent patches after the forcing period from Cases COp2, C1p0, C2p0
and C6p0 by visualising the isosurfaces of the second invariant of the velocity
gradient tensor (), as shown in Figure 5.9. For very low value of C' (Case C0p2,
Figure 5.9a), the vertical confinement is quite weak, such that both vertical and
lateral sizes of the patch grow with time due to entrainment of the surrounding
fluid and the patch remains axisymmetric. To explore the axisymmetric nature
observed from this case, histories of the ratio of the lateral ¢, (Equation 4.5) to
the vertical sizes ¢, (Equation 4.6) of the patch are displayed in Figure 5.10. It
can be seen that ¢, /¢, for Case COp2 is always about unity suggesting that the
vertical confinement has very little influence on the vertical development of the
patch. Therefore, the fluid layer for this value of C' can be considered as deep.
This also suggests that the turbulent patch will maintain its axisymmetric nature

(¢,/t, =1) as C approaches zero.

For higher values of C, the vertical confinement influences the evolution of the
patch. The vertical growth of the patch is limited by the non-deformable stress-
free layers and only the horizontal size of the patch can expand due to lateral

entrainment, as depicted in Figure 5.10. If C' is not strong enough (e.g. Case
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FIGURE 5.9: Top view of isosurfaces of @, coloured by w,, showing the
development of the turbulent patch at (left) t/Aty = 4, (middle) t/At; = 10
and (right) t/At; = 20: (a) Case COp2, (b) Case Cl1p0, (c) Case C2p0, (d)
Case C6p0.
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FIGURE 5.10: Histories of the ratio of the lateral to the vertical sizes (¢,/¢):
& Case C6p0; 0 Case C4p0; © Case C2ph; A Case C2p0; > Case Clph;
Case Cl1p0; < Case COpb; v Case COp2.

C1p0), the patch does not form a counter-rotating vortical structure before it is
affected significantly by the vertical confinement (Figure 5.9b). When C' is about
and greater than its estimated critical value (e.g. Cases C2p0 and C6p0), a counter-
rotating vortex appears at late time with the lateral length scale much larger than
its vertical size (Figures 5.9¢ and 5.9d). We can then consider that the fluid layer

for values of C' higher than about unity is shallow.

A plot of the size of the turbulent patch 4 (see Equation 4.1) versus time
is given in Figure 5.11(a). Immediately after the forcing ends, d, for each case
increases rapidly with different growth rates depending on the impulse of the flow.
After this phase, the patch reaches its self-similar state and the size of the patch
continues to grow with the lower rate. For strong C, the vertical growth of the
patch is suppressed by the stress-free layers, so that the patch tends to evolve
as a vortex dipole whose &, increases with time as t'/3 (Voropayev et al., 1991,
2008). On the other hand, when the vertical confinement has little effect on the
vertical growth (i.e. as for Cases COp2 and COpb5), the size of the patch grows
as 0g ~ t'/4, similar to that of a vortex ring (see, e.g., Glezer & Coles, 1990).
The late-time histories show that the weakly confined case grows slower than the

strongly confined ones do.

As shown in Equation (5.7), the initial size of the patch is governed by the
forcing period Aty and the forcing intensity J. This led us to use J and Aty

to normalise the size of the patch. The non-dimensional size ¢} is written as
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FIGURE 5.11: Histories of (a) size of the patch J; and (b) non-dimensional
size 0 = 6d/J1/4At}/2: <& Case C6p0; 0 Case C4p0; O Case C2pb; A Case
C2p0; > Case Clpb; # Case Clp0; <1 Case COpb; v Case COp2.

0y = 5d/J1/4At;/2. It can be seen from Figure 5.11(b) that §} from all cases tend
to collapse onto one curve up to t/At; ~ 3. This confirms that the initial size
of the turbulent patch which occurs at t/At; ~ O(1) is universal when scaled
by JV 4At}/ 2, and also supports the physical interpretation of the confinement
number. After this time, the effect of the vertical confinement begins to affect the
development of the patch, leading to the different growth rate of J, at late time,

as discussed earlier.

Figure 5.12 depicts the evolution of the surface signatures from different con-
finement numbers. At each time, different contour values of the non-dimensional
vertical vorticity, w} = w,Aty, is used to indicate the surface signatures in order
to make the pictures more informative since the vortex decays with time. For rela-
tively low duration and intensity of the forcing (e.g. Case COp2, see Figure 5.12a),
no significant signature appears at the free surface at the early times (¢/At; < 10).
Later (t/Aty = 20), the eddy signature is observed at the free surface but is not
well structured. At intermediate value of C' (Case C1p0, Figure 5.12b), the tur-
bulent patch rapidly penetrates to the surface. The horizontal size of the patch
increases with time but it does not transform into a vortex dipole due to the
fact that the confinement number is not high enough. When C' is higher than
2, the eddy signature is clearly detectable at the beginning (t/At; = 4) and is
still turbulent. At larger times, the small-scale turbulence decays, while the large-
scale coherent structure still remains and transforms into a dipole, as illustrated
in Figures 5.12(c) and 5.12(d). This indicates that a dipole only forms when C'is
greater than about unity, even though a surface signature seems to be seen for all

the values of C considered here.
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FIGURE 5.13: Decay of maximum value of non-dimensional vertical vortic-
ity, Wl pax = Wz, maxAty, at the free surface: & Case C6p0; O Case C4p0; ©
Case C2pb; A Case C2p0; > Case Clpb; i+ Case Clp0; < Case COpb; v Case
COp2.

Figure 5.13 displays histories of the maximum value of the non-dimensional
vertical vorticity, w} .. = W. maxQty, at the free surface. It can be seen that
the turbulent patch for higher confinement number requires shorter time to arrive
at the free surface. Once the patch hits the free surface, the vortex filaments
reconnect with their image, such that the maximum value of the vorticity at the
free surface of each vortex line equals to that within the domain leading to the

dramatic rise in the vertical vorticity at the free surface. Since the momentum

*
Z, max

free surface earlier than the others. This results in a staircase-like increase of

patch is turbulent, some vortex lines that have lower w might encounter the

w which can be observed from, for example, Cases C1p0, Clp5 and C4p0.

z, max’
After w} .. from each case has reached its maximum value, over time, it tends

*
Z, max

to collapse onto a single profile and decrease with time. We observed that w

of the eddy signature in the turbulent regime (i.e. t/Aty < 10) decays faster than

*
Z, max

that of a laminar eddy, in which w decreases as t~! (Voropayev et al., 2007,

*
Z, max

2008). Once most of the small-scale structures disappear, the decay rate of w
reduces to At~1, with A ~ 47.57. The value of A from the present calculations is
comparable to that of Case JS3a, in which a Gaussian force is used to generate
the momentum patch at the same Reynolds number, but with different impulse
(A = 41.52; see Tables 4.1 and 4.2). This implies that A is independent of the
type of the body force and the impulse of the flow, as suggested by Voropayev
et al. (2008).
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FIGURE 5.14: Surface signature contrast [w., max(t)] ., versus the confine-
ment number C. (a) Voropayev et al.’s (2007) data: © PIV measurements;
Voropayev et al.’s (2007) phenomenological model [w. max(t)], .. =
0.065 [1 — eX065=C)] . (b) DNS results: O disk-like body force (J = 1/16
and h = 0.3 for all simulations; cf. Table 5.1); ® Gaussian body force at
the same Reynolds number but with different forcing intensity and domain

depth (J =1/4, Aty =4, h=1).

In order to determine the relationship between the intensity of a surface
signature and the confinement number C, we follow Voropayev et al. (2007),
who performed Particle Image Velocimetry (PIV) measurements in a two-layer
fluid at Re; = O (10000), and use the maximum value of w, max(t), denoted by
(W2, max(t)],,.,» to represent the surface signature contrast. Note that w. max by
itself can be used to represent the contrast number of Voropayev et al. (2007)
(cf. Equation 1.10) since their rms background vorticity was approximately the
same in all of their runs. A plot of the surface signature contrast [w. max(?)] .. as
a function of the confinement number C' is illustrated in Figure 5.14. Unlike Voro-
payev et al.’s (2007) finding (Figure 5.14a), the relationship between our signature
contrast and the confinement number cannot be characterised by an exponential
profile, especially when the data from the Gaussian-force simulation, at the same
Reynolds number but with different forcing intensity J and domain depth h, is
included (Figure 5.14b). The data from the Gaussian-force simulation lies outside

and C' can be

max

the rest, indicating that no relationship between our (W, max(%)]

characterised.

The collapse of a set of our data can be obtained when normalising [w, max(?)]

max

with the forcing duration At as illustrated in Figure 5.15(b). This normalisation
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FIGURE 5.15: Maximum value of w} ;.. (t) = W, max(t)Aty versus the con-
finement number C. (a) Voropayev et al.’s (2007) PIV data. (b) DNS
results: O disk-like body force (J = 1/16 and h = 0.3 for all simulations;
cf. Table 5.1); ¢ Gaussian body force at the same Reynolds number but with
different forcing intensity and domain depth (J = 1/4, Aty = 4, h = 1);
[WF max(D)] . = 275.0028C — 108.5455.

Z, max

yields a linear relationship between the confinement number and the surface sig-
nature contrast. A curve fit to this relationship is

W2 max ()] = 275.0028C — 108.5455 . (5.21)

Z, max

In contrast to our observation, Figure 5.15(a) shows that the data from Voro-
payev et al.’s (2007) PIV measurements do not collapse when normalised by At
particularly once C' is higher than 2, and the amplitude of their [wj maX(t)]max is
much lower (about 1600 times). These discrepancies occur presumably because
the small-scale turbulent eddies at the free surface in Voropayev et al.’s (2007)
experiments are smoothed out due to the low-pass filtering effect of an interroga-
tion window (e.g. see Willert & Gharib, 1991; Eggels et al., 1994). To verify this
assumption, we applied low-pass filters to our vertical vorticity at the free surface.
Three types of filters are chosen, which are the n*'-order low-pass filter G,,, the
Gaussian filter G, and the sharp spectral filter G5. The filter functions in Fourier

space are defined as

Gl (K 1) T /)" (5.22)
Gly (K, 12y) = exp {—%} , (5.23)

G, (koo i) = %erfc (“ - “C) | (5.24)
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where k, and k, are respectively the wavenumbers in the streamwise and lateral
directions, k = /K7 + k7 and £, is the cutoff wavenumber.

Figure 5.16(a) depicts the effect of the low-pass filters on the development
of the maximum amplitude of the vertical vorticity. It can be seen that all the
low-pass filters used here decrease the maximum amplitude of w} .. (t) and delay
the vorticity peak. In addition, they also reduce both the growth and the decay
rates (the development before and after the peak time, respectively) of w} ...
The peak value and the decay rate depend on the level of the cutoff wavenumber
k. and are roughly identical at the same level of k.. On the other hand, different
growth rates are observed when the cutoff wavenumber is lower than a certain value
(i.e. e ~ 10). We then compared the evolution of our filtered w} .., obtained
from using the fifth-order filter with k. = 5, with the PIV data for a range of
C' of Voropayev et al. (2007). Note that we adapted figure 5 of Voropayev et al.
(2007), which shows a plot of their contrast number as a function of time, to
obtain histories of their w} ... As can be seen from Figure 5.16(b), the filtered

DNS result is in reasonable agreement with the PIV data.

The effect of a low-pass filter on the small-scale eddies at the free surface
can clearly be seen from a contour plot of the filtered vertical vorticity, where
the fifth-order filter with k. = 5 was employed. As shown in Figure 5.17(b),
all the small-scale turbulent eddies (which can be observed from the unfiltered
vorticity, displayed in the left column of Figure 5.12¢) are smeared out by the
filter, leading to only the appearance of a large-scale counter-rotating vortex pair
at the free surface. The low-pass filter gives a surface signature very similar to
that observed in Voropayev et al.’s (2007) experiments, in which only a vortex
dipole appeared at the free surface without any small-scale turbulence although
their Reynolds number for this case is approximately 34 times higher than ours (see
Figure 5.17a). This suggests that the intensity of the surface signature is set by the
small-scale turbulence when the confinement number is strong, and confirms the
linear relationship between the surface signature contrast (when it is represented

by the non-dimensional vertical vorticity) and the confinement number.

Even though the point measurement (maximum value of w} .. (t)) can be
used to represent the surface signature intensity, this method might not be ac-
curate enough when the surface signature is turbulent. We therefore introduce

the intensity of the surface signature in terms of the maximum amplitude of an
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FIGURE 5.16: (a) Effect of low-pass filters on the evolution of the maximum
value of the vertical vorticity of Case C2p0. Symbols denote types of filters
used, while line styles indicate cutoff wavenumber k.: A Unfiltered data;
O sharp spectral filter; ¢ Gaussian filter; O tenth-order filter; v fifth-order
filter; ---- K, = 10; =---- Ke = Dy woeeeeee ke = 2. (b) History of the maximum
amplitude of the filtered vertical vorticity (using fifth-order filter with k. =
5) from the present DNS at C' = 2.0 (open symbol v) compared with the PIV
data in a range of C' of Voropayev et al. (2007) (filled symbol: m C' = 5.3; v
C=28%C=20,0C=17¢C=11;aC=1.0).
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FIGURE 5.17: Contour of (filtered) vertical vorticity w, at the free surface
at C'=2.0: (a) Voropayev et al.’s (2007) PIV measurement at ¢t/At; = 3.33
and Re; = 42000 (their run no. 21); (b) Filtered DNS data of Case C2p0
using a fifth-order low-pass filter with k. =5 at t/At; = 4 and Re; = 1250.
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spacing is about 0.12 metres (corresponding to 0.34J1/4At}/2), while the
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FIGURE 5.18: Histories of non-dimensional eddy strength I's/.J 1/2 at the
free surface: & Case C6p0; 0 Case C4p0; © Case C2p5; A Case C2p0; > Case
Clpb; # Case Clp0; <1 Case COpb; v Case COp2.

integral parameter that depicts the strength of the surface eddy, written as

1
Iy = §/|wz| drdy. (5.25)

Although this integral quantity becomes identical to the circulation of the surface
dipolar eddy at late time when all the small-scale turbulence decays, it overesti-
mates the circulation at the early time due to the contribution of the opposite-sign
small-scale turbulent eddies. An advantage of using this definition is that it can
correctly estimate the strength of the surface eddy when the eddy propagates away

from the centreline.

Histories of the surface eddy strength I's, normalised by the forcing intensity
J, from different values of the confinement number are displayed in Figure 5.18.
The evolution of the eddy strength is similar to that of the maximum value of
the vertical vorticity except that the eddy strength at the free surface does not
collapse when scaled by J. From dimensional arguments, the decay of I's can be
written in terms of the eddy size J; and the maximum amplitude of the vertical
vorticity w, max as
[ ~ W, maxds - (5.26)

For a laminar dipole, §, increases with time as ~ /3, while w, ., varies as ¢~}

(Voropayev et al., 2008). Substituting these power laws into Equation (5.26) yields

Iy~ t13, (5.27)
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FIGURE 5.19: Peak value of the non-dimensional surface signature strength
Fg = T'g/J'/? versus the confinement number C: O disk-like body force
(J =1/16 and h = 0.3 for all simulations; cf. Table 5.1); ® Gaussian body
force at the same Reynolds number but with different forcing intensity and
domain depth (J =1/4, Aty =4, h=1); [Tg(t)],,., = 1.8129C.

It is found that the strength of the surface eddy at late time for all cases decreases

close to ¢t~1/3

, except for Case COp2 for which the eddy strength is approximately
constant, presumably because the surface eddy for this case is not yet well organ-

ised (cf. Figure 5.12a).

The relationship between the peak value of the non-dimensional surface sig-
nature strength I'y = T'sJ ~1/2 and the confinement number C' is displayed in
Figure 5.19. The data, including the Gaussian-force simulation, show that the
maximum value of I'q increases linearly with increasing confinement number, ap-

proximated as
[Ts(t)] . =1.8129C. (5.28)

Combining Equations (5.21) and (5.28) also yields the linear relationship between
T's(t)]ax a0d (W max(t)] > 88

TS ()] max ~ (w2 max (D)) /2 A1 (5.29)

Note that Equation (5.29) also supports the dimensional argument used to esti-
mate the decay rate of the eddy strength (Equations 5.26 — 5.27) since the initial
size of the turbulent patch that occurs at t/At; ~ O(1), denoted by d4, are set
by J and At (cf. Figure 5.11b), such that J'/?Aty ~ 63 .
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5.5 Chapter Summary

Numerical simulations of the effect of the confinement number on the evolution
of impulsively generated turbulent patches, induced by an external disk-like body
force, have been performed using DNS. The range of the confinement numbers
considered here represents the development of the patch in both deep and shallow

layers.

Before reaching the free surface, the momentum patches for all cases consist
of a vortex ring followed by a trailing jet, since here the formation number is quite
large. The momentum patch undergoes transition to turbulence by a Widnall-like
instability of the leading ring, although the development of the Kelvin—Helmholtz
instability arising in the trailing jet was also observed. The highest growth rate
of the azimuthal modal energies of the elongated momentum patch is in close
agreement with the estimated growth rate of a viscous vortex ring proposed by
Shariff et al. (1994).

Nondimensionalising the size of the patch by the forcing intensity and duration
leads to a universal history profiles. This confirms that the confinement number
can be used to predict the characteristics of the eddy signature at the free surface.
When the confinement number is strong enough, the non-deformable stress-free top
and bottom layers suppress the vertical growth of the patch leading to, in some
cases, the appearance of a quasi-two-dimensional counter-rotating vortex. The
patches for all cases penetrate to the free surface but with different intensity and
the time required, dependent on the confinement number. For values of C' lower
than about 1, the surface eddy is not yet in the form of a dipole and might not be
detectable since its intensity is relatively low. The contrast (w, max) and strength
(I's) of the surface eddy decay according to estimated scaling laws, while both of
their maximum amplitude (when normalised by J and Aty) increase linearly with

an increase in confinement number.



Chapter 6

Concluding Remarks

6.1 Conclusions

A major concern for a manoeuvring self-propelled vehicle is the possible occurrence
of a large quasi-planar counter-rotating vortical structure when the vehicle changes
its speed or direction. Determining the conditions under which such a coherent
structure can appear and understanding its dynamics were the principal motivation
of this dissertation. Specifically, the focus is on investigating the evolution of a
turbulent patch induced by a submerged self-propelled body starting from rest in
the upper ocean, where the patch may be transformed to a pancake-like eddy by

the vertical confinement of the free surfaces.

At the beginning of this project, the numerical tools used to represent the
manoeuvring body were developed. An accelerating motion of a self-propelled
body was successfully emulated by the combination of an immersed boundary
(IB) method and an external body force. These tools were employed in an ex-
isting in-house DNS code, CgLES, and were separately validated (see §3). An
external body force was validated by performing two-dimensional finite- and zero-
momentum wakes. It was found that when the body force is used as a drag in
a 2D simulation, it successfully generates a large-scale two-dimensional structure
(a Kdrman vortex street). On the other hand, the body force produces a wake
with fine-scale turbulence, which requires many more grid points to fully cap-
ture, for a three-dimensional simulation when the forcing magnitude is strong
(i.e. Jp/0.5m0?U% > 1). To eliminate this problem, an immersed boundary
method was used to represent a drag from a virtual body. The IB approach
was validated with flow past a sphere in a laminar, unsteady planar symmetric
regime. Even though only one grid point was placed within the boundary layer of
the virtual sphere, the IB approach used provides satisfactory comparison for the

Strouhal number, drag and lateral force coefficients.

99



6. Concluding Remarks 100

An accelerating motion of a self-propelled body was first idealised by an impul-
sive jet, represented by applying an impulsive body force in the positive streamwise
direction, to generate a turbulent patch and to study the dynamics of a late-time
pancake-like eddy (see §4). The numerical experiments were conducted in a shal-
low layer corresponding to the confinement number C' = 2 for which a vortex
dipole was experimentally observed, at different Reynolds numbers. At this value
of C' the vertical growth of a momentum patch was found to be limited by the non-
deformable stress-free top and bottom layers yielding a dipole at the free surface. A
dipole was found to persist for a longer time compared to an axisymmetric toroidal
vortex in a deep layer. A coherent structure behind the manoeuvring body was
then investigated in a shallow layer of the same depth. The vortex penetrated to
the free surface and produced a wake signature which was eventually transformed
into a dipole. At later time, the dipole vortices from both initialisations (impulsive
jet and manoeuvring body) were found to reach a self-similar state and follow the

predicted scaling laws, in spite of possessing a Reynolds-number dependence.

The effect of the confinement number on the development of a momentum
patch induced by an impulsive jet was examined in §5. During the forcing period,
the patch appeared in the form of a leading vortex ring together with a trailing
jet and broke down to turbulence due to an instability very similar to the Widnall
instability before appearing at the free surface. Data for the size of the patch
were found to collapse when normalised by the forcing duration Aty and forcing
intensity J. This confirms that the initial shapes of the patch are controlled by
J and At; and the confinement number can be used to quantify the intensity
and formation of the surface eddy signature. Increasing the confinement number
decreases the time required for the patch to hit the free surface. Since the vorticity
of the the patch decays inversely proportional to time, the drop in the time required
thus results in an increase in the maximum amplitude of the surface signature
contrast and the surface eddy strength. Even though the eddy signature was
observed to appear at the free surface for all the confinement numbers considered
here, the formation of a dipole was found for values of C' greater than about 1.
For lower values of C', the eddy signature possesses relatively low contrast and
strength so that it might be more difficult to be detected, e.g., by remote sensing

in presence of background noise.
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6.2 Recommendations for Future Work

In future work it would be of interest to investigate the evolution of the momentum
patch in more realistic conditions. One of these conditions is to consider the effect
of background turbulence in the upper ocean. Another situation of interest is
the influence of a surface wave. If strong enough, these conditions could alter
the development and formation of the eddy signature. For example, background
turbulence is expected to increase the decay rate of the patch, while a surface
wave is believed to affect the vortex reconnection process and thus influences the

formation and intensity of the surface eddy.

Since this work focused only on a large-scale coherent structure behind a self-
propelled body starting from rest, another possible work that can be considered
is to investigate the evolution of a wake eddy produced when the body accelerates
again after moving at constant speed. The dynamics of the latter momentum
patch might be completely different from the starting vortex because the latter
coherent structure will interact with a frontal momentumless wake generated when

the body moves at constant velocity.
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Direct numerical simulation (DNS) is used to investigate the development of a turbulent
wake created by an impulsively accelerating axisymmetric self-propelled body below a
non-deformable free surface. The manoeuvring body is represented by the combination
of an immersed boundary method and a body force. The Reynolds number based
on either the diameter of the virtual body or the jet forcing intensity is relatively high
(0 (1000)), corresponding to the fully turbulent case. The vertical growth of the coherent
structure behind the body is restricted by the upper and lower stress-free layers, and the
wake signatures are observed to penetrate to the free surface. The late-time behaviour
of the dipole induced due to vertical confinement can be predicted by scaling laws, also
relevant to a stratified fluid.

Keywords: direct numerical simulation; manoeuvring-body wake; vortex dipole

1. Introduction

Turbulent wakes behind bluff bodies have been investigated both experimentally and nu-
merically by many researchers in order to obtain better understanding of their dynamics.
However, almost all of the studies have focused on wakes behind towed or self-propelled
objects moving at constant velocity. When a body is towed, it imparts momentum, equal to
the drag of the body, to the wake. In contrast, for a constant-speed self-propelled body, the
drag is cancelled by the thrust, leading to a zero-momentum wake.

In practice, a submerged vehicle leaves a finite-momentum wake when it accelerates
or changes direction, and a momentumless wake only when it moves at constant speed
[1]. A manoeuvring-body wake is of interest because it can introduce dynamics that are
absent from the constant-velocity case, especially when the wake is influenced by stable
stratification or by the presence of an adjacent free surface. For example, dipole vortices
produced by the interaction of manoeuvring-body wakes with either stable background
density stratification or a free surface can be observed in geophysical flows (see [2—4]).
The practical importance of dipole vortices is that they are very large, compared with the
size of the body, and long-lived. Voropayev et al. [S] estimate that a coherent kilometre-
scale vortical structure that persists for the order of days can be observed behind a typical
submarine manoeuvre in the ocean. Moreover, due to the self-induced motion of the dipole
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vortex, it can transport mass, momentum and other scalar properties, such as heat and
salinity.

Generally, when momentum is imparted into a flow, it leads to an isolated region
that possesses a high concentration of vorticity and non-zero net linear momentum, often
referred to as a turbulent blob. In an unbounded homogeneous fluid, the turbulent blob
is fully three-dimensional (3D). While the blob is propagating away from its origin, its
vertical and horizontal sizes increase due to the entrainment process of the surrounding
fluid and the blob eventually transforms into a toroidal vortical structure [6]. In contrast,
when the vertical growth of the blob is confined (e.g. by buoyancy force or flow geometry),
only its horizontal size can expand due to lateral entrainment, which leads to a quasi-planar
counter-rotating dipole vortex structure.

The formation and evolution of vortex dipoles have been widely studied in a linearly
stratified fluid (e.g. see [7-9]), and recently extended to the case of shallow water above
a solid no-slip surface, for which the vertical size of a turbulent blob is suppressed by the
flow geometry [3, 10, 11]. It was found from the experimental study of Sous et al. [3] that
the condition in which the momentum disturbance can coherently penetrate upward and
leave its signature at the free surface depends on the confinement number C = JV* At/ h?,
where J is the forcing intensity, 4 is the depth of the fluid domain and Aty is the forcing
interval. The formation and evolution of the vortex dipoles formed in shallow water are
similar to those in a stratified fluid except that 3D small-scale turbulence appears at the
dipole front. Sous et al. [3] stated that the vertical motion at the frontal region might appear
due to the effect of bottom friction.

Voropayev et al. [4] performed experiments in a two-layer fluid, where unstratified water
was placed above a layer of salt water, in order to reduce the effect of the bottom surface.
Their flow geometry is similar to the real upper ocean (depth 50-100 m), in which denser
water rests underneath a nominally constant density gradient. They investigated the intensity
of the surface signature in terms of the contrast number Cn = w, max/®;, 1ms, defined as the
ratio of the maximum vertical vorticity w, max of the dipole vortex to the root-mean-square
value of the background vertical vorticity w, rms, and also defined a relationship between
the confinement number and the intensity of the surface signature.

The aim of this work is to investigate the evolution of the impulsively submerged
momentum disturbance in the small-scale upper ocean, which is mimicked by stress-free
top and bottom layers. Two different types of momentum sources are chosen to investigate
the self-similarity of a dipolar vortex created by: (1) an impulsive jet and (2) an accelerating
motion of a self-propelled body.

2. Numerical approach

Since the self-propelled body of interest will start from rest, the calculation is performed
in a moving reference frame, in order to maintain the location of the body within the
computational box. The computational domain for the spatially developing wake is shown
in Figure 1. The non-dimensional continuity and incompressible Navier—Stokes equations
in a non-inertial moving reference frame can be written in Cartesian tensor notation as

81/!,‘
E)xi
ou; du;  9p 1 %u; dU

- i = - ——d%u+fi, 2
o0 Vax, T Tox T Remorox, @i T @

=0, (D)
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Figure 1. Schematic sketch of geometry of a manoeuvring-body wake.

where x; = (x, vy, z) and u; = (u, v, w) are, respectively, Cartesian coordinates and the
corresponding velocity vector in the streamwise, lateral and vertical directions; ¢ denotes
the time; p is the kinematic pressure; U is the velocity of the virtual (wake-generating) body;
8;; is the Kronecker delta and f; is the external body forces due to the virtual body surface
B = (B,, By, B;) and/or thrust T = (7%, 0, 0). The non-dimensional reference Reynolds
number Re.s = UL/v is written in terms of the reference length £ and velocity scale U
(which both vary from flow to flow, as illustrated below) and v is the kinematic viscosity.

The Navier—Stokes equations are advanced in time with the second-order explicit
Adams—Bashforth scheme. A second-order central finite-difference scheme is used to dis-
cretise the spatial derivatives on a staggered grid, where the velocity components are defined
at the cell faces, while the scalar quantity (pressure) is located in the cell centre. The conti-
nuity equation is imposed via a standard pressure-correction method. The resulting Poisson
equation for the pressure is solved using a parallel multigrid algorithm [12]. Inflow and
outflow boundary conditions are employed in the streamwise (x) direction. Additionally,
the uniform inflow velocity is set equal to the velocity of the virtual body and is updated
every time step. The body is placed midway between an idealised thermocline and a free
surface. Stress-free boundary conditions are specified at the top and bottom as an ideal-
isation of the (non-deformable) free surface and the top of a region of a stratified fluid.
Periodic conditions are specified in the lateral (y) direction.

In order to embed an axisymmetric body into a computational grid, an immersed
boundary technique is employed. The virtual body is mimicked by a set of Lagrangian
(virtual surface) points that do not coincide with the Eulerian (computational) points, as
shown in Figure 2. The boundary force B;, which enforces the no-slip boundary condition on
the embedded body surface, is calculated directly at the Lagrangian points via a proportional
controller, with the proportional gain related to the time step size At in such a way that
maximises gain while maintaining stability. The boundary force is then transformed into the
Eulerian (computational) points by using the three-point discrete delta function proposed
by Roma et al. [13].

We emulate the body manoeuvre by imposing a thrust f; = T; = T, 8,;, which is
modelled as a jet from the body, as illustrated in Figure 1. The intensity of the thrust is
estimated as

Jr = ujusN [ujee — U(1)] 3)

where uje is the jet velocity, s is the area of the nozzle and N is a free parameter used to
adjust the jet Reynolds number and the confinement number. A 3D Gaussian function is
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Figure 2. Schemetic sketch showing the locations of the Lagrangian markers (®) and the computa-
tional points (O).

used to distribute the intensity of the thrust to the computational grids as

Jr
T = ———75 exp |:—

(o°7)

where o is the Gaussian semi-width, and x¢, yo, zo are the centre of the thrust. Note that
Equation (4) is determined such that Jr is associated with the total integrated force, not its
maximum. The velocity of the body can be found via the balance of momentum between
a manoeuvring object and the total force acting on the fluid, with

(x —x0)* + (v — y) +(z— Zo)z] ’ @)

o2

ML = p iy = 0. )
dt
where M. is the sum of the actual and added/virtual mass, p is the fluid density (taken to
be constant) and Jp is the intensity of the drag, which can be calculated from the volume
integral of the streamwise boundary force B,. An explicit Euler method is used to update
U(t) at every time step.

3. Validation: 2D zero-momentum wakes

The strategy to impose a force doublet (drag of the body plus thrust) was validated by
performing a two-dimensional (2D) simulation of zero-momentum wakes. The results are
compared with both an analytical solution [14] and experimental results of Afanasyev and
Korabel [15], who used an electromagnetic force to create zero-momentum wakes in a
stratified fluid. For the validation, we used a 2D Gaussian function with a Gaussian semi-
width o to distribute the thrust and drag forces. Here, the reference length £ is taken as 5o,
while the reference velocity U is set to the free-stream velocity U,,. The drag is applied
slightly in front of the thrust. The thrust and drag forces are defined to be of equal magnitude
to generate a momentumless wake. The 2D domain size was 96 x 32, with 3072 x 1024
grid points in the streamwise and vertical directions, respectively. A uniform velocity of
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Figure 3. (a) Distribution of the streamwise velocity deficit along its axis of 2D zero-momentum
wake at [T, = 1 and IT, = 50: Present, — ——— Theoretical solution [14]. (b) Strouhal number
versus I1,: @, Present; 0, Afanasyev and Korabel [15].

magnitude U, was specified at the inlet, while the velocity convective boundary condition
was applied at the outlet. Free-slip boundary conditions were specified in the vertical
direction. Figure 3(a) displays the distribution of the streamwise velocity deficit u, along the
axis of the flow for IT, = f/a Ugo =landIl, = f/vUoo = 50, where J is the 2D forcing
intensity (specific force per unit area), compared with an analytical solution [14]. Away
from the expected near-field deviation (due to comparing finite versus singular dipoles), the
agreement is satisfactory. For a quantitative comparison with the laboratory experiment [15],
the shedding frequency f; was measured by performing a Fourier transform of the mean
value of vorticity at x = 5. The Strouhal number St = f,J /U2, versus I, is displayed in
Figure 3(b), showing that the numerical results are in good agreement with the experimental
data [15]. The vorticity distribution for IT, = 11 and I1, = 230 is illustrated in Figure 4.
The vortex street in this simulation is visually similar to the mushroom-like vortex sheet
observed in Afanasyev and Korabel’s [15] experiment.

4— ; ; ; . . .
2_ |
Yo LR Vg *y ', 1
—oF ]
0 5 10 15 20 25 30
T

Figure 4. Contours of vorticity of 2D momentumless wake: IT, = 11 and IT, = 230. Vorticity
varies from —0.2 < @, /|w;|max < 0.2. Blue and red patches show negative and positive vorticity,
respectively.
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4. Jet-induced dipole

We next investigate the evolution and formation of a turbulent blob generated by an impul-
sive jet as a test case. The jet acts over a short time interval Af; with a forcing intensity
Jr, distributed to the computational grid via the 3D Gaussian function with semi-width o.
We choose Aty = 4 and Jr = 1/4, in units of £/U and U>L?, respectively, with £ = 8o
(such thatif = JTI/ 2 /40). When the code described in Section 2 (Equations (1)—(5)) is used
to study the evolution of an impulsive jet, the boundary force from the virtual body B; is
not active. Recall that the calculations are carried out in a stationary frame of reference. To
study the effect of a (non-deforming) free surface, we consider two distinct canonical flows:
an impulsive jet in a deep layer and another in a shallow layer. These are simulated for a
jet Reynolds number of 2000 based on the forcing intensity, i.e. Re; = JT]/ 2 /v. Free-slip
boundary conditions are applied in the vertical direction for the jet in both deep and shallow
layers, while the lateral direction is assumed to be periodic. The main difference between
these two cases is that the vertical growth of the vortical structure created by the jet in a
deep layer is not confined by the stress-free boundaries. The number of grid cells and the
domain size for both cases, labelled as Cases JD and JS1, respectively, are given in Table 1.
For the shallow-layer case, the forcing interval and the height of the computational domain
were selected to correspond to the confinement number C = 2, for which the vortex dipole
has been observed at the free surface [4]. Note that the lateral domain width L, for all
cases in this section was chosen to be at least 2.7 times larger than the maximum lateral
size £, of the coherent structure (see Equation (10) below). That this value is sufficient is
implied by the agreement of the dipole characteristics for Cases JS3a and JS3LD (which
is equivalent to JS3a, apart from using L, that is twice as large); see Figure 11. However,
since the length of the initial momentum-containing region is relatively large, some of the
pre-dipole dynamics may be influenced by the lateral domain size. This will be investigated
in future studies.

In order to determine the evolution of submersed, impulsive momentum source, the
characteristics of the vortical structure, i.e. the dipole propagation velocity and the dipole
size, are defined in terms of the integral parameters proposed for vortex-ring geometry by
Saffman [16]. The dipole size 8, and the dipole centroid X; = (X4, Y4, Z4) are defined
using the first moment of enstrophy via

8a

2
— / rlol* dx dy dz, (6)
Q
1 2
Xd:§ X |w|“dxdydz, @)
where r = /y2 + 22, |o]* = 0? + a)f + a)f and 2 is the total integrated enstrophy, with
Q:/|a)|2dxdydz. (®)
Thus, the dipole propagation velocity U, = (Uy, V;, W,) can be obtained as
dXy

Us=—". )
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Table 1. Impulsive-jet-induced wake run parameters.

Case Domain depth (H?) Re; Domain size N, x Ny x N,

JD Deep (4) 2000 —5<x <25 960 x 256 x 256
—4<y=<4
—4=<z=<4
Js1 Shallow (0.5) 2000 —5<x <25, 960 x 512 x 32
—-8=<y=<3g,
—05<z<05
JS2 Shallow (0.5) 2000 —5<x <55, 1920 x 512 x 32
-8=<y=<3g,
—05<z<05
JS3a Shallow (0.5) 1250 —5<x <55, 1920 x 512 x 32
-8=<y=<3g,
—05<z<05
JS3bP Shallow (0.5) 1250 —5<x <55, 1920 x 512 x 32
-8=<y=3g,
—-05<z<0.S5
JS3LD Shallow (0.5) 1250 —5<x <55, 1920 x 1024 x 32
—16 <y < 16,
—-0.5<z<0.S5
JS4 Shallow (0.5) 625 —5<x <55, 1920 x 512 x 32
-8=<y=3g,
—-05<z<0.5

2 H is the vertical distance from the centreline of the forcing to the free surface.
bThis case is equivalent to Case JS3a except that low-level random noise is added to the initial condition.

We also define lateral £, and vertical £, length scales of the vortical structure as

2
Ly Q—[Hyholzdxdy dz, (10)

2
L. —/ zlw|* dx dy dz, (11)
Qz H

where Q, , = fH |w|? dx dy dz and the subscript H denotes that the integration is performed
over the half-positive y- or z-domain. Note that Equations (6), (10) and (11) all require the
origin of the y- and z-axes systems to be in the centre of the computational domain. These
definitions give the dipole sizes that are roughly the distance between the vorticity extrema
(maximum and minimum) of the dipole [17].

A check of the spatial resolution was performed by comparing the difference between
the left- and the right-hand side of the volume-integrated instantaneous kinetic-energy
equation, written such that

dK
E:—EK—FK—i-/M[]}d)Cdde, (12)

where K is the volume-integrated kinetic energy, € is the volume-integrated rate of kinetic
energy dissipation and Fg is the net volume-integrated kinetic energy flux. This check
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dK/dt

0 5 10 15 20 25 30
t

Figure 5. History of rate of change of volume-integrated kinetic energy K for Case JD (jet in deep
layer): dK/dt,~-=—- —ex — Fx + [u;T; dx dy dz.

indicates whether the grid is fine enough to resolve the smallest turbulence scales. History
of the rate of change in the volume-integrated kinetic energy is provided in Figure 5.
Although the small-scale shear layers (associated with, e.g., the boundary layer on the
virtual body) generated by the jet impulse are not well captured before ¢ ~ 10, after this
time, the flow is fully resolved. For all seven cases in this section, the maximum difference
after 10 time units was less than 1.53% of the maximum value of dK /d¢. The early under-
resolution (when the calculation was effectively a large-eddy simulation) corresponds to
ambiguity of the details of the geometry of the wake-generating body. Since it appears that a
vortex dipole is universal, i.e., a self-similar dipole can be obtained naturally from different
initial conditions and paths (see Figure 11), a full resolution of the early-time small-scale
turbulence is not necessary to obtain the correct long-time behaviour of the dipole.

The development of an impulsive jet in deep and shallow layers is shown in Figure 6 by
the second invariant of the velocity gradient tensor Q = —(u; ju;;)/2 (for details, see [18]).
After the relatively strong jet (Re; > 1) is imparted into the fluid, it generates a vortical
structure with azimuthal vorticity in the frontal region. The frontal region propagates away
from its origin with speed U,, which is half the local fluid velocity behind the front [19].
Thus, the jet fluid merges into the vorticity front. At this stage, the ambient fluid is entrained
in the frontal region, resulting in increasing the sizes of the coherent structure. When the
vertical growth of the turbulent blob is not restricted (as for Case JD), the vertical and
horizontal sizes of the blob increase, while decreasing the propagation speed to conserve
momentum. With time, the turbulent blob transforms into a toroidal vortex, as shown in
Figure 6(e).

When the vertical growth of the turbulent blob is suppressed by the stress-free layers
(Case JS1), the frontal region can only expand horizontally due to lateral entrainment
(Figure 6(d)). A quasi-2D counter-rotating vortical structure eventually forms at late times,
as illustrated in Figure 6(f). A plot of the lateral and vertical vortex sizes (£, £;) versus
time for Cases JD and JS1 is displayed in Figure 7. The agreement of the £, and £ histories
for Case JD underlines the axisymmetric nature of the turbulent blob observed in Figures
6(a), 6(c) and 6(e), throughout the simulation (and indirectly validates the choices made for
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Figure 6. Top and side views (upper and lower part of each picture, respectively) of the vortical
structure in (left) a deep layer (Case JD) and (right) a shallow layer (Case JS1) at Re; = 2000 with
level Q =2.5 x 107*: (a, b) t = 10, (c, d) t = 50, (e, f) t = 250. Isosurfaces of Q are coloured by
vertical vorticity componemt w,.
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Figure 7. Histories of the lateral (£,) and vertical (£,) vortex sizes normalised by the domain depth
for impulsive-jet flow in (a) a deep layer (Case JD) and (b) a shallow layer (Case JS1): ——-- £, /h,
£,/ h.

the sizes [and boundary condition] for the vertical and lateral domain). For Case JS1, the
£, and £; histories imply that the turbulent blob is affected by the free-surface confinement
for + > 10 (see Figures 6(b), 6(d), and 6(f)).

The volume-integrated kinetic energy K of both cases is displayed in Figure 8. The
kinetic energy of the vortical structure resulting from the jet in a deep layer decreases faster
than the vortex suppressed by a free surface. This suggests that the toroidal vortex decays
more rapidly than the vortex dipole, which can be confirmed by the theoretical scaling
laws. Based on the ring and the dipole power laws, the volume-integrated kinetic energy
of the ring and the dipole decreases with time as t=3/4 and +~%/3, respectively. Note that
most of the kinetic energy of the flow is provided by the large-scale structures; hence, the

10 L L
10 10 10 10

Figure 8. History of the volume-integrated kinetic energy K: ———— Case JD (deep layer),
Case JS1 (shallow layer).
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Figure 9. Contours of the vorticity at the free surface showing the penetration of the momentum
source created by an impulsive jet at Re; = 2000 (Case JS1): (a) t = 10, (b) t = 50, (c) t = 300.
Vorticity varies from —0.2 < w,/|w;|max < 0.2. Blue and red patches show negative and positive
vertical vorticity, respectively.

small scales observed from the ring at + = 250 (Figure 6(e)) do not have much effect on
the kinetic energy.

Figure 9 illustrates the signature of the momentum disturbance caused by an impulsive
jet. Initially, it can be seen from Figure 9(a) that the concentrated momentum disturbance
at the free surface does not form a vortex dipole. With time, the blob propagates away
from its origin, while increasing its horizontal size and decreasing its propagation speed,
transforming into a quasi-planar dipole, as displayed in Figure 9(c). This is consistent with
Voropayev et al.’s [4] prediction that a dipole will be visible on the free surface when the
confinement number (which for Case JS1 is 2) is greater than 2.2.

To study the self-similar behaviour of the dipole at late time, the simulation at Re; =
2000 was re-computed in a longer streamwise domain to avoid any effect of the outflow
boundary condition. The length of the streamwise domain was increased from L, = 30
to L, = 60, with a corresponding increase in the number of grid cells to N, = 1920. In
addition, two more Reynolds numbers (Re; = 625 and 1250) were considered (see Table 1).
After the dipole is fully formed, Figure 10(a) shows that the intensity of the vertical vorticity
at the free surface reduces with time as w; max ~ t~1. The temporal evolution of the dipole
propagation velocity U, and the dipole size §, are illustrated in Figures 10(b) and 10(c),
respectively. The dipole propagation speed decreases with time as U, ~ ¢ ~2/3, while its size
increases as 8; ~ t!/3. The power laws of the dipole in this simulation are the same as those
in the previous measurements in a linearly stratified fluid [7] and in a shallow layer [3,4].
The dipole at a lower Reynolds number requires less time to achieve power-law behaviour.
For example, the dipole propagation velocity at Re; = 625 starts to follow ¢ ~%/* atr &~ 150,
while about 500 and 1800 time units are required for the dipoles at Re; = 1250 and 2000,
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10°

Figure 10. Histories of characteristics of jet-induced dipole: Re; = 2000 (Case JS2),——--—
Re; = 1250 (Case JS3a), —-—-- Rej = 625 (Case JS4). (a) Maximum vertical vorticity at the free
surface. (b) Dipole propagation velocity. (c) Dipole size.

respectively. It should be noted that the theoretical scaling laws are based on the idea of the
flow similarity and they satisfactorily describe the results of experiments and our numerical
simulations at intermediate asymptotic stage only — but they are not useful in describing
the whole flow evolution. Additionally, using only one realisation might not be enough to
obtain close agreement between DNS results and the theoretical scaling laws, especially
during the transformation process leading to a dipole. An ensemble of realisations is needed
to address this point.

To investigate the sensitivity of the intermediate-time behaviour (about 200 — 500 time
units; see Figure 11) to small changes in the initial conditions and domain size, Case JS3a
(jet-induced dipole at Re; = 1250) was repeated, first in the same computational domain
but with low-amplitude (maximum value of 10~82/) random seeding (Case JS3b), and again,
in a two times larger lateral domain (Case JS3LD). Note that the resolution is identical for
all three runs. Histories of the dipole characteristics from these three cases are illustrated
in Figure 11. Although their initial development is different, all three cases nevertheless
converge to very similar dipole flows. This suggests that the dipole is a robust 2D limit that
is relatively insensitive to the path taken during its development.
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Figure 11. Histories of characteristics of jet-induced dipole at Re; = 1250 from three different

realisations: Case JS3a,—-——— CaseJS3b,--—-- Case JS3LD. (a) Maximum vertical vorticity
at the free surface. (b) Dipole propagation velocity. (¢) Dipole size.

5. Manoeuvring-body wake

We limit attention here to wakes in a shallow layer of same depth used for Cases JS1-JS4.
In order to capture the entire process of a late wake eddy behind a manoeuvring body, the
simulation of a spatially developing wake needs to be performed in a very long domain,
which is computationally inefficient. To overcome the problem, the simulation is split into
two phases. The first phase of the simulation is concerned with the early-time behaviour
of the wake, including both the near-field and the starting vortex, while the final phase
contains only the late-time dipole behaviour (see Section 5.2).

5.1. Early-time behaviour

We select a sphere with diameter D as the manoeuvring body. The Reynolds number based
on the diameter and the terminal velocity U, of the sphere is Re, = U,D/v = 826. The
simulation is performed in the domain given by —5 < x <30, —4 <y <4 and —0.5 <
7 < 0.5, with 2240 x 512 x 64 grid cells. Here, the reference length £ is 2.5D and the
reference velocity U is 2.05U;,.
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Figure 12. (a) Histories of the momentum flux, thrust, drag and speed of the body for
manoeuvring-body wake: F/Fupw, — =~ Thrust/ Fiax, Drag/Fuax, ="
U/U,. (b) History of the volume-integrated streamwise momentum flux: Fy, o
J (—du/dt + B, + T, — dU/dr)dx dy dz. The simulation parameters for this case are Re, =
U,D/v =826, Re; = J'2/v =785and C = J'/2At;/h* = 1.62.

At t = 0, the body accelerates from rest. The forcing time scale in Equation (5) was
chosen such that the density of the object associated with M. is 552 times that of the fluid.
(Smaller values, corresponding to more physically relevant bodies, will be considered in
the future.) At this stage, the thrust is greater than the drag, leading to a momentum flux F
being transported to the fluid. After some time, the body reaches and maintains its terminal
speed. Histories of the momentum flux, the thrust, the drag and the velocity of the body are
displayed in Figure 12(a). The jet Reynolds number Re; and the confinement number C
for this case are 785 and 1.62, respectively. Note that we do not fully resolve the boundary
layers of the sphere because we assume that the dipole will eventually become self-similar,
such that the late-time characteristics of the dipole do not depend critically on the near-field
wake (supported by the evidence in Figure 11) and only a momentum flux imparted into
the fluid is important (compare comments following Equation (12)). Thus, it is necessary
to check if the net volume-integrated momentum flux F),, which is the difference between
the momentum, pressure and viscous fluxes at the inlet and outlet planes, is balanced by the
forces added to the Navier—Stokes equations. The streamwise momentum balance in the
non-inertial moving reference frame can be written such that

ou dU
Fy = —— 4+ B, +T, — — ) dxdydz. 13
M /( ot + Byt dt) yee (13)

A plot of the balance of the volume-integrated streamwise momentum flux versus time is
displayed in Figure 12(b), showing good agreement between the flux terms Fj; and the
external force. The difference is less than 0.11% of the maximum value of Fj; during the
acceleration period (t < 9), and less than 2 x 1073% when the body moves at its terminal
speed. The adequacy of the spatial resolution was also checked in the same way as described
in Section 4. It was found that the error remaining after five time units was lower than 0.12%
of the maximum value of dK /dr.

The second invariant of the velocity gradient tensor Q is again used to visualise the
vortical structure of the manoeuvring-body wake, as displayed in Figure 13. It is found
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Figure 13. Top and side views (upper and lower part of each picture, respectively) of the vortical
structure of a manoeuvring-body wake with level Q = 2.5 x 107*: (a)t = 5, (b) t = 10, (c) t = 20.
Isosurfaces of Q are coloured by vertical vorticity componemt w,.
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Figure 14. The projected vortical structure with the window function at r = 20: (upper) top view,
(lower) side view.

that a large-scale vortical structure, resulting from the acceleration of the body, appears
in the late wake. The horizontal size of this vortical structure increases with time, due
to lateral entrainment, while the vertical growth is restricted by the top and bottom free-
slip walls. When the body is moving at its terminal velocity, a momentumless wake is
observed in the near-field region. The zero-momentum wake decays very quickly without
the formation of any coherent vortical structures. Note that the momentumless wake at the
early time is still laminar, despite the relatively high Reynolds number, because the near-
field wake is convectively unstable, i.e. has no strong reversed-flow region. Hence, this flow
compares to that over a streamlined body in which no flow separation occurs, and it thus
needs a very long time to become turbulent. If we were to use a high-intensity body force
(i.e. Jp/0.5ma U, > 1) to represent the drag instead of the virtual body, the instability of
the near-field wake would change to an absolute-type instability and would thus quickly
break down to turbulence with a lot of small-scale eddies, which require very fine grid
resolutions to fully resolve them. We did not follow that strategy, since the objective of this
work is to study the characteristics of the late-wake eddy.

5.2. Late-time behaviour

After the body has reached its terminal velocity (at = 20), the vorticity field was projected
to a smaller computation domain using a streamwise windowing function f,,, defined as

Fu(x) = 0.5 x (tanh (1.5x — 10) + 1). (14)

The objective of using the window function is to remove a portion of the near-field wake
illustrated in Figure 14, allowing computational resources to capture only the far-field
wake portion of the flow. Note that the removal of the momentum source does not affect
the formation and evolution of the late-wake eddy because negligible net momentum is
imparted into the flow by the self-propelled body after it has achieved its terminal speed,
when the drag is practically cancelled by the thrust. In order to obtain the new velocity
field, we first solve the Poisson equation for the vector stream function ¢ = (¥, ¥y, ¥;)
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Figure 15. Top (upper) and side (lower) views of isosurfaces of Q showing the evolution of the
vortical structure generated by the manoeuvring body at late time: (a) t = 50, (b)# = 100, (c) ¢ = 200.
Isosurfaces of Q are coloured by w, and the surface level is Q = 2.5 x 107,

whose source term is the projected vorticity field @ = (wy, w,, ®,),
V= 0. (15)

The new velocity field can then be obtained directly by taking the curl of the vector stream
function as

u=Vxvy. (16)

The simulation in this phase is first carried out in a domain of size 4 < x < 24, —8 <
y < 8and —0.5 < z < 0.5, with 1280 x 1024 x 64 grid cells. Since the coherent structure
propagates in the positive x-direction and could leave the domain if the domain length
in that direction is not long enough, we employ a PID (proportional—integral—derivative)
controller, described in Archer et al. [20], to keep the vortical structure at a fixed streamwise
location within the domain. This also significantly reduces the computational cost. The PID
controller locates the vortex dipole to within 10~* of the desired location by 20 time
units. We allow the wake shed from the vortex to go out of the computational domain
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Figure 16. Contours of vorticity at free surface showing the penetration of wake signature of a
manoeuvring self-propelled body: (a) = 30, (b) = 100, (c) t = 200 (the computational domain is
regridded as described in Section 5.2), (d) + = 1000. Vorticity varies from —0.2 < @, /|, |max < 0.2.
Blue and red patches show negative and positive vertical vorticity, respectively.

in the negative (outflow) x-direction (note that in the frame of reference attached to the
vortex/dipole structure, the inflow boundary is at x = 24 and the outflow at x = 4), since its
effect on the dipole dynamics is assumed to be negligible. At very late time, high resolution
is no longer required, since the global Reynolds number, based on the dipole translation
speed U, and the dipole size 8, decreases as t~'/3 [5], but the size of the domain has to be
increased to capture the dipole as its lateral size increases. Thus, the computational domain
was expanded at r = 200, with —2 < x <30, —16 <y < 16 and —0.5 < z < 0.5, and the
resolution reduced to 1024 x 1024 x 32 grid cells. Note that during the entire simulation,
the lateral domain width L, is at least six times larger than the lateral size of the coherent
structure created by the manoeuvring body.
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Figure 17. Histories of characteristics of dipole induced by manoeuvring body. (a) Maximum vertical
vorticity at the free surface. (b) Dipole propagation velocity. (¢) Dipole size. The computational
domain is regridded as described in Section 5.2 at r = 200.

The isosurfaces of Q displayed in Figure 15 show the evolution of the vortical structure.
Only the horizontal size of the late-wake eddy can expand, yielding a coherent structure in
the form of two patches of opposite-signed vortices, as shown in Figure 15(c). The evolution
of the vortical structure at the free surface is displayed in Figure 16. Figure 16(a) shows
that the momentum disturbance penetrates upward and produces its signature at the free
surface at an early time. At this stage, the wake signature is not yet in the form of a dipole.
With time, the horizontal eddy grows as it propagates away from the body, and the wake

Table 2. Values of A.

Case Re; C A

JS2 2000 2.0 58.69
JS3a 1250 2.0 41.52
IS4 625 2.0 2353
Manoeuvring body 785  1.62 21.28
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Figure 18. Histories of maximum vertical vorticity at the free surface: Case JS2 (Re; =
2000), — ==~ Case JS3a (Re; = 1250), Case JS4 (Re; = 625),----+-++ Manoeuvring body
(Re; = 785).

signature finally transforms into a vortex dipole (Figures 16(c) and 16(d)). The late-time
coherent eddy generated by the manoeuvring body is similar to the jet-induced dipole.

The late-time characteristics of the dipole created by the accelerating motion of the body
are given in Figure 17, along with the theoretical scaling laws. The comparison shows good
agreement between the DNS and the power laws. These scaling laws are obtained with the
assumption that the impulse of the dipole is conserved [7,21]. Based on this assumption,
the decay of the vertical vorticity is inversely proportional to time, with

@z max = A[_l s (17)

where A is an empirical constant. The constant A was determined experimentally by
Voropayev et al. [21] to be A = 17. In order to check whether or not this constant is
universal, we compute A for all four cases (the jet-induced dipole at Re; = 625, 1250, 2000
and the manoeuvring-body wake at Re; = 785) by finding the slope and the virtual origin
of w- Lm = (t — t9)/A. The resulting values of A from our data are given in Table 2,
and a plot of w; max versus (¢ — ty) is displayed in Figure 18. Although the vorticity at
large times decays in a similar manner as 1/(f — #y), a Reynolds number dependence is
indicated, calling the universality of A into question. The consistency of the estimates for
A seen in Figure 11(a), which shows the decay of w, max from different realisations, yields
a unique value of A for the jet-induced dipole at Re; = 1250. Note that some difference
between numerical and experimental values of A may be expected because experiments
were conducted in a stratified fluid, while a confined homogeneous fluid is used in the
present simulations.
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6. Summary

The formation and evolution of the large-scale coherent structure produced by both an
impulsive jet and an accelerating self-propelled body have been examined using DNS. It
is found that when the vortex is constrained by the stress-free top and bottom layers, a
quasi-planar counter-rotating structure is formed. The vortex dipole persists for a longer
time than a typical toroidal vortex. The characteristics of the dipole vortices induced due to
vertical confinement are similar to those in a stratified fluid. Qualitatively similar pancake-
like vortices can be obtained via different initialisations, which support the assumptions
made about the self-similarity of a dipole. The expected scaling laws are satisfied, although
the dipoles appear to possess a Reynolds number dependence. Future work will investigate
how the formation of the submerged momentum disturbances is affected by the thickness of
the fluid domain. The ability of the confinement number to predict the effect of a submerged
coherent vortex on, e.g., the free surface will also be explored.
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