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Asymptotic and numerical prediction of current-voltage curves for an
organic bilayer solar cell under varying illumination and comparison to the
Shockley equivalent circuit
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In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic

bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched

together between current collectors. A simplified version of the standard drift-diffusion equations is

employed in which minority carrier densities are neglected. This is justified by the large disparities

in electron affinity and ionisation potential between the two materials. The resulting equations are

solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary

conditions on the contacts and (ii) an internal boundary condition, imposed on the interface

between the two materials, that accounts for charge pair generation (resulting from the dissociation

of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution

to this model as a function of the strength of the solar charge generation. In the physically relevant

power generating regime, it is shown that these current-voltage curves are well-approximated by a

Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it

can be used to directly calculate equivalent circuit parameters from the material parameters of the

device. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820567]

I. INTRODUCTION

Organic photovoltaic devices are a promising new tech-

nology14 which provide the prospect of very cheap solar cells

that can be produced on a large scale.15 These organic devices

present several advantages over their traditional inorganic

counterparts: (i) ease of manufacture using high throughput

techniques such as roll to roll printing, (ii) low cost materials,

and (iii) mechanical flexibility. Currently, rapid progress is

being made by a number of companies towards the goal of

making cells with energy efficiencies sufficient to compete

with standard inorganic devices in the commercial market.34

Solar cells operate by absorbing light to create excited

charge pairs (known as excitons), then separating these charges

and transporting them to current collectors where they may be

used to deliver electrical power to an external circuit. Charge

separation is typically driven by the diode like properties of the

device. These facilitate the easy flow of the current in one

direction, but not the other, and thus lead to the preferential

deposition of positive charge on one current collector and nega-

tive charge on the other. In inorganic solar cells, the diode like

behaviour of the device is achieved by doping the materials

asymmetrically. In contrast, in organic devices, this behaviour

is achieved by choosing two organic semiconductors (the donor

and acceptor) with markedly different preferences for holes and

electrons so that holes preferentially separate into the donor

(small ionization potential) while conduction electrons prefer-

entially separate into the acceptor (high electron affinity).

Charge generation within inorganic materials occurs when a

sufficiently energetic photon is absorbed to create a weakly

bound exciton that can readily separate into a free conduction

electron and a free hole. In contrast, in an organic solar cell,

photon absorption typically results in the creation of a strongly

bound exciton. This can diffuse and may either recombine,

releasing its energy (as heat or light), or reach the acceptor-

donor interface where the differences in ionization potential

and electron affinity between the two materials may be suffi-

cient to separate it into a free hole in the donor and a free elec-

tron in the acceptor. Once separated these free charges may

either recombine on the acceptor-donor interface (losing their

energy) or be transported to the current collectors where their

energy can be harvested.

A major problem with organic solar cells is that the exci-

ton diffusion length (before recombination) is typically very

small, around 10 nm,14 while the thickness of organic semicon-

ductor required to absorb a significant portion of the incident

sunlight is much larger, typically around 200 nm.14 Thus, a

simple bilayer organic device (see Figure 1) cannot both

absorb a significant portion of the incident light and ensure that

a significant portion of the excitons generated reach the

acceptor-donor interface where their charges can separate.

Hence, the efficiency of bilayer devices is poor.7,29,36 In order

to circumvent this difficulty, it is customary to construct bulk
heterojunctions which are sufficiently thick (�30–300 nm) to

absorb a significant portion of the incident sunlight but also

possess a highly convoluted acceptor-donor interface with

oscillations on the exciton diffusion lengthscale (�10 nm); this

ensures that most of the excitons generated reach the interface

before recombining. Some images, obtained using scanning

electron microscopy, of real bulk heterojunctions with a fully

3-dimensional structure are shown in Pautmeier et al.28 Thus,
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much of the current theoretical research into organic solar cells

has concentrated on the role of morphology in bulk heterojunc-

tions and, due to the inherently complex geometry, has

required a heavily numerical approach.1,3,24 An alternative

approach, which has been commonly adopted, is to describe

highly heterogeneous acceptor-donor microstructure as an

effective medium.10,12,20 This has the advantage that the inter-

face does not appear explicitly in the problem so that the de-

vice is described by a set of equations with one spatial

dimension but has the disadvantage that the link between inter-

face morphology and device behaviour is lost. A possible way

of reconciling these two approaches, which will be explored in

a future work, is to use asymptotic homogenisation techni-

ques,5,31 to systematically derive effective medium equations

for the heterostructure from a detailed microscale model.1,3,24

Here, we extend previous work on the behaviour of a

simple bilayer device in the dark32 to investigate the effects of

significant levels of solar generation on its current-voltage

curve. This enables us to test the validity of our model unen-

cumbered by the additional complexities associated with the

complex morphology of a bulk heterojunction device. The

central approach that we use is the method of matched asymp-

totics. This allows us to derive analytic approximations for the

current-voltage curves of bilayer devices in all physically rele-

vant power generating regimes. Furthermore, we show that

these expressions are asymptotic to the widely used Shockley

equivalent circuit (SEC) model and that they compare favour-

ably to a fully numerical solution of the drift-diffusion model.

The SEC describes the behaviour of a solar cell by an equiva-

lent circuit consisting of a diode in series with a resistor and

in parallel with a shunt resistor and a current source (see

Figure 2). It is most usually written in the form

I ¼ Rp

Rp þ Rs
� I 0 exp

V � IRsA

N kT=q

� �
� 1

� �
� G � V

RpA

� �
:

(1)

Here, I is the current density in the device, V is the applied

voltage, Rp and Rs are the shunt and series resistivities,

respectively, I 0 is the reverse saturation current density of

the diode, G is the photo-current density, A is the area of the

cell, N is the ideality factor of the diode, kT is the thermal

energy, and –q is the charge on an electron. The most notable

difference between the predictions of the drift-diffusion

model proposed here and the SEC is that our model does not

predict a shunt resistance (i.e., Rp !1 in Eq. (1)). This

shunt resistance could be an artefact of either (i) pinhole

defects, i.e., when a cell has been manufactured in such a

way that a region of donor (or alternatively acceptor) spans

the region between both current collectors and hence creates

a short circuit11,22 or (ii) the presence of minority carriers (in

either acceptor or donor) acting to short circuit the de-

vice.23,38 However, given the large differences in the ioniza-

tion potentials and electron affinities between the donor and

acceptor materials used in real bilayer devices, we estimate

that shorting currents carried by minority carriers are insig-

nificant in practice.

II. PROBLEM FORMULATION

The main physical processes taking place within an or-

ganic solar cell are charge transport (within donor and

acceptor materials) and the generation and recombination of

charges at the acceptor-donor interface.3,8,12

Various models have been applied to the transport pro-

cess, such as multiple trap models,16 atomistic models,21 and

Gaussian disorder models.30 Here, we elect to use the drift-

diffusion equations35 in order to provide a macroscopic

description of the hopping process whereby free charges (elec-

trons or holes) move from one molecule to the next. As previ-

ously noted by Richardson et al., the large differences in

ionization potential and electron affinity between the acceptor

and donor justify the assumptions of zero free electron density

in the donor and zero hole density in the acceptor.32

The main mechanisms allowing charge to pass from the

acceptor to the donor are (non-geminate) recombination of a

hole from the donor with a free electron from the acceptor

and generation of charge pairs at the interface. Generation

results both from (i) solar generation in which an exciton

pair (generated from absorbed light energy) dissociates on

the interface into a hole in the donor and an electron in the

acceptor and (ii) thermal emission of electron hole pairs

from the interface. The net effect of the combination of these

two mechanisms is to transport charge between acceptor and

donor. Here, we initially model interface recombination

between charge carriers using a Shockley-Read-Hall (SRH)

condition noting that this leads to an ideality factor N ¼ 2 in

contrast to Langevin recombination (R / np) which models

the direct recombination of charges and gives N ¼ 1.

Experimental measurements of the ideality factor18 typically

lie between 1 and 2, for example, Credgington et al.

FIG. 1. A schematic of a bilayer organic solar cell.

FIG. 2. A schematic of the Shockley equivalent circuit.
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measured an ideality factor of �1.69 in a polymer/C60

bilayer,6 indicating that in reality, both Langevin and SRH

recombination may be taking place.17 In view of this vari-

ability, we consider a generalised recombination condition in

Sec. V, that is capable of describing a range of ideality fac-

tors, and assess how this alters the predicted behaviour of the

device.

A. Bulk equations

Charge carrier motion in both the acceptor and donor

materials is modelled by drift-diffusion equations. We

exploit the strong preference of electrons for the acceptor

and holes for donor to make the simplification that the elec-

tron density in the donor and the hole density in the acceptor

are both vanishingly small.32 It follows that electron-hole

recombination occurs only at the acceptor-donor interface

and that the resulting conservation equations for the hole

density p (in the donor �L < x < 0) and the electron density

n (in the acceptor 0 < x < M) are

q
@p

@t
þ @J

@x
¼ 0 for � L < x < 0; (2)

q
@n

@t
� @J

@x
¼ 0 for 0 < x < M: (3)

Here, J is the current density and is related to the flux of

holes in the donor Fp by J ¼ qFp and to the flux of electrons

in the acceptor Fn by J ¼ �qFn so that

J ¼ �qDp
@p

@x
þ q

kT
p
@/
@x

� �
for � L < x < 0; (4)

J ¼ qDn
@n

@x
þ q

kT
n
@/
@x

� �
for 0 < x < M; (5)

where /, k, and T are electric potential, Boltzmann’s con-

stant, and the absolute temperature, respectively. The diffu-

sion coefficients of electrons and holes are Dn and Dp,

respectively—these are related to the electron and hole

mobilities, ln and lp, via the Einstein relation,

Dn;p ¼ kTln;p=q. The Einstein relation is applicable when

electrons and holes move independently, i.e., do not form

bound pairs. The electric potential obeys Poisson’s equation

@

@x
�
@/
@x

� �
¼ �qp for �L < x < 0

qn in 0 < x < M
;

�
(6)

where

� ¼ �d for �L < x < 0

�a in 0 < x < M
;

�
(7)

where � is the absolute permittivity.

B. Jump and boundary conditions

At the acceptor-donor interface, continuity of electric

potential and the normal component of electric displacement

are imposed in the standard fashion

/jx¼0� ¼ /jx¼0þ ; �d
@/
@x
jx¼0� ¼ �a

@/
@x
jx¼0þ : (8)

The effect of recombination of electron-hole pairs at the

acceptor-donor interface is initially modelled by a SRH term

while the contribution to the current density due to exciton

dissociation at the interface is denoted by –G so that

Jjx¼0� ¼ Jjx¼0þ

¼ K0

njx¼0þpjx¼0� � N2
Dexpð�Eg=kTÞ

1þ u1njx¼0þ þ u2pjx¼0�

 !
� G: (9)

The exact details of exciton generation, transport, and disso-

ciation (on the interface) affect only the magnitude of G and

will not be considered further other than to remark that exci-

ton dissociation is typically thought to occur in a two step

process in which excitons incident on the interface first dis-

sociate into interface-bound geminate pairs before dissociat-

ing, under the action of thermal excitation, into free

charges.13,27,40 In the case of polymer/C60 cells, the dissocia-

tion of geminate pairs is believed to be extremely efficient

(with hardly any loss due to recombination).40 The constants

K0, ND, u1, and u2 are material parameters, while Eg denotes

the pseudo-band gap, i.e., the difference in energies between

the HOMO of the donor and LUMO of the acceptor.

Finally, the problem is closed by imposing Ohmic

boundary conditions on the current collector contacts. On the

left contact at x¼�L, we impose

p ¼ N2
D

~n�
exp � Eg

2kT
þ qVbi

2kT

� �
; / ¼ V � Vbi

2
; (10)

while on the right contact at x¼M, we impose

n ¼ ~n�exp � Eg

2kT
þ qVbi

2kT

� �
; / ¼ �V � Vbi

2
; (11)

where ~n�, V, and Vbi are a constant scaling factor, the

applied voltage across the cell, and the built-in voltage

(resulting from the differences in work functions of the cur-

rent collectors), respectively. The conditions (10) and (11)

are the most general form of Ohmic boundary conditions

that, together with Eq. (9), give an equilibrium for which

J¼G¼V¼ 0.32 Previous studies33 have investigated the

effects of tunneling at the contacts. Here, we are primarily

interested in scenarios in which the device behaviour is lim-

ited by the properties of the semiconductors (and their mu-

tual interface) and not by the contacts and so do not consider

tunneling at the contacts further.

C. Non-dimensionalisation

Here, we apply a different non-dimensionalisation to that

used in Richardson et al.,32 whose focus was on the dark cur-

rent of the device, and choose to scale the current density J
with a typical photo-generated current density G0 (this could,

for example, be estimated from the reverse saturation current

density of the device). We non-dimensionalise electron- and

hole-densities (n and p, respectively) on the electron- and

104501-3 Foster, Kirkpatrick, and Richardson J. Appl. Phys. 114, 104501 (2013)
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hole-fluxes required to carry a current density of magnitude

G0 and, motivated by our wish to investigate the distinguished

limit in which the Debye length is comparable to the device

width, choose G0 accordingly. This turns out to fix the value

of G0 close to the current density that would be generated by

one Sun. The non-dimensionalisation is as follows (dimen-

sionless quantities are denoted by an over-bar):

J ¼ G0
�J ; n ¼ P0�n; p ¼ P0 �p;

/ ¼ kT

q
�/; x ¼ L�x; t ¼ qP0L

G0

�t;
(12)

where P0 and G0 are chosen in line with the arguments

above such that

P0 ¼
ffiffiffiffiffiffiffiffi
�d�a
p

kT

q2L2
and G0 ¼

ffiffiffiffiffiffiffiffi
�d�a
p ffiffiffiffiffiffiffiffiffiffiffi

DdDa

p
kT

qL3
: (13)

By scaling in this manner, we find that the system is charac-

terised by the following dimensionless parameters:

d ¼ P0K0

ðu1 þ u2ÞG0

; i ¼ NDexpð�Eg=2kTÞ
P0

;

Ĝ ¼ G

G0

; ê ¼
ffiffiffiffi
�d

�a

r
;

j ¼
ffiffiffiffiffiffi
Dp

Dn

r
; N� ¼

~n�
ND

;

h ¼ 1

P0ðu1 þ u2Þ
; U ¼ u1

u1 þ u2

;

m ¼ M

L
; U ¼ qV

kT
;

Ubi ¼
qVbi

kT
:

(14)

Here, m is the ratio of the widths of the slabs of acceptor and

donor, ê is the square root of the ratios of the permittivities

of the acceptor and donor, j is the square root of the ratio of

the diffusivities in the acceptor and donor, h and U are

dimensionless parameters characterising the SRH recombi-

nation condition, i is the ratio of the intrinsic (thermally gen-

erated) carrier concentration to that generated by exciton

dissociation, and d is the ratio of the current arising from

recombination of electrons and holes on the acceptor donor

interface to that generated there by the dissociation of exci-

tons into electron-hole pairs.

We remark that the parameters d, h, m, U, U, and Ubi, as

they appear here, are defined identically to those in

Richardson et al.,32 and provided that we take the typical

permittivity �e and typical diffusivity �D (as defined in

Richardson et al.32) to be given by �e ¼ ffiffiffiffiffiffiffiffi
�a�d
p

and
�D ¼

ffiffiffiffiffiffiffiffiffiffiffi
DaDd

p
. Furthermore, with the above definitions of �e

and �D, we can relate the parameter i (defined here) to the pa-

rameter k (defined in Richardson et al.32) via i ¼ 1=k2.

1. Dimensionless equations

The charge carrier conservation equations (2) and (3)

non-dimensionalise to

@�p

@t
þ @

�J

@�x
¼ 0 in � 1 < �x < 0 (15)

and

@�n

@t
� @

�J

@�x
¼ 0 in 0 < �x < m: (16)

Since our primary objective here is to derive expressions for

the current-voltage curves of a cell at steady state, it is

enough to note that these equations and the continuity of cur-

rent implied by the conditions (9) integrate to imply that �J is

constant throughout the device. It follows that the dimen-

sionless steady state equations read

j
@�p

@�x
þ �p

@�/
@�x

� �
¼ ��J

ê
@2 �/
@�x2
¼ ��p

9>>=
>>; in � 1 < �x < 0; (17)

1

j
@�n

@�x
� �n

@�/
@�x

� �
¼ �J

1

ê
@2 �/
@�x2
¼ �n

9>>=
>>; in 0 < �x < m; (18)

with jump and boundary conditions

�/
���
�x¼0�
¼ �/

���
�x¼0þ

; ê
@�/
@�x

���
�x¼0�
¼ 1

ê
@�/
@�x

���
�x¼0þ

; (19)

�J ¼ d
�nj�x¼0þ �pj�x¼0� � i2

hþ U�nj�x¼0þ þ ð1� UÞ�pj�x¼0�

 !
� Ĝ; (20)

�p
���
�x¼�1

¼ i
N�

exp
Ubi

2

� �
; �/

���
�x¼�1

¼ U� Ubi

2
; (21)

�n
���
�x¼m
¼ iN�exp

Ubi

2

� �
; �/

���
�x¼m
¼ �U� Ubi

2
: (22)

Henceforth, we drop the over-bar notation.

2. Parameter estimates for real devices

Here, we look to estimate the parameters in the model

based on a pentacene/C60 bilayer device fabricated by

Credgington et al.6 Hole mobility in single crystal pentacene

has been measured by Knipp19 as 4� 10�4 m2 V�1 s�1 (cor-

responding to a value of Dd ¼ 10�6 m2s�1), and a figure for

electron mobility in C60 is given by Koster et al.20 as

2.5� 10�7 m2 V�1 s�1 (corresponding to a value of

Da ¼ 5� 10�9 m2s�1). Conductivity measurements, how-

ever, are strongly sample dependent. Permittivity in C60 and

pentacene are both about 4e0, and the half thickness of the

bilayer cell fabricated by Credgington et al.6 is

L ¼ 4� 10�8 m. Using these figures and assuming that the

cell operates at approximately T¼ 300 K, we obtain

P0 � 4� 1021m �3 and G0 � 103 A m�2: (23)

This value of G0 compares with the short circuit current den-

sity, at one Sun, measured by Credgington et al.6 of

104501-4 Foster, Kirkpatrick, and Richardson J. Appl. Phys. 114, 104501 (2013)
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approximately 60 A m�2 suggesting that, at least for this de-

vice, Ĝ, at one Sun, is relatively small at about 6� 10�2.

However, it is important to recognise that the values of the

electron and hole mobilities in a real bilayer device may be

considerably lower than those measured in samples carefully

prepared for the purpose of demonstrating the advantages of

a particular material (such as those fabricated by Knipp19).

Given the relatively low current densities that can be

obtained in organic bilayer solar cells, as a result of the inef-

ficiency of exciton collection, they are best viewed as an ex-

perimental system that can be used to investigate the

electrical behaviour of particular combinations of acceptor

and donor materials. It is therefore pertinent to ask what hap-

pens at high illumination levels in which the current densities

are more in line with those that would be observed in more

efficient bulk-heterojunction devices.

Typical values of the permittivities and mobilities of

acceptor and donor materials suggest that both ê and j are

O(1). We shall also take the value of m, N�, U, and h to be

of O(1). The parameter i measures the ratio of the thermally

generated electron (and hole) densities in the dark to those

under illumination and we might reasonably expect it to be

small; however, since there is little data on thermally gener-

ated electron (and hole) densities, and since the limit i! 0

is a non-singular limit, we take it to be an O(1) quantity for

the purpose of the ensuing analysis. The parameter d meas-

ures the ease with which recombination takes place at the

acceptor-donor interface. If d� 1, recombination is hard,

and in moderate forward bias, the device behaves as a diode

(i.e., the current varies exponentially with voltage).

However, if d� 1, recombination is easy, and in moderate

forward bias, the device’s behaviour is more akin to an

Ohmic resistor (i.e., the current-voltage curve is linear and

the dominant resistance is due to the motion of the charge

carriers through the semiconductor—this is commonly called

a large series resistance). Thus, if the device is to work as an

efficient solar cell d should be small in order to stop recom-

bination of solar generated charges and the attendant ener-

getic losses associated with this. Indeed, this is what the data

presented in Credgington et al. and Koster et al. suggest.6,20

This motivates us to consider a distinguished asymptotic

limit in which d� 1. Furthermore, we examine two differ-

ent operating regimes and, in each, derive an asymptotically

valid expression for the current, �J , in terms of the applied

voltage, U.

3. Outline of the ensuing analysis

In Secs. III–VI, we shall solve the steady state dimen-

sionless equations (17)–(22) in the limit d! 0 with m, i,
ê; j, h, U, and N� all O(1). We consider two different as-

ymptotic limits, as the size of �J and Ĝ vary relative to d,

with the aim of deriving a simple asymptotic expression for

the current, J, in terms of the applied cell voltage, U. In the

interests of clarity, we begin by considering a symmetric de-

vice for which the solution to Eqs. (17)–(22) is considerably

simplified. Later, in Sec. VI, we discuss how these techni-

ques can be generalised to obtain the solution of the steady

state equations (17)–(22) for non-symmetric devices.

D. The symmetric bilayer

Here, we consider a device for which ê ¼ 1, m¼ 1,

N� ¼ 1; j ¼ 1 so that the solutions to Eqs. (17)–(22) have

the symmetry p(�x)¼ n(x) and /ðxÞ ¼ �/ð�xÞ. This sym-

metry allows us to collapse the problem onto one half of the

device. Here, we choose to consider the acceptor region in

0 < x < 1 where the problem may be stated as

@n

@x
� n

@/
@x
¼ J and

@2/
@x2
¼ n; (24)

for 0 < x < 1 subject to boundary conditions

/jx¼0 ¼ 0 and J ¼ d
n2 � i2

hþ n

� ����
x¼0
� Ĝ; (25)

njx¼1 ¼ i exp
Ubi

2

� �
and /jx¼1 ¼ �

U� Ubi

2
: (26)

In the limit d! 0, there are two distinguished limits of

the parameters J and Ĝ (relative to d) that must be consid-

ered in order to generate the device’s entire current-voltage

curve, see Figure 3. Before examining these limits, we elimi-

nate n from the system by using Eq. (24b) to restate the prob-

lem in the form

/xxx � /xx/x ¼ J in 0 < x < 1; (27)

/jx¼0 ¼ 0 and J ¼ d
/2

xx � i2

hþ /xx

 !����
x¼0

� Ĝ; (28)

/xxjx¼1 ¼ i exp
Ubi

2

� �
and /jx¼1 ¼ �

U� Ubi

2
: (29)

Before proceeding with the analysis, we consider the nature

of the solutions to Eq. (27).

III. PHASE PLANE ANALYSIS OF THE SYMMETRIC
BILAYER

Here, we discuss the solutions to Eq. (27) in terms of its

phase plane. This gives considerable insight into the asymp-

totic structure of the solution to Eqs. (27)–(29) in the small d
limit. We begin by performing the canonical rescaling

x ¼ 2

jJj

� �1=3

x̂ (30)

of Eq. (27) and its boundary conditions (28b) and (29a).

Under this change of variables, the system transforms to

/x̂ x̂ x̂ � /x̂ x̂/x̂ ¼
2J

jJj ; (31)

/x̂ x̂ jx̂¼0 ¼
2

jJj

� �2=3

� J þ Ĝ

2d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ Ĝ

2d

� �2

þ hðJ þ ĜÞ
d

þ i2

� �s0
@

1
A
;

(32)
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/x̂ x̂ jx̂¼ðjJj=2Þ2=3 ¼ i
2

jJj

� �2=3

exp
Ubi

2

� �
: (33)

This is a second order autonomous boundary value problem

for /x̂. The general solution to Eq. (31) is2,32

/ ¼ �2 logjt1Aiðx̂ � x̂0Þ þ t2Biðx̂ � x̂0Þj; (34)

where x̂0; t1, and t2 are arbitrary constants. However, the

imposition of the boundary conditions on Eq. (34) results in

a complicated set of non-trivial coupled transcendental equa-

tions. Rather than directly tackling these, it is more helpful

to plot the phase portraits of Eq. (31). These are displayed in

Figure 4 for the two possible cases J > 0 (i.e., J=jJj ¼ 1)

and J < 0 (i.e., J=jJj ¼ �1). In both panels, a dashed curve

indicates the nullcline on which /x̂ x̂ x̂ ¼ 0 and the solid curve

the separatrix; the latter is a limiting solution given by /
¼ �2 logjAiðx̂Þj that separates solutions for which either n
remains positive for all values of x̂ from those for which n
passes through zero. Dotted curves are used to depict typical

solutions lying on either side of the separatrix.

We note that Eq. (32) implies that there are no physi-

cally realistic solutions for J � �Ĝ � di2=h since such

values correspond to a negative value of /x̂ x̂ jx̂¼0, corre-

sponding to a non-physical negative value of the electron

density n there. If however J > �Ĝ � di2=h, then the bound-

ary values of /x̂ x̂ are both positive (i.e., at x̂ ¼ 0 and

x̂ ¼ ðjJj=2Þ2=3
). In such scenarios, the nature of the phase

planes plotted in 4 indicate that there are an infinite number

of solution trajectories linking any two positive boundary

values of /x̂ x̂ , and along these trajectories, /x̂ x̂ is strictly pos-

itive (so that the solutions are physical). Furthermore, by

choosing the appropriate trajectory, it is possible to obtain

one along which x̂ increases by exactly ðjJj=2Þ2=3
so that, by

specifying x̂ ¼ 0 at the start of this trajectory, the solution

given by this trajectory satisfies the boundary conditions (32)

and (33). Having found such a solution, it is trivial to enforce

the extra condition /jx̂¼0 ¼ 0 corresponding to Eq. (28a).

In the asymptotic analysis that follows, we consider the

limit where d is extremely small. It follows, except where

the device is held in hard reverse bias, that ðJ þ ĜÞ=d� 1

and the boundary condition (32) can be approximated by

/x̂ x̂ �
2

jJj

� �2=3 J þ Ĝ

d
on x̂ ¼ 0; (35)

corresponding to a point on the phase plane far up the vertical

axis. Various scenarios need then to be considered depending

on whether i expðUbi=2Þ is comparably large and whether J is

positive or negative. All of these scenarios are susceptible to

asymptotic analysis and will considered in Secs. IV–VI.

IV. ASYMPTOTIC ANALYSIS OF THE SYMMETRIC
BILAYER AS dfi0 (IDEALITY FACTOR 2)

In Richardson et al.,32 the problem of the symmetric cell

was analysed in the limit d! 0 with zero generation, i.e.,

Ĝ ¼ 0. One of the main results was the derivation of the dark
current-voltage curve. In addition, it was noted that the analy-

sis can be trivially extended to describe small rates of genera-

tion (i.e., with Ĝ ¼ OðdÞ). In this section, we extend this

analysis, in a non-trivial manner, to O(1) generation rates and

FIG. 3. A sketch of a typical current-voltage curve showing the ranges of va-

lidity of the two different asymptotic regimes.

FIG. 4. The left and right panels show the phase plane for positive and negative J, respectively. Arrows indicate the direction of increasing x̂. In both cases,

the nullclines are indicated by a dashed curve, and the separatrix solution by a solid curve. Example phase paths (one on either side of the separatrix) are shown

by dotted curves.
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above. This enables us to obtain current-voltage curves that

are needed in order to describe the operation of a bilayer solar

cell under strong illumination roughly consistent with one Sun

and above. It will transpire that there are two distinguished

limits that need to be considered in order to describe the entire

current-voltage curve. The first of these (regime (ii) in Figure

3) describes the cell operating very close to reverse saturation

and is therefore of little practical interest; however, for com-

pleteness, we provide a description in Sec. IV B. The second

limit (regime (i) in Figure 3) describes the operation of the

cell everywhere else, including the power generation regime,

and will be treated in detail in the remainder of this section.

A. Asymptotic regime (i)

Here, we examine the behaviour of a symmetric device

operating in a range of biases away from the reverse satura-

tion current density. Formally, we consider Ĝ ¼ Oð1Þ and

J þ Ĝ ¼ Oð1Þ. The approach adopted here will be to solve

the ordinary differential equation (ODE) (27) for a given cur-

rent, J, subject to the boundary conditions (28) and (29a) and

then use the condition (29b) to determine the applied poten-

tial, U, as a function of J. In this regime, analytic progress

can be made due the presence of a boundary layer near the

acceptor-donor interface in which the behaviour is domi-

nated by the resistance of the interface. We begin by study-

ing the structure within this layer.

1. The inner region: Near the interface

We investigate the boundary layer about x¼ 0 by rescal-

ing x as follows:

x ¼ d1=2

ðJ þ ĜÞ1=2
g: (36)

On substitution into Eqs. (27) and (28), this leads to the fol-

lowing problem for the potential in the inner region, /i:

/i
ggg � /i

gg/
i
g ¼

Jd3=2

ðJ þ ĜÞ3=2
; (37)

/i
gg

2 � d2i2=ðJ þ ĜÞ2

/i
gg þ dh=ðJ þ ĜÞ

����
g¼0

¼ 1 and /ijg¼0 ¼ 0: (38)

Expanding /i as follows:

/i ¼ /i
0 þ O

	
d3=2JðJ þ ĜÞ�3=2



; (39)

and substituting into Eqs. (37) and (38), we obtain, at leading

order, a balance between drift and diffusive effects leading to

the following problem for the leading order inner potential:

/i
0ggg � /i

0gg/
i
0g ¼ 0; (40)

/i
0jg¼0 ¼ 0 and /i

0ggjg¼0 ¼ 1; (41)

with solution

/i
0 ¼ �2 log 1þ g

21=2

� �
: (42)

Matching the solution in the inner region (42) to the outer

region leads to the following matching condition on the outer

potential /o at leading and first order:

/o � �log
1

d
J þ Ĝ

2

� �
� 2 logx as x! 0: (43)

2. The outer region

Next, we consider the solution in the outer region where

x¼O(1). Here, in order to match to the inner region via Eq.

(43), the expansion proceeds as follows:

/o ¼ �log
1

d
J þ Ĝ

2

� �
þ /o

1 þ O
	
d1=2ðJ þ ĜÞ�1=2



: (44)

On substitution of this expansion into Eqs. (27), (29), and

(43), we obtain the following problem for /o
1 the outer poten-

tial at first order:

/o
1xxx � /o

1xx/
o
1x ¼ J (45)

subject to

/o
1 � �2 logx as x! 0; (46)

/o
1xx ¼ i exp

Ubi

2

� �
on x ¼ 1: (47)

Notably, Eq. (45) is the full ODE. Furthermore, we can

now see a distinction between the cases of J > 0 and J < 0,

in which the form of the solution in the outer region changes

as J changes sign. Hence, we split the analysis into two parts

(which follow)—the first for J > 0 and the second for J < 0.

a. The solution for J > 0. In what follows, we solve the

problems (45)–(47) for /o
1 with J > 0. Imposing the match-

ing condition (46) on the solution to Eq. (45) and noting that

Aið	ÞBi0ð	Þ � Bið	ÞAi0ð	Þ ¼ 1=p gives the following expres-

sion for /o
1:

/o
1 ¼ �2 log

����p 2

J

� �1=3
 

BiðwÞAi

 
w� J

2

� �1=3

x

!

�AiðwÞBi

 
w� J

2

� �1=3

x

!!�����: (48)

Here, w is an as yet undetermined constant, Aið	Þ and Bið	Þ
are Airy functions (defined in the usual way), and a prime

denotes differentiation. Imposing the boundary condition

(47) leads to the following transcendental equation that must

be solved for w:

AiðwÞBi0 w� J

2

� �1=3
 !

� BiðwÞAi0 w� J

2

� �1=3
 !

BiðwÞAi w� J

2

� �1=3
 !

� AiðwÞBi w� J

2

� �1=3
 !

0
BBBBB@

1
CCCCCA

2

¼ w� J

2

� �1=3

þ i
2

exp
Ubi

2

� �
J

2

� ��2=3

: (49)
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Although this transcendental equation must be solved

numerically, we note that it is independent of Ĝ. This drasti-

cally reduces the amount of computation needed to generate

current-voltage curves for varying amounts of illumination

since solutions for w can be used for any number of different

values of Ĝ. Finally, we can read off the potential, U, in

terms of the current, J, by using Eq. (29b) to show that

U ¼ 2 log
1

d
J þ Ĝ

2

� �
þ Ubi þ Pþ1 ðJ;Ubi; iÞ; (50)

where Pþ1 is given by

Pþ1 ¼ 4 log

�����p 2

J

� �1=3
 

BiðwÞAi

 
w� J

2

� �1=3
!

�AiðwÞBi w� J

2

� �1=3
 !!�����; (51)

and w satisfies Eq. (49).

b. The solution for J < 0. Here, we solve the problems

(45)–(47) for /o
1 with J < 0 and write J ¼ �jJj. The struc-

ture of the analysis is broadly similar to the case J > 0. The

solution to Eq. (45), having imposing the matching condition

(46), is

/o
1 ¼ �2log

�����p 2

jJj

� �1=3
 

AiðvÞBi

 
vþ jJj

2

� �1=3

x

!

�BiðvÞAi

 
vþ jJj

2

� �1=3

x

!!�����: (52)

Here, the constant v is determined by the condition (47) and

thus satisfies the transcendental equation

BiðvÞAi0 vþ jJj
2

� �1=3
 !

� AiðvÞBi0 vþ jJj
2

� �1=3
 !

BiðvÞAi vþ jJj
2

� �1=3
 !

� AiðvÞBi vþ jJj
2

� �1=3
 !

0
BBBBB@

1
CCCCCA

2

¼ vþ jJj
2

� �1=3

þ i
2

exp
Ubi

2

� �
jJj
2

� ��2=3

: (53)

Once v has been determined the boundary condition (29b)

can be used to find an expression for the potential, U, in

terms of the current, J,

U ¼ 2 log
1

d
Ĝ � jJj

2

� �
þ Ubi þ P�1 ðjJj;Ubi; iÞ; (54)

where P�1 is given by

P�1 ¼ 4 log

�����p 2

jJj

� �1=3

AiðvÞBi vþ jJj
2

� �1=3
 ! 

�BiðvÞAi vþ jJj
2

� �1=3
 !!�����: (55)

Here, we have considered a distinguished limit in which the

solution to the problem has: (i) a narrow boundary layer

about x¼ 0 in which the current term in the potential equa-

tion (27) is unimportant. The behaviour in this layer gives

rise to a logarithmic singularity in the far-field solution; (ii)

an outer region in which the full potential equation and the

full set of boundary conditions on the current collector (29)

are satisfied together with a matching condition as x! 0

(this matching condition is determined by the solution in the

boundary layer). Provided that changes to the size of the pa-

rameters considered here leave this matching condition unaf-

fected the results that we have obtained by analysing the

outer problem are still applicable. In other words, the distin-

guished limit considered in Sec. IV A has a wide range of

applicability. In particular, it can be used to obtain the

current-voltage curve in the large current limit (see Sec.

IV A 4) and the large built-in voltage limit (see Sec. IV A 6).

3. The open-circuit voltage

We can use the current voltage relations (50) and (54) to

deduce an asymptotic expression for the dimensionless

open-circuit applied voltage, Uoc. In Appendix A, we show

that when J¼ 0,

P
þ=�
1 ð0;Ubi; iÞ ¼ 2 log

2

i

� �
� Ubi; (56)

so that

Uoc ¼ 2 log
Ĝ

di

� �
: (57)

Thus, the open-circuit voltage, Uoc, varies logarithmically

with the photo-current density Ĝ and is independent of the

built-in voltage Ubi which is in agreement with previous

studies.4,37

4. The large current limit J � 1

We note that the distinguished limit treated in Sec. IV A

is also valid for large positive currents. We can thus derive

an approximate current-voltage relation in this limit simply

by taking the expression (50) and determining the behaviour

of Pþ1 ðJ;UbiÞ for J � 1 by finding the large J asymptotic so-

lution to Eq. (49) and substituting this into Eq. (51).

We begin by noting that the solution for w, obtained by

solving Eq. (49) in the large J limit, also becomes large and

hypothesize that w� ðJ=2Þ1=3 � 1. Since the large z as-

ymptotic behaviours of the Airy functions are given by

AiðzÞ �
exp � 2

3
z3=2

� �
2
ffiffiffi
p
p z�1=4 � 5

48
z�7=4

� �
; (58)

BiðzÞ �
exp

2

3
z3=2

� �
ffiffiffi
p
p z�1=4 þ 5

48
z�7=4

� �
; (59)

as z!1, Eq. (49) can be approximated to exponential ac-

curacy by
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Ai0 w� J

2

� �1=3
 !

Ai w� J

2

� �1=3
 !

0
BBBBB@

1
CCCCCA

2

� w� J

2

� �1=3
 !

þ ieUbi=2

2

J

2

� ��2=3

:

(60)

Substituting for Ai w� J
2

� �1=3
	 


and its derivative from Eq.

(58), we obtain the following asymptotic expression for w:

w � 1

i2

J

2

� �4=3

e�Ubi as J !1: (61)

Inserting this result into Eq. (51) yields an asymptotic

expression for Pþ1 ,

Pþ1 �
2J

i
exp �Ubi

2

� �
as J !1: (62)

5. A uniformly valid asymptotic current voltage
relation

It is noteworthy that the terms Pþ1 and P�1 are relatively

unimportant in the current voltage relationships (50) and

(54), unless they are comparable in size to logð1=dÞ.
Furthermore, we assert that this is never the case for P�1 and

occurs for Pþ1 only when J 
 OðieUbi=2logð1=dÞÞ, where it is

accurately described by the asymptotic relation (62).

Nevertheless, when attempting to write down a uniformly

valid asymptotic expansion for the current voltage relation, it

is sensible to write down one for which the open circuit volt-

age Uoc is correct (albeit that this is a small correction to

larger terms). The requisite uniformly valid description,

which has the correct behaviours as U! 61 and which

passes through ðU; JÞ ¼ ðUoc; JÞ, is

U ¼ 2 log
Ĝ þ J

di

� �
þ 2J

i
exp �Ubi

2

� �
: (63)

This has the form of a current voltage relation obtained from

a Shockley equivalent circuit with infinite shunt resistance

(see Eq. (1) and Figure 2).

6. The large built-in voltage limit Ubi � 1

The built-in potential Vbi may, in practice, be consider-

ably larger the thermal voltage kT/q so that the dimensionless

parameter Ubi � 1. In this scenario, it is possible to make

further analytical progress towards finding an approximate

expression for the device’s current-voltage curve. In a cell

with a large built-in voltage, there is a boundary layer near

the contact which arises due to the large value of n there.

However, there is no need to consider this layer explicitly in

order to derive the solution and the current-voltage curve

because, as in the large current case, the distinguished limit

considered in Sec. IV A is uniformly valid for large built-in

voltages. In order to find the asymptotic expressions for the

terms Pþ1 ðJ;UbiÞ and P�1 ðJ;UbiÞ that appear in the current-

voltage relations (50) and (54), respectively, it is necessary

to find asymptotic solutions for w and v, from Eqs. (49) and

(53), respectively. We note that there are terms that are expo-

nentially large in Ubi on the right-hand side of both of these

equations, so that in order for there to be a balance with the

terms on the left-hand side of these equations, we require

that the denominators to be both close to zero; that is, w and

v satisfy the asymptotic relations

BiðwÞAi w� J1=3

21=3

� �
� AiðwÞBi w� J1=3

21=3

� �
; (64)

BiðvÞAi vþ jJj
1=3

21=3

 !
� AiðvÞBi vþ jJj

1=3

21=3

 !
; (65)

respectively. Solution to these relations yields values of w and

v that can be substituted into Eqs. (51) and (55), respectively,

to obtain expressions for Pþ1 and P�1 and hence to determine

the current-voltage relations from Eqs. (50) and (54). Notably,

the large J limit of Eq. (64) is provided by the zeros of

Ai
	

w� ðJ=2Þ1=3



such that w � ðJ=2Þ1=3 þ zai where zai is a

zero of Ai(z). It is not until J > Oðexpð3Ubi=4ÞÞ that the large

J asymptotics become appropriate.

B. Asymptotic regime (ii)

Here, we consider the operation of the symmetric bilayer

device close to the reverse saturation current density.

Formally, we investigate the regime J þ Ĝ � OðdÞ in which

there is no boundary layer about the acceptor-donor interface

at x¼ 0. It follows that the behaviour of the device can only

be described by solution to the full problem. However, since

by definition J � �Ĝ and the current voltage curve is almost

flat, the solution to this problem only yields the small correc-

tion to the current, obtained by varying the voltage and, hence,

is of little interest. In fact, by examining Figure 5, one can

observe that the asymptotic expressions (50) and (54) are uni-

formly valid in the interesting power generating regimes. In

the interest of completeness, we state the problem describing

the device behaviour in this particular limit, but do not solve

it. The problem may be stated most simply by stating it in

terms of the (small) perturbation to the current dĴ defined by

J ¼ �Ĝ þ dĴ : (66)

The leading order problem for the electric potential is

thus

/xxx � /xx/x � �Ĝ; (67)

with

/ ¼ 0 on x ¼ 0 (68)

and

/xx ¼ i exp
Ubi

2

� �
and / ¼ �U� Ubi

2
(69)

on x¼ 1. The solution to this third order problem for /
yields, on substitution into the recombination condition at

the interface, an expression for the correction to the current
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Ĵ ¼ /2
xx � i2

hþ /xx

 !
on x ¼ 0: (70)

We note that there is an analytic general solution to Eq. (67)

and that application of the boundary conditions (68) and (69)

provide sufficient conditions to determine the three constants

in the general solution. One of these constants may be deter-

mined straightforwardly; however, the other two are deter-

mined from the solution to two coupled transcendental

equations. In practice, it is probably not easier to solve these

than to solve the original boundary value problem. However,

in the limit Ĝ � 1 , it is possible to make further analytic

progress. Here, the boundary-value problems (67)–(69) is

tractable via matched asymptotic expansions in the two sub-

regimes: (i) Ĝ � 1; J þ Ĝ ¼ OðdĜ
2=3Þ and (ii) Ĝ �

1; J þ Ĝ ¼ OðdÞ that are required to complete the asymp-

totic description of large Ĝ regime.

C. Comparison of asymptotic results to numerical
results

Here, we compare the asymptotics results derived above

to numerical solutions of the problems (27)–(29). We obtain

these numerical solutions by using the Chebfun (Ref. 9) (an

open source library of algorithms which uses Chebyshev pol-

ynomials and automatic differentiation to solve ODE prob-

lems). Chebfun was selected because of its aptitude for

accurately resolving stiff problems with solutions that vary

rapidly within narrow boundary layers.

Figure 5 shows a comparison between current-voltage

curves calculated using: (i) a full numerical solution of Eqs.

(27)–(29) (circular markers); (ii) the asymptotic results (50)

and (54) (solid curves); and (iii) the uniformly valid approxi-

mation (63) (dashed curves). The inset in Figure 5 shows

extremely good agreement between the full numerical simu-

lation and the asymptotic results (50) and (54). Further

numerical experiments were carried out for a range of differ-

ent parameters values, and extremely good agreement was

always observed between asymptotic and numerical solu-

tions. A comparison of the asymptotic results (50) and (54)

to the uniformly valid asymptotic result (63) is shown in the

main body of Figure 5. Despite this comparison being less

favourable, the two families of curves are still asymptotic to

one another in the limit that d! 0. Importantly, the reverse

saturation current density predicted by both sets of curves is

consistent. Furthermore, the gradients of the curves for hard

forward biases and the open-circuit voltages are in agree-

ment. Figure 6 has also been included to show the model’s

prediction on the power generation of the device.

In Figure 7, typical charge carrier density and electric

potential profiles are shown. These profiles were computed

via a full numerical solution of Eqs. (27)–(29), and for the

purpose of demonstration, we chose to use the same parame-

ter values as the results shown in Figure 5 with G¼ 3. They

demonstrate Chebfun’s ability to resolve solutions in bound-

ary layers, where n changes its value very rapidly. These

plots also portray some features that one would expect to see

that the charge carrier density at the interface increases as

the device is pushed further into forward bias.

Finally, Figure 8 shows a comparison between a full nu-

merical solution of Eqs. (27)–(29) and the asymptotic

approximation for large built-in voltages, i.e., via (64) and

(65). A good agreement between the two is observed. Other

numerical experiments were carried out for different values

of parameters and a good agreement was always observed.

V. SMALL d ASYMPTOTICS: EXTENSION TO IDEALITY
FACTORS N 6¼ 2

Here, we investigate how alterations to the recombina-

tion and generation condition (9) affect the current-voltage

curve. As discussed in Sec. II, it is common practice18 to

adapt Eq. (9) to a condition of the form

FIG. 5. Some typical current-voltage curve with d ¼ expð�7Þ; Ubi ¼ 1:1;
i ¼ 1 h ¼ 1, and G¼ 1, 3, and 5. The circular markers, solid curves, and dashed

curves indicate a full numerical solution of Eqs. (27)–(29), the asymptotic

expressions (50) and (54), and the uniformly valid asymptotic approximation

(63), respectively. Here, U is measured is units of thermal voltages (�0.026 V).

One unit of the J corresponds to a current density given by the expression for

G0, see Eq. (13).

FIG. 6. Some power curves derived from the current-voltage curves shown

in Figure 5. The solid curves are plots derived using the asymptotic expres-

sions (50) and (54). The circular markers are results of a full numerical solu-

tion of Eqs. (27)–(29). Here, U is measured is units of thermal voltages

(�0.026 V). One unit of the J corresponds to a current density given by the

expression for G0, see Eq. (13).
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Jjx¼0� ¼ Jjx¼0þ ¼ Kna�1jx¼0þpb�1jx¼0�

�
	

njx¼0þpjx¼0� � N2
D expð�Eg=kTÞ



� Ĝ; (71)

so that the case a ¼ b ¼ 1 corresponds to Langevin direct

recombination. Here, K is a material parameter that is analo-

gous to K0 (although with different dimensions) in the case

discussed in Sec. II. It has been shown in Kirchartz et al.18

that making this change to the recombination condition and

selecting appropriate values for a and b can lead to an

improved fit to experimental data. In terms of the Shockley

equivalent circuit formulation of the problem (see Figure 2

and Eq. (1)), this is equivalent to changing the ideality factor

to N ¼ 2=ðaþ bÞ. Thus, in the case a ¼ b ¼ 1=2, the results

of this section are broadly similar to those of Sec. IV, in which

we used a SRH recombination condition on the acceptor-

donor interface. Nondimensionalising Eq. (71) using Eq. (12)

and assuming symmetry, as in Sec. II D (so that a ¼ b), lead

to an adapted version of the original dimensionless symmetric

bilayer model consisting of Eqs. (27), (28a), (29), and

J ¼ d̂/2a�2
xx ð/2

xx � i2Þ � Ĝ on x ¼ 0; (72)

where

d̂ ¼ KPaþb
0 G�1

0 � 1 (73)

plays an analogous role of the parameter d in Sec. II. We

now use the modified recombination condition (72) to derive

a generalisation of the current-voltage relation obtained in

Sec. IV for the symmetric bilayer with SRH recombination

condition. Formally, we solve Eqs. (27), (28a), (29), and (72)

in the limit d̂ ! 0. We begin by obtaining the asymptotic so-

lution in an inner region close to x¼ 0.

A. The inner region: Near the interface

Rescaling distance in Eqs. (27), (28a), and (72) by

x ¼ d̂
1=ð4aÞ

ðJ þ ĜÞ1=ð4aÞ v (74)

leads to the following problem for the potential in the inner

region:

/i
vvv � /i

vv/
i
v ¼

Jd̂
3=ð4aÞ

ðJ þ ĜÞ3=ð4aÞ ; (75)

/ijg¼0 ¼ 0; /i
vv

2a � d̂
1=a

i2

ðJ þ ĜÞ1=a
/i

vv
2a�2

����
g¼0

¼ 1: (76)

FIG. 7. Some example n and / profiles from the curve with G¼ 3 shown in Figure 5. For the purposes of this demonstration, we chose the values of J¼ –2, 2,

4, and 6. Here, the potential, /, is measured as units of thermal voltages (� 0.026 V). One unit of the n corresponds to an electron density given by the expres-

sion for P0, see Eq. (13).

104501-11 Foster, Kirkpatrick, and Richardson J. Appl. Phys. 114, 104501 (2013)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

152.78.130.228 On: Mon, 03 Mar 2014 12:06:57



Expanding /i in powers of d̂ as follows:

/i ¼ /i
0 þ O d̂

3=ð4aÞ
; d̂

1=ð2a2Þ
� �

(77)

yields the following problem for the leading order inner

potential:

/i
0vvv � /i

0vv/
i
0v ¼ 0; (78)

/i
0vv ¼ 1; and /i

0 ¼ 0 on v ¼ 0: (79)

This system has solution

/i
0 ¼ �2 log 1þ vffiffiffi

2
p

� �
: (80)

Rewriting this solution in terms of the outer variable x and

expanding in powers of d̂ yields a matching condition on the

outer solution

/i
0 � �

1

2a
log

1

d̂

J þ Ĝ

22a

 !
� 2 logx as x! 0: (81)

B. The outer region

Motivated by the matching condition (81), we expand

the potential in the outer region as follows:

/o ¼ � 1

2a
log

1

d̂

J þ Ĝ

22a

 !
þ /o

1 þ 	 	 	 : (82)

The problem to be satisfied by /o
1 is

/o
1xxx � /o

1xx/
o
1x ¼ J; (83)

/o
1 � �2 logx as x! 0; (84)

/o
1xx ¼ i exp

Ubi

2

� �
on x ¼ 1: (85)

This is identical to the first order outer problem considered

in Sec. IV A; namely, Eqs. (45)–(47). It follows that /o
1 is

given by Eqs. (48) and (49) in the case J > 0, and by Eqs.

(52) and (53) in the case J < 0. In turn, the current-voltage

relationship is

U ¼ 1

a
log

1

d̂

J þ Ĝ

22a

 !
þ Ubi þ Pþ1 ðJ;UbiÞ (86)

for J > 0, and

U ¼ 1

a
log

1

d̂

J þ Ĝ

22a

 !
þ Ubi þ P�1 ðjJj;UbiÞ (87)

for J < 0 where Pþ1 and P�1 are defined by Eqs. (50) and

(54), respectively. An expression for the open-circuit voltage

Uoc can be derived by setting J¼ 0 in the above and is

Uoc ¼
1

a
log

Ĝ

d̂i2a

 !
: (88)

The large J asymptotics of Pþ1 is given by Eq. (62) and it fol-

lows that (since the Pþ1 and P�1 are small in comparison to

the logarithmic terms in Eqs. (86) and (87), respectively,

unless J � 1) a uniformly valid expansion for U (that passes

through ðU; JÞ ¼ ðUoc; 0Þ) is

U ¼ 1

a
log

J þ Ĝ

d̂i2a

 !
þ 2J

i
exp �Ubi

2

� �
: (89)

VI. NON-SYMMETRIC DEVICES

In this section, we discuss how the results from

Secs. III–V can be generalised to a bilayer device without

any inherent symmetry. We concentrate the analysis on the

most practically relevant operating regime; that is, regime (i)

which occurs when Ĝ ¼ Oð1Þ and J þ Ĝ � OðdÞ (for the

case of a symmetric device, this was studied in Sec. IV A).

To derive an expression for the current-voltage of a bilayer

cell without any inherent symmetry one must solve the prob-

lems (17)–(22).

The problems (17)–(22) can be solved analytically using

matched asymptotics and one can show that the structure of

the solution bears many similarities to the solution found in

Sec. IV A, i.e., there is a boundary layer close to, and, either

side of the acceptor-donor interface (where drift and diffu-

sive effects are dominant), and in the outer regions (in the

bulk of both the acceptor and donor), the full ODEs must be

solved. Although the solution to Eqs. (17)–(22) can be writ-

ten down, it depends on four complicated, coupled transcen-

dental equations. Consequently, it is difficult to interpret

meaningful features of the solution and so one could argue

that a more insightful (and straight-forward) approach would

be to solve the systems (17)–(22) entirely numerically. Of

course finding a numerical solution presents its own

FIG. 8. A comparison of the large /bi approximations (64) and (65) (shown

using the solid curve) with a full numerical solution of (27)–(29) (shown using

circular markers). For the purposes of this demonstration, the following param-

eter values were selected: d ¼ expð�7Þ; Ubi ¼ 15; i ¼ 1, and h ¼ 1. Here, U
is measured as units of thermal voltages (� 0.026 V). One unit of the J corre-

sponds to a current density given by the expression for G0, see Eq. (13).
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challenges; however, they can be overcome by using an

appropriate numerical algorithm (see Sec. IV C for details).

This being said, it is relatively straight-forward to show that

U ¼ 2 log
1

d
J þ Ĝ

qþ

 !
þ Ubi þ Qþ1 for J > 0; (90)

U ¼ 2 log
1

d
J þ Ĝ

q�

 !
þ Ubi þ Q�1 for J < 0: (91)

Here qþ; q� are constants, and Qþ1 and Q�1 are functions of J
and Ubi (note that all four of these quantities depend on the

material properties of the cell). From the results (90) and (91)

alone, one can interpret some insightful properties of a general

bilayer cell. Foremost, one can see that the dominant term, in

both the non-symmetric and symmetric cell’s current voltage

curve, is of the form U ¼ 2 logððJ þ ĜÞ=dÞ. However, for

devices with extreme asymmetries, it is possible that the terms

Q
þ=�
1 become comparable in size to the leading term.

Previous studies have shown that this can lead to S-shaped
current-voltage curves26,39—a fact that we have independently

verified. Another situation that can lead to S-shaped current-

voltage curves is when the equilibrium charge carrier densities

at the contacts are very small. In this case, if a positive current

is to be passed through the device, holes (or electrons) must

be extracted from the donor (or acceptor) contact, and since

the equilibrium number of charge carriers at the contacts is

small, this can act to limit current flow.

Figure 9 shows a comparison of the asymptotic results

(90) and (91) (solid curves) with a full numerical solution to

Eqs. (17)–(22) (circular markers). Discussion of the numerical

scheme is given in Sec. IV C. The numerical solutions were fit-

ted to Eqs. (90) and (91) by taking qþ and q� to be unity, Q�1
to be zero (since its value does not significantly influence the

shape of the current-voltage curve), and Qþ1 to be a linear

function of J. This procedure is a generalisation of the arguments

presented in Sec. IV A 5 to the non-symmetric device. We found

that taking Qþ1 � 0:695J in the asymptotic theory gave a good

fit to the numerical results as can be seen from Figure 9.

VII. CONCLUSIONS

In this work, we considered a drift-diffusion model for a

bilayer organic solar cell consisting of a layer of donor mate-

rial abutting a layer of acceptor and sandwiched between two

electrical contacts. In our treatment of the problem, we

neglected the effects of minority carriers (i.e., electrons in the

donor and holes in the acceptor) arguing, on the basis of the

large jumps in ionization potential and electron affinity

between electron and donor, that their effects are insignificant.

In the instance of a perfectly symmetric device with SRH

recombination (ideality factor N ¼ 2), we used asymptotic

methods to investigate the resulting model (in Sec. IV) and

obtained a simple current-voltage relation. In Sec. V, we

extended the analysis to symmetric devices with an alternative

recombination mechanism that yields ideality factors other

than 2. In both cases, we were able to find a uniformly valid as-

ymptotic expression for the current-voltage relation that could

be expressed in the form

�J � d̂i2=N exp
U� ð2=iÞe�Ubi=2 �J

N

� �
� Ĝ; (92)

where N ¼ 2 with SRH recombination (see Sec. IV A and

Eq. (63)) and N ¼ 1=a where the generalised recombination

law described in Sec. V is used (see Eq. (89)).

Redimensionalising this result, via Eqs. (12)–(14) and (73),

yields the following expression [in the case of SRH recombi-

nation we take K ¼ K0=ðu1 þ u2Þ]:

J � �GþKN
2=N
D exp � Eg

N kT

� �

� exp

V � 2kTL

q2ND

ffiffiffiffiffiffiffiffiffiffiffi
DaDd

p exp � qVbi � Eg

2kT

� �
J

N kT=q

0
B@

1
CA

(93)

that we can now compare to the formula for the SEC model

(see Figure 2)

I ¼ Rp

Rp þ Rs
� I 0 exp

V � IRsA

N kT=q

� �
� 1

� �
� G � V

RpA

� �
;

(94)

in the limit that the shunt resistance Rp !1. We can thus

identify N as the ideality factor; KN
2=N
D expð�Eg=N kTÞ as

the reverse saturation current density I 0; and

2kTL expð�ðqVbi � EgÞ=ð2kTÞÞ=ðq2ND

ffiffiffiffiffiffiffiffiffiffiffi
DaDd

p
Þ as the series

resistance multiplied by the area of the cell ARs. Note that

the reverse saturation current density term I 0 does not

appear explicitly in the asymptotic expression (93) since it is

swamped by the photo-current density term G. In practice,

one could incorporate a non-infinite shunt resistance into our

model by including the effect of (i) minority carriers or

allowing for (ii) the occurrence of pinhole defects in the

FIG. 9. A comparison of a numerical solution for a non-symmetric device,

i.e., Eqs. (17)–(22) (shown using circular markers) and the asymptotic expres-

sions (90) and (91) (shown using solid curves). For the purposes of this dem-

onstration, we selected the following parameter values: d ¼ expð�8Þ; Ubi

¼ 2; i ¼ 1; h ¼ 1; � ¼ 1; j ¼ 1; m ¼ 1:8; N� ¼ 1, U¼ 1/3, and G¼ 1,4,

and 7. Here, U is measured is units of thermal voltages (� 0.026 V). One unit

of the J corresponds to a current density given by the expression for G0, see

Eq. (13).
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bilayer.11,22 The former mechanism would lead to a nonlin-
ear shunt resistance that depends upon the applied potential

since the density of minority carriers is much higher in for-

ward bias than in reverse bias (examples of organic photo-

voltaic models that include effects due to minority carriers

are given in Refs. 1 and 2). Furthermore, the measured val-

ues of ionization potential and electron affinity differences

between typical acceptor and donor materials are extremely

large (as measured in units of kT) suggesting that this mecha-

nism is not responsible for any observed shunt resistances. It

is therefore more likely that significant shunt resistances

result from pinhole defects in the bilayer, whereby one of the

semiconductors directly contacts both electrodes leading to a

local short circuit. A natural extension of this work would

therefore be to include pinholes into the model geometry.

To demonstrate the comparison between our model and

the SEC model, we have included Figure 10 which shows

some current-voltage curves for devices of varying thicknesses.

In line with the discussion above, this variation in thickness

corresponds to varying the series resistance. Notably, Figure

10 shows that the open-circuit voltage is independent of the

device’s width. In addition, we can observe that an increase in

the thickness (or equivalently the series resistance) reduces the

fill factor of the device—a well known result.25

We obtained numerical solutions to the model by use of a

numerical package Chebfun,9 based on Chebyshev polyno-

mials. This approach allowed us to deal with what is often an

extremely stiff problem that exhibits very rapid growth in nar-

row boundary layers. In the case of a symmetric cell, numerical

solutions to the model compared very favourably with our as-

ymptotic solutions (see Sec. IV C). In Sec. VI, this numerical

approach was used to investigate asymmetric cells, which are

appreciably more awkward to treat with asymptotic methods

than symmetric cells (due to necessary but inherently cumber-

some algebra). Sample current voltage curves were generated

for several different parameter sets and fitted to a Shockley

equivalent circuit model (with infinite shunt resistance) and, as

in the symmetric case, the comparison was good.
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APPENDIX A: SOLUTION OF THE OPEN-CIRCUIT
VOLTAGE PROBLEM

Here we give some details on the solution of (44)–(47)

with J¼ 0, the open-circuit voltage problem. We have

/o ¼ �log
1

d
Ĝ

2

� �
þ /o

1 þ Oðd1=2Ĝ
�1=2Þ: (A1)

On substitution of this expansion into Eqs. (27), (29),

and (43), we obtain the following problem for /o
1 the outer

potential at first order:

/o
1xxx � /o

1xx/
o
1x ¼ 0; (A2)

subject to

/o
1 � �2 logx as x! 0; (A3)

/o
1xx ¼ i exp

Ubi

2

� �
on x ¼ 1: (A4)

We begin by noting that there are two solutions to Eq. (A2)

that satisfy the matching condition (A3), namely,

/o
1 ¼ �2 log

sinðx1xÞ
x1

� �
; (A5)

/o
1 ¼ �2 log

sinhðx2xÞ
x2

� �
: (A6)

Imposing the boundary condition (A4), we find that the solu-

tion (A5) is the appropriate when iexpðUbi=2Þ > 2, whereas,

if iexpðUbi=2Þ < 2, the solution (A6) is required. By virtue

of the fact that the second derivatives of Eqs. (A5) and (A6)

on x¼ 1 are 2x2
1=sin2ðx1Þ and 2x2

2=sinh2ðx2Þ, respectively,

we can immediately write

/o
1jx¼1 ¼ �log

2

i

� �
þ Ubi

2
: (A7)

Finally, recalling the boundary condition (26b) and re-

substitution of Eq. (A7) into Eq. (A1) quickly give the fol-

lowing expression for the open-circuit voltage:

Uoc ¼ 2 log
Ĝ

di

� �
: (A8)

FIG. 10. Current-voltage curves for symmetric devices of three different half

widths L, 2L, and 3L (indicated by solid, dashed, and dotted curves, respec-

tively), of ideality factor N ¼ 1 and with the same dimensional photo-

induced current G ¼ ffiffiffiffiffiffiffiffi
�d�a
p ffiffiffiffiffiffiffiffiffiffiffi

DdDa

p
kT=qL3. All other properties of the devices

were also held constant. Here, the dimensionless current j (measured in units

of qL3J=ð ffiffiffiffiffiffiffiffi�d�a
p ffiffiffiffiffiffiffiffiffiffiffi

DdDa

p
kTÞ) is plotted versus the dimensionless voltage U

(measured in units of thermal voltages, �0.026 V). The circular markers were

determined using the uniformly valid asymptotic expression (89).
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