Zhang, Li-Chun (1998) Likelihood imputation. Scandinavian Journal of Statistics, 25 (2), 401-414. (doi:10.1111/1467-9469.00112).
Abstract
The method of likelihood imputation is devised under the framework of latent structure models where the observation is a statistic of the complete data which can only be specified on a latent basis. The imputed data set is chosen to differ least from the observed one in their information contents—a concept with general implications for the analysis of incomplete-data. In contrast to the standard conditional-mean single imputation, our procedure depends on an entire likelihood region instead of any single point in it, and yields consistent parameter estimators nevertheless. We explain its implementations and illustrate with data from panel surveys and linear regression with censorship. We also discuss its potentials in sensitivity analysis.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.