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Abstract

The lack of precision to predict service performance through load indices may lead to wrong decisions regarding the use of
web services, compromising service performance and raising platform cost unnecessarily. This paper presents experimental
studies to qualify the behaviour of load indices in the web service context. The experiments consider three services that
generate controlled and significant server demands, four levels of workload for each service and six distinct execution
scenarios. The evaluation considers three relevant perspectives: the capability for representing recent workloads, the
capability for predicting near-future performance and finally stability. Eight different load indices were analysed, including
the JMX Average Time index (proposed in this paper) specifically designed to address the limitations of the other indices. A
systematic approach is applied to evaluate the different load indices, considering a multiple linear regression model based
on the stepwise-AIC method. The results show that the load indices studied represent the workload to some extent;
however, in contrast to expectations, most of them do not exhibit a coherent correlation with service performance and this
can result in stability problems. The JMX Average Time index is an exception, showing a stable behaviour which is tightly-
coupled to the service runtime for all executions. Load indices are used to predict the service runtime and therefore their
inappropriate use can lead to decisions that will impact negatively on both service performance and execution cost.
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Introduction

Web services are widely used in many Internet applications and

comprise an essential component of SOA (Service-Orientated

Architecture) systems. One major advantage is their intrinsic

platform-independence, which becomes possible once the neces-

sary web services are available from a server (or multiple servers)

and accessed via the Internet [1,2]. This paper presents a

systematic evaluation of well-known load indices in the context

of the load balancing of web services implemented on a cluster of

servers.

Most web services seek to optimize key operational require-

ments such as high reliability, high security and shorter service

runtime by adopting techniques such as load balancing [3,4,5,6].

The individual server workload is used by the server management

software to distribute requests from the web to individual servers in

a cluster of servers. The requirement is to select the most

appropriate server which will maximize the target quality achieved

by an individual web service [7,8,9,10,11].

Optimum load balancing is a problem of acknowledged

difficulty, because of the performance levels in web service servers

which track an extremely dynamic workload generated by the

requested services. Moreover, the additional load generated by

middleware systems (such as Apache Tomcat [12] and JBoss

[13,14]) also affects the overall system performance. The use of

these middleware systems in server clusters introduces significant

differences in the overall system operation when compared with

other application domains, such as HPC (High-Performance

Computing), distributed databases and static-content web servers.

A load index metric typically approximates the amount of

workload in an individual server. The load index definition of

Ferrari and Zhou [15] is adopted in this research, defining a load

index as a non-negative variable, starting from zero (an idle

resource) and increasing in value as the workload increases. Such a

load index frequently represents the current workload and is often

used to predict the server performance expected in the near future.

Several alternative indices, such as the number of requests

submitted, the size of the ready-processes queue, the size of the

free memory and current service runtime have been adopted by

web services for this purpose [16,17,18,19]. However, in many

cases the metric has been adopted without an accurate evaluation

of its suitability and likely efficiency. Indeed, there appears to have

been little or no prior work to establish the key advantages and

disadvantages of the different metrics for this application.

The main objective of this paper is to analyse qualitative aspects

of the different metrics under different service demands and

workload levels. The results demonstrate that a good representa-

tion of the current workload can be achieved by some indices. The

ability of the load index to predict the individual server service

performance in the near future is also analysed, together with the
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stability of the index. These are important considerations when

selecting the most appropriate server in a cluster to respond to a

given service request.

The research reported in this paper is part of a larger project

(named Jerrymouse), designed to deliver a new framework to

distribute service requests to individual servers in an optimized,

dynamic and transparent fashion [20]. The features of the load

indices evaluated in this study have now been incorporated in the

policies developed for the Jerrymouse framework.

The experiments reported in this paper consider three specific

services, representative of distinct system demands - CPU-bound,

memory-bound and database applications. A number of different

scenarios are considered: firstly each of the three services above

(CPU-bound, memory-bound and database) running by them-

selves. A further scenario considers a mixture of all three services

and also another two more scenarios, again with a mixture of

services but running on a platform with normal load (i.e. not-

overloaded) and then a platform which has been deliberately

overloaded. Each of these scenarios also considers four different

levels of workload, with one, two, four and then eight concurrent

clients requesting the services.

A number of different load indices are analysed - seven metrics

that are commonly used together with an eighth metric, the JMX

Average Time, which has been especially designed to address the

disadvantages of the other metrics. The details of this new index,

the JMX Average Time metric, are set out for the first time in this

paper.

The load indices are evaluated in this paper using three different

approaches. Firstly, graphs are used to compare the measured

service runtime and the values of the indices generated from a real

system executing the scenarios. In this paper, service runtime is the

response time, i.e., the amount of user time that has passed since a

particular service started until it is completed. A systematic

approach to evaluate the different load indices is then applied,

using a multiple linear regression model based on the stepwise-

AIC (Akaike Information Criteria) method for the selection of the

best models representing an index or a union of indices [21,22].

The service runtime was also evaluated by means of the main

linear models generated through the stepwise-AIC method. This

runtime prediction demonstrates, in this practical example, the

impact of different load indices on the performance estimate. The

final evaluation presented in this paper compares the stability of

the indices based on their standard deviation. The stability of an

index is compared to the other indices and, in particular, to the

runtime stability.

The results show that a careful selection of metrics is essential to

achieve high performance and high overall server utilization.

While most of the load indices studied do indeed represent the

workload to some extent, the use of a less-appropriate metric will

result in the selection of an inappropriate server by incorrectly

assessing a node as either overloaded or idle, when in fact a

significantly more suitable selection is possible. This incorrect

selection impacts both on the overall quality of service and also the

energy efficiency of the system (this is the so-called ‘‘green’’ factor).

This paper is organized as follows: ‘SOA and Web Services’

presents concepts of SOA and web services; ‘Monitoring Web

Services’ discusses how to monitor web services using the Ganglia

monitoring-software tool; the main properties related to load

indices are highlighted in ‘Load Indices’; ‘Materials and Method’

describes the approach used in the experiments to collect and

analyse the data; ‘Results and Discussion’ points out the details of

the main results, correlating their different aspects; finally,

‘Conclusions’ presents the final considerations and highlights

future research directions.

SOA and Web Services
Web services are a key mechanism for the provision of remote

services executing elsewhere on the web. They allow integration

between computers, databases and networks by creating a logical

link that can be invoked by a distant client. Services run remotely

in servers, providing functionality that is both more accessible and

also independent of the platform.

Services are made available to applications through standard

publishing and discovery protocols. Web service providers publish

descriptions of their services using discovery agents and well-

defined standards [17]. Client applications interested in these

services follow the description provided to establish a connection.

The WSDL (Web Service Description Language) allows the

description of services by means of an XML (eXtensible Markup

Language) file, which contains information about the methods

supported by the service, its location and arguments. This file is

stored in a broker using (for example) a UDDI (Universal

Description Discovery and Integration) protocol, which defines

methods to discover and publish service directories [17]. SOAP

(Simple Object Access Protocol) is a protocol specification for

exchanging structured information on a distributed platform,

using XML content in HTTP messages. REST (Representative

State Transfer) is an architectural style to build distributed

applications using HTTP messages. Both REST and SOAP can

be used by client applications to request remote services [23].

Web service providers are able to run in clusters, which can

potentially improve a number of different aspects, such as

performance, fault tolerance and availability [24,25,26,27].

Apache Tomcat [12], JBoss [13,14] and Apache Axis2 [28] are

examples of web service providers. Apache Tomcat is a servlet-

container fully compliant with the Oracle specification. Tomcat

supports the use of clusters through automatic publication and

section-replication of services which provides fault tolerance and

flexibility to the client when accessing databases through dynamic

pages. The automatic publication of services in different nodes

assists the developer during the service publication. JBoss is

designed to provide a complete solution to business-integration

using Apache Tomcat and Java technology [13,14]. Axis (Apache

eXtensible Interaction System) is a framework to create clients,

servers and gateways for SOAP or REST. Axis also includes a

simple server to receive requests, connection with Apache Tomcat

via servlets, support for WSDL updated, tools to generate classes

based on WSDL and additional tools for monitoring [28].

SOA and web services have generated several new challenges in

the provision of effective computing systems. These challenges can

be classified into three levels: basic, composite and management

[29]. The basic level refers to the details of middleware, such as

publication, discovery, selection, heterogeneous platforms and

security. The composite level aggregates multiple services into a

single ‘‘composite’’ service. Orchestration and choreography are

examples of interaction protocols designed to control and

coordinate collaborating services. On the top of these levels is

the management level, designed to provide facilities, such as

service governance, monitoring, metrics and load balancing.

It is possible to organize web services in several different ways

[13,14], depending on the objectives and the choice of providers

and platforms. This paper assumes that a typical platform consists

of nodes acting as UDDI broker, client, front-end, back-ends and

database servers. The client node hosts the application that

requests services. This application searches for the service

description in a UDDI broker and then sends an HTTP message

with SOAP content to the front-end. The front-end can receive

the HTTP message using a web server, as Apache [20] or directly

through JBoss [30]. If an Apache server receives this message, it

Evaluating Load Indices in the Web Service Context
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routes it to JBoss using a distributing policy to distribute requests to

the back-ends. Several front-end nodes can interact and cooperate

to receive requests from applications. A back-end node receives

the request by using its JBoss instance, which is responsible for the

actual running of the service. The back-end node returns the

results to the front-end, which then sends them back to the client

(back-ends may also return results directly to the client, depending

on the settings). Remote database servers are usual in the web

service context, where services send requests to a database in order

to complete their jobs.

Monitoring Web Services
The monitoring of web services provides useful data to estimate

the near-future performance, avoid potential bottlenecks, optimize

the use of system resources and generally improve the overall cost-

benefit ratio [31].

Ganglia is a software-monitoring tool developed by the

University of Berkeley and widely used in distributed platforms

[32]. It offers scalable monitoring based on hierarchical distribu-

tions of clusters known as federations. Ganglia has a flexible design

and can collect pre-defined indices as well as allowing users to

create their own indices. The standard indices built in Ganglia

provide information about the node configuration, the percentage

of CPU use, the number of processes in the ready (or blocked)

queue, the free memory and the use of disk and network.

Gmond is a Ganglia daemon present in all nodes. It collects and

publishes previously selected indices, receives information from

other nodes (using multicasting) and publishes its own information

for other nodes. The information is distributed in an XML

document to allow other systems in the platform to access it in a

straightforward fashion, using a TCP connection and an XML

parser. Gmtad is a tool that groups different gmonds, creating a

hierarchical structure called federation of clusters (the objective of the

federation concept is to reduce the overall communication

overhead when updating indices over a widely-distributed

platform).

The gmetric tool supports the addition of new metrics into

Ganglia by means of TCP/IP messages sent to gmond. It is also

able to run programs developed in other languages to collect data

directly from the machine where the JSP (Java Service Provider) is

running through the use of JMX (Java Management Extensions).

JMX manages resources (called Managed Beans or MBeans) as

applications, devices and services. Some examples of data that can

be obtained from JMX are the heap size, the number of loaded

classes and the number of active threads. MBeans usually runs on

servers with Apache Tomcat and JBoss to monitor their nodes.

The combination of JMX and Ganglia generates and publishes

load indices, providing a flexible and efficient method to monitor

web service servers. JMX monitors and provides JBoss information

while Ganglia is responsible for the collection and publishing of

metrics. A script sends the indices collected from JBoss to gmetric,

which acts as a link between these two environments: JBoss/JMX

and gmetric/gmond. This arrangement enables each gmetric to

send indices related to the execution of web services to gmond,

which broadcasts its values to the other gmonds so that the entire

cluster maintains updated information about the whole platform.

The combination of Ganglia and JMX provides a very robust

framework for web services, but an important question about these

monitoring tools is to determine which load index to monitor in a

given specific execution. This question does not have a straight-

forward answer because of the diversity of demands imposed by

web services. In practice, different implementations have selected

different load indices to represent the web service workload. The

next section describes the main load indices currently used by

typical web services.

Load Indices
The correct use of load indices must consider the overall

platform objectives as well as the performance metrics associated

with each objective. Some examples of overall objectives widely

used are a reduction in the response time, an increase in the

platform throughput, an improvement of load balancing and

provision of enhanced fault tolerance [33]. Load indices collect

data from a platform to quantify the overall system behaviour in

the context of the objectives. They can also estimate ‘near-future’

performance based on current performance and the recent past.

Service runtime reduction is a common and important objective

and has been selected as the key performance objective in the

experiments described in this paper to evaluate the effectiveness of

the load indices.

The quality of a load index can be determined by specified

criteria and desirable properties [15]: 1) sufficient accuracy to

represent the workload adequately, even under different compu-

tational demands; 2) a straightforward relationship with perfor-

mance metrics (ideally linear) such that the load index can be

easily applied to predict the probable future performance; 3)

stability, in particular by smoothing out workload peaks; 4)

scalability, allowing a low implementation cost to be maintained

even in large platforms. The costs of gathering the load index and

the strategy adopted to transmit it to other nodes are also very

important because they directly affect the scalability. This paper

does not address the scalability of load indices specifically,

although the Results section contains some brief comments.

Besides quantitative properties, load indices should also present

other qualitative properties, such as the ability to encapsulate

details from architectures and Operating Systems, a capability for

supporting portability among heterogeneous platforms, and an

overall objective of providing transparency to applications,

providers and services. It is far from trivial to satisfy all these

properties simultaneously, especially because some of them are

contradictory. For example, increasing the index accuracy

typically increases the cost of obtaining the data and reducing

the peaks in an index usually decreases both its accuracy and

ability to predict future performance.

The HPC application domain traditionally uses a number of

different load indices, of which many are related to the scheduling

of processes and load balancing. Some classic examples are the

number of ready processes, percentage of idle CPU time, percentage of memory

used and number of active network connections [34,35,18]. The index

called ready-processes has been widely used in the HPC context,

because it can be easily extracted from the operating system and

provides important information on the overall system performance

[15].

Web services typically make use of load indices to predict the

performance in at least two cases: during the discovery phase and

when distributing requests to the back-end nodes [36]. The

discovery-phase algorithms use load indices to select the best

options of services registered in brokers by providers through the

UDDI protocol [24,25,37,26,30,38,39]. Load indices are also used

after the discovery phase, when the web service provider must

distribute the request that has just arrived to a back-end node in a

cluster of servers [34,16,31,26,30].

A number of different load indices can be found in the scientific

literature for web services [9,40,5]. Some examples are the

number of requests (received, finalized or waiting to be attended),

the shortest response time, the throughput availability (an uptime

percentage for a service in a period), reliability (the probability of
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receiving a correct answer in a maximum specified time), safety

(which represents the confidentiality and authentication guaran-

teed), accuracy (the service error rate) and integrity (the capability

for completing the correct execution of a service transaction).

In addition to the various load indices described in the

literature, service providers (e.g. JBoss [13,14] and Tomcat [12])

often use practical indices, such as the number of submitted

requests, active sessions, network traffic (among web service

providers) and pending requests.

Materials and Methods

In this experimental study services were considered on a

platform consisting of three nodes with Intel Core 2 Quad

2.66 GHZ processors, 6 MB cache, 4 GB DDR2 RAM and a

Sata-2 Hard Disk of 500GB/7200RPM. The database used was

MySQL, version 5.1. The network was a Gigabit Ethernet with

TP-LINK TL-SL3428 switch and the operating system was

GNU/Linux, kernel 2.6.31–22. The compilers used were gcc 4.3

and Java 1.6.0_20. The web service provider was JBoss 5.1.0.GA.

Ganglia 3.1.2 was used for the monitoring and JMX 5.1.0.GA ran

on the server in default configuration.

Although relatively modest, the platform can nevertheless

analyse the comparative behaviour of load indices in a web

service server. It supports a controlled demand generated from the

execution of applications that request services hosted in monitored

servers. The application sends requests to the front-end node

through HTTP messages with SOAP encapsulation. The front-

end forwards the HTTP message to its local JBoss, which runs the

requested service. The third node hosts a database server to handle

requests from services.

The experimental study considers the execution of two different

services in the front-end, generating controlled and specific

workloads on the CPU and memory. A third service (called

database) generates workload mainly on the memory, disks and

network-interface of the remote database server to simulate the

typical environment when remote databases are accessed by

services [41].

These three services (CPU-bound, memory-bound and data-

base) are used in the experimental studies to produce controlled

demands to analyse the behaviour of different load indices. These

controlled demands enable a deeper analysis of the behaviour of

the load indices, allowing, among other things, comparing an

index with respect to different demands. The demands related to

CPU, memory and databases were chosen because they can be

clearly correlated to real services, which generate similar

workloads on the servers.

The CPU-bound service executes instructions providing arith-

metic operations on integer and floating-point matrices, condi-

tional-control structures, repetition structures and also short

procedure calls [42,43]. This service avoids I/O operation

requests and the matrices used are small in order to fit into the

cache and therefore avoid unnecessary main memory accesses.

The CPU-bound service returns the amount of interactions and

the runtime.

The memory-bound service evaluates the memory bandwidth

between CPU and main memory, using vector processing with

vectors large enough to eliminate cache effects and allow the

description of the results in terms of a continuous bandwidth

[42,43]. The main results returned by this service are throughput,

average time, shortest time and longest time.

The service designed to request the database (database service

for short) is based on the OSDB benchmark, an open source

version of the AS3AP benchmark originally developed by the

Compaq Computer Corporation [41]. This service includes the

creation and access of tables with data from text files and also the

creation of indices.

The evaluation of the load index behaviour was performed

under three different perspectives [15]: its accuracy in representing

the workload, its relation with performance metrics (runtime in

this case) and its stability.

The experiments do not consider a discovery phase, since this

phase does not affect the load index behaviour in the front-end

node. Each client-application runs exactly 1,000 iterations, each

one executing the following sequence: request the service, wait

until the result is returned and print the result. Each service takes

approximately 10 s when running without competition from other

services. The amount of 1,000 iterations for each client requesting

a service running at 10 s has been chosen to avoid the inaccuracy

of small samples, without generating excessive runtimes. The

analyses considered confidence intervals of 99% for all the results.

One, two, four and eight concurrent application threads were

requested for each service, each one in a different experiment.

When four application threads are considered, for example, four

concurrent requests were sent to the same service in the server.

This strategy is designed to facilitate the analysis of the load indices

under specific and homogeneous workloads, reducing the effect of

any transitional period and allowing the real influence of each load

to be determined.

Table 1 shows the load indices considered in the experiments.

The indices Idle CPU, Waiting I/O, Free Memory, Swap Used, Bytes In/

Out and Ready Processes were gathered directly from the operating

system using the Ganglia monitoring tool. The Amount of Requests

index represents the amount of requests recently submitted,

evaluated from the difference between the last two samplings of

the total amount of requests submitted, which is monitored from

JMX and distributed through Ganglia.

The JMX Average Time metric is a new load index proposed in

this paper and represents the average runtime of a specific service,

from a JMX perspective. As shown in Eq. (1), this index is based

on the average of the five most recently-collected samples, using

two sliding windows with five positions each. In Eq. (1) N is the

amount of total samples already performed, i is the ith sample, n is

the nth value calculated for the JMX Average Time, t is the Service

Total Runtime by JMX and r is the Total Amount of Requests Submitted

by JMX. The service total runtime by JMX is an accumulated index,

containing the sum of all service runtimes since the server started

operation. The total amount of requests represents the accumulated

number of requests sent to a specific service hosted in the server

since the operation started.

JMXAvgTimen~

PN
i{N{4 ti

PN{1
i{N{5 ri

ð1Þ

The experimental studies performed to determine the sliding

window size considered the three services (CPU-bound, Memory-

Bound and Database) and sizes of windows varying from one to

twenty-five positions. The standard deviation from JMX Average

Time results for each window size was used to compare their

stability. The results show that sliding windows between two and

twenty-five positions were, on average, 18.9% more stable that the

sliding window with just one-position, and that from five-positions

it was already possible to obtain an stability 18% better. The

choice of a five-position window considered the trade-off between

reducing performance peaks and maintaining recent data for the

calculation of JMX Average Time. The JMX Average Time index is
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calculated assuming a shift of one location between the samples

collected for the amount of requests and service total runtime metrics, as

shown in Figure 1. The total amount of requests metric does not

consider the last sample because it represents only the requests

submitted and not those already completed while the service total

runtime represents the runtime of finalized requests. This shift

minimizes the impact of those requests submitted and not yet

completed. Although this mechanism does not guarantee that the

average will reflect only completed requests, nevertheless it acts to

minimize this problem. The empirical results demonstrate that the

JMX Average Time metric provides an excellent index when

compared with the service runtime gathered directly from the

server.

Service Runtime is the response variable used in the linear

models (described in next section) and was used to benchmark the

behaviour of the indices being studied, because the key perfor-

mance objective is to reduce the overall service runtime.

Different numbers of instances from these benchmarks were

considered to represent the number of users in the system at a

given moment (one, two, four and eight users). While these

benchmarks were requesting services for the server, the Ganglia

distributed monitoring system [32] and the Java Management

Extensions (JMX) [44] kept collecting distinct load indices from

the server nodes. The daemon gmond, running in the front-end

node, sampled the indices every 10 s and then sent the results back

to the client node. A script in the client node collected all the

published indices and stored them in a log file. The interval of 10 s

reduces the cost of updating the load indices and thus has minimal

effect on the service runtime. In summary, the requests are sent by

the clients to the servers that execute the services and are

monitored by the Ganglia and JMX in order to obtain the

samples.

All results of the load indices presented in this paper use the

EMA (Exponential Moving Average) moving average using a

window covering the last five samplings [45]. The EMA presented

in Eq. (2) is similar to the simple moving average, although more

weight is given to the latest data. In Eq. (2) Vn is the last sampling

performed at time n and N is the window size (five in this paper).

EMAn~(Vn{EMAn{1)X
2

1zN
zEMAn{1 ð2Þ

Results and Discussion

The main results from the experiments are initially organized by

service in this section. They are presented with a focus on three

main factors: the relationship with service runtime (the perfor-

mance objective adopted), stability and capability to represent the

actual workload.

The relationship between the runtime service and the eight load

indices described in Table 2 was evaluated through multiple linear

regression models, which helps to understand how these indices

may explain the service runtimes. In models of multiple regression

it is necessary to select which predictor variables (the load indices

in this paper) best explain the response variable (the service

runtime). In other words, the objective is to select and rank the

load indices depending on how well they explain the runtime

variations. The combination of load indices that best represents

the service runtime was selected using the stepwise method with

AIC (the Akaike Information Criteria) [21,22]. The stepwise

method uses an automatic approach to select predictor variables,

instead of considering all possible regressions. It starts with no

input predictor variable in the model and in each step a new

variable is introduced and then tested to see if a better model has

been obtained. When the model reaches three or more predictor

variables, the stepwise method checks to see if a better result can

be obtained by removing one of them (the AIC criterion is used to

compare the quality of the models in each step). It is important to

observe that the stepwise method is able to analyse both an

isolated index and merged ones during its analysis. This procedure

is effectively constructing a new metric that considers an average

value using distinct indices.

Table 1. Load indices analysed in the experiments.

Indices Descriptions

Idle CPU Percentage of idle CPU time.

Waiting I/O Percentage of CPU I/O waiting time.

Free Memory Amount of GBytes free in the memory.

Swap Used Amount of GBytes used for swap.

Bytes In/Out Amount of KBytes received and sent over the network interface.

Ready
Processes

Average number of processes in the ready queue (over the last minute)

Amount of Requests Amount of requests received between the last two samples of the total amount of requests submitted, monitored by JMX.

JMX Average Time Arithmetic average using sliding windows with the total runtime by JMX and total amount of requests submitted.

Service
Runtime

Service runtime on the server (directly collected from the service code).

doi:10.1371/journal.pone.0068819.t001

Figure 1. Sliding windows used to evaluate JMX Average Time.
doi:10.1371/journal.pone.0068819.g001
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Load indices are expressed using different scales, therefore to

enable a valid comparison of different indices in a common range,

they were all normalized to be between -1 (lowest) and 1 (highest).

The results presented in this paper for linear regression models

were obtained using the Action statistical software package [46].

The stepwise method with AIC applied to the load indices

estimates the best models to represent the service runtime. Table 2

shows the results of the influence estimated for each index,

quantifying how significant the indices are (in relation to other

ones) to explain the variability of the service runtimes. In this case,

the higher the absolute value the more significant an index is. A

positive sign indicates a direct correlation between the index and

the service runtime; a negative sign indicates an inverse

correlation. The load indices with estimates 0.0 (zero) in Table 2

mean that they have been discarded by the linear regression

model, as they have not contributed to the service runtime

prediction.

The coefficients of determination (R2) shown in Table 3

quantify the amount of the variability, i.e. the extent that the

runtime services (y-axis) can be predicted by the load indices (x-

axis). R2 ranges from 0 to 1, where values close to 1 represent the

best predictions. Figure 2 complements Table 3 showing

graphically how the predicted service runtimes fit to the real

service runtimes, using the multiple linear regression model

evaluated for each one of the six scenarios.

The experiments described in this paper were based on six

distinct execution scenarios. Firstly, the selection of models was

applied separately to the results of each service: CPU-bound,

memory-bound and database (the first, second and third

scenarios). The objective was to identify significant differences in

the behaviour of load indices when the demand requested by the

service is previously known. The results from all services were then

grouped and a new selection of the linear model was conducted,

aiming at verifying the behaviour of the indices when requests are

performed for services whose demand is heterogeneous and

normally unknown in advance (the fourth scenario). In this case,

the evaluation considered all the results of the services with one,

two, four and eight concurrent clients. A final evaluation was

conducted with all three services executing in both overloaded and

not-overloaded platforms (the fifth and sixth scenarios). The overloaded

platform was based on the results from eight concurrent clients

requesting the three services. In contrast, the not-overloaded platform

used results from one, two and four concurrent clients. The term

not-overloaded is used instead of idle because the platform is actually

executing services requested by four concurrent clients, although it

is operating normally and is not yet overloaded. During our

experiments, the overloaded platform had on average: 73% of CPU

usage, 600 MB of swap utilization, 5.3 requests being processed

and 6.5 ready processes waiting in the queue. In contrast, the not-

overloaded platform had around 48% of CPU usage, 2.2 requests

being processed, 2.9 ready processes waiting in the queue and no

swap space was required.

The stability of the indices was analysed with their standard

deviations, using the normalized values as a basis (Table 4). These

normalized values were used to permit the comparison of the

standard deviations obtained for each load index and also for the

service runtime. The standard deviation for a specific service

represents the arithmetic average of the standard deviations from

each group of clients (one, two, four and eight). Analogously, the

standard deviation for all services is the arithmetic average of their

standard deviation; for an overloaded platform it is the average of

standard deviation from the results from all services with only eight

concurrent clients and for the not-overloaded platform it is the

average of standard deviation from all services with one, two and

four clients.

The standard deviations could also be used to compose new

load indices, in order to include the variability of them when

estimating future runtimes. However, this would require new

experimental studies with an extra dimension of complexity. Given

our initial objectives and the results already achieved, this

additional complexity is outside the scope of the current paper.

The analysis of the capability of load indices to represent the

workload, independently of their correlation with the runtime

service, was done observing the behaviour of each index when

there was variation in the workload arising from changes in the

number of concurrent clients.

Finally, the results are shown with the use of different (and

specific) load indices to predict the service runtime. The main

objective here is to demonstrate the impact of the load indices on

the quality of the decisions made by the policies controlling the

distribution of requests for web services. This simulation of the

service runtime also verifies the coherence of the load index

representation (as pointed out with the linear models). According

to the multiple regression models, the more significant indices are

expected to estimate the service runtimes more precisely.

The data for the indices was collected without any specific

instrumentation of services, providers or applications. This

approach provides for a high portability among different

platforms, since these indices are the usual ones normally available

in a variety of different architectures and operating systems.

Table 2. Significance of the indices to explain the variability in the service runtimes evaluated through the stepwise-AIC method.

Load Indices
CPU-bound
Estimates (%)

Memory-bound
Estimates (%)

Database
Estimates (%)

All Services
Estimates (%)

Overloaded Platform
Estimates (%)

Not-Overloaded
Platform Estimates (%)

Idle CPU 20.218 (3.3) 22.843 (5.4) 20.386 (13.6) 20.161 (0.3) 23.495 (6.1) 21.579 (7.1)

CPU Waiting I/O 0.248 (3.8) 2.255 (4.3) 0.181 (6.3) 3.128 (6.0) 1.949 (3.4) 0.314 (1.4)

Swap Used 0.0 (0.0) 7.929 (15.0) 0.0 (0.0) 4.558 (8.7) 16.236 (28.2) 0.0 (0.0)

Free Memory 20.510 (7.7) 22.334 (4.4) 20.074 (2.6) 20.900 (1.7) 20.579 (1.0) 20.886 (4.0)

Ready Processes 0.392 (6.0) 2.399 (4.5) 0.025 (0.9) 1.836 (3.5) 0.933 (1.6) 1.421 (6.4)

Bytes In/Out 0.065 (1.0) 0.841 (1.6) 0.650 (22.8) 0.0 (0.0) 5.778 (10.1) 0.230 (1.0)

JMX Average
Time

5.153 (78.2) 33.773 (64.0) 1.378 (48.3) 40.665 (77.6) 26.425 (46.0) 16.375 (74.1)

Amount of
Requests

0.0 (0.0) 0.383 (0.7) 0.157 (5.5) 1.132 (2.2) 2.080 (3.6) 1.285 (5.8)

doi:10.1371/journal.pone.0068819.t002
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Scalability and the overall costs necessary to obtain the load

indices are not considered in this paper. Ganglia gathered the

indices locally from the Operating System or JMX and then the

normal hierarchical federation structure was used to minimize the

publishing costs to remote nodes.

CPU-Bound Service Scenario
The runtimes for the CPU-bound service showed significant

changes only when eight concurrent requests arrived in the server

(Figure 3). The times observed scale from approximately 10 s for

one, two and four clients to approximately 20 s for eight clients.

This can be explained by the use of a CPU with four cores in the

server hosting the service. Considering a demand located inside

the CPU, each core executes a service separately up to four

simultaneous requests, without any significant changes in the

runtime. When there was a larger amount of services than cores

(two services per core on average), the runtime doubled.

The R2 value for this CPU-bound service indicates that 98.6%

of the runtimes can be explained by the analysed load indices

(Table 3). The JMX Average Time load index has a strong weight in

the evaluation and represents 78% of the estimates, when

compared to other indices (which have a much smaller significance

compared with the JMX Average Time metric).

This small significance is, in part, due to the behaviour of these

indices when the workload changes, as a consequence of the

Figure 2. Graphs showing the relation between the predicted runtimes based on multiple linear models (used in the six scenarios)
and the actual runtimes. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting
services for the server.
doi:10.1371/journal.pone.0068819.g002

Evaluating Load Indices in the Web Service Context

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68819



number of concurrent clients. It is possible to observe in the graphs

that the variability in the indices, excluding the JMX Average Time,

do not follow the same behaviour as the service runtime. In

contrast to expectations, even load indices strongly related to the

CPU use, such as Idle CPU and Ready Processes, had a low

correlation. Again, the CPU with four cores in the server was

responsible for this gap, when considering CPU indices. Another

aspect related to Idle CPU and Ready Processes is their low stability,

according to the standard deviation given in Table 4. Similarly,

the Amount of Requests index demonstrated high instability in this

experiment and was not significant to justify most of the runtimes.

In respect of the stability, the JMX Average Time index also

provided the best result (0.001), with an even better value than the

one observed for the service runtimes. Another index with a

similar result is the CPU Waiting I/O, mainly due to the small

number of memory accesses. The standard deviation for the Swap

Used index was zero because it was not used, hence there was no

variation during executions (Table 4). The most unstable index

was the Ready Processes index (0.093), being 10 times more unstable

than the service runtime.

The load indices exhibited distinct behaviours, when analysed

under the perspective of workload representation and indepen-

dently of the service runtime. The CPU Waiting I/O, Free Memory

and Swap Used indices were not able to represent the workload

variations imposed by CPU-bound service. They remained at

around the same level for all workloads. The Idle CPU index was

not able to represent the change of workload from four to eight

clients, since the percentage of idleness approached zero. The Bytes

In/Out, Ready Processes and Amount of Requests indices showed

variations according to the workloads submitted, although such

variations did not always represent changes in the service

performance in terms of runtime. As expected, the JMX Average

Time index followed the runtime and represented the workload

variation only when it affected the service performance.

Memory-Bound Service Scenario
Figure 4 shows that the runtimes for the memory-bound service

exhibited variations for all the different amounts of concurrent

clients executed. The average times were 11 s for one client, 20 s

for two clients, 43 s for four clients and 100 s for eight clients.

These variations occur mainly because the runtimes of the services

executed in the CPU with four cores depended on the memory

response, which is unique and shared by all cores. Therefore there

is a gradual variation in the runtime according to the number of

concurrent services in the cores.

The linear models associated with the indices analysed for the

memory-bound service show that 99.3% of the runtimes can be

explained by the variability in the indices (Table 3). In this context,

the JMX Average Time index represented 64% of the estimates

made and Swap Used 15%. These results are expected, especially

the Swap Used, given the high memory demand generated by eight

concurrent clients. However, differently from what was expected,

Table 3. Coefficient of determination (R2) obtained from the
stepwise-AIC method.

Scenarios R2

CPU-bound 0.986

Memory-bound 0.993

Database 0.963

All services 0.996

All services with overloaded platform 0.991

All services with not-overloaded platform 0.998

doi:10.1371/journal.pone.0068819.t003

Table 4. Standard deviation (SD) representing the stability of the load indices.

Scenarios Clients
Service
Runtime

Idle
CPU

CPU
Waiting I/O

Swap
Used

Free
Memory

Ready
Processes

Bytes
In/Out

JMX Average
Time

Amount of
Requests

CPU-bound 1 0.005 0.012 0.000 0.000 0.009 0.042 0.005 0.001 0.021

2 0.009 0.059 0.001 0.000 0.011 0.058 0.017 0.001 0.041

4 0.007 0.128 0.001 0.000 0.014 0.131 0.027 0.002 0.079

8 0.014 0.075 0.003 0.000 0.029 0.141 0.103 0.002 0.140

Average SD 0.009 0.069 0.001 0.000 0.016 0.093 0.038 0.001 0.070

Memory-bound 1 0.001 0.015 0.001 0.000 0.023 0.047 0.009 0.001 0.020

2 0.002 0.016 0.001 0.000 0.043 0.061 0.009 0.004 0.035

4 0.002 0.029 0.004 0.000 0.091 0.099 0.023 0.024 0.065

8 0.071 0.157 0.329 0.068 0.330 0.277 0.019 0.057 0.178

Average SD 0.019 0.054 0.084 0.068 0.122 0.121 0.015 0.021 0.074

Database 1 0.000 0.038 0.045 0.000 0.044 0.052 0.011 0.000 0.020

2 0.001 0.024 0.000 0.000 0.013 0.061 0.006 0.002 0.053

4 0.002 0.034 0.001 0.000 0.011 0.096 0.037 0.001 0.089

8 0.004 0.043 0.006 0.000 0.012 0.134 0.094 0.001 0.168

Average SD 0.002 0.035 0.013 0.000 0.020 0.086 0.037 0.001 0.083

All services 0.010 0.053 0.033 0.068 0.052 0.100 0.030 0.008 0.076

Overloaded 0.030 0.092 0.112 0.068 0.124 0.184 0.072 0.020 0.162

Not- Overloaded 0.003 0.039 0.006 0.000 0.029 0.072 0.016 0.004 0.047

doi:10.1371/journal.pone.0068819.t004
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Figure 3. Relation of the service runtime versus eight load indices, considering the first scenario (CPU-bound service). The left-hand
scale of the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the metric
used by the load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting services for
the server.
doi:10.1371/journal.pone.0068819.g003
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Figure 4. Relation of the service runtime versus eight load indices, considering the second scenario (memory-bound service). The
left-hand scale of the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the
metric used by the load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting
services for the server.
doi:10.1371/journal.pone.0068819.g004
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the Free Memory index did not provide a good service runtime

estimate, representing only 4.4%. Although the Free Memory index

has exhibited good behaviour in respect of the computational

workload, the lack of stability with four and mainly eight clients

reduces its significance.

The most stable indices for the memory-bound service were

Bytes In/Out and JMX Average Time, with standard deviations of

0.015 and 0.021 respectively (Table 4). These results are close to

the Service Runtime stability, whose standard deviation was 0.019.

A high instability of the load indices was observed, mainly when

the platform remained overloaded. The Swap Used index, for

example, did not show any variation with one, two and four

clients; however, it presented a high instability with 8 clients

(0.068). The memory-bound service with eight concurrent clients

was the only case in which any memory swap was necessary in the

experiments. The most unstable indices were the Free Memory,

Ready Processes and the CPU Waiting I/O indices with standard

deviation of 0.122, 0.121 and 0.084 respectively. Note that these

values are up to 5.4 times higher than that observed for the service

runtime (0.019). One positive aspect of this high instability is the

potential ability to use it as a heuristic to detect computer overload

with high-memory-demand applications.

In respect of the workload variation, the Idle CPU, Free Memory,

Ready Processes and JMX Average Time indices exhibited behaviour

according to the workload submitted (Figures 4–A, 4–C, 4–F and

4–H). On the other hand, the CPU Waiting I/O, Swap Used and

Amount of Requests indices (Figures 4–B, 4–D and 4–G) remained at

their normal levels with one, two and four clients, presenting a

significant variability only with eight concurrent clients, when a

high instability could be observed. The Bytes In/Out index

(Figure 4–E) remained at the same level until there were four

concurrent clients, however it was possible to observe a higher

instability for four and eight clients.

Database Service Scenario
The service runtimes for the database service were, on average,

6.2 s, 6.1 s, 6.5 s and 7.8 s for one, two, four and eight concurrent

clients respectively (Figure 5). The runtimes for one and two clients

were similar mainly due to the persistent connections used by

OSDB [41]. The service runtime with one and two clients is

determined by the establishment of this connection and from four

simultaneous accesses the demand generated was capable of

affecting the service runtime.

The R2 for the database service indicates that 96.3% of the

service runtimes are explained by the load indices analysed

(Table 3). The JMX Average Time index had the largest

representation of the estimates with 48.2%, followed by Bytes In/

Out with 22.8%. Together these indices represent 71% of the

estimates. The more significant value reached by Bytes In/Out for

this service is coherent with the demand generated, since the

database server is in a remote computer. The model also showed a

representation of 13.6% for Idle CPU (the best result for this index)

probably due to the stability observed (when comparing its stability

with other services). All other indices showed a lower represen-

tation due to their behaviour in relation to the respective runtime

changes (see CPU Waiting I/O, Free Memory and Swap Used) and

their instability (see Ready Processes and Amount of Requests).

Considering only the stability (Table 4), the JMX Average Time

index demonstrated the best standard deviation (0.001), with a

value close to the service runtime (0.002). The Swap Used index did

not show any variation during the executions with database service

and therefore its value is zero. The most unstable indices were

Ready Processes and Amount of Requests, with 0.086 and 0.083,

respectively. These values are up to 42 times higher than that

observed for the service runtime.

The Idle CPU, Bytes In/Out, Ready Processes, Amount of Requests and

JMX Average Time indices were all able to represent the workload

variation (Figures 5–A, 5–E, 5–F, 5–G and 5–H). The CPU Waiting

I/O and Swap Used indices did not show any variability during the

execution of the service (Figures 5–B and 5–D). The behaviour of

the Free Memory index was not consistent with the variability in the

workload (Figure 5–C).

All Services Scenario
The graphs relating runtimes of all services with the load indices

are shown in Figure 6. The workload plotted in Figure 6 changes

according to the service being executed (samples 1 to 4467

represent the CPU-bound service workload, samples 4468 to

17141 represent the memory-bound service workload and samples

17142 to 19825 represent the database service workload). The R2

resulting from the linear model with all services indicates that

99.6% of the service runtimes can be explained by the variability

in the indices (Table 3). The most significant index for the

estimates was again the JMX Average Time index, responsible for

77.6% of them. Figure 6–H shows the behaviour of this index in

relation to service runtime. Despite the lower significance, the

Swap Used index was the second best index, with 8.7%, due to its

behaviour when the platform remained overloaded.

The most stable index for all-services was JMX Average Time,

with a standard deviation of 0.008 (Table 4). This stability is close

(and even better) to that observed for service runtime (0.010). The

most unstable indices were Ready Processes and Amount of Requests,

with values of 0.1 and 0.076, respectively.

Overloaded and Not-Overloaded Platforms Scenarios
R2 for the overloaded platform indicates that 99.1% of the

variability in the indices explain the runtimes (see Table 3 and

Figure 7). The JMX Average Time index corresponds to 46% of

these estimates, followed by Swap Used with 28.2%. These results

were as expected, due to the tight-coupling of the JMX Average Time

index with the service runtime and the behaviour of the Swap Used

index when executing the memory-bound service with the

overloaded platform. It is important to point out that Swap Used

indicated that there was no variability for the CPU-bound and

database services, even with an overloaded platform. Another aspect

verified in the experiments was the relative instability of the indices

in this high-demand scenario. Ready Processes and Amount of Requests

were the more unstable indices, 0.184 and 0.162 respectively

(Table 4). These results are up to 8 times higher than that of the

standard deviation for JMX Average Time (0.020). The relationships

of service runtimes with Ready Processes and JMX Average Time for

overloaded platforms are shown in Figures 7–F and 7–H.

The value of R2 for the not-overloaded platform was 99.8% and

the JMX Average Time index was responsible for 74.1% of the

estimates. Its significance was much larger than that of other

indices in this scenario (see Figure 8 and Table 2).

In relation to stability, the JMX Average Time index showed a

stable behaviour with a standard deviation of 0.004 (Table 4). This

stability was close to that observed for the service runtime (0.003).

The CPU Waiting I/O index also showed a stable behaviour for not-

overloaded platforms, with a standard deviation of 0.006. However,

this index presented a significance of just 1.4% to explain the

variability of service runtimes. The instability of the other indices

was high when executing on a not-overloaded platform, if compared

to the variability of the service runtime. Bytes In/Out was 4.3 times

more unstable and Ready Processes was 23 times more unstable than

service runtime. The graphs for JMX Average Time, Bytes In/Out and
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Figure 5. Relation of the service runtime versus eight load indices, considering the third scenario (database-bound service). The left-
hand scale of the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the
metric used by the load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting
services for the server.
doi:10.1371/journal.pone.0068819.g005
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Figure 6. Relation of the service runtime versus eight load indices, considering the fourth scenario (all services). The left-hand scale of
the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the metric used by the
load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting services for the server.
doi:10.1371/journal.pone.0068819.g006
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Figure 7. Relation of the service runtime versus eight load indices, considering the fifth scenario (overloaded platform). The left-
hand scale of the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the
metric used by the load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting
services for the server.
doi:10.1371/journal.pone.0068819.g007
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Ready Processes (Figures 8–E, 8–F and 8–H) demonstrate the

relation of these indices with service runtime.
Predicting Service Runtimes

Future service runtimes were simulated in this study using

simple linear models based on load indices and the correlation

between these simulated times with the actual ones was analysed

using the R2 values. The linear equations used in this simulation

Figure 8. Relation of the service runtime versus eight load indices, considering the sixth scenario (not-overloaded platform). The
left-hand scale of the y-axis always represents the service runtimes in seconds (s). The right-hand scale of the y-axis, where necessary, represents the
metric used by the load index. The x-axis represents the samples collected every 10 s by Ganglia and JMX while the benchmarks were requesting
services for the server.
doi:10.1371/journal.pone.0068819.g008

Figure 9. Graphs showing the relation between actual runtimes and the predicted ones. The x-axis represents the samples collected every
10 s by Ganglia and JMX while the benchmarks were requesting services for the server.
doi:10.1371/journal.pone.0068819.g009
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and the R2 for each of them are given in Table 5. Figure 9 shows

the relation between the real service runtime (measured from the

system) and the estimated service runtime (obtained from linear

equations) graphically. As in this case the indices are considered

individually, the normalization applied in the previous section is

not necessary and the equations presented in Table 5 use the

original data.

The main objective is to demonstrate how efficient each load

index would be when applied to a distributing policy to select the

best server to execute a web service. Although the load indices can

be used in different ways by distributing policies, this simulation

shows a usable result when predicting the near-future perfor-

mance, assuming a linear relation between the runtime and

indices.

The service runtime simulation is based on the execution of

different services generating heterogeneous demands with distinct

workloads (one, two, four and eight concurrent clients). Six load

indices were chosen according to their importance in relation to

the estimates evaluated in the previous section. Another factor

considered was the constant use of such indices as metrics by

policies to distribute requests on clusters of web services.

The indices chosen were JMX Average Time and Swap Used (these

were the more significant according to the linear model); Idle CPU

and Free Memory (less significant according to the linear model) and

Ready Processes and Amount of Requests (frequently associated with the

request distributing policies).

The simulations of runtime service using JMX Average Time and

Swap Used provided the best results, according to R2 (Table 5 and

Figure 9). These results are consistent with the preliminary results

from the linear regression. The simulations resulting from the Idle

CPU and Free Memory indices are significantly different from the

actual values observed for the service runtime, with a R2 of 0.353

and 0.4, respectively. The simulations resulting from Ready Processes

and Amount of Requests showed results even more different from real

ones, with R2 of 0.301 and 0.201 respectively. Divergent results

mean that the policies are highly likely to make incorrect decisions,

over or under estimating the host performance. These cases affect

the service performance adversely and increase the overall cost of

execution.

Conclusions
This paper has described experimental studies carried out to

evaluate the behaviour of eight load indices widely used for web

service servers. Three perspectives were considered: 1) the

capability for predicting near-future performance (using the

service runtime to determine performance), 2) the workload

representation and 3) index stability.

The experiments considered three different types of services that

generated controlled demands on the server, four levels of

workload for each service and six distinct execution scenarios,

where each scenario involves: one type of service by itself, all

services operating together and the level of workload in the node

(overloaded and not-overloaded).

The results demonstrate that most of the indices do not have a

close relation to the actual service runtime. This means that the

use of such indices as driving metrics for heuristics to optimize the

performance can have serious drawbacks and platforms can be

wrongly assessed to be overloaded or idle. This can reduce the

overall performance of the services significantly, since requests can

be sent in error to supposedly idle servers, which are actually

overloaded. Alternatively, nodes can be considered overloaded

where in fact they are not. In this case, unnecessary nodes may be

used raising both the execution costs and the overall energy

consumption.

The JMX Average Time index proved to be the best in terms of

significance to estimate the service runtime, considering all the six

scenarios of the experiments and the multiple linear regression

model based on the stepwise-AIC method. Its significance changed

from 46.0% up to 78.2% (64.7% on average) in those scenarios.

The JMX Average Time index was also able to simulate the service

runtime with high accuracy in relation to real runtime, obtaining

an excellent coefficient of determination equivalent to 99.5%.

Swap Used showed a good coefficient of determination equivalent

to 90.3%, due to the scenario with the overloaded platform executing

the memory-bound service. It also showed a null variation for

other scenarios.

Other indices showed a smaller significance compared to JMX

Average Time in the same scenarios. In some cases the significance

was only smaller, as in the case of the Swap Used for all services

with the overloaded platform. However, in other cases (Amount of

Requests for the CPU-bound service, for instance), Swap Used was

null. The simulations of the service runtime using some of these

indices confirmed their relatively limited importance, with

coefficients of determination indicating significance from 20% to

40%.

The JMX Average Time index is more stable than the other

indices studied in most cases. It is stable for all scenarios that were

considered, being in some cases even better than the stability of the

runtime service. The stability of the other indices changed

significantly depending on the scenario used. This stability

behaviour for the other indices in different scenarios restricts the

practical use of such indices because they are not able to correlate

to runtime service, a more stable metric, in an appropriate way.

The instability could be attenuated by using a larger window of

samples in the EMA. However, all results in this paper used EMA

and increasing the sample window size will also reduce the

accuracy of the index, since it will introduce a longer delay before

changes in the current workload are reflected in the index.

The main contribution of this paper is to demonstrate by means

of experimental studies that the metrics commonly used by

performance-estimating heuristics do not reflect, in practice, the

actual performance. The results show that the mistaken use of such

indices can lead to decisions that will have a negative impact on

both service performance and execution cost.

Another contribution of this paper is the proposal of the JMX

Average Time metric, a novel load index which is independent of the

platform and to the demand generated by services. The JMX

Average Time index is tightly-coupled to the service runtime, a

widely used performance metric for computing platforms.

Future work will be directed to the following objectives: 1)

applying the results of this paper to the Jerrymouse project [20]

Table 5. Linear equations used to estimate the service
runtimes and their coefficients of determination.

Load Indices Linear Equations R2

JMX Average Time 0.9473 * JMX Average Time +0.3677 0.995

Swap Used 112.9882 * Swap Used +21.0953 0.903

Idle CPU 20.7736 * Idle CPU +68.9285 0.353

Free Memory 229.3253 * Free Memory +97.9967 0.400

Ready Processes 7.7600 * Ready Processes +6.7807 0.301

Amount of Requests 27.5027 * Amount of Requests +61.8613 0.201

doi:10.1371/journal.pone.0068819.t005
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for the development of advanced request distributing policies on

web service clusters; and 2) establishing a methodology to evaluate

load indices in a comparable and standardized way.
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