Accurate near-body predictions at intermediate Reynolds numbers

Dr. Gabriel Weymouth, Audrey Maertens
Southampton Marine and Maritime Institute, Southampton
Center for Ocean Engineering, MIT
Maritime field adopting new design criterion and applying novel concepts
Marine field (biology, paleontology, and sport) eager to utilize technology
Hydrodynamic object recognition using pressure sensing

- Blind cave fish use pressure in efficient propulsion, navigation, and predator avoidance

- Applications in autonomous vehicles, harbor safeguarding, energy extraction...

- \(\text{Re} = 2K-100K \)
Predictions of near-field pressure and separation at low angles of attack

Induced change in pressure field passing circular cylinder
Can induce separation, but not in this case!

Fernandez et al *MTS* 2011
Direct Forcing generates nonphysical separation and surface pressures
Jump in velocity gradient across boundary causes numerical pressure instability

Griffith & Peskin *JCP* 2005
Muldoon & Acharya *IJNM* 2008
Guy & Hartenstine *JCP* 2010

Problem is exacerbated at higher Reynolds numbers
Obviously, it’s time to throw in the towel

- Switch to cut-cell method
 - Sharp interface
Obviously, it’s time to throw in the towel

• Switch to cut-cell method
 – Sharp interface
 – Much more complex
 – Stability problems which require lots of numerical trickery to avoid

The smoothing wasn’t the problem
Let’s try reformulating the system...
Coupled two-domain problem:
Fluid system with irregular boundary data

\[F : \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho} \nabla p - \nu \nabla^2 \mathbf{u} = 0 \quad \Omega_f \]

\[F : \mathbf{u} - \mathbf{u}_0 + \int_{t'=0}^{t} (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho} \nabla p - \nu \nabla^2 \mathbf{u} \, dt' = 0 \]

\[\mathbf{u} = \mathbf{f}(\mathbf{u}) \]

\[B : \mathbf{u} - \mathbf{V} = 0 \]

\[\mathbf{u} = \mathbf{b}(\mathbf{u}) \text{ boundary} \quad \Omega_b \]
Coupled two-domain problem:
Fluid system with irregular boundary data

Want one *continuous* GEQ over the complete domain

\[\vec{u} = \vec{f}(\vec{u}) \]

\[\vec{u} = \vec{b}(\vec{u}) \text{ boundary} \]
Finite kernel convolution of the GEQs unifies the equation domain

\[
\begin{align*}
\vec{f}_\epsilon(\vec{u}, \vec{x}, t) &= \int_{\Omega_f} \vec{f}(\vec{u}, \vec{x}_f, t) K_\epsilon(\vec{x}, \vec{x}_f) d\vec{x}_f \\
\vec{b}_\epsilon(\vec{u}, \vec{x}, t) &= \int_{\Omega_b} \vec{b}(\vec{u}, \vec{x}_b, t) K_\epsilon(\vec{x}, \vec{x}_b) d\vec{x}_b \\
\vec{u}_\epsilon &= \vec{f}_\epsilon + \vec{b}_\epsilon, \quad \forall \vec{x} \in \Omega
\end{align*}
\]
Second-order Taylor expansion simplifies the integrated governing equations

\[b_\epsilon(\vec{u}, \vec{x}) = \int_{\Omega_b} b(\vec{u}, \vec{x}_b) K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b \]

\[\approx \int_{\Omega_b} \left(b(\vec{u}, \vec{x}) + \vec{\nabla} b(\vec{u}, \vec{x}) \cdot (\vec{x}_b - \vec{x}) \right) K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b \]

\[\approx b(\vec{u}, \vec{x}) \int_{\Omega_b} K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b + \frac{\partial b}{\partial n}(\vec{u}, \vec{x}) \int_{\Omega_b} (\vec{x}_b - \vec{x}) \cdot \hat{n} K_\epsilon(\vec{x}, \vec{x}_b) \, d\vec{x}_b \]

\[\approx b(\vec{u}, \vec{x}) \mu_0^{\epsilon,B} + \frac{\partial b}{\partial n}(\vec{u}, \vec{x}) \mu_1^{\epsilon,B} \]

Boundary Data Immersion Method

Maertens & Weymouth, JCP (in review)
Kernel moments are smooth functions of distance to the fluid/body boundary

Never need to explicitly integrate over domains

\[\mu_0^\epsilon \equiv \mu_0^{\epsilon, F} = 1 - \mu_0^{\epsilon, B} \]
Second-order BDIM governing equation

\[\vec{u}_\varepsilon = \mu_0^e \vec{f} + (1 - \mu_0^e) \vec{b} + \mu_1^e \frac{\partial}{\partial n} \left(\vec{f} - \vec{b} \right) \]

- First two terms are “mixed” fluid/body system
- Last term is a correction for discontinuity
- Simple algebraic adjustment to uncoupled fluid system \(\vec{u} = \vec{f} \)
- Enables (near trivial) Cartesian-grid method to make excellent predictions
Direct Forcing is first-order and neglects the pressure weighting

\[\vec{f} = \vec{R} - \partial \vec{P} \]

\[\vec{u}_\epsilon = \vec{f} + \left(1 - \mu_0^\epsilon - \mu_1^\epsilon \frac{\partial}{\partial n} \right) \left(\vec{b} - \vec{R} + \partial \vec{P} \right) \]

\[\vec{\nabla} \cdot \mu_0^\epsilon \partial \vec{P} = \vec{\nabla} \cdot \left[\vec{R} + \left(1 - \mu_0^\epsilon - \mu_1^\epsilon \frac{\partial}{\partial n} \right) (\vec{V} - \vec{R}) \right] \]
Inclusion of μ_0 in Poisson equation stabilizes pressure in nonlinear cases

- Enforces correct pressure boundary condition
- Improves pressure conditioning
Inclusion of μ_0 in Poisson equation stabilizes pressure in nonlinear cases

- Giant cavity remains stable and gives correct pinch-off
- Simple adjustment ensures robust solution

Bergmann et al *PRL* 2006
Second-order term controls shear gradient discontinuity and removes bias

- 1D unsteady channel flow at Re=1000
- Both 1st order methods have similar error
- 2nd order is improved throughout
Second-order enables near field predictions on separated foil test case

- SD7003 at 4° AOA, Re=10K
 - Low curvature foil with fine trailing edge
 - Very sensitive to IB treatment
Second-order enables near field predictions on separated foil test case

- Sharp SD7003 at 4° AOA
- Enables analytic treatment of sharp trailing edge
Second-order enables near field predictions on separated foil test case

- $O(1)$ method diverges due to pressure instability
- BDIM $O(2)$ matches body-fitted predictions
Second-order at higher Reynolds number

- At $\text{Re} \sim 25K$ the flow becomes three-dimensional at the trailing edge
Heaving and pitching foil at Re=100K

Leading edge vortex remains attached

Tuncer & Platzer 2000
Heaving and pitching foil at Re=100K

- O(2) predicts smooth lift
- Reduces mean drag error from 20% to 5%
Fish model open water pressure

- 3D axisymmetric foil at Re=6K

Windsor et al. *JEB* 2003
Direct Forcing generates nonphysical separation and surface pressures
Second-order method predicts correct near-body pressure and velocity
Current Status

• BDIM: Analytic convolution GEQ with simple numerical implementations
• First-order BDIM applies accurate nonlinear pressure BCs
• Second-order BDIM controls gradient discontinuity at intermediate Re

G.D.Weymouth@soton.ac.uk
Thanks to:
Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT
Future Directions

• Speed-up through optimizing $\vec{u} = \vec{f}$
• High Re by incorporating BL data
• Continue fun and challenging applications

G.D.Weymouth@soton.ac.uk
Thanks to:
Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT
Thanks to:
Audrey Maertens, Michael Triantafyllou, Dick Yue @ MIT