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Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes.
II. A linear double-layer analysis
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Frequency-dependent fluid flow in electrolytes on microelectrodes subjected to ac voltages has recently been
reported. The fluid flow is predominant at frequencies of the order of the relaxation frequency of the electrode-
electrolyte system. The mechanism responsible for this motion has been termed ac electro-osmosis: a continu-
ous flow driven by the interaction of the oscillating electric field and the charge at the diffuse double layer on
the electrodes. This paper develops the basis of a theoretical approach to this problem using a linear double
layer analysis. The theoretical results are compared with the experiments, and a good correlation is found.

PACS number~s!: 82.70.Dd, 47.65.1a, 82.45.1z, 85.90.1h
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I. INTRODUCTION

In recent publications the experimental observation o
new type of fluid flow in electrolytes on microelectrod
energized with ac electric fields has been reported, a p
nomenon termed ac electro-osmosis@1–3#. The presence of a
highly divergent ac electric field on an electrode induce
fluid flow across the electrode surface. A detailed series
experiments were performed in order to characterize the fl
behavior as a function of frequency, voltage, and conduc
ity, and the results were presented in our previous paper@4#.
The direction of the flow is always from the electrode ed
onto the surface of the electrode. The magnitude of the fl
velocity is frequency dependent, tending to zero at low a
high frequency limits. The fluid velocity peaks at a chara
teristic frequency which is a function of medium conduct
ity and distance from the electrode edge@4#.

The fluid flow is assumed to have its origin in the inte
action of the electric field and the induced free charge in
double layer on the electrodes. A simple circuit model@3#
was developed to account for the experimental results,
was found to qualitatively explain the observed flow@4#.
However, in order to quantitatively describe the fluid velo
ity, an analysis from first principles is required. Recent pu
lications also reported movement of particles close to e
trode surfaces, and attributed the movement to fluid fl
~due to electrical forces in the double layer! rather than elec-
trical forces acting directly on the particles@5,6#.

In this paper a linear analysis of ac electro-osmosis i
geometry similar to the experimental electrodes is presen
First, some assumptions and simplifications are made u
physical aspects of the experiments. This leads to the de
pling of the electrical problem from the fluid problem. Th
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electrical problem is then studied using the thin double-la
approximation. The electrohydrodynamic fluid equations
examined, and the ac electro-osmotic velocity derived. T
theoretical results are then compared with the experime
data, demonstrating a good correlation. Finally, some c
clusions are drawn, and further refinements to the model
discussed.

Basic assumptions and simplifications

The experimental system consisted of two coplanar re
angular electrodes 2 mm long and 100mm wide, separated
by a 25mm gap @4#. Aqueous solutions of KCl were use
because of the symmetry, both in valency and mobility,
the K1 and Cl2 ions.

The electrode length is much greater than the width. T
system can therefore be simplified to two dimensions,
shown in Fig. 1. Thex axis lies parallel to the electrod
surface and perpendicular to the gap, withx50 defined to be
at the center of the gap. They axis is perpendicular to the
electrode surface, withy50 defined to be at the surface. I
order to obtain an analytical solution, the electrodes are
sumed to be semi-infinite with an infinitely small gap. Th
assumption produces a singularity atx50 and y50, and

ic FIG. 1. Diagram illustrating the geometry used in the theoreti
model.
4019 © 2000 The American Physical Society
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incorrect values at largex. However, only the solution a
intermediate distances, which correspond to the physica
mensions of the electrodes, is considered.

The equations which describe the system are further s
plified by considering a symmetrical electrolyte. This is
reasonable consideration since the difference in the mo
ties of the K1 and Cl2 ions is approximately 4%@7#.

The electrodes are assumed to beideally polarizable, i.e.,
the free charge flow from the electrodes to the electrolyt
neglected. Chemical reactions at the electrode surface ca
an important consideration in the determination of the el
trode polarization. However, measurements of the electr
impedance show that the impedance grows as the frequ
decreases, implying that ideally polarizable electrodes m
be a valid simplification. Therefore, this paper concentra
on developing a theory based solely on the electrolyte
sponse.

The fixed surface potential of the electrodes and the
plied ac potential are assumed to be small, so that a lin
approximation can be made. As a result, an analytical s
tion can be obtained to explain the experimental obse
tions, and to suggest approaches for a generalization o
equations to the nonlinear case. Although in the experime
@4# the potential drop across the diffuse double layer is pr
ably much greater thankBT/e.25 mV @8#, nevertheless in-
sights into the phenomena can be obtained from the lin
analytical solution.

Finally, the convection current is assumed to be mu
smaller than the conduction current induced by the app
electric field. For typical experimental conditions@4# and for
a field of 105 V/m, the ion velocity is of order 1 cm/s and th
observed liquid velocities are lower than 0.05 cm/s. In fa
the ratio between convection and conduction currents is e
smaller, since the conduction current is greater in the dou
layer, where the charge density is not negligible. As a res
the convection current is neglected in the calculation of
electrical current density. Therefore, the electrical probl
can be solved independently of the velocity field and
solution inserted into the equations for the fluid motion.

II. ELECTRICAL PROBLEM

A. Basic equations

The electric potentialf is related to the positive and neg
tive ion densitiesn1 andn2 by Poisson’s equation:

“

2f5
e~n22n1!

e
, ~1!

and two ion number conservation equations

]n6

]t
1“•J650, ~2!

where the ion density currentsJ6 are given by

J657n6m“f2D“n61n6u. ~3!

u is the liquid velocity,e is the electronic charge,e is the
permittivity of the fluid, andm and D are the mobility and
diffusion coefficients of the ions, respectively. The ionic fl
@Eq. ~3!# consists of three terms: electric drift, diffusion, an
i-
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drift due to the fluid motion. The last term is the convecti
current, which is neglected as discussed previously.

These equations have the following boundary conditio
At the electrodes (y50), the electric potential is a combina
tion of the static surface potential,c0 , and an imposed alter
nating voltage of amplitudeV0 :

f5H c01
1

2
V0 cosvt if x.0

c02
1

2
V0 cosvt if x,0 .

~4!

We have assumed that the imposed voltage does not a
the surface potential.

Since the electrodes are ideally polarizable, the norm
components of the ion density currents vanish at the e
trodes

n•J657n6m
]f

]y
2D

]n6

]y
50. ~5!

Finally, asy→`, the electric field vanishes and the io
densities tend to their equilibrium values:

n6→n0 , f→0 ~y→`!. ~6!

B. Scales and parameters

For convenience the equations will be made nondim
sional. First, two linear combinations of the ion densities,
charge density~r! and the mean ion density~n!, are defined:

r5e~n12n2! n5
n11n2

2
. ~7!

The magnitude of each variable can then be scaled as
lows:

y5S eD

s D 1/2

y85lDy8, x5Lx8, t5
t8

v
, ~8!

f5
D

m
f85

kBT

e
f8, r52n0er8, n5n0n8, ~9!

wheres52n0em is the conductivity,n0 is the ion number
density of the bulk fluid,v is the applied frequency,kB is
Boltzmann’s constant, andT is the absolute temperature
Since the rates of change of each variable are very differ
the spatial coordinates are scaled using two distinct qua
ties. For they axis the~static! Debye lengthlD , the typical
scale for the decay of charge density, is used. For thex axis,
a lengthL is used, a scale characteristic of the experime
that reflects the changes in the potential along the electro
For the experimental setup described in our previous pa
L is approximately 1000 times greater thanlD .

Using these scales, the system depends on four dim
sionless parameters:

v85
ve

s
, d5

lD

L
, V085

V0e

kBT
, f085

c0e

kBT
. ~10!
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The parameterd is small, of order 1
1000 in this case. This

allows the thin layer approximationd!1 to be used@9,10#.
The resulting nondimensional equations are~dropping the

primes!:

]2f

]y2 1d2
]2f

]x2 52r, ~11!

v
]r

]t
2

]

]y S ]r

]y
1n

]f

]y D2d2
]

]x S ]r

]x
1n

]f

]x D50, ~12!

v
]n

]t
2

]

]y S ]n

]y
1r

]f

]y D2d2
]

]x S ]n

]x
1r

]f

]x D50, ~13!

with boundary conditions

f→0, r→0, n→1 ~y→`!, ~14!

]r

]y
1n

]f

]y
50,

]n

]y
1r

]f

]y
50 ~y50!, ~15!

f5H c01
1

2
V0 cost if x.0

c02
1

2
V0 cost if x,0 .

~16!

C. Linear approximation

The complete system is nonlinear, and its solution is
trivial. To linearize it, bothc0 and V0 are assumed to b
small quantities. In this limit, both the electric potential a
the charge density are similarly small. The mean ion den
differs only slightly from unity~its value far from the elec-
trodes!, and can be written asn511c, with c!1. In the
linear system the superposition principle can be applied,
each function written as the sum of a static and an oscilla
part. The static part is denoted by a subscripts.

The static equations reduce to those for a simple dou
layer in the Debye-Hu¨ckel approximation

]2fs

]y2 1d2
]2fs

]x2 52rs , ~17!

S ]2

]y2 1d2
]2

]x2D ~rs1fs!50, ~18!

]2cs

]y2 1d2
]2cs

]x2 50, ~19!

with boundary conditions

fs→0, r→0, cs→0 ~y→`!, ~20!

fs5c0 ,
]

]y
~rs1fs!50,

]cs

]y
50 ~y50!. ~21!

The solution of this system is simply

fs5c0e2y, r52c0e2y, cs50. ~22!
t

ty

d
g

le

This result shows that the static potential and charge den
depend only on they coordinate. This distribution does no
produce stresses in the liquid, and can therefore be igno

For the oscillating part of the system, complex amplitud
can be used instead of time-dependent functions, i.ef,
where a general function isf (t)5Re„f exp(ivt)…. From the
boundary conditions it can be concluded that both the e
tric potential and the charge density are odd functions ox,
and we restrict ourselves to the regionx.0.

The equations are

]2f

]y2 1d2
]2f

]x2 52r, ~23!

ivr2
]2

]y2 ~r1f!2d2
]2

]x2 ~r1f!50, ~24!

with boundary conditions

r→0, f→0 ~y→`! , ~25!

]

]y
~r1f!50, f5

V0

2
~y50!, ~26!

and the decoupled density equation

ivc2
]2c

]y22d2
]2c

]x2 50, ~27!

with boundary conditions

c→0 ~y→`!,
]c

]y
50 ~y50!. ~28!

The solution for the second problem is simply

c50. ~29!

This result and the decoupling of the equations imply that
typical diffusion length scalev21/2 disappears from this
problem. This is a consequence of the assumption of a s
metrical electrolyte and linearity. In general@10,11#, the
equations cannot be decoupled.

D. Thin double-layer approximation

The linear equations forr andf @Eqs.~23! and~24!# can
be completely solved for the prescribed boundary conditi
~see the Appendix!. However, it is more useful to use a
approximate version derived using the matched asympt
expansion method~also used, in a similar context, in Re
@12#! since this is suitable for generalization to other ele
trode geometries.

In this approximation there are two different leng
scales. The small scale, corresponding to the Debye len
over which the charge density goes from its maximum val
close to the electrodes, to zero, corresponding to the b
The electrical stress is concentrated in distances of this o
above the electrodes. The large scale is ‘‘macroscopic,’’ c
responding to the characteristic dimension of the electro
and the variations of the electric field. This scale descri
the tangential field that acts on the charge density. The r
of these two scales is the previously defined quantityd.
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Two scaled coordinates can then be defined: the ‘‘inn
y ~to be used near the electrodes, wherey;1!, and the
‘‘outer’’ Y5dy ~to describe the bulk, wherey;1/d!. The
corresponding inner and outer electric potential functio
will be denoted byf andF.

The inner and outer charge densities are denoted byr and
R. As will be shown, the solution for the inner densityr is an
exponentially decreasing function. The outer charge den
therefore obeys a linear equation with homogeneous bou
ary conditions at infinity and at the outer limit of the doub
layer ~since it must match an exponentially small function!.
As a result, the solution isR50 and only the inner charg
density needs to be considered.

The equations are second order, and terms up to first o
in d must be retained to match inner and outer solutions.
equations for the inner problem are

]2f

]y2 52r, ~30!

]2r

]y2 5~11 iv!r, ~31!

with the boundary conditions aty50

f5
V0

2
,

]

]y
~r1f!50. ~32!

For the outer problem, the only equation is Laplac
equation

]2F

]Y2 1
]2F

]x2 50. ~33!

The matching conditions require the solutions to be t
gent up to first order ind in the overlapping region. There
fore,

lim
y→`

]f

]y
5d lim

Y→0

]F

]Y
, ~34!

lim
y→`

S f2y
]f

]y D5 lim
Y→0

S F2Y
]F

]Y D , ~35!

lim
y→`

r50, lim
y→`

]r

]y
50. ~36!

The solution for the inner problem is

r5Ae2sy, f52
Ae2sy

s2 1Cy1D, ~37!

where

s5A11 iv, Re~s!.0. ~38!

Imposing the boundary conditions aty50 gives

D5
V0

2
1

A

11 iv
, C5

ivA

A11 iv
. ~39!
’’
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For the outer problem the solution must now satisfy t
matching conditions

lim
Y50

F5D5
V0

2
1

A

11 iv
, ~40!

lim
Y50

]F

]Y
5

C

d
5

iv

dA11 iv
A. ~41!

A boundary condition for the outer potential atY50 can be
obtained by eliminatingA from the previous two equations

F2
1

iV

]F

]Y
5

V0

2
, ~42!

where

V5
vA11 iv

d
. ~43!

The second term in Eq.~42! is the potential drop acros
the double layer. Therefore, the boundary condition for
outer potential is simply the sum of the applied voltage a
the potential drop. For low frequencies, below the cha
relaxation frequency, this potential drop is equal to that fo
capacitance per unit area of valuee/lD . As a result, a circuit
model can be used to represent the whole system@3#. How-
ever, this circuit is not enough to calculate the forces, si
details about the structure of the double layer are require

For the outer potential, Laplace’s equation can be sol
using the Fourier sine transform

F~x,Y!5E
0

`

F̃~k,Y!sinkx dk ~44!

which results in

F~x,Y!5
iVV0

p E
0

` e2kY sinkx

k~k1 iV!
dk. ~45!

Near the electrodes, this reduces to

F~x,0!5
iVV0

p E
0

` sinkx

k~k1 iV!
dk5

V0

2
„12F~Vx!…,

~46!

with

F~p!5
2

p E
0

` sinu

u1 ip
du5e2p1

i

p
„ep Ei~2p!2e2p Ei~p!…,

~47!

and Ei(p) is the exponential integral

Ei~p!52PE
2p

` e2t

t
dt ~48!

~whereP denotes Cauchy’s principal value.!
Once the outer potential is known, complete expressi

for the inner problem can be written. The complex amplitu
for the charge density is
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r52
V0

2
~11 iv!F~Vx!e2sy, ~49!

and the inner electric potential is

f5
V0

2
e2sy1

V0

2
„12F~Vx!…~12e2sy!2 idV

V0

2
F~Vx!y.

~50!

E. Inclusion of the Stern layer

In general, models for the double layer include a comp
layer of relatively immobile ions at the electrode surface.
the simplest Gouy-Stern model for the double layer,
compact layer consists of hydrated ions and the poten
varies linearly, giving a fixed capacitance per unit area.
addition, the inclusion of an extra capacitance means th
is possible to analyze a system of electrodes covered w
layer of insulator (Si3N4) @2#.

Consider a compact layer with mean heighth in units of
lD and mean permittivityec in units of e. Sinceh is very
small, the oscillating part of the potential in the compa
layer can be written as a linear function of the coordinatey:

fc5
V0

2
1B~y1h!. ~51!

HereB is a constant given by the boundary conditions, a
the electrode is now located aty52h, so that the diffuse
double layer still starts aty50. The ions in the Stern laye
are assumed to be immobile, so that there is no free ch
flow to the diffuse layer due to the oscillating potential. T
displacement current is therefore continuous aty50, and the
new boundary condition for the electric potentialf in the
diffuse layer aty50 can be written as

f2
]f

]y

h

ec
5

V0

2
. ~52!

Normally what is obtained experimentally is the capacitan
per unit area for the compact layerec /h @8#.

Taking Eq. ~52! into account, the asymptotic matchin
conditions give a boundary condition for the outer poten
at Y50, which can still be written as Eq.~42! whereV is
now given by

V5
vA11 iv

d

1

11
h

ec
~11 iv!3/2

. ~53!

The charge density and potential in the diffuse double la
are then

r52
V0

2
F~Vx!

s2e2sy

11
h

ec
s3/2

, ~54!
ct
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f5
V0

2
F~Vx!

e2sy

11
h

ec
s3/2

1
V0

2
„12F~Vx!…

2 iv
V0

2
F~Vx!

sy

11
h

ec
s3/2

. ~55!

F. Generalization to other electrode geometries

This method can be generalized to the case of more c
plicated electrodes and three-dimensional problems, p
vided that the double layer width is much smaller than
typical dimension of the electrodes. In this case, Laplac
equation should be solved in the large-scale domain us
the mixed boundary condition given in Eq.~42!. The
asymptotic matching conditions, together with the bound
conditions for the inner problem aty50, can be used to give
a solution for the inner potential and charge density as fu
tions of the potential drop across the double layer:

f52
dV

vs S F2
V0

2 De2sy1 idVS F2
V0

2 D y1F, ~56!

r5
sdV

v S F2
V0

2 De2sy. ~57!

HereV is given by Eqs.~43! or ~53! depending on whethe
or not the Stern layer is included. Given the charge den
and the potential in the diffuse layer, the electrical stress
the fluid can be calculated.

III. LIQUID MOTION

The ac electro-osmotic flow arises from the stress p
duced by the interaction of the electric field and the cha
density, balanced by viscous friction. As the charge den
is nonzero only inside the double layer, the electrical stres
determined by the inner solution. In the linear limit, both t
charge density and the electric field are harmonic oscillat
functions. The product of these functions gives the elec
stress, which has a nonzero time average. Therefore, the
a continuous flow in the ac regime.

There is an alternating motion superimposed on this c
tinuous flow, resulting from the coupling between the sta
and oscillating solutions. The frequency of this motion is t
same as the applied voltage~in the range 102– 105 Hz! and
practically unobservable in the experiments@4#.

The liquid motion is governed by the incompressibili
and Navier-Stokes equations

“•u50, ~58!

rm

Du

Dt
52“p1rE1h“2u, ~59!

where u is the liquid velocity,E the electric field,rm the
mass density,h the dynamic viscosity andp the pressure.
The steady flow is given by the time average of these eq
tions.
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For microelectrodes, a typical length isL;231025 m,
the maximum velocity isu;531024 m/s, and the kinematic
viscosity is n5h/rm51026 m2/s @4#. Therefore, the Rey-
nolds number can be estimated to be at maximum of
order ofuL/n;1022, and the fluid can be considered to b
noninertial. In this limit, the time-averaged equations are

]u

]x
1

]w

]y
50, ~60!

052
]p

]x
2 K r

]f

]x L 1hS ]2u

]x2 1
]2u

]y2D , ~61!

052
]p

]y
2 K r

]f

]y L 1hS ]2w

]x2 1
]2w

]y2 D , ~62!

whereu andw denote the components of the liquid veloci
tangential and normal to the electrode surface, respectiv

The liquid motion is governed by the electrical stress a
the pressure gradient. Using the same scales as before@Eqs.
~8! and ~9!#, the scales for the pressure and liquid veloc
can be deduced from Eqs.~60! and ~61! as

p052n0kBT, u05
2n0kBTlD

2

hL
, w05

lD

L
u0 , ~63!

resulting in the nondimensional equations

]u

]x
1

]w

]y
50, ~64!

2
]p

]x
2 K r

]f

]x L 1
]2u

]y2 1d2
]2u

]x2 50, ~65!

2
]p

]y
2 K r

]f

]y L 1d2
]2w

]y2 1d4
]2w

]x2 50. ~66!

For d!1, the normal velocity terms can be neglected in E
~66!. This is a consequence of the incompressibility equat
~60! and the null normal velocity condition at the electrode

The time average of the product of two harmonic fun
tions, described by complex amplitudes, is

^ f g&5
1

T E
0

T

f ~ t !g~ t !dt5
1

2
Re~ f g* !, ~67!

whereg* indicates the complex conjugate ofg. Therefore,
from Eq. ~66! the pressure distribution is

]p

]y
52 K r

]f

]y L 52
1

2
ReS r

]f*

]y D . ~68!

Applying Poisson’s equation in the diffuse layer, and in
grating, gives

p5p01
1

4 U]f

]yU
2

. ~69!

Substituting this pressure distribution into the tangen
equation~65! gives
e

y.
d

.
n
.
-

-

l

]2u

]y2 5
]p

]x
1

1

2
ReS r

]f*

]x D . ~70!

The expressions for stress and liquid velocity can be s
plified if v!1. The experiments show that the maximu
velocity is observed whenv is of the order ofd ~in dimen-
sional form, v;slD /ex! @4#. In addition, this restriction
can be justified by considering thatv;1 or greater implies
V@1, from Eqs.~43! and~53!. From the boundary condition
~42!, V@1 implies that

S F2
V0

2 D→0 at Y50, ~71!

i.e., there is no potential dropped across the double layer
the charge density tends to zero, as does the electrical st
As a result, the problem can be restricted to the regime wh
v!1.

In this case,

V.
v

d
L, ~72!

where L51 for the simple diffuse layer andL51/(1
1h/ec) including the Stern layer. Neglecting terms of fir
order in d, the potential and charge density in the diffu
layer are given by

f.
V0

2
F~Vx!Le2y1

V0

2
„12F~Vx!…, ~73!

r.2
V0

2
~Vx!Le2y. ~74!

The pressure distribution reduces to

p5p01
V0

2

16
L2uF~Vx!u2e22y, ~75!

and the equation for the tangential velocity~70! becomes

]2u

]y2 5
]p

]x
1

1

2
ReS r

]f*

]x D5
V0

2

16
Le2y

]

]x
„uF~Vx!u2

….

~76!

Integrating this equation twice and applying the bound
conditions of null velocity aty50 and null derivative aty
→` gives the ac electro-osmotic velocity outside the dou
layer,

U52
V0

2

16
L

]

]x
uF~Vx!u2, ~77!

or, in dimensional form,

U52
eV0

2

16h
L

]

]x UFS L
evx

slD
D U2

, ~78!

where now L51 for the simple diffuse layer and 1/(1
1he/lDec) when including the Stern layer. According t
this expression, the effect of the Stern layer is to reduce
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velocity by the factorL and increase the frequency of max
mum velocity by the same factor.

As discussed in Sec. II F, a general form of Eq.~78! can
be obtained for other electrode geometries, provided that
double layer width is much smaller than the typical dime
sion of the electrodes and the linear approximation still
plies. From the potential and charge density expressions
electro-osmotic velocity can be derived as

U52
e

4h
L“s~ uDVu2!, ~79!

whereDV is the potential drop across the double layer a
“s denotes a gradient across the electrode surface. Acc
ing to this expression, the liquid tends to move from regio
with a high potential drop, and therefore a high charge d
sity, to regions where the potential drop is lower. Typical
this is from strong to weak electric field regions on the el
trodes. This has been observed in experiments.

IV. COMPARISON OF THEORY AND EXPERIMENTS

A. Potential drop across the double layer

Measuring the impedance of the system as a function
frequency provides information about the polarization of
double layer. In the experiments@4#, the impedance was ana
lyzed to give the average potential drop across the dou
layer, normalized to the applied potential.

From the linear model the normalized potential dr
across the double layer for a given position and frequenc

DV

V0
5

F~p!

2
,

with F(p) defined in Eq.~47! andp5Levx/slD . Taking a
semicircular path from one electrode to the other,F(p) rep-
resents the normalized potential dropped across both do
layers and 12F(p) represents the normalized potent
dropped across the bulk. This last function is shown in Fig
~solid line!. The real part of the normalized potential dro
reaches a value of 0.5 atp50.693, while the imaginary par
has a maximum of 0.414 atp50.879. Clearly, the figure
shows that, for a given position, the potential is entire

FIG. 2. Calculated normalized potential drop across the b
electrolyte as a function of the nondimensional frequency. The s
lines represent the real and imaginary parts of 12F(p), and the
dashed lines represent the corresponding functions for 12 f (p).
he
-
-
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2

dropped across the double layers at low frequencies, and
it is dropped across the bulk at high frequencies.

This figure also shows an equivalent function deriv
from the circuit model given in Ref.@3# and used in our
previous paper for comparison~dotted line!. Here the system
is modeled with the bulk electrolyte represented as a serie
resistors following semicircular paths, terminated at eith
end by a distributed capacitor, representing the double la
The surface charge density and the tangential electric fi
are estimated from the potential drop in the capacitors. T
results in an analog of the functionF at Y50 @Eq. ~46!#
which is

V~x!5
V0

2
„12 f ~p!…, p5

Levx

slD
, ~80!

where

f ~p!5
1

11 ipp/2
~81!

in the units used in this paper. Comparing the functions,f (p)
and F(p) ~Fig. 2!, it can be seen that they are similar, im
plying that the circuit model gives a good picture of th
electrical problem. In the circuit model, both the point
which the real part is 0.5 and the maximum in the imagina
part occur atp52/p, with a value of 0.5 for the maximum
The functionF(p) shows a greater dispersion than that d
rived from the circuit model,f (p).

In dimensional form and for the simple diffuse layer ca
(L51), the frequency scales as

v5
slD

ex
p. ~82!

SincelD is proportional tos21/2 @Eq. ~8!#, the position of
the maximum of the imaginary parts are proportional to
square root of the conductivity. Experimentally, although t
frequency of maximum increases with conductivity, thes1/2

dependence is not observed@4#.
Measurements of the impedance presented in our prev

paper were analyzed to give the normalized average of
potential drop across the bulk electrolyte. Figure 3 shows
normalized potential drop across the bulk calculated from
linear theory~solid line! together with the experimental data

k
id

FIG. 3. Comparison of the normalized potential drop across
bulk, Vm , as predicted from the diffuse layer model~solid line!
together with the experimental data~points!.
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for an electrolyte of conductivitys50.0086 S/m. For the
calculationx was chosen to be 50mm, corresponding to a
point in the middle of the electrodes. While the correlation
good, the experiments show a broader relaxation proc
than is predicted by the linear theory.

B. Liquid motion

Equation~78! gives an estimate for the ac electro-osmo
velocity just outside the double layer, at distances of
order of the Debye length. The velocity measurements w
taken at a much greater distance@4#, approximately 1mm
above the electrode surface. The velocity at this distanc
described by a solution of the complete fluid motion eq
tion, which in the absence of external forces reduces to
biharmonic equation for the stream function, (“

2)2c50.
The boundary conditions are the ac electro-osmotic velo
U at Y50, and nondivergence far from the electrodes. F
solutions of the biharmonic equation~as for Laplace’s equa
tion! the horizontal and vertical scales are of the same or
Since the horizontal scale is around 25mm, the velocity at 1
mm is expected to be comparable toU, except close to the
edge of the electrodes. Therefore, it is valid to compare
experimental data with Eq.~78!.

The ac electro-osmotic velocity can be written as

U5
eV0

2

16hx
H~p! ~83!

for the caseL51, with

H~p![p
]

]p
~ uF~p!u2!, p5

evx

slD
. ~84!

For a given value ofx, the velocityU is proportional to
the nondimensional functionH(p), which is shown in Fig. 4.
One of the important characteristics of the fluid motion o
served in our previous paper was that distance and frequ
appeared to be linked by one parameter. As the linear the
clearly shows for this particular geometry, this is indeed
case. The theoretical velocity plot has a bell shape, simila
the experimental results, where, for a given position, the
quency of the maximum velocity occurs atp50.761, with

FIG. 4. Plot of the nondimensional velocity as a function
nondimensional frequency. The solid line corresponds to the lin
diffuse layer model, and the dashed line to the circuit model. T
horizontal and vertical lines mark the points of half-height.
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H50.305. The bell width, defined as the mean width at h
height, can also be determined. The predicted width in
cades for the parameterp and also for the frequency is

D~ log p!5D~ log f !51.28.

The experimental value lies in the range 1.2–1.5.
The circuit model can also be used to estimate the ve

ity of liquid motion, using a formula analogous to Eq.~83!:

U5
eV0

2

16hx
h~p!, ~85!

where

h~p![p
]

]p
„u f ~p!u2…, p5

evx

slD
, ~86!

and f (p) is given by Eq.~81!. Equation~85! predicts a ve-
locity which varies with conductivity and voltage in the sam
manner as for the diffuse layer model. However, in order
obtain Eq.~85!, a volume charge distribution in the diffus
layer must be assumed. In previous work@3#, the diffuse
layer charge was modeled as a charged surface situated a
Debye length. This model coincidentally leads to a simi
result as that of the diffuse layer model. From inspection
function h(p), the maximum velocity occurs atp50.637,
which corresponds to a lower frequency than predicted
the diffuse layer model. The maximum velocity is predict
to be one and a half times greater than for the diffuse la
model, and with a bell width of 0.766 decades, narrower th
for the diffuse layer model and the experimental data.

For an aqueous solution~e.7310210 F/m and h
.1023 kg/m s!, the frequency~in Hz! of maximum velocity
is

f max5L21
0.199As

x
, ~87!

where the experimental mobilities for the ions K1 and Cl2

@7# have been used. ForL51, Eq. ~87! predicts a depen-
dence with the square root of the conductivity, which is n
observed experimentally. The frequency of maximum flu
velocity for the three different electrolytes~see our previous
paper! is summarized in Table I. These data were measu
for a point at distance ofx522.5mm from the center of the
gap. Also shown in the table are the frequencies of maxim
velocity calculated from Eq.~87! without a Stern layer~a!
and with a Stern layer~b!. For the latter case the capacitan
of the Stern layer was set to 20mF cm22, a typical value for
a compact layer@8,14#. The table indicates thatf max in-
creases with medium conductivity, and for the highest c

ar
e

TABLE I. Experimental and predicted frequencies~in Hz! for
the maximum velocity at a distance ofx522.5mm from the center
of the gap:~a! diffuse layer only;~b! Stern layer included.

s ~S/m! f max ~Expt.! f max (a) f max (b)

2.131023 175 405 460
8.631023 730 820 1048
8.431022 4770 2563 4793
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ductivity the inclusion of the Stern layer clearly has an
fluence on the frequency. Theoretically,f max is directly
proportional to the relaxation frequency of the double laye
electrolyte impedance: this is observed experimentally@4#.

For an aqueous solution, the predicted maximum velo
at positionx is

Umax5
1.36831028V0

2

x
~88!

for the caseL51. This equation predicts a peak velocity th
is independent of conductivity and proportional to the vo
age squared. For an applied voltage of 0.5 V and at a
tance of 22.5mm from the center of the system, it predicts
velocity of 1.531024 m/s. For conductivities of 2.1 an
8.631023 S/m, the corresponding measured velocity w
0.3531024 m/s, four times smaller than the predicted valu
For 1 and 2.5 V it was observed that the magnitude of
peak velocity varied with conductivity. This could be due
nonlinear effects in the diffuse double layer. For 0.5 V
weak dependence on conductivity was observed~see Fig. 7
of the previous paper!.

For the lowest conductivity electrolyte the velocity w
approximately proportional to the voltage squared. This w
not observed for the other two conductivities.

V. CONCLUSIONS AND FURTHER DEVELOPMENTS

A linear double layer analysis of ac electro-osmosis
perfectly polarizable electrodes has been carried out and
plied to a geometry similar to the experimental system o
lined in our previous paper. A thin double-layer approxim
tion has been used to simplify the equations and
expression for the ac electro-osmotic velocity has been
rived.

Theoretical predictions have been compared with the
perimental results presented in our previous paper. A w
defined pattern of fluid flow, moving from high to low elec
tric field regions~from the electrode edge to the center! was
observed in the experiments, as predicted. The theore
frequency and distance dependence of velocity was sim
to the experimental results. The order of magnitude of
velocity was in reasonable agreement for low voltages
conductivities. Both the experimental data and the theoret
model indicate a correlation between the frequency dep
dence of the velocity and the voltage drop across the do
layer.

However, the model does not account for the variation
the velocity magnitude with conductivity as observed expe
mentally, neither does it account for the frequency dep
dence of peak velocity on conductivity. There are seve
possible explanations for this. A nonlinear analysis of
diffuse double layer may account for the conductivity dep
dence of the velocity magnitude. For low frequencies,
structure of the diffuse layer may be similar to the Gou
Chapman solution for a static double layer, with time dep
dent parameters. In this case, as the potential across
double layer increases the charge is pulled closer to the e
trode. This reduces the effective Debye length and may
duce the fluid velocity.

In addition, in this work it was assumed that the ele
-
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trodes were ideally polarizable. In reality, faradaic curre
flows between the electrodes and the electrolyte, a sys
usually modeled as a resistance in parallel with the dou
layer impedance@13,14#. A fuller description of the double
layer impedance is likely to give more accurate values for
frequencies of peak velocity. Alternatively, since the
electro-osmotic velocity is related to the voltage drop acr
the double layer, the liquid velocity may be deduced fro
experimental measurements of the double-layer impedan
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APPENDIX: COMPLETE SOLUTION OF THE LINEAR
ELECTRICAL PROBLEM

It is possible to solve the electrical problem in the line
limit completely without making the thin double-layer ap
proximation. Although not easily extensible to other ele
trode configurations, this solution can be used to test
approximate solution presented in the text.

The equations to be solved are Eqs.~23! and ~24!, sub-
jected to boundary conditions~25! and ~26!. Due to the an-
tisymmetry of the boundary conditions, we can deduce t
both the charge and the potential are odd functions ofx. In
this case, we can introduce the Fourier sine transforms

f̃~k,y!5
2

p E
0

`

f~x,y!sin~kx!dx, ~A1!

r̃~k,y!5
2

p E
0

`

r~x,y!sin~kx!dx. ~A2!

This transform reduces the system to a set of ordinary
ferential equations

d2r̃

dy2 5~11 iv1d2k2!r̃, ~A3!

d2f̃

dy2 5k2d2f̃2 r̃, ~A4!

with the boundary conditions

f̃→0, r̃→0 ~y→`!, ~A5!

d

dy
~ r̃1f̃ !50, f̃5

V0

pk
~y50!. ~A6!

The inverse Fourier transform of the solution to this syst
is

r52V0E
0

` d~s1dk!

p~s2211dks!
e2sy sin~kx!dk, ~A7!

f5V0E
0

` ~ ive2dky1dke2sy!

pk~dk2s!~s2211dks!
sinkx dk, ~A8!
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with

s5A11 iv1d2k2, Re~s!.0. ~A9!

This solution is valid for all values ofv.
The expression for the voltage just outside the dou

layer is obtained by lettingy→`, while dy50. In this case,
from Eq. ~A8! the relative voltage drop across both doub
layers@analogous toF(p)# is

V022F

V0
512E

0

` iv

pk~dk2s!~s2211dks!
sinkx dk.

~A10!

Contrary to the case of the thin layer limit, the comple
expression depends not only on the productvx, but onx and
v, independently. In Fig. 5 the exact results ford50.001
with x50.001 and 1~the more realistic case!, are compared
with the thin layer approximation. Recalling thatd is the
ratio between typical scales, a value ofx51 means that the
point is placed at a distance 1000 times the Debye len
from the center, whilex50.001 means that it is placed at on
Debye length from the center. The figure shows that for v
, J

, J

, J
e

th

l-

ues of x of order unity the complete solution and the th
layer approximation solution are fully in accordance. T
figure also shows that the relevant parameter isvx/d and,
for a given position with finitex, the characteristic frequenc
is of the order ofd.

FIG. 5. Comparison of the voltage drop across the bulk in
thin layer limit ~solid line!, with the exact solution for half-infinite
plates, forx51 ~stars! andx50.001~circles!.
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