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Abstract—The effective throughput of multiple-input–single-output5
(MISO) systems communicating over both independent and identically6
distributed (i.i.d.) and independent and nonidentically distributed (i.n.i.d.)7
κ–μ fading channels is investigated under delay constraints. New ana-8
lytical expressions are derived for the exact effective throughput of both9
channels. Moreover, we present tractable closed-form effective throughput10
expressions in the asymptotically high- and low-signal-to-noise-ratio (SNR)11
regimes for i.i.d. κ–μ fading channels. These results enable us to investi-12
gate the impact of system parameters on the effective throughput of MISO13
κ–μ fading channels. We demonstrate that as the affordable delay tends to14
infinity, the effective throughput is increased to the classic ergodic capacity.15
By contrast, the effective throughput of delay-constrained near-real-time16
systems fails to approach the ergodic capacity.17

Index Terms—Delay constraint, delay-limited capacity, effective capac-18
ity, κ–μ distribution, multiple-input single-output (MISO).19

I. INTRODUCTION20

The ergodic capacity of multiple-antenna systems has been in-21
vestigated for transmission over various fading channels in [1]–[3].22
However, emerging real-time applications, such as voice over Internet23
Protocol and mobile TV, have imposed stringent quality-of-service24
(QoS) constraints. In this context, Shannon’s ergodic capacity can-25
not account for the transmission delay of the system. However, it26
would be highly desirable to quantify the delay-limited capacity of27
a system, which is a challenging task. The first contribution in this28
content was produced by Hanly and Tse in [4]. Hence, a QoS metric29
capable of capturing the delay constraints of communication systems30
is required. Motivated by this open problem, the concept of effective31
throughput (or effective capacity, effective rate) has been proposed32
in [5] for taking the system’s delay into account. Since then, several33
authors have investigated the effective capacity of various systems.34
For example, Femenias et al. in [6] investigated the effective capacity35
of wireless cross-layer networks combining adaptive modulation and36
coding at the physical layer with an automatic repeat request protocol37
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at the data-link layer. In [7], an analytical model of the effective capac- 38
ity found in proportional fair scheduling used in orthogonal frequency- 39
division multiple-access systems in the context of user multiplexing 40
was presented. 41

The effective throughput of multiple-input–single-output (MISO) 42
systems, such as the optimal precoding scheme relying on covariance 43
feedback, was derived for correlated MISO systems [8], whereas 44
that of correlated MISO channels was presented in [9]. In [10], 45
Li characterized the effective throughput of cognitive MISO systems 46
subjected to channel estimation errors. Moreover, Matthaiou et al. 47
in [11] provided a detailed effective throughput analysis of 48
Nakagami-m, Rician, and generalized-K MISO fading channels. 49
However, the existence of these well-known fading distributions is 50
based on the assumption of a homogeneous scattering environment, 51
which is often unrealistic, since the waves reflected by a surface are 52
spatially correlated in most propagation environments. 53

Hence, the κ–μ distribution has been proposed in [12] for character- 54
izing the inhomogeneous nature of fading channels. This generalized 55
fading model is capable of providing a better fit to experimental data 56
than the aforementioned models. Additionally, it has been shown in 57
[12] that the κ–μ distribution encompasses the Rician, Nakagami-m, 58
and Rayleigh distributions as special cases. Against this background, 59
we solve the open problem of providing both exact and asymptotic 60
high-signal-to-noise-ratio (SNR) and low-SNR expressions for the 61
effective throughput of independent and identically distributed (i.i.d.) 62
and independent and nonidentically distributed (i.n.i.d.) κ–μ fading 63
channels. 64

The rest of this paper is organized as follows. Section II describes 65
the general system model and the mathematical characteristics of κ–μ 66
fading channels. In Section III, we derive new exact expressions for 67
the effective throughput of MISO systems communicating over i.i.d. 68
κ–μ fading channels and present closed-form effective throughput 69
expressions both for high SNRs and for the minimum transmit en- 70
ergy per information bit for the sake of quantifying the effect of 71
system parameters on the effective throughput. Moreover, the effective 72
throughput for the case of i.n.i.d. κ–μ fading channels is analyzed in 73
Section IV. Finally, our theoretical and Monte Carlo simulation results 74
are compared in Section V in terms of the effective throughput, and 75
Section VI concludes this paper. 76

II. SYSTEM AND CHANNEL MODEL 77

We consider a MISO system model and assume that the transmitter 78
is equipped with Nt antennas. The flat-fading channel’s input–output 79
relation can be expressed as y = hx+ n, where h ∈ C

1×Nt de- 80
notes the MISO channel’s fading vector, whereas x is the transmit 81
vector having a covariance of E{xx†} = Q, where E{·} is the ex- 82
pectation operator, which is subjected to the sum-power constraint 83
of tr(Q) ≤ P , where tr(·) is the matrix trace. Moreover, n rep- 84
resents the complex additive white Gaussian noise term with zero 85
mean and variance N0, respectively. Finally, we assume that the 86
same power is assigned to the transmit antennas; hence, we have 87
Q = (P/Nt)I. 88

As a generalized link-level capacity notion of uncorrelated station- 89
ary fading channels, whose response varies from one transmission 90
block to another by obeying a certain distribution but remains constant 91
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within a single block, the effective capacity of the service process is92
defined as [13]193

α(θ) = −(1/θT ) ln (E {exp(−θTC)}) , θ �= 0 (1)

where C represents the system’s throughput during a single block, and94
T denotes the duration of the block, whereas the delay exponent95

θ = − lim
lth→∞

lnPr[L > lth]

lth
(2)

of (1) reflects that any throughput improvement attained at the cost96
of a high delay is devalued. In (2), lth is the threshold of queue97
length, and L is the equilibrium queue length of the buffer assumed98
to be available at the transmitter. When lth → ∞, the tail distribution99
function Pr[L > lth] can be asymptotically written as Pr[L > lth] ≈100
eθlth according to the large deviations theory [5]. Again, the delay101
exponent has to satisfy the constraint of θ ≥ θ0, where θ0 is the min-102
imum required decay rate. Once a delay requirement is violated, the103
corresponding data packet is discarded in the queue. More particularly,104
a larger θ0 implies a tighter delay constraint. Note that when no delay105
constraint is imposed, i.e., we have θ0 → 0, the effective throughput106
tends to the classic ergodic throughput of the corresponding wireless107
channel.108

Assuming that the transmitter sends uncorrelated circularly sym-109
metric zero-mean complex Gaussian signals, the effective throughput110
can be succinctly expressed as follows [11]:111

R(ρ, θ) = − 1
A

log2

(
E

{(
1 +

ρ

Nt

hh†
)−A

})
bits/s/Hz (3)

where we have A = θTB/ ln 2, with B denoting the bandwidth of the112
system, whereas ρ is the average SNR.113

The κ–μ distribution models the small-scale variation of the fading114
signal in a nonhomogeneous environment. The probability density115
function (pdf) of the κ–μ fading channels’ output SNR is given by116
[12, eq. (10)]117

pκ−μ(ω) =
μ(1 + κ)

μ+1
2 ω

μ−1
2

exp(μκ)κ
μ−1
2 Ω

μ+1
2

exp

(
−μ(1 + κ)ω

Ω

)

× Iμ−1

(
2μ

√
κ(1 + κ)ω

Ω

)
(4)

where κ denotes the ratio between the total power of the dominant118
components and the total power of the scattered waves, μ is related119
to the number of multipath clusters, and Iv(·) is the modified Bessel120
function of the first kind with order v [14, eq. (8.445)].121

III. INDEPENDENT AND IDENTICAL κ–μ FADING122

A. Exact Analysis123

Here, we present the exact effective throughput analysis of the124
κ–μ fading models introduced in Section II. More specifically, the125
entries of channel vector h are assumed to be i.i.d. κ–μ random126
variables (RVs).127

We commence our analysis by invoking [12], where it was shown128
that the sum of M i.i.d. squared κ–μ distributed RVs with parameters129
κ, μ, and Ω is also a κ–μ distribution with parameters κ, Mμ,130

1The packet arrival process and the server strategy employed in the queuing
system are those introduced in [5] and [13].

and MΩ. Using [12, eq. (10)], after a number of manipulations, we 131
arrive at the pdf of z =

∑Nt

k=1
|hk|2, i.e., 132

pi.i.d.(z) =
μNt(1 + κ)

μNt+1
2 z

μNt−1
2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

exp

(
−μ(1 + κ)z

Ω

)

× IμNt−1

(
2u

√
κ(1 + κ)Ntz

Ω

)
(5)

=
μNt(1 + κ)

μNt+1
2 z

μNt−1
2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

exp

(
−μ(1 + κ)z

Ω

)

×
∞∑
l=0

1
l!Γ(μNt + l)

(
μ

√
κ(1 + κ)Ntz

Ω

)μNt+2l−1

(6)

where we proceed from (5) to (6) by exploiting [14, eq. (8.445)]. 133
Upon substituting (6) into (3), there is an integral in the form of 134
(1 + ρz/Nt)

−A, zμNt+l−1, and exp(−(μ(1 + κ)z/Ω)). The effec- 135
tive throughput of MISO i.i.d. κ–μ fading channels is given by 136

Ri.i.d.(ρ, θ) =
μNtκ

A ln 2
+ log2

(
Ωρ

μNt(1 + κ)

)

− 1
A

log2

(
∞∑
l=0

(μNtκ)
l

Γ(l+1)
U

(
A;A+1−μNt−l;

μNt(1+κ)

Ωρ

))

(7)

where U(·) is the Tricomi hypergeometric function [14, eq. (13.1.3)], 137
and we have used the integral equation of [15, eq. (39)], i.e., 138

∞∫
0

(1+ax)−vxq−1e−pxdx = a−qΓ(q)U (q, q+1−v, p/a)

where the conditions of Re(q) > 0, Re(p) > 0, and Re(a) > 0 are 139
met. In addition, Kummer’s transformation U(a; b;x) = x1−bU(a− 140
b+ 1; 2 − b;x) [16, eq. (07.33.17.0007.01)] is used. Note that for the 141
case of Rician fading channels (e.g., κ = K, μ = 1, where K is the 142
Rician K-factor), (7) reduces to [11, eq. (34)]. 143

Since (7) is expressed in the form of an infinite series, we should 144
demonstrate its convergence by seeking to quantify the truncation error 145
imposed by a limited number of terms. Assuming that T0 terms are 146
used, the associated truncation error E0 can be expressed as 147

E0 =

∞∑
l=T0

(μNtκ)
l

Γ(l+1)
U

(
A;A+1−μNt−l;

μNt(1+κ)

Ωρ

)

<U

(
A;A+1−μNt−T0;

μNt(1+κ)

Ωρ

) ∞∑
l=T0

(μNtκ)
l

Γ(l+1)
(8)

where we have exploited the fact that U(a, b− l, z) is a monotoni- 148
cally decreasing function of l. With the aid of [17, eq. (6.5.4)] and 149
[17, eq. (6.5.29)], (8) may be streamlined to 150

E0 < U

(
A;A+ 1 − μNt − T0;

μNt(1 + κ)

Ωρ

)

× exp (μκNt)

(
1 − Γ(T0, μκNt)

Γ(T0)

)
(9)

where Γ(·, ·) represents the upper incomplete gamma function 151
[14, eq. (8.350.2)]. 152
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The given expressions are exact; however, they only provide limited153
physical insights into the quantitative effects of the parameters (e.g.,154
the number of transmit antennas, the delay-related exponent, and the155
number of multipath clusters) on the effective throughput. Let us hence156
elaborate further by considering both the high- and low-SNR regions157
of operation.158

B. Asymptotic Analysis159

We commence with the high-SNR analysis. By retaining only the160
dominant term in (3) as ρ → ∞, we arrive at161

E

{(
ρ

Nt

hh†
)−A

}
=
(

ρ

Nt

)−A μNt(1 + κ)
μNt+1

2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

×
∞∫
0

z(μNt−1)/2−A

exp (μ(1 + κ) z/Ω)
IμNt−1

(
2μ

√
κ(1 + κ)Ntz

Ω

)
dz.

(10)

The given integral can now be evaluated using [18, eq. (3.15.2.5)],162
upon exploiting that A < μNt. Finally, the effective throughput at-163
tained at high SNRs and for A < μNt may be approximated for MISO164
κ–μ fading channels as165

R∞
i.i.d.(ρ, θ) = log2

(
Ωρ

μNt(1 + κ)

)
+

κμNt

A ln 2

− 1
A

log2

(
Γ(μNt −A)

Γ(μNt)
1F1(μNt −A;μNt;κμNt)

)
(11)

where 1F1 is the confluent hypergeometric function [14, eq. (9.238.2)].166
Note that the effective throughput achieved at high SNRs is a monoton-167
ically increasing function of κ. This is anticipated, since larger values168
of κ result in more deterministic fading. When considering the Rician169
fading case, (11) reduces to [11, eq. (49)].170

Let us now investigate the effective throughput of κ–μ fading171
channels in the power-limited low-SNR region, where the effective172
throughput can be approximated by a second-order Taylor expan-173
sion of the SNR following the generic methodology in [19]. More174
particularly, we can approximate the effective throughput as ρ → 0+175
according to176

R(ρ, θ) = R′(0, θ) ρ+R′′(0, θ)
ρ2

2
+ o (ρ2) (12)

where R′(0, θ) and R′′(0, θ) denote the first- and second-order deriva-177
tives of the effective throughput with respect to the SNR, ρ, at ρ = 0,178
respectively.179

However, it has been shown in [20] that the Taylor expansion180
method may, in fact, result in misleading conclusions regarding the181
impact of the channel in the low-SNR region. Hence, it is beneficial to182
explore the effective throughput at low SNRs in terms of the normal-183
ized transmit energy per information bit Eb/N0, which is formulated184
as [20]185

R
(
Eb

N0

)
≈ S0 log2

(
Eb

N0

/
Eb

N0 min

)
(13)

where Eb/N0min is the minimum normalized energy per information186
bit required for reliably conveying any nonzero throughput, whereas187

S0 denotes the throughput versus SNR slope defined in [8]. These 188
metrics are defined respectively as 189

Eb

N0 min

Δ
= lim

ρ→0

ρ

R(ρ, θ)
=

1
R′(0, θ)

(14)

S0
Δ
= −2 [R′(0, θ)]2 ln 2

R′′(0, θ)
. (15)

Due to space limitations, we omit the explicit details, and upon 190
following a similar line of reasoning as in [9, Appendix I], we arrive 191
at the first- and second-order derivatives seen in (14) and (15) in the 192
form of 193

R′(0, θ) =
1

Nt ln 2
E{hh†} (16)

R′′(0, θ) =
A

N2
t ln 2

(
E{hh†}

)2 − A+ 1
N2

t ln 2
E
{
(hh†)2

}
.

(17)

Recalling that E{|hk|2} = Ω, we may readily infer that E{hh†} = 194
NtΩ. With the aid of (4) and [18, eq. (3.15.2.5)], the fourth moment 195
of |hk| can now be expressed as 196

E
{
|hk|4

}
= NtΩ

2

(
1 + 2κ

μ(1 + κ)2
+Nt

)
(18)

where we have utilized [14, eq. (9.212.1)] and [14, eq. (9.210.1)]. With 197
(18) at our disposal, we can readily deduce that 198

E
{
(hh†)2

}
= E

{(
Nt∑
k=1

|hk|2
)2}

=

Nt∑
k=1

E
{
|hk|4

}
+

Nt∑
k=1

Nt∑
j=1,j �=k

E
{
|hk|2|hj |2

}

=NtΩ
2

(
1 + 2κ

μ(1 + κ)2
+Nt

)
. (19)

Substituting (19) into (17) and then applying (14) and (15), the 199
low-SNR metrics of MISO κ–μ fading channels can be respectively 200
expressed as 201

Eb

N0 min

=
ln 2
Ω

(20)

S0 =
2μNt(1 + κ)2

(A+ 1)(1 + 2κ) + μNt(1 + κ)2
. (21)

Observe in (21) that the low-SNR slope is an increasing function of 202
both κ and μ, whereas it is a monotonically decreasing function of A, 203
satisfying 0 < S0 < 2 for a fixed Nt. It is also worth mentioning that 204
Eb/N0min is independent of both κ and delay constraint θ. Note that 205
for the case of Rician fading channels, the throughput-versus-SNR- 206
slope expression of (21) reduces to 207

S0 =
2Nt(K + 1)2

Nt(K + 1)2 + (A+ 1)2K+1
(22)

which coincides with [11, eq. (41)]. 208

IV. INDEPENDENT AND NONIDENTICAL κ–μ FADING 209

Let us now move on to consider the case of wireless systems 210
communicating over i.n.i.d. MISO κ–μ fading channels. The pdf of 211
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the sum of M i.n.i.d. squared κ–μ distributed RVs associated with212
parameters κm, μm, and Ωm is given by [21, eq. (4)], i.e.,213

pi.n.i.d.(z) =
e
− z

2β zV −1

(2β)V Γ(V )

∞∑
k=0

k!ck
(V )k

L
(V −1)
k

(
Uz

2βξ

)
(23)

where V =
∑M

m=1
μm, (u)v = Γ(u+ v)/Γ(u) is the Pochhammer214

symbol [14], and Lα
n(·) is the generalized Laguerre polynomial215

[16, eq. (05.08.02.0001.01)], namely216

Lv
n(y) =

Γ(v + n+ 1)
n!

n∑
q=0

(−n)qy
q

q!Γ(v + q + 1)
, n ∈ N. (24)

Then, (23) can be alternatively expressed as217

pi.n.i.d.(z) =
e

−z
2β

(2β)V

∞∑
k=0

ck

k∑
q=0

(−k)qz
q+V −1

q!Γ(V + q)

(
V

2βξ

)q

. (25)

Note that the coefficients ck can be recursively obtained following218
the equations [21, eq. (5a–5c)]219

ck =
1
k

k∑
j=0

cjdk−j , k � 1 (26)

c0 =

(
V

ξ

)V

exp

(
−1

2

M∑
m=1

λmam(V − ξ)

βξ + am(V − ξ)

)

×
M∏

m=1

(
1 +

am

β
(V/ξ − 1)

)−μm

(27)

dj = − jβV

2ξ

M∑
m=1

λmam(β − am)j−1

(
ξ

βξ + am(V − ξ)

)j+1

+

M∑
m=1

μm

(
1 − am/β

1 + (am/β)(V/ξ − 1)

)j

, j � 1 (28)

where λm = 2μmκm, am = Ωm/2μm(1 + κm). Note that param-220
eters ξ and β are chosen to guarantee the uniform convergence of221
(23) according to [22, Remark 3.1]. By substituting (25) into (3) and222
using the identity [15, eq. (39)], we arrive at the effective throughput223
expression of MISO i.n.i.d. κ–μ fading channels formulated as224

Ri.n.i.d. = log2

(
2βρ
Nt

)
− 1

A

∞∑
k=0

ck

k∑
q=0

(−k)q
q!

(
V

ξ

)q

×U

(
A;A+ 1 − q − V ;

Nt

2βρ

)
. (29)

V. NUMERICAL RESULTS225

Here, the theoretical analysis presented in Sections III and IV is val-226
idated with the aid of Monte Carlo simulations, which were derived by227
averaging the results over 107 independent κ–μ channel realizations.228
We generate the squared κ–μ fading samples using the noncentral229
chi-square distribution method in [21]. These results are provided for230
characterizing the effects of different system and channel parameters231
on the effective throughput of MISO systems communicating over232
κ–μ fading channels. Without loss of generality, we normalize the233
bandwidth of the system as B = 1 Hz.234

In Fig. 1, the effective throughput results of our Monte Carlo simula-235
tor are compared with the exact analytical expressions provided in (7)236

Fig. 1. Simulated and analytical effective throughput against delay exponent
θ and T for MISO i.i.d. κ–μ fading channels (Nt = 2, ρ = −10 dB, Ω = 1,
κ = 1, and μ = 1).

Fig. 2. Simulated high- and low-Eb/N0 approximation effective throughput
against Eb/N0 for MISO i.i.d. κ–μ fading channels (Nt = 4, T = 1 s, θ =
0.1, and μ = 1).

in Section III for different block lengths and delay exponents. Observe 237
that there is a good agreement between the effective throughput 238
given by the theoretical formulas and those obtained by Monte Carlo 239
simulations. As expected, it can be seen that the effective throughput 240
is consistently reduced upon increasing θ and T . For example, when 241
T increases from 1 to 7, the effective throughput reduces from 0.12 to 242
0.07 bits/s/Hz at θ = 6. Additionally, it is interesting to note that as T 243
increases, the gap between the corresponding curves increases, which 244
implies that its effect becomes more pronounced. These observations 245
explicitly quantify the well-understood physical relationship between 246
the effective throughput and the affordable transmission delay and are 247
consistent with the results presented in [11], [9], and [8]. 248

Fig. 2 shows the simulated effective throughput, its low-Eb/N0 249
approximation seen in (13), and its high-Eb/N0 approximation quanti- 250
fied in (11) after using the relationship Eb/N0 = ρ/R. Quantitatively, 251
we have a 3-dB reduction in the minimum energy per bit upon 252
increasing the average fading power Ω by 50%. It is also readily 253
shown in Fig. 2 that increasing κ increases the effective throughput 254
due to having an increased throughput versus SNR slope S0 and so 255
does the average fading power Ω but leaves the required Eb/N0min 256
value unaffected. The curves shown in Fig. 2 also show that the 257
approximation of the exact throughput is remarkably tight for all the 258
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Fig. 3. Simulated and analytical effective throughput against parame-
ters A and Nt for MISO i.n.i.d. κ–μ fading channels [Ω = 1, κ =
(2.5, 3.5, 1.1, 1.75), and μ = (1.5, 0.75, 2.5, 3.75)].

scenarios considered, but its accuracy is even improved for larger259
values of the fading parameters.260

The simulated and analytical effective throughput of MISO i.n.i.d.261
κ–μ fading channels recorded for different values of Nt and A262
as a function of the average SNR ρ are plotted in Fig. 3. The263
fading parameters are selected as κ = (2.5, 3.5, 1.1, 1.75) and μ =264
(1.5, 0.75, 2.5, 3.75), respectively. It is clear that the effective through-265
put is a monotonically decreasing function of A, which implies266
that improving delay constraints reduces the effective throughput.267
Additionally, more transmit antennas Nt yield a higher throughput;268
although, the gap between the corresponding curves decreases as Nt269
increases. This observation implies that the effect of Nt becomes less270
pronounced.271

VI. CONCLUSION272

The novelty of using the effective throughput as a performance273
metric is that it quantifies the effects of delay on the attainable274
throughput, which is reduced upon tightening the affordable delay.275
As the delay tends to infinity, the effective throughput tends to the276
ergodic capacity. We have derived new analytical expressions for the277
exact effective throughput of MISO systems communicating over κ–μ278
fading channels. Although the exact expression is given in terms of279
an infinite series, the associated truncation error was also analytically280
quantified. Quantitatively, it can be seen that as few as ten terms are281
required for a high accuracy of 10−6 in the series. To gain physical282
insights into the impact of system parameters, we presented a closed-283
form expression for the effective throughput at high SNRs. Moreover,284
tractable expressions have been derived for both the minimum transmit285
energy per information bit required for reliably conveying any nonzero286
throughput at low SNRs. The results are applicable to the design of287
next-generation wireless systems.288
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Abstract—The effective throughput of multiple-input–single-output5
(MISO) systems communicating over both independent and identically6
distributed (i.i.d.) and independent and nonidentically distributed (i.n.i.d.)7
κ–μ fading channels is investigated under delay constraints. New ana-8
lytical expressions are derived for the exact effective throughput of both9
channels. Moreover, we present tractable closed-form effective throughput10
expressions in the asymptotically high- and low-signal-to-noise-ratio (SNR)11
regimes for i.i.d. κ–μ fading channels. These results enable us to investi-12
gate the impact of system parameters on the effective throughput of MISO13
κ–μ fading channels. We demonstrate that as the affordable delay tends to14
infinity, the effective throughput is increased to the classic ergodic capacity.15
By contrast, the effective throughput of delay-constrained near-real-time16
systems fails to approach the ergodic capacity.17

Index Terms—Delay constraint, delay-limited capacity, effective capac-18
ity, κ–μ distribution, multiple-input single-output (MISO).19

I. INTRODUCTION20

The ergodic capacity of multiple-antenna systems has been in-21
vestigated for transmission over various fading channels in [1]–[3].22
However, emerging real-time applications, such as voice over Internet23
Protocol and mobile TV, have imposed stringent quality-of-service24
(QoS) constraints. In this context, Shannon’s ergodic capacity can-25
not account for the transmission delay of the system. However, it26
would be highly desirable to quantify the delay-limited capacity of27
a system, which is a challenging task. The first contribution in this28
content was produced by Hanly and Tse in [4]. Hence, a QoS metric29
capable of capturing the delay constraints of communication systems30
is required. Motivated by this open problem, the concept of effective31
throughput (or effective capacity, effective rate) has been proposed32
in [5] for taking the system’s delay into account. Since then, several33
authors have investigated the effective capacity of various systems.34
For example, Femenias et al. in [6] investigated the effective capacity35
of wireless cross-layer networks combining adaptive modulation and36
coding at the physical layer with an automatic repeat request protocol37
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at the data-link layer. In [7], an analytical model of the effective capac- 38
ity found in proportional fair scheduling used in orthogonal frequency- 39
division multiple-access systems in the context of user multiplexing 40
was presented. 41

The effective throughput of multiple-input–single-output (MISO) 42
systems, such as the optimal precoding scheme relying on covariance 43
feedback, was derived for correlated MISO systems [8], whereas 44
that of correlated MISO channels was presented in [9]. In [10], 45
Li characterized the effective throughput of cognitive MISO systems 46
subjected to channel estimation errors. Moreover, Matthaiou et al. 47
in [11] provided a detailed effective throughput analysis of 48
Nakagami-m, Rician, and generalized-K MISO fading channels. 49
However, the existence of these well-known fading distributions is 50
based on the assumption of a homogeneous scattering environment, 51
which is often unrealistic, since the waves reflected by a surface are 52
spatially correlated in most propagation environments. 53

Hence, the κ–μ distribution has been proposed in [12] for character- 54
izing the inhomogeneous nature of fading channels. This generalized 55
fading model is capable of providing a better fit to experimental data 56
than the aforementioned models. Additionally, it has been shown in 57
[12] that the κ–μ distribution encompasses the Rician, Nakagami-m, 58
and Rayleigh distributions as special cases. Against this background, 59
we solve the open problem of providing both exact and asymptotic 60
high-signal-to-noise-ratio (SNR) and low-SNR expressions for the 61
effective throughput of independent and identically distributed (i.i.d.) 62
and independent and nonidentically distributed (i.n.i.d.) κ–μ fading 63
channels. 64

The rest of this paper is organized as follows. Section II describes 65
the general system model and the mathematical characteristics of κ–μ 66
fading channels. In Section III, we derive new exact expressions for 67
the effective throughput of MISO systems communicating over i.i.d. 68
κ–μ fading channels and present closed-form effective throughput 69
expressions both for high SNRs and for the minimum transmit en- 70
ergy per information bit for the sake of quantifying the effect of 71
system parameters on the effective throughput. Moreover, the effective 72
throughput for the case of i.n.i.d. κ–μ fading channels is analyzed in 73
Section IV. Finally, our theoretical and Monte Carlo simulation results 74
are compared in Section V in terms of the effective throughput, and 75
Section VI concludes this paper. 76

II. SYSTEM AND CHANNEL MODEL 77

We consider a MISO system model and assume that the transmitter 78
is equipped with Nt antennas. The flat-fading channel’s input–output 79
relation can be expressed as y = hx+ n, where h ∈ C

1×Nt de- 80
notes the MISO channel’s fading vector, whereas x is the transmit 81
vector having a covariance of E{xx†} = Q, where E{·} is the ex- 82
pectation operator, which is subjected to the sum-power constraint 83
of tr(Q) ≤ P , where tr(·) is the matrix trace. Moreover, n rep- 84
resents the complex additive white Gaussian noise term with zero 85
mean and variance N0, respectively. Finally, we assume that the 86
same power is assigned to the transmit antennas; hence, we have 87
Q = (P/Nt)I. 88

As a generalized link-level capacity notion of uncorrelated station- 89
ary fading channels, whose response varies from one transmission 90
block to another by obeying a certain distribution but remains constant 91

0018-9545 © 2013 IEEE
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within a single block, the effective capacity of the service process is92
defined as [13]193

α(θ) = −(1/θT ) ln (E {exp(−θTC)}) , θ �= 0 (1)

where C represents the system’s throughput during a single block, and94
T denotes the duration of the block, whereas the delay exponent95

θ = − lim
lth→∞

lnPr[L > lth]

lth
(2)

of (1) reflects that any throughput improvement attained at the cost96
of a high delay is devalued. In (2), lth is the threshold of queue97
length, and L is the equilibrium queue length of the buffer assumed98
to be available at the transmitter. When lth → ∞, the tail distribution99
function Pr[L > lth] can be asymptotically written as Pr[L > lth] ≈100
eθlth according to the large deviations theory [5]. Again, the delay101
exponent has to satisfy the constraint of θ ≥ θ0, where θ0 is the min-102
imum required decay rate. Once a delay requirement is violated, the103
corresponding data packet is discarded in the queue. More particularly,104
a larger θ0 implies a tighter delay constraint. Note that when no delay105
constraint is imposed, i.e., we have θ0 → 0, the effective throughput106
tends to the classic ergodic throughput of the corresponding wireless107
channel.108

Assuming that the transmitter sends uncorrelated circularly sym-109
metric zero-mean complex Gaussian signals, the effective throughput110
can be succinctly expressed as follows [11]:111

R(ρ, θ) = − 1
A

log2

(
E

{(
1 +

ρ

Nt

hh†
)−A

})
bits/s/Hz (3)

where we have A = θTB/ ln 2, with B denoting the bandwidth of the112
system, whereas ρ is the average SNR.113

The κ–μ distribution models the small-scale variation of the fading114
signal in a nonhomogeneous environment. The probability density115
function (pdf) of the κ–μ fading channels’ output SNR is given by116
[12, eq. (10)]117

pκ−μ(ω) =
μ(1 + κ)

μ+1
2 ω

μ−1
2

exp(μκ)κ
μ−1
2 Ω

μ+1
2

exp

(
−μ(1 + κ)ω

Ω

)

× Iμ−1

(
2μ

√
κ(1 + κ)ω

Ω

)
(4)

where κ denotes the ratio between the total power of the dominant118
components and the total power of the scattered waves, μ is related119
to the number of multipath clusters, and Iv(·) is the modified Bessel120
function of the first kind with order v [14, eq. (8.445)].121

III. INDEPENDENT AND IDENTICAL κ–μ FADING122

A. Exact Analysis123

Here, we present the exact effective throughput analysis of the124
κ–μ fading models introduced in Section II. More specifically, the125
entries of channel vector h are assumed to be i.i.d. κ–μ random126
variables (RVs).127

We commence our analysis by invoking [12], where it was shown128
that the sum of M i.i.d. squared κ–μ distributed RVs with parameters129
κ, μ, and Ω is also a κ–μ distribution with parameters κ, Mμ,130

1The packet arrival process and the server strategy employed in the queuing
system are those introduced in [5] and [13].

and MΩ. Using [12, eq. (10)], after a number of manipulations, we 131
arrive at the pdf of z =

∑Nt

k=1
|hk|2, i.e., 132

pi.i.d.(z) =
μNt(1 + κ)

μNt+1
2 z

μNt−1
2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

exp

(
−μ(1 + κ)z

Ω

)

× IμNt−1

(
2u

√
κ(1 + κ)Ntz

Ω

)
(5)

=
μNt(1 + κ)

μNt+1
2 z

μNt−1
2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

exp

(
−μ(1 + κ)z

Ω

)

×
∞∑
l=0

1
l!Γ(μNt + l)

(
μ

√
κ(1 + κ)Ntz

Ω

)μNt+2l−1

(6)

where we proceed from (5) to (6) by exploiting [14, eq. (8.445)]. 133
Upon substituting (6) into (3), there is an integral in the form of 134
(1 + ρz/Nt)

−A, zμNt+l−1, and exp(−(μ(1 + κ)z/Ω)). The effec- 135
tive throughput of MISO i.i.d. κ–μ fading channels is given by 136

Ri.i.d.(ρ, θ) =
μNtκ

A ln 2
+ log2

(
Ωρ

μNt(1 + κ)

)

− 1
A

log2

(
∞∑
l=0

(μNtκ)
l

Γ(l+1)
U

(
A;A+1−μNt−l;

μNt(1+κ)

Ωρ

))

(7)

where U(·) is the Tricomi hypergeometric function [14, eq. (13.1.3)], 137
and we have used the integral equation of [15, eq. (39)], i.e., 138

∞∫
0

(1+ax)−vxq−1e−pxdx = a−qΓ(q)U (q, q+1−v, p/a)

where the conditions of Re(q) > 0, Re(p) > 0, and Re(a) > 0 are 139
met. In addition, Kummer’s transformation U(a; b;x) = x1−bU(a− 140
b+ 1; 2 − b;x) [16, eq. (07.33.17.0007.01)] is used. Note that for the 141
case of Rician fading channels (e.g., κ = K, μ = 1, where K is the 142
Rician K-factor), (7) reduces to [11, eq. (34)]. 143

Since (7) is expressed in the form of an infinite series, we should 144
demonstrate its convergence by seeking to quantify the truncation error 145
imposed by a limited number of terms. Assuming that T0 terms are 146
used, the associated truncation error E0 can be expressed as 147

E0 =

∞∑
l=T0

(μNtκ)
l

Γ(l+1)
U

(
A;A+1−μNt−l;

μNt(1+κ)

Ωρ

)

<U

(
A;A+1−μNt−T0;

μNt(1+κ)

Ωρ

) ∞∑
l=T0

(μNtκ)
l

Γ(l+1)
(8)

where we have exploited the fact that U(a, b− l, z) is a monotoni- 148
cally decreasing function of l. With the aid of [17, eq. (6.5.4)] and 149
[17, eq. (6.5.29)], (8) may be streamlined to 150

E0 < U

(
A;A+ 1 − μNt − T0;

μNt(1 + κ)

Ωρ

)

× exp (μκNt)

(
1 − Γ(T0, μκNt)

Γ(T0)

)
(9)

where Γ(·, ·) represents the upper incomplete gamma function 151
[14, eq. (8.350.2)]. 152
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The given expressions are exact; however, they only provide limited153
physical insights into the quantitative effects of the parameters (e.g.,154
the number of transmit antennas, the delay-related exponent, and the155
number of multipath clusters) on the effective throughput. Let us hence156
elaborate further by considering both the high- and low-SNR regions157
of operation.158

B. Asymptotic Analysis159

We commence with the high-SNR analysis. By retaining only the160
dominant term in (3) as ρ → ∞, we arrive at161

E

{(
ρ

Nt

hh†
)−A

}
=
(

ρ

Nt

)−A μNt(1 + κ)
μNt+1

2

eμNtκκ
μNt−1

2 (ΩNt)
μNt+1

2

×
∞∫
0

z(μNt−1)/2−A

exp (μ(1 + κ) z/Ω)
IμNt−1

(
2μ

√
κ(1 + κ)Ntz

Ω

)
dz.

(10)

The given integral can now be evaluated using [18, eq. (3.15.2.5)],162
upon exploiting that A < μNt. Finally, the effective throughput at-163
tained at high SNRs and for A < μNt may be approximated for MISO164
κ–μ fading channels as165

R∞
i.i.d.(ρ, θ) = log2

(
Ωρ

μNt(1 + κ)

)
+

κμNt

A ln 2

− 1
A

log2

(
Γ(μNt −A)

Γ(μNt)
1F1(μNt −A;μNt;κμNt)

)
(11)

where 1F1 is the confluent hypergeometric function [14, eq. (9.238.2)].166
Note that the effective throughput achieved at high SNRs is a monoton-167
ically increasing function of κ. This is anticipated, since larger values168
of κ result in more deterministic fading. When considering the Rician169
fading case, (11) reduces to [11, eq. (49)].170

Let us now investigate the effective throughput of κ–μ fading171
channels in the power-limited low-SNR region, where the effective172
throughput can be approximated by a second-order Taylor expan-173
sion of the SNR following the generic methodology in [19]. More174
particularly, we can approximate the effective throughput as ρ → 0+175
according to176

R(ρ, θ) = R′(0, θ) ρ+R′′(0, θ)
ρ2

2
+ o (ρ2) (12)

where R′(0, θ) and R′′(0, θ) denote the first- and second-order deriva-177
tives of the effective throughput with respect to the SNR, ρ, at ρ = 0,178
respectively.179

However, it has been shown in [20] that the Taylor expansion180
method may, in fact, result in misleading conclusions regarding the181
impact of the channel in the low-SNR region. Hence, it is beneficial to182
explore the effective throughput at low SNRs in terms of the normal-183
ized transmit energy per information bit Eb/N0, which is formulated184
as [20]185

R
(
Eb

N0

)
≈ S0 log2

(
Eb

N0

/
Eb

N0 min

)
(13)

where Eb/N0min is the minimum normalized energy per information186
bit required for reliably conveying any nonzero throughput, whereas187

S0 denotes the throughput versus SNR slope defined in [8]. These 188
metrics are defined respectively as 189

Eb

N0 min

Δ
= lim

ρ→0

ρ

R(ρ, θ)
=

1
R′(0, θ)

(14)

S0
Δ
= −2 [R′(0, θ)]2 ln 2

R′′(0, θ)
. (15)

Due to space limitations, we omit the explicit details, and upon 190
following a similar line of reasoning as in [9, Appendix I], we arrive 191
at the first- and second-order derivatives seen in (14) and (15) in the 192
form of 193

R′(0, θ) =
1

Nt ln 2
E{hh†} (16)

R′′(0, θ) =
A

N2
t ln 2

(
E{hh†}

)2 − A+ 1
N2

t ln 2
E
{
(hh†)2

}
.

(17)

Recalling that E{|hk|2} = Ω, we may readily infer that E{hh†} = 194
NtΩ. With the aid of (4) and [18, eq. (3.15.2.5)], the fourth moment 195
of |hk| can now be expressed as 196

E
{
|hk|4

}
= NtΩ

2

(
1 + 2κ

μ(1 + κ)2
+Nt

)
(18)

where we have utilized [14, eq. (9.212.1)] and [14, eq. (9.210.1)]. With 197
(18) at our disposal, we can readily deduce that 198

E
{
(hh†)2

}
= E

{(
Nt∑
k=1

|hk|2
)2}

=

Nt∑
k=1

E
{
|hk|4

}
+

Nt∑
k=1

Nt∑
j=1,j �=k

E
{
|hk|2|hj |2

}

=NtΩ
2

(
1 + 2κ

μ(1 + κ)2
+Nt

)
. (19)

Substituting (19) into (17) and then applying (14) and (15), the 199
low-SNR metrics of MISO κ–μ fading channels can be respectively 200
expressed as 201

Eb

N0 min

=
ln 2
Ω

(20)

S0 =
2μNt(1 + κ)2

(A+ 1)(1 + 2κ) + μNt(1 + κ)2
. (21)

Observe in (21) that the low-SNR slope is an increasing function of 202
both κ and μ, whereas it is a monotonically decreasing function of A, 203
satisfying 0 < S0 < 2 for a fixed Nt. It is also worth mentioning that 204
Eb/N0min is independent of both κ and delay constraint θ. Note that 205
for the case of Rician fading channels, the throughput-versus-SNR- 206
slope expression of (21) reduces to 207

S0 =
2Nt(K + 1)2

Nt(K + 1)2 + (A+ 1)2K+1
(22)

which coincides with [11, eq. (41)]. 208

IV. INDEPENDENT AND NONIDENTICAL κ–μ FADING 209

Let us now move on to consider the case of wireless systems 210
communicating over i.n.i.d. MISO κ–μ fading channels. The pdf of 211
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the sum of M i.n.i.d. squared κ–μ distributed RVs associated with212
parameters κm, μm, and Ωm is given by [21, eq. (4)], i.e.,213

pi.n.i.d.(z) =
e
− z

2β zV −1

(2β)V Γ(V )

∞∑
k=0

k!ck
(V )k

L
(V −1)
k

(
Uz

2βξ

)
(23)

where V =
∑M

m=1
μm, (u)v = Γ(u+ v)/Γ(u) is the Pochhammer214

symbol [14], and Lα
n(·) is the generalized Laguerre polynomial215

[16, eq. (05.08.02.0001.01)], namely216

Lv
n(y) =

Γ(v + n+ 1)
n!

n∑
q=0

(−n)qy
q

q!Γ(v + q + 1)
, n ∈ N. (24)

Then, (23) can be alternatively expressed as217

pi.n.i.d.(z) =
e

−z
2β

(2β)V

∞∑
k=0

ck

k∑
q=0

(−k)qz
q+V −1

q!Γ(V + q)

(
V

2βξ

)q

. (25)

Note that the coefficients ck can be recursively obtained following218
the equations [21, eq. (5a–5c)]219

ck =
1
k

k∑
j=0

cjdk−j , k � 1 (26)

c0 =

(
V

ξ

)V

exp

(
−1

2

M∑
m=1

λmam(V − ξ)

βξ + am(V − ξ)

)

×
M∏

m=1

(
1 +

am

β
(V/ξ − 1)

)−μm

(27)

dj = − jβV

2ξ

M∑
m=1

λmam(β − am)j−1

(
ξ

βξ + am(V − ξ)

)j+1

+

M∑
m=1

μm

(
1 − am/β

1 + (am/β)(V/ξ − 1)

)j

, j � 1 (28)

where λm = 2μmκm, am = Ωm/2μm(1 + κm). Note that param-220
eters ξ and β are chosen to guarantee the uniform convergence of221
(23) according to [22, Remark 3.1]. By substituting (25) into (3) and222
using the identity [15, eq. (39)], we arrive at the effective throughput223
expression of MISO i.n.i.d. κ–μ fading channels formulated as224

Ri.n.i.d. = log2

(
2βρ
Nt

)
− 1

A

∞∑
k=0

ck

k∑
q=0

(−k)q
q!

(
V

ξ

)q

×U

(
A;A+ 1 − q − V ;

Nt

2βρ

)
. (29)

V. NUMERICAL RESULTS225

Here, the theoretical analysis presented in Sections III and IV is val-226
idated with the aid of Monte Carlo simulations, which were derived by227
averaging the results over 107 independent κ–μ channel realizations.228
We generate the squared κ–μ fading samples using the noncentral229
chi-square distribution method in [21]. These results are provided for230
characterizing the effects of different system and channel parameters231
on the effective throughput of MISO systems communicating over232
κ–μ fading channels. Without loss of generality, we normalize the233
bandwidth of the system as B = 1 Hz.234

In Fig. 1, the effective throughput results of our Monte Carlo simula-235
tor are compared with the exact analytical expressions provided in (7)236

Fig. 1. Simulated and analytical effective throughput against delay exponent
θ and T for MISO i.i.d. κ–μ fading channels (Nt = 2, ρ = −10 dB, Ω = 1,
κ = 1, and μ = 1).

Fig. 2. Simulated high- and low-Eb/N0 approximation effective throughput
against Eb/N0 for MISO i.i.d. κ–μ fading channels (Nt = 4, T = 1 s, θ =
0.1, and μ = 1).

in Section III for different block lengths and delay exponents. Observe 237
that there is a good agreement between the effective throughput 238
given by the theoretical formulas and those obtained by Monte Carlo 239
simulations. As expected, it can be seen that the effective throughput 240
is consistently reduced upon increasing θ and T . For example, when 241
T increases from 1 to 7, the effective throughput reduces from 0.12 to 242
0.07 bits/s/Hz at θ = 6. Additionally, it is interesting to note that as T 243
increases, the gap between the corresponding curves increases, which 244
implies that its effect becomes more pronounced. These observations 245
explicitly quantify the well-understood physical relationship between 246
the effective throughput and the affordable transmission delay and are 247
consistent with the results presented in [11], [9], and [8]. 248

Fig. 2 shows the simulated effective throughput, its low-Eb/N0 249
approximation seen in (13), and its high-Eb/N0 approximation quanti- 250
fied in (11) after using the relationship Eb/N0 = ρ/R. Quantitatively, 251
we have a 3-dB reduction in the minimum energy per bit upon 252
increasing the average fading power Ω by 50%. It is also readily 253
shown in Fig. 2 that increasing κ increases the effective throughput 254
due to having an increased throughput versus SNR slope S0 and so 255
does the average fading power Ω but leaves the required Eb/N0min 256
value unaffected. The curves shown in Fig. 2 also show that the 257
approximation of the exact throughput is remarkably tight for all the 258
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Fig. 3. Simulated and analytical effective throughput against parame-
ters A and Nt for MISO i.n.i.d. κ–μ fading channels [Ω = 1, κ =
(2.5, 3.5, 1.1, 1.75), and μ = (1.5, 0.75, 2.5, 3.75)].

scenarios considered, but its accuracy is even improved for larger259
values of the fading parameters.260

The simulated and analytical effective throughput of MISO i.n.i.d.261
κ–μ fading channels recorded for different values of Nt and A262
as a function of the average SNR ρ are plotted in Fig. 3. The263
fading parameters are selected as κ = (2.5, 3.5, 1.1, 1.75) and μ =264
(1.5, 0.75, 2.5, 3.75), respectively. It is clear that the effective through-265
put is a monotonically decreasing function of A, which implies266
that improving delay constraints reduces the effective throughput.267
Additionally, more transmit antennas Nt yield a higher throughput;268
although, the gap between the corresponding curves decreases as Nt269
increases. This observation implies that the effect of Nt becomes less270
pronounced.271

VI. CONCLUSION272

The novelty of using the effective throughput as a performance273
metric is that it quantifies the effects of delay on the attainable274
throughput, which is reduced upon tightening the affordable delay.275
As the delay tends to infinity, the effective throughput tends to the276
ergodic capacity. We have derived new analytical expressions for the277
exact effective throughput of MISO systems communicating over κ–μ278
fading channels. Although the exact expression is given in terms of279
an infinite series, the associated truncation error was also analytically280
quantified. Quantitatively, it can be seen that as few as ten terms are281
required for a high accuracy of 10−6 in the series. To gain physical282
insights into the impact of system parameters, we presented a closed-283
form expression for the effective throughput at high SNRs. Moreover,284
tractable expressions have been derived for both the minimum transmit285
energy per information bit required for reliably conveying any nonzero286
throughput at low SNRs. The results are applicable to the design of287
next-generation wireless systems.288
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