

Accurate near-body predictions at intermediate Reynolds numbers

Dr. Gabriel Weymouth, Audrey Maertens

Southampton Marine and Maritime Institute, Southampton
Center for Ocean Engineering, MIT

Maritime field adopting new design criterion and applying novel concepts

Marine field (biology, paleontology, and sport) eager to utilize technology

Hydrodynamic object recognition using pressure sensing

- Blind cave fish use pressure in efficient propulsion, navigation, and predator avoidance

- Applications in autonomous vehicles, harbor safeguarding, energy extraction...
- $Re = 2K-100K$

Predictions of near-field pressure and separation at low angles of attack

Induced change in pressure field passing circular cylinder
Can induce separation, but not in this case!

Fernandez et al *MTS* 2011

Direct Forcing generates nonphysical separation and surface pressures

Jump in velocity gradient across boundary causes numerical pressure instability

Griffith & Peskin *JCP* 2005
Muldoon & Acharya *IJNM* 2008
Guy & Hartenstine *JCP* 2010

Problem is exacerbated
at higher Reynolds
numbers

Obviously, it's time to throw in the towel

- Switch to cut-cell method
 - Sharp interface

~~- Obviously, it's time to throw in the towel~~

- Switch to cut-cell method
 - Sharp interface
 - Much more complex
 - Stability problems which require lots of numerical trickery to avoid

The smoothing wasn't the problem
Let's try reformulating the system...

Coupled two-domain problem: Fluid system with irregular boundary data

$$F : \frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} + \frac{1}{\rho} \vec{\nabla} p - \nu \nabla^2 \vec{u} = 0 \quad \Omega_f$$

$$F : \vec{u} - \vec{u}_0 + \int_{t'=0}^t \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} + \frac{1}{\rho} \vec{\nabla} p - \nu \nabla^2 \vec{u} \, dt' = 0$$

$$\vec{u} = \vec{f}(\vec{u})$$

$$B : \vec{u} - \vec{V} = 0$$

$$\vec{u} = \vec{b}(\vec{u}) \text{ boundary}$$

Coupled two-domain problem: Fluid system with irregular boundary data

Ω_f

Want one *continuous* GEQ
over the complete domain

$$\vec{u} = \vec{f}(\vec{u})$$

$$\vec{u} = \vec{b}(\vec{u}) \text{ boundary}$$

Ω_b

Finite kernel convolution of the GEQs unifies the equation domain

$$\vec{f}_\epsilon(\vec{u}, \vec{x}, t) = \int_{\Omega_f} \vec{f}(\vec{u}, \vec{x}_f, t) K_\epsilon(\vec{x}, \vec{x}_f) dx_f$$

$$\vec{b}_\epsilon(\vec{u}, \vec{x}, t) = \int_{\Omega_b} \vec{b}(\vec{u}, \vec{x}_b, t) K_\epsilon(\vec{x}, \vec{x}_b) dx_b$$

$$\vec{u}_\epsilon = \vec{f}_\epsilon + \vec{b}_\epsilon, \quad \forall \vec{x} \in \Omega$$

Boundary Data Immersion Method
Weymouth & Yue, JCP 2011

Second-order Taylor expansion simplifies the integrated governing equations

$$\begin{aligned} b_\epsilon(\vec{u}, \vec{x}) &= \int_{\Omega_b} b(\vec{u}, \vec{x}_b) K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b \\ &\approx \int_{\Omega_b} \left(b(\vec{u}, \vec{x}) + \vec{\nabla} b(\vec{u}, \vec{x}) \cdot (\vec{x}_b - \vec{x}) \right) K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b \\ &\approx b(\vec{u}, \vec{x}) \boxed{\int_{\Omega_b} K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b} + \frac{\partial b}{\partial n}(\vec{u}, \vec{x}) \boxed{\int_{\Omega_b} (\vec{x}_b - \vec{x}) \cdot \hat{n} \, K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b} \\ &\quad + \cancel{\frac{\partial b}{\partial \tau}(\vec{u}, \vec{x}) \int_{\Omega_b} (\vec{x}_b - \vec{x}) \cdot \hat{\tau} \, K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b} \\ &\approx b(\vec{u}, \vec{x}) \mu_0^{\epsilon, B} + \frac{\partial b}{\partial n}(\vec{u}, \vec{x}) \mu_1^{\epsilon, B} \end{aligned}$$

Boundary Data Immersion Method
Maertens & Weymouth, JCP (in review)

Kernel moments are smooth functions of distance to the fluid/body boundary

Never need to explicitly integrate over domains

$$\mu_0^\epsilon \equiv \mu_0^{\epsilon,F} = 1 - \mu_0^{\epsilon,B}$$

Second-order BDIM governing equation

$$\vec{u}_\epsilon = \underbrace{\mu_0^\epsilon \vec{f} + (1 - \mu_0^\epsilon) \vec{b}}_{\text{First two terms}} + \underbrace{\mu_1^\epsilon \frac{\partial}{\partial n} \left(\vec{f} - \vec{b} \right)}_{\text{Last term}}$$

- **First two terms** are “mixed” fluid/body system
- **Last term** is a correction for discontinuity
- Simple algebraic adjustment to uncoupled fluid system $\vec{u} = \vec{f}$
- Enables (near trivial) Cartesian-grid method to make excellent predictions

Direct Forcing is first-order and
neglects the pressure weighting

$$\vec{f} = \vec{R} - \partial \vec{P}$$

$$\vec{u}_\epsilon = \vec{f} + \left(1 - \mu_0^\epsilon - \mu_1^\epsilon \frac{\partial}{\partial n} \right) \left(\vec{b} - \vec{R} + \partial \vec{P} \right)$$

$$\vec{\nabla} \cdot \overset{1}{\cancel{\mu_0^\epsilon}} \partial \vec{P} = \vec{\nabla} \cdot \left[\vec{R} + \left(1 - \mu_0^\epsilon - \mu_1^\epsilon \frac{\partial}{\partial n} \right) (\vec{V} - \vec{R}) \right]$$

Inclusion of μ_0 in Poisson equation stabilizes pressure in nonlinear cases

- Enforces correct pressure boundary condition
- Improves pressure conditioning

Inclusion of μ_0 in Poisson equation stabilizes pressure in nonlinear cases

Bergmann et al *PRL* 2006

- Giant cavity remains stable and gives correct pinch-off
- Simple adjustment ensures robust solution

Second-order term controls shear gradient discontinuity and removes bias

- 1D unsteady channel flow at $Re=1000$
- Both 1st order methods have similar error
- 2nd order is improved throughout

Second-order enables near field predictions on separated foil test case

- SD7003 at 4° AOA, Re=10K
 - Low curvature foil with fine trailing edge
 - Very sensitive to IB treatment

Second-order enables near field predictions on separated foil test case

- Sharp SD7003 at 4° AOA
- Enables analytic treatment of sharp trailing edge

Second-order enables near field predictions on separated foil test case

- $O(1)$ method diverges due to pressure instability
- BDIM $O(2)$ matches body-fitted predictions

Second-order at higher Reynolds number

- At $Re \sim 25K$ the flow becomes three-dimensional at the trailing edge

Heaving and pitching foil at $Re=100K$

Heaving and pitching foil at $Re=100K$

- $O(2)$ predicts smooth lift
- Reduces mean drag error from 20% to 5%

Fish model open water pressure

- 3D axisymmetric foil at $Re=6K$

Direct Forcing generates nonphysical separation and surface pressures

Second-order method predicts correct near-body pressure and velocity

Current Status

- BDIM: Analytic convolution GEQ with simple numerical implementations
- First-order BDIM applies accurate nonlinear pressure BCs
- Second-order BDIM controls gradient discontinuity at intermediate Re

G.D.Weymouth@soton.ac.uk

Thanks to:

Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT

Future Directions

- Speed-up through optimizing $\vec{u} = \vec{f}$
- High Re by incorporating BL data
- Continue fun and challenging applications

G.D.Weymouth@soton.ac.uk

Thanks to:

Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT

G.D.Weymouth@soton.ac.uk

Thanks to:

Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT