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Abstract

We prove a conjecture of Bahri, Bendersky, Cohen and Gitler: if K is a shifted simplicial complex on n
vertices, X1, . . . , Xn are pointed connected CW -complexes and C Xi is the cone on Xi , then the polyhedral
product determined by K and the pairs (C Xi , Xi ) is homotopy equivalent to a wedge of suspensions of
smashes of the Xi ’s. Earlier work of the authors dealt with the special case where each Xi is a loop space.
New techniques are introduced to prove the general case. These have the advantage of simplifying the
earlier results and of being sufficiently general to show that the conjecture holds for a substantially larger
class of simplicial complexes. We discuss connections between polyhedral products and toric topology,
combinatorics, and classical homotopy theory.
c⃝ 2013 Elsevier Inc. All rights reserved.

MSC: primary 13F55; 55P15; secondary 52C35

Keywords: Davis–Januszkiewicz space; Moment–angle complex; Polyhedral product; Shifted complex; Homotopy type

1. Introduction

Polyhedral products generalise the notion of a product of spaces. They are of widespread
interest due to their being fundamental objects which arise in many areas of mathematics. For
example, in algebraic geometry special cases of polyhedral products are toric projective varieties,
in combinatorics they appear as the complements of complex coordinate subspace arrangements,
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in complex geometry they can be recognised as intersections of quadrics, in dynamical systems
they arise as invariants of a system, and in robotics they are related to configuration spaces of
planar linkages. Their topological properties have attracted a great deal of recent attention due to
their emergence as central objects of study in toric topology. This includes the foundational work
in [3,4], and treatments of their cohomology rings [4,6], rational homotopy [7,11], and homotopy
types [1,2,9,10].

Let K be a simplicial complex on n vertices. For 1 ≤ i ≤ n, let (X i , Ai ) be a pair of pointed
CW -complexes, where Ai is a pointed subspace of X i . Let (X , A) = {(X i , Ai )}

n
i=1 be the

sequence of pairs. For each simplex (face) σ ∈ K , let (X , A)σ be the subspace of
n

i=1 X i
defined by

(X , A)σ =

n
i=1

Yi where Yi =


X i if i ∈ σ

Ai if i ∉ σ .

The polyhedral product determined by (X , A) and K is the CW -complex

(X , A)K
=


σ∈K

(X , A)σ ⊆

n
i=1

X i .

For example, suppose each Ai is a point. If K is a disjoint union of n points then (X , ∗)K is
the wedge X1 ∨ · · · ∨ Xn , and if K is the standard (n − 1)-simplex then (X , ∗)K is the product
X1 × · · · × Xn .

The polyhedral product (X , ∗)K is related to another case of particular interest. Observe that
any polyhedral product (X , A)K is a subset of the product X1 × · · · × Xn . In the special case
(X , ∗)K , there is a homotopy fibration

(CΩ X ,Ω X)K
−→ (X , ∗)K

−→

n
i=1

X i (1)

where CΩ X is the cone on Ω X . Special cases of this fibration recover some classical results in
homotopy theory. For example, if K is two distinct points, then (CΩ X ,Ω X)K is the fibre of
the inclusion X1 ∨ X2 −→ X1 × X2. Ganea [8] identified the homotopy type of this fibre as
ΣΩ X1 ∧ Ω X2. If K = ∆n−1

k is the full k-skeleton of the standard n-simplex, then Porter [12]
showed that for 0 ≤ k ≤ n − 2 there is a homotopy equivalence

(CΩ X ,Ω X)K
≃

n
j=k+2

 
1≤i1<···<i j ≤n


j − 1
k + 1


Σ k+1Ω X i1 ∧ · · · ∧ Ω X i j


where j · Y denotes the wedge sum of j copies of the space Y .

The emergence of toric topology in the 1990s brought renewed attention to these classical
results, in a new context. Davis and Januszkiewicz [5] constructed a new family of manifolds
with a torus action. The construction started with a simple convex polytope P with n facets,
passed to the simplicial complex K = ∂ P∗ – the boundary of the dual of P , which has n vertices
– and associated to it a manifold ZK with a torus action and its homotopy orbit space D J (K ).
As a direct consequence of these definitions, there is a homotopy fibration

ZK −→ D J (K ) −→

n
i=1

CP∞.
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Buchstaber and Panov [3] recognised the spaces D J (K ) and ZK as the polyhedral products
(CP∞, ∗)K and (D2, S1)K respectively, which allowed them to generalise Davis and
Januszkiewicz’s construction to any simplicial complex K on n vertices (not necessarily the
boundary of the dual of a simple polytope) and keep the homotopy fibration

ZK −→ D J (K ) −→

n
i=1

CP∞

for any simplicial complex K on n vertices. The spaces D J (K ) and ZK are central objects
of study in toric topology, and their thorough study in [3,4] launched toric topology into
the mainstream of modern algebraic topology. The generalisation to polyhedral products soon
followed in unpublished notes by Strickland and under the name K -powers in [3], appeared
without fanfare in [9,10], and came to prominence in recent work of Bahri, Bendersky, Cohen
and Gitler [1].

Following Ganea’s and Porter’s results, it is natural to ask when the homotopy type of the
fibre (CΩ X ,Ω X)K in (1) can be recognised. It is too ambitious to hope to do this for all K , but
it is reasonable to expect that it can be done for certain families of simplicial complexes. This
is precisely what was done in earlier work of the authors. A simplicial complex K is shifted if
there is an ordering on its vertices such that whenever σ ∈ K and ν′ < ν, then (σ − ν)∪ ν′

∈ K .
This is a fairly large family of complexes, which includes Porter’s case of full k-skeletons of a
standard n-simplex. In [9] it was shown that for a family of complexes which contains shifted
complexes (and some non-shifted complexes), there is a homotopy equivalence

(CΩ X ,Ω X)K
≃


α∈I

Σα(t)Ω X (α1)
1 ∧ · · · ∧ Ω X (αn)

n (2)

for some index set I (which can be made explicit), where 1 ≤ α(t) ≤ n − 1, each αi ∈ {0, 1}

for 1 ≤ i ≤ n, and if αi = 0 then the smash product is interpreted as omitting the factor X i
rather than being trivial. The homotopy equivalence (2) has implications in combinatorics. In [3],
it was shown that ZK is homotopy equivalent to the complement of the coordinate subspace
arrangement determined by K . Such spaces have a long history of study by combinatorists.
In particular, as ZK = (D2, S1)K , the homotopy equivalence (2) implies that ZK is homotopy
equivalent to a wedge of spheres, which answered a major outstanding problem in combinatorics.

Bahri, Bendersky, Cohen and Gitler [1] gave a general decomposition of Σ (X , A)K , which in
the special case of Σ (C X , X)K is as follows. Regard the simplices of K as ordered sequences,
(i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n. Let X I

= X i1 ∧ · · · ∧ X ik . Let Y ∗ Z be the join of the
topological spaces X and Y , and recall that there is a homotopy equivalence Y ∗ Z ≃ ΣY ∧ Z .
Let K I ⊆ K be the full subcomplex of K consisting of the simplices in K which have all their
vertices in I , that is, K = {σ ∩ I | σ ∈ K }. Let |K | be the geometric realisation of the simplicial
complex K . Then for any simplicial complex K , there is a homotopy equivalence

Σ (C X , X)K
≃ Σ


I ∉K

|K I | ∗ X I


. (3)

In particular, (3) agrees with the suspension of the homotopy equivalence in (2) in the case of
(CΩ X ,Ω X)K . Bahri, Bendersky, Cohen and Gitler observed that if K is shifted then each |K I |

is homotopy equivalent to a wedge of spheres, and they conjectured that the decomposition (3)
desuspends. Our main result is that this conjecture is true.
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Theorem 1.1. Let K be a shifted complex. Then there is a homotopy equivalence

(C X , X)K
≃


I ∉K

|K I | ∗ X I


where each |K I | is homotopy equivalent to a wedge of spheres.

The methods used to prove the results in [9] in the case (CΩ X ,Ω X)K involved analysing
properties of the fibration (1). In the general case of (C X , X)K , no such fibration exists, so we
need to develop new methods. An added benefit is that these new methods also give a much faster
proof of the results in [9]. As well, in Sections 7 and 8 we extend our methods to desuspend (3)
in cases where K is not necessarily shifted.

2. A special case

Let ∆n−1 be the standard (n − 1)-simplex. In this brief section we will identify
(C X , X)K when K = ∂∆n−1. We begin with a general observation which holds for any (X , A).

A face σ ∈ K is called maximal if there is no other face σ ′
∈ K with the property that

σ ( σ ′. In other words, a non-maximal face of K is a proper subset of another face of K .
Therefore |K | =


σ∈I |σ | where I runs over the list of maximal faces of K . By its definition, the

polyhedral product (X , A)K is a colimit over the faces of K , so as I is cofinal, we immediately
obtain the following.

Lemma 2.1. There is an equality of spaces (X , A)K
=


σ∈I (X , A)σ where I runs over the list
of maximal faces of K . �

For example, let K = ∂∆n−1. The maximal faces of K are σ̄i = (1, . . . , î, . . . , n) for
1 ≤ i ≤ n, where î means omit the i th-coordinate. Thus |K | =

n
i=1 |σ̄i | and Lemma 2.1

implies that (X , A)K
=
n

i=1 X σ̄i . Explicitly, we have X σ̄i = X1 × · · · × Ai × · · · × Xn so

(X , A)K
=

n
i=1

X1 × · · · × Ai × · · · × Xn .

As a special case, consider (C X , X)K . Then

(C X , X)K
=

n
i=1

C X σ̄i =

n
i=1

C X1 × · · · × X i × · · · × C Xn . (4)

Porter [12, Appendix, Theorem 3] showed that there is a homotopy equivalence

Σ n−1 X1 ∧ · · · ∧ Xn ≃

n
i=1

C X1 × · · · × X i × · · · × C Xn .

It will be convenient later to regard Σ n−1 X1 ∧ · · · ∧ Xn as an iterated join. Recall that the join of
spaces A and B is A∗B = A×I×B/ ∼, where (x, 0, y1) ∼ (x, 0, y2) and (x1, 1, y) ∼ (x2, 1, y),
and there is a homotopy equivalence A∗B ≃ Σ A∧B. Iterating in our case, we obtain a homotopy
equivalence Σ n−1 X1 ∧ · · · ∧ Xn ≃ X1 ∗ · · · ∗ Xn . Thus we obtain the following.

Proposition 2.2. Let K = ∂∆n−1. Then there is a homotopy equivalence

(C X , X)K
≃ X1 ∗ · · · ∗ Xn . �
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3. Some general properties of polyhedral products

In this section we establish some general properties of polyhedral products which will be
used later. First, we consider how the polyhedral product functor behaves with respect to a
union of simplicial complexes. Let K be a simplicial complex on n vertices and suppose that
K = K1 ∪L K2. Relabelling the vertices if necessary, we may assume that K1 is defined on the
vertices {1, . . . , m}, K2 is defined on the vertices {m − l + 1, . . . , n} and L is defined on the
vertices {m − l +1, . . . , m}. By including the vertex set {1, . . . , m} into the vertex set {1, . . . , n},
we may regard K1 as a simplicial complex on n vertices. Call the resulting simplicial complex
on n vertices K 1. Note that the vertices {m + 1, . . . , n} are not simplices of K 1. Similarly, we
may define simplicial complexes K 2 and L on n vertices. Then we have K = K 1 ∪L K 2. The
point in doing this is that we can now construct polyhedral products for all four objects K , K 1,
K 2 and L using the same pairs of spaces (X i , Ai )

n
i=1.

Proposition 3.1. Let K be a simplicial complex on n vertices. Suppose there is a pushout

L //

��

K2

��
K1 // K

where L = K1 ∩ K2. Then there is a pushout

(X , A)L //

��

(X , A)K 2

��
(X , A)K 1 // (X , A)K

where each of the maps is an inclusion. Consequently, the polyhedral product commutes with
pushouts.

Proof. Since K = K1 ∪L K2 and K is finite, the simplices in K can be put into three finite
collections: (A) the simplices in L , (B) the simplices in K1 that are not simplices of L and (C)
the simplices of K2 that are not simplices of L . Thus we have

L =


σ∈A

σ

K1 =


σ∈A

σ


∪


σ ′∈B

σ ′



K2 =


σ∈A

σ


∪

 
σ ′′∈C

σ ′′



K =


σ∈A

σ


∪


σ ′∈B

σ ′


∪

 
σ ′′∈C

σ ′′


.

By definition, for any simplicial complex M on n vertices, (X , A)M
=


σ∈M (X , A)σ . So in our
case, we have
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(X , A)L
=


σ∈A

(X , A)σ

(X , A)K 1 =


σ∈A

(X , A)σ


∪


σ ′∈B

(X , A)σ
′



(X , A)K 2 =


σ∈A

(X , A)σ


∪

 
σ ′′∈C

(X , A)σ
′′



(X , A)K
=


σ∈A

(X , A)σ


∪


σ ′∈B

(X , A)σ
′


∪

 
σ ′′∈C

(X , A)σ
′′


.

In particular, since (X , A)L
= (X , A)K 1 ∩ (X , A)K 2 we have

(X , A)K
= (X , A)K 1 ∪

(X ,A)L (X , A)K 2

which implies the existence of the asserted pushout. �

Next, suppose K is a simplicial complex on n vertices. Let L be a subcomplex of K .
Reordering the indices if necessary, assume that the vertices of L are {1, . . . , m} for m ≤ n.
For the application we have in mind, specialise to (C X , X)K . Let X =

n
i=m+1 X i . Since the

indices of the factors in X are complementary to the vertex set {1, . . . , m} of L , the inclusion
L −→ K induces an inclusion I : (C X , X)L

× X −→ (C X , X)K . In Proposition 3.4 we show
that the restriction of I to X is null homotopic. We first need a preparatory lemma.

Lemma 3.2. The inclusion

J : X1 × · · · × Xn −→

n
i=1

X1 × · · · × C X i × · · · × Xn

is null homotopic.

Proof. For 1 ≤ k ≤ n, let Fk =
k

i=1 X1 × · · · × C X i × · · · × Xn . Then F1 ⊆ F2 ⊆ · · · ⊆ Fn ,
and {Fk}

n
k=1 is a filtration of

n
i=1 X1 × · · · × C X i × · · · × Xn . Observe that J factors as a

composite of inclusions X1 × · · · × Xn −→ F1 −→ F2 −→ · · · −→ Fn .
Consider first the inclusion X1 × · · · × Xn −→ F1 = C X1 × X2 × · · · × Xn . The

cone in the first coordinate of F1 implies that this inclusion is homotopic to the composite

X1 × · · · × Xn
π1

−→ X2 × · · · × Xn
ϕ1

−→ C X1 × X2 × · · · × Xn , where π1 is the projection
and ϕ1 is the inclusion. (Note that in C X1 = [0, 1] × X1/ ∼ where (1, x) ∼ (1, x ′) for
all x, x ′

∈ X , we assume the basepoint is [0, ∗] so ϕ1 is a pointed map.) Composing into
F2 = C X1 × X2 × · · · × Xn ∪ X1 × C X2 × X3 × · · · × Xn , we obtain a homotopy commutative
diagram

X2 × · · · × Xn //

ϕ1

��

C X2 × X3 × · · · × Xn

��
X1 × · · · × Xn //

π1

66mmmmmmmmmmmmm
F1 // F2

where the square strictly commutes and each map in the square is an inclusion. As before, the
map X2 × · · · × Xn −→ C X2 × X3 × · · · × Xn in the top row is homotopic to the composite
X2 ×· · ·× Xn −→ X3 ×· · ·× Xn −→ C X2 × X3 ×· · ·× Xn where the left map is the projection
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and the right map is the inclusion. Thus the inclusion X1 × · · · × Xn −→ F2 is homotopic to

the composite X1 × · · · × Xn
π2

−→ X3 × · · · × Xn
ϕ2

−→ F2, where π2 is the projection and ϕ2

is an inclusion. Iterating, we obtain that the inclusion X1 × · · · × Xn
J

−→ Fn is homotopic to

the composite X1 × · · · × Xn
πn

−→ ∗
ϕn

−→ Fn where πn is the projection and ϕn is the inclusion.
Hence J is null homotopic. �

A useful consequence of Lemma 3.2 is the following.

Corollary 3.3. Let K be a simplicial complex on n vertices and suppose that each vertex is in
K . Then the inclusion X1 × · · · × Xn −→ (C X , X)K is null homotopic. �

Proof. Let P be the disjoint union of all the vertices in K . Then the inclusion X1 ×· · ·× Xn −→

(C X , X)K factors as the composite X1 × · · · × Xn −→ (C X , X)P
−→ (C X , X)K . Notice

that (C X , X)P is exactly the target of the map J in Lemma 3.2. Therefore the left map in the
preceding composite is null homotopic, and the corollary follows. �

Proposition 3.4. Let K be a simplicial complex on the index set [n] and let L be a subcomplex
of K on [m], where m ≤ n. Suppose that each vertex {i} ∈ K for m + 1 ≤ i ≤ n. Let

X =
n

i=m+1 X i . Then the restriction of (C X , X)L
× X

I
−→ (C X , X)K to X is null homotopic.

Proof. By definition of (C X , X)σ , we have (C X , X){i} = X1 × · · · × C X i × · · · Xn . Since each
vertex {i} ∈ K for m + 1 ≤ i ≤ n, we obtain an inclusion

I ′′:
n

i=m+1

X1 × · · · × C X i × · · · Xn −→ (C X , X)K .

Now there is a commutative diagram of inclusions

X1 × · · · × Xn

��

// n
i=m+1 X1 × · · · × C X i × · · · Xn

��
(C X , X)L

× Xm+1 × · · · × Xn
I // (C X , X)K

where, by Lemma 3.2, the restriction of the top horizontal map to X is null homotopic. Therefore
the restriction of I to X is null homotopic. �

4. The homotopy type of (C X, X)K for K = L ∪∂σ σ

The goal of this section is to prove Theorem 4.6, which specifies properties of K = L ∪∂σ σ

that allow us to determine the homotopy type of (C X , X)K from that of (C X , X)L . This will
be a key tool in an inductive procedure for proving Theorem 1.1, which identifies the homotopy
type of (C X , X)K for a shifted complex K .

We begin with a standard definition from combinatorics. Given simplicial complexes K1 and
K2 on sets S1 and S2 respectively, the join K1 ∗ K2 is the simplicial complex

K1 ∗ K2 := {σ ⊂ S1 ∪ S2 | σ = σ1 ∪ σ2, σ1 ∈ K2, σ2 ∈ K1}

on the set S1 ∪ S2. The definition of the polyhedral product immediately implies the following.

Lemma 4.1. Let K1 and K2 be simplicial complexes on the index sets {1, . . . , n} and {n +

1, . . . , m}, respectively. Then (X , A)K1∗K2 = (X , A)K1 × (X , A)K2 . �
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If K is a simplicial complex on the index set [n] then the cone on K is K ∗ {n + 1}. Applying
Lemma 4.1, we obtain the following, which will be of use later.

Corollary 4.2. Let K be a simplicial complex on the index set [n]. Then (X , A)K∗{n+1}
=

(X , A)K
× Xn+1. Consequently, (C X , X)K∗{n+1}

= (C X , X)K
× C Xn+1. �

As another useful observation, consider the inclusions of ∂∆n−1 into ∂∆n−1
∗ {n + 1} and

∆n−1.

Lemma 4.3. There is a pushout

∂∆n−1 //

��

∆n−1

��
∂∆n−1

∗ {n + 1} // ∂∆n . �

Applying Proposition 3.1 in the case of (C X , X) to the pushout in Lemma 4.3, we obtain a
homotopy equivalence

(C X , X)∂∆
n

≃ (C X , X)∂∆
n−1

∗{n+1}
∪

(C X ,X)∂∆
n−1 (C X , X)∆

n−1

. (5)

It will be useful to state this homotopy equivalence more explicitly. By (4),

(C X , X)∂∆
n−1

=

n
i=1

C X1 × · · · × X i × · · · × C Xn .

So by the definition of ∂∆
n−1

we have

(C X , X)∂∆
n−1

=


n

i=1

C X1 × · · · × X i × · · · × C Xn


× Xn+1.

As well, by the definition of the polyhedral product, we have

(C X , X)∆
n−1

= C X1 × · · · × C Xn .

So by the definition of ∆
n−1

we have

(C X , X)∆
n−1

= C X1 × · · · × C Xn × Xn+1.

By Corollary 4.2, we have

(C X , X)∂∆
n−1

∗{n+1}
= (C X , X)∂∆

n−1
× C Xn+1.

Thus we obtain

(C X , X)∂∆
n−1

∗{n+1}
=


n

i=1

C X1 × · · · × X i × · · · × C Xn


× C Xn+1.

Therefore (5) states the following.
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Lemma 4.4. There is a pushoutn
i=1 C X1 × · · · × X i × · · · × C Xn


× Xn+1

b //

a
��

C X1 × · · · × C Xn × Xn+1

��n
i=1 C X1 × · · · × X i × · · · × C Xn


× C Xn+1 // (C X , X)∂∆

n

where the maps a and b are coordinate-wise inclusions. �

Note that this pushout identifies (C X , X)∂∆
n

as
n+1

i=1 C X1 ×· · ·× X i ×· · ·×C Xn+1, which
matches the description in (4). Since a is a coordinate-wise inclusion and C Xn+1 is contractible,
a is homotopic to the composite

π1:


n

i=1

C X1 × · · · × X i × · · · × C Xn


× Xn+1

π1
−→

n
i=1

C X1 × · · · × X i × · · · × C Xn

i1
−→


n

i=1

C X1 × · · · × X i × · · · × C Xn


× C Xn+1

where π1 is the projection and i1 is the inclusion. Similarly, since b is a coordinate-wise inclusion
and C X1 × · · · × C Xn is contractible, b is homotopic to the composite

π2:


n

i=1

C X1 × · · · × X i × · · · × C Xn


× Xn+1

π2
−→ Xn+1

i2
−→ C X1 × · · · × C Xn × Xn+1

where π2 is the projection and i2 is the inclusion.
The pushout in Lemma 4.4 and the description of the maps a and b play a key role in helping

to identify the homotopy types of certain (C X , X)K ’s in Theorem 4.6. Before stating this, we
need another preliminary lemma which identifies the homotopy type of a certain pushout. Let
π j :

n
i=1 X i −→ X j be the projection onto the j th-factor. For spaces A and B, the left half-

smash of A and B is A n B = A × B/ ∼ where (a, ∗) ∼ ∗, and the right half-smash of A and
B is A o B = A × B/ ∼ where (∗, b) ∼ ∗.

Lemma 4.5. Suppose there is a homotopy pushout

A × B × C
π2×π3 //

f

��

B × C

��
P // Q

where f factors as the composite A × B × C
π1×π3

−−−−→ A × C −−−−→ A o C
f ′

−−−−→ P.
Then there is a homotopy equivalence

Q ≃ D ∨ [(A ∗ B) o C]

where D is the cofibre of f ′.

Proof. We start by recalling two general facts. First, the pushout of the projections X ×Y
π1

−→ X

and X × Y
π2

−→ Y is homotopy equivalent X ∗ Y , and the map from each of X and Y into X ∗ Y
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is null homotopic. Second, if Q is the pushout of maps X
a

−→ Y and X
b

−→ Z then, for any

space T , the pushout of X × T
a×1
−→ Y × T and X × T

b×1
−→ Z × T is Q × T .

In our case, since f factors through the projection onto A × C , there is a diagram of iterated
homotopy pushouts

A × B × C
π2×π3 //

π1×π3

��

B × C

��
A × C

g //

f̄
��

R

��
P // Q

which defines the space R and the map g. Observe that the top square is the product of C with
the pushout of the projections A × B

π1
−→ A and A × B

π2
−→ B. Thus R ≃ (A ∗ B) × C and

g ≃ ∗ × 1. The identification of R and g lets us write the bottom pushout above as a diagram of
iterated homotopy pushouts

A × C
π2 //

��

C
i //

��

(A ∗ B) × C

��
P // Q′ // Q

where i is the inclusion of the second factor. By hypothesis, the restriction of A × C −→ P to
C is null homotopic. Thus we can pinch out C in the previous diagram to obtain a diagram of
iterated homotopy pushouts

A o C //

f ′

��

∗ //

��

(A ∗ B) o C

��
P // D // Q.

The left pushout implies that D is the homotopy cofibre of f ′, and the right pushout immediately
implies that Q ≃ D ∨ [(A ∗ B) o C]. �

Let K be a simplicial complex on n vertices and suppose that K = L ∪∂σ σ for some
simplex σ and a simplicial complex L containing ∂σ . We consider cases where L contains
a simplicial cone on ∂σ , and use this to help identify the homotopy type of (C X , X)K . This
requires some notation.

For a sequence (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n, let ∆i1,...,ik be the (k−1)-dimensional
simplex on the vertices {i1, . . . , ik}. To match a later application of Theorem 4.6 in Section 5,
we will assume that in K = L ∪∂σ σ we have σ = (i1, . . . , ik) and i1 ≥ 2. Let ( j1, . . . , jn−k−1)

be the complement of (i1, . . . , ik) in (2, . . . , n), and assume that j1 < · · · < jn−k−1. Let
X =

n−k−1
t=1 X jt . Let ∂σ be ∂σ regarded as a simplicial complex on the vertices {1, . . . , n}.

Note that the vertices 1, j1, . . . , jn−k−1 are not vertices of ∂σ . The inclusion ∂σ −→ L induces
a map of polyhedral products f : (C X , X)∂σ

−→ (C X , X)L . By the definition of the polyhedral
product, (C X , X)∂σ

= (C X , X)∂σ
× X1 × X . Assuming that each of the vertices {i} is in L for

1 ≤ i ≤ n, by Proposition 3.4, the map f is null homotopic when restricted to X1 × X . Thus f
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factors through (C X , X)∂σ o (X1 × X). Restricting f to (C X , X)∂σ
× X , we obtain a map

f ′: (C X , X)∂σ o X −→ (C X , X)L .

Theorem 4.6. Let K be a simplicial complex on n vertices. Suppose that K = L ∪∂σ σ where:

(a) for 1 ≤ i ≤ n, the vertex {i} ∈ L;
(b) σ = (i1, . . . , ik) for 2 ≤ i1 < · · · < ik ≤ n;
(c) σ ∉ L;
(d) (1) ∗ ∂σ ⊆ L.

Then there is a homotopy equivalence

(C X , X)K
≃ D ∨ [((X i1 ∗ · · · ∗ X ik ) ∗ X1) o X ]

where D is the cofibre of the map (X i1 ∗ · · · ∗ X ik ) o X ≃ (C X , X)∂σ o X
f ′

−→ (C X , X)L .

Proof. Since the inclusion ∂σ −→ L factors as the composite ∂σ −→ (1) ∗ ∂σ −→ L , we
obtain an iterated pushout diagram

∂σ //

��

σ

��
(1) ∗ ∂σ //

��

K1

��
L // K

which defines the simplicial complex K1. Proposition 3.1 therefore implies that there is an
iterated pushout diagram

(C X , X)∂σ //

��

(C X , X)σ

��
(C X , X)(1)∗∂σ //

��

(C X , X)K1

��
(C X , X)L // (C X , X)K

(6)

where the bar over each of ∂σ, σ, (1) ∗ σ and K1 means they are to be regarded as simplicial
complexes on the index set [n].

By hypothesis, σ = (i1, . . . , ik), so σ = ∆i1,...,ik . The pushout defining K1 therefore implies
that K1 = ∂∆1,i1,...,ik . Now, arguing in the same way that produced the diagram in Lemma 4.4,
an explicit description of the upper pushout in (6) is as followsk

j=1 C X i1 × · · · × X i j × · · · × C X ik


× X1 × X

b //

a
��

C X i1 × · · · × C X ik × X1 × X

��k
j=1 C X i1 × · · · × X i j × · · · × C X ik


× C X1 × X // (C X , X)∂∆

1,i1,...,ik
× X

(7)
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where a and b are the inclusions. Observe that, rearranging the indices, (7) is just the product of
a pushout as in Lemma 4.4 with X . As well, as noted after Lemma 4.4, up to homotopy, a factors

through the projection onto
k

j=1 C X i1 × · · · × X i j × · · · × C X ik


× X and b factors through

the projection onto X1 × X . By Proposition 2.2, there are homotopy equivalences
k

j=1

C X i1 × · · · × X i j × · · · × C X ik


≃ X i1 ∗ · · · ∗ X ik

and

(C X , X)∂∆
1,i1,...,ik

≃ X1 ∗ X i1 ∗ · · · ∗ X ik .

Thus, up to homotopy equivalences, (7) is equivalent to the homotopy pushout

(X i1 ∗ · · · ∗ X ik ) × X1 × X
proj //

proj
��

X1 × X

��
(X i1 ∗ · · · ∗ X ik ) × X // (X1 ∗ X i1 ∗ · · · ∗ X ik ) × X .

Therefore, up to homotopy equivalences, (6) is equivalent to the iterated homotopy pushout
diagram

(X i1 ∗ · · · ∗ X ik ) × X1 × X
proj //

proj
��

X1 × X

��
(X i1 ∗ · · · ∗ X ik ) × X //

��

(X1 ∗ X i1 ∗ · · · ∗ X ik ) × X

��
(C X , X)L // (C X , X)K .

By hypothesis, each vertex {i} ∈ L for 1 ≤ i ≤ n, so Proposition 3.4 implies that the restriction
of (X i1 ∗ · · · ∗ X ik ) × X −→ (C X , X)L to X is null homotopic. Thus the outer perimeter of the
previous diagram is a homotopy pushout

(X i1 ∗ · · · ∗ X ik ) × X1 × X
proj //

f
��

X1 × X

��
(C X , X)L // (C X , X)K

where f factors as the composite (X i1 ∗· · ·∗X ik )×X1×X
π1×π3

−−−−→ (X i1 ∗· · ·∗X ik )×X −−−−→

(X i1 ∗ · · · ∗ X ik ) o X
f ′

−−−−→ (C X , X)L . Lemma 4.5 therefore implies that

(C X , X)K
≃ D ∨ [((X i1 ∗ · · · ∗ X ik ) ∗ X1) o X ]

where D is the cofiber of f ′. �



702 J. Grbić, S. Theriault / Advances in Mathematics 245 (2013) 690–715

5. Polyhedral products for shifted complexes

In this section we prove Theorem 1.1. To begin, we introduce some definitions from combi-
natorics.

Definition 5.1. Let K be a simplicial complex on n vertices. The complex K is shifted if there
is an ordering on its vertices such that whenever σ ∈ K and ν′ < ν, then (σ − ν) ∪ ν′

∈ K .

It may be helpful to interpret this definition in terms of ordered sequences. Let K be a
simplicial complex on [n] and order the vertices by their integer labels. If σ ∈ K with vertices
{i1, . . . , ik} where 1 ≤ i1 < · · · < ik ≤ n, then regard σ as the ordered sequence (i1, . . . , ik). The
shifted condition states that if σ = (i1, . . . , ik) ∈ K then K contains every simplex (t1, . . . , tl)
with l ≤ k and t1 ≤ i1, . . . , tl ≤ il .

Examples 5.2. We give three examples.

(1) Let K be the 1-dimensional simplicial complex with vertices {1, 2, 3, 4} and edges
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. So |K | is two copies of |∂∆2

| glued along the common
edge (1, 2). In the given ordering of the vertices, K is shifted. Notice that the ordering of the
vertices is important, for if the vertices of K were reordered so the common face was (3, 4)

then the shifted condition fails.
(2) Let K be the 1-dimensional simplicial complex with vertices {1, 2, 3, 4} and edges

{(1, 2), (1, 4), (2, 3), (3, 4)}. So |K | is the boundary of a square. Then K is not shifted.
(3) For 0 ≤ k ≤ n − 1, the full k-skeleton of ∆n is shifted.

Definition 5.3. Let K be a simplicial complex on the index set [n]. The star, restriction (or
deletion) and link of a simplex σ ∈ K are the subcomplexes

starK σ = {τ ∈ K | σ ∪ τ ∈ K };

restK [n] \ σ = {τ ∈ K | σ ∩ τ = ∅};

linkK σ = starK σ ∩ restK [n] \ σ.

There are three standard facts that follow straight from the definitions. First, there is a pushout

linkK σ //

��

restK [n]\σ

��
starK σ // K .

Second, if K is shifted then so are starK σ , restK [n] \ σ and linkK σ for each σ ∈ K . Third,
starK σ is a join: starK σ = σ ∗ linkK σ .

For K a simplicial complex on [n] and σ being a vertex (i), we write star(i),
rest{1, . . . , î, . . . , n} and link(i) for starK σ , restK [n] \ σ and linkK σ . To illustrate, take i1 = 1.
Then star(1) consists of those simplices (i1, . . . , ik) ∈ K where 1 ≤ i1 < · · · < ik ≤ n and
i1 = 1; rest{2, . . . , n} consists of those simplices ( j1, . . . , jk) ∈ K where 1 < j1 < · · · < jk ≤

n, and link(1) = star(1) ∩ rest{2, . . . , n}. The three useful facts mentioned above become the
following. First, there is a pushout

link(1) //

��

rest{2, . . . , n}

��
star(1) // K .
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Second, if K is shifted then so are star(1), rest{2, . . . , n} and link(1). Third, star(1) is a join:
star(1) = (1) ∗ link(1).

Next, we require four lemmas to prepare for the proof of Theorem 1.1. The first two are about
shifted complexes, and the next two are about decompositions.

Lemma 5.4. Let K be a shifted complex on the index set [n]. If σ ∈ rest{2, . . . , n}, then
∂σ ∈ link(1).

Proof. Suppose the ordered sequence corresponding to σ is (i1, . . . , ik). Then ∂σ =
k

j=1 σ j

for σ j = (i1, . . . , î j , . . . , ik), where î j means omit the j th-coordinate. So to prove the lemma it
is equivalent to show that σ j = (i1, . . . , î j , . . . , ik) ∈ link(1) for each 1 ≤ j ≤ k.

Fix j . Observe that σ j = (i1, . . . , î j , . . . , ik) is a sequence of length k − 1 and 2 ≤ i1 <

· · · < ik ≤ n. We claim that the sequence (1, i1, . . . , î j , . . . , ik) of length k represents a face
of K . This holds because, as ordered sequences, we have (1, i1, . . . , î j , . . . , ik) < (i1, . . . , ik),
and the shifted property for K implies that as (i1, . . . , ik) ∈ K , any ordered sequence less than
(i1, . . . , ik) also represents a face of K . Now, as (1, i1, . . . , î j , . . . , ik) ∈ K , we clearly have
(1, i1, . . . , î j , . . . , ik) ∈ star(1). Thus the sub-simplex (i1, . . . , î j , . . . , ik) is also in star(1). That
is, σ j ∈ star(1). Hence σ j ∈ star(1) ∩ rest{2, . . . , n} = link(1), as required. �

Remark 5.5. In Lemma 5.4, it may be that σ itself is in link(1), but this need not be the case.
For by the definition of link(1), we have σ ∈ link(1) if and only if (1, i1, . . . , ik) ∈ K .

Remark 5.6. It is also worth noting that as ∂σ ∈ link(1) and star(1) = (1) ∗ link(1), we have
(1) ∗ ∂σ ⊆ star(1). That is, the cone on ∂σ is in star(1).

We say that a face τ of a simplicial complex K is maximal if there is no other face τ ′
∈ K

with τ a proper subset of τ ′.

Lemma 5.7. Let K be a shifted complex on the index set [n]. Then the inclusion link(1) −→

rest{2, . . . , n} is filtered by a sequence of simplicial complexes

link(1) = L0 ⊆ L1 ⊆ · · · ⊆ Lm = rest{2, . . . , n}

where L i = L i−1 ∪ τi and τi satisfies:

(a) τi is maximal in rest{2, . . . , n};
(b) τi ∉ link(1);
(c) ∂τi ∈ link(1).

Proof. In general, if L is a connected simplicial complex and L0 ⊆ L is a subcomplex (not
necessarily connected), it is possible to start with L0 and sequentially adjoin faces one at a time
to get L . That is, there is a sequence of simplicial complexes L0 =⊆ L1 ⊆ · · · ⊆ Lm = L where
L i = L i−1 ∪ τi for some simplex τi ∈ L , τi ∉ L i−1 and the union is taken over the boundary
∂τi of τi . In addition, it may be assumed that the adjoined faces τi are maximal in L . Thus
parts (a) and (b) of the lemma follow. For part (c), since K is shifted and each τi ∈ rest{2, . . . , n},
Lemma 5.4 implies that ∂τi ∈ link(1). �

Next, we turn to the two decomposition lemmas.
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Lemma 5.8. For any spaces M, N1, . . . , Nm , there is a homotopy equivalence

Σ M o (N1 × · · · × Nm) ≃ Σ M ∨

 
1≤t1<···<tk≤m

Σ M ∧ Ni1 ∧ · · · ∧ Nik


.

Proof. In general, Σ XoY ≃ Σ X∨(Σ X∧Y ), so it suffices to decompose Σ M∧(N1×· · ·×Nm).
Iterating the basic fact that Σ (X×Y ) ≃ Σ X∨ΣY ∨(Σ X∧Y ), we obtain a homotopy equivalence
Σ (N1 × · · · × Nm) ≃


1≤t1<···<tk≤m(Σ Ni1 ∧ · · · ∧ Nik ). Thus

Σ M ∧ (N1 × · · · × Nm) ≃ M ∧ Σ (N1 × · · · × Nm)

≃ M ∧

 
1≤t1<···<tk≤m

Σ Ni1 ∧ · · · ∧ Nik


≃


1≤t1<···<tk≤m

M ∧ Σ Ni1 ∧ · · · ∧ Nik . �

Recall from Section 4 that if K is a simplicial complex on the index set [n] then ∆i1,...,ik is
the full (k − 1)-dimensional simplex on the vertex set {i1, . . . , ik} for 1 ≤ i1 < · · · < ik ≤ n.

Lemma 5.9. Let K be a simplicial complex on the index set [n]. Suppose for some sequence
1 ≤ i1 < · · · < ik ≤ n that ∂∆i1,...,ik is a full subcomplex of K . Then the map
(C X , X)∂∆

i1,...,ik
−→ (C X , X)K induced by the inclusion ∂∆i1,...,ik −→ K has a left inverse.

Consequently, X i1 ∗ · · · ∗ X ik is a retract of (C X , X)K .

Proof. This is a consequence of a result in [6] which states that if K I is a full subcomplex of K
then (X , A)K I is a retract of (X , A)K . �

We expand on Lemma 5.9. To simplify notation, let σ = ∆i1,...,ik . We again assume that
∂σ is a full subcomplex of K , so σ ∉ K . Let { j1, . . . , jn−k} be the vertices in [n] which are
complementary to {i1, . . . , ik}. Let X =

n−k
t=1 X jt and let ∂σ be ∂σ regarded as a simplicial

complex on the vertex set [n]. Note that { j1, . . . , jn−k} are not vertices of ∂σ . By definition of
the polyhedral product,

(C X , X)∂σ
= (C X , X)∂σ

× X .

The inclusion ∂σ −→ K induces a map of polyhedral products f : (C X , X)∂σ
× X −→

(C X , X)K . If each vertex of [n] is in K , Proposition 3.4 implies that the restriction of f to
X is null homotopic. Thus f factors through a map

f ′: (C X , X)∂σ o X −→ (C X , X)K .

We now apply the natural decomposition of (3) to f . By (3), there are homotopy equivalences

Σ (C X , X)∂σ
≃ Σ

 
J ∉∂σ

|(∂σ )J | ∗ X J

 (8)

Σ (C X , X)K
≃ Σ


I ∉K

|K I | ∗ X I


. (9)
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In the first case, observe that σ ∉ ∂σ so ∂σ σ = ∂σ , implying that |(∂σ )σ | ≃ Sk−2. Therefore

|(∂σ )σ | ∗ Xσ
≃ Σ k−1 X i1 ∧ · · · ∧ X ik .

In other words, this term is (C X , X)∂σ . More generally, suppose J ∉ ∂σ . There are three cases:
(i) if J contains a proper subset J ′ of {i1, . . . , ik} then ∂σ J = ∂σ J ′ and the right term is
contractible, (ii) if J is disjoint from i1, . . . , ik then ∂σ J = ∅ since ∂σ is a simplicial complex
on the vertices i1, . . . , ik ; this case corresponds to a summand of Σ X , which we factor out in
f ′; (iii) if J contains i1, . . . , ik and some subset of { j1, . . . , jn−k} then, as ∂σ is a simplicial
complex on the vertices i1, . . . , ik , we have (∂σ )J = ∂σ σ = ∂σ . Therefore, if J consists of the
sequences J which contain J in case (iii), then from (8) we obtain

Σ (C X , X)∂σ o X ≃ Σ


J∈J

|(∂σ )J | ∗ X J



≃ Σ


J∈J

Sk−2
∗ X ≃ Σ


J∈J

Σ k−1X . (10)

Since f is induced by the map ∂σ −→ K of simplicial complexes, the naturality of the
decompositions in (8) and (9) implies that Σ f decomposes as the wedge sum of the maps
Σ |(∂σ )J | ∗ X −→ Σ |K J | ∗ X , indexed by the sequences J ∉ ∂σ . In general, the quotient map
Y × Z −→ Y o Z has a right homotopy inverse after suspending, so the wedge decomposition
of Σ f implies a wedge decomposition of Σ f ′, where now – as in the previous paragraph – the
wedge decomposition is indexed by the sequences J ∈ J .

Since ∂σ is a full subcomplex of K and ∂σ is simply ∂σ regarded as a simplicial complex on
the n vertices of K , we obtain that ∂σ is a full subcomplex of K . Therefore, for any sequence J
containing σ , (∂σ )J is a full subcomplex of K J . In particular, (∂σ )J is retract of K J , so |(∂σ )J |

is a retract of |K J |. Therefore the map Σ k−1X ≃ Σ |(∂σ )J | ∗ X −→ Σ |K J | ∗ X has a left
homotopy inverse. This is true for every J ∈ J , so Σ f ′ has a left homotopy inverse. This proves
part (a) of the following.

Proposition 5.10. Let K be a simplicial complex on the index set [n] for which each vertex is
in K . Suppose for some sequence 1 ≤ i1 < · · · < ik ≤ n that ∂∆i1,...,ik is a full subcomplex of
K . Then there is a homotopy equivalence

Σ ((C X , X)∂∆
i1,...,ik o X) ≃ Σ


J∈J

Σ k−1X

such that the map Σ ((C X , X)∂∆
i1,...,ik o X)

Σ f ′

−→ Σ (C X , X)K satisfies:

(a) Σ f ′ has a left homotopy inverse;
(b) if the decomposition for Σ (C X , X)K in (9) desuspends, then part (a) also desuspends.

Proof. It remains to show part (b). This follows by the same argument as for part (a) provided
the decomposition in (10) for Σ ((C X , X)∂∆

i1,...,ik o X) also desuspends. As before, to simplify
notation, let σ = ∆i1,...,ik . The functorial decomposition in (3) was proved in [1] as a
generalisation of the fact that Σ (Y × Z) ≃ ΣY ∨ Σ Z ∨ (ΣY ∧ Z). In our case we consider
the restriction to Y o Z . If Y is a suspension then Y o Z ≃ Y ∨ (Y ∧ Z). So in our case, as
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(C X , X)∂σ
≃ Σ k−1 X i1 ∧ · · · ∧ X ik , we obtain

(C X , X)∂σ o X ≃ (C X , X)∂σ
∨ ((C X , X)∂σ

∧ X).

Since X =
n−k

t=1 X jt and (C X , X)∂σ is a suspension, iterating the general decomposition
Σ (Y × Z) ≃ ΣY ∨ Σ Z ∨ (ΣY ∧ Z) shows that there is a homotopy equivalence

(C X , X)∂σ o X ≃


J∈J

|(∂σ )J | ∗ X J


.

As before, |(∂σ )J | ≃ Sk−2, so this homotopy equivalence desuspends (10). �

We are now ready to prove the main result in the paper. For convenience, let Wn be the
collection of spaces which are either contractible or homotopy equivalent to a wedge of spaces
of the form Σ j X i1 ∧ · · · ∧ X ik for j ≥ 1 and 1 ≤ i1 < · · · < ik ≤ n. Note that for each n > 1,
Wn−1 ⊆ Wn .

Proof of Theorem 1.1. The proof is by induction on the number of vertices. If n = 1 then K =

{1}, which is shifted, and the definition of the polyhedral product implies that (C X , X)K
= C X ,

which is contractible. Thus K ∈ W1.
Assume the theorem holds for all shifted complexes on k vertices, with k < n. Let K be a

shifted complex on the index set [n]. Consider the pushout

link(1) //

��

rest{2, . . . , n}

��
star(1) // K

and recall that star(1) = (1) ∗ link(1). Since K is shifted, so are star(1), rest{2, . . . , n} and
link(1). Note that rest{2, . . . , n} is a shifted complex on n − 1 vertices, and as link(1) is a
subcomplex of rest{2, . . . , n}, it too is a shifted complex on n−1 vertices. Therefore, by inductive
hypothesis, (C X , X)link(1)

∈ Wn−1.
By Lemma 5.7, the map link(1) −→ rest{2, . . . , n} is filtered by a sequence of simplicial

complexes

link(1) = L0 ⊆ L1 ⊆ · · · ⊆ Lm = rest{2, . . . , n}

where L i = L i−1 ∪ τi and τi satisfies: (i) τi is maximal in rest{2, . . . , n}; (ii) τi ∉ link(1); and
(iii) ∂τi ∈ link(1). In particular, for each 1 ≤ i ≤ m, there is a pushout

∂τi //

��

τi

��
L i−1 // L i .

(11)

Let K0 = star(1), and for 1 ≤ i ≤ m, define Ki as the simplicial complex obtained from the
pushout

L i−1 //

��

L i

��
Ki−1 // Ki .

(12)
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Observe that we obtain a filtration of the map star(1) −→ K as a sequence star(1) = K0 ⊆

K1 ⊆ · · · ⊆ Km = K . Juxtaposing the pushouts in (11) and (12) we obtain a pushout

∂τi //

��

τi

��
Ki−1 // Ki .

(13)

Since ∂τi ∈ link(1), Remark 5.6 implies that (1) ∗ ∂τi ∈ star(1). Thus as star(1) = K0, the
map ∂τi −→ Ki−1 factors as the composite ∂τi −→ (1) ∗ ∂τi −→ star(1) = K0 −→ Ki−1.
That is, the inclusion of ∂τi into Ki−1 factors through the cone on ∂τi .

We now argue that each (C X , X)K j ∈ Wn . First consider (C X , X)K0 . Since K0 = star(1) =

(1) ∗ link(1), by Lemma 4.1 we have (C X , X)K0 = (C X , X)(1)
× (C X , X)link(1). By the

definition of the polyhedral product, (C X , X)(1)
= C X1, so (C X , X)K0 is homotopy equivalent

to (C X , X)link(1). By inductive hypothesis, (C X , X)link(1)
∈ Wn−1. Thus (C X , X)K0 ∈ Wn .

Next, fix an integer j such that 1 ≤ j ≤ m, and assume that (C X , X)K j−1 ∈ Wn . We have
K j = K j−1 ∪∂τ j τ j . Let [n] j be the subset of [n] labelling the vertices of K j and suppose [n] j

has m j elements. Note that 1 ∈ [n] j . Since τ j = ∆i1,...,ik for some sequence (i1, . . . , ik), we
have ∂τ j = ∂∆i1,...,ik . Let ( j1, . . . , jm j −k−1) be the complement of (1, i1, . . . , ik) in [n] j , and

let X =
m j −k−1

t=1 X jt . Let ∂τ j be ∂τ j regarded as a simplicial complex on the vertex set [n] j .
Note that the vertices 1, j1, . . . , jm j −k−1 are not vertices of ∂τ j . The inclusion ∂τ j −→ K j

induces a map of polyhedral products f : (C X , X)∂τ j −→ (C X , X)K j . By the definition of the
polyhedral product, (C X , X)∂τ j = (C X , X)∂τ j × X1 × X . As each of the vertices in [n] j is in
K j , by Proposition 3.4, the map f is null homotopic when restricted to X1 × X . Thus f factors
through (C X , X)∂τ j o (X1 × X). Restricting f to (C X , X)∂τ j × X , we obtain a map

f ′: (C X , X)∂τ j o X −→ (C X , X)K j .

Since ∂τ j −→ K j−1 factors through (1) ∗ ∂τ j , by Theorem 4.6 there is a homotopy equivalence

(C X , X)K j ≃ D j ∨

((X i1 ∗ · · · ∗ X ik ) ∗ X1) o X


where D j is the cofiber of f ′. Since X is a product, if we take M = X i1 ∗ · · · ∗ X ik ∗ X1

then Lemma 5.8 implies that ((X i1 ∗ · · · ∗ X ik ) ∗ X1) o X ∈ Wn . If D j ∈ Wn as well, then
(C X , X)K j ∈ Wn . Therefore, by induction, (C X , X)Km ∈ Wn . But (C X , X)K

= (C X , X)Km ,
so (C X , X)K

∈ Wn , which completes the inductive step on the number of vertices and therefore
proves the theorem.

It remains to show that D j ∈ Wn . Consider the cofibration

(X i1 ∗ · · · ∗ X ik ) o X ≃ (C X , X)∂τ j o X
f ′

−→ (C X , X)K j−1 −→ D j . (14)

Notice that the definition of the map f ′ coincides with that which appears preceding
Proposition 5.10. Since ∂τ j is a full subcomplex of K j−1 and (C X , X)∂τ j o X ≃ (X i1 ∗

· · · ∗ X ik ) o X ∈ Wn , by Proposition 5.10 (b) the map f ′ has a left homotopy inverse.
Since (C X , X)K j−1 ∈ Wn , it is a suspension, so the existence of a left homotopy inverse for
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f ′ implies that the cofibration (14) splits to give a homotopy decomposition (C X , X)K j−1 ≃

((C X , X)∂τ j o X) ∨ D j . Thus D j is a retract of a space in Wn so D j ∈ Wn as well.
Hence by induction, (C X , X)K

∈ Wn . Finally, as the inductive step produces decompositions
by Proposition 5.10, which is based on desuspending Bahri, Bendersky, Cohen and Gitler’s
decomposition in (3), we obtain a homotopy decomposition

(C X , X)K
≃


I ∉K

|K I | ∗ X I


which desuspends (3). �

6. Examples

We consider the two shifted cases from Examples 5.2. First, let K = ∆n−1
k be the full k-

skeleton of ∆n−1. Phrased in terms of polyhedral products, Porter [13] showed that for any
simply-connected spaces X1, . . . , Xn , there is a homotopy equivalence

(CΩ X ,Ω X)K
≃

n
j=k+2

 
1≤i1<···<i j ≤n


j − 1
k + 1


Σ k+1Ω X i1 ∧ · · · ∧ Ω X i j

 .

Theorem 1.1 now generalises this. If X1, . . . , Xn are any path-connected spaces, there is a
homotopy equivalence

(C X , X)K
≃

n
j=k+2

 
1≤i1<···<i j ≤n


j − 1
k + 1


Σ k+1 X i1 ∧ · · · ∧ X i j

 .

For example, this decomposition holds not just for X i = Ω Sni as in Porter’s case, but also for
the spheres themselves, X i = Sni .

Second, let K be the simplicial complex in Examples 5.2(1), whose geometric realisation is
two copies of |∂∆2

| glued along a common edge. Specifically, K is the simplicial complex with
vertices {1, 2, 3, 4} and edges {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. To illustrate the algorithmic
nature of the proof of Theorem 1.1, we will carry out the iterative procedure for identifying
the homotopy type of (C X , X)K . Starting with K0 = star(1), we adjoin one edge at a time:
let K1 = K0 ∪{2,3}(2, 3) and K2 = K1 ∪{2,4}(2, 4). Note that K2 = K . We begin to identify
homotopy types.

Step 1: For K0 we have star(1) = (1) ∗ link(1) where link(1) = {2, 3, 4}. So Lemma 4.1 implies
that (C X , X)star(1)

≃ C X1 ×(C X , X)link(1)
≃ (C X , X)link(1). Since link(1) = ∆2

0, we can apply
the previous example to obtain a homotopy equivalence

(C X , X)K0 ≃ (Σ X2 ∧ X3) ∨ (Σ X2 ∧ X4) ∨ (Σ X3 ∧ X4) ∨ 2 · (Σ X2 ∧ X3 ∧ X4).

Step 2: Since K1 = K0 ∪{2,3}(2, 3), Theorem 4.6 implies that there is a homotopy equivalence

(C X , X)K1 ≃ D1 ∨ [(X2 ∗ X3 ∗ X1) o X4] (15)

where there is a cofibration (X2 ∗ X3) o X4 −→ (C X , X)K0 −→ D1. As (X2 ∗ X3) o X4 ≃

(Σ X2 ∧ X3) ∨ (Σ X2 ∧ X3 ∧ X4), the homotopy equivalence for (C X , X)K0 in Step 1 implies
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that the cofibration splits and there is a homotopy equivalence

D1 ≃ (Σ X2 ∧ X4) ∨ (Σ X3 ∧ X4) ∨ (Σ X2 ∧ X3 ∧ X4).

Thus (15) implies that there is a homotopy equivalence

(C X , X)K1 ≃ (Σ X2 ∧ X4) ∨ (Σ X3 ∧ X4) ∨ (Σ X2 ∧ X3 ∧ X4)

∨ (Σ 2 X1 ∧ X2 ∧ X3) ∨ (Σ 2 X1 ∧ X2 ∧ X3 ∧ X4).

Step 3: Since K2 = K1 ∪{2,4}(2, 4), Theorem 4.6 implies that there is a homotopy equivalence

(C X , X)K2 ≃ D2 ∨ [(X2 ∗ X4 ∗ X1) o X3] (16)

where there is a cofibration (X2 ∗ X4) o X3 −→ (C X , X)K1 −→ D2. As (X2 ∗ X4) o X3 ≃

(Σ X2 ∧ X4) ∨ (Σ X2 ∧ X3 ∧ X4), the homotopy equivalence for (C X , X)K1 in Step 2 implies
that the cofibration splits and there is a homotopy equivalence

D2 ≃ (Σ X3 ∧ X4) ∨ (Σ 2 X1 ∧ X2 ∧ X3) ∨ (Σ 2 X1 ∧ X2 ∧ X3 ∧ X4).

Thus (16) implies that there is a homotopy equivalence

(C X , X)K
= (C X , X)K2 ≃ (Σ X3 ∧ X4) ∨ (Σ 2 X1 ∧ X2 ∧ X3) ∨ (Σ 2 X1 ∧ X2 ∧ X4)

∨ 2 · (Σ 2 X1 ∧ X2 ∧ X3 ∧ X4).

7. Extensions of the method I: gluing along a common face

The basic idea behind proving Theorem 1.1 was to present (C X , X)K as the end result of
a sequence of pushouts, and then analyse the homotopy theory of the pushouts. In these terms,
the key ingredient of the proof was Lemma 4.5. The idea behind the method is therefore very
general. One can look for different constructions of K which translate to a sequence of homotopy
pushouts constructing (C X , X)K , whose homotopy theory can be analysed. This may apply to
different classes of complexes K other than the shifted class. In this section we give such a
construction. As a consequence, we find that the decomposition in the statement of Theorem 1.1
holds for a class of simplicial complexes that contains more than just shifted complexes.

Let K be a simplicial complex on the index set [n]. Suppose K = K1 ∪τ K2 for τ a
simplex in K . Geometrically, |K | is the result of gluing |K1| and |K2| together along a common
face. Relabelling the vertices if necessary, we may assume that K1 is defined on the vertices
{1, . . . , m}, K2 is defined on the vertices {m − l + 1, . . . , n} and τ is defined on the vertices
{m − l + 1, . . . , m}. Let K 1, K 2 and τ be K1, K2 and τ regarded as simplicial complexes on [n].
So K = K 1 ∪τ K 2.

Let σ ∈ K1 and let σ be its image in K 1. By the definition of σ , we have i ∉ σ for
i ∈ {m + 1, . . . , n}. Thus (C X , X)σ = (C X , X)σ × Xm+1 × · · · × Xn . Consequently, taking the
union over all the faces in K 1, we obtain

(C X , X)K 1 = (C X , X)K1 × Xm+1 × · · · × Xn .

Similarly, we have

(C X , X)K 2 = X1 × · · · × Xm−l × (C X , X)K2 .
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Since τ = ∆m−l−1, we have (C X , X)τ = C Xm−l+1 × · · · × C Xm , so as above we obtain

(C X , X)τ = X1 × · · · × Xm−l × C Xm−l+1 × · · · × C Xm × Xm+1 × · · · × Xn .

Since K = K1 ∪τ K2, by Proposition 3.1 there is a pushout

X1 × · · · × Xm−l × (C X , X)τ × Xm+1 × · · · × Xn
a //

b
��

(C X , X)K1 × Xm+1 × · · · × Xn

��
X1 × · · · × Xm−l × (C X , X)K2 // (C X , X)K

(17)

where a and b are coordinate-wise inclusions.
We next identify the homotopy classes of a and b. We use the Milnor–Moore convention of

writing the identity map Y −→ Y as Y . To simplify notation, let M = X1 × · · · × Xm−l and
N = Xm+1 × · · · × Xn . Then the domain of a and b is M × (C X , X)τ × N . Since a and b
are coordinate-wise inclusions, their homotopy classes are determined by their restrictions to M ,
(C X , X)τ and N . Consider a. Since each vertex {i} ∈ K for 1 ≤ i ≤ m − l, Corollary 3.3
implies that the restriction of a to M is null homotopic. Since (C X , X)τ is a product of cones,
it is contractible, so the restriction of a to (C X , X)τ is null homotopic. Since a is a coordinate-
wise inclusion, it is the identity map on Xm+1 × · · · × Xn . Thus a ≃ ∗ × ∗ × N . Similarly,
b ≃ M × ∗ × ∗. Thus we can rewrite (17) as a pushout

M × (C X , X)τ × N
f ×N //

M×g
��

(C X , X)K1 × N

��
M × (C X , X)K2 // (C X , X)K

(18)

where f and g are null homotopic.
To identify the homotopy type of (C X , X)K we use a general lemma.

Lemma 7.1. Let

A × E × B
f ×B //

A×g
��

C × B

��
A × D // Q

be a homotopy pushout, where E is contractible and f and g are null homotopic. Then there is
a homotopy equivalence

Q ≃ (A ∗ B) ∨ (A n D) ∨ (C o B).

Proof. Let j : A × B −→ A × E × B be the inclusion. Observe that ( f × B) ◦ j ≃ ∗ × B and
(A × g) ◦ j ≃ A × ∗. Thus as E is contractible, j is a homotopy equivalence and the pushout
in the statement of this lemma is equivalent, up to homotopy, to the pushout in the statement of
Lemma 4.5. The homotopy equivalence for Q now follows. �

Applying Lemma 7.1 to the pushout in (18), we obtain the following.
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Theorem 7.2. Let K be a simplicial complex on the index set [n]. Suppose that K = K1 ∪τ K2
where τ is a common face of K1 and K2. Then there is a homotopy equivalence

(C X , X)K
≃ (M ∗ N ) ∨ ((C X , X)K1 o N ) ∨ (M n (C X , X)K2)

where M = X1 × · · · × Xm−l and N = Xm+1 × · · · × Xn . �

In the light of Theorem 1.1, the value of Theorem 7.2 is that it can be applied to examples
of simplicial complexes which are not shifted. On the other hand, Theorem 7.2 can also be
applied to some examples which are shifted in order to give a quicker evaluation of the homotopy
type of (C X , X)K . We illustrate the latter first, by reconsidering the simplicial complex K in
Examples 5.2 (1). Geometrically, |K | is obtained by gluing two copies of |∂∆2

| along a common
edge. Specifically, K = K1 ∪τ K2 where K1 is the simplicial complex on vertices {1, 2, 3}

having edges {(1, 2), (1, 3), (2, 3)}; K2 is the simplicial complex on vertices {1, 2, 4} having
edges {(1, 2), (1, 4), (2, 4)}; and τ is the edge (1, 2). Since K1 = ∂∆2, Proposition 2.2 implies
that (C X , X)K1 ≃ Σ 2 X1 ∧ X2 ∧ X3. Similarly, (C X , X)K2 ≃ Σ 2 X1 ∧ X2 ∧ X4. In general, the
space M is the product of the X i ’s where i is not a vertex of K2, and similarly for N and K1.
So in this case M = X3 and N = X4. Theorem 7.2 therefore implies that there is a homotopy
equivalence

(C X , X)K
≃ (X3 ∗ X4) ∨ ((Σ 2 X1 ∧ X2 ∧ X3) o X4) ∨ (X3 n Σ 2 X1 ∧ X2 ∧ X4).

In general, there is a homotopy equivalence Σ A o B ≃ Σ A ∨ (Σ A ∧ B), and similarly for the
right half-smash. Thus in our case we obtain a homotopy equivalence

(C X , X)K
≃ (Σ X3 ∧ X4) ∨ (Σ 2 X1 ∧ X2 ∧ X3) ∨ (Σ 2 X1 ∧ X2 ∧ X4)

∨ 2 · (Σ 2 X1 ∧ X2 ∧ X3 ∧ X4).

This matches the answer in Section 6.
Next, we apply Theorem 7.2 to a family of nonshifted complexes. Let L2 be the previous

example of two copies of ∂∆2 glued along the common edge (1, 2). Let L3 be the simplicial
complex on 5 vertices obtained by gluing another copy of ∂∆2 to L2 along the common edge
(1, 4). We will show that L3 is not shifted. If it were, then so is the restriction rest{2, 3, 4, 5}.
But this is the simplicial complex on vertices {2, 3, 4, 5} with edges {(2, 3), (2, 4), (4, 5)}. Any
connected simplicial complex which is shifted has a distinguished vertex which is connected by
an edge to any other vertex. This is not the case with rest{2, 3, 4, 5}, and there is no reordering
of the vertices which would make this the case. Thus rest{2, 3, 4, 5} is not shifted, implying that
L3 is not shifted. Nevertheless, since (C X , X)L2 ∈ W4 and (C X , X)∂∆

2
≃ Σ 2 X1 ∧ X4 ∧ X5,

Theorem 7.2 implies that (C X , X)L3 ∈ W5. In the same way, we can iteratively construct Ln−2
by gluing a copy of ∂∆2 to Ln−3 along the common edge (1, n−1) to obtain a simplicial complex
on n vertices which is not shifted and which satisfies (C X , X)Ln−2 ∈ Wn .

It is worth pointing out that we assume that any simplicial complex contains the empty set as
its simplex. Thus Theorem 7.2 also treats the case when K is obtained as a disjoint union of K1
and K2, that is K = K1


K2. For example, let K = K1


K2 where K1 = ∆1 is the 1-simplex

on vertices {1, 2} and K2 = ∆1 is the 1-simplex on vertices {3, 4}. Any n-simplex is shifted so
both K1 and K2 are shifted. However, K is not shifted since the edge (3, 4) ∈ K would imply
the edge (1, 4) ∈ K , but this is not the case and there is no reordering of the vertices which
will make this the case. Since K1 and K2 are 1-simplices, we have (C X , X)K1 = C X1 × C X2
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and (C X , X)K2 = C X3 × C X4. Both spaces are contractible, so Theorem 7.2 implies that
(C X , X)K

≃ M ∗ N where M = X3 × X4 and N = X1 × X2. Thus (C X , X)K
∈ W4.

We now discuss how Theorem 7.2 allows us to generalise Theorem 1.1. Let W be the family
of simplicial complexes K for which the polyhedral product (C X , X)K is homotopy equivalent
to a wedge of suspensions of smashes of the X i ’s. By Theorem 1.1, this family is non-empty and
contains shifted complexes.

Proposition 7.3. Let K be a simplicial complex on the index set [n]. Suppose that K = K1 ∪τ K2
where τ is a common face of K1 and K2 and K1, K2 ∈ W . Then K ∈ W , that is, (C X , X)K is
homotopy equivalent to a wedge of suspensions of smashes of the X i ’s.

Proof. By Theorem 7.2,

(C X , X)K
≃ (M ∗ N ) ∨ ((C X , X)K1 o N ) ∨ (M n (C X , X)K2).

As K1 and K2 belong to W , the corresponding polyhedral products are wedges of suspensions
of smashes of the X i ’s. Now the statement follows by applying the homotopy equivalences
Σ A o B ≃ Σ A ∨ (Σ A ∧ B) and Σ (A × B) ≃ Σ A ∨ Σ B ∨ (Σ A ∧ B). �

8. Extensions of the method II: the simplicial wedge construction

Let K be a simplicial complex on vertices {v1, . . . , vn}. Fix a vertex vi . By doubling the
vertex vi , define a new simplicial complex K (vi ) on the n + 1 vertices {v1, . . . , vi−1, vi,1, vi,2,

vi+1, . . . , vn} by

K (vi ) = (vi,1, vi,2) ∗ linkK (vi ) ∪ {vi,1, vi,2} ∗ restK (vi )

where (vi,1, vi,2) denotes the one dimensional simplex on the vertices vi,1 and vi,2. The
simplicial complex K (vi ) is called the simplicial wedge of K on vi . This construction arises
in combinatorics (see [14]) and has the important property that if K is the boundary of the dual
of a polytope then so is K (vi ).

As in [2], the construction can be iterated. To set this up, let (1, . . . , 1) be an n tuple
of 1s, corresponding to the single appearance of each vertex in the vertex set {v1, . . . , vn}. The
vertex doubling operation of vi in the simplicial wedge construction gives a new vertex set for
K (vi ) – listed above – to which we associate the n-tuple (1, . . . , 1, 2, 1, . . . , 1) with 2 in the
i-position, which records that the vertex vi appears twice. The sequence (1, . . . , 1, 3, 1, . . . , 1)

then corresponds to either the simplicial wedge (K (vi ))(vi,1) or to (K (vi ))(vi,2). However, these
two complexes are equivalent, so the choice of vertex vi,1, vi,2 does not matter. More generally,
let J = ( j1, . . . , jn) be an n tuple of positive integers, and let m =

n
i=1 ji . Define a new

simplicial complex K (J ) on m-vertices

{v1,1, . . . , v1, j1 , v2,1, . . . , v2, j2 , . . . , vn,1, . . . , vn, jn }

by iteratively applying the simplicial wedge construction, starting with K .
We shall show that if K is a shifted complex on n vertices then, for any J = ( j1, . . . , jn),

the polyhedral product determined by K (J ) and m = (
n

i=1 ji ) topological pairs (C X i , X i )

is homotopy equivalent to a wedge of suspensions of smashes of the X i ‘s. This improves on
Theorem 1.1 because the class of simplicial complexes obtained from shifted complexes by
iterating the simplicial wedge construction is strictly larger than the class of shifted complexes.
We give an example to illustrate this.
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Example 8.1. Let K be the 1-dimensional simplicial complex consisting of vertices {1, 2, 3, 4}

and edges {(1, 2), (1, 3)}. Observe that K is shifted using this particular ordering of vertices.
Apply the simplicial wedge product which doubles vertex 4, that is, let J = (1, 1, 1, 2).
Then K (J ) is a simplicial complex on vertices {1, 2, 3, 4a, 4b}. We have K (J ) = (4a, 4b) ∗

linkK (4) ∪ {4a, 4b} ∗ restK (4). As linkK (4) = ∅ and restK (4) consists of vertices {1, 2, 3}

and edges {(1, 2), (1, 3)}, the simplicial wedge complex K (J ) is the simplicial complex on
{1, 2, 3, 4a, 4b} with the maximal faces {(4a, 4b), (1, 2, 4a), (1, 2, 4b), (1, 3, 4a), (1, 3, 4b)}.

We claim that K (J ) is not shifted. Observe that the edge (2, 3) ∉ K (J ), but every other
possible edge is in K (J ). That is, (x, y) ∈ K (J ) for every x, y ∈ {1, 2, 3, 4a, 4b} except (2, 3).
Thus with the ordering 1 < 2 < 3 < 4a < 4b, K (J ) does not satisfy the shifted condition
as (2, 4a) ∈ K (J ) would imply that (2, 3) ∈ K (J ). So if K (J ) is to be shifted, we must
reorder the vertices. Let {1′, 2′, 3′, 4′, 5′

} be the new labels of the vertices. To satisfy the shifted
condition we need to send the vertices {2, 3} to {4′, 5′

}. The vertices {1, 4a, 4b} are therefore sent
to {1′, 2′, 3′

}. Now observe that the face (1, 4a, 4b) ∉ K (J ). Thus in the new ordering, the face
(1′, 2′, 3′) ∉ K (J ). The shifted condition therefore implies that no 2-dimensional faces are in
K (J ), a contradiction. Hence there is no reordering of the vertices of K (J ) for which the shifted
condition holds. Hence K (J ) is not shifted.

In [2], polyhedral products related to the simplicial wedge constriction were studied.
The authors started with a simplicial complex K on n vertices, n topological spaces X =

(X1, . . . , Xn) and an n-tuple of integers J = ( j1, . . . , jn). After defining a family of topological
pairs by

(C(>J X), >J X) = {(C(X i ∗ · · · ∗ X i  
ji

), X i ∗ · · · ∗ X i  
ji

)}n
i=1

it was shown that there is a homeomorphism of polyhedral products

(C(>J X), >J X)K
−→ (C X , X)K (J )

where, to match the vertices of K (J ), (C X , X)K (J ) was defined by requiring that

(C X , X) = ( (C X1, X1), . . . , (C X1, X1)  
ji

, . . . , (C Xn, Xn), . . . , (C Xn, Xn)  
jn

).

We generalise these results by removing the restriction on the topological pairs defining
the polyhedral product (C X , X)K (J ). Let K be a simplicial complex on n vertices and let
J = ( j1, . . . , jn) be an n-tuple of positive integers. Let m =

n
k=1 jk and let X = (X1, . . . , Xm)

be m topological spaces. Let m0 = 0 and for 1 ≤ i ≤ n, let mi = Σ i
k=1 jk . Note that mn = m.

The m topological spaces X1, . . . , Xm are then written as

Xm0+1, . . . , Xm1 , Xm1+1, . . . , Xm2 , Xm2+1, . . . , Xmn−1 , Xmn−1+1, . . . Xmn .

Define

(C(∗J X), ∗J X) =


C(Xmi−1+1 ∗ · · · ∗ Xmi ), Xmi−1+1 ∗ · · · ∗ Xmi

n
i=1 .

Note that there are ji terms in Xmi−1+1∗· · ·∗Xmi , and the definition of (C(∗J X), ∗J X) coincides
with the definition of (C(>J X), >J X) if, for 1 ≤ i ≤ n, the spaces Xmi−1+1, . . . , Xmi are
all equal. For example, if n = 2 and J = (2, 2) then m = 4, there are 4 topological spaces
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X1, . . . , X4 which are grouped as X1, X2 corresponding to j1 and X3, X4 corresponding to j2,
and we have

(C(∗J X), ∗J X) = {(C(X1 ∗ X2), X1 ∗ X2), (C(X3 ∗ X4), X3 ∗ X4)}.

The following lemma, which is a classical result (see for example, [12]), is the key ingredient
in the generalisation.

Lemma 8.2. For any finite CW -complexes X and Y , there is a homeomorphism of pairs

(C(X ∗ Y ), X ∗ Y ) −→ (C X, X) × (CY, Y ). �

Proposition 8.3. For a simplicial complex K on n-vertices, an n-tuple J = ( j1, . . . , jn) of
positive integers and

n
i=1 ji topological pairs (C X i , X i ) where X i is a finite CW -complex,

there is a homeomorphism of polyhedral products

(C(∗J X), ∗J X)K
−−→ (C X , X)K (J ).

Proof. The proof is along the lines of that in [2, Theorem 8.2], using Lemma 8.2 instead of the

special case (C(X ∗ X), X ∗ X)
∼=

−→ (C X, X) × (C X, X) in [2, Lemma 8.1]. �

Proposition 8.4. Let K belong to W and J be an n-tuple of positive integers. Then there is a
homotopy equivalence

(C X , X)K (J )
≃


I ∉K

|K I | ∗ (∗J X
I
)


.

Proof. This is a direct consequence of Proposition 8.3 and the defining property of simplicial
complexes belonging to W . �
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J. Grbić, S. Theriault / Advances in Mathematics 245 (2013) 690–715 715
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