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The evolution of small disturbances to a horizontal interface separating two miscible liquids is examined. The
aim is to investigate how the interfacial mass transfer affects development of the Rayleigh-Taylor instability and
propagation and damping of the gravity-capillary waves. The phase-field approach is employed to model the
evolution of a miscible multiphase system. Within this approach, the interface is represented as a transitional
layer of small but nonzero thickness. The thermodynamics is defined by the Landau free energy function.
Initially, the liquid-liquid binary system is assumed to be out of its thermodynamic equilibrium, and hence,
the system undergoes a slow transition to its thermodynamic equilibrium. The linear stability of such a slowly
diffusing interface with respect to normal hydro- and thermodynamic perturbations is numerically studied. As a
result, we show that the eigenvalue spectra for a sharp immiscible interface can be successfully reproduced for
long-wave disturbances, with wavelengths exceeding the interface thickness. We also find that thin interfaces
are thermodynamically stable, while thicker interfaces, with the thicknesses exceeding an equilibrium value,
are thermodynamically unstable. The thermodynamic instability can make the configuration with a heavier
liquid lying underneath unstable. We also find that the interfacial mass transfer introduces additional dissipation,
reducing the growth rate of the Rayleigh-Taylor instability and increasing the dissipation of the gravity waves.
Moreover, mutual action of diffusive and viscous effects completely suppresses development of the modes with

shorter wavelengths.
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I. INTRODUCTION

We consider an evolution of small disturbances to a hori-
zontal flat interface separating two liquids of different densities
and viscosities. It is well known that for an immiscible
interface such a configuration is unstable and subject to the
Rayleigh-Taylor instability if a lower liquid is lighter. In the
opposite case of a heavier lower liquid, the configuration is
hydrodynamically stable and the small disturbances generate
gravity-capillary waves.

The stability of immiscible interfaces was first studied by
Rayleigh [1] who developed the linear stability theory for a
plane interface and derived the dispersion relation for normal
disturbances. This theoretical work was continued by a number
of researchers who examined viscosity and capillarity effects
on development of small perturbations [2—6], and the results
were experimentally confirmed in, e.g., [7-9]. The current
focus of the research community is shifted into investigation
of a nonlinear evolution of the Rayleigh-Taylor instability and
dynamics of waves of larger amplitudes [10,11].

In our work we examine the evolution of small disturbances
applied to an interface separating two miscible liquids. The
liquids represent the components of a binary mixture. We
assume that initially a binary mixture is out its thermodynamic
equilibrium, and its equilibration is driven by the diffusion
process and hydrodynamic flows. Development of the hy-
drodynamic modes usually occurs considerably faster as the
diffusive time scales are typically considerably larger than
the hydrodynamic time scales. This normally allows treating
the interface between the slowly miscible liquids as an
immiscible boundary. In the current work, we however aim to
investigate the role exerted by the interfacial diffusion on the
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stability of a phase boundary, and hence we would assume that
the diffusive and hydrodynamic time scales are comparable.
This in particular is true for the binary mixtures with stronger
diffusion, or for the systems with suppressed hydrodynamic
modes (e.g., very viscous liquids or the interfaces trapped in a
microcavity).

Technological applications involving diffusive and hydro-
dynamic processes in multiphase systems undergoing phase
transitions are ubiquitous. These include chemical vegetable
extraction [12], soil remediation [13,14], and enhanced oil re-
covery (miscible displacement of oil from porous media [15]),
which can be roughly reduced to the same physical process:
The porous volume is initially saturated by a liquid solute that
needs to be dissolved or displaced. It is known that miscible
liquids in confined geometries (within pores) are difficult to
mix up, and mixing (molecular co-exchange between solute
and solvent) is accelerated by hydrodynamic instabilities.
Hence, efficiencies of the whole processes are determined by
shapes of solute-solvent interfaces, rates of interfacial mass
transport, hydrodynamic flows near the interface, etc. The
similar fluid physics also defines a variety of other phenomena,
such as mixing of fresh and salt water or mixing of chemical
spills into sea water.

Despite the fundamental importance of the liquid-liquid
diffusion and of its seeming simplicity, its understanding is
still missing [16,17]. It is known that diffusion in liquid-liquid
binary mixtures differs from diffusion in gaseous mixtures
(where intermolecular forces are negligible), or from diffusion
of a minor impurity dissolved in a liquid solvent. The diffusion
in these cases is well defined by the classical Fick’s law,
with the diffusion flux being proportional to the concentration
gradient. The Fick’s law however does not properly define
the diffusion of liquid-liquid interfaces. Complexities of the
liquid-liquid interface diffusion stem from the difference in
intermolecular forces in the continua of the neighboring
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liquids leading to the capillary effects which define both the
interface morphology and the interfacial mass transfer (as for
the interfacial diffusion to occur, molecules need to possess
sufficient kinetic energy in order to overcome the interfacial
potential barrier created by the intermolecular forces). We
may say that, in immiscible liquids, the interfacial diffusion is
absent due to the strong capillary effects, while in miscible
systems the values of the surface tension coefficient are
considerably lower signifying the lower potential barriers. An
example is honey immersed in a cup of tea: Honey and water
are completely miscible, but honey remains clearly visible for
a long period of time, with the mass exchange between liquids
occurring through the liquid-liquid interface. Being however
agitated a honey-droplet interface keeps its shape indicating
that the miscible interface is endowed with the surface tension.
The concept of the dynamic surface tension between miscible
liquids was first discussed and later experimentally confirmed
in, e.g., Refs. [18-23].

It is generally accepted that the diffusion flux through
the liquid-liquid interface is to be defined by the generalized
Fick’s law, i.e., through the gradient of the chemical potential.
An equilibrium binary mixture is defined by the equal
chemical potentials in neighboring phases, and there is no
mass flux across the interface despite existence of the strong
concentration gradient across the phase boundary. By taking
a binary mixture out of its equilibrium (e.g., by a temperature
quench), one induces the interfacial mass flux, which intensity
is determined by the gradient of the chemical potential. Such a
description includes, in particular, the effects of barodiffusion
[24,25]. The ways how the diffusive flux is defined is a key
difference of the current paper from the other studies, which
were also focused on the stability of miscible interfaces but
defined the diffusion flux through the classical Fick’s law (for
instance, [26-28]).

Currently, there are several different approaches that can be
employed for tracking an evolving multiphase system. The
classical Laplace approach (also called the sharp-interface
approach) represents a phase boundary as an infinitely thin
surface of discontinuity endowed with some macroscopic
properties (such as surface tension). Two sets of equations are
separately solved within each phase and solutions are matched
by using the proper boundary conditions [6,29]. This approach
is well grounded as typically the thickness of a phase boundary
is just several molecular layers, i.e., zero for the macro-
scopic hydrodynamic theory. On the basis of this approach
the initial development of the Rayleigh-Taylor instability
and small-amplitude gravity-capillary waves at an interface
between two immiscible liquids were successfully described
[2-6,29]. The Laplace approach is however inconvenient and,
moreover, not feasible for the problems where the interface
shape experiences strong (e.g., waves of larger amplitude)
or topological changes (such as nonlinear development of
the Rayleigh-Taylor instability, breakup and coalescence of
droplets, etc.). To tackle similar problems new computational
approaches were developed; these are the volume-of-fluid [30],
level-set [31], and phase-field methods [32-36]. The core idea
of these numerical approaches is that the entire multiphase
system (all phases and the phase boundary) is represented
as a continuous medium, and its evolution is defined by
one set of governing equations. The volume-of-fluid and the
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level-set methods however introduce new scalar functions,
which are used to trace the interface position, on the basis of the
mathematical grounds. The phase-field method instead uses a
natural variable (e.g., concentration or density) for the same
purposes, so the governing equations are physics based and in
particular include the surface tension both in the momentum
and diffusion equations [24,25]. In the current work, we use
the phase-field approach to investigate the linear stability of a
miscible interface.

The phase-field method was already used to model the
Rayleigh-Taylor instability, and the gravity-capillary waves
at an immiscible interface [33-37]. For instance, the authors
of Refs. [35,37] proved through direct numerical simulations
that the classical observations, which were previously obtained
on the basis of the Laplace approach, could be successfully
reproduced. In [38], the classical dispersion relations for the
Rayleigh-Taylor instability were rederived from the phase-
field governing equations for immiscible interfaces in the limit
of vanishing interface thickness.

In [39—41], the thermodynamic stability of an equilibrium
interface (also called a kink solution) was studied. It was
found that such an interface is stable in respect to normal
perturbations with the decay rate growing as k. The linear
stability of the diffusive interfaces was examined in [42],
however, for the interfaces located within porous medium and
defined by the reduced equations for the porous medium. It
was shown that the diffusivity’s role is reduced to additional
dissipation. In the current work, we study the linear stability
of a horizontal phase boundary between two miscible liquids.

The present paper is organized as follows. The general
mathematical model for a miscible multiphase system is
defined in Sec. II. In the same section, we also define a basic
state and introduce small amplitude normal perturbations for
which the set of linearized amplitude equations is derived.
The full equations are solved in three stages. In Sec. III, the
diffusive terms are excluded, assuming that the Peclet number
is infinitely high, and the purely hydrodynamic perturbations
are examined. In the absence of diffusion the interface is
immiscible, but it is still represented as a layer of the finite
thickness. Attention is given to the limit of vanishing interface
thickness, in order to obtain the restrictions on the value of
the interface thickness which allow an accurate reproduction
of the sharp-interface eigenvalue spectrum. In Sec. IV, we
consider a system with the suppressed hydrodynamic pertur-
bations, with the evolution solely defined by the diffusion
equation. The aim is to understand the stability of the
interface itself towards purely thermodynamic perturbations.
Section V combines these studies by considering the stability
of miscible interfaces. Finally, Sec. VI presents the summary
and discussion of the obtained results.

II. MATHEMATICAL MODEL

A. Governing equations

We study the evolution of a binary mixture, with com-
ponents being called liquid 1 and liquid 2. The concentration
field C is introduced as a mass fraction of liquid 2 in a mixture.
Mixture density is a function of concentration, and the simplest
relation between density and concentration can be written for
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the so-called simple mixtures,

L_1=c,¢ 0
P P1 P2

Here p is the mixture density, while p; and p, are the
densities of pure liquids that constitute a mixture. This relation
is based on the assumption that changes in volume upon
mixing are negligible, which is a good approximation for many
mixtures [20]. We use an even simpler, linearized relation that
is however valid for almost all liquid-liquid binary mixtures
due to a small density contrast typical for such systems,

L1 — P2
p=pil-—9¢C), ¢=——.
02

2)

When pure components of a binary mixture are brought
into contact, molecules of the neighboring phases interdiffuse.
In thermodynamic equilibrium, achievable after usually a very
long time period, the mixture can become homogeneous with
the equilibrium concentration defined by the mass balance,
or stay heterogeneous with the equilibrium concentrations
C; >0 and C; < 1, defined by the phase diagram (at the
initial contact, C; = 0 and C, = 1). The phase diagrams can
be very different [43], but the primary focus of the current
work is on the binary mixtures with the upper critical solution
temperature (e.g., the mixture of isobotyric acid and water
[16,22]). If the mixture temperature is below the critical
value, then the equilibrium state can be heterogeneous or
homogeneous depending on the average concentration. If the
temperature is above the critical point, then the mixture is
always homogeneous in equilibrium. There are also binary
mixtures fully miscible under all thermodynamic conditions,
such as glycerol-water or soybean oil-hexane. We presume
that the evolution of the latter mixtures is similar to the
evolution of the mixture with the upper critical point at the
above-critical temperatures, and hence, the theory and results
of this work are also applicable to such mixtures miscible at
all conditions.

The evolution of a binary mixture is defined within the
framework of the phase-field approach, initiated by van der
Waals [44], Korteweg [45], and Cahn and Hilliard [46], who
first proposed to model the whole multiphase system as a
continuous medium and to define the free energy as a function
of concentration and concentration gradient (for an isothermal
system),

f=ﬁﬂn+§%0? 3)

Here f) is the classical part of the free energy, and the second
term takes into account the capillary effects. The amplitude of
the second term is defined by the so-called capillary parameter
€, which is so small that the second term can be neglected
everywhere except the places of large concentration gradients
that define the position of a phase boundary.

The classical part of the free energy function should define
the possible states of a binary mixture. In the current work we
are interested in the evolution of binary mixtures undergoing
phase transformations: Initially, a mixture is heterogeneous,
but ultimately could become homogeneous. To define f;, we
found convenient the classical Landau expression,

fo=a(C —C.)* +b(C — C.)", @)
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which was initially proposed as an approximation for a near
critical system. We however use this model to describe the
thermodynamic evolution of systems both near and far from the
critical point. That is, we treat expression (4) as a model with
two phenomenological parameters a and b, capable of defining
the binary system with both homogeneous and heterogeneous
equilibrium states. It can be shown that in the vicinity of the
critical point parameter a is proportional to (T — T), i.e.,
negative for the temperatures below the critical point and
positive for the above-critical temperatures. Parameter b is
always positive.

For further discussion, it will be convenient to change the
reference point for the concentration field as (C — C.) — C.
This new definition of concentration will be used in the rest of
the paper.

The full set of the Cahn-Hilliard-Navier-Stokes equations
that describe the thermo- and hydrodynamic evolution of
binary mixtures of two incompressible liquids was first derived
by Lowengrub and Truskinovsky [24]. One of the main
features of these equations is the quasicompressibility: The full
continuity equation should be used to define the evolution of
two incompressible liquids due to dependence of the mixture
density on concentration. This feature makes the numerical
solution of the full equations hardly feasible. It was later
shown that the full Cahn-Hilliard-Navier-Stokes equations
could be simplified on the basis of the multiple-scale method
by separating fast quasiacoustic processes and slow diffusive
and convective processes. So, it was shown that the slow
evolution of binary mixtures is defined by the Boussinesq
approximation [25], which is adopted for the current work.

The governing equations include the balances of mass,
momentum, and species, [25]

Vi =0, (&)
oo 2 22 2+ =
01 E—HM.V)M =—Vp+nVu—eV-CVC — ¢Cg,
(6)

ac . - 2
p1 ¥+(M-V)C =aV-u. 7

Here p is the modified pressure field that needs to be
determined from an incompressibility constraint, i is the
velocity, o and n are the mobility and viscosity coefficients,
and g is the gravity acceleration.

One sees that the equations written in the Boussinesq
approximation are fully incompressible. The momentum
equation includes the Korteweg force that models the effect of
the surface tension on the interface morphology. The diffusive
mass transport is defined by the general Fick’s law, i.e., through
the gradient of the chemical potential, which is defined as

dfo I 2
n=_ste r)—eV-C, (®)
where df/dC stands for the classical part of the chemical
potential. The full expression for the chemical potential
indicates that the diffusive mass transport takes into account
the barodiffusion effects, i.e., diffusive flux induced by the
pressure gradients induced by the gravity and capillary forces.

The governing equations need to be supplemented with the
boundary conditions. We consider the interface separating two
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semi-infinite liquid domains, and hence, the perturbations to
all variables are assumed to vanish at large enough distances
from the phase boundary, which will be used for the boundary
conditions.

Next, we nondimensionalize the governing equations by
choosing the following scales for time, velocity, pressure, and
specific free energy:

V. = ul/? — —

= Ky s Dx = Pxlhss S = M. &)
Here L, stands for the typical length scale. For the typical
density p, and chemical potential u,, we can accept the
following values, p. = p; and w, = b. In nondimensional
form the governing equations then read

V.i=0, (10)
o - L - 1, y 2 .
— 4+ W-V)u=—-VP+ —V°u—CavV°"CVC + GrCy,
Jat Re

(11)
aC - 1
— 4@ V)C=—V?pu, 12
8t+(u ) pa VP (12)
w=—Gr(y - )+ 2AC +4C? — CaV>C. (13)

Here ¥ is a unit vector directed upwards.
The nondimensional parameters entering the above equa-
tions are the Peclet number,

*L*
Pe= 2112 (14)
72
o L
the capillary number, [47]
€
Ca= ——; 15
vE (15)
the Reynolds number,
1/2
* L*
Re = 2:fr =, (16)
N«
and the Grashof number,
L,
Gr= ¢5=*, (17)
s
Parameter
A== (18)
7.

defines the equilibrium states of the binary system. If A is
negative, the system can be homogeneous or heterogeneous in
equilibrium; for positive A, an equilibrium state of a binary
mixture is always homogeneous.

The viscosities of mixture components are different and the
mixture viscosity is in general a function of concentration. We
however assume that this difference in viscosities is small, so
it does not affect the evolution of a mixture. In the definition
of the Reynolds number, 1, can be the viscosity of one of the
pure components, e.g., 1.

B. Basic state. Linear stability analysis

We study the linear stability of an interface separating two
semi-infinite domains occupied by the components of a binary
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FIG. 1. Two semi-infinite domains of two incompressible mis-
cible liquids of densities p; and p, and viscosities n; and 1, are
separated by an interface of thickness §.

mixture; see Fig. 1. At an initial contact of two pure mixture
components, the concentration profile can be approximated as

Coly) = %tanh (g) : (19)

where § is the thickness of the interface. The pure mixture
components are defined by the values +1/2. We assume that
there is no hydrodynamic motion at this state; i.e., i = 0.

This state does not correspond to a thermodynamic equi-
librium of the mixture, and hence the chemical potential is not
constant across the layer,

2

d>C
11o(y) = Gry +2ACy + 4C — Ca——

d_yz' (20)

There is one specific profile, sometimes called a kink
solution, which corresponds to a heterogeneous equilibrium
state of a binary mixture achievable for negative values of
parameter A (and if the gravity effect is neglected). For a
kink solution, the equilibrium concentrations of the mixture
components are C; » = £4/—A/2 and the interface thickness
is §o = /—Ca/A. In the current paper, the evolution of an
initially off-equilibrium binary system is examined, and hence
the interface thickness and the capillary parameter are treated
as two independent quantities.

We can also introduce the surface tension of the interface

as [24,44,46]
© dCo\*
o:Ca/ (—°> dy, @21)
—so L dy

where y is the transversal coordinate. For the introduced basic
profile (19), the surface tension is equal to

Ca

o=—.

36
The response of the basic state to 2D normal disturbances
is studied. To solve Eqgs. (10)—(13), the stream function, 1,
is introduced that is defined as i = (3vy/dy, — 0y /dx). The
stability of a quiescent state with the distributions of the

concentration and chemical potential defined by expressions
(19) and (20) is examined with respect to normal perturbations,

Y(x,y,t) = Y(y)exp(ikx —iwt), (23)
C(x,y,t) = Co(y)+ C(y)exp(ikx — iwt), (24)
u(x,y,t) = po(y) + pn(y) exp(ikx — iwr). (25)

(22)
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Hereafter, {(y), C(y), and u(y) denote the amplitudes
of perturbations of the stream function, concentration, and
chemical potential, respectively. A disturbance is defined by
the wave number k (k = 27 /1 with A being the wavelength)
and the complex frequency w with w, being the time frequency
(w, / k is the phase speed of waves) and w; being the growth or
decay rate.

Substitution of these expressions into the governing equa-
tions and then retention of the linear terms yields the system
of the linearized amplitude equations,

—iwW" — kY = é(xp“’ —2k*y" + k™) + ikCa

x [(C" — K*C)C| — €' C] + ikGrC,
(26)

1 /)
e = k), 27)
w= QA+ 12C3)C — Ca(C" —k*C). (28)

—ioC — ikChy =

Here a prime denotes differentiation in respect to y.

Since an interface separates two semi-infinite domains, all
perturbations are to vanish as y — oo, which is used as
the boundary conditions for the solutions of the amplitude
equations. For numerical integration, the depths of the liquid
domains were however restricted by two boundaries placed at
4L, with L being sufficiently large to exclude any boundary
effects.

We need to mention that the basic profile slowly dif-
fuses, with the interface thickness evolving in time as § ~
J/t/Pe to its equilibrium value &y if A < O or to infinity if
A > 0. This time dependence is however much slower com-
pared to the exponential growth of the introduced normal
perturbations. Therefore, we study the time evolution of
perturbations on the background of the “frozen” basic state.

The set of the amplitude equations and boundary conditions
defines a boundary-value problem. Its numerical solution
is not straightforward due to stiffness caused by extreme
(too large or too small) values of the governing nondimen-
sional parameters (large Reynolds and Peclet numbers, and
small capillary number). We used two numerical methods
to solve the problem, the shooting method supplemented
with the Gram-Schmidt orthogonalization [48-51] and the
compound matrix method [52-54]. The fourth-order adap-
tive Runge-Kutta technique was used for numerical inte-
gration and the Muller’s method was employed for root
finding.

III. AN IMMISCIBLE INTERFACE OF FINITE
THICKNESS SUBJECT TO HYDRODYNAMIC
PERTURBATIONS

The considered problem involves the interaction of several
physical effects, namely the viscosity, diffusivity, and capil-
larity. We obtain the solution in three main steps and start
from consideration of an interface separating two immiscible
liquids, i.e., by taking the Peclet number being infinite. For
immiscible liquids the amplitude equations (26)—(28) are
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reduced to one equation of the fourth order,
1 iv 2.4 4 . k2 /
— " =2k"y" + k") — i —CaC,
Re w

x [2CJy" — Co(" — k*y)]
2
— ik—GrC(’)iﬁ. (29)
w

—io(y" —K*y) =

The numerical integration of Eq. (29) was initiated simul-
taneously at the left and right ends by using the following
boundary conditions,

y=—L: ¥ =Ajexp(—kL)+ Asexp(—¢qL),  (30)
y=L: ¢ =Ayexp(—kL)+ Asexp(—qL), (31)
with

q =k —ioRe. (32)

Formulas (30) represent the general solutions of Eq. (29),
that is simplified under assumption that Cy = £1/2 and C, =
Cy = 0, which is true in the limit of y — F-0o. For particular
values of the wave number k and parameters Re, Gr, and Ca,
two integration runs for different values of the constants, Ay,
A,, Az, and A4 were initiated from each boundary and were
carried out towards the middle of the layer. At the middle point,
the condition of the linear independency of the four obtained
solutions generated an eigenvalue w.

The numerical results were compared against the well
known analytical dispersion relations derived on the basis of
the Laplacian approach [6,29]. For the inviscid case, this is the
explicit relation, that has the following form in terms of the
parameters of the phase-field approach,

, 1 o 5 1 Ca ,
1) _2Grk+2k —2Grk+65k. (33)
If viscous effects are taken into account, then the dispersion
relation is defined by the implicit relation,

q(q +k)g* - k) 1 Ca ,

R = 2Grk—}— 68k , (34)
with g defined by Eq. (32).

One expression [either (33) or (34)] defines the dispersion
relations for both the Rayleigh-Taylor instability and the
gravity-capillary waves, which differ by the sign of the Grashof
number. For Gr > 0, a heavier liquid underlies a lighter
one, p; > py, which corresponds to a configuration of the
gravity-capillary waves. In this case w is complex, with its
real part defining the frequency of oscillations and imaginary
part defining the damping rate. In the opposite case, Gr < 0,
the interface is subject to the Rayleigh-Taylor instability, and
w is always purely imaginary indicating monotonic growth of
perturbations. For both cases, the viscous force introduces
the dissipation that mostly affects the development of the
modes with shorter wavelengths, as well as the capillarity
that also predominantly dampens the modes with shorter
wavelengths. In the case of the Rayleigh-Taylor instability the
short-wavelength modes become stabilized, while in the case
of the gravity-capillary waves the short-wavelength modes
start to decay strongly and monotonically, i.e., lose their
wavelike character.
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(a)RTI

15

(b) RTI

FIG. 2. Rayleigh-Taylor instability at an immiscible interface.
The growth rate w; versus the wave number & is shown for Gr = —1,
and (a) Ca = 0 and various interface thicknesses (6 = 0.5, dash-dot
line; § = 0.1, dashed line; § = 0.001, solid line); (b) § = 0.001 and
various capillary numbers (Ca = 0.001, dash-dot line; Ca = 0.0005,
dashed line; Ca = 0.0001, solid line); (¢) Ca = 0.005 and various 8
(8 = 0.001, dash-dot line; § = 0.0015, dashed line; § = 0.0025, solid
line); various Ca and § under constant ratio Ca/§ = 0.2 (Ca = 10~*
and § = 5 x 1074, solid line; Ca = 0.001 and § = 0.005, dashed line;
and Ca = 0.01 and § = 0.05, dash-dot line)andCa/§ = 1(Ca =6 =
0.001, solid line; Ca = § = 0.01, dashed line, Ca = § = 0.1, dash-dot
line); (¢) Re =3 and Re = 20, Ca =0 and different § (§ = 0.1,
dash-dot line; § = 0.01, dashed line; § = 0.001, solid line); and (f)
Re =1 and Re = 20 and different Ca and § under constant ratio
Ca/§ = 1(Ca = § = 0.1, dash-dot line; Ca = § = 0.01, dashed line;
Ca =6 = 0.001, solid line). (a)—(d) depict inviscid results. Symbol
“o” marks the sharp-interface results.

The numerical data for the Rayleigh-Taylor instability,
obtained on the basis of the phase-field approach, are plotted
in Fig. 2 for the interfaces separating two inviscid [Figs. 2(a)—
2(d)] and two viscous liquids [Figs. 2(e) and 2(f)]. The results
are shown against the curves obtained from the classical formu-
las (33) and (34). All classical observations for the Rayleigh-
Taylor instability can be reproduced. In particular, we observe
that the amplitudes of all modes grow monotonically. The
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growth rates are lower for more diffuse interfaces [Figs. 2(a)
and 2(e)]. The capillary forces dampen the development of the
short-wavelength modes, which is illustrated by Fig. 2(b). The
surface tension effect reduces the range of the unstable modes
by the cutoff value k., = 4/36Gr/Ca.

Dependencies on the interface thickness differ for the cases
of zero and nonzero capillary numbers. If the capillary forces
can be disregarded, i.e., Ca = 0, the curves obtained for the
gradually decreasing values of the interface thickness converge
to the sharp-interface results [Fig. 2(a)]. When Ca # 0, i.e.,
the capillary effects are taken into account, a sole reduction
of the interface thickness does not produce the behavior
of a sharp interface. This can be easily explained by the
fact that the surface tension is defined as the ratio between
the capillary number and the interface thickness (22), and
hence by decreasing the interface thickness we increase the
capillary effect, which is revealed by stronger damping of
the short-wavelength modes [Fig. 2(c)]. In order to obtain
the sharp-interface behavior, the capillary number and the
interface thickness must be simultaneously decreased, which
is done in Figs. 2(d) and 2(f).

For the gravity-capillary waves developing at an interface
separating two viscous liquids, both real and imaginary parts
of w are different from zero; these functions are plotted in
Fig. 3. Again, all classical properties of the gravity-capillary
waves can be reproduced. It can be shown that in the inviscid
limit the phase speed is proportional to k~'/?; i.e., longer

(a) GCW (b) GCW
05 N
N Re= . P
02F Q.7 PRt
7.3 vt
i N 7
-0.4fF &P
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8 i
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FIG. 3. Gravity-capillary waves at an immiscible interface.
The real and imaginary parts of the frequency w versus the wave
number k are shown for Gr = 0.9 and Re =1 and Re = 3, and
(a), (b) Ca =0 and various interface thicknesses (§ = 1, dash-dot
line; § = 0.5, dashed line; and § = 0.01, solid line); (c), (d) for a
constant ratio Ca/é = 1 (Ca = § = 0.5, dash-dot line; Ca = § = 0.1,
dashed line; and Ca = § = 0.01, solid line). Symbol “o” marks the
sharp-interface results.

022404-6



LINEAR STABILITY ANALYSIS OF A HORIZONTAL ...

modes propagate faster. The waves are dampened by the
viscous effect: Some modes start dissipating monotonically
(with appearance of the creeping and viscous modes, totally
similar to the waves at a sharp interface [6]), and hence loosing
their wavelike behavior. One also sees that the capillarity
primarily affects the development of the modes with shorter
wavelengths.

Figure 4 depicts the eigenfunctions, i.e., the stream
function profiles for the Rayleigh-Taylor instability and
gravity-capillary waves. In the case of the Rayleigh-Taylor
instability, the stream function is always purely real, and in
the case of the waves, the eigenfunction is real in the inviscid
case and has both real and imaginary parts in the viscous case.
The stream functions are continuous, but their derivatives are
discontinuous if the viscous effect is not taken into account.
In the viscous case, both stream function and derivative
are continuous. One can also note that the thickness of the
eigenfunction is of order 10, irrelevant to the thickness of
the interface (which is 0.01 for the shown results), and is
only slightly different for the inviscid and viscous cases.
The eigenfunction profiles do not depend on the value of the
capillary number.
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FIG. 4. Typical shapes of perturbations (eigenfunctions) induced
atan immiscible interface at k = 1. (a), (b) The real parts of the stream
function and their first derivative are shown for the Rayleigh-Taylor
instability (the imaginary part of the stream function is zero in this
case). For Ca = 0, the growth rate is 0.740 (inviscid mode) and 0.405
(viscous mode); for Ca = 0.05, the growth rate is 0.630 (inviscid
case). (c), (d) The real (c) and imaginary (d) parts of the stream
function are plotted for the gravity waves. For Ca = 0, the eigenvalue
isw = (0, — 0.74) (inviscid case) and w = (0.511, — 0.256) (viscous
case); for Ca = 0.05, the eigenvalue is w = (0, — 0.630) (inviscid
case). The eigenfunctions are plotted for Gr = £1,6 = 0.01,Ca =0
for inviscid (solid lines) and viscous (Re = 3, dashed lines) cases,
and another eigenfunction for Ca = 0.05; inviscid case is marked by
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o” symbols.

PHYSICAL REVIEW E 88, 022404 (2013)

Finally, we wish to discuss the applicability of the phase-
field approach. The interface is smeared and the new length
scale, the interface thickness &, is introduced within this
approach. Nevertheless, the thickness of a real phase boundary
is usually very small, just several molecular layers, and hence
the limit of a sharp interface is of paramount importance for the
results of the phase-field theory. We found that a perfect agree-
ment between the results obtained for the diffusive and sharp

(b)

-0.3 L 1 1

()

0.8

0.2

. -+
y y

FIG. 5. (a)—(d) Eigenspectra are plotted for interfaces subject to
thermodynamic disturbances. (a) Ca = 0.05, § = 1, A = 0.5 (solid
line), A = 0.3 (dashed line), and A = 0.1 (dash-dot line) and § = 0.5,
A = 0.5 (solid line with symbols) and A = 0.3 (dashed line with
symbols). (b) § = &y, Ca = 0.05, and various A <0 (A = —0.1,
dash-dot line; A = —0.3, dashed line; A = —0.5, solid line; and
thick solid line represents —k> curve); (c) Ca = 0.05, A = —0.5,
and various § (6 = &y = 0.316, solid line; 28, dash-dot-dot line;
0.8, dashed line; 0.65,, dash-dot line); (d) A = —0.4, § = §y, and
various Ca (Ca = 0.07, dash-dot line; 0.035, dashed line; and 0.01,
solid line). (e), (f) Eigenfunctions are plotted fork = 1, A = —0.5, (e)
Ca = 0.05 and various § [§ = 25y, dash-dot line (w; = 0.633);65 = &,
solid line (w; = —0.155);and § = 0.58, dashed line (w; = —0.436)];
and (f) § = &y and various Ca [Ca = 0.02, solid line (w; = —0.186);
Ca = 0.05, dashed line (w; = —0.079); and Ca = 0.08, dash-dot line
(w; = —0.053)]. All eigenfunctions are purely real and normalized
by their maximum values.
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interfaces is restricted by the inequality k6 < 1. In Fig. 2(a),
the numerical data obtained for the diffuse interfaces and the
analytical data for a sharp boundary coincide while the wave
number remains small, and such a matching deteriorates for
larger k. For thin interfaces, e.g., with § = 0.001, the numerical
results closely follow the analytical curve; however, this
remains true only within the shown range of the wave numbers.
In order to obtain accurate results with the use of the phase-field
approach, the interface thickness § should be smaller than all
other length scales, including the wavelength of perturbations
A = 21/ k, which one cannot guarantee for arbitrary perturba-
tions. The surface tension and viscous effects introduce the cut-
off wave number, k., limiting the range of the unstable modes
in the case of the Raleigh-Taylor instability and the range of
the modes with the periodic wavelike behavior in the case of
the gravity-capillary waves. In this case, the condition on §
becomes k.8 < 1, and the accurate eigenvalue spectra may be
obtained for interface thicknesses of order § ~ 0.1-0.01.

IV. THERMODYNAMIC STABILITY OF
A MISCIBLE INTERFACE

We now consider an opposite situation with neglected
hydrodynamic flows, and hence with the mass transfer purely

(a) RTI (b) RTI

0.18

0.075F

FIG. 6. Rayleigh-Taylor instability at a miscible interface be-
tween two inviscid [(a)—(d)] and viscous [(e), (f)] liquids. Capillary
effects are disregarded. The growth rate w; versus the wave number
k for (a) Gr=—0.9, A =0.2, and § = 0.001, and various Peclet
number (Pe = oo, solid line; Pe = 100, dashed line; Pe = 25, dash-
dot line; and Pe = 1, dash-dot-dot line); and (f) Pe =1, A = 0.5,
6 = 0.001, and various Grashof numbers (Gr = —1, solid line;
Gr = —0.5, dashed line; Gr = —0.25, dash-dot line); (¢) Gr = —1,
A = —0.5, Re =3, Pe =5 and Pe = 150 and various § (6 = 0.1,
dashed line; 6 = 0.001, solid line; o marks § = 0.0001); and (d) Gr =
—1,A = —0.5,Pe = 5,Re = 2and Re = 50, and various § [asin (c)].
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driven by diffusion. The full set of amplitude equations
(26)—(28) is reduced to an equation written in terms of the
concentration field,

CaC™ — (Dy + 2Cak*)C” — 2D C’
+ [k*(Dy 4 Cak*) — D] —iwPe]C =0,  (35)

where Do =2A + 12C{ is the diffusion coefficient. We
use this equation to investigate the linear instability of a
heterogeneous miscible system with respect to thermodynamic
perturbations.

The results of the numerical solution of eigenvalue problem
(35) are depicted in Fig. 5. All eigenvalues were found to be
purely imaginary. We see that the interface is always stable
(all normal perturbations decay) for A > 0. The stability
is increased (the decay rates grow) for greater values of
A and smaller thicknesses §. If however A < 0, the layer
may be either stable or unstable which is determined by the
interface thickness. Namely, all perturbations monotonically
decay if the interface thickness is less than or equal to the
equilibrium value, § < §, but the long-wavelength instability
is observed if the interface thickness is greater than &, which
is illustrated in Fig. 5(c). We also confirmed that when 6 = §,
the decay rate follows the k* dependence for small values

(a)RTI

(b) RTI

FIG. 7. Rayleigh-Taylor instability at a miscible interface. The
growth rate w; versus the wave number k is depicted for Gr = —1,
Ca=0.05,6 =0.3,(a) A = —0.5,Pe = 10and Pe = 30, and various
Re (inviscid result, solid line; Re = 250, dashed line; Re = 50, dash-
dot line); (b) A = 0.5, Pe = 10 and Pe = 30, and various Re [lines
as in (¢)]; (¢) A = —0.5, Re = 10, and various Pe (immiscible case,
solid line; Pe = 100, dashed line; Pe = 10, dash-dot line; Pe =1,
dash-dot-dot line); (d) A = 0.5, Re = 10, and various Pe (immiscible
case, solid line; Pe = 250, dashed line; Pe = 50, dash-dot line; Pe =
10, dash-dot-dot line).
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of k (and one sees that for § < §y the decay rate changes
even faster). The effect of the capillarity on the growth rates
is shown in Fig. 5(d), where one sees that the modes with
long wavelengths remain virtually unaffected, but the modes
with shorter wavelengths decay faster if the value of Ca is
larger.

One can also note that the results in Fig. 5 are plotted in
terms of the product w;Pe, and hence the decay/growth rates
of pure thermodynamic perturbations would be rather small
for larger Pe numbers.

Figures 5(e) and 5(f) depict the typical shapes of the
eigenfunctions, C,(z) (the imaginary part was found to be
zero). The eigenfunctions shown are normalized by their
maximum values, located in the middle of the layer. Figure 5(e)
shows the eigenfunctions for A < 0. One sees that the
thickness of the eigenfunction diminishes for smaller values
of §. The widths of the eigenfunction depicted in Figs. 5(e)
and 5(f) is considerably smaller (by an order of magni-
tude) compared to the widths of the purely hydrodynamic
modes shown in Figs. 4. One can also notice in Fig. 5(f)
that the widths of the eigenfunctions depicted in Fig. 5(f)
diminish if Ca becomes smaller. Moreover, we found that
the eigenvalue problem (35) has no nontrivial solutions for
Ca=0.
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FIG. 8. Rayleigh-Taylor instability at a miscible interface. The
growth rate w; versus the wave number k is depicted for Gr = —1,
(a) Pe = 10 and Pe = 100, A = —0.5, § = 0.3 and various capillary
numbers (Ca = 0, solid line; Ca = 0.03, dashed line; Ca = 0.06,
dash-dot line), (b) Pe = 10 and Pe = 100, A = 0.5, § = 0.3 [lines as
in (a)]; (¢c) Pe = 10, A = —0.5, § = 0.05, and various Ca (Ca = 0,
solid line; Ca = 0.02, dashed line; Ca = 0.04, dash-dot line; and
Ca = 0.08, dash-dot-dot line); (d) Pe = 10, A = 0.5, § = 0.05 [lines
as in (c)]. (a) and (b) depict the inviscid results; (c) and (d) depict the
viscous results for Re = 5 and Re = 50.
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V. STABILITY OF A MISCIBLE INTERFACE SUBJECT TO
BOTH THERMO- AND HYDRODYNAMIC
PERTURBATIONS

A. Rayleigh-Taylor instability

The aim of this section is to investigate the simultaneous
actions of the small hydro- and thermodynamic perturbations
on the stability of the flat interface. We however saw that
the thermodynamic modes do not exist when the capillary
effects are completely disregarded. In addition, in this case the
sharp interface behavior could be revealed by simple gradual
reduction of the interface thickness as shown in Sec. III.

(a)RTI

(b) RTI
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0.07

0
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FIG. 9. Rayleigh-Taylor instability at a miscible interface. The
growth rate w; versus the wave number k is depicted for Gr = —1,
Ca = 0.05, Pe = 5 and Pe = 50, (a) A = —0.5 and various interface
thicknesses (§ = 0.9, dash-dot line; § = 0.6, dashed line; § = 0.3,
solid line); (b) A = 0.5 [lines as in (a)]; (¢) A = —0.5, Re = 10,
and various § (6 = 0.001, solid line; § = 0.01, dashed line; § = 0.1,
dash-dot line; and § = 0.3, dash-dot-dot line); (d) A = 0.5, Re = 10
[lines as in (c)]. (a), (b) depict the inviscid results. (e), (f) Gr =
—1,Re =10, Pe = 5 and Pe = 15, () A = —0.5; (f) A = 0.5; and
different capillary numbers and interface thicknesses for Ca/é = 1
(Ca =6 =0.02, solid line; Ca = § = 0.04, dashed line; Ca =6 =
0.08, dash-dot line).
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parameters are Gr = —1, Pe = 10, A = —0.5, k = 2. The growth
rates are 0.778 (6 = 0.9), 0.770 (6 = 0.6), and 0.548 (§ = 0.3).

The eigenvalue spectra obtained for the Rayleigh-Taylor
instability in the case of neglected capillary effects are shown
in Fig. 6. One can notice that the role of diffusion is reduced to
additional dissipation [see Fig. 6(a)], in many ways, similar to
the effect exerted by viscosity. We also found that the results
of immiscible interfaces are recovered for very large Peclet
numbers. The similarity between the viscous and diffusive
effects can be already deduced from the amplitude equations
in which the viscous and diffusive terms are quite similar,
especially if Ca = 0. Thus, in the case of y — o0, the viscous
and diffusive terms will be different by only the factors of
Re and Pe/Dy. We also found that the cumulative action of
viscosity and diffusivity is able to completely stabilize the
growth of the modes of shorter wavelengths [Figs. 6(c) and
6(d)]; however, separately, neither viscosity [Fig. 2(e)] nor
diffusivity [Fig. 6(a)] were capable of doing this.

In the case of Ca =0, we found that the variation of
the parameter A does not lead to any qualitative changes
in the stability results, and the increase in A simply results
in stronger damping. Figure 6(b) shows how the growth
rates of perturbations depend on the Grashof number, as one
sees the instability is increased upon the increase in Gr, but
the positions of the fastest growing modes remain almost
unchanged.

FIG. 11. Dispersion relations and decay rates for the gravity
waves on a miscible interface between two inviscid liquids. Capillary
terms are neglected. The data are shown for (a), (b) Gr=0.9,
A = 0.2, = 0.001, and various Peclet numbers (Pe = 5, dash-dot-
dot line; Pe = 15, dash-dot line; dashed line Pe = 100; immiscible
case, solid line); (¢), (d) Pe =1, A = 0.2, § = 0.001, and various
Grashof numbers (Gr = —0.9, solid line; Gr = —0.5, dashed line;
Gr = —0.25, dash-dot line); and (e), (f) A = 0.2, Pe = 1 and Pe =
10, Gr = 0.9, and various interface thicknesses (§ = 0.05, dash-dot
line; § = 0.01, dashed line; and § = 0.001, solid line).

Figures 6(c) and 6(d) show how the growth rate of
perturbations depends on the value of the interface thickness,
illustrating that the curves converge to the limit of a sharp
interface when § tends to zero. Similar to immiscible inter-
faces, the convergence is perfect for the shown range of &, but
may deteriorate for the modes with larger wave numbers. The
stabilization of the short-wavelength modes by the combined
actions of viscosity and diffusivity relaxes the restriction on
the value of the interface thickness. If one is interested in the
unstable part of the eigenspectrum, or in the fastest growing
modes, then the thickness of the interface can be taken as
dk.(Re,Pe) « 1, and the instability of a sharp interface will
be accurately reproduced.

Next, we consider the solution of the full amplitude
equations (26)—(28). The obtained numerical solution first
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allows us to confirm that the viscous force introduces the
dissipation as usual, which is illustrated in Figs. 7(a) and 7(b).
The inviscid result can be recovered by taking the Reynolds
number large enough. The effect of diffusivity is also reduced
to dissipation as illustrated in Figs. 7(c) and 7(d).

The capillary forces are also known to suppress the growth
of the short-wavelength modes. The strength of the capillary
effect is defined by both the capillary number and the interface
thickness. Figure 8 shows how the results depend on the
capillary number. One sees that the increase of the capillary
force results in expectable reduction of the range of unstable
modes and reduces the growth rates, which generally coincide
with our earlier observations for immiscible interfaces.

Figure 9 illustrates the eigenspectra for the interfaces of
different thicknesses. The curves are obtained for the inviscid
and viscous cases at two different Peclet numbers. Here the
effects of viscosity, diffusivity, and capillarity interact. In
particular, the combined action of the viscous and diffusive
dampings can make the capillary action on the interface
stability negligible. One can notice that the decrease in the
interface thickness (hence the increase in the surface tension)
does not always give us the expected suppression of the modes
with shorter wavelengths. This means that the efficiencies of
the viscous, diffusive, and capillary mechanisms all depend
on the interface thickness, but these three dependencies are
different, so the change in the interface thickness leads
sometimes to an unexpected behavior.

Figures 9(e) and 9(f) show the curves obtained for the
different capillary numbers and interface thicknesses that are

(a) GCW

(b) GCW
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FIG. 12. Dispersion relations and decay rates for the gravity-
capillary waves on a miscible interface. The curves are obtained
for Gr = 1, Ca = 0.04, Pe = 10, A = —0.5, (a), (b) § = 2§, =~ 0.57
(inviscid case, solid line; Re = 100, dashed line; Re = 30, dash-dot
line; Re = 10, dash-dot-dot line); (c), (d) § = 0.25 and various Re
(inviscid case, solid line; Re = 70, dashed line; Re = 30, dash-dot
line; Re = 10, dash-dot-dot line).
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changed so the ratio Ca/§ remains constant. We see that the
convergence to the limiting sharp-interface behavior can be
achieved this way.

Finally, the typical shapes of eigenfunctions are depicted
in Fig. 10 for both cases of Ca = 0 and Ca # 0. The plotted
eigenfunctions have very different y widths. In the case of
Ca = 0, the typical thickness of the eigenfunction is of order
10, irrelevant to the thickness of the interface itself, and just
slightly dependent on the values of the Reynolds number.
In the case of Ca # 0, one notices that the perturbation y
profile becomes more compact. In the former case (Ca = 0),
the eigenfunction profile is more similar to the one depicted
in Fig. 4, i.e.,, to the purely hydrodynamic mode, while
in the latter case (Ca 3 0), the eigenfunction looks similar
to Figs. 5(e) and 5(f), i.e., to the purely thermodynamic
modes. These observations confirm that the evolution is
driven by hydrodynamic modes in the case of Ca = 0, and
thermodynamic effects become dominating for Ca # 0.

B. Gravity-capillary waves

Similar to the previous section, our analysis for the gravity-
capillary waves starts from the case of the pure gravity waves,
i.e., when Ca = 0. Figures 11(a) and 11(b) illustrate the simi-
larity of the effect exerted by diffusion to the viscous damping.
Diffusivity introduces an additional dissipation mechanism,
and similarly to the viscosity effect there appears the cutoff
wave number that limits the range of the modes exhibiting the
wavelike behavior. The solution for the larger wave numbers
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FIG. 13. Dispersion relations and decay rates for the gravity-
capillary waves on the surface of a miscible interface separating two
inviscid liquids are shown for various Peclet numbers (immiscible
case, solid line; Pe = 500, dashed line; and Pe = 50, dash-dot line).
The results are shown for Gr =1, Ca = 0.015, § = 0.1, (a), (b)
A = —0.5,and (c), (d) A = 0.5.
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becomes nonunique, as the eigenvalues have two possible
imaginary parts. At the point of bifurcation, the real part
of the eigenvalue becomes equal zero; hence these solutions
describe quickly and monotonically dissipating perturbations.
We also notice that the results for immiscible interfaces can be
recovered by taking very large Peclet numbers, and, in the limit
of small wave numbers, the phase speed of the perturbations
follows the classical k~!/2? dependence.

Figures 11(c) and 11(d) show that the increase in
the value of the Grashoff number results in the increase
of the phase speed of perturbations; however, the damp-
ing rate remains almost unaffected. Without the capil-
lary terms, the waves are purely driven by the gravity
force, and hence disappear when Gr tends to zero. In the
case Ca=0, an increase in the value of the parameter

(b) GCW
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FIG. 14. Dispersion relations and decay rates for the gravity-
capillary waves on the surface of a miscible interface. The results
are shown for Gr = 1, Ca = 0.04, Pe = 10, (a), (b) A = —0.5, and
various interface thicknesses (6 = dy, sold line; § = §y/3, dashed
line; and & = 24y, dash-dot line); and (c), (d) A = 0.5 and various
8§ (§ = 0.1, solid line; § = 0.2, dashed line; and § = 0.4, dash-dot
line). (e), (f) The results are shown for Gr = 1, Pe = 5, Ca = 0.04,
6 =0.85, and A = —0.5 (solid line), A = —0.3 (dashed line), and
A = —0.1 (dash-dot line).
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A leads to an increase of the diffusion coefficient and
hence to a stronger damping of the waves. Figures 11(e)
and 11(f) show that the curves quickly converge to a
sharp-interface limit if the interface thickness 6 tends to
ZEero.

Next, we discuss the dispersion relations obtained for
the gravity-capillary waves defined by the full amplitude
equations (26)—(28). We start from Fig. 12 which confirms that
viscosity generally continues to play its classical dissipative
role. However, one also sees that when and A < 0 and § > §
[Figs. 12(a) and 12(b)], there appears the long-wave instability,
obviously driven by the thermodynamic instability described
in Sec. IV. The long-wave instability disappears if § < &,
as seen in Figs. 12(c) and 12(d). Figure 13 shows that the
inclusion of diffusivity also introduces an additional damping
to the system.

Figures 14(a)-14(d) show the changes in the dispersion re-
lations associated with the variations of the interface thickness.
The dependencies differ for the positive and negative values
of A, and again the most interesting results are observed for
A < 0, when the dynamics of thicker interfaces (with § > &)
exhibits the development of the long-wave instability. This
effect is illustrated in more detail in Figs. 14(e) and 14(f).
Figures 14(a)-14(d) also show that the thinner interfaces are
obviously characterized with stronger interfacial tensions, and
hence exhibit stronger suppression of the short-wavelength
modes.

Figure 15 shows the dispersion relations for the gravity-
capillary waves for the various values of the capillary number

(a) GCW

0.42F

(b) GCW

0.36F
0af
oL24f
0.18F
0.12

0.06

0.6f
045}

03| )

0.15

FIG. 15. Dispersion relations and decay rates for the gravity-
capillary waves on a miscible interface separating two inviscid liquids.
The results are shown for Gr = —0.9, § = 0.1, Pe = 1 and Pe = 5,
(a), () A=0.3; (c), (d) A= —0.3. The curves are plotted for
different Ca numbers: Ca = 0, solid line; Ca = 0.015, dashed line;
Ca = 0.03, dash-dot line; and Ca = 0.09, dash-dot-dot line.
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also for the positive and negative values of A. One sees that
the increase in the surface tension reduces the range of the
modes with the wavelike behavior (i.e., the modes showing
oscillatory decay). So the waves with shorter wavelengths
are suppressed; however, the damping rates of other waves
is just slightly affected by the increase of the capillary
terms.

In Fig. 14 we saw that the properties of the interface are
changed by varying the interface thickness, and the gradual
reduction of the interface thickness does not produce the sharp
interface behavior. Such a limiting behavior can however be
obtained by the simultaneous reduction of the capillary number
and interface thickness, so that the ratio Ca/§ remains constant,
which is illustrated in Fig. 16.

Finally, Fig. 17 shows the typical shapes of perturbations.
The profiles are just slightly dependent on the value of the
Reynolds and Peclet numbers. The widths of the eigenfunc-
tions obtained for Ca = 0 [Figs. 17(a) and 17(b)] point out
their similarity to the purely hydrodynamic modes of Fig. 4,
and hence the development of such perturbations is driven by
the hydrodynamic terms. In the case of Ca s 0, the y width
of eigenfunctions depends on the interface thickness §, so for
thicker interfaces the thickness of the eigenfunction increases.
Nevertheless, the widths of the shown eigenfunctions point
out their similarity to the thermodynamic modes depicted in
Figs. 5(e) and 5(f), which means that the evolution in this case
is dominated by the thermodynamic effects.
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FIG. 16. Dispersion relations and decay rates for the gravity-
capillary waves on the surface of a miscible interface for the fixed
ratio Ca/§ = 1. The results are shown for Gr = —1, Pe =5, for
the inviscid and viscous (Re = 10) cases, (a), (b) A = —0.5 and
various Ca and § (Ca = § = 0.02, solid line; Ca = § = 0.04, dashed
line; Ca = § = 0.08, dash-dot line); (c), (d) A = 0.5 and various
Ca and § (Ca=§ = 0.03, solid line; Ca = § = 0.06, dashed line;
Ca = § = 0.12, dash-dot line).
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FIG. 17. The eigenfunctions are plotted for the gravity-capillary
waves at a miscible interface. (a), (b) The capillary effects are
disregarded. The moduli of the stream function (a) and chemical
potential (b) are shown for k =2, Gr=1, A =0.5, § = 0.1, for
the inviscid and viscous cases. Solid line depicts the results for
Pe = 15, inviscid case; dashed line for Pe = 5, inviscid case; dash-dot
line for Pe = 15 and Re = 10; and dash-dot-dot line for Pe =5
and Re = 10. The eigenvalues are w = (0.407, — 0.542) (Pe =5)
and w = (0.561, — 0.275) (Pe = 15) for the viscous case and w =
(0.382, — 0.444) (Pe = 5) and w = (0.592, — 0.187) (Re = 15) for
the inviscid case. (e), (f) The moduli of stream function (e) and
concentration (f) are plotted for k = 1.75, Pe =5, Gr= —1, Ca=
0.04, A = —0.3, and for § = 3§, (dash-dot line), § = §, (solid line),
and § = 8p/2 (dashed line). The eigenfunctions correspond to the
eigenvalues of w = (0.61,0.005); (6 = 38y), @ = (0.752, — 0.193)
(6 = 60), and w = (0.61, — 0.435) (6§ = 8p/2). The functions are
normalized by the maximum values of the moduli.

VI. CONCLUSIONS

We have investigated the linear evolution of the small nor-
mal disturbances to a flat horizontal phase boundary separating
two slowly miscible liquids. The phase-field approach was
employed to model the thermo- and hydrodynamic evolution
of the binary mixture. The Boussinesq approximation of the
full Cahn-Hilliard-Navier-Stokes equations was used to define
the amplitude equations for the small normal disturbances. We
were interested in the binary mixtures with the upper critical
point. The thermodynamic states of the binary mixture were
defined by the Landau free energy function, with the main
phenomenological parameter A, which is negative for the
undercritical temperatures and positive for the temperatures
above the critical point.

Two primary aims pursued by this work were to understand
the limits of the phase-field approach and to understand
the effects of interfacial diffusion on the dynamics of the
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Rayleigh-Taylor instability and on the dispersion and dissi-
pation of the gravity-capillary waves.

The work was fulfilled in three main steps. First we consid-
ered the pure hydrodynamic evolution (under the condition that
Pe — 00) of a smeared interface. The results were validated
through the use of the classical formulas obtained for sharp
interfaces. We found that all classical expectations for the
Rayleigh-Taylor instability and for the waves can be observed.
In the case of the Rayleigh-Taylor instability (heavier liquid
overlays a lighter one), all perturbations monotonically grow.
The growth rates are reduced by the viscous and capillary
forces. In the opposite configuration of a lighter liquid overlay-
ing a heavier one, the gravity-capillary waves are developed,
with the phase speed proportional to k~!/2, The damping is
defined by the viscous and capillary effects, reducing the range
of the modes that exhibit the wavelike behavior.

The sharp-interface results can be reproduced for thinner
interfaces, but the situation is however different for Ca = 0
and Ca # 0. In the former case, the sharp interface results
are achieved by a simple gradual reduction of the interface
thickness. In the latter case, the interface thickness should
be decreased simultaneously with the capillary number, so to
keeping the ratio Ca/§ (which is proportional to the surface
tension coefficient) constant. Such procedures allow accurate
reproduction of the eigenvalue spectrum of a sharp interface
for the range of wave numbers limited by k6 < 1. Thus, for
instance, in order to reproduce the eigenvalue spectrum for
k < 5, the interface thickness must be at least § = 0.001.
This condition can however be relaxed on the basis of
the following reasons. To describe the development of the
Rayleigh-Taylor instability we may need to define accurately
only the fastest growing mode, so the condition becomes
kmax0 < 1, or only the unstable modes, which are limited
by the cutoff value k. = /36Gr/Ca due to the capillary
action, and the condition becomes k.8 < 1. In the case of
the gravity-capillary waves, we may either be interested in the
wave of the particular wavelength, or in the modes that exhibit
the wavelike behavior, which are limited by the bifurcation
point.

Next, we considered the pure thermodynamic instability
of a diffuse interface. Contrary to the research results
currently available in the literature, we treated Ca and § as two
independent parameters (in other works the stability of the kink
solution, with 9 = /—Ca/A, i.e., existent for A < 0, was
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investigated). We found that, for A < 0, all thermodynamic
perturbations monotonically decay for thin interfaces, when
6 < &, and, for A > 0, all perturbations unconditionally
decay. If however A < 0 and § > §y, the long-wave instability
develops.

Finally, we considered the stability of miscible interfaces
with respect to both thermo- and hydrodynamic perturbations.
We found that the diffusivity introduces an additional dissipa-
tion, and its influence is very similar to the effects produced
by the viscous force. The introduction of diffusivity slows
the growth of the Rayleigh-Taylor instability; it also reduces
the propagation speeds of the gravity-capillary waves and
increases the damping of the waves.

In general, all three effects—the viscosity, diffusivity, and
capillarity—damp perturbations, but these effects interplay
and hence can emphasize or suppress each other. The cu-
mulative viscous and diffusive damping is able to completely
suppress the growth of the short-wavelength modes, which
is not observed when these effects act separately. The strong
viscous or diffusive damping can make the effect of capillarity
practically nonexistent. That means that the use of the phase-
field approach as a numerical method for describing the
evolution of immiscible interfaces should in general take into
account the correlations between the Reynolds, Peclet, and
capillary numbers, and the interface thickness.

We also found a qualitative difference in the results
obtained for Ca = 0 and Ca 5 0. For the case of negligible
capillary effects, the evolution of small perturbations is totally
determined by hydrodynamics. The diffusion is included by
the diffusive flux defined by the Fickian law, but we found that
the concentration field in this case mostly adjusts the variations
of the velocity field. If however Ca ## 0, then the evolution of
perturbations is dominated by the thermodynamic part of the
mathematical problem. The difference in the results is even
stronger for the gravity-capillary waves, when in the case of
nonnegligible capillary effects and when A < Oandé > §, the
thermodynamic long-wave instability makes the layer unstable
even if the lighter liquid overlays the heavier one.
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