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Mari%me	
  field	
  adop1ng	
  new	
  design	
  
criterion	
  and	
  applying	
  novel	
  concepts	
  



Marine	
  field	
  (biology,	
  paleontology,	
  and	
  
sport)	
  eager	
  to	
  u1lize	
  technology	
  



Hydrodynamic	
  object	
  recogni1on	
  	
  
using	
  pressure	
  sensing	
  

•  Blind	
  cave	
  fish	
  use	
  
pressure	
  in	
  efficient	
  
propulsion,	
  naviga1on,	
  
and	
  predator	
  avoidance	
  

•  Applica1ons	
  in	
  
autonomous	
  vehicles,	
  
harbor	
  safeguarding,	
  
energy	
  extrac1on…	
  

•  Re	
  =	
  2K-­‐100K	
  

Vor1city	
  of	
  pitching	
  and	
  heaving	
  foil	
  

Mexican	
  tetra	
  



Predic1ons	
  of	
  near-­‐field	
  pressure	
  and	
  
separa1on	
  at	
  low	
  angles	
  of	
  aXack	
  

Induced	
  change	
  in	
  pressure	
  field	
  passing	
  circular	
  cylinder	
  	
  
Can	
  induce	
  separa1on,	
  but	
  not	
  in	
  this	
  case!	
  

Δ	
  pressure	
  

Fernandez	
  et	
  al	
  MTS	
  2011	
  



Direct	
  Forcing	
  generates	
  nonphysical	
  
separa1on	
  and	
  surface	
  pressures	
  



Jump	
  in	
  velocity	
  gradient	
  across	
  boundary	
  
causes	
  numerical	
  pressure	
  instability	
  

Griffith	
  &	
  Peskin	
  JCP	
  2005	
  
Muldoon	
  &	
  Acharya	
  	
  IJNM	
  2008	
  
Guy	
  &	
  Hartens1ne	
  JCP	
  2010	
  

wall	
   flow	
   wall	
   flow	
  

Problem	
  is	
  exacerbated	
  
at	
  higher	
  Reynolds	
  
numbers	
  



Obviously,	
  it’s	
  1me	
  to	
  throw	
  in	
  the	
  towel	
  

•  Switch	
  to	
  cut-­‐cell	
  method	
  
– Sharp	
  interface	
  



Obviously,	
  it’s	
  1me	
  to	
  throw	
  in	
  the	
  towel	
  

•  Switch	
  to	
  cut-­‐cell	
  method	
  
– Sharp	
  interface	
  
– Much	
  more	
  complex	
  
– Stability	
  problems	
  which	
  require	
  lots	
  of	
  
numerical	
  trickery	
  to	
  avoid	
  

The	
  smoothing	
  wasn’t	
  the	
  problem	
  
Let’s	
  try	
  reformula1ng	
  the	
  system…	
  



Coupled	
  two-­‐domain	
  problem:	
  	
  
Fluid	
  system	
  with	
  irregular	
  boundary	
  data	
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Coupled	
  two-­‐domain	
  problem:	
  	
  
Fluid	
  system	
  with	
  irregular	
  boundary	
  data	
  

Want	
  one	
  con,nuous	
  GEQ	
  
over	
  the	
  complete	
  domain	
  

~u = ~b(~u)

~u = ~f(~u)



Finite	
  kernel	
  convolu1on	
  of	
  the	
  GEQs	
  	
  
unifies	
  the	
  equa1on	
  domain	
  

~

f✏(~u, ~x, t) =
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Z

⌦b

~

b(~u, ~xb, t)K✏(~x, ~xb)dxb
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Boundary	
  Data	
  Immersion	
  Method	
  
Weymouth	
  &	
  Yue,	
  JCP	
  2011	
  



Second-­‐order	
  Taylor	
  expansion	
  simplifies	
  
the	
  integrated	
  governing	
  equa1ons	
  

evaluated using a Taylor expansion
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where n̂ and ⌧̂ are respectively the unitary normal and tangent to the fluid-solid boundary.
In order to satisfy the second requirement, a kernel that only depends on the distance to the
boundary is used

K

✏

(~x, ~y) = K

✏

(~x · n̂ n̂, ~y · n̂ n̂) (9)

Assuming the boundary is locally flat (n̂ is constant across the support of the kernel), the
tangential component of the integration can be eliminated and the kernelK

✏

(~x, ~y) be replaced
by a one-dimensional kernel �

✏

(~x · n̂, ~x

b

· n̂)

Z

⌦b

K

✏

(~x, ~y)d~x
b

=

Z

⌦b·n̂
K

✏

(~x · n̂ n̂, ~y · n̂ n̂)

✓Z

⌦b·⌧̂
d~x

b

· ⌧̂

◆

| {z }
�✏(~x·n̂,~xb·n̂)

d~x
b

· n̂| {z }
dxn̂

b

(10)

The convolution then simplifies to:
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. Similar expressions can be obtained when the boundary is not locally flat.
For example, the derivation in the presence of a sharp corner can be found in Appendix A.
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. In order for the present method to be com-
patible with most existing Navier-Stokes solvers, the kernel �
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is chosen symmetric posi-
tive. This choice guarantees the convergence of a broad spectrum of algorithms traditionally
used to solve the Navier-Stokes equations. The symmetry of the kernel also ensures that
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Boundary	
  Data	
  Immersion	
  Method	
  
Maertens	
  &	
  Weymouth,	
  JCP	
  (in	
  review)	
  



Kernel	
  moments	
  are	
  smooth	
  func1ons	
  of	
  
distance	
  to	
  the	
  fluid/body	
  boundary	
  

Never	
  need	
  to	
  explicitly	
  integrate	
  over	
  domains	
  

εKε	



µ✏
0 ⌘ µ✏,F

0 = 1� µ✏,B
0



Second-­‐order	
  BDIM	
  governing	
  equa1on	
  	
  

•  First	
  two	
  terms	
  are	
  “mixed”	
  fluid/body	
  system	
  
•  Last	
  term	
  is	
  a	
  correc1on	
  for	
  discon1nuity	
  
•  Simple	
  algebraic	
  adjustment	
  to	
  uncoupled	
  
fluid	
  system	
  	
  

•  Enables	
  (near	
  trivial)	
  Cartesian-­‐grid	
  method	
  to	
  
make	
  excellent	
  predic1ons	
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0
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Direct	
  Forcing	
  is	
  first-­‐order	
  and	
  
neglects	
  the	
  pressure	
  weigh1ng	
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Inclusion	
  of	
  µ0	
  in	
  Poisson	
  equa1on	
  
stabilizes	
  pressure	
  in	
  nonlinear	
  cases	
  

•  Enforces	
  correct	
  pressure	
  
boundary	
  condi1on	
  

•  Improves	
  pressure	
  condi1oning	
  

z/R

C
z

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

Direct Forcing
BDIM
Moghisi 1980



Inclusion	
  of	
  µ0	
  in	
  Poisson	
  equa1on	
  
stabilizes	
  pressure	
  in	
  nonlinear	
  cases	
  

•  Giant	
  cavity	
  remains	
  stable	
  and	
  gives	
  correct	
  pinch-­‐off	
  
•  Simple	
  adjustment	
  ensures	
  robust	
  solu1on	
  

Bergmann	
  et	
  al	
  PRL	
  2006	
  



Second-­‐order	
  term	
  controls	
  shear	
  gradient	
  
discon1nuity	
  and	
  removes	
  bias	
  

•  1D	
  unsteady	
  channel	
  flow	
  at	
  Re=1000	
  
•  Both	
  1st	
  order	
  methods	
  have	
  similar	
  error	
  
•  2nd	
  order	
  is	
  improved	
  throughout	
  



Second-­‐order	
  enables	
  near	
  field	
  
predic1ons	
  on	
  separated	
  foil	
  test	
  case	
  

•  SD7003	
  at	
  4o	
  AOA,	
  Re=10K	
  
–  Low	
  curvature	
  foil	
  with	
  fine	
  trailing	
  edge	
  
–  Very	
  sensi1ve	
  to	
  IB	
  treatment	
  



Second-­‐order	
  enables	
  near	
  field	
  
predic1ons	
  on	
  separated	
  foil	
  test	
  case	
  

•  Sharp	
  SD7003	
  at	
  4o	
  AOA	
  
•  Enables	
  analy1c	
  treatment	
  of	
  sharp	
  trailing	
  edge	
  

Time-­‐averaged	
  
velocity	
  

magnitude	
  



Second-­‐order	
  enables	
  near	
  field	
  
predic1ons	
  on	
  separated	
  foil	
  test	
  case	
  

•  O(1)	
  method	
  diverges	
  due	
  to	
  pressure	
  instability	
  
•  BDIM	
  O(2)	
  matches	
  body-­‐fiXed	
  predic1ons	
  

Figure 7: Flow past a stationary SD7003 airfoil at 4� angle of attack andRe = 10000, instantaneous
vorticity for the 1st and 2nd order BDIM formulations. Unlike Fig 5, only the 2nd order method
gives a qualitatively correct prediction of separation.

Figure 8: Convergence of 1st order (⇤) and 2nd order (�) BDIM for constant ✏/dx = 2 for flow
past a stationary SD7003 airfoil at Re = 10000, where k = !D/(2⇡U). Results are compared to
values from Uranga [29] (dashed lines).

geometric expansion ratio for the grid spacing in the far-field. The low curvature separation
and very sharp trailing edge make this case extremely challenging for Cartesian-grid methods.
The sharp trailing edge requires a careful treatment in order to provide accurate predictions.
The formulation derived above (Eq. 11) assumes that the IB is locally flat but it can easily
be extended to account for a sharp corner (see derivation in the Appendix). We first consider
a Reynolds number (based on the chord c) Re = 10000 at which the flow is expected to
remain laminar and two dimensional over the wing surface, with a periodic vortex shedding
[29].

Figure 7 shows instantaneous vorticity fields computed by both BDIM formulations for
h = 2 and ✏/dx = 2. Whereas the 2nd order method shows laminar separation and periodic
vortex shedding as expected at this Reynolds number (detailed in [29]), the 1st order one
shows vortices forming on the upper surface of the foil. This example compared to the
previous one illustrates the fact that the local accuracy assumes a much greater importance at
high Reynolds number, especially when low curvature separation is involved. At low Reynolds
number, Figure 5 shows that the low and higher order methods predict qualitatively similar
results. However, on this more challenging high Reynolds number example, the lower order
method fails to predict the proper qualitative behavior because a higher order treatment
of the boundary is necessary to address the large discontinuity in the velocity derivative
illustrated in Figure 1b.

A grid refinement study has been performed in order to establish the convergence proper-

13

*  1st	
  order	
  
o  2nd	
  order	
  



Second-­‐order	
  at	
  higher	
  Reynolds	
  number	
  

•  At	
  Re	
  ~	
  25K	
  the	
  flow	
  becomes	
  three-­‐dimensional	
  
at	
  the	
  trailing	
  edge	
  

Spanwise	
  vor1city	
  iso-­‐contours	
  



Heaving	
  and	
  pitching	
  foil	
  at	
  Re=100K	
  

Leading	
  edge	
  
vortex	
  remains	
  

aXached	
   Tuncer	
  &	
  Platzer	
  2000	
  



Heaving	
  and	
  pitching	
  foil	
  at	
  Re=100K	
  

•  O(2)	
  predicts	
  smooth	
  lip	
  
•  Reduces	
  mean	
  drag	
  error	
  from	
  20%	
  to	
  5%	
  



Fish	
  model	
  open	
  water	
  pressure	
  

•  3D	
  axisymmetric	
  foil	
  at	
  Re=6K	
  

Windsor	
  et	
  al	
  JEB	
  2003	
  



Direct	
  Forcing	
  generates	
  nonphysical	
  
separa1on	
  and	
  surface	
  pressures	
  



Second-­‐order	
  method	
  predicts	
  correct	
  
near-­‐body	
  pressure	
  and	
  velocity	
  



Current	
  Status	
  

•  BDIM:	
  Analy1c	
  convolu1on	
  GEQ	
  with	
  simple	
  
numerical	
  implementa1ons	
  

•  First-­‐order	
  BDIM	
  applies	
  accurate	
  nonlinear	
  
pressure	
  BCs	
  

•  Second-­‐order	
  BDIM	
  controls	
  gradient	
  
discon1nuity	
  at	
  intermediate	
  Re	
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Future	
  Direc1ons	
  

•  Speed-­‐up	
  through	
  op1mizing	
  
•  High	
  Re	
  by	
  incorpora1ng	
  BL	
  data	
  	
  
•  Con1nue	
  fun	
  and	
  challenging	
  applica1ons	
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