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Black-Scholes Versus Artificial Neural Networks in Pricing FTSE 100 Options

ABSTRACT

This paper compares the performance of Black-Scholes with an artificial neural

network (ANN) in pricing European style call options on the FTSE 100 index. It

is the first extensive study of the performance of ANNs in pricing UK options,

and the first to allow for dividends in the closed-form model. For out-of the-

money options, the ANN is clearly superior to Black-Scholes. For in-the-money

options, if the sample space is restricted by excluding deep in-the-money and long

maturity options (3.4% of total volume), the performance of the ANN is

comparable with that of Black-Scholes. The superiority of the ANN is a

surprising result, given that European style equity options are the home ground

of Black-Scholes, and suggests that ANNs may have an important role to play in

pricing other options for which there is either no closed-form model, or the

closed-form model is less successful than Black-Scholes for equity options. 
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Black-Scholes Versus Artificial Neural Networks in Pricing FTSE 100 Options

Access to a pricing model that can be solved in real time to give arbitrage-free prices; i.e. prices

that do not permit traders to engage in arbitrage activity, is of paramount concern to those trading

options. Such a pricing model enables traders to avoid selling underpriced options or buying

overpriced options. It also allows traders to identify favourable prices quoted by others, which

they can then exploit via arbitrage trades. In addition, such a model can be used to compute hedge

ratios.

The conventional approaches to option pricing are based on theory. For some types of option

closed form pricing models have been derived, while the pricing of other options relies on

numerical procedures such as Monte Carlo simulation and the binomial model. These pricing

models are derived using theoretical arguments based on assumptions concerning the behaviour

of the underlying asset price and the riskless interest rate. In consequence, they are abstractions

from reality whose performance depends on their ability to capture the dynamics of the

underlying prices. Underlying assets can have different price processes, and the way in which the

price of the underlying asset or assets affects the corresponding option price can vary as between

types of option, e.g. Asian options, barrier options, exploding options, rainbow options, baseball

options, binary options, Bermudan options, etc. The accuracy and solution time of these option

pricing models varies. In some cases (e.g. European style equity options) the performance of the

pricing models is good, while for others (e.g. convertible bonds) the problem is more difficult

(Connolly, 1998, Philips, 1997), and the performance of the available pricing models is mixed.

This paper investigates the performance of an alternative way of developing option pricing

models - artificial neural networks (ANNs). ANNs are information processing tools commonly

used for prediction and classification. Their particular strength lies in deriving meaning from

complicated or imprecise data by extracting patterns or detecting relationships. They were

inspired by the characteristics of the biological nervous system that enable learning by experience

and the generalisation of lessons to new examples. In consequence, ANNs are designed to model

the way in which the brain learns.

The properties of ANNs that make them attractive for problems such as pricing options are that

they have the ability to model non-linear relationships and do not rely on the restrictive

assumptions implicit in parametric approaches. ANNs model the interaction between input
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variables by processing past examples. The key to a successful ANN implementation is its ability

to generalise the lessons from past examples to new examples. Historical data is the only input,

and the network is able to learn the relationships between inputs that characterise the phenomena

being modelled. In order for the ANN to learn, data on the possible factors influencing the

phenomena is required. In the case of option pricing these factors may be chosen from the inputs

required by a corresponding theory-based option pricing model. An ANN does not rely on

assumptions concerning the price process of the underlying asset (e.g. constant-volatility

geometric Brownian motion), nor does it depend on the specification of theory which connects

the price of the underlying asset to the price of the option. Therefore, the strength of ANNs lies

in modelling relationships between the input and output variables that may be complex and

difficult to capture in a convenient mathematical formulation. Finally, ANNs are flexible and can

be used to generate pricing models for a wide variety of options, including options that are

difficult to price using the conventional theory-based approach.

Theory-based models require numerical values for the parameters that appear in the model. The

specification of these parameters may require past options prices, but usually does not; and so

theory-based models can price previously untraded options, while ANNs cannot. The pricing

model produced by an ANN may be valid only for data falling within the range covered by the

data on which the network was trained. Since they are not trained, theory-based models are not

susceptible to this problem. Given the validity of the theoretical model underlying the option

pricing model, theory-based models can identify persistent biases in pricing behaviour. If past

market prices are biased in some way, creating arbitrage opportunities, an ANN will incorporate

these biases into the pricing model and fail to indicate such opportunities. However, since liquid

financial markets are generally arbitrage-free, ANNs will usually generate arbitrage-free option

pricing models, and so are capable of identifying mispricings.

The first and most famous option pricing model is that proposed by Black & Scholes (1973),

which is designed to price European style equity options. This closed form model does a good

job in using five inputs to price European style equity options in the absence of dividends and

is widely used by option traders, Rubinstein (1985). 

However, empirical research has documented a number of biases in Black-Scholes prices for

equity index options, Bates (1996). The volatility smile (which is a “moneyness” bias) has been

found, the size of which changes over time. The presence of a volatility smile means that Black-
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Scholes prices are lower than the actual prices for options that are deep in-the-money and deep-

out-of-the-money. There is also a non-flat term structure, which means that the bias in Black-

Scholes prices varies with option maturity; and a put-call skew (which is a bias that depends on

whether a put or a call option is being priced) and varies with the relative volume of put and call

trading. These biases suggest that, for a given type of option (put or call), “moneyness” and

maturity affect option prices in ways not allowed for by Black-Scholes.

The existence of these biases reveals that the Black-Scholes model is not perfect, and Bakshi,

Cao & Chen (1997) found that more complicated closed form models can improve on Black-

Scholes prices for European style S&P500 options. Therefore, improving on the pricing

performance of Black-Scholes on its home ground (European style equity options) presents a

tough, but not impossible challenge for ANNs. 

This paper compares the performance of Black-Scholes with an ANN in pricing European style

call options on the FTSE 100 index. Its contribution lies in being the first extensive study of the

performance of ANNs in pricing UK options, the first to allow for dividends in the closed-form

model, and one of a small number of studies to apply ANNs to pricing European style options.

It is also the first paper to provide a review of the diffuse and fragmented literature; which is

scattered over a wide range of disciplines. Section 1 summarises the previous literature, while

section 2 describes the rival pricing models used in this study. Section 3 documents the data used,

and section 4 explains how the models were fitted to the data. Section 5 has the results, and

section 6 concludes.

1. Previous Literature

A number of previous studies have examined the relative performance of ANNs in pricing equity

options in America, the UK, Australia, Brazil, France, Germany, Japan and Sweden  . 1 2

USA. Hutchinson, Lo & Poggio (1994) compared three ANNs with the Black-Scholes model in

pricing American style call options on S&P500 futures, and found that all three ANNs were

superior to Black-Scholes. Geigle & Aronson (1999) also examined the performance of ANNs

in pricing American style options on S&P500 futures, and found they were superior to Black-

Scholes. Malliaris & Salchenberger (1993a, 1993b2) compared the performance of the Black-

Scholes model and an ANN in pricing American style S&P100 call options. They found that

Black-Scholes was preferable for in-the-money options, while the ANN performed better for out-
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of-the-money options. Kitamura & Ebisuda (1998) found that the performance of an ANN in

pricing American style S&P100 call options was poor. However, as well as a very small sample,

this result may be due to the use of only two inputs to the ANN. Qi & Maddala (1996) compared

the performance of an ANN in pricing European style call options on the S&P500 index with that

of Black-Scholes, and concluded that the ANN was superior. A similar conclusion was reached

by Garcia & Gençay (1998, 2000), Gençay & Qi (2001), Gençay & Salih (2001), Ghaziri,

Elfakhani & Assi (2000), Liu (1996) and Saito & Jun (2000). Dugas, Bengio, Bélisle, Nadeau

& Garcia (2002) found that constraining the ANN produced better prices for European style call

options on the S&P500 index than those by an unconstrained ANN. Kelly (1994) priced

American style put options on four US firms using an ANN and the binomial option pricing

model. He found that the ANN was clearly more accurate than the binomial model.

UK. Niranjan (1996) used daily data from February to December 1994 for call and put FTSE 100

options. He compared the pricing errors for an ANN and Black-Scholes, and for a sample of 100

days found no clear dominance in pricing accuracy. Using the Niranjan (1996) data, De Freitas,

Niranjan, Gee & Doucet (2000) applied ANNs and Black-Scholes to price FTSE 100 call and put

options, and found that all the ANNs considered were superior to the Black-Scholes model .3

Healy, Dixon, Read, & Cai (2002) used closing prices for FTSE 100 call options for 1992-97 and

found that their ANN fits the data well (there was no direct comparison with the Black-Scholes

prices).

Australia, Brazil, France, Germany, Japan and Sweden. Lajbcygier, Boek, Flitman &

Palaniswami (1996) and Lajbcygier, Boek, Palaniswami & Flitman (1996) compared three ANNs

with three closed form models (Black-Scholes, Barone-Adesi & Whaley and modified Black) in

pricing American style call options on Australian Share Price Index futures. They concluded that

the ANNs were inferior to the theory-based models; but for observations that were near-the-

money for short maturity options, the ANNs were superior. Lachtermacher & Rodrigues Gaspar

(1996) used ANNs to price options on the shares of the Brazilian company Telebrás , and found4

the ANNs were superior to Black-Scholes. De Winne, Francois-Heude & Meurisse (2001)

employed an ANN to price options on French CAC 40 index options, which are American style.

They compared their ANN to the binomial model when both models used dividends, and found

that their ANN was almost as good as the binomial model. Anders, Korn & Schmitt (1998) used

data on European style DAX call options, and discovered that the ANN was superior to Black-

Scholes, as did Ormoneit (1999) and Krause (1996). Herrmann & Narr (1997) studied both call
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and put options on the DAX (both European style), and found that all four ANNs outperformed

Black-Scholes. Hanke (1999a) applied ANNs and the Black-Scholes model to European style call

options on the DAX index. After optimizing the volatility and interest rate data to suit the Black-

Scholes model, the ANN was less accurate than Black-Scholes. Yao, Li & Tan (2000) used

ANNs to price call options on Nikkei 225 futures, which are American style, and found they

outperformed Black-Scholes. Amilon (2001) compared the performance of an ANN with Black-

Scholes in pricing European style call options on the OMX index. He controlled for dividends

by omitting data for the two months when shares go ex-dividend in Sweden. For both historical

and implied volatilities, the ANN was generally superior.

These papers support the view that ANNs are capable of outperforming well-regarded closed-

form models in pricing call options. Futures contracts do not pay dividends, and so this

complication was absent from the studies by Geigle & Aronson (1999), Hutchinson, Lo & Poggio

(1994), Lajbcygier, Boek, Flitman & Palaniswami (1996), Lajbcygier, Boek, Palaniswami &

Flitman (1996) and Yao, Li & Tan (2000). However, American style options on a futures contract

may be exercised early, as may warrants, and so being American style may be valuable. Since

Black-Scholes is only appropriate for pricing European style options, the out-performance of

Black-Scholes by the ANN found by Geigle & Aronson (1999), Ghaziri, Elfakhani & Assi

(2000), Hutchinson, Lo & Poggio (1994), Lajbcygier, Boek, Flitman & Palaniswami (1996),

Lajbcygier, Boek, Palaniswami & Flitman (1996), Malliaris & Salchenberger (1993a, 1993b) and

Yao, Li & Tan (2000) may be due to the omission of the early exercise option from the theory-

based valuation model .5

While many studies have considered options on an underlying asset that pays dividends, the

theory-based option pricing models used were often not adjusted to incorporate dividends. This

will have biased the theory-based models, leading them to overprice call options, and underprice

put options. Although the ANNs in these studies were usually not supplied with dividend

information, they need not have been biased by the omission of dividends to the same extent as

the theory-based models. 

As well as pricing exchange traded equity options, ANNs have also been applied to other options.

Hanke (1997) used simulated data to investigate the performance of ANNs in pricing Asian style

call options; while White (1998, 2000) used real and simulated data for European style call and

put options on Eurodollar futures. Raberto et al (2000) used an ANN to price options on German
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treasury bonds (Bunds), while Karaali, Edelberg & Higgins (1997) used an ANN to price options

on an index of the volatility of the $-DM exchange rate. Taudes, Natter & Trcka (1998)

considered using ANNs to value real options, while Carelli, Silani & Stella (2000) applied ANNs

to pricing $-DM forex call and put options. ANNs have also been proposed for pricing European

style contingent claims with state dependent volatility, Barucci, Cherubini & Landi (1996, 1997).

Provided they are traded on competitive markets for which a price history is available, ANNs

have the potential to price a very wide range of financial securities .6

2.The Rival Pricing Models

A. Black-Scholes. The Black-Scholes call prices were computed using the standard formula, but

with the Merton (1973) adjustment for dividends:-

C = M.N(d) !K.e .N(d!F/t)  where d = [ln(M/K) +(r+0.5F )t]/F/t (1)!r.t 2

M = S.e  - the Merton adjustment for dividends!D.t 

S = Current share price.

K = Exercise (or strike) price.

r = Annual risk free rate of interest on a continuously compounded basis, e.g. 0.06.

t = Time to expiry, in years, e.g. 0.25.

F = Standard deviation of the share's continuously compounded annual rate of

return, e.g. 0.30.

D = Annual dividend rate, e.g. 0.05.

N(d) = Probability that a standardised normally distributed random variable will be

less than or equal to d.

B. Artificial Neural Networks. A number of different approaches are classified as members of the

ANN family. Our investigation concentrates on the multi-layer perceptron (MLP). This is one

of the most popular approaches and has been used in the majority of applications to options

pricing (e.g. Anders, Korn & Schmitt, 1998; White, 1998; Lajbcygier & Connor, 1997a, 1997b).

It has also been applied successfully to a range of difficult and diverse problems (OhnoMachado

& Rowland, 1999; Brockett, Cooper, Golden & Xia, 1997). Further, Hornik, Stinchcombe &

White (1989, 1990) demonstrated that multi-layer feedforward networks are able to accurately

approximate a large class of functions and their derivatives with a single hidden layer. A further

advantage of feedforward networks is their ability to deal with missing or spurious data.

MLPs consist of connected layers of processing elements, called neurons, that pass information
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through the network by weighted connections. The input variables are presented to the input layer

of processing elements, which sends a signal that propagates through the network layer by layer.

The network learns by comparing the resulting output with the desired output and then applying

an adjustment to the network weights in accordance with an error correction rule. This is called

error back-propagation and is commonly based on the least mean square algorithm.

In order to construct a MLP, various decisions must be made. These are: the number of hidden

layers, the number of processing elements in the hidden layer(s), the learning rate and

momentum, the set of input variables and the sample period. In addition, pre-processing the

inputs before presenting them to the network can reduce the learning required of the network. For

example, the ratio of two inputs may be more important in determining an outcome than each

input individually. In which case, it is beneficial to generate a new input by dividing these inputs

in the pre-processing phase. All the above decisions are key to the success of the MLP .7

3. Data 

The analysis used data on European style FTSE 100 call options traded on LIFFE over the period

from 1  January 1998 to 31  March 1999. While American style options on the FTSE 100 indexst st

are also traded on LIFFE, the Black-Scholes model is designed to correctly price only European

style options. The analysis was restricted to call options because, while the appropriate version

of the Black-Scholes model is equally applicable to European style put options, the ANN must

be trained separately on calls and puts. Across all strike prices and maturities (of which there

were 1,226) 83,873 call option closing prices were available from LIFFE for this period.

However, most of these prices were for call options which had not traded that day. When these

prices were eliminated only 11,036 observations remained. A further 1,480 observations were

dropped for various reasons , leaving 9,556 for use in the analysis.8

The Black-Scholes model (with the Merton adjustment for dividends) requires values for six

parameters - spot price, strike price, maturity, riskless interest rate, dividend rate and volatility.

The daily closing values of the FTSE 100 index were taken from DataStream, the strike price for

each observation was available from LIFFE, while the maturity of each observation (in days) was

computed using the date of the observation and the expiry month of the option. As the sample

data had an average maturity of 70 days, the annualised riskless interest rate was measured using

the 3 month Treasury bill rate. The dividend rate was taken from DataStream, which provides

daily values of the annual dividend rate over the past year on the FTSE 100 index basket of
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shares . The daily volatilities were supplied by LIFFE, which uses the Black-I model . These9 10

daily volatilities are a linear interpolation of the two implied volatilities generated by the strike

prices either side of the daily settlement price. This procedure has been shown to provide virtually

unbiased volatility estimates for a wide range of option pricing models (Corrado & Miller, 1996).

Daily open interest and volume in each option contract were supplied by LIFFE.

There are two possible problems with the spot and options closing prices: options trading ceased

at a slightly different time from stock market trading for the first 7 months of the period, so that

the prices were non-synchronous; and the index and the options prices are subject to a stale price

problem . Until 20  July 1998, the London Stock Exchange ceased trading at 4.30 pm, while11 th

FTSE 100 options stopped floor trading on LIFFE at 4.10 pm, and so there was a difference of

20 minutes between the spot and options closing times during this period. However, an analysis

using the spot prices at 4:10 pm implied by the futures market indicates there is no problem . As12

from 20  July 1998 until the end of the data period, the close of trading for the London Stockth

Exchange and FTSE 100 options (open outcry) have been identical (4.30pm) and so there is no

non-synchronicity problem for these 8 months.

European style FTSE 100 call options are frequently traded  and so will generally have a low13

level of staleness. Until 20  October 1997, the FTSE 100 index was computed using currentth

quotes from SEAQ, rather than trade prices, and so prices were not stale. From 20  October 1997th

the FTSE 100 index was computed using the last trade price from the SETS screen-based trading

system . Therefore, from October 1997 stale prices are a potential problem. However, companies14

that are heavily-weighted in the FTSE 100 index are traded frequently, so that most prices used

in computing the index are very recent and the stale price effect is of low importance. 

The tick size for European style FTSE 100 options is ½ an index point, and so the actual call

prices (which are in index points) can only be integers or half integers. Since the Black-Scholes

or ANN models are not constrained in this way, there will inevitably be small differences

between the actual prices and those produced by the two pricing models. The proportionate size

of this rounding effect increases as the call price decreases; and for calls priced at (say) 1 index

point, will be very large. This has implications for the choice of performance measure (see

section 4).

Since the same data is used for both Black-Scholes and the ANN, it is relative not absolute
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pricing accuracy that is being studied, and the playing field for these two pricing methods is fairly

level. Hanke (1999a) has argued that the presence of biases in the data will have a greater adverse

effect on the Black-Scholes prices than on those produced by ANNs because ANNs can learn to

allow for such biases, while the Black-Scholes model cannot. In real world situations, estimates

of the input variables (e.g. volatility) must be used, and this paper compares the performance of

the two models using the quality of input data that is likely to be available in a trading situation.

4. Fitting the Models 

The Black-Scholes call price was computed for each observation using equation 1. For the entire

sample, while the average Black-Scholes price was within 2.6% of the actual average price, there

was considerable offsetting inaccuracy for individual Black-Scholes prices. This left scope for

the ANN, in our case a multi-layer perceptron (MLP), to outperform Black-Scholes.

The aim of our approach is to develop a strategy that could have been used at the time for pricing

options. This approach still leaves sufficient potential input variables to make the selection of the

number and combination of inputs non-trivial. The complexity of the problem is further increased

by the variety of potential network designs, learning parameters and sample periods. These

factors prohibit exhaustive experimentation of all possibilities. Therefore, fitting the MLP began

with a period of ‘brainstorming’ experiments that drew on the expertise of the authors and the

experience of the literature to establish a suitable base network structure that provided a lower

bound against which further developments could be benchmarked. This facilitated setting many

of the parameters while investigating others; beginning with the selection of the input variables.

This was followed by pre-processing to generate new variables, and refining the network

parameters.

Inputs. The inputs considered for use by the MLP were the six inputs of the Black-Scholes model

with the Merton dividend adjustment, together with open interest (which Healy, Dixon, Read &

Cai, 2002, Qi & Maddala, 1996, and Ghaziri, Elfakhani & Assi, 2000, found to be useful) and

daily volume (which Healy, Dixon, Read & Cai, 2002, did not find helpful) for the particular

option contract being priced. In addition, new variables were generated from these basic inputs,

and a key input was constructed using the homogeneity hint. Provided returns on the underlying

asset are distributed independently of its price, the Black-Scholes pricing model (equation 1) is

homogenous of degree one in S and K, and both sides can be divided through by K, so that C/K

is a function of S/K (Merton, 1973). In which case, the two inputs S and K can be combined into
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a single input, S/K; which can be interpreted as a measure of “moneyness”. Most previous studies

have made use of this homogeneity property , which has the added advantage of explicitly15

including a measure of “moneyness”; one of the dimensions along which the Black-Scholes

model is biased. Anders, Korn & Schmitt (1998) included both S/K and S as separate inputs into

an MLP, and concluded that the addition of S did not improve matters. Similarly, Garcia &

Gençay (1998, 2000) found that an ANN using S/K was superior to an ANN that used S and K

separately. The present study also found that using the homogeneity property significantly

improved the capabilities of the ANN in comparison to using S and K as independent inputs. This

can be attributed to the reduction in complexity of the network and the dangers of overfitting, so

improving the network’s ability to generalise. The homogeneity hint is a pre-processing measure

that arms the network with fuller information, so reducing the learning required.16

Training Period and Partitioning of the Data. An investigation of the training period found that

more data does not necessarily lead to better results. Training the network on one year of data

appeared to represent the phenomena well, while a longer sample period often had a detrimental

effect on network performance. Since the data is presented to the network in a randomised order

to reduce the possibility of cycling through network weights, the recency of the data is not taken

into account when training the network and the operating environment is assumed to be stable.

A number of implementations of ANNs to price options have removed particular types of

observation from their input data. For example Anders, Korn & Schmitt (1998) excluded options

if they were traded at less than 10 index points, if they had less than 15 days to maturity, if

moneyness was above 1.15 or if moneyness was below 0.85. Malliaris & Salchenberger (1993a,

1993b) and White (1998) restricted the days to expiry to be between 30 and 60 days, and 30 and

270 days respectively. Our investigation took a different approach. A common categorisation of

options is by moneyness, where if the ratio S/K is greater then 1.0 the option is ‘in-the-money’;

otherwise it is ‘out-of-the-money’. Instead of excluding observations from the input data, thereby

reducing the scope of application, the data was partitioned according to this moneyness criteria,

and separate MLPs trained for each group.

Network Structure and Parameters. Investigation of the number of hidden layers using the FTSE

100 data concurs with the majority of research in this area, finding that more than one hidden

layer increases the complexity of the network, but does not enhance its capability to generalise.

In order to determine the number of processing elements (PE) or neurons in the hidden layer,
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experiments were initially run with just two PE, and incrementally increased until no further

improvement in out-of-sample testing was found. This investigation of the network parameters

found that sequential or on-line training was preferable to batch training . This feature was also17

recognised by Hutchinson, Lo & Poggio (1994). As a result of the on-line updating of weights,

the values for the momentum and learning rates that produced the best results were found to be

smaller than those normally used with batch training. The learning rate (sometimes called the step

size) controls the magnitude of change to the network weights from one iteration to the next. This

was set to 0.5 for the hidden layer, and 0.1 for the output layer. The momentum, which was set

to 0.4, smooths the changes in network weights so reducing the influence of one iteration and

provides a means of breaking away from local optima.

Performance Measurement. As there is no agreement on the appropriate loss function, a single

generally accepted measure of the pricing accuracy of Black-Scholes and the MLP in generating

the actual call prices is not available. Therefore five alternative summary measures of

performance were used: (a) squared correlation between the actual and computed prices (R ), (b)2

mean deviation (MD), (c) mean absolute deviation (MAD), (d) mean proportionate deviation

(MPD) and mean squared deviation (MSD). The measures used were defined as:-

R  = [(nExy!(Ex)(Ey)) ]/[(nEx !(Ex) )(nEy !(Ey) )] (2)2 2 2 2 2 2

MD = (E(y!x))/n (3)

MAD = (E|y!x|)/n (4)

MPD = (E(y!x)/x)/n (5)

MSD = E(y!x) /n (6)2

where x is the actual value of the dependent variable, (e.g. C/K), y is the estimated value of the

dependent variable, and n is the number of observations.

5. Results

The network was trained on-line for 1,000 epochs . The training sample period was the calendar18

year 1998 (2,469 in-the-money and 4,713 out-of-the-money observations), where one third of the

input data was used for cross-validation, and the optimal network weights were saved at the

minimum mean squared cross-validation error. In order to reduce the dependence of network

performance on the initial network weights, the network was trained 100 times. The weights that

produced the minimum mean squared cross-validation error over all training runs were retained

for testing. A variety of combinations of inputs were selected for extensive investigation. For

each combination of inputs, the optimal number of hidden layer PEs was determined. A selection
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of the results for out-of-the-money and in-the-money options are detailed in tables 1 and 2

respectively. Both tables give results for the out of sample performance of the MLP and Black-

Scholes models, where the out of sample period was 1  January 1999 to 31  March 1999 (846st st

in-the-money and 1,528 out-of-the-money observations). In the case of MLPs that utilise the

homogeneity hint, the output was multiplied by K in order to compare the Black-Scholes error

with the MLP error.

For both in and out-of-the-money options data, a comparison of the results for MLPs 1 and 4 and

2 and 5 shows that the homogeneity hint clearly improves upon the MLP’s performance relative

to when S and K are used as separate inputs. The results presented are typical of all experiments

run with respect to this characteristic, and the use of moneyness is considered to be key in

competing with Black-Scholes. Using the most successful combination of inputs and network

design, but training on all data with no moneyness restrictions the MLP performance, was MD

= !68.70, MAD = 72.28, MPD = !0.472, R  = 0.958 and MSD = 9656.2. Therefore partitioning2

the data using moneyness dramatically increased the performance of the MLP. 

No. of PE MD MAD MPD R MSD2

1 MLP - Inputs S, K, t, D, r, F
          Output : C

4 !41.15 66.7 !0.480 0.85 8323

2 MLP - Inputs S, K, t, F
          Output : C

4 !45.11 68.7 0.12 0.82 9630

3 MLP- Input: S, K, S/K, t, D, r, F 
          Output : C/K

5 6.65 17 !0.006 0.99 2293

4 MLP- Input: S/K, t, D, r, F 
          Output : C/K

4 5.18 12.7 0.02 0.99 321.9

5 MLP- Input : S/K, t, F
          Output : C/K

4 18.96 19.6 0.171 1 677.1

Black-Scholes - !21.66 22.7 !0.445 0.99 872

Table 1: Out-of-the-Money European Style FTSE 100 Call Options

Table 1 shows that, on all criteria, the three MLPs that utilised the homogeneity hint (MLPs 3,

4 and 5) produced a clearly better performance than Black-Scholes for out-of-the-money

options . The MLP which was best on three criteria (MLP 4) used the six Black-Scholes inputs19

(along with the homogeneity hint). Figure 1 plots the results from this MLP as the deviation from

the closing price against moneyness, and there is no sign of any bias in the MLP prices. This can

be compared with the deviations of the Black-Scholes price from the closing price in Figure 2.

This shows that the Black-Scholes price is biased; with the size of this bias increasing as

moneyness decreases.

No. of PE MD MAD MPD R MSD2

1 MLP- Input: S, K, t, D, r, F 
          Output : C

4 83.07 121.6 0.247 0.87 24313

2 MLP- Input : S, K, t, F
          Output : C

3 !91.80 119.7 !0.275 0.89 20215
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3 MLP- Input: S, K, S/K, t, D, r, F 
          Output : C/K

5 54 99.91 0.196 0.92 14709

4 MLP- Input: S/K, t, D, r, F 
          Output : C/K

4 !29.48 51.28 !0.096 0.98 4172.9

5 MLP- Input : S/K, t, F
          Output : C/K

3 !10.27 42.27 !0.028 0.97 3241.1

6 MLP- Input: S!K, S/K, r, t, F
         Output : C/K

4 !25.63 42.77 !0.066 0.98 3943.3

7 MLP- Input : S/K, t, F, (F × )

         Output : C/K

3 !27.94 37.7 !0.059 0.99 3082.1

Black-Scholes - 13.7 17.25 0.03 0.99 609.8

Table 2: In-the-Money European Style FTSE 100 Call Options

For in-the-money options Black-Scholes is superior to all the MLPs on four of the five criteria.

This is because Black-Scholes fits the data better for in-the-money options than it does for out-of-

the-money options, while the reverse is generally the case for the MLPs. Malliaris &

Salchenberger (1993a, 1993b) and Healy, Dixon, Read & Cai (2002) also found that the

performance of ANNs was better for out-of-the-money options. The MLP that was best on two

of the measures (MLP 5) used moneyness (S/K), maturity (t) and volatility (F), while the MLP

that was best on the other three measures used these inputs plus and the product of volatility and

maturity (F × ).

Further analysis of the results produced by MLP 5 show that the neural network is having

difficulty pricing options that are deep in the money, and those with a long expiry date. Figures

3 and 4 illustrate this relationship. Figure 3 plots the deviations of the MLP 5 price from the

actual closing price against moneyness, and the network is overpricing options which are deep

in the money. Figure 4 plots the same deviations against time to expiry, and this indicates that the

network is underpricing options with a long expiry date. This motivated us to remove options

with a moneyness greater than 1.15 or a maturity longer than 200 days, and train MLP 5 on this

reduced data set. The results are detailed in table 3.

No. of PE MD MAD MPD R MSD2

5 MLP- Input : S/K, t, F
          Output : C/K

3 6.65 22.9 !0.0018 0.98 898

Black-Scholes - 12.2 15.6 0.025 0.99 471

Table 3: In-the-Money European Style FTSE 100 Call Options where 1 < S/K < 1.15 and

t < 200

For the restricted data set the MLP produces significantly better results than for the unrestricted

data set, and out-performs Black-Scholes on two of the five performance measures (i.e. mean

deviation and mean percent deviation). The MLP is also much closer to Black-Scholes than

previously on the three remaining performance measures. Lajbcygier, Boek, Flitman &

Palaniswami (1996) and Lajbcygier, Boek, Palaniswami & Flitman (1996) have also found that
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1 Genetic programming imitates the evolutionary process to generate new pricing formulas which perform better

than the initial model, and a few studies have used genetic programming, rather than ANNs, Chen & Lee
(1997a, 1997b), Chen, Lee & Yeh (1998, 1999), Chidambaran, Lee, & Trigueros (1998a, 1998b, 2000), Keber
(1999, 2000, 2002) and Trigueros (1997).

2 Using data simulated from a Black-Scholes model, Galindo-Flores (2000) found that ANNs are superior to

regression, decision trees and the k-nearest neighbour technique in modelling out-of-sample European style call
option prices.

3 It is not clear whether these two studies of the FTSE 100 used European or American style options, nor whether

they included dividends.

4 The style and type of option was not specified.

5 Although Kelly (1998) considered American style options, his benchmark was the binomial model, and this

allows for the options being American style. Therefore, in this case the superior performance of the ANN was
not due to the benchmark failing to allow for the possibility of early exercise. Yao, Li & Tan (2000) also used
the binomial model as their benchmark, and found their ANN was almost as good as the benchmark in pricing

ANN performance is relatively better for near-the-money short maturity options. Since the vast

majority of option trading is in short maturity options that are close to the money, this MLP will

be able to price most options, and the restriction on the domain is of limited practical

importance.20

6. Conclusions

The aim of the paper was to investigate the use of artificial neural networks (ANN) as a tool for

pricing options. In order to evaluate the performance of this approach European style equity index

options were selected as a case study. The particular advantage in choosing this type of option is

that there exists a widely used and highly respected closed form model (Black & Scholes, 1973)

that can be used to benchmark the performance of the ANN. The results in this paper show that,

for out-of the-money options, the ANN is clearly superior to Black-Scholes. Switching to in-the-

money options, the performance of Black-Scholes improves, while that of the ANN worsens;

leading to Black-Scholes superiority. However, if the sample space is restricted by excluding

options with a moneyness greater than 1.15 or a maturity longer than 200 days, the performance

of the ANN becomes comparable with that of Black-Scholes. Since this restriction excludes only

a small number of options trades (3.4% of volume), it is concluded that the ANN approach is

generally superior to Black-Scholes in pricing European style FTSE 100 call options. This is a

surprising result, given that European style equity options are the home ground of Black-Scholes,

and suggests that ANNs may have an important role to play in pricing other options for which

there is either no closed-form model, or the closed-form model is less successful than Black-

Scholes for equity options. 

Endnotes



15

American style options.

6 ANNs can also compute the hedge ratio and the sensitivity of the option price to a range of factors, and these

sensitivities are collectively known as “the Greeks”.

7 All experiments were run using NeuroSolutions V3.01.

8 Observations were dropped if (a) the lower boundary condition for European style call options, (i.e. C $

[S!(K+D)/(1+r) ]), was violated, (b) LIFFE’s estimate of spot volatility was outside the range 1% to 40%, (c)t

the closing price of the option was zero or exceeded 1,600 index points, or (d) the maturity of the option was
zero days.

9 Ideally, what is wanted is the forecast of the annualised dividend rate on the shares in the index basket over the

life of the option. Dividend rates tend to be stable from year to year, and so the historic annual dividend rate
is a reasonable forecast of the dividend rate over the next 12 months.

10 The Black-I model uses the Black (1976) option pricing model, and is mathematically equivalent to the Merton

model in equation 1, with the current index value adjusted for subsequent dividend payments. 

11 Provided the index and options prices are equally stale, the results will be unaffected.

12 For the period when the spot market closed 20 minutes later than the futures and options markets (23  Marchrd

1992 to 20  July 1998), the closing prices of FTSE 100 index futures (F) were used to compute the implied spotth

prices as at 4:10 pm using the no-arbitrage pricing formula S = F/(1+r) + D, where D is the present value of
dividends on the index until delivery, and r is the riskless rate until delivery. For the assumptions underlying
this formula see Sutcliffe (1997). The resulting Black-Scholes European style FTSE 100 call option prices were
very similar to those obtained using the spot price at 4:30 pm, with a correlation of 0.999, and the mean,
standard deviation, maximum and minimum values listed in the table below.

Spot Price
Black-Scholes Call Prices

Mean Std. Dev. Max Min
Actual at 4:30 135.5 168.4 1471.6 0.003
Implied at 4:10 136.2 168.4 1458.1 0.004

13 The volume of European style FTSE 100 call options traded on LIFFE in 1998 was 1,754,528, while between

January 1  and March 31  1999 it was 429,960.st st

14 As from 14  December 1998 the calculation of the closing value of the FTSE 100 index was changed to theth

volume-weighted average of the prices of SETS trades in the last 10 minutes of trading. [On 30  May 2000 theth

computation of the closing price changed again to the price determined by a closing auction; provided there is
sufficient volume involved in the auction process.]

15 Amilon (2001), Anders, Korn & Schmitt (1998), Boek, Lajbcygier, Palaniswami and Flitman (1995), De

Winne, Francois-Heude & Meurisse (2001), Dugas, Bengio, Bélisle, Nadeau & Garcia (2002), Garcia &
Gençay (1998, 2000), Gençay & Qi (2001), Gençay & Salih (2001), Geigle & Aronson (1999), Hanke (1997,
1999a, 1999b), Hutchinson, Lo & Poggio (1994), Lajbcygier, Boek, Palaniswami & Flitman (1996), Lajbcygier,
Boek, Flitman & Palaniswami (1996), Lajbcygier & Flitman (1996), Lajbcygier, Flitman, Swan & Hyndman
(1997), Lajbcygier & Connor (1997a, 1997b), Niranjan (1996) and Raberto et al (2000).

16 Gençay & Qi (2001) showed that, if the homogeneity hint is not used, there are other ways of avoiding

overfitting ANNs. They applied three alternative methods - Bayesian regularization, early stopping and bagging
to data on S&P500 call options. They found that ANNs using these three methods are superior to Black-
Scholes, a baseline ANN and linear regression in option pricing.

17 Online training updates the network weights after each training example according to the error, as opposed to

batch training which updates the weights after all the training examples have been presented (i.e. after an
epoch) according to the average squared error. The advantages of online training for our implementation are
that the back propagation algorithm is less likely to be trapped in a local optima, and more efficient use is made
of data that exhibits exactly the same pattern.
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18 One epoch is a complete presentation of the entire training data set to the network. The network learns by

repeated presentation of the training data. After each training example or each epoch the network weights are
updated according to the back propagation algorithm in order to minimize the local error. The learning process
continues on an epoch by epoch basis until the network weights stabilize.

19 Black-Scholes is superior only for the R  and MSD criteria for MLP 3.2

20 For in-the-money options, 14% of the volume is traded using options with either 200 or more days to expiry,

or a moneyness greater than 1.15, or both. These excluded trades correspond to 3.4% of the total volume of in
and out-of-the-money options. Thus, neural networks can successfully price options corresponding to 96.6%
of volume. 
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Figure 1: Scatter Plot of the Deviation of the MLP Price from the Actual Closing Price Verses
Moneyness for Out-of-the-Money Options

Figure 2: Scatter Plot of the Deviation of the BS Price from the Actual Closing Price Verses
Moneyness for Out-of-the-Money Options

Figure 3: Scatter Plot of the Deviation of the MLP Price from the Actual Closing Price Verses
Moneyness for In-the-Money Options

Figure 4: Scatter Plot of the Deviation of the MLP Price from the Actual Closing Price Verses
Time to Maturity for In-the-Money Options
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