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Abstract—Cognitive social simulations, enabled by cognitive
architectures (such as ACT-R), are particularly well-suited for
advancing our understanding of socially-distributed and socially-
situated cognition. As a result, multi-agent simulations featuring
the use of ACT-R agents may be important in improving our
understanding of the factors that influence collective sensemaking.
While previous studies demonstrate the feasibility of using ACT-
R to model collective cognition, as well as sensemaking processes
at the individual level, the development of an ACT-R model
of collective sensemaking in a coalition environment presents
a range of relatively novel methodological, technological and
modeling challenges. Such challenges include the need to equip
ACT-R agents with communication capabilities, the need to deal
with highly dynamic information environments, the need to
support intelligent information retrieval capabilities, and the need
to represent inter-agent cognitive differences. These challenges
shape the nature of research and development efforts to create
a multi-agent simulation capability that can be used to explore
the impact of different sociotechnical interventions on collective
sensemaking processes. In this paper, we discuss the research
efforts being undertaken to address these challenges in the context
of the International Technology Alliance (ITA) research program.
We also discuss the motivations for using ACT-R to model
collective sensemaking processes and outline some opportunities
for model application and empirical evaluation.

I. INTRODUCTION

In recent years, there has been a growing interest in
the socially-distributed or socially-situated nature of human
cognition across a number of scientific disciplines [1, 2, 3, 4].
Cognitive processes that were typically studied at the level
of individual agents, such as memory, are now being re-
examined within a more social context [5], and increasing
attention is being paid to the factors that enable groups to
function as the processors of information (see [6]). This
interest in the social dimension of cognition is, in part, a
reflection of the growing popularity of embodied, extended and
situated approaches within the sciences of the mind [7, 8, 9].
However, the research is also motivated by an attempt to
engineer systems that harness the collective cognitive potential
of groups of individuals. The advent of global information
and communication networks, such as the World Wide Web,
has clearly been one of the drivers in such research, with
notions such as collective intelligence [10], augmented social

cognition [11] and social machines [12] serving as some of
the conceptual anchors for ongoing research efforts. However,
systems that support socially-distributed cognition are also
important in more restricted organizational contexts. This is
particularly so as advances in sensor technology lead to a
significant expansion in the scale and scope of available data
assets. As organizations move into this ‘Big Data’ era, so they
are under increasing pressure to distribute cognitive effort and
harness the collective cognitive potential of their workforces.

Advances in sensor and networking technology pose partic-
ular challenges for military coalitions. As organizations that are
under continual pressure to make sense of their environment
and act accordingly, it is imperative that they make best
use of their available information processing resources by
appropriately distributing cognitive effort. However, it is not
always clear how this distribution of cognitive effort should
be achieved. When it comes to collective or team sense-
making, for example, should the individual team members
be allowed to engage in frequent communication with one
another in order to coordinate their interpretations, or should
more restrictive communication policies be enforced. While it
may be natural to assume that full connectivity and frequent
communication is a virtue — and this is certainly consistent
with the technological trend towards communication networks
of ever greater reliability and bandwidth — research within
the social psychological community suggests that precipitant
forms of information sharing can sometimes lead to deficits
in group performance [13]. Cognitive biases are also a major
concern when it comes to collective cognition, especially since
cognitive biases are sometimes more extreme at the group
level [6]. In one study using computer simulation techniques,
Hutchins [14] showed that the temporal profile of inter-agent
communication had a pronounced impact on the tendency
for confirmation bias at the collective level, with the early
and more rapid exchange of information leading to greater
levels of collective confirmation bias. Such studies highlight
the importance of undertaking empirical studies that examine
the effect of a variety of factors on the dynamics of collective
cognition within specific task contexts.

One approach to the study of collective cognition is to
rely on multi-agent simulation techniques. By using such
techniques, the profile of inter-agent communication and the
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dynamics of information exchange can be systematically ma-
nipulated in order to observe their effect on collective cog-
nitive outcomes. While such techniques have proven useful
in investigating a number of social psychological phenomena,
most notably social influence [15], they have sometimes been
criticized in terms of their cognitive sophistication and fidelity.
Sun [16], for example, argues that we should move towards
the use of cognitive architectures in performing cognitive
social simulations. Cognitive architectures are frameworks
that make particular commitments about the kind of mental
representations and computational procedures that are suffi-
cient to explain important aspects of human cognition, such
as problem solving, memory and learning [17]. They often
serve as a framework for the development of computational
cognitive models that are then validated with respect to human
experimental data. Although a cognitive architecture can be
implemented using connectionist schemes, some of the most
influential cognitive architectures, such as ACT-R [18, 19] and
SOAR [20] rely on rule and symbol forms of processing.
Of particular note is ACT-R, which has been the focus of a
sustained research and development effort for more than 30
years, and which has been applied to a broad range of cognitive
processing contexts.

In order to advance our understanding of socially-
distributed cognition, we advocate the use of cognitive archi-
tectures to perform cognitive social simulation, as suggested by
Sun [16]. As part of our work in the International Technology
Alliance (ITA) — a consortium of academic, industrial and
government partners undertaking fundamental research in the
network and information sciences — we propose to deploy
ACT-R in a multi-agent environment, with distinct ACT-R
models serving as individual cognitive agents. Our particular
focus of attention is collective sensemaking within military
coalition environments. In this paper, we describe the moti-
vation for using ACT-R to model collective sensemaking. We
also outline some of the areas of research interest associated
with the modeling effort.

II. COLLECTIVE SENSEMAKING IN MILITARY
COALITIONS

Sensemaking has been the focus of sustained research
attention over the past 10-20 years [21, 22, 23, 24]. It has
been defined as a “motivated, continuous effort to understand
connections (which can be among people, places, and events)
in order to anticipate their trajectories and act effectively” [21].
It is essentially the activity that individuals engage in in order
to explain and predict the features of some object, event or
situation.

Sensemaking is, at heart, a cognitive activity: it is an
activity that involves the processing of information in order
to yield an outcome (i.e., understanding) that is recognizably
cognitive in nature. This does not mean, however, that sense-
making is an activity that only individuals engage in. There
is a growing appreciation of the prevalence and importance
of what might be called ‘collective sensemaking’ [3] or ‘team
sensemaking’ [25]; i.e., the activities that are performed by
groups of individuals in order to develop understanding at
both the individual and collective levels. Work on collective
sensemaking is the focus of an increasing body of empirical
and theoretical work within a number of research communities,

and these efforts are paralleled by an extensive body of work
into related notions, such as shared situation awareness, shared
understanding and shared mental models.

Collective sensemaking is a phenomenon of considerable
importance in a number of different task contexts, such as intel-
ligence analysis [22, 26], military planning [27] and healthcare
provision [28]. It tends to emerge in any situation where a
group or team of individuals is required to pool their cognitive
resources in an attempt to interpret complex, incomplete and
uncertain bodies of data. As with other types of distributed
cognition, there are a number of factors that motivate the tran-
sition from individual to collective sensemaking. One reason is
that the complexity of the available information may be such
that no one individual has the relevant knowledge or expertise
to interpret it properly. Different individuals may possess
specialist knowledge and expertise, and the involvement of
these individuals may be necessary in order for a group to
make sense of some larger body of information. Another rea-
son why collective sensemaking is important is that different
individuals may have access to different bodies of information.
In a military coalition environment, for example, different
individuals may have access to different sources of information
(e.g., particular sensor systems or databases) by virtue of
their position in organizational structures. Individuals may also
have different abilities when it comes to the effective probing
of the information environment and the elicitation of cues
which serve to guide interpretational processes. In intelligence
analysis, for example, different individuals may have different
expertise in retrieving information from particular intelligence
sources. A final reason why individuals may resort to collective
sensemaking strategies is because it builds redundancy into the
sensemaking process. Any errors or omissions that might be
made by one individual have a greater chance of being detected
or compensated for by the efforts of others.

Sensemaking is a key capability for military coalitions,
enabling both individuals and teams to make sense of con-
flicting, ambiguous and uncertain information. This impor-
tance is reflected in the vision of network-centric operations
(NCO), where sensemaking is seen as a key factor in en-
abling coalitions to respond in an adaptive manner to complex
and dynamic situations. According to the NCO Conceptual
Framework (NCO-CF), for example, sensemaking at both the
individual and collective levels has a direct impact on decision
synchronization, force agility and mission effectiveness [29].
In particular, sensemaking processes are seen as an interven-
ing variable in the NCO value chain: they enable military
organizations to capitalize on the progress made with respect
to networking technology and improved information sharing
capabilities [29]. This is something that makes research into
collective sensemaking of vital importance to military coalition
organizations (see [3]). Indeed, the extension of sensemaking
into the social domain is something that is explicitly recog-
nized by the NCO-CFE. Within the NCO-CF, collective (or
shared) sensemaking is seen as the collective counterpart of
individual sensemaking, and it is regarded as something that
is strongly influenced by social interaction and social networks
[29].

The military coalition environment presents a number of
challenges to collective sensemaking. Some of the features
that are likely to complicate collective sensemaking include
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Fig. 1. The core modules of the ACT-R v.6 cognitive architecture.

(but are not limited to) variable trust relationships, dynamic
communication network topologies, the extent of information
sharing, differential access to specific bodies of information,
the presence of cognitive diversity and the potential for mis-
communication. Given the centrality of collective sensemaking
to coalition operations, it is important that we develop a better
understanding of the relationship between specific features
of the coalition communication environment and aspects of
collective sensemaking performance. Attempts at cognitive
computational modeling should clearly aim to accommodate
these features as part of their attempt to explain and predict the
effect of specific socio-technical interventions on the dynamics
of collective sensemaking.

II1. ACT-R

A cognitive architecture is a model of how cognition can
occur within the physical structures of the human brain [18].
ACT-R is one of the most popular and influential cognitive
architectures, and it has been widely used within the cogni-
tive science research community. ACT-R allows researchers
to create models of cognitive performance in various task
contexts by providing a representational framework and set
of computational procedures, both of which are modeled on
the human cognitive system.

ACT-R is comprised of several modules, where each
module represents a particular brain function. Communication
between the modules is limited to very small amounts of
information, which are stored in buffers, and a single module
— the procedural module — is responsible for inter-module
coordination. As shown in Fig. 1 there are eight core modules
in the most recent version of ACT-R, released in 2005.

One of the factors that motivates the application of ACT-
R to collective sensemaking is that considerable effort has
already been invested in applying ACT-R to the modeling
of sensemaking processes at the level of individual human
agents [30]. Using a geospatial intelligence analysis task, re-
searchers working within the Intelligence Advanced Research
Projects Activity (IARPA) Integrated Cognitive-neuroscience

Architectures for the Understanding of Sensemaking (ICArUS)
program have used ACT-R to model several of the core
information foraging and hypothesis-updating processes as-
sociated with human sensemaking. Their research has cor-
rectly predicted both the presence and degree of four main
cognitive biases, namely, confirmation bias, anchoring and
adjustment, representativeness, and probability matching. The
ACT-R model also exhibits a behavioral profile that is similar
to human subjects in terms of information selection and the
allocation of military resources based on probability estimates
(see [30] for a review).

IV. RESEARCH AREAS

Although ACT-R has typically been used to study cognitive
processes at the level of individual human agents, the growing
interest in the social dimension of cognition motivates a
consideration of its use in collective processing contexts. The
feasibility of using ACT-R to model socially-distributed pro-
cesses has already been demonstrated in a number of studies
[31, 32]. In one recent study, for example, Reitter and Lebiere
[32] used a multi-agent simulation involving multiple ACT-R
agents to investigate the effect of differential rates of decay in
individual memory on performance in a simulated information
foraging task. Their results suggest that average task perfor-
mance improves with increasing rates of individual memory
decay. This highlights the value of using a cognitively-rich
agent model to investigate the potential interactions between
individual cognitive function and collective task performance.

While previous studies demonstrate the feasibility of using
ACT-R to model collective cognition, the development of an
ACT-R model of collective sensemaking in a coalition envi-
ronment presents a range of relatively novel methodological,
technological and modeling challenges. These challenges serve
to ground the focus of our research efforts within the ITA
program. In subsequent sections, we provide an overview of a
number of areas where research and development efforts are
currently being focused.

A. Agent Communication

As with any collaborative process, collective sensemaking
often entails a capacity for inter-agent communication. Agents
may need to initiate requests for information and communicate
information in a form that other agents can understand. While
a number of approaches to inter-agent communication could
be explored, our research efforts in the ITA are centered on
the use of a controlled variant of natural language, called
Controlled English (CE). As with other controlled natural
languages, CE imposes a set of grammatical constraints on
linguistic expressions that serve to reduce semantic ambiguity
and support human-machine interaction. By using CE as a
vehicle for communication, agents can provide information
to other agents in a form that is semantically-interpretable,
irrespective of the actual domain in which sensemaking occurs.
In other words, CE provides us with a domain-neutral mode
of information representation, something that is of critical
significance in terms of the broader applicability of the model
to other domains of interest (see Section V). A number of
other factors motivate a consideration of the use of CE within
the current context. Firstly, CE supports the expression of
queries, which can be used to provide question-answering



capabilities. Secondly, because CE is human-readable, it can
be used as a vehicle for communication between human and
machine agents. This is important because it allows human
observers to understand the communicative transactions that
are made between agents in the context of a simulation. It
also allows human agents to participate in the simulation by
acting as an information source. In addition, previous work has
explored the incorporation of language-enabled ACT-R agents
into team training simulations where they act as synthetic
teammates [33]. The use of CE could enable ACT-R agents
to play a similar role in the context of collective sensemaking
tasks without the overhead incurred by the need to implement
full natural language processing capabilities. Thirdly, CE can
serve as a knowledge representation language. This makes
it of potential value in terms of furnishing ACT-R agents
with the knowledge and conceptual structures necessary to
deal with particular domains. The integration of computational
ontologies with ACT-R serves a similar objective [34].

B. Social Trust and Influence

As part of collective sensemaking efforts, agents share
information into order to influence the beliefs held by other
agents. One of the factors that determines the level of influence
associated with transmitted information is the level of trust that
the receiving agent has in the sending agent. When trust is
high, the influence of the transmitted information is assumed
to be greater than when trust is low, and thus the transmitted
information can be expected to feature heavily in the receiving
agent’s belief formation and belief revision processes.

The level of trust that exists between agents, and the
associated impact this has on the importance of transmitted
information, has emerged as a significant factor in controlling
the opinion dynamics of large agent communities. In one
study, for example, Glinton et al [35] examined the effect of
social influence parameters in a large team information sharing
task. In Glinton et al’s model, a large number of agents (e.g.,
1000) work together to form beliefs concerning the state of a
specific feature of the environment. Only a small proportion of
the agents (e.g., 5%) are connected to sensors which provide
information about the environment, and this leads those agents
to form initial beliefs, which are then propagated to other
agents. Importantly, the sensors used in the model are noisy,
only producing correct observations according to a predefined
accuracy. This creates uncertainty for the agents. Glinton et
al discovered that the importance that each agent assigns to
its neighbor’s opinions has a dramatic effect on the ability
of agents to converge on a consistent set of beliefs about
the environment. They found that, across a range of model
parameters, there is typically an optimal level of influence
that enables agents to converge on the correct interpretation.
This work, as well as work by Pryymak et al [36], suggests
that mechanisms supporting the adaptive regulation of social
influence may help a community of agents deal with uncertain
information and establish accurate shared beliefs about the
state of the environment. The level of trust that exists between
agents may be one means by which this influence is regulated.

One of the challenges associated with the use of ACT-R
to support socio-cognitive simulations of sensemaking is thus
to develop a means of representing social trust. While some
previous work has addressed the issue of trust representation

in cognitive social simulations [37], there has been little work
to date on representing trust (and social influence parameters,
more generally) within ACT-R. Further progress in this area is
important because social trust not only determines the extent to
which received information is factored into an agent’s internal
belief formation and revision processes, it is also likely to
influence the dynamics of agent interaction, with greater levels
of agent interaction being observed between agents with the
strongest trust relationships'.

C. Dynamic Information Environments

One of challenges facing sensemakers in military coali-
tions concerns the rapidly changing nature of the operational
environment. The tempo of military operations must keep pace
with events as they unfold in real-time, and this places limits on
the temporal window within which analytic outcomes, as well
as associated decisions and military plans, are valid. Due to
an ever-changing situation picture, coalition sensemakers must
continuously revise and update their interpretations, hypothe-
ses and understanding in light of newly received information.
Any attempt to model collective sensemaking in coalition
contexts is thus likely to require the inclusion of dynamic
information streams that cause agents to extend and revise the
beliefs they have about the current situation.

Dynamic information environments open up a range of
interesting issues for computational models of collective sense-
making. We have already seen that when it comes to informa-
tion sharing in large teams, the degree of trust between agents
plays an important role in determining the extent to which
the team converges on accurate and consistent belief states
[35, 36]. However, such models rely on the use of static facts,
where the facts that are observed by agents do not change
across the course of the simulation. In these situations, any
variability in belief states that arises due to the observation
of the environment comes about as the result of inaccuracies
in the sensors that provide information to the agent team.
Recently, Eck and Soh [39] have shown that when we switch to
the assumption that agents are operating in a dynamic informa-
tion environment, and static facts are replaced with dynamic
ones, social trust no longer functions to adequately control
belief convergence. They observe a phenomenon that they refer
to as ‘institutional memory’ in which team members converge
to the initial value of a fact, but then fail to properly revise their
belief states in the face of changing fact values. Because this
phenomenon appears to be immune to the influence of social
trust, it may be important to look for alternative mechanisms
that support the convergence to accurate belief states. One such
mechanism may rely on the cognitive properties of agents.
In particular, once agents are endowed with an ability to
forget information, the role that outdated information plays
in maintaining collective interpretations of the environment

Tt should also be noted that social trust is not something that need be fixed
throughout the course of a simulation. Agents may revise their trust in one
another based on their past interaction experiences. For example, if one agent
is the source of information that turns out to be consistently incorrect, then
trust in that agent may deteriorate over time. This is a potentially important
feature for socio-cognitive simulations because dynamic trust relationships
may contribute to an effective ‘rewiring’ of the inter-agent communication
network across the course of a simulation. Such dynamically configured
networks may yield performance profiles that are not seen in the case of
their more statically configured network counterparts (see [38]).



may be undermined. This possibility serves to highlight the
importance of factoring cognitive variables into multi-agent
simulations. By using cognitively-sophisticated agents, we can
observe complex interactions that subtend the cognitive (e.g.,
memory), social (e.g., social trust) and technological (e.g.,
communication network structure) domains. In some cases,
this presents us with additional opportunities to control or
influence team performance outcomes.

D. Active Probing of the Information Environment

In making sense of a situation, a human agent does not
sit passively waiting to be informed of relevant information.
Instead, sensemaking is often an active process. Human agents
engaged in sensemaking do not simply react passively to the
information they receive, they also seek to manipulate their
information environments in ways that meliorate their access
to hidden patterns, relationships and contingencies.

What this means in terms of the development of ACT-R
models is that ACT-R sensemaking agents should be equipped
with an ability to actively probe the information environment in
order to seek out new information. Such activities can be seen
as a form of information foraging, which is a key component
of many sensemaking models (e.g., [26]). One means by which
these active probing capabilities could be implemented is by
enabling ACT-R agents to interact with semantic information
repositories (e.g., RDF triple stores) that can be queried
using semantic query languages such as RDQL or SPARQL.
Although previous work has demonstrated the feasibility of
interfacing ACT-R agents with relational databases (as a means
of extending declarative memory) [40], the nature of the inter-
action mechanisms required for active probing capabilities are
somewhat more complex. At a minimum, ACT-R agents need
to be able to formulate queries and process query resultsets,
and this is probably best accomplished via the development
of a specialized query module within ACT-R. The LarCT-
R extension of jJACT-R (a Java implementation of ACT-R)?
attempts to combine ACT-R with Semantic Web technology,
and some of the work associated with this past initiative may
be relevant to the current modeling effort.

Of course, the ability to formulate queries is only one
of the challenges associated with the active probing of the
information environment. Another challenge concerns the im-
plementation of cognitive mechanisms that initiate and direct
the query formulation process. Both the decision to construct
queries, as well as the nature of the queries that get constructed,
are likely to be knowledge-intensive processes worthy of
independent cognitive analysis and modeling.

In addition to an ability to interact with external informa-
tion repositories, communication with other agents is also an
important consideration when it comes to the active probing of
the information environment. Other ACT-R agents may be the
source of relevant information, and requests for information
to other agents may be assumed to be a key feature of many
collaborative processes. This highlights the need for a consid-
eration of agent communication and interaction mechanisms as
part of collective sensemaking processes (see Section IV-A).

2See http://larctr.sourceforge.net/.

E. Cognitive Diversity

One of the advantages of military coalitions is that they
bring together individuals from different cultural backgrounds,
with different levels of expertise and experience. From a
sensemaking perspective, such differences in knowledge and
experience may be important in terms of both hypothesis
generation and the mitigation of biases. In the case of face-to-
face groups, for example, Schulz-Hardt et al [41] have shown
that confirmation bias is exacerbated in homogenous groups
and attenuated in heterogeneous ones. Similarly, Convertino
et al [42] showed that heterogeneous groups exhibited less
confirmation bias than homogenous groups when using a tool
developed to support collaborative intelligence analysis. Such
studies suggest that the cognitive diversity of a team may be
an important factor in determining the team’s resistance to
factors (e.g., cognitive bias) that subsequently limit the team’s
performance.

Issues of cognitive diversity could be approached in a num-
ber of ways using ACT-R. Firstly, agents could be initialized
with different bodies of background knowledge (asserted in
declarative memory). This would help to reflect the differences
in expertise and experience that individual analysts bring to
the sensemaking task within particular domains. Secondly,
individual agents could be developed with different bodies
of procedural knowledge (implemented as production rules
in ACT-R). Again, this would help to introduce diversity in
the agent community by virtue of the different inferences that
agents make as part of the sensemaking process. Finally, agents
could be led to favor different hypotheses by manipulating
their exposure to initial information items. This was, in fact,
one of the strategies used by Convertino et al [42] in creating
heterogeneous groups: they began the experiment by exposing
group members to evidence favoring different hypotheses.
Interestingly, this is perhaps one example where a specific form
of cognitive bias, namely anchoring, could prove of adaptive
relevance to group-level cognitive processes; it essentially
provides a means by which differences in opinion can be
established within a team in order to mitigate against other
forms of cognitive bias.

F. Differential Information Access

Information access and sharing in coalition environments
is often limited by security constraints. Information that may
be easily accessed by one analyst may not be accessible to
another, and, even if it is accessible, it may be degraded
due to obfuscation strategies. There is considerable interest in
what effect this differential information access has in terms of
collective sensemaking. Although, we might expect restricted
information access to undermine collective sensemaking ef-
forts, it is also possible that security policies might adaptively
regulate the flow of information through a community, forcing
different analysts to work on different subsets of information
and thereby ensuring greater levels of information coverage.
Exposure to different bodies of information may also lead to
greater diversity regarding initial hypotheses and interpreta-
tions, which may serve to mitigate group-level biases (see
[41]). Finally, differential information access may reduce the
extent to which analysts are exposed to common bodies of
information, thereby limiting the impact of shared information
on group decision making [43, 44].



G. Collaborative Technologies

The development of collaborative technologies to support
sensemaking in a number of task areas is the focus of
both recent and ongoing development efforts [42, 45]. In the
case of collaborative intelligence analysis, for example, an
environment, called CACHE, has been developed to support
analysts in processing evidentiary information and sharing
information with other analysts. Studies suggest that the use
of this environment can be used to mitigate against cognitive
biases, such as confirmation bias, although factors such as the
initial cognitive diversity of the team (i.e., the extent to which
all team members are biased towards the same solution) may
affect the extent of bias mitigation [42].

CACHE provides a number of features that may be im-
portant to incorporate in cognitive computational models of
collective sensemaking processes. Firstly, CACHE features the
use of representations (e.g., matrices) that support analysts
in evaluating hypotheses with respect to particular bodies
of evidence. These representations can be viewed by other
users in order to promote awareness of what information is
being processed and how this information is contributing to
analytic outcomes. Recent extensions of CACHE, in the form
of a Bayes Community version of CACHE (or CACHE-BC),
support additional features, such as the ability to treat other
analyst’s hypotheses as part of the evidence base for one’s
own analytic efforts [45].

The features of collaborative technologies change the na-
ture of the sensemaking process at both an individual and
collective level, and it is thus important to consider these in
the context of computational modeling efforts. The sharing
of local representations (containing original evidence, analyst
inferences and emerging hypotheses) may be particularly im-
portant in terms of enabling a team to adequately distribute
the effort associated with the processing of large bodies of
relevant information. Within ACT-R such ‘workspaces’ could
be implemented as agent-level modules that are accessible to
other agents within the immediate network neighborhood.

One motivation for incorporating the features of tech-
nological environments into an ACT-R model of collective
sensemaking is that simulation studies using the model can be
used to help both inform the design of future interventions and
evaluate the impact of existing solutions. They can also help
to reveal complex interactions between factors that subtend the
cognitive, social, informational and technological domains. In
this respect, a number of studies have shown that the benefits
of using technology in collaborative situations are often linked
to other factors such as information load, opinion distribution
and the extent of initial biasing [42, 46, 47].

V. APPROACH AND MOTIVATION

As mentioned in Section II, the requirement to draw on
the resources of the social environment in making sense of
complex situations is something that is common to many
spheres of activity, including conventional intelligence analy-
sis, business intelligence and scientific analysis. In spite of this
commonality, however, it is likely that any model of collective
sensemaking will need to account for the specific mix of
technological, social, informational and cognitive resources
that are recruited in specific organizational and task contexts.

Collective sensemaking is likely to be a process that is heavily
influenced by a number of factors, such as the nature of
technological support, the organizational context in which
sensemaking occurs, and the goal of the sensemaking process.
In view of this, we do not expect to develop a universal model
of collective sensemaking. Rather, our aim is to develop a
framework that incorporates the kind of capabilities alluded
to in Section IV (e.g., the capacity to instantiate teams of
ACT-R agents that must deal with dynamic information en-
vironments and differential information access policies) and
then demonstrate the application of the framework in a specific
organizational and task context, namely coalition-based collec-
tive sensemaking. We suggest that the different sociotechnical
ecologies of collective sensemaking processes bear enough in
common for the framework to be of generic relevance to a
range of different application areas. For instance, we would
expect the framework to support modeling activities in respect
of medical sensemaking, forensic crime analysis, and business
intelligence analysis, thereby expanding the applicability of the
current work beyond the military domain.

The value of using cognitive architectures in the context
of multi-agent simulations is that they increase the cognitive
fidelity and sophistication of the simulations being performed.
This is clearly important in situations where collective behavior
and team performance outcomes are influenced by cognitive
processes. By using an influential and widely exploited cogni-
tive architecture, such as ACT-R, we aim to develop predictive
models that will highlight the potential impact of different
sociotechnical interventions on collective sensemaking perfor-
mance. One of the main points of interest, here, concerns the
role that specific factors play in accentuating or mitigating cog-
nitive biases (i.e., systematic departures from an ideal standard
of reasoning). As mentioned above, previous work using ACT-
R has focused on cognitive biases [30], and this is an important
source of information regarding our understanding of cognitive
biases at the individual level. Our own work seeks to extend
this body of existing research by examining how factors at
the informational, social, and technological levels interact with
cognitive mechanisms in order to influence the expression of
cognitive biases at the collective level’.

VI. MODEL EVALUATION

Ultimately, we aim to evaluate the outcomes of the mod-
eling effort within a military coalition context. One of the
focus areas of interest, in this respect, concerns the Warfighter
Associate (WA) intelligent agent decision support tool, which
is being developed by Veloxiti* [48]. WA technology provides
a knowledge base to support the maneuver, intelligence, fires,
and communications domains; intelligent agents to monitor
services, such as Command Post of the Future (CPOF) and
the Publish and Subscribe Server (PASS); and natural language
processing capabilities to filter text from multiple chat rooms
[48]. The WA intelligent agent capability alerts the maneuver,
intelligence, fires, and communications staff to domain spe-
cific information consistent with the Commander’s intent and

3In addition to the nature and extent of cognitive biases, other dependent
variables of interest include the extent of information coverage, correspon-
dence of sensemaking outcomes with ground truth, the temporal profile of
cognitive convergence and (perhaps) the degree of cognitive load experienced
by individual agents in particular experimental contexts.

4see http://www.veloxiti.com/.



then portrays this information within a Common Operational
Picture specific to their staff roles. The WA and its data
analysis component have been used in human-in-the-loop ex-
perimentation for the US Army Tactical Human Integration of
Networked Knowledge program to capture operator behaviors.
The system could also be used in experimentation efforts
to validate the ACT-R models and multi-agent simulations
consistent with the US Army Research Laboratory Model-
Test-Model paradigm. It may also be possible to apply the
WA knowledge base to facilitate the development of ACT-R
models of individual cognitive functions and collective task
performance. Finally, the WA’s natural language processing
capabilities for filtering chat messages may be augmented by
CE facts, represented as declarative memory in ACT-R, in
order to assist humans with sensemaking activities (see Section
IV-A).

VII. CONCLUSION

Cognitive social simulations are particularly well-suited
to advancing our understanding of cognition in socially-
distributed or socially-situated contexts. Although agent-based
models have been applied to the military domain previously,
the use of cognitive social simulations, enabled by cognitive
architectures, in this area is quite new. One of the advantages
of such models is that they enable us to explore the complex
relationships that exist between factors at the informational,
technological, social and cognitive levels. We can, for example,
in the case of sensemaking, investigate the impact of specific
aspects of the sociotechnical ecology on sensemaking perfor-
mance at both the individual and collective levels. Cognitive
social simulations also enable us to explore the role that
specific cognitive mechanisms (such as mnemonic decay rates
- see Section IV-C) play in influencing collective behavior and
team performance outcomes.

When applied to the domain of coalition-based collective
sensemaking, a number of challenges confront the attempt
to develop a model that can be used in cognitive social
simulations. These challenges motivate our research into how
to develop a framework that incorporates various features of
the military coalition environment into a multi-agent system
based around the use of ACT-R agents. The development and
use of models created with this framework should shed light
on the impact that different sociotechnical environments have
on the dynamics of collective sensemaking processes within a
variety of application domains.
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