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Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes.
[I. A linear double-layer analysis
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Frequency-dependent fluid flow in electrolytes on microelectrodes subjected to ac voltages has recently been
reported. The fluid flow is predominant at frequencies of the order of the relaxation frequency of the electrode-
electrolyte system. The mechanism responsible for this motion has been termed ac electro-osmosis: a continu-
ous flow driven by the interaction of the oscillating electric field and the charge at the diffuse double layer on
the electrodes. This paper develops the basis of a theoretical approach to this problem using a linear double
layer analysis. The theoretical results are compared with the experiments, and a good correlation is found.

PACS numbgs): 82.70.Dd, 47.65ta, 82.45+2, 85.90+h

[. INTRODUCTION electrical problem is then studied using the thin double-layer
approximation. The electrohydrodynamic fluid equations are

In recent publications the experimental observation of s&xamined, and the ac electro-osmotic velocity derived. The
new type of fluid flow in electrolytes on microelectrodes theoretical results are then compared with the experimental
energized with ac electric fields has been reported, a phelata, demonstrating a good correlation. Finally, some con-
nomenon termed ac electro-osmddis 3. The presence of a clusions are drawn, and further refinements to the model are
highly divergent ac electric field on an electrode induces aliscussed.
fluid flow across the electrode surface. A detailed series of
experiments were performed in order to characterize the fluid
behavior as a function of frequency, voltage, and conductiv-
ity, and the results were presented in our previous pgdier The experimental system consisted of two coplanar rect-
The direction of the flow is always from the electrode edgeangular electrodes 2 mm long and 1At wide, separated
onto the surface of the electrode. The magnitude of the fluidy @ 25um gap[4]. Aqueous solutions of KCI were used
velocity is frequency dependent, tending to zero at low andecause of the symmetry, both in valency and mobility, of
high frequency limits. The fluid velocity peaks at a charac-the K™ and CI ions.
teristic frequency which is a function of medium conductiv-  The electrode length is much greater than the width. The
ity and distance from the electrode edde. system can therefore be simplified to two dimensions, as

The fluid flow is assumed to have its origin in the inter- shown in Fig. 1. Thex axis lies parallel to the electrode
action of the electric field and the induced free charge in thgurface and perpendicular to the gap, withO defined to be
double layer on the electrodes. A simple circuit mofll  at the center of the gap. Theaxis is perpendicular to the
was developed to account for the experimental results, anglectrode surface, with=0 defined to be at the surface. In
was found to qualitatively explain the observed fl¢é]. order to obtain an analytical solution, the electrodes are as-
However, in order to quantitatively describe the fluid veloc-sumed to be semi-infinite with an infinitely small gap. This
ity, an analysis from first principles is required. Recent pub-assumption produces a singularity a0 andy=0, and
lications also reported movement of particles close to elec-
trode surfaces, and attributed the movement to fluid flow
(due to electrical forces in the double layeather than elec-
trical forces acting directly on the particl€s,6].

In this paper a linear analysis of ac electro-osmosis in a
geometry similar to the experimental electrodes is presented. Electrodes
First, some assumptions and simplifications are made using
physical aspects of the experiments. This leads to the decou-
pling of the electrical problem from the fluid problem. The

Basic assumptions and simplifications
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incorrect values at large. However, only the solution at drift due to the fluid motion. The last term is the convection
intermediate distances, which correspond to the physical dieurrent, which is neglected as discussed previously.
mensions of the electrodes, is considered. These equations have the following boundary conditions.
The equations which describe the system are further simAt the electrodesy(=0), the electric potential is a combina-
plified by considering a symmetrical electrolyte. This is ation of the static surface potential,, and an imposed alter-
reasonable consideration since the difference in the mobilinating voltage of amplitud®:
ties of the K and CI” ions is approximately 4%7].
The electrodes are assumed toitheally polarizablei.e.,

1 .
the free charge flow from the electrodes to the electrolyte is Yot EVO coswt  if x>0

neglected. Chemical reactions at the electrode surface can be b= 1 (4)
an important consideration in the determination of the elec- Yo— =Vocoswt if x<0.
trode polarization. However, measurements of the electrode 2

decreases, implying that ideally polarizable electrodes mayVe have assumed that the imposed voltage does not affect

be a valid simplification. Therefore, this paper concentrateghe surface potential. _ _

on developing a theory based solely on the electrolyte re- Since the electrodes are ideally polarizable, the normal

sponse. components of the ion density currents vanish at the elec-
The fixed surface potential of the electrodes and the aptrodes

plied ac potential are assumed to be small, so that a linear

approximation can be made. As a result, an analytical solu- n.J.=7 muﬁ— D N+ —0. (5)

tion can be obtained to explain the experimental observa- - -y ay

tions, and to suggest approaches for a generalization of the

equations to the nonlinear case. Although in the experiments Finally, asy—ce, the electric field vanishes and the ion

[4] the potential drop across the diffuse double layer is probdensities tend to their equilibrium values:

ably much greater thakgT/e=25mV [8], nevertheless in-

impedance show that the impedance grows as the frequeng

sights into the phenomena can be obtained from the linear nt—ng, ¢—0 (y—x). (6)
analytical solution.

Finally, the convection current is_assumed to be mu_ch B. Scales and parameters
smaller than the conduction current induced by the applied . ) ) )
electric field. For typical experimental conditiop and for For convenience the equations will be made nondimen-

a field of 16 V/m, the ion velocity is of order 1 cm/s and the sional. First, _two linear combinat_ions of the ion densi_ties, the
observed liquid velocities are lower than 0.05 cm/s. In factCharge densityp) and the mean ion density), are defined:
the ratio between convection and conduction currents is even n.+n

smaller, since the conduction current is greater in the double p=e(n,—n_) n= - (7
layer, where the charge density is not negligible. As a result, 2

the convection current is neglected in the calculation of the h itude of h iabl hen b led ol
electrical current density. Therefore, the electrical proble The magnitude of each variable can then be scaled as fol-

can be solved independently of the velocity field and th ows:
solution inserted into the equations for the fluid motion. D\ 12 ¢
y=(—) y'=kpy', x=Lx', t=-—, ®
Il. ELECTRICAL PROBLEM o w
A. Basic equations D . keT | , ,
The electric potentia is related to the positive and nega- ¢= w =g ¢ p=2Nep’, N=npn’, ©)

tive ion densitiesn, andn_ by Poisson’s equation:
where o= 2ngeu is the conductivityng is the ion number

V24— e(n_—n.) ()  density of the bulk fluidw is the applied frequencys is
€ ' Boltzmann’s constant, and@ is the absolute temperature.
) . ) Since the rates of change of each variable are very different,
and two ion number conservation equations the spatial coordinates are scaled using two distinct quanti-
an ties. For they axis the(statio Debye length\, the typical
= +V.J.=0, (2)  scale for the decay of charge density, is used. Foxthes,
at N a lengthL is used, a scale characteristic of the experiments

that reflects the changes in the potential along the electrodes.
For the experimental setup described in our previous paper,
Jo=Fn.uVé—DVn.+n.u. 3) L is approximately 1000 times greater thagp.
- - T Using these scales, the system depends on four dimen-
u is the liquid velocity,e is the electronic charges is the  Sionless parameters:
permittivity of the fluid, andu and D are the mobility and
diffusion coefficients of the ions, respectively. The ionic flux ,_ WE€ Ap Voe o€

[Eq. (3)] consists of three terms: electric drift, diffusion, and W= = VO=|<B_T' ¢0=kB_T' (10

where the ion density currenfs. are given by
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The paramete is small, of ordergy in this case. This
allows the thin layer approximatiof<1 to be used9,10].

The resulting nondimensional equations @®pping the
primes:

ﬁz(b ¢
2 _
dp 9 [dp I .9 [dp (9¢)_
gt W(ayﬂlay) Foxlax TNax) =0 (12
an d [dn dd ) an dd
E_E(ay pay) 5ax X pa) 0, (13
with boundary conditions
$—0, p—0, n—=1 (y—=), (14
ap I an  d¢
W-l—nw—o, W‘l‘pw—o (y—O), (15)
1 .
¢0+§Vocost if x>0
= (16)

1 .
Wo— EVO cost if x<O.

C. Linear approximation
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This result shows that the static potential and charge density
depend only on thg coordinate. This distribution does not
produce stresses in the liquid, and can therefore be ignored.

For the oscillating part of the system, complex amplitudes
can be used instead of time-dependent functions, f,e.,
where a general function i§(t) = Re(f exp(wt)). From the
boundary conditions it can be concluded that both the elec-
tric potential and the charge density are odd functiong, of
and we restrict ourselves to the regior 0.

The equations are

The complete system is nonlinear, and its solution is not

trivial. To linearize it, bothy, and V, are assumed to be
small quantities. In this limit, both the electric potential and
the charge density are similarly small. The mean ion density
differs only slightly from unity(its value far from the elec-

trodes, and can be written as=1+c, with c<1. In the

f,zy‘f +6° iid’ =-p, (23)
9? 7
iwp—wz(p+¢)—52&—xz(p+¢)= (29)
with boundary conditions
p—0, ¢—0 (y—), (25
a Vo
W(P+¢)=0, ¢=- (y=0), (26)
and the decoupled density equation
, e ,d°c
iwC— Wz a? =0, (27
with boundary conditions
c—=0 (y—=), o —=0 (y=0). (29)
Iy
The solution for the second problem is simply
c=0. (29

linear system the superposition principle can be applied, and
each function written as the sum of a static and an oscillating his result and the decoupling of the equations imply that the

part. The static part is denoted by a subscsipt

typical diffusion length scalew™'? disappears from this

The static equations reduce to those for a simple doublgroblem. This is a consequence of the assumption of a sym-

layer in the Debye-Hekel approximation

2
AL a7
& &
(Wz + 52(972 (pst ) =0, (18)
2 2
(;;234' 2(;7(;5: , (19
with boundary conditions
¢s—0, p—0, c—0 (y—=), (20)
J
bs= o, a—y(ps+ $s)=0, 2y o (y=0). (21
The solution of this system is simply
b=, p=—ioe?, Cs=0. (22)

metrical electrolyte and linearity. In generfl0,11], the
equations cannot be decoupled.

D. Thin double-layer approximation

The linear equations fgs and ¢ [Egs.(23) and(24)] can
be completely solved for the prescribed boundary conditions
(see the Appendjx However, it is more useful to use an
approximate version derived using the matched asymptotic
expansion methodalso used, in a similar context, in Ref.
[12]) since this is suitable for generalization to other elec-
trode geometries.

In this approximation there are two different length
scales. The small scale, corresponding to the Debye length,
over which the charge density goes from its maximum value,
close to the electrodes, to zero, corresponding to the bulk.
The electrical stress is concentrated in distances of this order
above the electrodes. The large scale is “macroscopic,” cor-
responding to the characteristic dimension of the electrodes
and the variations of the electric field. This scale describes
the tangential field that acts on the charge density. The ratio
of these two scales is the previously defined quardity
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Two scaled coordinates can then be defined: the “inner” For the outer problem the solution must now satisfy the
y (to be used near the electrodes, whgrel), and the matching conditions
“outer” Y=J4y (to describe the bulk, wherg~1/5). The
corresponding inner and outer electric potential functions - Vo A

will be denoted by and ®. yf:)q)_ D=t 1w (40
The inner and outer charge densities are denoteddnd

R. As will be shown, the solution for the inner densitys an ob C o

exponentially decreasing function. The outer charge density im —=—= ———A. (41

therefore obeys a linear equation with homogeneous bound- v=09Y & §/ltie

ary conditions at infinity and at the outer limit of the double N )
layer (since it must match an exponentially small funclion A boundary condition for the outer potential ¥t=0 can be
As a result, the solution iR=0 and only the inner charge ©Obtained by eliminatingh from the previous two equations:

density needs to be considered.

The equations are second order, and terms up to first order — i e _ \ﬁ, (42)
in d must be retained to match inner and outer solutions. The iQ gy 2
equations for the inner problem are
where
s (30) Vi+i
—7 =P, wVltiw
oy? P =20 43)
)
02p . . . .
——= iw .
72 (1+iw)p, (31 The second term in Eq42) is the potential drop across

the double layer. Therefore, the boundary condition for the
outer potential is simply the sum of the applied voltage and
the potential drop. For low frequencies, below the charge
Vo g relaxation frequency, this potential drop is equal to that for a
b= X a—(p-l- ¢)=0. (32 capacitance per unit area of valel\ . As a result, a circuit
y model can be used to represent the whole sy$tmHow-
ever, this circuit is not enough to calculate the forces, since
details about the structure of the double layer are required.

with the boundary conditions gt=0

For the outer problem, the only equation is Laplace’s

equation ) -
For the outer potential, Laplace’s equation can be solved
PD 92D using the Fourier sine transform
N2 33 -
) - ) ) CI)(X,Y)ZJ d(k,Y)sinkx dk (44)
The matching conditions require the solutions to be tan- 0

gent up to first order irS in the overlapping region. There-

fore, which results in
. 7kY -
d¢ L) iQVy [~ e “Vsinkx
lim—=46lim —, (34) O (x,Y)= ——dk. (45)
yondY Ty dY o k(k+iQ)
|' 26\ . Yaq) ; Near the electrodes, this reduces to
yfl ¢_yW _YILnO ey ) 39 Bx.0 QY ffﬁ sinkx dke Vo 1_F(Q
0=—"7 | kkria) 9= 7 A F@x),
J 46
limp=0, lim &—p=o. (36) (48
The solution for the inner problem is 2 (= sinu 0 i o o
= — - =@ P+ — 1 — —a i
o Fp)= = | i du=e P+~ @Ei(—p)—e PEi(p)),
p=Ae %, ¢=— 2 +Cy+D, (37 47
and Ei(p) is the exponential integral
where
. = e
s=\1+iw, Res)>0. (38 El(p)=—7>f —dt (48)
-p

Imposing the boundary conditions y& 0 gives (whereP denotes Cauchy’s principal valite.

Once the outer potential is known, complete expressions

= ﬁ A = e (39) for the inner problem can be written. The complex amplitude

D + —, C .
2 l+iw Vitiew for the charge density is
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Vo . B Vo e Vo
p=——=(1+iw)F(Qx)e %, (49 ¢=—F(QOXx) ——+ — (1—-F(Qx))
2 2 h ., 2
1+—s
€c
and the inner electric potential is
. Vo Sy
—|w?F(Qx)T. (55)
VO -~ VO B i VO 1+ _53/2
¢=?e SY+ 7(1—F(Qx))(l—e Sy)—u‘)‘Q?F(Qx)y. €

(50)
F. Generalization to other electrode geometries

This method can be generalized to the case of more com-
] licated electrodes and three-dimensional problems, pro-
In general, models for the double layer include a compacliged that the double layer width is much smaller than the
layer of relatively immobile ions at the electrode surface. Inypical dimension of the electrodes. In this case, Laplace’s
the simplest Gouy-Stern model for the double layer, thesqyation should be solved in the large-scale domain using
compact layer consists of hydrated ions and the potentighe mixed boundary condition given in Ed42). The
varies linearly, giving a fixed capacitance per unit area. Ingsymptotic matching conditions, together with the boundary
addition, the inclusion of an extra capacitance means that gongitions for the inner problem gt=0, can be used to give
is possible to analyze a system of electrodes covered with 2 so|ytion for the inner potential and charge density as func-

E. Inclusion of the Stern layer

layer of insulator (SN [2]. o tions of the potential drop across the double layer:
Consider a compact layer with mean heighih units of
Ap and mean permittivitye. in units of e. Sinceh is very 6Q) Vo ey Vo
small, the oscillating part of the potential in the compact d):_w_s q’_j e *V+is0 ‘D_j y+®, (56)
layer can be written as a linear function of the coordinate
Vo 500 ® Vo sy .
de=— +B(y+h). (50 S YA 80

) ) N Here () is given by Eqs(43) or (53) depending on whether
HereB is a constant given by the boundary conditions, ancyr not the Stern layer is included. Given the charge density

the electrode is now located gt=—h, so that the diffuse and the potential in the diffuse layer, the electrical stress on
double layer still starts ag=0. The ions in the Stern layer the fluid can be calculated.

are assumed to be immobile, so that there is no free charge
flow to the diffuse layer due to the oscillating potential. The

displacement current is therefore continuouga®, and the Il LIQUID MOTION

new boundary condition for the electric potentialin the The ac electro-osmotic flow arises from the stress pro-
diffuse layer aty=0 can be written as duced by the interaction of the electric field and the charge
density, balanced by viscous friction. As the charge density
ap h Vo is nonzero only inside the double layer, the electrical stress is
- 7y e =5 (520  determined by the inner solution. In the linear limit, both the
Cc

charge density and the electric field are harmonic oscillating
functions. The product of these functions gives the electric
Normally what is obtained experimentally is the capacitancestress, which has a nonzero time average. Therefore, there is
per unit area for the compact layef/h [8]. a continuous flow in the ac regime.

Taking Eq.(52) into account, the asymptotic matching  There is an alternating motion superimposed on this con-
conditions give a boundary condition for the outer potentialtinuous flow, resulting from the coupling between the static
at Y=0, which can still be written as Eq42) where() is  and oscillating solutions. The frequency of this motion is the

now given by same as the applied voltage the range 19-10° Hz) and
practically unobservable in the experimes.
oVitio 1 The liquid motion is governed by the incompressibility

(53)  and Navier-Stokes equations

h
1+ —(1+iw)3?
€c

V.u=0, (58
The charge density and potential in the diffuse double layer Du
are then ’ / P Y Prpt ~Vp+pE+ V2, (59
o 2e~SY where u is the liquid velocity,E the electric field,p,, the
p=-— 7F(Qx) —hn (54)  mass densityy; the dynamic viscosity ang the pressure.
14+ —g32 The steady flow is given by the time average of these equa-

€ tions.
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For microelectrodes, a typical length is~2x10 °m, Pu ap 1 dp*
the maximum velocity isi~5x 10 % m/s, and the kinematic sz ax 28 P (70)

viscosity is v=5/p,=10 ®m?s [4]. Therefore, the Rey-
nolds number can be estimated to be at maximum of the The expressions for stress and liquid velocity can be sim-
order ofuL/»~10"2, and the fluid can be considered to be piified if w<1. The experiments show that the maximum
noninertial. In this limit, the time-averaged equations are  velocity is observed whem is of the order ofs (in dimen-
sional form, w~o\p/ex) [4]. In addition, this restriction

‘9_”+ a_WZO (60) can be justified by considering that~1 or greater implies
ax ay Q>1, from Eqgs.(43) and(53). From the boundary condition
(42), O>1 implies that
0 ap < a¢>+ <a2u+ azu) 61)
=T o \Po M NZ T 502/ \Y
X X ox*  ay® (@—7")%0 at Y=0, (72)
0= op i + 62w+(92w 62 i here i ial d d he double | d
=Ty pay Ulew Pyl (62 i.e., there is no potential dropped across the double layer an

the charge density tends to zero, as does the electrical stress.
whereu andw denote the components of the liquid velocity As a result, the problem can be restricted to the regime where
tangential and normal to the electrode surface, respectively’:"< .h'

The liquid motion is governed by the electrical stress and " this case,
the pressure gradient. Using the same scales as Héiqee

(8) and (9)], the scales for the pressure and liquid velocity ngA, (72)
can be deduced from Eq&0) and(61) as 9
2NknTA2 N where A=1 for the simple diffuse layer and\=1/(1
Po=2NoksT, Up=———2  we=-2u,, (63 +hley) including the Stern layer. Neglecting terms of first
7L L order in 6, the potential and charge density in the diffuse
resulting in the nondimensional equations layer are given by
Vo . Vo
au Iw = —F(Qx)Ae Y+ — (1—-F(Qx)), (73
—+—=0, (64) 2 2
ax ay
ap ap\  du J%u p=— b(ﬂx)Ae’y (74)
o PN T 2 = .
P <p ax> + oy +6 pve: 0, (65) 2
) ) The pressure distribution reduces to
ap 0] 520w+54(9w_ 66
ay \Pay * ay? axz (66) A

p=Ppo+ g AZIF(Qx)[%e, (75
For <1, the normal velocity terms can be neglected in Eq.

(66). This is a consequence of the incompressibility equatioryng the equation for the tangential veloci%0) becomes
(60) and the null normal velocity condition at the electrodes.

The time average of the product of two harmonic func- 42y gp 1 dp* V% d 5
tions, described by complex amplitudes, is Eva x TaRer— = EAe y5(|F(Qx)| ).
1T 1 (76)
—_ — *
(fo) T Jo f(hg(vdt 2 Re(fg™), &7 Integrating this equation twice and applying the boundary

conditions of null velocity aty=0 and null derivative ay
whereg* indicates the complex conjugate gf Therefore, —« gives the ac electro-osmotic velocity outside the double

from Eq. (66) the pressure distribution is layer,
ap ip\ 1 0¢*> VZ o9 ,

Applying Poisson’s equation in the diffuse layer, and inte-or, in dimensional form,

grating, gives
GVS A d
2 - — — — A —

2
: (78)

1

ap
p—po+z

.

El A €wX
(T)\D
where nowA=1 for the simple diffuse layer and 1/(1

Substituting this pressure distribution into the tangential+he/\pe.) when including the Stern layer. According to
equation(65) gives this expression, the effect of the Stern layer is to reduce the
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FIG. 3. Comparison of the normalized potential drop across the

FIG. 2. Calculated normalized potential drop across the bulkbu”(, V,,, as predicted from the diffuse layer modsblid line
electrolyte as a function of the nondimensional frequency. The SO“%gether with the experimental dafpoints.

lines represent the real and imaginary parts efFl(p), and the

dashed lines represent the corresponding functions fof(p). dropped across the double layers at low frequencies, and that

. . . itis dropped across the bulk at high frequencies.
velocity by the factorA and increase the frequency of maxi- s figure also shows an equivalent function derived
mum velocity by the same factor. from the circuit model given in Ref[3] and used in our

As discussed in Sec. IIF, a general form of Eff) can  0\ious paper for comparisddotted ling. Here the system
be obtained for other electrode geometries, provided that thg o deled with the bulk electrolyte represented as a series of
double layer width is much smaller than the typical dimen-yegistors following semicircular paths, terminated at either

sion of the electrodes and the linear approximation still appq by 4 distributed capacitor, representing the double layer.

plies. From the potential and charge density expressions, thehe gyrface charge density and the tangential electric field
electro-osmotic velocity can be derived as are estimated from the potential drop in the capacitors. This
results in an analog of the functioh at Y=0 [Eq. (46)]

6 . .
U=— EAVS(|AV|2), (79 ~ Wwhichis

VO A w
whereAV is the potential drop across the double layer and V(x)= 7(1—f(p)), p= “onp (80)
V, denotes a gradient across the electrode surface. Accord-
ing to this expression, the liquid tends to move from regionsyhere
with a high potential drop, and therefore a high charge den-
sity, to regions where the potential drop is lower. Typically,
this is from strong to weak electric field regions on the elec- f(p)= m (81)
trodes. This has been observed in experiments.

in the units used in this paper. Comparing the functidégg)
IV. COMPARISON OF THEORY AND EXPERIMENTS andF(p) (Fig. 2), it can be seen that they are similar, im-
plying that the circuit model gives a good picture of the
electrical problem. In the circuit model, both the point at
Measuring the impedance of the system as a function ofvhich the real part is 0.5 and the maximum in the imaginary
frequency provides information about the polarization of thepart occur app=2/7r, with a value of 0.5 for the maximum.
double layer. In the experimerit4], the impedance was ana- The functionF(p) shows a greater dispersion than that de-
lyzed to give the average potential drop across the doublgved from the circuit modelf(p).
layer, normalized to the applied potential. In dimensional form and for the simple diffuse layer case
From the linear model the normalized potential drop(A=1), the frequency scales as
across the double layer for a given position and frequency is

A. Potential drop across the double layer

\
AV F(p) w="2p. (82

R eX
Vo 2

Since\p is proportional too~ Y2 [Eq. (8)], the position of
with F(p) defined in Eq(47) andp=Aewx/o\p. Takinga the maximum of the imaginary parts are proportional to the
semicircular path from one electrode to the otligp) rep-  square root of the conductivity. Experimentally, although the
resents the normalized potential dropped across both doubfeequency of maximum increases with conductivity, thé?
layers and I F(p) represents the normalized potential dependence is not observgd.
dropped across the bulk. This last function is shown in Fig. 2 Measurements of the impedance presented in our previous
(solid line). The real part of the normalized potential drop paper were analyzed to give the normalized average of the
reaches a value of 0.5 pt=0.693, while the imaginary part potential drop across the bulk electrolyte. Figure 3 shows the
has a maximum of 0.414 gi=0.879. Clearly, the figure normalized potential drop across the bulk calculated from the
shows that, for a given position, the potential is entirelylinear theory(solid line) together with the experimental data,
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06 ¢ TABLE I. Experimental and predicted frequencigs Hz) for
h(p) the maximum velocity at a distance »f 22.5um from the center
0.5 R of the gap:(a) diffuse layer only;(b) Stern layer included.
™47 o (S/m) f max (EXpt) fmax (8) f max (b)
2.1x10°3 175 405 460
8.6x 103 730 820 1048
8.4x10 2 4770 2563 4793

| ‘ T , H=0.305. The bell width, defined as the mean width at half
0.01 04 1 10 100 height, can also be determined. The predicted width in de-
cades for the parametprand also for the frequency is

FIG. 4. Plot of the nondimensional velocity as a function of
nondimensional frequency. The solid line corresponds to the linear
diffuse layer model, and the dashed line to the circuit model. Th
horizontal and vertical lines mark the points of half-height.

A(logp)=A(logf)=1.28.

®rhe experimental value lies in the range 1.2—-1.5.
The circuit model can also be used to estimate the veloc-

. ity of liquid motion, using a formula analogous to E&?3):
for an electrolyte of conductivityr=0.0086 S/m. For the

calculationx was chosen to be 5gm, corresponding to a eVS

point in the middle of the electrodes. While the correlation is U= 167 h(p), (89
good, the experiments show a broader relaxation process

than is predicted by the linear theory. where

B. Liquid mation h(p)=p—(f(p)D), p=-, (86)
Equation(78) gives an estimate for the ac electro-osmotic P oNp
velocity just outside the double Iaygr, at distances of theandf(p) is given by Eq.(81). Equation(85) predicts a ve-
order of the Debye length. The velocity measurements Werg, v which varies with conductivity and voltage in the same
taken at a much greater distanjgdl, approximately 1um  yanner as for the diffuse layer model. However, in order to

above the electrode surface. The velocity at this distance igpiain Eq.(85), a volume charge distribution in the diffuse
described by a solution of the complete fluid motion eqUatayer must be’ assumed. In previous wdtX, the diffuse
tion, which in the absence of external forces redgces 10 theyer charge was modeled as a charged surface situated at the
biharmonic equation for the stream functiorlV3)?=0.  pepye length. This model coincidentally leads to a similar
The boundary conditions are the ac electro-osmotic veloCityag it as that of the diffuse layer model. From inspection of
U at Y=0, and nondivergence far from the electrodes. Fo%unction h(p), the maximum velocity occurs gi=0.637
solutions of the biharmonic equatidas for Laplace’s equa- yhich corresponds to a lower frequency than predicted by
tion) the horizontal and vertical scales are of the same ordetyq diffuse layer model. The maximum velocity is predicted
Since the horizontal scale is around 2, the velocity at 1 5 e one and a half times greater than for the diffuse layer
um is expected to be comparable t except close to the 46| and with a bell width of 0.766 decades, narrower than
edge of the electrodes. Therefore, it is valid to compare thg,, the diffuse layer model and the experimental data.
experimental data with Eq78). : For an aqueous solutiofe=7x10'° F/m and 7

The ac electro-osmotic velocity can be written as ~10 3kg/m$, the frequency(in Hz) of maximum velocity
Vo H 83 )
167x (P) ®3 ~,0.19%0

f max= X

U=

(87)

for the caseA =1, with
where the experimental mobilities for the ions knd CI’

(84) [7] have been used. Fok=1, Eq. (87) predicts a depen-
dence with the square root of the conductivity, which is not
observed experimentally. The frequency of maximum fluid

For a given value ok, the velocityU is proportional to  velocity for the three different electrolytésee our previous
the nondimensional functiod (p), which is shown in Fig. 4. papei is summarized in Table |. These data were measured

One of the important characteristics of the fluid motion ob-for a point at distance of=22.5um from the center of the

served in our previous paper was that distance and frequenggap. Also shown in the table are the frequencies of maximum

appeared to be linked by one parameter. As the linear theomnelocity calculated from Eq(87) without a Stern layefa)
clearly shows for this particular geometry, this is indeed theand with a Stern layefb). For the latter case the capacitance
case. The theoretical velocity plot has a bell shape, similar tof the Stern layer was set to 26F cm 2, a typical value for

the experimental results, where, for a given position, the frea compact laye8,14]. The table indicates that,,,, in-

quency of the maximum velocity occurs pt=0.761, with  creases with medium conductivity, and for the highest con-

Jd EwX
H(p)Ep£(|F(p)|2), DIU—)\D-
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ductivity the inclusion of the Stern layer clearly has an in-trodes were ideally polarizable. In reality, faradaic current
fluence on the frequency. Theoretically,,., is directly  flows between the electrodes and the electrolyte, a system
proportional to the relaxation frequency of the double layer-usually modeled as a resistance in parallel with the double

electrolyte impedance: this is observed experimentdlly layer impedanc¢13,14]. A fuller description of the double
For an aqueous solution, the predicted maximum velocityayer impedance is likely to give more accurate values for the
at positionx is frequencies of peak velocity. Alternatively, since the ac
electro-osmotic velocity is related to the voltage drop across
1.368% 10‘8V(2) the double layer, the liquid velocity may be deduced from
max— T (88) experimental measurements of the double-layer impedance.
for the case\ = 1. This equation predicts a peak velocity that ACKNOWLEDGMENTS

is independent of conductivity and proportional to the volt-  Tnis work was supported by the Spanish DGES under
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tance of 22.5um from the center of the system, it predicts asupport from The European Union through Contract No.
velocity of 1.5<10™*m/s. For conductivities of 2.1 and B|04-CT98-5010.

8.6x 10 3S/m, the corresponding measured velocity was

0.35x10 *m/s, fc_)ur times smaller than the predl_cted value. APPENDIX: COMPLETE SOLUTION OF THE LINEAR

For 1 and 2.5 V it was observed that the magnitude of the ELECTRICAL PROBLEM

peak velocity varied with conductivity. This could be due to

nonlinear effects in the diffuse double layer. For 0.5 V, a It is possible to solve the electrical problem in the linear

weak dependence on conductivity was obsertssg Fig. 7  limit completely without making the thin double-layer ap-

of the previous paper proximation. Although not easily extensible to other elec-
For the lowest conductivity electrolyte the velocity was trode configurations, this solution can be used to test the

approximately proportional to the voltage squared. This wagpproximate solution presented in the text.

not observed for the other two conductivities. The equations to be solved are EB3) and (24), sub-
jected to boundary condition®5) and (26). Due to the an-

tisymmetry of the boundary conditions, we can deduce that
both the charge and the potential are odd functions. df
A linear double layer analysis of ac electro-osmosis forthis case, we can introduce the Fourier sine transforms
perfectly polarizable electrodes has been carried out and ap- 5 (o
Iphed to a geometry similar to thg experimental system out- B(K,y)= _J' B(x,y)sin(kx)dx, (A1)
ined in our previous paper. A thin double-layer approxima- 7 Jo
tion has been used to simplify the equations and an
expression for the ac electro-osmotic velocity has been de- ~ 2 (= _
rived. p(ky)= ;fo p(x,y)sin(kx)dx. (A2)
Theoretical predictions have been compared with the ex-
perimental results presented in our previous paper. A wellhis transform reduces the system to a set of ordinary dif-
defined pattern of fluid flow, moving from high to low elec- ferential equations
tric field regions(from the electrode edge to the centeras

V. CONCLUSIONS AND FURTHER DEVELOPMENTS

observed in the experiments, as predicted. The theoretical d*p . ~

frequency and distance dependence of velocity was similar d_y2:(1+|w+ k)P, (A3)
to the experimental results. The order of magnitude of the

velocity was in reasonable agreement for low voltages and 423 B

conductivities. Both the experimental data and the theoretical a7 k?6%¢p—p, (A4)

model indicate a correlation between the frequency depen-
Idence of the velocity and the voltage drop across the dOUblﬁ/ith the boundary conditions
ayer.
However, the model does not account for the variation of 50, =0 (y—o) (A5)
the velocity magnitude with conductivity as observed experi- ’ ’
mentally, neither does it account for the frequency depen- d 5 -V
dence of peak velocity on conductivity. There are several —(pt+¢)=0, ¢=— (y=0). (AB)
possible explanations for this. A nonlinear analysis of the dy 7K
diffuse double layer may account for the conductivity depen
dence of the velocity magnitude. For low frequencies, th
structure of the diffuse layer may be similar to the Gouy-
Chapman solution for a static double layer, with time depen- = §(s+ 8K)
dent parameters. In this case, as the potential across the p=—Vq J me
double layer increases the charge is pulled closer to the elec- o7
trode. This reduces the effective Debye length and may re- W sk s
duce the fluid velocity. ¢:Vof (ioe” ™+ ske” ™) sinkx dk  (A8)
In addition, in this work it was assumed that the elec- o mK(Sk—s)(s*~ 1+ 5ks)

The inverse Fourier transform of the solution to this system

“SYsinkx)dk, (A7)
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with 1.2

s=\1+io+6%k? Res)>0. (A9) 14 Re(-Fl)

This solution is valid for all values of. 08 1 \

The expression for the voltage just outside the doubleu_§ 06 +
layer is obtained by letting— oo, while y=0. In this case, «
from Eq. (A8) the relative voltage drop across both double 04
layers[analogous td=(p)] is

1 Im1-Fp)

02 |
VO—Z(I) J“ i inkx dk 0 ‘ ‘ X (1]
—_—=1- sinkx ‘ , :

Vo o mK(Sk—s)(s°— 1+ 5ks) 0.01 0.1 1 10 100

(A10)

Contrary to the case of the thin layer limit, the complete  F|G. 5. Comparison of the voltage drop across the bulk in the
expression depends not only on the produigf but onxand  thin layer limit (solid line), with the exact solution for half-infinite
w, independently. In Fig. 5 the exact results @=0.001 plates, forx=1 (starg andx=0.001(circles.
with x=0.001 and 1(the more realistic cageare compared
with the thin layer approximation. Recalling thatis the  ues ofx of order unity the complete solution and the thin
ratio between typical scales, a valuexof 1 means that the layer approximation solution are fully in accordance. The
point is placed at a distance 1000 times the Debye lengtfigure also shows that the relevant parametewxs and,
from the center, whil&=0.001 means that it is placed at one for a given position with finite, the characteristic frequency
Debye length from the center. The figure shows that for valis of the order ofé.
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