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BETWEEN NON-DEFORMABLE STRESS-FREE LAYERS

by Watchapon Rojanaratanangkule

A wake behind an unsteady moving submerged vehicle is of interest and impor-

tance in a broad variety of engineering disciplines, ranging from underwater to

aeronautical engineering. When the vehicle changes its speed or direction, un-

der certain conditions, it can lead to the appearance of a coherent kilometre-scale

quasi-planar counter-rotating vortical structure which persists for the order of

days. The aims of this work are to determine the conditions under which such a

large coherent vortex can appear and to obtain deeper understanding of its dy-

namics by investigating the evolution of a turbulent patch created by either an

impulsively accelerating axisymmetric self-propelled body or an impulsive jet in

the small-scale upper ocean via direct numerical simulation.

A non-conservative body force is applied to the governing equations to rep-

resent an impulsive jet, while an accelerating motion of a self-propelled body is

emulated by the combination of an immersed boundary method and the body

force. Criteria for the occurrence of a vortex dipole are found to depend on a

dimensionless parameter, called the confinement number. Once the confinement

number is higher than about unity, the vertical growth of an impulsively gener-

ated turbulent patch is restricted by the top and bottom layers of the upper ocean

leading to the formation of a vortex dipole at the free surface. The contrast and

strength of a surface signature increase linearly with increasing confinement num-

ber. The late-time dynamical structures, i.e. the propagation velocity, size and the

decay rate of maximum vorticity, of the dipolar eddy induced by the presence of

vertical confinement can be predicted by scaling laws relevant to a stratified fluid,

even though the dipole possesses a Reynolds-number dependence.
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Chapter 1

Introduction

1.1 Motivation

Large-scale vortical structures have been a fascinating problem for engineers and

physicists since they are the basic features of many turbulent flows. Some well-

known examples of coherent structures found in engineering and nature are a chain

of vortex rings behind an aircraft (Crow, 1970), a kilometre-scale Kármán vortex

street downstream of an island (Cahalan et al., 2001), and a mushroom-like vortex

of an atomic bomb (Sigurdson, 1991). These organised vortical structures appear

due to the momentum being transported into a fluid. Depending on the type

of localised momentum sources (e.g. continuous or impulsive) and backgrounds,

different formation and dynamics of coherent structures can be obtained. In this

work, we focus on a large-scale turbulent vortical structure generated by a sudden

horizontal acceleration of a self-propelled body in the upper ocean. This accelerat-

ing motion is frequently idealised as a finite-duration momentum source (impulsive

jet) in experiments due to the simplicity of controlling the forcing intensity and

forcing duration.

Even though both experimental and numerical studies of turbulent wakes be-

hind bluff bodies have received much attention by many researchers in order to gain

better understanding of their dynamics, almost all of the studies have focused on

wakes behind towed or self-propelled objects moving at constant velocity. Only few

studies were concerned with the physics of turbulent wakes behind manoeuvring

self-propelled bodies (e.g. Voropayev et al., 1999, 2007). The constant-velocity

wakes can be classified into two categories based on the momentum of the flow:

(i) finite-momentum, and (ii) momentumless wakes. A finite-momentum wake oc-

curs behind a towed body that imparts momentum, equal to the drag of the body,

to the wake. On the other hand, a zero-momentum wake can be observed behind

a self-propelled body moving at constant velocity. A self-propelled body has to

1
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provide enough momentum (thrust) through its jet engine/propeller to balance

its drag in order to move, such that no net momentum is produced to the wake.

Moreover, a self-propelled wake decays much more rapidly compared with a towed

wake (Brucker & Sarkar, 2010).

A wake behind a manoeuvring body can contain the characteristics of both

finite- and zero-momentum wakes at the same time. In practice, a submerged

vehicle (aircraft or submarine) leaves a finite-momentum wake when it accelerates

or changes direction, and a momentumless wake only when it moves at constant

speed (Tennekes & Lumley, 1972). A manoeuvring-body wake is of interest be-

cause it can introduce dynamics that are absent from the constant-velocity case,

especially when the wake is influenced by stable stratification or by the presence of

an adjacent free surface. For example, dipolar vortices produced by the interaction

of manoeuvring-body wakes with either stable background density stratification

or a free surface can be observed in geophysical flows (e.g. Ahlnäs et al., 1987;

Sous et al., 2004; Voropayev et al., 1999, 2007). The practical importance of dipo-

lar vortices is that they are very large, compared with the size of the body, and

long-lived. Voropayev et al. (1999) estimate that a coherent kilometre-scale vorti-

cal structure that persists for the order of days can be observed behind a typical

submarine manoeuvre in the ocean. Moreover, due to the self-induced motion of

the dipole vortex, it can transport mass, momentum and other scalar properties

such as heat and salinity.

1.2 Characteristics of a Vortex Dipole

In the past two decades, a lot of meso- and synoptic-scale (i.e. with horizontal scale

10 − 100 and of O(1000) km) vortical structures, called mushroom-like currents

(dipole vortices), have been observed from the satellite images of the atmosphere

and the ocean surface (e.g. Fedorov & Ginsburg, 1989). For example, seventeen

dipole vortices were determined in the Alaska Coastal Current by Ahlnäs et al.

(1987). The main characteristics of a dipolar vortex are that it consists of two

closely packed counter-rotating vortices (see Figure 1.1), and that its horizontal

length is much larger than the vertical scale due to the vertical motion of a dipole

being suppressed by a vertical force. Due to the latter reason, a vortex dipole is

usually considered as a quasi-two-dimensional coherent structure.

The formation and evolution of vortex dipoles have been widely studied in a

linearly stratified fluid, in which the vertical growth of a dipole is confined by the
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Figure 1.1: Schematic of a dipole vortex.

buoyancy force (e.g. van Heijst & Flór, 1989; Voropayev et al., 1991; Flór & van

Heijst, 1994). In those experiments, vortex dipoles were generated by injecting mo-

mentum into a fluid via an impulsive jet. Generally, when momentum is imparted

into a flow, it leads to an isolated region which possesses a high concentration

of vorticity and non-zero net linear momentum, often referred to as a turbulent

patch (or turbulent blob). The evolution of the patch in a linearly stratified fluid

is illustrated in Figure 1.2. It can be seen that, initially, the turbulent patch is

fully three-dimensional (Figure 1.2a). At this stage, the patch does not feel the

stratification. While the patch is propagating away from its origin, its vertical

and horizontal sizes increase due to the entrainment process of the surrounding

fluid as in an unbounded homogeneous fluid, where the patch can transform into

a toroidal vortical structure (Maxworthy, 1977). When the kinetic energy of the

patch balances the potential energy, it starts feeling the effect of stratification.

Hence, the vertical growth of the patch is rapidly suppressed by the buoyancy

force (Figure 1.2b). In contrast, its horizontal size is still able to expand contin-

uously due to lateral entrainment, which leads to a quasi-planar counter-rotating

dipole vortex-structure (Figures 1.2b – 1.2f). Once the formation of the dipole is

complete, the dipole still translates along a straight line while preserving its shape

because its net linear momentum is being conserved.

During the collapse of the turbulent patch, internal waves were also observed

in some experiments. Even though the internal waves can cause the energy to

radiate away from the centre of the collapse region, they decay very quickly and

are believed to play no significant role in the subsequent evolution of a dipole

(Voropayev et al., 1991; Flór & van Heijst, 1994).

The characteristics of a vortex dipole were compared with a theoretical Lamb–

Chaplygin dipole (Flór & van Heijst, 1994). It was found that a laminar-jet-

induced dipole exhibits a linear relationship between the vorticity (ω) and the
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: The evolution of a turbulent patch created by an impulsive jet
in a linearly stratified fluid from Flór & van Heijst (1994). Each photograph
displays side and top views (upper and lower part of the picture) of the flow.
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stream function (ψ), whereas the (ω, ψ)-relationship of a dipole generated by a

turbulent jet can be described by a sinh-like profile. In spite of the nonlinear (ω, ψ)-

relationship, the dynamical structures (i.e. size, position of maximum vorticity,

cross-sectional distributions of velocity and vorticity, and translation speed) of

both laminar- and turbulent-jet-induced dipoles are in good agreement with a

theoretical Lamb–Chaplygin dipole.

In order to investigate the decay of a dipole, Flór & van Heijst (1994) defined

the horizontal Reynolds number Reh = Udδd/ν, based on the dipole translation

velocity Ud and the dipole size δd (which was defined as the maximum horizon-

tal size of the dyed fluid in the literature), and the vertical Reynolds number

Rev = UdHd/ν (where Hd is the dipole thickness). Soon after the dipole forma-

tion is complete, the values of these Reynolds numbers were initially Reh = 1000

and Rev = 300 and then decreased to Reh = O (100) and Rev = O (10) while

the dipole was propagating along a straight line. This suggests that the vertical

diffusion of vorticity and the horizontal entrainment of the surrounding fluid are

the most important factors in the decay of a dipolar vortex because both phys-

ical phenomena increase the size of a dipole, whilst its translation velocity has

to decrease to conserve the momentum. Flór et al. (1995) extended this study

by comparing their experimental results with two simple theoretical models based

on a viscous decaying Lamb–Chaplygin vortex. The difference between these two

theoretical models is that the thickness and radius of a dipole were assumed to be

constant in the first model, whilst the growth in a dipole thickness was considered

in the second model. The comparisons between the experimental results and both

models showed reasonable agreement although both models neglect the effect of

horizontal entrainment and the decay is modelled only by the vertical diffusion of

vorticity. Flór et al. (1995) concluded that slightly better results would be achieved

by adding the effect of horizontal entrainment and that the most dominant factor

for the decay of a planar dipolar vortical structure is the diffusion of the vertical

vorticity.

The self-similarity of a dipolar vortex was experimentally studied by Voro-

payev et al. (1991, 2008). Using dimensional analysis with the assumption that

the impulse per unit dipole thickness P = I/Hd is conserved, the propagation

velocity Ud and size δd of a dipole induced by an impulsive jet can be written in

terms of t and P as Ud ∼ P 1/3t−2/3 and δd ∼ P 1/3t1/3. It was noted by Voro-

payev et al. (2008) that these estimated power laws would be changed within only

±10%, when a change in a dipole thickness is about 2 times. The evolution of the

vertical vorticity can also be approximated using the same arguments. It is found
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that the maximum magnitude of the vertical vorticity ωz,max is independent of P

and decays only with time as ωz,max = At−1, where A is an empirical constant.

Voropayev et al. (2008) determined the constant A by performing experiments

in a linearly stratified fluid with a range of impulse and found that ωz,max from

different I collapsed well with A = 17.

van Heijst & Flór (1989) performed experiments on colliding vortex dipoles

in a stratified fluid in order to study the mass transfer between the vortex dipoles

during their mutual interactions. In the first experiment both dipoles were set

to have the same size and strength, whereas these characteristics were slightly

different in the second experiment. After the dipoles collide with each other, it was

observed that the dipoles exchange partners without any mass transfer between

the dipoles for both cases.

The effect of background vertical shear on a dipole vortex was experimentally

studied by Voropayev et al. (2001). Continuous and impulsive body forces were

used to create a dipole vortex in a linearly stratified fluid. It was found that if

the value of the background vertical shear is higher than the inverse of the forcing

duration for the case of impulsive forcing or higher than the inverse of the time

when the flow starts feeling the stratification for the case of continuous forcing,

the dipole vortex does not form. Moreover, the lifetime of the formed dipole is

shorten by the background vertical shear.

In general, it is not only the buoyancy force in a stratified fluid that can

suppress the vertical motion of a turbulent patch and transform it into a quasi-

two-dimensional vortical structure; it could be any kinds of vertical suppression,

e.g. the magnetohydrodynamic force in a thin layer of mercury (Nguyen Duc &

Sommeria, 1988), the surface tension force in a thin soap film (Couder & Bas-

devant, 1986), the Coriolis force in a rotating homogeneous fluid (Flierl et al.,

1983), or the suppression from flow geometry as in a shallow fluid (Jirka, 2001;

Sous et al., 2004; Voropayev et al., 2007). (The vertical confinement from flow

geometry is the subject of this work and will be detailed later in § 1.3.) The most

important parameters that govern the characteristics of the flow are the forcing

intensity J (kinematic momentum flux) and the forcing duration ∆tf (Voropayev

et al., 1991). Moreover, a dipole vortex can form in spite of using different types

of momentum sources. For example, pancake-like vortex streets, whose character-

istics are very similar to a dipole vortex, have been observed in late-time stratified

wakes behind both towed and self-propelled bodies moving at constant speed; see,

e.g., a comprehensive review by Lin & Pao (1979).
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Voropayev et al. (1999) extended the complexity of the wake motion to the

case of a turbulent wake created by a sudden horizontal acceleration of a self-

propelled body in a stratified fluid. In their experiment, a moving force doublet

was used to model the drag and the thrust generated by a manoeuvring submarine.

In this method, the drag intensity JD of a moving body can be approximated as

JD =
CDSU

2
b

2
, (1.1)

where Cd is the drag coefficient, S is the area of the body and Ub is the horizontal

velocity of the body. The thrust can be modelled from the jet of the body and its

intensity JT is estimated as

JT =
q (q − sUb)

s
, (1.2)

where q = sujet is the volume flux of the nozzle, ujet is the jet velocity and s is the

area of the nozzle.

When the volume flow rate increases, the body thus accelerates resulting in

an increase in the horizontal velocity of the body Ub. The Newton’s second law of

motion can be used to find Ub(t). The balance of momentum can be written as

(1 + k)M
dUb

dt
= ρ (JT − JD) , (1.3)

where M = ρSL is the mass of the body, ρ is the fluid density, L is the length of

the body, and k is the virtual mass coefficient. Substituting the thrust and drag

from Equations (1.1) and (1.2) into Equation (1.3), the balance of momentum

becomes

(1 + k)SL
dUb

dt
=
q (q − sUb)

s
− CDSU

2
b

2
. (1.4)

Once the jet has reached its terminal speed, the volume flux q is presumably

constant, thus the solution for Ub is

(Ub − U1)

(Ub − U2)
=

[
U0 − U1

U0 − U2

]
exp

[
−
(
b

a

)
(U1 − U2) t

]
, (1.5)

where a = (1 + k)SL, b = CDS/2, U1 and U2 are the real roots of the equation

bŨ 2
b + qŨb −

q2

s
= 0 , (1.6)
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and U0 is the initial velocity of the body. Let η be

η =

[
U0 − U1

U0 − U2

]
exp

[
−
(
b

a

)
(U1 − U2) t

]
, (1.7)

the horizontal velocity of the body can be written as

Ub(t) =
U1 − ηU2

1− η . (1.8)

It was observed by Voropayev et al. (1999) that a momentumless wake was

produced behind the submarine when the submarine moved at constant speed

implying that the thrust is equal to the drag. The zero-momentum wake was

observed to decay rapidly without any formation of a coherent vortical structure

in the late wake. In contrast, when the submarine accelerated, it left behind a

finite-momentum wake which eventually transformed to a large vortex dipole.

1.3 Interaction of Momentum Sources with a Free Surface

The study of the formation and evolution of a vortex dipole has recently been

extended to the case of shallow water above a solid no-slip surface, for which the

vertical size of a turbulent patch is suppressed by the flow geometry (Sous et al.,

2004, 2005). The term shallow layer is defined as a layer in which the lateral size of

a coherent structure is much larger than the vertical dimension of a fluid domain.

It appears that under certain conditions the vertical growth of a turbulent

patch is confined by the flow geometry, leading to the formation of a quasi-planar

counter-rotating vortex which produces a dipolar eddy at the free surface. Sous

et al. (2004) studied the effect of two dimensionless parameters on the evolution of

the momentum disturbance. The dimensionless parameters are the jet Reynolds

number Rej = J1/2/ν, and the confinement number C, defined as

C =
J1/2∆tf
h2

, (1.9)

where J is the forcing intensity, ∆tf is the forcing duration and h is the thickness

of a fluid domain. The confinement number is the ratio of an impulsive force to

the thickness of a fluid domain and can be interpreted as how big the vertical size

of a vortical structure generated by an impulsive force is compared to the depth

of the domain. (The physical meaning of the confinement number will be detailed

more in § 5.1.) It was found that this condition depends only on the confinement
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number, such that it can be used as a threshold for the appearance of a dipole

vortex at the free surface. In Sous et al.’s (2004) experiment, the dipole vortex

was clearly observed when C > 2. The dipole was still visible when 1 < C < 2,

but it was not seen when C < 1. The formation and evolution of the vortex

dipole formed in shallow water are similar to that in a stratified fluid except that

three-dimensional small-scale turbulence appears at the dipole front. Sous et al.

(2004) stated that the vertical motion at the frontal region might appear due to

the effect of bottom friction.

Voropayev et al. (2007) performed experiments in a two-layer fluid, where

unstratified water was placed above a layer of salt water, in order to reduce the

effect of the bottom surface. Their flow environment is similar to the real upper

ocean (depth 50 – 100 m), in which denser water rests underneath a nominally

constant density gradient. In addition, Voropayev et al. (2007) defined another

dimensionless parameter, namely the contrast number Cn, to describe the intensity

of a surface signature. In their experiment, the contrast number is defined as the

ratio of the maximum vertical vorticity ωz,max of the dipole vortex to the root-

mean-square (rms) value of the background vertical vorticity ωz, rms, which had

been measured prior to the experiments and was identical for all of their runs,

Cn(t) =
ωz,max(t)

ωz, rms

. (1.10)

They classified the intensity of their surface signature into three regimes, which

are high, significant, and insignificant, depending on the maximum value of the

contrast number. The intensity of the surface signature is high when Cnmax > 50

and in this regime the dipole is systematically formed. The dipole vortex can

still be observed when 5 6 Cnmax 6 50, and this regime is termed significant.

When Cnmax < 5, the contrast is insignificant indicating that the dipole is hardly

observed or cannot be observed at all.

The empirical relationship between the confinement number C and the con-

trast number Cn was also determined by Voropayev et al. (2007) as

Cnmax = B
[
1− e2(C0−C)

]
, (1.11)

where the constants B and C0 were obtained from the curve fitting of their exper-

imental data and are B ≈ 65, C0 ≈ 0.65. This phenomenological model suggests

that the intensity of a surface signature increases exponentially with confinement

number.
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1.4 Vortical Structures Generated by Body Forces

In order to emulate the motion of a jet nozzle injecting momentum into a fluid,

one can apply an external body force directly to the Navier–Stokes equations.

This method can be viewed as a generic vortex generator, which is independent of

the shape of a nozzle. It was previously used to numerically study the dynamics

of vortex rings with different purposes, e.g. the interaction between a ring and a

no-slip wall (Swearingen et al., 1995), vortex ring pinch-off (Mohseni et al., 2001),

and sound radiated from a compressible turbulent ring (Ran & Colonius, 2009). In

those studies, the amplitude of the body force was adjusted to obtain the desired

circulation of a vortex ring. However, since it appears that the characteristics of

this type of flow are subject to the initialised bulk integral momentum, one can

make this approach more general by defining the impulse I of the flow via the

magnitude of a body force rather than specifying the circulation. (Recall that

impulse is a true conserved quantity for this type of flow and I = J∆tf .)

A spatially localised force can also be used to generate a far wake as exper-

imentally demonstrated by Voropayev & Smirnov (2003). In their experiment,

the body force was created by a jet ejected from a nozzle moving horizontally in a

stratified fluid. The force was considered as a point force because the size of the jet

was negligibly small. Vortex streets were observed behind the moving point source

and their characteristics were in good agreement with those appearing behind a

towed body. It was concluded that the evolution and formation of such late-wake

vortical structures can be described by the total momentum flux injected into the

fluid and are independent of the size and shape of a particular object. Based on

Voropayev & Smirnov’s (2003) experiment, one can expect to emulate a far-field

wake behind a towed or self-propelled body by specifying the magnitude of a lo-

calised forcing to get the desired impulse rather than the details of a blunt body.

The effect of a towed object on the wake can be modelled by a force whose magni-

tude equals the drag and is acting in the opposite direction. Since a self-propelled

body consists of two different types of forcing, a force doublet (two forces) should

be used to model the thrust and the drag of the body. In general, the drag is

applied in front of the thrust and these forces act in the opposite directions.

Analytical solutions that describe the steady-state velocity field of finite- and

zero-momentum wakes respectively generated by a single force and a force doublet

were proposed using the boundary-layer and Oseen’s approximations by Smirnov

& Voropayev (2003). In that study, the forcing was considered as a point force

and hence represented by the Dirac delta function. On the other hand, Afanasyev
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(2004) derived the time-dependent solutions for the vorticity and stream function

of the point-force-induced finite- and zero-momentum wakes. The velocity field of

Afanasyev’s (2004) method can be obtained by differentiating the stream function

equation. It was found that the velocity profiles of the finite- and zero-momentum

wakes obtained from both asymptotic solutions are in close agreement with those

generated by towed and self-propelled bodies.

The numerical simulation of two-dimensional finite-momentum wakes and vor-

tex streets induced by a spatially localised force was performed by Afanasyev &

Korabel (2008). A smoothly varying finite function (e.g. the Gaussian function)

was used to represent the body force rather than the Dirac delta function. The

Gaussian distribution was selected since it can provide the bell-like distribution

similar to the electromagnetic force used in their previous experiments (Afanasyev

& Korabel, 2006). Moreover, the use of the Dirac delta function (the point force) in

a numerical simulation can cause some discontinuities in the flow field and cannot

be accurately represented (Maxey & Patel, 2001). The stable and unstable wakes

(vortex streets) similar to those observed behind a towed body were obtained in

Afanasyev & Korabel’s (2008) numerical experiment. The conditions under which

the wake changes its regime from stable to irregular (vortex-shedding phase) were

found to depend on the following flow parameters; the forcing intensity, the size

of the forcing area, the free-stream velocity and the kinematic viscosity.

1.5 Objectives and Thesis Outline

When a submersible self-propelled vehicle undergoes a diving manoeuvre, it leaves

behind a turbulent coherent structure which, under certain conditions, may be al-

tered to a large long-lived pancake-like counter-rotating vortex (a dipole) and pro-

duce its signature at the water surface. Determining such conditions is of practical

importance since we can indicate, for example, the possibility that a manoeuvring

motion of a submarine could be detected by remote sensing. Additionally, some

fundamental issues of dipole dynamics, such as self-similarity and universality of

a dipole, are not well understood and remain to be learned.

This work focuses on investigating the formation and evolution of large-scale

coherent structures generated from submerged impulsive momentum sources in the

small-scale upper ocean mimicked by non-deformable stress-free top and bottom

layers, using direct numerical simulation (DNS). An accelerating motion from rest

of a self-propelled body is chosen as the momentum source and will be idealised
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using an impulsive jet. The aim for this study is to determine the conditions

under which the three-dimensional turbulent vortex can be altered to a quasi-two-

dimensional counter-rotating structure which produces a dipolar eddy at the free

surface. We will also assess how accurately the late-time behaviour of a dipole

can be predicted by simple scaling laws and verify if the empirical constant for the

decay rate of the vertical vorticity, A, is universal. The accuracy of the existing

phenomenological model (from experimental work of Voropayev et al., 2007) that

measures the surface signature contrast as a function of the confinement number

will also be tested.

The present work intends to compute spatially developing flows rather than

the more commonly studied temporal wakes. In spite of achieving a degree of

realism and generality, this leads to some rather stiff technical challenges. The

computational challenges associated with this work are: (i) How to emulate an

accelerating motion of a self-propelled body in a spatially evolving frame? (ii)

How to capture the entire process of the dipole formation which requires a very

long computational domain?

The thesis is organised as follows. The next chapter (§ 2) will introduce the

governing equations and the numerical approach to solve them. In particular,

the implementation of an immersed boundary method and an external body force

used to emulate an accelerating motion of a self-propelled body, and the numerical

techniques that allow us to investigate the entire process of the dipole formation

will be detailed. The validation of these numerical tools will then separately

be presented in § 3. The following chapter (§ 4) will be devoted for the late-

time behaviour of dipole vortices induced by an impulsive turbulent jet and a

manoeuvring-body wake. The numerical results will be compared with the dipole

scaling laws. The universality of the constant A will also be verified. Finally, the

physical meaning and the effect of the confinement number will be explored in § 5.
The relationship between the confinement number and the intensity of a surface

signature will also be determined and compared with the phenomenological model

of Voropayev et al. (2007). Conclusions and future extension of this study will be

given in § 6.



Chapter 2

Governing Equations and Numerical Method

The numerical code used in this work, CgLES, has been developed in C/C++.

One of the most advanced features of this code is that it can be used to run on

a large numbers of processors efficiently. In this code, the main computational

domain is split into several blocks by means of a multiblock technique. Each block

is then computed simultaneously on distributed memory machines architecture.

Message Passing Interface (MPI) libraries are also used to transfer data between

blocks located on different processors. The code has been validated (Thomas &

Williams, 1997) and previously used in many applications with both Large Eddy

Simulation (LES) and Direct Numerical Simulation (DNS); for example LES of

vortex shedding behind an inclined cubic obstacle (Thomas & Williams, 1999),

DNS of a turbulent trailing edge flow (Yao et al., 2001; Thomas et al., 2003), DNS

of flow over groups of urban-like cubic obstacles (e.g. Coceal et al., 2006, 2007;

Branford et al., 2011), DNS of a vortex ring (Archer et al., 2008, 2010) and DNS

of a breaking internal gravity wave over a two-dimensional cosine hill (Yakovenko

et al., 2011).

2.1 Governing Equations

Since we need to maintain the location of either an accelerating self-propelled

body or a turbulent patch within the computational box, the calculations are

performed in a moving reference frame. The sketches of the computational domain

for a spatially developing wake and an impulsively generated turbulent patch are

respectively shown in Figures 2.1 and 2.2. The non-dimensional continuity and

incompressible Navier–Stokes equations in a non-inertial moving reference frame

can be written in Cartesian tensor notation as

∂ui
∂xi

= 0 , (2.1)

13
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UF = Ub (t)

x

z

Sphere, diameter Db,
velocity Ub, (Bx, By, Bz)

Thrust, forcing area 2σ,
(Tx, 0, 0)
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Figure 2.1: Schematic of geometry of a manoeuvring-body wake. The
boundaries of the domain in the ±xi-direction are denoted by P±

xi
.

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Reref

∂2ui
∂xj∂xj

− dUF

dt
δ1i + fi , (2.2)

where xi = (x, y, z) and ui = (u, v, w) are respectively Cartesian coordinates and

the corresponding velocity vector in the streamwise, lateral and vertical directions,

t denotes the time, p is the kinematic pressure, and δij is the Kronecker delta. The

velocity of an unsteady moving reference frame UF (i.e. the time-dependent inflow

velocity) is set equal to the velocity of the virtual (wake-generating) body Ub

or the propagation velocity of the momentum patch Ud. The quantity fi is the

external body forces due to the virtual body surface B = (Bx, By, Bz) and/or

thrust T = (Tx, 0, 0).

The non-dimensional reference Reynolds number Reref = UL/ν is written in

terms of the reference length L and velocity scale U (which both vary from flow

to flow, as illustrated below) and ν is the kinematic viscosity. In the subsequent

chapters, all variables are non-dimensionalised by U and L unless otherwise stated.

2.2 Spatial and Temporal Discretisation

The Navier–Stokes equations are advanced in time with the second-order explicit

Adams–Bashforth scheme. A second-order central finite-difference scheme is used

to discretise the spatial derivatives on a staggered grid, where the velocity com-

ponents are defined at the cell faces while the scalar quantity (pressure) is located

at the cell centre. The staggered grid is employed in order to prevent any spatial

oscillations in velocity and pressure fields, which may occur due to the use of the

central differencing scheme.

The Adams–Bashforth scheme can be formulated as

un+1
i = u∗i −

3∆t

2

∂pni
∂xi
− (Un+1

F − Un
F ) , (2.3)
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UF = Ud (t)
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Figure 2.2: Schematic of computational domain for an impulsively gener-
ated turbulent patch. A non-initial moving frame of reference is attached to
the patch moving in a positive x-direction with the propagation speed Ud.
The quantity 2σ illustrates the size of the body force.

where the superscripts n+ 1 and n respectively denote the next and current time

steps, ∆t is the time step size, and the provisional velocity u∗i is defined as

u∗i = uni +
3∆t

2
Hn

i −
∆t

2
Hn−1

i +
3∆t

2
fn
i −

∆t

2
fn−1
i +

∆t

2

∂pn−1
i

∂xi
, (2.4)

where the quantity Hi, containing the convective and viscous terms in Equa-

tion (2.2), is defined as

Hi = ν
∂2ui
∂xj∂xj

− uj
∂ui
∂xj

. (2.5)

Note that since the Adams–Bashforth scheme is a multiple-step method and is

not a self-starting method, an explicit Euler method is used to start the calcu-

lation for the first time step. The velocity of the moving reference frame UF in

Equation (2.3) is determined explicitly via either Equation (2.22) (for a manoeu-

vring self-propelled body) or Equation (2.32) (for a co-moving frame attached to

a vortex).

To determine the pressure at the current time step, a Poisson equation for the

pressure is constructed by taking the divergence of Equation (2.3) and then using

the divergence-free condition from the continuity equation (Equation 2.1). The

resulting Poisson equation for the pressure is in the form

∂2pn

∂x2i
=

2

3∆t

∂u∗i
∂xi

. (2.6)

In general, Equation (2.6) can be solved when the pressure at the boundaries is

prescribed (i.e. using a Dirichlet condition). If the pressure at the boundaries is

not provided, the Poisson solver used will enforce a Neumann condition for the

pressure equation, i.e. ∇p · n̂ = 0, where n̂ is the unit normal vector. To make the
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solution of the Poisson equation with the Neumann conditions on all boundaries

unique, the pressure is defined to within an arbitrary constant. Since the iterative

process conserves the constant, the iteration is started with a normalised pressure

whose average is zero to make this property persist during the iteration.

2.3 Numerical Procedure

In order to find the velocity field at the next (n + 1) time step, the provisional

velocity u∗i is first calculated via Equation (2.4) to create the source term for the

Poisson equation (RHS of Equation 2.6). After that, the Poisson equation (2.6)

is solved using a parallel multigrid algorithm to obtain the pressure field at the

current time step (Thomas & Williams, 1997). Finally, the velocity field at the

next (n+1) time step can be obtained by substituting the provisional velocity and

the gradient of the pressure field into Equation (2.3).

2.4 Immersed Boundary Method

In order to embed an axisymmetric body into a computational grid, an immersed

boundary (IB) technique is employed. This approach was first proposed by Peskin

(1972), who did a two-dimensional simulation of the blood flow in a human heart

valve at a very low Reynolds number. The concept of an IB method is to add an

extra force, called the ‘boundary force’ B = (Bx, By, Bz), to the Navier–Stokes

equations in order to emulate the effect of a virtual object on the surrounding

fluid. The most advanced feature of an IB method is that the simulation of flow

over complex geometries can be carried out in a Cartesian grid, in which the

computational cost is much cheaper than using a body-fitted or an unstructured

mesh. In the original IB approach of Peskin (1972), an immersed elastic body was

mimicked by a set of virtual surface (Lagrangian) points moving in the fixed com-

putational (Eulerian) points. The boundary force was directly computed at the

Lagrangian markers using Hooke’s law (the spring force) and was then distributed

to the Eulerian points via a discrete delta function (Peskin, 1972).

Goldstein et al. (1993) extended an IB technique to the case of flow over

a rigid body by applying the concept of a proportional-integral (PI) feedback

control to determine the boundary force. This type of the IB method is often

referred to as a ‘feedback forcing approach’. Goldstein et al. (1993) implemented
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the feedback forcing approach into a pseudo-spectral solver to compute a two-

dimensional startup flow past a circular cylinder and to perform DNS of a three-

dimensional turbulent channel flow. In their simulations, the location of the virtual

surface points was set to coincide with the computational points and a narrow

Gaussian distribution was used to blur the location of the immersed (virtual)

boundary in order to generate a smooth surface. Goldstein et al. (1993) observed

spurious oscillations caused by the discontinuity of the boundary force in a spectral

representation of a flow field when the forcing was not applied over several (3–4)

computational points across an immersed boundary. In fact, it was demonstrated

that the use of a finite-difference scheme can avoid the appearance of the spurious

oscillations although the boundary force was spread to the Eulerian points by using

an area-weighted average function (Saiki & Biringen, 1996). The feedback forcing

approach contains two free parameters, which are the proportional and integral

gains, that need to be adjusted and these parameters are flow dependent. When

computing unsteady flows, the magnitude of the gains must be large enough to

drive the boundary force to respond correctly to the changing flow field. The major

drawback of the feedback forcing approach is that large values of the proportional

and integral gains make the discrete-time Navier–Stokes equations stiff, leading to

the severe restriction on the computational time step.

To avoid the restriction on the time step size, Mohd-Yusof (1997) introduced

an alternative way to determine the boundary force, called a ‘direct forcing ap-

proach’, for a pseudo-spectral scheme. This approach was later extended to the

context of a finite-difference method by Fadlun et al. (2000). The concept of the

direct forcing approach is that the boundary force is directly computed from the

discrete-time Navier–Stokes equations, which can be written as

un+1
vs − un

vs

∆t
= RHSvs +Bvs , (2.7)

where RHS regroups the convective, viscous and pressure gradient terms and the

subscript ‘vs’ represents the variables at the virtual boundary surface. Assuming

that a Dirichlet boundary condition is used and V vs is the desired velocity at

the virtual body surface, we can simply set un+1
vs = V vs to impose the boundary

condition on the immersed boundary. Thus the forcing term can be obtained by

Bvs =
V vs − un

vs

∆t
− RHSvs . (2.8)

In the initial works of the direct forcing approach (see, e.g., Fadlun et al.,
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Figure 2.3: Schematic of the IB method showing the locations of the
Lagrangian markers (•) and the computational points (�).

2000; Kim et al., 2001), the boundary force at the Lagrangian points was never

computed. The effect of a virtual body was represented by reconstructing the

velocity field of the computational points immediately inside the interface of the

virtual body via interpolation procedures. For example, the velocity field at point

1 in Figure 2.3 is obtained from the values of points 2 and 3 (exterior to the

virtual surface) together with the wall value (point 0) using linear interpolation.

The comprehensive reviews of the boundary reconstruction and the IB method are

given by Iaccarino & Verzicco (2003) and Mittal & Iaccarino (2005).

However, it was shown by Uhlmann (2003) that the use of an interpolation

procedure to obtain the velocity field at the computational points can lead to

unphysical force oscillations when computing flow past a moving body. This prob-

lem led to a new procedure of the direct forcing scheme, described as follows. The

boundary force is first calculated at the Lagrangian points via Equation (2.8),

and are then spread to the Eulerian markers using a discrete delta function (e.g.

Uhlmann, 2005; Yang et al., 2009; Pinelli et al., 2010).

The IB approach used in this work is based on the concept of the feedback

forcing scheme of Goldstein et al. (1993). The major difference between our ap-

proach and Goldstein et al. (1993) is that we mimic a virtual body by a set of

Lagrangian (virtual surface) points that do not coincide with the computational

points as shown in Figure 2.3. The magnitude of the Lagrangian grid spacing

|∆xvs| is set approximately equal to the grid spacing of the computational points

∆x. A discrete delta function is used to spread the effect of the virtual body

to the neighbouring Eulerian points. Since the boundary force B is determined

directly at the virtual surface points, the velocity field needs to be interpolated to
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the immersed boundary

uvs = I (u) , (2.9)

where the interpolation operator I is the linear interpolation.

The values of uvs are used to compute the boundary force that restores the

desired boundary values V vs on the virtual boundary surface via a proportional-

integral (PI) feedback controller as

Bvs (t) = ϕf

∫ t

0

[uvs (t)− V vs (t)] dt+ βf [uvs (t)− V vs (t)] , (2.10)

where ϕf and βf are respectively the integral and the proportional gains and are

negative constants. In this work, the integral term is simply approximated as a

Riemann sum, viz.

∫ t

0

(uvs − V vs) dt =
Nt∑

i=1

(uvs − V vs)∆t , (2.11)

where ∆t is the time step size and Nt is the total number of steps.

The boundary force is then distributed to the Eulerian points by using a

three-dimensional discrete delta function δh

B =

NL∑

i=1

δh (x− xvs)Bvs ∆Vvs , (2.12)

where NL is the total number of Lagrangian markers and ∆Vvs = ∆xvs∆yvs∆zvs.

In general, the three-dimensional discrete delta function can be constructed

by a product of one-dimensional discrete delta functions Φ in the following manner

δh (x− xvs) =
1

∆V
Φ

(
x− xvs
∆x

)
Φ

(
y − yvs
∆y

)
Φ

(
z − zvs
∆z

)
, (2.13)

where ∆V = ∆x∆y∆z. A three-point discrete delta function, which involves only

three grid points in each coordinate direction, proposed by Roma et al. (1999) as

Φ (r) =





1
3

(
1 +
√
−3r2 + 1

)
, |r| ≤ 0.5 ,

1
6

(
5− 3 |r| −

√
−3 (1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5 ,

0 , 1.5 ≤ |r| ,

(2.14)
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is used throughout this work. An extensive review on the construction of a discrete

delta function is available in Peskin (2002).

As mentioned earlier that computing the boundary force by means of the PI

controller can influence the stability of the discrete-time Navier–Stokes equations

(the example of the stability issue of the PI controller will be shown in § 3.2.1),
we simply remedy this issue by neglecting the integral term in Equation (2.10).

Hence the boundary force is determined via a proportional controller as

Bvs (t) = βf [uvs (t)− V vs (t)] . (2.15)

The proportional gain βf is chosen equal to the inverse of the time step size ∆t, to

obtain the maximum gain while maintaining the stability. Note that this choice

of the proportional gain (βf = −1/∆t) makes Equation (2.15) equivalent to the

direct forcing approach (Equation 2.8) except that the term RHSvs is not included.

2.5 Boundary Conditions

To study the evolution of a submerged momentum source induced by an acceler-

ating motion of a self-propelled body in the small-scale upper ocean, inflow and

outflow boundary conditions are employed in the streamwise direction. The body

moves from right to left (see Figure 2.1), such that the inflow plane is at x = P−
x

and the exit plane is at x = P+
x . At the inflow plane, Dirichlet boundary conditions

are used as follows

u|
P

−
x
= UF = Ub(t) , v|

P
−
x
= w|

P
−
x
= 0 . (2.16)

The exit boundary condition is a zero gradient condition written as

∂ui
∂x

∣∣∣∣
P

+
x

= 0 . (2.17)

The body is placed midway between an idealised thermocline and a free surface.

Stress-free boundary conditions are specified at the top and bottom as an ideal-

isation of the non-deformable free surface and the top of a region of a stratified

fluid. The velocities at the no-stress surfaces are

w|
P

±
z
= 0 ,

∂u

∂z

∣∣∣∣
P

±
z

=
∂v

∂z

∣∣∣∣
P

±
z

= 0 . (2.18)

In the lateral direction (y), periodic boundary conditions are specified.
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2.6 Emulation of an Accelerating Self-Propelled Body

We emulate a self-propelled body manoeuvre by imposing a thrust fi = Ti = Txδ1i,

which is modelled as a jet from the body, as illustrated in Figure 2.1. The intensity

of the thrust is estimated as

JT = ujetsN [ujet − Ub(t)] , (2.19)

where ujet is the jet velocity, s is the area of the nozzle, and N is a free parameter

used to adjust the jet Reynolds number and the confinement number. A three-

dimensional Gaussian function is used to distribute the intensity of the thrust to

the computational grids as

Tx =
JT

(σ2
π)3/2

exp

[
−(x− x0)2 + (y − y0)2 + (z − z0)2

σ2

]
, (2.20)

where σ is the Gaussian semi-width, and x0, y0, z0 are the centre of the thrust.

Note that Equation (2.20) is determined such that JT is associated with the total

integrated force, not its maximum. The velocity of the body can be found via the

balance of momentum between a manoeuvring object and the total force acting

on the fluid, with

Meff
dUb

dt
= ρ (JT − JD) , (2.21)

where Meff is the sum of the actual and added/virtual mass, ρ is the fluid density

(taken to be constant) and JD is the intensity of the drag, which can be calculated

from the volume integral of the streamwise boundary force Bx. An explicit Euler

method is used to update Ub(t) at every time step, viz.

Un+1
b = Un

b +
ρ∆t

Meff

(JT − JD) . (2.22)

2.7 Domain Resizing

Since the length scale of the flow of interest increases with time while its Reynolds

number decreases, the computational box and the grid spacing need to be resized

in order to effectively capture the largest and smallest scales of the flow. During

the domain-resizing process, some parts of the flow are allowed to be omitted, i.e. a

portion of a near-field momentumless wake or the wake shed from a vortex, because

they are assumed to have negligible effect on the development of a momentum

patch. To avoid any discontinuity of the flow field in a new domain especially in
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Figure 2.4: Schematic of domain resizing: old domain; new
domain; window function fw.

the clipping region and the edge of an old computational box (see Figure 2.4), we

project the vorticity field to a new computational domain rather than the velocity

field since vorticity has a finite extent. A window function fw is also introduced

in order to smoothly decay the last few planes of vorticity in an old domain to be

zero in a new domain. It is defined as

fw (x, y) = gw(x)hw(y) , (2.23)

where the streamwise gw(x) and lateral hw(y) windowing functions are defined as

gw(x) =
1

2
{[tanh (σw (x− xcm)) + 1]− [tanh (σw (x− xcp)) + 1]} , (2.24a)

hw(y) =
1

2
[tanh (σw (ly/2− |y|)) + 1] , (2.24b)

and σw is a smoothing coefficient, xcm and xcp are respectively the cutoff positions

(see Figure 2.4), and ly controls the lateral length of the window function.

The new velocity field is obtained via a vorticity–vector stream function (often

called vector potential) method (see, e.g., Richardson & Cornish, 1977; Tutty,

1986; E & Liu, 1997). The Poisson equation for the vector stream function ψ =

(ψx, ψy, ψz) whose source term is the projected vorticity vector ω = (ωx, ωy, ωz)

can be constructed as follows. Using Helmholtz’s theorem, we first decompose

the velocity vector u = (u, v, w) into a vector stream function (divergence-free

component) and a scalar potential φ (curl-free component) (Saffman, 1995), viz.

u = ∇×ψ +∇φ . (2.25)



2. Governing Equations and Numerical Method 23

Taking the curl of Equation (2.25) and using ∇ · ψ = 0 (the verification of this

condition can be seen in Saffman, 1995), we then achieve the Poisson equation

∇
2ψ = −ω . (2.26)

Recall that ω = ∇×u. If there is no potential flow (no flow through boundary of

the domain), ∇φ = 0 (Richardson & Cornish, 1977). The new velocity field can

then be obtained from

u = ∇×ψ . (2.27)

In this work, a Fourier series is used to solve Equation (2.26) in the stream-

wise and lateral directions, while a second-order central finite-difference scheme

is employed in the vertical direction since it cannot be treated as periodic (re-

call that stress-free boundary conditions are being employed in this direction).

Equation (2.26) thus becomes

ψ̂k−1 +
(
−κ2x∆z2 − κ2y∆z2 − 2

)
ψ̂k + ψ̂k+1 = −∆z2ω̂k , (2.28)

where ψ̂ (κx, κy, z) and ω̂ (κx, κy, z) are respectively the vector stream function

and vorticity vector in Fourier space, κx and κy are respectively the streamwise

and lateral wavenumbers, and the subscripts k, k − 1 and k + 1 denote grid points

in the vertical direction. At each wavenumber, ψ̂ at every vertical grid node is

solved simultaneously using the Tridiagonal Matrix Algorithm (TDMA) (e.g. see

Ferziger & Perić, 2002; Press et al., 2007). A set of boundary conditions that

represent a stress-free condition (cf. Equation 2.18) for ψ is given by Hirasaki

(1967) as

ψx|P±
z
= ψy|P±

z
=
∂ψz

∂z

∣∣∣∣
P

±
z

= 0 . (2.29)

2.8 Moving Reference Frame Attached to a Vortex

Since the momentum patch moves from left to right as displayed in Figure 2.2,

the inflow boundary of a co-moving frame of reference attached to the momentum

patch is at x = P+
x , while the outflow boundary is at x = P−

x . The time-dependent

uniform inflow velocity, adjusted to be equivalent to a propagation speed of the

patch Ud via a simple control algorithm, is employed at the inflow plane, viz.

u|
P

+
x
= −UF (t) , (2.30)
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to keep the patch at the fixed streamwise position. Additionally, the vorticity

field at the inflow plane is set to zero to avoid introducing any spurious vorticity

into the domain, we thus specify Neumann conditions to the other two velocity

components as
∂v

∂x

∣∣∣∣
P

+
x

=
∂w

∂x

∣∣∣∣
P

+
x

= 0 . (2.31)

At the outflow plane (x = P−
x ), a zero gradient condition is applied as given earlier

in Equation (2.17).

The time-dependent reference-frame speed UF that minimises the difference

between the streamwise position of the patch Xd(t) (cf. Equation 4.2) and the

target location Xc, ε = Xd(t)−Xc, is determined via a proportional-integral (PI)

controller,

UF (t) = c1ε+ c22

∫ t

0

ε dt , (2.32)

where c1 and c2 are respectively the proportional and integral gains that control

the damping and oscillation time scales (cf. Archer et al., 2008). The constant c1

is chosen to give a critically damped response, such that c1 = 2c2. The integral

term is approximated via the trapezoidal rule,

∫ t

0

ε dt =
∆t

2

Nt∑

i=1

(
εn + εn−1

)
, (2.33)

where the superscripts n and n − 1 respectively denote the current and previous

time steps, ∆t is the time step size and Nt is the total number of step.



Chapter 3

Validation for Generating a Virtual Body and

Numerical Strategies

This chapter presents the validation of two new features added to CgLES, which

are an external body force that is to generate an impulsive momentum source

and an immersed boundary method used to embed a virtual body. Additionally,

the accuracy of the numerical strategies (i.e. the domain-resizing technique and

the moving reference frame attached to a vortex) is presented. The external body

force is validated by calculating two-dimensional finite- and zero-momentum wakes

as given in § 3.1, while flow past a sphere is computed to test the ability of the

immersed boundary method as shown in § 3.2. The correctness of the numerical

approach used to adjust the size of the computational domain is presented in § 3.3,
while the proportional-integral controller that computes the speed of the moving

frame of reference attached to a vortical structure is tested in § 3.4. Finally, the

summary and conclusions of the validation are offered in § 3.5.

3.1 Generate a Virtual Body using Single and Doublet Forces

For a purpose of validation, single and doublet forces were used to create 2D finite-

and zero-momentum wakes since there exist experimental and numerical works of

Afanasyev & Korabel (2006, 2008), who used single and doublet forces to gener-

ate the wakes with various input momentum flux. Afanasyev & Korabel (2006)

performed a set of experiments to study towed and self-propelled wakes induced

by an electromagnetic force in a stratified fluid. The main role of the stratifica-

tion is to generate a two-dimensional vortical structure, i.e. a vortex street. They

observed that the behaviour of the wakes induced by the localised forces depends

on four quantities, which are the forcing intensity, the size of the forcing area,

the free-stream velocity U∞ and the kinematic viscosity ν. These quantities were

25
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grouped together in terms of two dimensionless parameters as

Πν =
J̃

νU∞

, (3.1)

Πa =
J̃

σU 2
∞

, (3.2)

where σ is the Gaussian semi-width and J̃ is the 2D forcing intensity equal to the

forcing intensity of the thrust or the drag. The parameter Πν can be considered

as an analogue of a Reynolds number, whilst Πa can be interpreted as the ratio of

the momentum flux transported by the forcing to the momentum flux delivered

by the velocity of the fluid through the forcing area.

This section is started by introducing the asymptotic solutions of plane wakes

behind point single/doublet forces in § 3.1.1, followed in § 3.1.2 by the implemen-

tation of single and doublet forces. The results compared with the theoretical

solutions and the data of Afanasyev & Korabel (2006, 2008) are then reported in

§ 3.1.3 and § 3.1.4.

3.1.1 Asymptotic Solutions

Full details of deriving the analytical solutions of 2D finite- and zero-momentum

wakes created by a point momentum source are given by Smirnov & Voropayev

(2003) and Afanasyev (2004). Smirnov & Voropayev (2003) derived the steady-

state solutions of the streamwise velocity deficit based on the boundary-layer and

Oseen’s approximations, whilst the time-dependent solutions of the vorticity ω

and the stream function ψ of the towed and self-propelled wakes are proposed by

Afanasyev (2004). In this work, we follow the asymptotic solutions of Afanasyev

(2004) because they can provide not only the streamwise velocity but also the

vertical velocity.

Afanasyev (2004) obtained the solutions of the vorticity and stream function

of the wakes behind single/doublet point forces acting continuously in time by

integrating the solutions of those induced by the impulsive forces as

[
ωJ,Q

ψJ,Q

]
(x, y, t) =

∫ t

0

[
ωI,M

ψI,M

]
[x− U∞τ, y, τ ] dτ , (3.3)

where the subscript I (or M) represents an impulsive single (or doublet) force,

and the subscript J (or Q) denotes a continuous single (or doublet) force. The
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vorticity and the stream function of a plane (2D) wake induced by an impulsive

point force can be obtained from Stokes’ approximation (Cantwell, 1986),

ωI (x, y, t) =
Ĩy

8π (νt)2
e−ξ2 , (3.4)

ψI (x, y, t) =
Ĩy

2π (x2 + y2)

(
1− e−ξ2

)
, (3.5)

where Ĩ is the 2D impulse ([Ĩ] = L3T−1), L and T are respectively units of

length and time, ν is the kinematic viscosity and ξ2 = (x2 + y2) /4νt. Substituting

Equations (3.4) and (3.5) into Equation (3.3) will change the type of the forcing

from impulsive to continuous and the steady-state solutions can be obtained by

letting t→∞

ωJ (x, y) =
J̃U∞

4πν2
y

(x2 + y2)1/2
exp

(
xU∞

2ν

)
K1

(
U∞

2ν

√
x2 + y2

)
, (3.6)

ψJ (x, y) =
J̃y

2π

∫
∞

0

1− e−ϑ2

(x− U∞τ)
2 + y2

dτ , (3.7)

where J̃ is the 2D forcing intensity of the continuous single force ([J̃ ] = L3T−2),

ϑ2 =
[
(x− U∞τ)

2 + y2
]
/4ντ and Kn (x) is a modified Bessel function of the

second kind. Let udef = U∞ − u be the streamwise velocity deficit. Using the

Oseen’s approximation, i.e. udef/U∞ ≪ 1, and the differentiation of the stream

function with respect to y, udef = ∂ψ/∂y, the distribution of the streamwise ve-

locity deficit of a finite-momentum wake generated by a point force along its axis

can be obtained as

udef (x, 0) =
J̃

2π

∫
∞

0

1− e−κ
2

(x− U∞τ)
2 dτ , (3.8)

where κ
2 =

[
(x− U∞τ)

2] /4ντ .

The asymptotic solution of a momentumless wake induced by a point force

doublet can be obtained by the same manner and will be described as follows.

The vorticity field of the wake generated by two forces can simply be obtained by

the sum of the vorticity of each force. Assuming that both forces are separated

by distance ǫ and act in the opposite directions with the same magnitude, the

vorticity field is then given by

ωM (x, y, t) = ωI (x, y, t)− ωI (x− ǫ, y, t) . (3.9)
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One may use a standard limiting procedure to obtain the forcing intensity of an

impulsive force doublet M (Afanasyev, 2004), as

M = lim
ǫ→0
I→∞

Iǫ . (3.10)

The vorticity and the stream function of the wake induced by an impulsive force

doublet are also given by Afanasyev (2004) as

ωM (x, y, t) = − M̃xy

32π (νt)3
e−ξ2 , (3.11)

ψM (x, y, t) = − M̃xy

π (x2 + y2)2

[
1−

(
1 + ξ2

)
e−ξ2

]
, (3.12)

where M̃ is the 2D forcing intensity of the impulsive force doublet ([M̃ ] = L4T−1).

We then change the type of the forcing (from impulsive to continuous) by using

the integral operator in Equation (3.3) and perform the integration until time is

large enough to obtain the steady-state solutions. The steady-state solutions of

the vorticity and stream function of the wake behind a point force doublet are

ωQ (x, y) = − Q̃U
2
∞

16πν3
xy

(x2 + y2)
exp

(
xU∞

2ν

)
K0

(
U∞

2ν

√
x2 + y2

)

−Q̃U∞

4πν2
xy

(x2 + y2)3/2
exp

(
xU∞

2ν

)
K1

(
U∞

2ν

√
x2 + y2

)

+
Q̃U 2

∞

16πν3
y

(x2 + y2)1/2
exp

(
xU∞

2ν

)
K1

(
U∞

2ν

√
x2 + y2

)
, (3.13)

ψQ (x, y) = −Q̃y
π

∫
∞

0

(x− U∞τ)
[
1− (1 + ϑ2) e−ϑ2

]

[
(x− U∞τ)

2 + y2
]2 dτ . (3.14)

where Q̃ is the 2D forcing intensity of the continuous force doublet ([Q̃] = L4T−2).

Finally, the distribution of the velocity deficit of a zero-momentum wake induced

by a point force doublet along its centreline is obtained by the differentiation of

the corresponding stream function as

udef (x, 0) = −
Q̃

π

∫
∞

0

1− (1 + κ
2) e−κ

2

(x− U∞τ)
3 dτ . (3.15)
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Figure 3.1: Schematic of geometry of a 2D momentumless wake.

3.1.2 Numerical Approach

Since a force doublet consists of both thrust and drag, we prefer to describe the

numerical approach based on the implementation of the force doublet used to

generate a two-dimensional momentumless wake. Note that the thrust is not active

when a 2D finite-momentum wake behind a single force is computed. The drag

D = (Dx, 0, 0) and the thrust T = (Tx, 0, 0) are added to the RHS of the Navier–

Stokes equations and their forcing intensity is distributed to the computational

grids via a 2D Gaussian function

Dx = − J̃D
σ2π

exp

[
−(x− x0,D)2 + (y − y0,D)2

σ2

]
, (3.16)

Tx =
J̃T
σ2π

exp

[
−(x− x0,T )2 + (y − y0,T )2

σ2

]
, (3.17)

where x0,D = (x0,D, y0,D) and x0,T = (x0,T , y0,T ) are respectively the centre of

the drag and the thrust, and σ is the Gaussian semi-width. The 2D thrust J̃T

and drag intensity J̃D are defined to be of equal magnitude while acting in the

opposite directions to create a momentumless wake. The drag is applied slightly

in front of the thrust with the distance ǫ/2σ = 5. The Gaussian semi-width

σ in Equations (3.16) and (3.17) is set to have the same size to reproduce the

experimental work of Afanasyev & Korabel (2006) and is chosen as σ = 0.2.

The schematic of the flow geometry is displayed in Figure 3.1. The boundary

condition at the upstream boundary is a constant free-stream velocity U∞ with the

forces being stationary, whilst the convective outflow boundary condition is applied

at the outlet. Stress-free boundary conditions are specified in the vertical direction.

In order to use the three-dimensional code, CgLES, to simulate a two-dimensional

flow, free-slip boundary conditions are used in the lateral direction and the grid

spacing in this direction is chosen to be extremely large compared to the other
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Case Πa = J̃/σU 2
∞ Πν = J̃/νU∞

M1 1.1 75
M2 1.4 125
M3 2.1 120
M4 2.6 130
M5 3.2 160
M6 6.0 300

Table 3.1: Run parameters for a 2D finite-momentum wake.

directions. The simulations of finite- and zero-momentum wakes were performed in

the 2D domain size of −50 6 x/2σ 6 190 and −40 6 y/2σ 6 40, with 3072×1024

grid cells in the streamwise (x) and vertical (y) directions, respectively. It should

be noted that the grid spacing used in this validation is close to a minimum mesh

size of Afanasyev & Korabel’s (2008) simulation, in which an unstructured grid

was employed.

3.1.3 2D Finite-Momentum Wakes Generated by a Single Force

We generated finite-momentum wakes by applying a single force which acts against

the incoming stream into a flow domain. This problem is similar to a towed wake

behind a bluff body. Six values of forcing intensity were selected to study the

dynamics of the wake and are given in terms of Πa and Πν in Table 3.1. It was

observed by Afanasyev & Korabel (2006, 2008) that there are two regimes of the

wake induced by a localised force: (i) a stable regime when Πa and Πν are quite

low, and (ii) a vortex shedding regime when Πa and Πν exceed their critical values.

Figure 3.2 depicts the vorticity distribution at late time. At Πa = 1.1 and

Πν = 75, we observed that the wake behind the forcing is stable and is in the

form of a jet-like flow (Figure 3.2a). We also compare the distribution of the

streamwise velocity deficit along its centreline for these values of Πa and Πν with

the theoretical solution (Equation 3.8), as shown in Figure 3.3. Good quantitative

agreement can be seen in both upstream and downstream of the body force, in

spite of the appearance of the differences in the forcing region due to the fact that

we applied a finite force whereas a point force is used in the analytical solution.

When the values of Πa and Πν are increased to Πa = 1.4 and Πν = 125, the

wake is not stable anymore. It can be seen from Figure 3.2(b) that the vorticity

is periodically shed from the body force and is visually similar to the well-known



3. Validation for Generating a Virtual Body and Numerical Strategies 31

(a)

 

 

0 10 20 30 40 50 60 70
−10

−5

0

5

10

x/2σ

y
/
2
σ

(b)

 

 

0 10 20 30 40 50 60 70
−10

−5

0

5

10

x/2σ

y
/
2
σ

(c)

 

 

0 10 20 30 40 50 60 70
−10

−5

0

5

10

x/2σ

y
/
2
σ

Figure 3.2: Contours of vorticity of 2D finite-momentum wake with dif-
ferent forcing intensity: (a) Πa = 1.1 and Πν = 75, (b) Πa = 1.4 and Πν

= 125, (c) Πa = 6.0 and Πν = 300. Vorticity varies from −0.2 |ωz|max to
0.2 |ωz|max.

Kármán vortex street. In order to compare our results with Afanasyev & Kora-

bel’s (2008) data, we collected history of the vorticity at x/2σ = 7.5 and then

used a Fast Fourier Transform (FFT) to analyse the time series of the vorticity to

obtain the shedding frequency fs. The non-dimensional frequency, Strouhal num-

ber St = fsJ̃/U
3
∞, versus Πa is illustrated in Figure 3.4. Our shedding frequency

is in excellent agreement with the results of Afanasyev & Korabel (2008). It is of

interest to note that Afanasyev & Korabel (2008) reported that the vortex street

underwent from regular to irregular shedding when the shedding frequency rapidly

dropped. The transition to the irregular shedding regime was observed to occur

around Πa = 2.6 (see Figure 3.4). The distribution of the vorticity in the irregular

shedding regime is illustrated in Figure 3.2(c), where Πa = 6.0 and Πν = 300.



3. Validation for Generating a Virtual Body and Numerical Strategies 32

−1000 0 1000 2000 3000

−12

−10

−8

−6

−4

−2

0

2
x 10

−3

 

 

xU∞/2ν

−
u
d
ef
ν
/
J̃

Figure 3.3: Distribution of the streamwise velocity deficit along its axis of
a 2D finite-momentum wake: Πa = 1.1 and Πν = 75: Present (finite
source); Theoretical solution (point source, Equation 3.8).
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Figure 3.4: Strouhal number versus Πa of a 2D finite-momentum wake: •
Present; � Afanasyev & Korabel (2008).



3. Validation for Generating a Virtual Body and Numerical Strategies 33

Case Πa = J̃/σU 2
∞ Πν = J̃/νU∞

Z1 1.0 50
Z2 2.1 120
Z3 3.0 150
Z4 4.0 200
Z5 6.0 300
Z6 8.0 400
Z7 11.0 230

Table 3.2: Run parameters for a 2D zero-momentum wake.

3.1.4 2D Zero-Momentum Wakes behind a Force Doublet

The strategy to impose a force doublet (drag of a body plus thrust) was validated

by performing a two-dimensional (2D) simulation of zero-momentum wakes. The

results are compared with both an analytical solution of Afanasyev (2004), which

was explained earlier in § 3.1.1, and experimental results of Afanasyev & Korabel

(2006). The run parameters Πa and Πν for this study are provided in Table 3.2.

Note that this range of Πa contains the wakes in both stable and vortex shedding

regimes.

The distribution of the vorticity at late time is displayed in Figure 3.5. In

the stable regime (Figure 3.5a), the momentumless wake is in the from of a jet

convecting downstream similar to that in the simulation with the single force.

Figure 3.6 displays the distribution of the streamwise velocity deficit along the

axis of the flow at Πa = 1 and Πν = 50, compared with an analytical solution

provided in Equation (3.15). Away from the expected near-field deviation (due

to comparing finite versus singular dipoles), the agreement is satisfactory. The

balance of the streamwise momentum flux was also checked to make sure that the

net momentum flux of the zero-momentum wake in this direction is identically zero

(recall that no net momentum is imparted into the wake by the force doublet).

The conservation of x-momentum can be written as,

d

dt

(∫
u dx dy dz

)
+ FM =

∫
(Dx + Tx) dx dy dz , (3.18)

where FM is the net volume-integrated momentum flux, including the difference

between the momentum, pressure and viscous fluxes at the inlet and outlet planes.

If was found that the LHS terms of Equation (3.18) is of O (10−5).
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Figure 3.5: Contours of vorticity of 2D momentumless wake with different
forcing intensity: (a) Πa = 1.0 and Πν = 50, (b) Πa = 2.1 and Πν = 120, (c)
Πa = 11.0 and Πν = 230. Vorticity varies from −0.2 |ωz|max to 0.2 |ωz|max.

For higher value of Πa and Πν (Πa = 2.1,Πν = 120), the vortex street was

observed to appear behind the doublet (see Figure 3.5b). The vortex street in

this simulation is visually similar to the mushroom-like vortex sheet observed in

Afanasyev & Korabel’s (2006) experiment. For a quantitative comparison with

the laboratory experiment of Afanasyev & Korabel (2006), the shedding frequency

was measured by performing a FFT of the vorticity at x/2σ = 12.5. A plot of St

versus Πa for the zero-momentum wakes is displayed in Figure 3.7, showing that

the numerical results are in good agreement with the experimental data. Note

that we could not observe any sign of a rapid drop of the shedding frequency for

the zero-momentum wake. Once the magnitude of the forcing intensity increases

to Πa = 11 and Πν = 230, the size of the mushroom-like vortex is bigger, while its

shape is similar to that in the lower magnitude as illustrated in Figure 3.5(c).
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size force doublet); Theoretical solution (point force doublet, Equa-
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(a) (b)

Figure 3.8: Evolution of vortical structure of flow past a sphere at Reb =
300 at every quarter period from Johnson & Patel (1999): (a) side view; (b)
top view.

3.2 Generate a Virtual Body using Immersed Boundary Method

Flow past a sphere at Reb = 300 was selected to validate the implementation of the

IB approach in CgLES. The Reynolds number is defined in terms of the free-stream

velocity U∞ and the sphere diameter Db, i.e. Reb = U∞Db/ν. At this Reynolds

number, the flow is still laminar, but it is unsteady and planar symmetric. It is

thus expected to observe a coherent vortical structure periodically shed with a

constant strength in the same orientation (Johnson & Patel, 1999; Tomboulides &

Orszag, 2000), as displayed in Figure 3.8.

The simulations with both the PI and the P controllers were carried out in

the domain of size −10 6 x/Db 6 26, −5 6 y/Db 6 5 and −5 6 z/Db 6 5, with

the number of grid cells 576 × 160 × 160. The sphere is located at (0, 0, 0) and

is mimicked by using 931 equally spaced Lagrangian points whose grid spacing

is equal to the Eulerian grid spacing. Inflow and convective outflow boundary

conditions are employed in the streamwise (x) direction, whilst free-slip boundary

conditions are applied in the lateral (y) and vertical (z) directions.
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Figure 3.9: Contours of the streamwise velocity at x/Db = 0, tU∞/Db =
40 and Reb = 300 from the simulation using the proportional-integral feed-
back: (a) Case PI1 (ϕfD

2
b/U

2
∞ = −3947.8418, βfDb/U∞ = −125.6637); (b)

Case PI2 (ϕfD
2
b/U

2
∞ = −246.7401, βfDb/U∞ = −31.4159). The edge of

the sphere is represented by the black circle. The streamwise velocity varies
from −1 ≤ ux/U∞ ≤ 1.

3.2.1 Proportional-Integral Feedback

Since Equation (2.10) represents a simple mass-spring-damper system (Fadlun

et al., 2000), the integral ϕf and proportional βf gains can be obtained from the

angular frequency of the oscillator ωf and the damping ratio ζ as

ϕf = −ω2
f , βf = −2ζωf . (3.19)

where ωf can be obtained from the oscillation time scale To, i.e. ωf = 2π/To, and

ζ is chosen to be 1 to give a critically damped response.

The simulation of flow past a sphere was first carried out with ϕfD
2
b/U

2
∞ =

−3947.8418 and βfDb/U∞ = −125.6637, labelled as Case PI1, to test the efficiency

of the PI feedback. The simulation was performed until tU∞/Db = 40 with the

time step size ∆tU∞/Db = 0.002. It was observed that the PI feedback could

not represent a smooth axisymmetric sphere as shown in Figure 3.9(a). This

happened because the time step size used in this simulation is higher than the

numerical stability limit.

To improve the stability limit, we decreased ϕf and βf rather than reducing

the time step size in order to maintain the computational cost. The values of
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Figure 3.10: Histories of the cylindrical velocity components at x/Db =
5.78, r/Db = 0.4 and Reb = 300 from the simulation using the proportional-
integral feedback with ϕfD

2
b/U

2
∞ = −246.7401, βfDb/U∞ = −31.4159 (Case

PI2): (a) ux, (b) ur and (c) uθ.

the proportional and integral gains were decreased to ϕfD
2
b/U

2
∞ = −246.7401

and βfDb/U∞ = −31.4159 (labelled as Case PI2) at which the PI feedback can

represent a smoother axisymmetric sphere (Figure 3.9b). To make the comparison

between Figures 3.9(a) and 3.9(b) more quantitative, the mean error εmean, which

is the azimuthal average of the difference between the streamwise velocity and the

desired velocity (set to zero to represent the no-slip surface of the virtual sphere)

at r/Db = 0.5, and the root-mean-square error εrms were determined. It was found

that εmean = −0.0414 and εrms = 0.0318 for Case PI1, while the values of εmean

and εrms for Case PI2 reduce to −0.0383 and 0.0182, respectively. The significant

drop (about 1.75 times) in εrms is important in this work since it can prevent

the occurrence of spurious small-scale turbulence (as can be seen in Figure 3.9a)

that might affect the formation and evolution of a far-field coherent structure.

The simulation with the new values of the proportional and integral gains was
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Figure 3.11: Contour of the streamwise velocity at x/Db = 0, tU∞/Db =
40 and Reb = 300 from the simulation using the proportional feedback. The
edge of the sphere is represented by the black circle. The streamwise velocity
varies from −1 ≤ ux/U∞ ≤ 1.

advanced for a total of 200 time units. Histories of the streamwise ux, radial ur

and azimuthal uθ velocity components in the near field region are displayed in

Figure 3.10. The histories of all the velocity components do not show any sign of

a fluctuation that would appear at tU∞Db ≈ 100 (see Figure 3.12), implying that

the vortex shedding could not be observed behind the sphere in this simulation

because the gains used are not high enough to drive the boundary force to react

as fast as the biggest frequency of the flow.

3.2.2 Proportional Feedback

The proportional gain βf in Equation (2.15) was chosen as the inverse of the time

step size (βf = −1/∆t), in such a way that maximises gain while maintaining

stability. The simulation was performed with the time step size ∆tU∞/Db = 0.004,

corresponding to βfDb/U∞ = 250 (two times higher than that in § 3.2.1). Even

though the time step size used in this simulation is two times higher than that in

§ 3.2.1, the proportional feedback can still produce a smooth axisymmetric sphere

with εmean = −0.0317 and εrms = 0.0169, as shown in Figure 3.11.

Histories of the cylindrical velocity components are plotted in the near wake at

x/Db = 5.78 and r/Db = 0.4 and are displayed in Figure 3.12. It can be observed

that the fluctuating velocities begin to appear at tU∞/Db ≈ 100, suggesting that
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Figure 3.12: Histories of the cylindrical velocity components at x/Db =
5.78, r/Db = 0.4 and Reb = 300 from the simulation using the proportional
feedback: (a) ux, (b) ur and (c) uθ. At this Reynolds number, the velocity
field periodically oscillates due to the appearance of the vortex shedding.
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Figure 3.13: (a) History of the azimuthal velocity at late time and (b)
its power spectrum at x/Db = 5.78, r/Db = 0.4 and Reb = 300 from the
simulation using the proportional feedback.
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Figure 3.14: Histories of (a) the drag CD and (b) the lateral force CL co-
efficients at Reb = 300 from the simulation using the proportional feedback.

the vortex shedding would be observed around that time. After the flow reached

its statistically steady state, the simulation was further carried out for the next 400

time units giving the total time steps of 800. The simulation was time averaged

for the last 200 time units, corresponding to about 25 shedding periods. History

of the azimuthal velocity and its power spectrum at late time are illustrated in

Figure 3.13. The non-dimensional shedding frequency, Strouhal number St =

fsDb/U∞, found in this work is St = 0.1238. Note that we also observed the second

and the third superharmonics of the shedding frequency as shown in figure 15 of

Tomboulides & Orszag (2000).

Figure 3.14(a) shows a plot of the drag coefficient CD versus time, whilst

history of the lateral force coefficient CL is displayed in Figure 3.14(b). The drag

and the lateral force coefficients are calculated as

CD =

∫
Bx dx dy dz
1
8
U 2

∞πD
2
b

, CL =

∫
By dx dy dz
1
8
U 2

∞πD
2
b

, (3.20)

where Bx and By are the streamwise and lateral boundary forces, respectively.

The coefficients of the drag and lateral force and the Strouhal number are

compared with the values reported by Johnson & Patel (1999), Tomboulides &

Orszag (2000) and Ploumhans et al. (2002), and are displayed in Table 3.3. A

relative error of those quantities is also computed and is given in Table 3.4. It was

found that the relative difference between our values and those reported by the

references is lower than 10%. It is of importance to note that the correctness of

predicting the drag coefficient and the Strouhal number — in which more accuracy

can be obtained by increasing the number of points in the boundary layer of
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CD CL St

Present
(immersed boundary,
proportional feedback)

0.7148 −0.0658 0.1238

Johnson & Patel (1999)
(finite-difference, body-fitted)

0.656 −0.069 0.137

Tomboulides & Orszag (2000)
(spectral element, body-fitted)

0.6714 – 0.136

Ploumhans et al. (2002)
(vortex method)

0.683 −0.061 0.135

Table 3.3: Comparison of time-averaged values of the drag CD and the
lateral force CL coefficients, and the Strouhal number St at Reb = 300 from
the simulation using the proportional feedback.

CD CL St

Johnson & Patel (1999)
(finite-difference, body-fitted)

8.96% 4.64% 9.64%

Tomboulides & Orszag (2000)
(spectral element, body-fitted)

6.46% – 8.97%

Ploumhans et al. (2002)
(vortex method)

4.66% 7.87% 8.30%

Table 3.4: Relative error between the values of CD, CL and St, from the
simulation using the proportional feedback, and the values reported by the
references listed in Table 3.3.

the virtual sphere — is not important in this work since we assume that the

late-time characteristics of a dipole depend only on the bulk integral momentum,

i.e. independent of the small-scale shear layers associated with the boundary layer

of the virtual body. The main role of the virtual body is just to impart the drag

into the flow in order to provide the desired amount of the net momentum flux

(the difference between the thrust and the drag). The proof of this assumption

will be shown later in § 4.

Figure 3.15 displays the time-averaged streamwise velocity ux along its centre-

line compared with the DNS result of Tomboulides & Orszag (2000) at the same

Reynolds number. The distribution of ux in the near wake was found to agree

well with Tomboulides & Orszag’s (2000) data although some discrepancies were
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Figure 3.15: Time-averaged streamwise velocity ux along its axis, obtained
from the simulation using the proportional feedback, compared with the
numerical result from Tomboulides & Orszag (2000) at Reb = 300:
Present; ◦ Tomboulides & Orszag (2000).

observed in the far field due to the fact that the number of grid points used in this

simulation is not fine enough to fully resolve the flow within the boundary layer.

The boundary-layer thickness of a sphere at Reb = 300 can be approximated as

δ = 1.13/Re
1/2
b = 0.065, where δ is the non-dimensional boundary-layer thickness

(Schlichting, 1979). It can be seen from this approximation that only one grid

point was placed within the boundary layer.

Finally, the vortex shedding mechanism is studied by visualising the isosurface

of the second invariant of the velocity gradient tensor Q proposed by Hunt et al.

(1988). The second invariant of the velocity gradient tensor is defined as

Q = −1

2

∂ui
∂xj

∂uj
∂xi

=
1

2
(ΩijΩij − SijSij) , (3.21)

where Ωij = (ui,j − uj,i)/2 is the rate of rotation tensor and Sij = (ui,j + uj,i)/2 is

the rate of strain tensor. Hence, Q represents whether the rotation rate exceeds

the shear strain rate. More details of the Q-definition and the other markers of

a vortical structure can be found in Jeong & Hussain (1995) and in a review of

Chakraborty et al. (2005).
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Figure 3.17: Contours of ωz at the free surface from (left) Case JS3a and
(right) Case JS3aDR at (a) the projected time (t = 50) and (b) t = 3000.
Vorticity varies from −0.2 < ωz/ |ωz|max < 0.2. Blue (light) and red (dark)
patches show negative and positive vorticity, respectively. Plots at t = 50
show only selected region of the streamwise and lateral domains, while the
full domain is displayed for the plots at t = 3000.

The vortical structure behind the sphere is shown in Figure 3.16 and each

frame is 20 time units apart. It can be seen that the hairpin-like vortex forms

very close to the sphere (about five diameters downstream of the sphere centre).

While it convects downstream, the legs of the vortex stretch and are connected to

the head of the next vortex, which is shed in the same orientation as the previous

one. Our flow visualisation is in very good agreement with the hairpin vortex of

Johnson & Patel (1999), which is illustrated in Figure 3.8.

3.3 Validation of Domain Resizing

The accuracy of the vector-potential solver (Equations 2.26 and 2.27) and the

boundary conditions used (Equation 2.29) was validated as described below. We

first computed a turbulent patch induced by an impulsive jet, which acts over a

short time period ∆tf with a forcing intensity JT , at Rej = J
1/2
T /ν = 1250 in a

shallow fluid domain corresponding to the confinement number (see Equation 1.9)

of 2 (cf. Case JS3a; see Table 4.1 for details of the grid resolution and the domain

size). At this value of C, the vertical growth of the patch is limited, leading to

a vortex dipole at late time. Note that more details of the dynamics of a vortex

dipole will be given later in § 4. At t = 50, the vorticity field of Case JS3a was

projected to another computational domain whose size and resolution are exactly
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Figure 3.18: Comparison of dipole characteristics between Case JS3a and
Case JS3aDR: Case JS3a; ◦ Case JS3aDR. (a) Maximum vertical
vorticity at the free surface. (b) Dipole propagation velocity. (c) Dipole size.
Case JS3aDR starts at t = 50.

the same. We labelled the simulation started from the projected vorticity field

as Case JS3aDR. The velocity field of Case JS3aDR was obtained by solving

Equations (2.26) – (2.27). The simulations of both cases were continued until

t = 3000, at which the dipole is fully formed.

The vorticity contours in Figure 3.17 are used to visually quantify any differ-

ence between the vertical vorticity ωz at the free surface from Case JS3aDR and

that of Case JS3a. It is of importance to note that ωz at t = 50 of Case JS3aDR,

displayed in Figure 3.17, is obtained by taking the curl of its velocity field (i.e. tak-

ing the curl of Equation 2.27), not the projected vorticity field from Case JS3a.

It can be seen that ωz at the free surface from the present simulation is visually

similar to that from Case JS3a at both the projected time (t = 50) and t = 3000.

The dipole characteristics (i.e. the maximum vertical vorticity at the free surface
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Figure 3.19: Contours of ωz at the free surface from (a) Case JS3a and (b)
Case JS3aMF (at which a co-moving frame of reference attached to a vortex
is employed) at t = 3000. Vorticity varies from −0.2 < ωz/ |ωz|max < 0.2.
Blue (light) and red (dark) patches show negative and positive vorticity,
respectively. Only selected region of the streamwise domain of Case JS3a is
shown here, while the full domain of Case JS3aMF is illustrated.

ωz,max, the dipole size δd (Equation 4.1), and the dipole translation velocity Ud

(Equation 4.4)) of Case JS3aDR are determined to ensure the correctness of the

vector-potential solver and are compared with the baseline case (Case JS3a), as

displayed in Figure 3.18. For all the quantities, very close agreement was obtained

with the maximum relative difference being within 2%.

3.4 Validation of Moving Reference Frame Attached to a Vortex

We validated the PI controller used to adjust the speed of the co-moving reference

frame by projecting the vorticity field of Case JS3a (see Table 4.1) at t = 50 to

a smaller computation domain using a window function given in Equation (2.23).

The new velocity field of this validation was obtained using Equations (2.26) –

(2.27). The simulation (labelled as Case JS3aMF) was performed in a domain of

size −7 6 x 6 23, −8 6 y 6 8 and −0.5 6 z 6 0.5, with 960× 512× 32 grid cells

resulting in the same grid resolution as Case JS3a.

The PI controller and the proportional and integral gains used locate the co-

herent structure to within 5 × 10−5 of the target position by 8 time units. Once

locked in place, the vortex remains at this position, in spite of changing its trans-

lation speed. Contours of the vertical vorticity at the free surface from Case JS3a

and the present calculation are given in Figure 3.19, showing exactly the same

counter-rotating vortical structure at late time (t = 3000). The characteristics

of the coherent structure of the present computation, compared with Case JS3a,

are illustrated in Figure 3.20. Despite a decrease in the impulse (about 9%) due
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Figure 3.20: Comparison of dipole characteristics between Case JS3a and
Case JS3aMF (at which a co-moving frame of reference attached to a vortex
is employed): Case JS3a; ◦ Case JS3aMF. (a) Dipole impulse.
(b) Maximum vertical vorticity at the free surface. (c) Dipole propagation
velocity. (d) Dipole size. Case JS3aMF starts at t = 50.

to the loss of the wake shed from the vortex (Figure 3.20a), excellent agreement

was found for ωz,max at the free surface and the others integral measures with the

maximum relative difference of these quantities less than 2%.

3.5 Chapter Summary

In summary, this chapter validated the concept of applying an external body force

to generate finite- and zero-momentum wakes, the implementation of an immersed

boundary method, the domain-resizing approach and the PI controller used to

adjust the reference-frame speed. The validation of the domain resizing and the

moving reference frame attached to a vortex shows excellent agreement with the
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baseline case. The test of the moving reference frame attached to a vortex also

confirms that the wake shed from the vortex can be allowed to go out of the

computational domain since it has very little effect on the dipole dynamics.

The body force seems to work well for generating two-dimensional large-scale

vortical structures, such as a Kármán vortex street (induced by a single force) or

an inverted Kármán vortex street (generated by a force doublet). However, when

the magnitude of the drag is too large (i.e. JD/0.5πσ
2U 2

∞ > 1), it would drive the

velocity in the forcing region to become negative such that the energy flux (Ei =

uiDi) in that region is increased. This is contradictory to the definition of drag

force, which decreases the energy flux, and is thus unphysical. Moreover, when

the body force is applied to a three-dimensional problem, the negative velocity

provides fine-scale turbulence, which needs very fine grid resolutions to fully resolve

it. Therefore, an immersed boundary method is implemented to emulate a virtual

body, which imparts the drag to the flow, to avoid these problems.

An immersed boundary method used in this work is based on the concept

of a proportional-integral (PI) feedback. We observed that the integral term can

cause the stability issue when the gains are relatively large, such that only the

proportional term will be used throughout this work. The proportional gain used

is chosen to be related to the time step size to obtain the maximum gain (to make

sure that the error from the feedback loop is close to zero) while maintaining

stability. The validation shows that the accuracy of the IB approach used is

reasonable although only one grid point was placed within the boundary layer of

the virtual sphere.





Chapter 4

Evolution of Impulsively Generated Turbulent

Patches: I. Self-Similar Dipole

In this chapter1, the late-time formation of large-scale coherent structures gen-

erated from either an impulsive turbulent jet or an accelerating motion of a self-

propelled body between non-deformable stress-free layers is reported. This chapter

begins with a brief detail of the mathematical formulation used to study vortex

dynamics in § 4.1. The late-time behaviour of a dipole induced by an impulsive

turbulent jet is described in § 4.2.1, whilst the evolution of a turbulent patch gen-

erated by an accelerating motion of a self-propelled body is detailed in § 4.2.2. The
conclusion of this study is given in § 4.3.

4.1 Mathematical Background

In order to determine the evolution of a submerged impulsive momentum source,

the characteristics of the vortical structure, i.e. the dipole propagation velocity

and the dipole size, are defined in terms of the integral parameters proposed for

vortex-ring geometry by Saffman (1970). The dipole size δd and the dipole centroid

Xd = (Xd, Yd, Zd) are defined using the first moment of enstrophy via

δd =
2

Ω

∫
r |ω|2 dx dy dz , (4.1)

Xd =
1

Ω

∫
x |ω|2 dx dy dz , (4.2)

1Much of the material in this chapter has been presented in Rojanaratanangkule et al. (2012);
see Appendix A.

51
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where r =
√
y2 + z2, |ω|2 = ω2

x + ω2
y + ω2

z and Ω is the total integrated enstrophy,

defined as

Ω =

∫
|ω|2 dx dy dz . (4.3)

Thus the dipole propagation velocity U d = (Ud, Vd,Wd) can be obtained as

U d =
dXd

dt
. (4.4)

We also define lateral ℓy and vertical ℓz length scales of the vortical structure as

ℓy =
2

Ωy

∫

H

y |ω|2 dx dy dz , (4.5)

ℓz =
2

Ωz

∫

H

z |ω|2 dx dy dz , (4.6)

where Ωy, z =
∫
H
|ω|2 dx dy dz and the subscript H denotes that the integration

is performed over the half-positive y- or z-domain. Note that Equations (4.1),

(4.5) and (4.6) all require the origin of the y- and z-axes systems to be in the

centre of the computational domain. These definitions give the dipole sizes that

are roughly the distance between the vorticity extrema (maximum and minimum)

of the dipole (Saffman, 1995).

The impulse I = (Ix, Iy, Iz) and the xy-plane circulation Γ of the dipole are

also defined via their usual forms as

I =

∫
x × ω dx dy dz , (4.7)

Γ =

∫

H

ωz dx dy , (4.8)

where ω = (ωx, ωy, ωz).

4.2 Results

The evolution of the impulsively submerged momentum disturbance in the small-

scale upper ocean, which is mimicked by stress-free top and bottom layers, is

reported in this section. Two different types of momentum sources are chosen to

investigate the self-similarity of a dipolar vortex created by: (i) an impulsive jet,

and (ii) an accelerating motion of a self-propelled body.
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Case Domain depth (Ha) Rej Domain size Nx ×Ny ×Nz

JD Deep (4) 2000 −5 6 x 6 25, 960× 256× 256
−4 6 y 6 4,
−4 6 z 6 4

JS1 Shallow (0.5) 2000 −5 6 x 6 25, 960× 512× 32
−8 6 y 6 8,
−0.5 6 z 6 0.5

JS2 Shallow (0.5) 2000 −5 6 x 6 55, 1920× 512× 32
−8 6 y 6 8,
−0.5 6 z 6 0.5

JS3a Shallow (0.5) 1250 −5 6 x 6 55, 1920× 512× 32
−8 6 y 6 8,
−0.5 6 z 6 0.5

JS3bb Shallow (0.5) 1250 −5 6 x 6 55, 1920× 512× 32
−8 6 y 6 8,
−0.5 6 z 6 0.5

JS3LD Shallow (0.5) 1250 −5 6 x 6 55, 1920× 1024× 32
−16 6 y 6 16,
−0.5 6 z 6 0.5

JS3Fc
P1 Shallow (0.5) 1250 −5 6 x 6 15, 2560× 768× 128

−3 6 y 6 3,
−0.5 6 z 6 0.5

JS3Fc
P2 Shallow (0.5) 1250 −20 6 x 6 20, 2560× 768× 64

−6 6 y 6 6,
−0.5 6 z 6 0.5

JS3Fc
P3 Shallow (0.5) 1250 −20 6 x 6 20, 1280× 768× 32

−12 6 y 6 12,
−0.5 6 z 6 0.5

JS4 Shallow (0.5) 625 −5 6 x 6 55, 1920× 512× 32
−8 6 y 6 8,
−0.5 6 z 6 0.5

aH is the vertical distance from the centreline of the forcing to the free surface.
bThis case is equivalent to Case JS3a except that low-level random noise is added to the initial
condition.
cThis case was initially computed using the finest grid resolution (labelled as P1) to prove the
assumption made about the self-similarity of a dipole. The domain was resized twice at t = 20
(the beginning time of phase P2) and t = 100 (the beginning time of phase P3) to ensure that
the lateral domain width is always at least four times bigger than the lateral size of the dipole.
A co-moving frame of reference attached to a vortex was also employed for the simulation in
phases P2 and P3 to fix the streamwise position of the vortical structure.

Table 4.1: Impulsive-jet-induced wake run parameters.
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4.2.1 Jet-Induced Dipole

We first investigate the evolution and formation of a turbulent patch generated by

an impulsive jet as a test case. The jet acts over a short time interval ∆tf with

a forcing intensity JT , distributed to the computational grid via the 3D Gaussian

function with semi-width σ (cf. Equation 2.20). We choose ∆tf = 4 and JT = 1/4,

in units of L/U and U2L2, respectively, with L = 8σ (such that U = J
1/2
T /4σ).

When the code described in § 2 is used to study the evolution of an impulsive

jet, the boundary force from the virtual body Bi is not active. Recall that the

calculations are carried out in a stationary frame of reference. To study the effect

of a (non-deforming) free surface, we consider two distinct canonical flows: an

impulsive jet in a deep layer and another in a shallow layer. These are simulated

for a jet Reynolds number of 2000 based on the forcing intensity, i.e. Rej = J
1/2
T /ν.

Free-slip boundary conditions are applied in the vertical direction for the jet in

both deep and shallow layers, whilst the lateral direction is assumed to be periodic.

The main difference between these two cases is that the vertical growth of the

vortical structure created by the jet in a deep layer is not confined by the stress-

free boundaries. The number of grid cells and the domain size for both cases,

labelled as Cases JD and JS1 respectively, are given in Table 4.1. For the shallow-

layer case, the forcing interval and the height of the computational domain were

selected to correspond to the confinement number C = 2, for which the vortex

dipole has been observed at the free surface (Voropayev et al., 2007). Note that

the lateral domain width Ly for all cases in this section was chosen to be at least

2.7 times larger than the maximum lateral size ℓy of the coherent structure (see

Equation 4.5 above). That this value is sufficient is implied by the agreement

of the dipole characteristics for Cases JS3a and JS3LD (which is equivalent to

Case JS3a, apart from using Ly that is twice as large); see Figure 4.8. However, it

should be noted that since the length of the initial momentum-containing region is

relatively large, some of the pre-dipole dynamics may be influenced by the lateral

domain size.

A check of the spatial resolution was performed by comparing the difference

between the left- and right-hand sides of the volume-integrated instantaneous

kinetic-energy equation, written such that (Pope, 2000)

dK

dt
= −ǫK − FK +

∫
uiTi dx dy dz , (4.9)

where K is the volume-integrated kinetic energy, ǫK is the volume-integrated rate

of kinetic energy dissipation and FK is the net volume-integrated kinetic energy
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Figure 4.1: History of rate of change of volume-integrated kinetic energy
dK/dt for Case JD (jet in deep layer): dK/dt; −ǫK − FK +∫
uiTi dxdy dz.

flux. This check indicates whether the grid is fine enough to resolve the smallest

turbulence scales. History of the rate of change in the volume-integrated kinetic

energy is provided in Figure 4.1. Although the smallest scales of the flow (i.e. the

small-scale shear layers associated with, e.g., the boundary layer of the virtual

body) generated by the jet impulse are not well captured before t ≈ 10 (which

leads to the differences between the left- and right-hand sides of Equation 4.9),

after this time the flow is fully resolved. For all cases in this section except for

Case JS3F, the maximum difference after 10 time units was less than 1.53% of

the maximum value of dK/dt. The early under-resolution (when the calculation

was effectively a large-eddy simulation in the context that the large turbulence

scales are well resolved, while the small scales are not) corresponds to ambiguity

of the details of the geometry of the wake-generating body. Since it appears that

a vortex dipole is universal, i.e. a self-similar dipole can be obtained naturally

from different initial conditions and paths (see Figure 4.8), a full resolution of the

early-time small-scale turbulence (as used for Case JS3F; see Figure 4.7 below) is

not necessary to obtain the correct long-time behaviour of the dipole.

The development of an impulsive jet in deep and shallow layers is shown in

Figure 4.2 by the second invariant of the velocity gradient tensor Q (cf. Equa-

tion 3.21). After the relatively strong jet (Rej ≫ 1) is imparted into the fluid, it

generates a vortical structure with azimuthal vorticity in the frontal region. The

frontal region propagates away from its origin with speed Ud, which is half the

local fluid velocity behind the front (Stern & Voropayev, 1984). Thus the jet fluid
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Figure 4.2: Top and side views (upper and lower part of each picture,
respectively) of the vortical structure in (left) a deep layer (Case JD) and
(right) a shallow layer (Case JS1) at Rej = 2000 with level Q = 2.5× 10−4:
(a, b) t = 10, (c, d) t = 50, (e, f) t = 250. Isosurfaces of Q are coloured by
vertical vorticity component ωz.
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Figure 4.3: Histories of the lateral (ℓy) and vertical (ℓz) vortex sizes nor-
malised by the domain depth for impulsive-jet flow in (a) a deep layer (Case
JD) and (b) a shallow layer (Case JS1): ℓy/h; ℓz/h. The domain
depth h of Cases JD and JS1 is different.

merges into the vorticity front. At this stage, the ambient fluid is entrained in the

frontal region, resulting in increasing the sizes of the coherent structure. When

the vertical growth of the turbulent patch is not restricted (as for Case JD), the

vertical and horizontal sizes of the patch increase, while decreasing the propaga-

tion speed to conserve momentum. With time the turbulent patch transforms into

a toroidal vortex, as shown in Figure 4.2(e).

When the vertical growth of the turbulent patch is suppressed by the stress-

free layers (Case JS1), the frontal region can only expand horizontally due to

lateral entrainment (Figure 4.2d). A quasi-two-dimensional counter-rotating vor-

tical structure eventually forms at late times, as illustrated in Figure 4.2(f). A

plot of the lateral and vertical vortex sizes (ℓy, ℓz) versus time for Cases JD and

JS1 is displayed in Figure 4.3. The agreement of the ℓy and ℓz histories for Case

JD underlines the axisymmetric nature of the turbulent patch observed in Fig-

ures 4.2(a), 4.2(c) and 4.2(e), throughout the simulation (and indirectly validates

the choices made for the sizes [and boundary condition] for the vertical and lateral

domains). For Case JS1, the ℓy and ℓz histories imply that the turbulent patch is

affected by the free-surface confinement for t > 10 (see Figures 4.2b, 4.2d, 4.2f).

The volume-integrated kinetic energy K of both cases is displayed in Fig-

ure 4.4. The kinetic energy of the vortical structure resulting from the jet in a

deep layer decreases faster than the vortex suppressed by a free surface. This sug-

gests that the toroidal vortex decays more rapidly than the vortex dipole, which

can be confirmed by the theoretical scaling laws. Based on the ring and the dipole
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Figure 4.4: History of the volume-integrated kinetic energy K: Case
JD (deep layer); Case JS1 (shallow layer).

power laws, the volume-integrated kinetic energy of the ring and the dipole de-

creases with time as t−3/4 and t−2/3, respectively. Note that most of the kinetic

energy of the flow is provided by the large-scale structures, hence the small scales

observed from the ring at t = 250 (Figure 4.2e) do not have much effect on the

kinetic energy.

Figure 4.5 illustrates the signature of the momentum disturbance caused by

an impulsive jet. Initially, it can be seen from Figure 4.5(a) that the concentrated

momentum disturbance at the free surface does not form a vortex dipole. With

time, the patch propagates away from its origin, while increasing its horizontal

size and decreasing its propagation speed, transforming into a quasi-planar dipole,

as displayed in Figure 4.5(c). This is consistent with Voropayev et al.’s (2007)

prediction that a dipole will be visible on the free surface when the confinement

number (which for Case JS1 is 2) is greater than about 2.2.

To study the self-similar behaviour of the dipole at late time, the simulation

at Rej = 2000 was re-computed in a longer streamwise domain to avoid any ef-

fect of the outflow boundary condition. The length of the streamwise domain was

increased from Lx = 30 to Lx = 60, with a corresponding increase in the number

of grid cells to Nx = 1920. In addition, two more Reynolds numbers (Rej = 625

and 1250) were considered (see Table 4.1). After the dipole is fully formed, Fig-

ure 4.6(a) shows that the intensity of the vertical vorticity at the free surface
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Figure 4.5: Contours of vorticity at the free surface showing the penetra-
tion of the momentum source created by an impulsive jet at Rej = 2000
(Case JS1): (a) t = 10, (b) t = 50, (c) t = 300. Vorticity varies from
−0.2 ≤ ωz/ |ωz|max ≤ 0.2. Blue and red patches show negative and positive
vertical vorticity, respectively.

reduces with time as ωz,max ∼ t−1. The temporal evolution of the dipole propaga-

tion velocity Ud and the dipole size δd are illustrated in Figures 4.6(b) and 4.6(c),

respectively. The dipole propagation speed decreases with time as Ud ∼ t−2/3,

while its size increases as δd ∼ t1/3. The power laws of the dipole in this simu-

lation are the same as those in the previous measurements in a linearly stratified

fluid (Voropayev et al., 1991) and in a shallow layer (Sous et al., 2004; Voropayev

et al., 2007). The dipole at a lower Reynolds number requires less time to achieve
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Figure 4.6: Histories of characteristics of jet-induced dipole: Rej =
2000 (Case JS2); Rej = 1250 (Case JS3a); Rej = 625 (Case JS4).
(a) Maximum vertical vorticity at the free surface. (b) Dipole propagation
velocity. (c) Dipole size.

power-law behaviour. For example, the dipole propagation velocity at Rej = 625

starts to follow t−2/3 at t ≈ 150, while about 500 and 1800 time units are required

for the dipoles at Rej = 1250 and 2000, respectively. It should be noted that

the theoretical scaling laws are based on the idea of the flow similarity and they

satisfactorily describe the results of experiments and our numerical simulations at

an intermediate asymptotic state only — but they are not useful in describing the

whole flow evolution. Additionally, using only one realisation might not be enough

to obtain close agreement between DNS results and the theoretical scaling laws,

especially during the transformation process leading to a dipole. An ensemble of

realisations is needed to address this point.

To investigate the sensitivity of the intermediate-time behaviour (about 200−
500 time units; see Figure 4.8) to small changes in the initial conditions (including



4. Self-Similar Dipole 61

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

0.3

t

d
K
/
d
t

Figure 4.7: History of rate of change of volume-integrated kinetic energy
dK/dt for Case JS3F (jet in shallow layer using finest resolution):
dK/dt; −ǫK − FK +

∫
uiTi dxdy dz.

the full resolution of the small-scale turbulence at the early time) and domain size,

Case JS3a (jet-induced dipole at Rej = 1250) was repeated, first in the same com-

putational domain but with low-amplitude (maximum value of 10−8U) random

seeding (Case JS3b), second in a two times larger lateral domain (Case JS3LD),

and third using many more grid points (Case JS3F). Note that the resolution

for the first three cases is identical, while the resolution for Case JS3F during

the forcing duration is four times finer, which results in the difference between

dK/dt and its RHS terms (see Equation 4.9) during the breakdown to turbulence

(t ≈ 2.5) being about 5% of the maximum value of dK/dt as displayed in Fig-

ure 4.7. Histories of the dipole characteristics from these four cases are illustrated

in Figure 4.8. Although their initial development is different, all four cases nev-

ertheless converge to very similar dipole flows. This suggests that the dipole is a

robust two-dimensional limit that is relatively insensitive to the path taken during

its development.

4.2.2 Manoeuvring-Body Wake

We limit attention here to wakes in a shallow layer of same depth used for Cases

JS1 – JS4. In order to capture the entire process of a late wake eddy behind

a manoeuvring body, the simulation of a spatially developing wake needs to be

performed in a very long domain, which is computationally inefficient. To over-

come the problem, the simulation is split into two phases. The first phase of the
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Figure 4.8: Histories of characteristics of jet-induced dipole at Rej = 1250
from four different realisations: Case JS3a; Case JS3b;
Case JS3LD; Case JS3F. (a) Maximum vertical vorticity at the free
surface. (b) Dipole propagation velocity. (c) Dipole size.

simulation is concerned with the early-time behaviour of the wake, including both

the near-field wake and the starting vortex, whilst the final phase contains only

the late-time dipole behaviour (see § 4.2.2.2)

4.2.2.1 Early-Time Behaviour

We select a sphere with diameter Db as the manoeuvring body. The Reynolds

number based on the diameter and the terminal velocity Ub, t of the sphere is

Reb = Ub, tDb/ν = 826. The simulation is performed in the domain given by

−5 6 x 6 30, −4 6 y 6 4 and −0.5 6 z 6 0.5, with 2240 × 512 × 64 grid cells.

Here the reference length L is 2.5Db and the reference velocity U is 2.05Ub, t.
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Figure 4.9: (a) Histories of the momentum flux, thrust, drag
and speed of the body for manoeuvring-body wake: F/Fmax;

Thrust/Fmax; Drag/Fmax; Ub/Ub, t. (b) History
of the volume-integrated streamwise momentum flux: FM ; ◦∫
(−∂u/∂t+Bx + Tx − dUb/dt) dxdy dz. The simulation parameters for

this case are Reb = Ub, tDb/ν = 826, Rej = J1/2/ν = 785 and C =
J1/2∆tf/h

2 = 1.62.

At t = 0, the body accelerates from rest. The forcing time scale in Equa-

tion (2.21) was chosen such that the density of the object associated with Meff is

552 times that of the fluid. At this stage, the thrust is greater than the drag, lead-

ing to a momentum flux F being transported to the fluid. After some time, the

body reaches and maintains its terminal speed. Histories of the momentum flux,

the thrust, the drag and the velocity of the body are displayed in Figure 4.9(a).

The jet Reynolds number Rej and the confinement number C for this case are of

785 and 1.62, respectively. Note that we do not fully resolve the boundary layers of

the sphere because we assume that the dipole will eventually become self-similar,

such that the late-time characteristics of the dipole do not depend critically on

the near-field wake (supported by the evidence in Figure 4.8) and only a mo-

mentum flux imparted into the fluid is important (compare comments following

Equation 4.9, above). Thus, it is necessary to check if the net volume-integrated

momentum flux FM , which is the difference between the momentum, pressure and

viscous fluxes at the inlet and outlet planes, is balanced by the forces added to the

Navier–Stokes equations. The streamwise momentum balance in the non-inertial

moving reference frame can be written such that

FM =

∫ (
−∂u
∂t

+Bx + Tx −
dUb

dt

)
dx dy dz . (4.10)
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Figure 4.10: Top and side views (upper and lower part of the picture,
respectively) of the vortical structure of a manoeuvring-body wake with
level Q = 2.5× 10−4: (a) t = 5, (b) t = 10, (c) t = 20. Isosurfaces of Q are
coloured by vertical vorticity component ωz.
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A plot of the balance of the volume-integrated streamwise momentum flux versus

time is displayed in Figure 4.9(b), showing good agreement between the flux terms

FM and the external forces. The difference is less than 0.11% of the maximum

value of FM during the acceleration period (t < 9) and less than 2× 10−3% when

the body moves at its terminal speed. The adequacy of the spatial resolution was

also checked in the same way as described in § 4.2.1. It was found that the error

remaining after five time units was lower than 0.12% of the maximum value of

dK/dt.

The second invariant of the velocity gradient tensorQ is again used to visualise

the vortical structure of the manoeuvring-body wake, as displayed in Figure 4.10.

It is found that a large-scale vortical structure, resulting from the acceleration of

the body, appears in the late wake. The horizontal size of this vortical structure

increases with time, due to lateral entrainment, while the vertical growth is re-

stricted by the top and bottom free-slip walls. When the body is moving at its

terminal velocity, a momentumless wake is observed in the near-field region. The

zero-momentum wake decays very quickly without the formation of any coherent

vortical structures. Note that the momentumless wake at the early time is still

laminar, despite the relatively high Reynolds number, because the near-field wake

is convectively unstable, i.e. has no strong reversed-flow region. Hence this flow

compares to that over a streamlined body in which no flow separation occurs and

it thus needs a very long time to become turbulent. If we were to use a high-

intensity body force (i.e. JD/0.5πσ
2U 2

b, t > 1) to represent the drag instead of the

virtual body, the instability of the near-field wake would change to an absolute-

type instability and would thus quickly break down to turbulence with a lot of

small-scale eddies, which require very fine grid resolutions to fully resolve them.

We did not follow that strategy, since the objective of this work is to study the

characteristics of the late-wake eddy.

4.2.2.2 Late-Time Behaviour

After the body has reached its terminal velocity (at t = 20), the vorticity field was

projected to a smaller computation domain using a window function fw defined in

Equation (2.23). The objective of using the window function is to remove a portion

of the near-field wake, allowing computational resources to capture only the far-

wake portion of the flow, as illustrated in Figure 4.11. Note that the removal of
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Figure 4.11: The projected vortical structure with the window function
at t = 20: (Upper) top view, (Lower) side view.

the momentum source does not affect the formation and evolution of the late-

wake eddy because negligible net momentum is imparted into the flow by the self-

propelled body after it has achieved its terminal speed, when the drag is practically

cancelled by the thrust. In order to obtain the new velocity field, we first solve

the Poisson equation for the vector stream function ψ = (ψx, ψy, ψz) whose source

term is the projected vorticity field ω = (ωx, ωy, ωz) (cf. Equation 2.26). The new

velocity field can then be obtained directly by taking the curl of the vector stream

function as given in Equation (2.27). Full details of the domain-resizing approach

including a corresponding set of boundary conditions are given in § 2.7.

The simulation in this phase is first carried out in a domain of size 4 6 x 6 24,

−8 6 y 6 8 and −0.5 6 z 6 0.5, with 1280×1024×64 grid cells. Since the coher-

ent structure propagates in the positive x -direction and could leave the domain if

the domain length in that direction is not long enough, we employ a proportional-

integral-derivative (PID) controller, described in § 2.8, to keep the vortical struc-

ture at a fixed streamwise location within the domain. This also significantly

reduces the computational cost. The PID controller locates the vortex dipole to

within 10−4 of the desired location by 20 time units. We allow the wake shed

from the vortex to go out of the computational domain in the negative (outflow)

x -direction (note that in the frame of reference attached to the vortex/dipole struc-

ture, the inflow boundary is at x = 24 and the outflow at x = 4), since its effect

on the dipole dynamics is assumed to be negligible (supported by Figure 3.20).

At very late time, high resolution is no longer required, since the global Reynolds

number, based on the dipole translation speed Ud and the dipole size δd, decreases

with time as t−1/3 (Voropayev et al., 1999), but the size of the domain has to be

increased to capture the dipole as its lateral size increases. Thus, the computa-

tional domain was expanded at t = 200, with −2 6 x 6 30, −16 6 y 6 16 and
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Figure 4.12: Top (upper) and side (lower) views of isosurfaces ofQ showing
the evolution of the vortical structure generated by the manoeuvring body
at late time: (a) t = 50, (b) t = 100, (c) t = 200. Isosurfaces of Q are
coloured by ωz and the surface level is Q = 2.5× 10−6.
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Figure 4.13: Contours of vertical vorticity ωz at the free surface showing
the penetration of a wake signature of a manoeuvring self-propelled body:
(a) t = 30, (b) t = 100, (c) t = 200 (the computational domain is resized as
described in § 2.7), (d) t = 1000. Vorticity varies from −0.2 ≤ ωz/ |ωz|max ≤
0.2. Blue and red patches show negative and positive vertical vorticity,
respectively.

−0.5 6 z 6 0.5, and the resolution reduced to 1024 × 1024 × 32 grid cells. It

should be noted that during the entire simulation, the lateral domain width Ly is

at least six times larger than the lateral size of the coherent structure created by

the manoeuvring body.

The isosurfaces of Q displayed in Figure 4.12 show the evolution of the vortical

structure. Only the horizontal size of the late-wake eddy can expand, yielding a

coherent structure in the form of two patches of opposite-signed vortices, as shown

in Figure 4.12(c). The evolution of the vortical structure at the free surface is

displayed in Figure 4.13. Figure 4.13(a) shows that the momentum disturbance
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Figure 4.14: Histories of characteristics of dipole induced by manoeuvring
body. (a) Maximum vertical vorticity at the free surface. (b) Dipole prop-
agation velocity. (c) Dipole size. The computational domain is resized as
described in § 2.7 at t = 200.

penetrates upward and produces its signature at the free surface at an early time.

At this stage the wake signature is not yet in the form of a dipole. With time,

the horizontal size of the surface eddy grows as it propagates away from the body,

and the wake signature finally transforms into a vortex dipole (Figure 4.13c and

4.13d). The late-time coherent eddy generated by the manoeuvring body is similar

to the jet-induced dipole.

The late-time characteristics of the dipole created by the accelerating motion

of the body are given in Figure 4.14, along with the theoretical scaling laws. The

comparison shows good agreement between the DNS and the power laws. These

scaling laws are obtained with the assumption that the impulse of the dipole is

conserved (Voropayev et al., 1991, 2008). Based on this assumption, the decay of
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Case Rej C A

JS2 2000 2.0 58.69

JS3a 1250 2.0 41.52

JS4 625 2.0 23.53

Manoeuvring body 785 1.62 21.28

Table 4.2: Values of A.
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Figure 4.15: Histories of maximum vertical vorticity at the free surface:
Case JS2 (Rej = 2000); Case JS3a (Rej = 1250); Case

JS4 (Rej = 625); Manoeuvring body (Rej = 785).

the vertical vorticity is inversely proportional to time, with

ωz,max = At−1 , (4.11)

where A is an empirical constant. The constant A was determined experimentally

by Voropayev et al. (2008) to be A = 17. In order to check whether or not this

constant is universal, we compute A for all four cases (the jet-induced dipole at

Rej = 625, 1250, 2000 and the manoeuvring-body wake at Rej = 785) by finding

the slope and the virtual orgin of ω−1
z,max = (t− t0) /A. The resulting values of A

from our data are given in Table 4.2, and a plot of ωz,max versus (t−t0) is displayed
in Figure 4.15. Although the vorticity at large times decays in a similar manner

as 1/(t− t0), a Reynolds-number dependence is indicated, calling the universality

of A into question. The consistency of the estimates for A seen in Figure 4.8(a),

which shows the decay of ωz,max from different realisations, yields a unique value
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of A for the jet-induced dipole at Rej = 1250. Note that some difference between

numerical and experimental values of A may be expected because the experiments

(Voropayev et al., 2008) were conducted in a stratified fluid, while a confined

homogeneous fluid is used in the present simulations.

4.3 Chapter Summary

The formation and evolution of the large-scale coherent structure produced by

both an impulsive jet and an accelerating self-propelled body have been examined

using DNS. It is found that when the vortex is constrained by the stress-free top

and bottom layers, a quasi-planar counter-rotating structure is formed. The vortex

dipole persists for a longer time than a typical toroidal vortex. The characteristics

of the dipole vortices induced by the presence of vertical confinement are similar

to those in a stratified fluid. Qualitatively similar pancake-like vortices can be

obtained via different initialisations, which support the assumptions made about

the self-similarity of a dipole. The expected scaling laws are satisfied although

the dipoles appear to possess a Reynolds-number dependence. Next chapter (§ 5)
will investigate how the formation of the submerged momentum disturbances is

affected by the thickness of the fluid domain. The ability of the confinement

number to predict the effect of a submerged coherent vortex on, for example, the

free surface will also be explored.





Chapter 5

Evolution of Impulsively Generated Turbulent

Patches: II. Effect of Confinement Number

This chapter focuses on formulating the conditions under which an impulsively

generated turbulent patch can be transformed to a pancake-like counter-rotating

vortex which penetrates and produces a vortex dipole at the free surface and de-

termining the relationship between the characteristics of a surface signature and

the input parameters. We first explain the most important external dimensionless

parameter, the confinement number, in § 5.1, followed in § 5.2 by the numerical

approach employed to compute the evolution of the momentum patch. The simu-

lation parameters are given in § 5.3. The major results from this study are reported

in § 5.4. This chapter is then concluded with a brief summary in § 5.5.

5.1 Physical Meaning of the Confinement Number

It was found that the condition under which a three-dimensional vortex can be

altered to a vortex dipole and produces a signature at the free surface depends

only on the dimensionless parameter called the confinement number C (Sous et al.,

2004, 2005; Voropayev et al., 2007). The confinement number was first obtained

by performing dimensional analysis (Sous et al., 2004) and is defined as

C =
J1/2∆tf
h2

, (5.1)

where J is the forcing intensity, ∆tf is the forcing duration and h is the depth

of the fluid domain. Voropayev et al. (2007) estimated the critical value of the

confinement number, and assuming the momentum was provided by a round tur-

bulent jet (the eddy viscosity and the jet’s half width provided in Schlichting,

1979) as shown below.

73
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Figure 5.1: Schematic of side view of (left) a conical turbulent jet at
t = ∆tf , and (right) a round turbulent patch at t > ∆tf (adapted from
Voropayev et al., 2007).

After the relatively strong jet (Rej ≫ 1) is imparted into the fluid, it generates

a conical vortical structure with a spherical vorticity of diameter δ̃d, which will grow

with time, in the frontal region (see Figure 5.1). The frontal region propagates

away from its origin with speed Ũ , which is half the local fluid velocity in the

trailing jet uj, behind the front (Stern & Voropayev, 1984)

Ũ =
dX̃d

dt
=

1

2
uj , (5.2)

where X̃d is the distance from the origin. For a circular turbulent jet, the velocity

of the jet can be estimated from the eddy viscosity ǫo (Schlichting, 1979) as

uj (ξ) =
3J

8πǫoX̃d

1
(
1 + 1

4
ξ2
)2 , (5.3)

where ξ is the radial distance normalised by the jet’s half-width r1/2. The eddy

viscosity is parameterised as ǫo = 0.0161J1/2 (Schlichting, 1979). Thus the jet

maximum velocity that occurs at the centreline (ξ = 0) is

uj ≈ 7.4141
J1/2

X̃d

. (5.4)

Substituting uj into Equation (5.2) and integrating it over the period of the forcing,

the distance X̃d of the vorticity front at the end of the forcing action (t = ∆tf) is

∫
X̃d dX̃d =

1

2

∫ ∆tf

0

7.4141 J1/2 dt ,

X̃d ≈ 2.7229 J1/4∆t
1/2
f . (5.5)
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Figure 5.2: Schematic of computational domain for a disk-like body force
during the forcing period (t 6 ∆tf ).

The diameter of the vorticity front δ̃d can be approximated from the half-width of

a self-similar turbulent jet, with r1/2 = 0.0848X̃d (Schlichting, 1979), as

δ̃d ≈ 2 r1/2 ≈ 0.4618 J1/4∆t
1/2
f . (5.6)

After t > ∆tf , the trailing jet of the conical structure continues to merge into

the frontal region (recall that uj is two times faster than Ũ), leading to a nearly

spherical turbulent patch of diameter δd, which is usually bigger than δ̃d (cf. Fig-

ure 5.1). Since a change in the volume of the vortex during this transformation

is assumed to be negligible (Voropayev et al., 2007), the size of the patch can be

obtained by equating the volume of the patch (Vp = πδ3d/6) and the conical vortex

(Vc = πδ̃2dX̃d/12),

δd ≈ 1.4339 δ̃d ≈ 0.6622 J1/4∆t
1/2
f . (5.7)

From this estimation, one can expect that a large-eddy signature will appear at a

free surface when δd > h. The critical value of the confinement number Ccr can

then be obtained by combining the above approximations with the definition of

the confinement number and setting δd = h, such that

0.6622 J1/4∆t
1/2
f

h
= 1 ,

J1/2∆tf
h2

=
12

0.66222
,

Ccr ≈ 2.3 . (5.8)

Based on this estimation, it can be seen that only the forcing intensity J and

forcing period ∆tf control the initial shapes (horizontal length Xd and its size δd)

of the turbulent patch. Voropayev et al. (2007) thus suggested that (the square

root of) the confinement number can be interpreted as the ratio of the initial
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Figure 5.3: (a) Time evolution S(t) of the body force. (b) Distribution
of the body force in axial G(x) and radial H(r) directions: G/Gmax;

H/Hmax.

size of the patch, defined by J and ∆tf , to the depth of the fluid domain. Once

the given initial size is bigger than the domain depth, the vertical growth of the

turbulent patch is restricted by the flow geometry and the patch may be altered

to a quasi-two-dimensional counter-rotating vortical structure.

5.2 Numerical Approach

The numerical approach used in this chapter is similar to that described in § 2
except that only a stationary impulsive momentum source (an impulsive turbu-

lent jet) is chosen to generate a turbulent patch since it has been shown in § 4
that qualitatively identical quasi-2D counter-rotating coherent structures can be

obtained from using either moving (a manoeuvring body) or stationary (an im-

pulsive jet) momentum sources. Hence, the boundary force from a virtual body

Bi is not active and the calculations are first performed in a stationary frame of

reference during the forcing period (t 6 ∆tf ), as illustrated in Figure 5.2. Stress-

free boundary conditions are applied in the vertical (z) direction to represent a

non-deformable free surface, while periodic boundary conditions are employed in

the lateral (y) direction.

Once t > ∆tf , a co-moving frame of reference attached to a vortex, described

in § 2.8, is employed to maintain the position of the turbulent patch (see Fig-

ure 2.2). The computational domain is increased several times as the flow develops

to accommodate the growth in the sizes of the momentum patch. In brief, the

domain length is expanded in the streamwise (x) and lateral (y) directions, while
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the resolution in all three directions is reduced to decrease the net computational

cost. The reduction in the grid resolution is done without the loss of accuracy,

since the Reynolds number of the flow, based on the vortex translation speed Ud

and its size δd, decreases with time. Details of the domain-resizing technique and

its validation are respectively provided in § 2.7 and § 3.3.

An impulsive momentum source T = (Tx, 0, 0), applied directly to the Navier–

Stokes equations, is modelled as a thin axisymmetric disk (e.g. see Mohseni et al.,

2001) with radius R and has the form

Tx(x, y, z, t) = JS(t)G(x)H(r) , (5.9)

where J is the forcing intensity.

A step function, whose distribution is illustrated in Figure 5.3(a), is used to

represent the time evolution S(t) of the body force as

S(t) =
1

2

[
tanh

(
σt

{
1

2
∆tf −

∣∣∣∣t−
1

2
∆tf − Ct

∣∣∣∣
})

+ 1

]
, (5.10)

where Ct = 0.02 is a time offset to ensure that S (0) = 0, and σt = 16/Ct is an

inverse of a time scale that controls the smoothness and is set to be compatible

with the choice of Ct. The body force is centred at (x, y, z) = 0. The functions

G(x) and H(r) respectively control the spatial variation of the body force in the

streamwise (x) and radial (r =
√
y2 + z2) directions and are defined as

G(x) =
1

σxπ1/2
exp

[
−x

2

σ2
x

]
, (5.11)

H(r) =
1

2Cr

erfc

(
r −R′

σr

)
, (5.12)

where Cr = 0.5Rσrπ
1/2e−R2/σ2

r +0.25π[erf(R/σr) + 1][σ2
r +2R2] is a normalisation

constant chosen to ensure unit total force; the smoothing coefficients σx and σr

are assigned the value of 0.2R, which results in the distribution displayed in Fig-

ure 5.3(b). Note that Equations (5.11) and (5.12) are determined in such a way

that J is equal to the volume integrated force (J =
∫
Tx dx dy dz), such that the

total impulse I can be obtained as

I =

∫
J dt = J∆tf . (5.13)
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Azimuthal instability is introduced by adding azimuthal perturbation g(θ)

with amplitude ς = 5× 10−3 to the body-force radius R, such that

R′(θ)← R [1 + ςg(θ)] . (5.14)

We follow Shariff et al. (1994) and Archer et al. (2008) by using g(θ) as the sum

of the first 32 Fourier modes, written as

g(θ) =
32∑

n=1

An cos(nθ) +Bn sin(nθ) , (5.15)

where An and Bn are random numbers with A2
n +B2

n = 1, and θ is the azimuthal

coordinate. Note that the level of the azimuthal perturbation used is higher than

that from the numerical error that excites only some particular azimuthal modes.

Therefore, the first 32 azimuthal modes each have approximately the same initial

level of energy, allowing the flow to naturally select the most dominant azimuthal

mode. When the value of ς is too large (greater than about 10−2 for this case), the

transition to turbulence of a momentum patch bypasses a linear instability stage.

The patch thus becomes turbulent only by a nonlinear instability process.

5.3 Simulation Parameters

Numerical simulations were designed to study the effect of the confinement number

C on the formation of the turbulent patch by varying the forcing duration ∆tf ,

which results in a range of C from 0.2 – 6.0, as listed in Table 5.1. The forcing

intensity and the domain depth were fixed at J = 1/16 and h = 0.3 (corresponding

to h/2R = 6), in units of U2L2 and L, respectively, with L = 40R and U =

J1/2/10R. For all cases, the simulations were conducted at Rej = J1/2/ν =

1250 and used the time step ∆t that provides the maximum Courant–Friedrichs–

Lewy (CFL) number, based on local maximum velocity and grid size, well below

0.2. During the forcing duration, the simulations were performed in the finest

grid resolution (phase one, labelled as superscript 1 in Table 5.1) to ensure that

the smallest scales of the flow are fully resolved (supported by the evidence in

Figure 5.4 below). A few times after the forcing stopped, the computational

domain was resized and the simulations continued into phase two and phase three,

in which a co-moving frame of reference attached to the vortex structure was

employed to lock the streamwise position of the turbulent patch. It should be

noted that the lateral domain width Ly for the simulations in all phases of each



5. Effect of Confinement Number 79

Case C ∆tf Fn
Domain size

Nx ×Ny ×Nz t̂/∆tfxs xe ys ye zs ze

C0p21 0.2 0.072 8.1 −0.5 1.0 −0.2 0.2 −0.15 0.15 960× 256× 192 4.17
C0p22 0.2 0.072 8.1 −1.0 1.6 −0.6 0.6 −0.15 0.15 832× 384× 128 50.0

C0p51 0.5 0.18 20.3 −0.5 1.5 −0.3 0.3 −0.15 0.15 1280× 384× 192 4.0
C0p52 0.5 0.18 20.3 −1.0 2.4 −0.8 0.8 −0.15 0.15 1088× 512× 128 10.0
C0p53 0.5 0.18 20.3 −2.0 3.0 −1.6 1.6 −0.15 0.15 832× 512× 64 50.0

C1p01 1.0 0.36 40.6 −0.5 2.0 −0.4 0.4 −0.15 0.15 1600× 512× 192 2.5
C1p02 1.0 0.36 40.6 −1.0 3.0 −1.0 1.0 −0.15 0.15 1280× 640× 128 8.34
C1p03 1.0 0.36 40.6 −2.0 4.0 −2.4 2.4 −0.15 0.15 960× 768× 64 50.0

C1p51 1.5 0.54 60.9 −0.5 2.5 −0.5 0.5 −0.15 0.15 1920× 640× 192 2.22
C1p52 1.5 0.54 60.9 −1.0 3.6 −1.2 1.2 −0.15 0.15 1472× 768× 128 6.67
C1p53 1.5 0.54 60.9 −2.0 4.8 −2.8 2.8 −0.15 0.15 1088× 896× 64 50.0

C2p01 2.0 0.72 81.2 −0.5 2.9 −0.6 0.6 −0.15 0.15 2176× 768× 192 2.08
C2p02 2.0 0.72 81.2 −1.0 3.6 −1.4 1.4 −0.15 0.15 1472× 896× 128 6.25
C2p03 2.0 0.72 81.2 −2.0 4.8 −3.2 3.2 −0.15 0.15 1088× 1024× 64 50.0

C2p51 2.5 0.9 101.6 −0.5 3.1 −0.65 0.65 −0.15 0.15 2304× 832× 192 2.0
C2p52 2.5 0.9 101.6 −1.0 4.0 −1.4 1.4 −0.15 0.15 1600× 896× 128 6.0
C2p53 2.5 0.9 101.6 −2.0 5.2 −3.2 3.2 −0.15 0.15 1152× 1024× 64 50.0

C4p01 4.0 1.44 162.5 −0.5 4.0 −0.8 0.8 −0.15 0.15 2880× 1024× 192 1.46
C4p02 4.0 1.44 162.5 −1.0 4.6 −2.0 2.0 −0.15 0.15 1792× 1280× 128 6.25
C4p03 4.0 1.44 162.5 −2.0 6.0 −4.0 4.0 −0.15 0.15 1280× 1280× 64 50.0

C6p01 6.0 2.16 243.7 −0.5 4.0 −1.0 1.0 −0.15 0.15 2880× 1280× 192 1.25
C6p02 6.0 2.16 243.7 −1.0 5.0 −2.0 2.0 −0.15 0.15 1920× 1280× 128 4.63
C6p03 6.0 2.16 243.7 −2.0 7.2 −4.0 4.0 −0.15 0.15 1472× 1280× 64 50.0

Table 5.1: Run parameters. The superscripts denote the simulations in
phase one, phase two and phase three of each case, as described in § 5.3.
The formation number Fn is defined at the end of the forcing period (see
§ 5.4.2). The time t̂ denotes the end of each phase of the simulation. All
lengths and times listed here are respectively given in units of L and L/U ,
where L = 40R and U = J1/2/10R.

case was at least three times larger than the lateral size of the turbulent patch,

since it has been demonstrated in Figure 4.8 that this value of Ly is sufficiently

large that the effects of periodicity can be neglected.

5.4 Results

Below we present DNS results from simulations for a range of C. The adequacy

of grid resolution is first verified in § 5.4.1, followed in § 5.4.2 by the early-time

development which includes the breakdown process of the elongated momentum
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Figure 5.4: History of rate of change of volume-integrated kinetic energy
dK/dt for Case C1p0: dK/dt; −ǫK − FK +

∫
uiTi dxdy dz.

patch. Finally, the effect of the confinement number on the evolution of the patch

is explored in § 5.4.3.

5.4.1 Resolution Check

It can be checked whether the grid resolution used is fine enough to capture

the smallest turbulence scales by comparing the difference between the rate of

change of the volume-integrated instantaneous kinetic energy1 K and the volume

integrated rate of kinetic energy dissipation ǫK , together with the net volume-

integrated kinetic energy flux FK and the volume integrated work due to the

external force
∫
uiTi dx dy dz (see Equation 4.9), as shown in § 4.2.1. Case C1p0

is used to demonstrate the adequacy of the spatial resolution, since the resolution

for all cases is identical during the forcing period. Figure 5.4 displays the history

of dK/dt versus the RHS of Equation (4.9) during phase 1 (including the forcing

duration) and phase 2 of Case C1p0. It was found that the difference was less than

0.26% of the maximum value of dK/dt up to the point of transition to turbulence

(t/∆tf < 0.25, see § 5.4.2 below). During the breakdown to turbulence, the vortex

filaments are stretched to fine scale, which results in an enstrophy peak. Even

during this most difficult to resolve phase, reasonable accuracy was obtained with

the maximum difference of about 5%. After the forcing has stopped, the turbulent

1When the co-moving frame of reference is being used, the pseudo force due to the frame
acceleration of −dUF /dt must be taken into account, such that K = 1

2

∫ (
uiui − U2

F

)
dx dy dz.
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Figure 5.5: Isosurfaces of Q, coloured by ωy, showing the evolution of the
momentum patch during the forcing duration for Case C1p0: (a) t/∆tf =
0.06, (b) t/∆tf = 0.25, (c) t/∆tf = 0.33, (d) t/∆tf = 0.5. The formation
number at each time is: (a) Fn = 2.26, (b) Fn = 10.16, (c) Fn = 13.54, (d)
Fn = 20.31.

patch starts to decay, leading to a decrease in the error after t/∆tf > 2 being less

than 0.32%.

5.4.2 Early-Time Characteristics and Breakdown to Turbulence

It is now well known that the formation of a vortical structure generated by an

impulsive momentum source can be classified into two regimes depending on the

value of the dimensionless formation number Fn, defined in experiments of Gharib

et al. (1998) (who used a round-piston-driven jet nozzle to create a vortex ring),

as Fn = L/D, where L is the piston stroke and D is the nozzle diameter. They

observed that when Fn > 4, the vortex ring does not gain any further circulation

and thus disconnects from a portion of vorticity behind it (called a trailing jet).

This process is usually referred to as vortex ring pinch-off.
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Figure 5.6: Side view of contours of ωy at the centreline (y = 0) during
the forcing duration for Case C1p0: (a) t/∆tf = 0.06, (b) t/∆tf = 0.25, (c)
t/∆tf = 0.33, (d) t/∆tf = 0.5. Vorticity varies from −0.2 < ωy/ |ωy|max <
0.2. Blue (light) and red (dark) patches show negative and positive vorticity,
respectively. See Figure 5.5 for information regarding the formation number
at each time.

To explain the very early-time behaviour of the momentum patch created

by the disk-like body force, we can define the equivalent formation number by

equating its impulse I = J∆tf (cf. Equation 5.13) with the impulse of the coherent

structure induced by the piston mechanism Ip = πD2L2/4∆tf (Gharib et al.,

1998), such that the formation number at the end of the forcing duration can be

written as

Fn =
2∆tf
D2

(
J

π

)1/2

. (5.16)

The nozzle diameter is assumed to be equal to the diameter of the body force

D = 2R. For all cases considered here, the formation number at the end of the

forcing period is larger than its critical value Fncr ≈ 4 (see Table 5.1) and the

momentum patch becomes fully turbulent before hitting the free surface, such

that the evolution of the momentum patch during the forcing period is identical.

Hence, Case C1p0 is again selected to explain the evolution of the momentum

patch during the forcing duration (t 6 ∆tf), including the breakdown process of

the patch.

The development of the momentum patch is visualised by means of the second

invariant of the velocity gradient tensor Q = −0.5ui,juj,i depicted in Figure 5.5,
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Figure 5.7: Azimuthal modal energies for Case C1p0 at selected times: (a)
t/∆tf = 0.06, (b) t/∆tf = 0.25, (c) t/∆tf = 0.33, (d) t/∆tf = 0.5.

and the contours of the lateral vorticity ωy at the centreline y = 0, illustrated

in Figure 5.6. Immediately after the forcing is active, an axisymmetric laminar

vortex ring is formed, as displayed in Figures 5.5(a) and 5.6(a). At this time, the

momentum flux is still being injected into the fluid while the ring is propagating

in the streamwise direction. Once the formation time is larger than its critical

value (Fncr ≈ 4), the leading vortex ring begins detaching from its trailing jet,

resulting in the roll-up of the trailing vorticity to form a series of vortices similar

to the well-known Kelvin–Helmholtz instability. This phenomena can be clearly

seen in the plots of vorticity contours (Figures 5.6b and 5.6c).

Since the Reynolds number considered here is high enough, the leading vortex

ring and its trailing jet develop three-dimensional instabilities and undergo transi-

tion to turbulence. The breakdown mechanism of this elongated vortical structure
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Figure 5.8: Evolution of selected azimuthal modal energies for Case C1p0:
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is described as follows. While the elongated momentum patch is moving down-

stream, the leading vortex ring develops an azimuthal instability (often called the

Widnall instability), which leads to the distortion of the leading ring into station-

ary waves, of an integer number n, around the ring circumference. As can be

seen from Figure 5.5(c), six waves appear around the leading ring, suggesting that

n = 6 mode is the most dominant azimuthal mode for this part of the flow (de-

tails of vortex ring instabilities can be found in, for example, Shariff et al., 1994;

Archer et al., 2008). It is of interest to note that while the leading ring breaks

down subject to a Widnall-like instability, the trailing jet also becomes turbulent

through a classical Kelvin–Helmholtz breakdown, depicted in Figure 5.6(c). At

later times, the finer-scale structures develop due to the stretching of the vortex

filaments, such that the momentum patch becomes fully turbulent, as illustrated

in Figures 5.5(d) and 5.6(d).

To determine the most dominant azimuthal mode (i.e. the mode with the

largest growth rate during the linear instability phase) of the elongated vortex,

we extracted the modal energy spectrum by performing a Fourier transform in

the azimuthal direction. Note that we computed the azimuthal modal energies of

the whole momentum patch, not just the leading ring. Note also that, in order

to calculate the azimuthal modal energies, the velocity field on the Cartesian

grid needs to be interpolated onto cylindrical coordinates. Figure 5.7 shows the

modal kinetic energies of the first twenty azimuthal modes, while evolution of some

azimuthal modes of the kinetic energy is provided in Figure 5.8. During the initial
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α1 α2 α3 α4 α5 α6 α7 α8 αS

32.64 20.34 41.21 44.89 52.44 56.18 46.03 44.62 58.85

Table 5.2: Growth rates αn of selected azimuthal modes together with
the viscous predicted growth rate αS of Shariff et al. (1994), applied to the
leading ring. Growth rates are given in units of U/L.

laminar phase, all the azimuthal modes have about the same level of the kinetic

energy (Figure 5.7a). This also validates the choice made about the level of the

azimuthal perturbation. With time, the kinetic energy of each mode En increases

individually with different growth rates αn as shown in Figure 5.8. We determined

the growth rate,

αn =
1

2En

dEn

dt
, (5.17)

by averaging it over 0.0417∆tf time units centred at t/∆tf = 0.2083. The growth

rates of some azimuthal modes are reported in Table 5.2. It can be seen that the

n = 6 mode is still the most amplified mode for the whole elongated vortex over

the time window considered, with α6 = 56.18. This mode also has the highest

kinetic energy during the linear phase as illustrated in Figure 5.7(b).

The highest growth rate (α6) is then compared with the estimated growth rate

of a single vortex ring, first proposed by Widnall & Tsai (1977) for the inviscid

case and modified to account for the effect of viscosity by Shariff et al. (1994).

The viscous estimated growth rate αS of Shariff et al. (1994) is

αS = αWT

[
1− α̂

ReS

]
, (5.18)

where αWT is the inviscid prediction of Widnall & Tsai (1977), defined as

αWT =
Γr

4πR2
r

[{
0.856 ln

(
8Rr

a1

)
− 0.9102

}2

− 0.4535

]1/2

, (5.19)

α̂ is a non-dimensional coefficient, ReS = ea21/ν is the internal Reynolds number,

with e the local induced strain field (Saffman, 1978)

e =
3Γr

16πR2
r

[
ln

(
8Rr

ae

)
− 17

12

]
; (5.20)

Γr and Rr are respectively the circulation and radius of the leading ring, a1 =

1.1214σr and ae = 1.3607σr are measures of the leading ring core radius (Shariff
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et al., 1994) and σr is the leading ring core thickness. Note that the last coefficient

in Equation (5.19) is different from that in Widnall & Tsai (1977) due to the error

corrected by Shariff et al. (1994). We calculated αS the same way as Archer et al.

(2008) did by using the instantaneous Γr, Rr, a1 and ae at t/∆tf = 0.2083 with

α̂ = 8, and found that the relative difference between the present growth rate of

the most dominant mode (α6) and Shariff et al.’s (1994) prediction applied to the

leading ring (αS) was about 4.54%. This suggests that the elongated momentum

patch breaks down to turbulence due to the azimuthal instability of the leading

ring.

During the nonlinear instability phase, the most dominant mode and its neigh-

bouring modes interact nonlinearly with each other resulting in the rapid growth

of their harmonics and the lower modes (see Figures 5.7c and 5.8). All of the

modes saturate at t/∆f ≈ 0.5, when the leading ring and its trailing jet become

fully turbulent. The spectrum at this time (Figure 5.7d) is consistent with the

Kolmogorov turbulence cascade, with energy presumably transferred from larger

scales (lower wavenumbers) to smaller scales (higher wavenumbers).

5.4.3 Effect of Confinement Number on the Turbulent Patch

To illustrate the effect of the confinement number, we compare the development

of the turbulent patches after the forcing period from Cases C0p2, C1p0, C2p0

and C6p0 by visualising the isosurfaces of the second invariant of the velocity

gradient tensor Q, as shown in Figure 5.9. For very low value of C (Case C0p2,

Figure 5.9a), the vertical confinement is quite weak, such that both vertical and

lateral sizes of the patch grow with time due to entrainment of the surrounding

fluid and the patch remains axisymmetric. To explore the axisymmetric nature

observed from this case, histories of the ratio of the lateral ℓy (Equation 4.5) to

the vertical sizes ℓz (Equation 4.6) of the patch are displayed in Figure 5.10. It

can be seen that ℓy/ℓz for Case C0p2 is always about unity suggesting that the

vertical confinement has very little influence on the vertical development of the

patch. Therefore, the fluid layer for this value of C can be considered as deep.

This also suggests that the turbulent patch will maintain its axisymmetric nature

(ℓy/ℓz = 1) as C approaches zero.

For higher values of C, the vertical confinement influences the evolution of the

patch. The vertical growth of the patch is limited by the non-deformable stress-

free layers and only the horizontal size of the patch can expand due to lateral

entrainment, as depicted in Figure 5.10. If C is not strong enough (e.g. Case
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Figure 5.9: Top view of isosurfaces of Q, coloured by ωz, showing the
development of the turbulent patch at (left) t/∆tf = 4, (middle) t/∆tf = 10
and (right) t/∆tf = 20: (a) Case C0p2, (b) Case C1p0, (c) Case C2p0, (d)
Case C6p0.
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C1p0), the patch does not form a counter-rotating vortical structure before it is

affected significantly by the vertical confinement (Figure 5.9b). When C is about

and greater than its estimated critical value (e.g. Cases C2p0 and C6p0), a counter-

rotating vortex appears at late time with the lateral length scale much larger than

its vertical size (Figures 5.9c and 5.9d). We can then consider that the fluid layer

for values of C higher than about unity is shallow.

A plot of the size of the turbulent patch δd (see Equation 4.1) versus time

is given in Figure 5.11(a). Immediately after the forcing ends, δd for each case

increases rapidly with different growth rates depending on the impulse of the flow.

After this phase, the patch reaches its self-similar state and the size of the patch

continues to grow with the lower rate. For strong C, the vertical growth of the

patch is suppressed by the stress-free layers, so that the patch tends to evolve

as a vortex dipole whose δd increases with time as t1/3 (Voropayev et al., 1991,

2008). On the other hand, when the vertical confinement has little effect on the

vertical growth (i.e. as for Cases C0p2 and C0p5), the size of the patch grows

as δd ∼ t1/4, similar to that of a vortex ring (see, e.g., Glezer & Coles, 1990).

The late-time histories show that the weakly confined case grows slower than the

strongly confined ones do.

As shown in Equation (5.7), the initial size of the patch is governed by the

forcing period ∆tf and the forcing intensity J . This led us to use J and ∆tf

to normalise the size of the patch. The non-dimensional size δ∗d is written as
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Figure 5.11: Histories of (a) size of the patch δd and (b) non-dimensional

size δ∗d = δd/J
1/4∆t

1/2
f : ⋄ Case C6p0; � Case C4p0; ◦ Case C2p5; △ Case

C2p0; ⊲ Case C1p5; I Case C1p0; ⊳ Case C0p5; ▽ Case C0p2.

δ∗d = δd/J
1/4∆t

1/2
f . It can be seen from Figure 5.11(b) that δ∗d from all cases tend

to collapse onto one curve up to t/∆tf ≈ 3. This confirms that the initial size

of the turbulent patch which occurs at t/∆tf ≈ O(1) is universal when scaled

by J1/4∆t
1/2
f , and also supports the physical interpretation of the confinement

number. After this time, the effect of the vertical confinement begins to affect the

development of the patch, leading to the different growth rate of δd at late time,

as discussed earlier.

Figure 5.12 depicts the evolution of the surface signatures from different con-

finement numbers. At each time, different contour values of the non-dimensional

vertical vorticity, ω∗
z = ωz∆tf , is used to indicate the surface signatures in order

to make the pictures more informative since the vortex decays with time. For rela-

tively low duration and intensity of the forcing (e.g. Case C0p2, see Figure 5.12a),

no significant signature appears at the free surface at the early times (t/∆tf 6 10).

Later (t/∆tf = 20), the eddy signature is observed at the free surface but is not

well structured. At intermediate value of C (Case C1p0, Figure 5.12b), the tur-

bulent patch rapidly penetrates to the surface. The horizontal size of the patch

increases with time but it does not transform into a vortex dipole due to the

fact that the confinement number is not high enough. When C is higher than

2, the eddy signature is clearly detectable at the beginning (t/∆tf = 4) and is

still turbulent. At larger times, the small-scale turbulence decays, while the large-

scale coherent structure still remains and transforms into a dipole, as illustrated

in Figures 5.12(c) and 5.12(d). This indicates that a dipole only forms when C is

greater than about unity, even though a surface signature seems to be seen for all

the values of C considered here.
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Figure 5.12: Contours of ωz, normalised by ∆tf , at the free surface show-
ing the penetration of the signature at (left) t/∆tf = 4, (middle) t/∆tf = 10
and (right) t/∆tf = 20: (a) Case C0p2, (b) Case C1p0, (c) Case C2p0, (d)
Case C6p0. Blue (light) and red (dark) patches show negative and positive
vorticity, respectively.
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Figure 5.13: Decay of maximum value of non-dimensional vertical vortic-
ity, ω∗

z,max = ωz,max∆tf , at the free surface: ⋄ Case C6p0; � Case C4p0; ◦
Case C2p5; △ Case C2p0; ⊲ Case C1p5; I Case C1p0; ⊳ Case C0p5; ▽ Case
C0p2.

Figure 5.13 displays histories of the maximum value of the non-dimensional

vertical vorticity, ω∗
z,max = ωz,max∆tf , at the free surface. It can be seen that

the turbulent patch for higher confinement number requires shorter time to arrive

at the free surface. Once the patch hits the free surface, the vortex filaments

reconnect with their image, such that the maximum value of the vorticity at the

free surface of each vortex line equals to that within the domain leading to the

dramatic rise in the vertical vorticity at the free surface. Since the momentum

patch is turbulent, some vortex lines that have lower ω∗
z,max might encounter the

free surface earlier than the others. This results in a staircase-like increase of

ω∗
z,max, which can be observed from, for example, Cases C1p0, C1p5 and C4p0.

After ω∗
z,max from each case has reached its maximum value, over time, it tends

to collapse onto a single profile and decrease with time. We observed that ω∗
z,max

of the eddy signature in the turbulent regime (i.e. t/∆tf < 10) decays faster than

that of a laminar eddy, in which ω∗
z,max decreases as t−1 (Voropayev et al., 2007,

2008). Once most of the small-scale structures disappear, the decay rate of ω∗
z,max

reduces to At−1, with A ≈ 47.57. The value of A from the present calculations is

comparable to that of Case JS3a, in which a Gaussian force is used to generate

the momentum patch at the same Reynolds number, but with different impulse

(A = 41.52; see Tables 4.1 and 4.2). This implies that A is independent of the

type of the body force and the impulse of the flow, as suggested by Voropayev

et al. (2008).



5. Effect of Confinement Number 92

(a)

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C

[ω
z
,
m
a
x
(t
)]
m
a
x

(b)

0 2 4 6 8
0

100

200

300

400

500

600

700

800

C

[ω
z
,
m
a
x
(t
)]
m
a
x

Figure 5.14: Surface signature contrast [ωz,max(t)]max versus the confine-
ment number C. (a) Voropayev et al.’s (2007) data: ◦ PIV measurements;

Voropayev et al.’s (2007) phenomenological model [ωz,max(t)]max =

0.065
[
1− e2(0.65−C)

]
. (b) DNS results: � disk-like body force (J = 1/16

and h = 0.3 for all simulations; cf. Table 5.1); u Gaussian body force at
the same Reynolds number but with different forcing intensity and domain
depth (J = 1/4, ∆tf = 4, h = 1).

In order to determine the relationship between the intensity of a surface

signature and the confinement number C, we follow Voropayev et al. (2007),

who performed Particle Image Velocimetry (PIV) measurements in a two-layer

fluid at Rej = O (10000), and use the maximum value of ωz,max(t), denoted by

[ωz,max(t)]max, to represent the surface signature contrast. Note that ωz,max by

itself can be used to represent the contrast number of Voropayev et al. (2007)

(cf. Equation 1.10) since their rms background vorticity was approximately the

same in all of their runs. A plot of the surface signature contrast [ωz,max(t)]max as

a function of the confinement number C is illustrated in Figure 5.14. Unlike Voro-

payev et al.’s (2007) finding (Figure 5.14a), the relationship between our signature

contrast and the confinement number cannot be characterised by an exponential

profile, especially when the data from the Gaussian-force simulation, at the same

Reynolds number but with different forcing intensity J and domain depth h, is

included (Figure 5.14b). The data from the Gaussian-force simulation lies outside

the rest, indicating that no relationship between our [ωz,max(t)]max and C can be

characterised.

The collapse of a set of our data can be obtained when normalising [ωz,max(t)]max

with the forcing duration ∆tf as illustrated in Figure 5.15(b). This normalisation
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Figure 5.15: Maximum value of ω∗
z,max(t) = ωz,max(t)∆tf versus the con-

finement number C. (a) Voropayev et al.’s (2007) PIV data. (b) DNS
results: � disk-like body force (J = 1/16 and h = 0.3 for all simulations;
cf. Table 5.1); u Gaussian body force at the same Reynolds number but with
different forcing intensity and domain depth (J = 1/4, ∆tf = 4, h = 1);[

ω∗
z,max(t)

]
max

= 275.0028C − 108.5455.

yields a linear relationship between the confinement number and the surface sig-

nature contrast. A curve fit to this relationship is

[
ω∗

z,max(t)
]
max

= 275.0028C − 108.5455 . (5.21)

In contrast to our observation, Figure 5.15(a) shows that the data from Voro-

payev et al.’s (2007) PIV measurements do not collapse when normalised by ∆tf

particularly once C is higher than 2, and the amplitude of their
[
ω∗
z,max(t)

]
max

is

much lower (about 1600 times). These discrepancies occur presumably because

the small-scale turbulent eddies at the free surface in Voropayev et al.’s (2007)

experiments are smoothed out due to the low-pass filtering effect of an interroga-

tion window (e.g. see Willert & Gharib, 1991; Eggels et al., 1994). To verify this

assumption, we applied low-pass filters to our vertical vorticity at the free surface.

Three types of filters are chosen, which are the nth-order low-pass filter Gn, the

Gaussian filter Gg and the sharp spectral filter Gs. The filter functions in Fourier

space are defined as

Ĝn (κx, κy) =
1

1 + (κ/κc)
n , (5.22)

Ĝg (κx, κy) = exp

[
−κ

2

κ2c

]
, (5.23)

Ĝs (κx, κy) =
1

2
erfc

(
κ− κc
0.01κc

)
, (5.24)
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where κx and κy are respectively the wavenumbers in the streamwise and lateral

directions, κ =
√
κ2x + κ2y and κc is the cutoff wavenumber.

Figure 5.16(a) depicts the effect of the low-pass filters on the development

of the maximum amplitude of the vertical vorticity. It can be seen that all the

low-pass filters used here decrease the maximum amplitude of ω∗
z,max(t) and delay

the vorticity peak. In addition, they also reduce both the growth and the decay

rates (the development before and after the peak time, respectively) of ω∗
z,max.

The peak value and the decay rate depend on the level of the cutoff wavenumber

κc and are roughly identical at the same level of κc. On the other hand, different

growth rates are observed when the cutoff wavenumber is lower than a certain value

(i.e. κc ≈ 10). We then compared the evolution of our filtered ω∗
z,max, obtained

from using the fifth-order filter with κc = 5, with the PIV data for a range of

C of Voropayev et al. (2007). Note that we adapted figure 5 of Voropayev et al.

(2007), which shows a plot of their contrast number as a function of time, to

obtain histories of their ω∗
z,max. As can be seen from Figure 5.16(b), the filtered

DNS result is in reasonable agreement with the PIV data.

The effect of a low-pass filter on the small-scale eddies at the free surface

can clearly be seen from a contour plot of the filtered vertical vorticity, where

the fifth-order filter with κc = 5 was employed. As shown in Figure 5.17(b),

all the small-scale turbulent eddies (which can be observed from the unfiltered

vorticity, displayed in the left column of Figure 5.12c) are smeared out by the

filter, leading to only the appearance of a large-scale counter-rotating vortex pair

at the free surface. The low-pass filter gives a surface signature very similar to

that observed in Voropayev et al.’s (2007) experiments, in which only a vortex

dipole appeared at the free surface without any small-scale turbulence although

their Reynolds number for this case is approximately 34 times higher than ours (see

Figure 5.17a). This suggests that the intensity of the surface signature is set by the

small-scale turbulence when the confinement number is strong, and confirms the

linear relationship between the surface signature contrast (when it is represented

by the non-dimensional vertical vorticity) and the confinement number.

Even though the point measurement (maximum value of ω∗
z,max(t)) can be

used to represent the surface signature intensity, this method might not be ac-

curate enough when the surface signature is turbulent. We therefore introduce

the intensity of the surface signature in terms of the maximum amplitude of an
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Figure 5.16: (a) Effect of low-pass filters on the evolution of the maximum
value of the vertical vorticity of Case C2p0. Symbols denote types of filters
used, while line styles indicate cutoff wavenumber κc: △ Unfiltered data;
◦ sharp spectral filter; ⋄ Gaussian filter; � tenth-order filter; ▽ fifth-order
filter; κc = 10; κc = 5; κc = 2. (b) History of the maximum
amplitude of the filtered vertical vorticity (using fifth-order filter with κc =
5) from the present DNS at C = 2.0 (open symbol ▽) compared with the PIV
data in a range of C of Voropayev et al. (2007) (filled symbol: � C = 5.3; H
C = 2.8; H C = 2.0; • C = 1.7; u C = 1.1; N C = 1.0).

(a) (b)

 

 

0 1 2 3

−1.2

−0.6

0

0.6

1.2

−0.12

−0.06

  0

  0.06

  0.12

x

y

Figure 5.17: Contour of (filtered) vertical vorticity ωz at the free surface
at C = 2.0: (a) Voropayev et al.’s (2007) PIV measurement at t/∆tf = 3.33
and Rej = 42000 (their run no. 21); (b) Filtered DNS data of Case C2p0
using a fifth-order low-pass filter with κc = 5 at t/∆tf = 4 and Rej = 1250.
Vorticity in both pictures is in the range ωz∆tf = ±0.12. The PIV grid

spacing is about 0.12 metres (corresponding to 0.34J1/4∆t
1/2
f ), while the

filter used decreases the DNS resolution to be similar to using the grid

spacing of approximately 0.13L (or about 0.3J1/4∆t
1/2
f ).
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Figure 5.18: Histories of non-dimensional eddy strength ΓS/J
1/2 at the

free surface: ⋄ Case C6p0; � Case C4p0; ◦ Case C2p5; △ Case C2p0; ⊲ Case
C1p5; I Case C1p0; ⊳ Case C0p5; ▽ Case C0p2.

integral parameter that depicts the strength of the surface eddy, written as

ΓS =
1

2

∫
|ωz| dx dy . (5.25)

Although this integral quantity becomes identical to the circulation of the surface

dipolar eddy at late time when all the small-scale turbulence decays, it overesti-

mates the circulation at the early time due to the contribution of the opposite-sign

small-scale turbulent eddies. An advantage of using this definition is that it can

correctly estimate the strength of the surface eddy when the eddy propagates away

from the centreline.

Histories of the surface eddy strength ΓS, normalised by the forcing intensity

J , from different values of the confinement number are displayed in Figure 5.18.

The evolution of the eddy strength is similar to that of the maximum value of

the vertical vorticity except that the eddy strength at the free surface does not

collapse when scaled by J . From dimensional arguments, the decay of ΓS can be

written in terms of the eddy size δd and the maximum amplitude of the vertical

vorticity ωz,max as

ΓS ∼ ωz,maxδ
2
d . (5.26)

For a laminar dipole, δd increases with time as ∼ t1/3, while ωz,max varies as t−1

(Voropayev et al., 2008). Substituting these power laws into Equation (5.26) yields

ΓS ∼ t−1/3 . (5.27)
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Figure 5.19: Peak value of the non-dimensional surface signature strength
Γ

∗

S = ΓS/J
1/2 versus the confinement number C: � disk-like body force

(J = 1/16 and h = 0.3 for all simulations; cf. Table 5.1); u Gaussian body
force at the same Reynolds number but with different forcing intensity and
domain depth (J = 1/4, ∆tf = 4, h = 1);

[
Γ

∗

S(t)
]
max

= 1.8129C.

It is found that the strength of the surface eddy at late time for all cases decreases

close to t−1/3, except for Case C0p2 for which the eddy strength is approximately

constant, presumably because the surface eddy for this case is not yet well organ-

ised (cf. Figure 5.12a).

The relationship between the peak value of the non-dimensional surface sig-

nature strength Γ
∗

S = ΓSJ
−1/2 and the confinement number C is displayed in

Figure 5.19. The data, including the Gaussian-force simulation, show that the

maximum value of Γ
∗

S increases linearly with increasing confinement number, ap-

proximated as [
Γ

∗

S(t)
]
max

= 1.8129C . (5.28)

Combining Equations (5.21) and (5.28) also yields the linear relationship between

[ΓS(t)]max and [ωz,max(t)]max, as

[ΓS(t)]max ∼ [ωz,max(t)]max J
1/2∆tf . (5.29)

Note that Equation (5.29) also supports the dimensional argument used to esti-

mate the decay rate of the eddy strength (Equations 5.26 – 5.27) since the initial

size of the turbulent patch that occurs at t/∆tf ≈ O(1), denoted by δd,0, are set

by J and ∆tf (cf. Figure 5.11b), such that J1/2∆tf ∼ δ2d,0.
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5.5 Chapter Summary

Numerical simulations of the effect of the confinement number on the evolution

of impulsively generated turbulent patches, induced by an external disk-like body

force, have been performed using DNS. The range of the confinement numbers

considered here represents the development of the patch in both deep and shallow

layers.

Before reaching the free surface, the momentum patches for all cases consist

of a vortex ring followed by a trailing jet, since here the formation number is quite

large. The momentum patch undergoes transition to turbulence by a Widnall-like

instability of the leading ring, although the development of the Kelvin–Helmholtz

instability arising in the trailing jet was also observed. The highest growth rate

of the azimuthal modal energies of the elongated momentum patch is in close

agreement with the estimated growth rate of a viscous vortex ring proposed by

Shariff et al. (1994).

Nondimensionalising the size of the patch by the forcing intensity and duration

leads to a universal history profiles. This confirms that the confinement number

can be used to predict the characteristics of the eddy signature at the free surface.

When the confinement number is strong enough, the non-deformable stress-free top

and bottom layers suppress the vertical growth of the patch leading to, in some

cases, the appearance of a quasi-two-dimensional counter-rotating vortex. The

patches for all cases penetrate to the free surface but with different intensity and

the time required, dependent on the confinement number. For values of C lower

than about 1, the surface eddy is not yet in the form of a dipole and might not be

detectable since its intensity is relatively low. The contrast (ωz,max) and strength

(ΓS) of the surface eddy decay according to estimated scaling laws, while both of

their maximum amplitude (when normalised by J and ∆tf ) increase linearly with

an increase in confinement number.



Chapter 6

Concluding Remarks

6.1 Conclusions

A major concern for a manoeuvring self-propelled vehicle is the possible occurrence

of a large quasi-planar counter-rotating vortical structure when the vehicle changes

its speed or direction. Determining the conditions under which such a coherent

structure can appear and understanding its dynamics were the principal motivation

of this dissertation. Specifically, the focus is on investigating the evolution of a

turbulent patch induced by a submerged self-propelled body starting from rest in

the upper ocean, where the patch may be transformed to a pancake-like eddy by

the vertical confinement of the free surfaces.

At the beginning of this project, the numerical tools used to represent the

manoeuvring body were developed. An accelerating motion of a self-propelled

body was successfully emulated by the combination of an immersed boundary

(IB) method and an external body force. These tools were employed in an ex-

isting in-house DNS code, CgLES, and were separately validated (see § 3). An

external body force was validated by performing two-dimensional finite- and zero-

momentum wakes. It was found that when the body force is used as a drag in

a 2D simulation, it successfully generates a large-scale two-dimensional structure

(a Kármán vortex street). On the other hand, the body force produces a wake

with fine-scale turbulence, which requires many more grid points to fully cap-

ture, for a three-dimensional simulation when the forcing magnitude is strong

(i.e. JD/0.5πσ
2U 2

∞ > 1). To eliminate this problem, an immersed boundary

method was used to represent a drag from a virtual body. The IB approach

was validated with flow past a sphere in a laminar, unsteady planar symmetric

regime. Even though only one grid point was placed within the boundary layer of

the virtual sphere, the IB approach used provides satisfactory comparison for the

Strouhal number, drag and lateral force coefficients.

99
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An accelerating motion of a self-propelled body was first idealised by an impul-

sive jet, represented by applying an impulsive body force in the positive streamwise

direction, to generate a turbulent patch and to study the dynamics of a late-time

pancake-like eddy (see § 4). The numerical experiments were conducted in a shal-

low layer corresponding to the confinement number C = 2 for which a vortex

dipole was experimentally observed, at different Reynolds numbers. At this value

of C the vertical growth of a momentum patch was found to be limited by the non-

deformable stress-free top and bottom layers yielding a dipole at the free surface. A

dipole was found to persist for a longer time compared to an axisymmetric toroidal

vortex in a deep layer. A coherent structure behind the manoeuvring body was

then investigated in a shallow layer of the same depth. The vortex penetrated to

the free surface and produced a wake signature which was eventually transformed

into a dipole. At later time, the dipole vortices from both initialisations (impulsive

jet and manoeuvring body) were found to reach a self-similar state and follow the

predicted scaling laws, in spite of possessing a Reynolds-number dependence.

The effect of the confinement number on the development of a momentum

patch induced by an impulsive jet was examined in § 5. During the forcing period,

the patch appeared in the form of a leading vortex ring together with a trailing

jet and broke down to turbulence due to an instability very similar to the Widnall

instability before appearing at the free surface. Data for the size of the patch

were found to collapse when normalised by the forcing duration ∆tf and forcing

intensity J . This confirms that the initial shapes of the patch are controlled by

J and ∆tf and the confinement number can be used to quantify the intensity

and formation of the surface eddy signature. Increasing the confinement number

decreases the time required for the patch to hit the free surface. Since the vorticity

of the the patch decays inversely proportional to time, the drop in the time required

thus results in an increase in the maximum amplitude of the surface signature

contrast and the surface eddy strength. Even though the eddy signature was

observed to appear at the free surface for all the confinement numbers considered

here, the formation of a dipole was found for values of C greater than about 1.

For lower values of C, the eddy signature possesses relatively low contrast and

strength so that it might be more difficult to be detected, e.g., by remote sensing

in presence of background noise.
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6.2 Recommendations for Future Work

In future work it would be of interest to investigate the evolution of the momentum

patch in more realistic conditions. One of these conditions is to consider the effect

of background turbulence in the upper ocean. Another situation of interest is

the influence of a surface wave. If strong enough, these conditions could alter

the development and formation of the eddy signature. For example, background

turbulence is expected to increase the decay rate of the patch, while a surface

wave is believed to affect the vortex reconnection process and thus influences the

formation and intensity of the surface eddy.

Since this work focused only on a large-scale coherent structure behind a self-

propelled body starting from rest, another possible work that can be considered

is to investigate the evolution of a wake eddy produced when the body accelerates

again after moving at constant speed. The dynamics of the latter momentum

patch might be completely different from the starting vortex because the latter

coherent structure will interact with a frontal momentumless wake generated when

the body moves at constant velocity.
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Direct numerical simulation (DNS) is used to investigate the development of a turbulent
wake created by an impulsively accelerating axisymmetric self-propelled body below a
non-deformable free surface. The manoeuvring body is represented by the combination
of an immersed boundary method and a body force. The Reynolds number based
on either the diameter of the virtual body or the jet forcing intensity is relatively high
(O (1000)), corresponding to the fully turbulent case. The vertical growth of the coherent
structure behind the body is restricted by the upper and lower stress-free layers, and the
wake signatures are observed to penetrate to the free surface. The late-time behaviour
of the dipole induced due to vertical confinement can be predicted by scaling laws, also
relevant to a stratified fluid.

Keywords: direct numerical simulation; manoeuvring-body wake; vortex dipole

1. Introduction

Turbulent wakes behind bluff bodies have been investigated both experimentally and nu-
merically by many researchers in order to obtain better understanding of their dynamics.
However, almost all of the studies have focused on wakes behind towed or self-propelled
objects moving at constant velocity. When a body is towed, it imparts momentum, equal to
the drag of the body, to the wake. In contrast, for a constant-speed self-propelled body, the
drag is cancelled by the thrust, leading to a zero-momentum wake.

In practice, a submerged vehicle leaves a finite-momentum wake when it accelerates
or changes direction, and a momentumless wake only when it moves at constant speed
[1]. A manoeuvring-body wake is of interest because it can introduce dynamics that are
absent from the constant-velocity case, especially when the wake is influenced by stable
stratification or by the presence of an adjacent free surface. For example, dipole vortices
produced by the interaction of manoeuvring-body wakes with either stable background
density stratification or a free surface can be observed in geophysical flows (see [2–4]).
The practical importance of dipole vortices is that they are very large, compared with the
size of the body, and long-lived. Voropayev et al. [5] estimate that a coherent kilometre-
scale vortical structure that persists for the order of days can be observed behind a typical
submarine manoeuvre in the ocean. Moreover, due to the self-induced motion of the dipole
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vortex, it can transport mass, momentum and other scalar properties, such as heat and
salinity.

Generally, when momentum is imparted into a flow, it leads to an isolated region
that possesses a high concentration of vorticity and non-zero net linear momentum, often
referred to as a turbulent blob. In an unbounded homogeneous fluid, the turbulent blob
is fully three-dimensional (3D). While the blob is propagating away from its origin, its
vertical and horizontal sizes increase due to the entrainment process of the surrounding
fluid and the blob eventually transforms into a toroidal vortical structure [6]. In contrast,
when the vertical growth of the blob is confined (e.g. by buoyancy force or flow geometry),
only its horizontal size can expand due to lateral entrainment, which leads to a quasi-planar
counter-rotating dipole vortex structure.

The formation and evolution of vortex dipoles have been widely studied in a linearly
stratified fluid (e.g. see [7–9]), and recently extended to the case of shallow water above
a solid no-slip surface, for which the vertical size of a turbulent blob is suppressed by the
flow geometry [3, 10, 11]. It was found from the experimental study of Sous et al. [3] that
the condition in which the momentum disturbance can coherently penetrate upward and
leave its signature at the free surface depends on the confinement numberC = J 1/2�tf /h

2,
where J is the forcing intensity, h is the depth of the fluid domain and �tf is the forcing
interval. The formation and evolution of the vortex dipoles formed in shallow water are
similar to those in a stratified fluid except that 3D small-scale turbulence appears at the
dipole front. Sous et al. [3] stated that the vertical motion at the frontal region might appear
due to the effect of bottom friction.

Voropayev et al. [4] performed experiments in a two-layer fluid, where unstratified water
was placed above a layer of salt water, in order to reduce the effect of the bottom surface.
Their flow geometry is similar to the real upper ocean (depth 50–100 m), in which denser
water rests underneath a nominally constant density gradient. They investigated the intensity
of the surface signature in terms of the contrast number Cn = ωz,max/ωz, rms, defined as the
ratio of the maximum vertical vorticity ωz,max of the dipole vortex to the root-mean-square
value of the background vertical vorticity ωz, rms, and also defined a relationship between
the confinement number and the intensity of the surface signature.

The aim of this work is to investigate the evolution of the impulsively submerged
momentum disturbance in the small-scale upper ocean, which is mimicked by stress-free
top and bottom layers. Two different types of momentum sources are chosen to investigate
the self-similarity of a dipolar vortex created by: (1) an impulsive jet and (2) an accelerating
motion of a self-propelled body.

2. Numerical approach

Since the self-propelled body of interest will start from rest, the calculation is performed
in a moving reference frame, in order to maintain the location of the body within the
computational box. The computational domain for the spatially developing wake is shown
in Figure 1. The non-dimensional continuity and incompressible Navier–Stokes equations
in a non-inertial moving reference frame can be written in Cartesian tensor notation as

∂ui

∂xi
= 0 , (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Reref

∂2ui

∂xj ∂xj
− dU

dt
δ1i + fi , (2)
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U∞ = U (t)

x

z

Sphere, diameter D,

velocity U , (Bx, By , Bz)

Thrust, forcing area 2σ,

(Tx, 0, 0)

Figure 1. Schematic sketch of geometry of a manoeuvring-body wake.

where xi = (x, y, z) and ui = (u, v,w) are, respectively, Cartesian coordinates and the
corresponding velocity vector in the streamwise, lateral and vertical directions; t denotes
the time;p is the kinematic pressure;U is the velocity of the virtual (wake-generating) body;
δij is the Kronecker delta and fi is the external body forces due to the virtual body surface
B = (Bx, By, Bz) and/or thrust T = (Tx, 0, 0). The non-dimensional reference Reynolds
number Reref = UL/ν is written in terms of the reference length L and velocity scale U
(which both vary from flow to flow, as illustrated below) and ν is the kinematic viscosity.

The Navier–Stokes equations are advanced in time with the second-order explicit
Adams–Bashforth scheme. A second-order central finite-difference scheme is used to dis-
cretise the spatial derivatives on a staggered grid, where the velocity components are defined
at the cell faces, while the scalar quantity (pressure) is located in the cell centre. The conti-
nuity equation is imposed via a standard pressure-correction method. The resulting Poisson
equation for the pressure is solved using a parallel multigrid algorithm [12]. Inflow and
outflow boundary conditions are employed in the streamwise (x) direction. Additionally,
the uniform inflow velocity is set equal to the velocity of the virtual body and is updated
every time step. The body is placed midway between an idealised thermocline and a free
surface. Stress-free boundary conditions are specified at the top and bottom as an ideal-
isation of the (non-deformable) free surface and the top of a region of a stratified fluid.
Periodic conditions are specified in the lateral (y) direction.

In order to embed an axisymmetric body into a computational grid, an immersed
boundary technique is employed. The virtual body is mimicked by a set of Lagrangian
(virtual surface) points that do not coincide with the Eulerian (computational) points, as
shown in Figure 2. The boundary forceBi , which enforces the no-slip boundary condition on
the embedded body surface, is calculated directly at the Lagrangian points via a proportional
controller, with the proportional gain related to the time step size �t in such a way that
maximises gain while maintaining stability. The boundary force is then transformed into the
Eulerian (computational) points by using the three-point discrete delta function proposed
by Roma et al. [13].

We emulate the body manoeuvre by imposing a thrust fi = Ti = Txδ1i , which is
modelled as a jet from the body, as illustrated in Figure 1. The intensity of the thrust is
estimated as

JT = ujetsN
[
ujet − U (t)

]
, (3)

where ujet is the jet velocity, s is the area of the nozzle and N is a free parameter used to
adjust the jet Reynolds number and the confinement number. A 3D Gaussian function is
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4 W. Rojanaratanangkule et al.

Figure 2. Schemetic sketch showing the locations of the Lagrangian markers (•) and the computa-
tional points (�).

used to distribute the intensity of the thrust to the computational grids as

Tx = JT(
σ 2π

)3/2
exp

[
− (x − x0)2 + (y − y0)2 + (z− z0)2

σ 2

]
, (4)

where σ is the Gaussian semi-width, and x0, y0, z0 are the centre of the thrust. Note that
Equation (4) is determined such that JT is associated with the total integrated force, not its
maximum. The velocity of the body can be found via the balance of momentum between
a manoeuvring object and the total force acting on the fluid, with

Meff
dU

dt
= ρ (JT − JD) , (5)

where Meff is the sum of the actual and added/virtual mass, ρ is the fluid density (taken to
be constant) and JD is the intensity of the drag, which can be calculated from the volume
integral of the streamwise boundary force Bx . An explicit Euler method is used to update
U (t) at every time step.

3. Validation: 2D zero-momentum wakes

The strategy to impose a force doublet (drag of the body plus thrust) was validated by
performing a two-dimensional (2D) simulation of zero-momentum wakes. The results are
compared with both an analytical solution [14] and experimental results of Afanasyev and
Korabel [15], who used an electromagnetic force to create zero-momentum wakes in a
stratified fluid. For the validation, we used a 2D Gaussian function with a Gaussian semi-
width σ to distribute the thrust and drag forces. Here, the reference length L is taken as 5σ ,
while the reference velocity U is set to the free-stream velocity U∞. The drag is applied
slightly in front of the thrust. The thrust and drag forces are defined to be of equal magnitude
to generate a momentumless wake. The 2D domain size was 96 × 32, with 3072 × 1024
grid points in the streamwise and vertical directions, respectively. A uniform velocity of
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Figure 3. (a) Distribution of the streamwise velocity deficit along its axis of 2D zero-momentum
wake at �a = 1 and �ν = 50: Present, Theoretical solution [14]. (b) Strouhal number
versus �a : •, Present; �, Afanasyev and Korabel [15].

magnitude U∞ was specified at the inlet, while the velocity convective boundary condition
was applied at the outlet. Free-slip boundary conditions were specified in the vertical
direction. Figure 3(a) displays the distribution of the streamwise velocity deficit ud along the
axis of the flow for�a = J̃ /σU 2

∞ = 1 and�ν = J̃ /νU∞ = 50, where J̃ is the 2D forcing
intensity (specific force per unit area), compared with an analytical solution [14]. Away
from the expected near-field deviation (due to comparing finite versus singular dipoles), the
agreement is satisfactory. For a quantitative comparison with the laboratory experiment [15],
the shedding frequency fs was measured by performing a Fourier transform of the mean
value of vorticity at x = 5. The Strouhal number St = fsJ̃ /U

3
∞ versus �a is displayed in

Figure 3(b), showing that the numerical results are in good agreement with the experimental
data [15]. The vorticity distribution for �a = 11 and �ν = 230 is illustrated in Figure 4.
The vortex street in this simulation is visually similar to the mushroom-like vortex sheet
observed in Afanasyev and Korabel’s [15] experiment.

0 5 10 15 20 25 30
−4

−2

0

2

4

x

y

Figure 4. Contours of vorticity of 2D momentumless wake: �a = 11 and �ν = 230. Vorticity
varies from −0.2 ≤ ωz/|ωz|max ≤ 0.2. Blue and red patches show negative and positive vorticity,
respectively.
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6 W. Rojanaratanangkule et al.

4. Jet-induced dipole

We next investigate the evolution and formation of a turbulent blob generated by an impul-
sive jet as a test case. The jet acts over a short time interval �tf with a forcing intensity
JT , distributed to the computational grid via the 3D Gaussian function with semi-width σ .
We choose �tf = 4 and JT = 1/4, in units of L/U and U2L2, respectively, with L = 8σ

(such that U = J
1/2
T /4σ ). When the code described in Section 2 (Equations (1)–(5)) is used

to study the evolution of an impulsive jet, the boundary force from the virtual body Bi is
not active. Recall that the calculations are carried out in a stationary frame of reference. To
study the effect of a (non-deforming) free surface, we consider two distinct canonical flows:
an impulsive jet in a deep layer and another in a shallow layer. These are simulated for a
jet Reynolds number of 2000 based on the forcing intensity, i.e. Rej = J

1/2
T /ν. Free-slip

boundary conditions are applied in the vertical direction for the jet in both deep and shallow
layers, while the lateral direction is assumed to be periodic. The main difference between
these two cases is that the vertical growth of the vortical structure created by the jet in a
deep layer is not confined by the stress-free boundaries. The number of grid cells and the
domain size for both cases, labelled as Cases JD and JS1, respectively, are given in Table 1.
For the shallow-layer case, the forcing interval and the height of the computational domain
were selected to correspond to the confinement number C = 2, for which the vortex dipole
has been observed at the free surface [4]. Note that the lateral domain width Ly for all
cases in this section was chosen to be at least 2.7 times larger than the maximum lateral
size 	y of the coherent structure (see Equation (10) below). That this value is sufficient is
implied by the agreement of the dipole characteristics for Cases JS3a and JS3LD (which
is equivalent to JS3a, apart from using Ly that is twice as large); see Figure 11. However,
since the length of the initial momentum-containing region is relatively large, some of the
pre-dipole dynamics may be influenced by the lateral domain size. This will be investigated
in future studies.

In order to determine the evolution of submersed, impulsive momentum source, the
characteristics of the vortical structure, i.e. the dipole propagation velocity and the dipole
size, are defined in terms of the integral parameters proposed for vortex-ring geometry by
Saffman [16]. The dipole size δd and the dipole centroid Xd = (Xd, Yd, Zd ) are defined
using the first moment of enstrophy via

δd = 2




∫
r|ω|2 dx dy dz , (6)

Xd = 1




∫
x |ω|2 dx dy dz , (7)

where r =
√
y2 + z2, |ω|2 = ω2

x + ω2
y + ω2

z and 
 is the total integrated enstrophy, with


 =
∫

|ω|2 dx dy dz . (8)

Thus, the dipole propagation velocity Ud = (Ud, Vd,Wd ) can be obtained as

Ud = dXd

dt
. (9)
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Table 1. Impulsive-jet-induced wake run parameters.

Case Domain depth (H a) Rej Domain size Nx ×Ny ×Nz

JD Deep (4) 2000 −5 ≤ x ≤ 25, 960 × 256 × 256
−4 ≤ y ≤ 4,
−4 ≤ z ≤ 4

JS1 Shallow (0.5) 2000 −5 ≤ x ≤ 25, 960 × 512 × 32
−8 ≤ y ≤ 8,

−0.5 ≤ z ≤ 0.5

JS2 Shallow (0.5) 2000 −5 ≤ x ≤ 55, 1920 × 512 × 32
−8 ≤ y ≤ 8,

−0.5 ≤ z ≤ 0.5

JS3a Shallow (0.5) 1250 −5 ≤ x ≤ 55, 1920 × 512 × 32
−8 ≤ y ≤ 8,

−0.5 ≤ z ≤ 0.5

JS3bb Shallow (0.5) 1250 −5 ≤ x ≤ 55, 1920 × 512 × 32
−8 ≤ y ≤ 8,

−0.5 ≤ z ≤ 0.5

JS3LD Shallow (0.5) 1250 −5 ≤ x ≤ 55, 1920 × 1024 × 32
−16 ≤ y ≤ 16,
−0.5 ≤ z ≤ 0.5

JS4 Shallow (0.5) 625 −5 ≤ x ≤ 55, 1920 × 512 × 32
−8 ≤ y ≤ 8,

−0.5 ≤ z ≤ 0.5

aH is the vertical distance from the centreline of the forcing to the free surface.
bThis case is equivalent to Case JS3a except that low-level random noise is added to the initial condition.

We also define lateral 	y and vertical 	z length scales of the vortical structure as

	y = 2


y

∫
H
y|ω|2 dx dy dz , (10)

	z = 2


z

∫
H
z|ω|2 dx dy dz , (11)

where
y, z = ∫
H |ω|2 dx dy dz and the subscriptH denotes that the integration is performed

over the half-positive y- or z-domain. Note that Equations (6), (10) and (11) all require the
origin of the y- and z-axes systems to be in the centre of the computational domain. These
definitions give the dipole sizes that are roughly the distance between the vorticity extrema
(maximum and minimum) of the dipole [17].

A check of the spatial resolution was performed by comparing the difference between
the left- and the right-hand side of the volume-integrated instantaneous kinetic-energy
equation, written such that

dK

dt
= −εK − FK +

∫
uiTi dx dy dz , (12)

whereK is the volume-integrated kinetic energy, εK is the volume-integrated rate of kinetic
energy dissipation and FK is the net volume-integrated kinetic energy flux. This check
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8 W. Rojanaratanangkule et al.
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Figure 5. History of rate of change of volume-integrated kinetic energy K for Case JD (jet in deep
layer): dK/dt , −εK − FK + ∫

uiTi dx dy dz.

indicates whether the grid is fine enough to resolve the smallest turbulence scales. History
of the rate of change in the volume-integrated kinetic energy is provided in Figure 5.
Although the small-scale shear layers (associated with, e.g., the boundary layer on the
virtual body) generated by the jet impulse are not well captured before t ≈ 10, after this
time, the flow is fully resolved. For all seven cases in this section, the maximum difference
after 10 time units was less than 1.53% of the maximum value of dK/dt . The early under-
resolution (when the calculation was effectively a large-eddy simulation) corresponds to
ambiguity of the details of the geometry of the wake-generating body. Since it appears that a
vortex dipole is universal, i.e., a self-similar dipole can be obtained naturally from different
initial conditions and paths (see Figure 11), a full resolution of the early-time small-scale
turbulence is not necessary to obtain the correct long-time behaviour of the dipole.

The development of an impulsive jet in deep and shallow layers is shown in Figure 6 by
the second invariant of the velocity gradient tensorQ = −(ui,juj,i)/2 (for details, see [18]).
After the relatively strong jet (Rej � 1) is imparted into the fluid, it generates a vortical
structure with azimuthal vorticity in the frontal region. The frontal region propagates away
from its origin with speed Ud , which is half the local fluid velocity behind the front [19].
Thus, the jet fluid merges into the vorticity front. At this stage, the ambient fluid is entrained
in the frontal region, resulting in increasing the sizes of the coherent structure. When the
vertical growth of the turbulent blob is not restricted (as for Case JD), the vertical and
horizontal sizes of the blob increase, while decreasing the propagation speed to conserve
momentum. With time, the turbulent blob transforms into a toroidal vortex, as shown in
Figure 6(e).

When the vertical growth of the turbulent blob is suppressed by the stress-free layers
(Case JS1), the frontal region can only expand horizontally due to lateral entrainment
(Figure 6(d)). A quasi-2D counter-rotating vortical structure eventually forms at late times,
as illustrated in Figure 6(f). A plot of the lateral and vertical vortex sizes (	y, 	z) versus
time for Cases JD and JS1 is displayed in Figure 7. The agreement of the 	y and 	z histories
for Case JD underlines the axisymmetric nature of the turbulent blob observed in Figures
6(a), 6(c) and 6(e), throughout the simulation (and indirectly validates the choices made for
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Figure 6. Top and side views (upper and lower part of each picture, respectively) of the vortical
structure in (left) a deep layer (Case JD) and (right) a shallow layer (Case JS1) at Rej = 2000 with
level Q = 2.5 × 10−4: (a, b) t = 10, (c, d) t = 50, (e, f) t = 250. Isosurfaces of Q are coloured by
vertical vorticity componemt ωz.
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Figure 7. Histories of the lateral (	y) and vertical (	z) vortex sizes normalised by the domain depth
for impulsive-jet flow in (a) a deep layer (Case JD) and (b) a shallow layer (Case JS1): 	y/h,

	z/h.

the sizes [and boundary condition] for the vertical and lateral domain). For Case JS1, the
	y and 	z histories imply that the turbulent blob is affected by the free-surface confinement
for t > 10 (see Figures 6(b), 6(d), and 6(f)).

The volume-integrated kinetic energy K of both cases is displayed in Figure 8. The
kinetic energy of the vortical structure resulting from the jet in a deep layer decreases faster
than the vortex suppressed by a free surface. This suggests that the toroidal vortex decays
more rapidly than the vortex dipole, which can be confirmed by the theoretical scaling
laws. Based on the ring and the dipole power laws, the volume-integrated kinetic energy
of the ring and the dipole decreases with time as t−3/4 and t−2/3, respectively. Note that
most of the kinetic energy of the flow is provided by the large-scale structures; hence, the

10
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−1

10
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K

t−3/4

t−2/3

Figure 8. History of the volume-integrated kinetic energy K: Case JD (deep layer),
Case JS1 (shallow layer).
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Figure 9. Contours of the vorticity at the free surface showing the penetration of the momentum
source created by an impulsive jet at Rej = 2000 (Case JS1): (a) t = 10, (b) t = 50, (c) t = 300.
Vorticity varies from −0.2 ≤ ωz/|ωz|max ≤ 0.2. Blue and red patches show negative and positive
vertical vorticity, respectively.

small scales observed from the ring at t = 250 (Figure 6(e)) do not have much effect on
the kinetic energy.

Figure 9 illustrates the signature of the momentum disturbance caused by an impulsive
jet. Initially, it can be seen from Figure 9(a) that the concentrated momentum disturbance
at the free surface does not form a vortex dipole. With time, the blob propagates away
from its origin, while increasing its horizontal size and decreasing its propagation speed,
transforming into a quasi-planar dipole, as displayed in Figure 9(c). This is consistent with
Voropayev et al.’s [4] prediction that a dipole will be visible on the free surface when the
confinement number (which for Case JS1 is 2) is greater than 2.2.

To study the self-similar behaviour of the dipole at late time, the simulation at Rej =
2000 was re-computed in a longer streamwise domain to avoid any effect of the outflow
boundary condition. The length of the streamwise domain was increased from Lx = 30
to Lx = 60, with a corresponding increase in the number of grid cells to Nx = 1920. In
addition, two more Reynolds numbers (Rej = 625 and 1250) were considered (see Table 1).
After the dipole is fully formed, Figure 10(a) shows that the intensity of the vertical vorticity
at the free surface reduces with time as ωz,max ∼ t−1. The temporal evolution of the dipole
propagation velocity Ud and the dipole size δd are illustrated in Figures 10(b) and 10(c),
respectively. The dipole propagation speed decreases with time asUd ∼ t−2/3, while its size
increases as δd ∼ t1/3. The power laws of the dipole in this simulation are the same as those
in the previous measurements in a linearly stratified fluid [7] and in a shallow layer [3, 4].
The dipole at a lower Reynolds number requires less time to achieve power-law behaviour.
For example, the dipole propagation velocity atRej = 625 starts to follow t−2/3 at t ≈ 150,
while about 500 and 1800 time units are required for the dipoles at Rej = 1250 and 2000,
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Figure 10. Histories of characteristics of jet-induced dipole: Rej = 2000 (Case JS2),
Rej = 1250 (Case JS3a), Rej = 625 (Case JS4). (a) Maximum vertical vorticity at the free
surface. (b) Dipole propagation velocity. (c) Dipole size.

respectively. It should be noted that the theoretical scaling laws are based on the idea of the
flow similarity and they satisfactorily describe the results of experiments and our numerical
simulations at intermediate asymptotic stage only – but they are not useful in describing
the whole flow evolution. Additionally, using only one realisation might not be enough to
obtain close agreement between DNS results and the theoretical scaling laws, especially
during the transformation process leading to a dipole. An ensemble of realisations is needed
to address this point.

To investigate the sensitivity of the intermediate-time behaviour (about 200 − 500 time
units; see Figure 11) to small changes in the initial conditions and domain size, Case JS3a
(jet-induced dipole at Rej = 1250) was repeated, first in the same computational domain
but with low-amplitude (maximum value of 10−8U) random seeding (Case JS3b), and again,
in a two times larger lateral domain (Case JS3LD). Note that the resolution is identical for
all three runs. Histories of the dipole characteristics from these three cases are illustrated
in Figure 11. Although their initial development is different, all three cases nevertheless
converge to very similar dipole flows. This suggests that the dipole is a robust 2D limit that
is relatively insensitive to the path taken during its development.
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Figure 11. Histories of characteristics of jet-induced dipole at Rej = 1250 from three different
realisations: Case JS3a, Case JS3b, Case JS3LD. (a) Maximum vertical vorticity
at the free surface. (b) Dipole propagation velocity. (c) Dipole size.

5. Manoeuvring-body wake

We limit attention here to wakes in a shallow layer of same depth used for Cases JS1–JS4.
In order to capture the entire process of a late wake eddy behind a manoeuvring body, the
simulation of a spatially developing wake needs to be performed in a very long domain,
which is computationally inefficient. To overcome the problem, the simulation is split into
two phases. The first phase of the simulation is concerned with the early-time behaviour
of the wake, including both the near-field and the starting vortex, while the final phase
contains only the late-time dipole behaviour (see Section 5.2).

5.1. Early-time behaviour

We select a sphere with diameterD as the manoeuvring body. The Reynolds number based
on the diameter and the terminal velocity Ut of the sphere is Reb = UtD/ν = 826. The
simulation is performed in the domain given by −5 ≤ x ≤ 30, −4 ≤ y ≤ 4 and −0.5 ≤
z ≤ 0.5, with 2240 × 512 × 64 grid cells. Here, the reference length L is 2.5D and the
reference velocity U is 2.05Ut .
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Figure 12. (a) Histories of the momentum flux, thrust, drag and speed of the body for
manoeuvring-body wake: F/Fmax, Thrust/Fmax, Drag/Fmax,
U/Ut . (b) History of the volume-integrated streamwise momentum flux: FM , ◦∫

(−∂u/∂t + Bx + Tx − dU/dt) dx dy dz. The simulation parameters for this case are Reb =
UtD/ν = 826, Rej = J 1/2/ν = 785 and C = J 1/2�tf /h

2 = 1.62.

At t = 0, the body accelerates from rest. The forcing time scale in Equation (5) was
chosen such that the density of the object associated withMeff is 552 times that of the fluid.
(Smaller values, corresponding to more physically relevant bodies, will be considered in
the future.) At this stage, the thrust is greater than the drag, leading to a momentum flux F
being transported to the fluid. After some time, the body reaches and maintains its terminal
speed. Histories of the momentum flux, the thrust, the drag and the velocity of the body are
displayed in Figure 12(a). The jet Reynolds number Rej and the confinement number C
for this case are 785 and 1.62, respectively. Note that we do not fully resolve the boundary
layers of the sphere because we assume that the dipole will eventually become self-similar,
such that the late-time characteristics of the dipole do not depend critically on the near-field
wake (supported by the evidence in Figure 11) and only a momentum flux imparted into
the fluid is important (compare comments following Equation (12)). Thus, it is necessary
to check if the net volume-integrated momentum flux FM , which is the difference between
the momentum, pressure and viscous fluxes at the inlet and outlet planes, is balanced by the
forces added to the Navier–Stokes equations. The streamwise momentum balance in the
non-inertial moving reference frame can be written such that

FM =
∫ (

−∂u
∂t

+ Bx + Tx − dU

dt

)
dx dy dz . (13)

A plot of the balance of the volume-integrated streamwise momentum flux versus time is
displayed in Figure 12(b), showing good agreement between the flux terms FM and the
external force. The difference is less than 0.11% of the maximum value of FM during the
acceleration period (t < 9), and less than 2 × 10−3% when the body moves at its terminal
speed. The adequacy of the spatial resolution was also checked in the same way as described
in Section 4. It was found that the error remaining after five time units was lower than 0.12%
of the maximum value of dK/dt .

The second invariant of the velocity gradient tensor Q is again used to visualise the
vortical structure of the manoeuvring-body wake, as displayed in Figure 13. It is found
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Figure 13. Top and side views (upper and lower part of each picture, respectively) of the vortical
structure of a manoeuvring-body wake with level Q = 2.5 × 10−4: (a) t = 5, (b) t = 10, (c) t = 20.
Isosurfaces of Q are coloured by vertical vorticity componemt ωz.
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Figure 14. The projected vortical structure with the window function at t = 20: (upper) top view,
(lower) side view.

that a large-scale vortical structure, resulting from the acceleration of the body, appears
in the late wake. The horizontal size of this vortical structure increases with time, due
to lateral entrainment, while the vertical growth is restricted by the top and bottom free-
slip walls. When the body is moving at its terminal velocity, a momentumless wake is
observed in the near-field region. The zero-momentum wake decays very quickly without
the formation of any coherent vortical structures. Note that the momentumless wake at the
early time is still laminar, despite the relatively high Reynolds number, because the near-
field wake is convectively unstable, i.e. has no strong reversed-flow region. Hence, this flow
compares to that over a streamlined body in which no flow separation occurs, and it thus
needs a very long time to become turbulent. If we were to use a high-intensity body force
(i.e. JD/0.5πσ 2Ut > 1) to represent the drag instead of the virtual body, the instability of
the near-field wake would change to an absolute-type instability and would thus quickly
break down to turbulence with a lot of small-scale eddies, which require very fine grid
resolutions to fully resolve them. We did not follow that strategy, since the objective of this
work is to study the characteristics of the late-wake eddy.

5.2. Late-time behaviour

After the body has reached its terminal velocity (at t = 20), the vorticity field was projected
to a smaller computation domain using a streamwise windowing function fw, defined as

fw(x) = 0.5 × (tanh (1.5x − 10) + 1) . (14)

The objective of using the window function is to remove a portion of the near-field wake
illustrated in Figure 14, allowing computational resources to capture only the far-field
wake portion of the flow. Note that the removal of the momentum source does not affect
the formation and evolution of the late-wake eddy because negligible net momentum is
imparted into the flow by the self-propelled body after it has achieved its terminal speed,
when the drag is practically cancelled by the thrust. In order to obtain the new velocity
field, we first solve the Poisson equation for the vector stream function ψ = (ψx,ψy, ψz)
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Figure 15. Top (upper) and side (lower) views of isosurfaces of Q showing the evolution of the
vortical structure generated by the manoeuvring body at late time: (a) t = 50, (b) t = 100, (c) t = 200.
Isosurfaces of Q are coloured by ωz and the surface level is Q = 2.5 × 10−6.

whose source term is the projected vorticity field ω = (ωx, ωy, ωz),

∇2ψ = −ω . (15)

The new velocity field can then be obtained directly by taking the curl of the vector stream
function as

u = ∇ × ψ . (16)

The simulation in this phase is first carried out in a domain of size 4 ≤ x ≤ 24, −8 ≤
y ≤ 8 and −0.5 ≤ z ≤ 0.5, with 1280 × 1024 × 64 grid cells. Since the coherent structure
propagates in the positive x-direction and could leave the domain if the domain length
in that direction is not long enough, we employ a PID (proportional–integral–derivative)
controller, described in Archer et al. [20], to keep the vortical structure at a fixed streamwise
location within the domain. This also significantly reduces the computational cost. The PID
controller locates the vortex dipole to within 10−4 of the desired location by 20 time
units. We allow the wake shed from the vortex to go out of the computational domain
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Figure 16. Contours of vorticity at free surface showing the penetration of wake signature of a
manoeuvring self-propelled body: (a) t = 30, (b) t = 100, (c) t = 200 (the computational domain is
regridded as described in Section 5.2), (d) t = 1000. Vorticity varies from −0.2 ≤ ωz/|ωz|max ≤ 0.2.
Blue and red patches show negative and positive vertical vorticity, respectively.

in the negative (outflow) x-direction (note that in the frame of reference attached to the
vortex/dipole structure, the inflow boundary is at x = 24 and the outflow at x = 4), since its
effect on the dipole dynamics is assumed to be negligible. At very late time, high resolution
is no longer required, since the global Reynolds number, based on the dipole translation
speed Ud and the dipole size δd , decreases as t−1/3 [5], but the size of the domain has to be
increased to capture the dipole as its lateral size increases. Thus, the computational domain
was expanded at t = 200, with −2 ≤ x ≤ 30, −16 ≤ y ≤ 16 and −0.5 ≤ z ≤ 0.5, and the
resolution reduced to 1024 × 1024 × 32 grid cells. Note that during the entire simulation,
the lateral domain width Ly is at least six times larger than the lateral size of the coherent
structure created by the manoeuvring body.
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Figure 17. Histories of characteristics of dipole induced by manoeuvring body. (a) Maximum vertical
vorticity at the free surface. (b) Dipole propagation velocity. (c) Dipole size. The computational
domain is regridded as described in Section 5.2 at t = 200.

The isosurfaces ofQ displayed in Figure 15 show the evolution of the vortical structure.
Only the horizontal size of the late-wake eddy can expand, yielding a coherent structure in
the form of two patches of opposite-signed vortices, as shown in Figure 15(c). The evolution
of the vortical structure at the free surface is displayed in Figure 16. Figure 16(a) shows
that the momentum disturbance penetrates upward and produces its signature at the free
surface at an early time. At this stage, the wake signature is not yet in the form of a dipole.
With time, the horizontal eddy grows as it propagates away from the body, and the wake

Table 2. Values of A.

Case Rej C A

JS2 2000 2.0 58.69

JS3a 1250 2.0 41.52

JS4 625 2.0 23.53

Manoeuvring body 785 1.62 21.28
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Figure 18. Histories of maximum vertical vorticity at the free surface: Case JS2 (Rej =
2000), Case JS3a (Rej = 1250), Case JS4 (Rej = 625), Manoeuvring body
(Rej = 785).

signature finally transforms into a vortex dipole (Figures 16(c) and 16(d)). The late-time
coherent eddy generated by the manoeuvring body is similar to the jet-induced dipole.

The late-time characteristics of the dipole created by the accelerating motion of the body
are given in Figure 17, along with the theoretical scaling laws. The comparison shows good
agreement between the DNS and the power laws. These scaling laws are obtained with the
assumption that the impulse of the dipole is conserved [7, 21]. Based on this assumption,
the decay of the vertical vorticity is inversely proportional to time, with

ωz,max = At−1 , (17)

where A is an empirical constant. The constant A was determined experimentally by
Voropayev et al. [21] to be A = 17. In order to check whether or not this constant is
universal, we computeA for all four cases (the jet-induced dipole atRej = 625, 1250, 2000
and the manoeuvring-body wake at Rej = 785) by finding the slope and the virtual origin
of ω−1

z,max = (t − t0)/A. The resulting values of A from our data are given in Table 2,
and a plot of ωz,max versus (t − t0) is displayed in Figure 18. Although the vorticity at
large times decays in a similar manner as 1/(t − t0), a Reynolds number dependence is
indicated, calling the universality of A into question. The consistency of the estimates for
A seen in Figure 11(a), which shows the decay of ωz,max from different realisations, yields
a unique value of A for the jet-induced dipole at Rej = 1250. Note that some difference
between numerical and experimental values of A may be expected because experiments
were conducted in a stratified fluid, while a confined homogeneous fluid is used in the
present simulations.
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6. Summary

The formation and evolution of the large-scale coherent structure produced by both an
impulsive jet and an accelerating self-propelled body have been examined using DNS. It
is found that when the vortex is constrained by the stress-free top and bottom layers, a
quasi-planar counter-rotating structure is formed. The vortex dipole persists for a longer
time than a typical toroidal vortex. The characteristics of the dipole vortices induced due to
vertical confinement are similar to those in a stratified fluid. Qualitatively similar pancake-
like vortices can be obtained via different initialisations, which support the assumptions
made about the self-similarity of a dipole. The expected scaling laws are satisfied, although
the dipoles appear to possess a Reynolds number dependence. Future work will investigate
how the formation of the submerged momentum disturbances is affected by the thickness of
the fluid domain. The ability of the confinement number to predict the effect of a submerged
coherent vortex on, e.g., the free surface will also be explored.
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