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Abstract

In this paper we discuss two different approaches to simulation, discrete event simulation and system
dynamics. Both have been used widely in the health care domain, although there are fewer applications of
system dynamics. The aim of this paper is not to give a comprehensive survey of the literature, but rather to
discuss whether the choice of methodology is purely the personal preference of the modeller, or whether
there are identifiable features of certain systems that make one methodology superior to the other. We
illustrate the use of these techniques by considering two case studies, a simple discrete event simulation
model of HIV/AIDS and a system dynamics model of the UK cardiac surgery system. We attempt to draw
up some guidelines to assist the modeller in making the choice of technique.

1. Introduction

Simulation is arguably the most commonly used Operational Research technique and it
has been widely used in the health care domain, chiefly because of the advantages it has
over other techniques in its flexibility, ability to deal with variability and uncertainty, and
its use of graphical interfaces to facilitate communication with, and comprehension by,
health care professionals. These features have often made simulation the technique of
choice in modelling health care systems, which may involve complex biological,
organisational and human behavioural processes, and multidisciplinary teams of
modellers (e.g. epidemiologists, clinicians, managers, nurses, GPs, or health economists).

Discrete event simulation and system dynamics are two quite different approaches to
simulation modelling. Discrete event simulation models systems as networks of queues
and activities, where state changes in the system occur at discrete points of time. The
objects in the system are distinct individuals, each possessing characteristics that
determine what happens to that individual, and the activity durations are sampled for each
individual from probability distributions.

On the other hand system dynamics models a system as a series of stocks and flows, in
which the state changes are continuous. A system dynamics model views “entities” as a
continuous quantity, rather like a fluid, flowing through a system of reservoirs or tanks
connected by pipes. The rates of flow are controlled by valves, and so the time spent in
each reservoir is modelled by fixing the rates of inflow and outflow. Although the state
changes are regarded as continuous, the underlying equations used to solve the model are
difference equations (usually solved by numerical integration) which discretise time
using a time-slicing approach.



System dynamics is essentially deterministic whereas discrete event simulation is
stochastic. System dynamics can be used qualitatively and has strong links with the
problem structuring approach of causal link or influence diagrams, and so there is a
tendency to use system dynamics at a higher, more strategic level in order to gain insight
into the interrelations between the different parts of a complex system. Discrete event
simulation, on the other hand, has traditionally been used at a more operational or tactical
level to answer specific questions; for example, in the healthcare domain, to solve
resource allocation problems or to compare and evaluate medical interventions.

2. The basic elements of system dynamics

System dynamics (SD) is an analytical modelling methodology that can be attributed to
Jay Forrester [1,2], whose work on “industrial dynamics” at the Massachusetts Institute
of Technology led to the development of the process. It combines two distinct aspects;
one qualitative and one quantitative, with the aim of enhancing the understanding of an
identified problem and improving comprehension of the structure of the problem and the
relationships present between relevant variables.

Because of the flexibility of the process, along with its ability to combine both qualitative
and quantitative information, SD has been applied in many different fields of study
including project management, defence analysis and, most relevantly to the following
examples illustrated here, health care.

The qualitative aspect of SD was not initially considered to be a very important part of
the approach. However in recent years the benefits of focussing on this aspect have been
increasingly appreciated [3]. The initial discussion of the problem being modelled works
to identify the elements considered fundamental to the system and those that are likely to
generate an influence in the problem situation. The identified elements are presented in
the form of an influence diagram, an example of which is shown in Figure 1.
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Figure 1. Influence diagram to demonstrate notation



The identified elements are connected by arrows. The “+” and “— signs denote the
direction of the influence, but do not show the magnitude of the influence. For example,
as eating increases food in stomach increases, shown by a “+”; as digestion increases,
food in stomach decreases, shown by a “—”. In this way complex and informative
diagrams can be built up to represent and clarify the problem being investigated,
providing insights into how the variables interact.

In many cases the qualitative analysis of these diagrams is of considerable value in its
own right. The aim of this analysis is to find loops, as in the above example, where
elements are connected by a directed cycle of arrows. Balanced loops contain an odd
number of “—" signs, whereas reinforcing loops or vicious circles contain an even number
of “—" signs. The above example, a balanced loop, shows how the system regulates itself.
The hungrier we are, the more we want to eat. Eating obviously increases the amount of
food in our stomach, but this makes us feel less hungry, so we stop eating. Identifying
both types of loop can be very helpful in understanding system behaviour.

If a quantitative model is to be developed, the influence diagram is converted to a flow
diagram. Figure 2 shows the flow diagram for this system in the notation of the software
STELLA [4]. This flow diagram has been constructed from the influence diagram shown
in Figure 1. The two “clouds” represent a source and a sink, in other words infinite
amounts of the material (in this case, food) that flows through the system. The stomach is
modelled as a stock or level of food. Eating and digestion are defined as rates, in this
case the rates at which food flows into and out of the stomach. Food can flow into or out
of a stock according to numerical values defining the rates of eating and digesting.
Hunger is a “soft” variable that can be measured, as opposed to quantified, and can be
defined graphically. It is linked to, and therefore influences, the rate at which eating
takes place. The quantity of food in the stomach in turn influences hunger, completing
the cycle.
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Figure 2. Example of a simple model using STELLA notation

Using computer software such as STELLA, the relevant numerical data can be entered in
integer, equation or graphical format and the model can then be run as a simulation. It
shows how variables change over time, allowing their behaviour to be monitored and
analysed. Time is handled in these quantitative models by a discretisation process where
the time-step, dt, is usually chosen such that all the rates can be regarded as constant over
the period dt. In the above example, denoting by St(?) the amount of food in the stomach
at time ¢, we have the level equation



St(t+1) = St(t) + eating rate *dt — digestion rate * dt

The time spent in each stage can be modelled by the use of delays. The simplest type of
delay is the exponential delay. If for example the average time taken to digest food is 4
time units, the digestion rate is equal toStT(t). Modern SD software has the facility to
implement more complex types of delay function, such as pipeline delays and batch
delays, which permit non-exponential dwelling times in the various stages to be
modelled. However SD undeniably lacks the total flexibility of discrete event simulation,
which can use virtually any probability distribution function, or empirical data, to model
state dwelling times.

As with most modelling approaches, the process of formulating the problem improves
communication and increases understanding of the problem. More tangible outputs are
numerical in the form of tables and graphs providing specific data on how the variables
are changing with time. In recent years there has been a trend towards SD software that
is easy to use and does not require any knowledge of computer programming. STELLA,
for example, has a “drag and drop” interface so that the user can select icons for levels,
rates, etc, place them on the screen, connect them up, and edit their properties; the
software then automatically generates the underlying equations and runs the model,
collecting and presenting the output.

3. Applications of system dynamics models

SD models have the capability of using descriptive or judgmental data as well as
numerical data. The overall emphasis, particularly of qualitative models, is on policy
rather than decisions. SD models are not used for optimisation or point prediction. In fact,
Jay Forrester [2] said that SD models are “learning laboratories” and rather more
contentiously, David Lane [5] argued that SD models are never more than 40% accurate.

In a special issue of the Journal of the British Operational Research Society [3] on the
theme “System Dynamics for Policy, Strategy and Management Education”, Brian
Dangerfield presented a survey of applications of system dynamics to health care issues
in Europe [6]. Dangerfield’s own work with Carole Roberts in the field of HIV/AIDS
modelling is well known, and their 1990 paper [7] on quantitative SD models for AIDS
won the OR Society President’s Medal for its role in increasing public awareness of OR
modelling.

An example of a qualitative SD application is Wolstenholme’s model [8] for community
care. The intention behind the government Community Care legislation in 1993 was to
reduce public spending on social services. This was to be achieved by transferring
responsibility for the home care of the elderly from central government to strictly cash-
limited local social services departments. Thus hospitals would no longer be able to
discharge patients on purely medical grounds, but would first have to check that money
was available in the local social services budget to support each patient before he or she



was discharged. In theory, this would reduce the number of discharges and would reduce
overall social services costs.
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Figure 3. Wolstenholme’s model for community care (after Wolstenholme, [8])

This intended effect is shown in the inner loop of the influence diagram in Figure 3.
However the outer loop of this model shows that an (unintended) effect of the
Community Care Act would actually be actually to increase social service spending, since
as hospital discharges decrease fewer beds become available, thus limiting admissions,
and increasing the number of sick elderly people in the community awaiting admission
and requiring costly care at home.

Wolstenholme chose SD because he wished to communicate with politicians and health
care planners in order to expose how unintended effects might cause waiting lists to
increase. Accurately estimating the actual numbers of patients was less important than
gaining an understanding of how the system worked. The model was extended to include
other types of residential care and was implemented in an interactive gaming mode.

A more recent example, this time of a quantitative SD model, is Townshend and Turner’s
model [9] for screening for Chlamydia, a sexually transmitted infection that is a major
cause of infertility in the UK. Chlamydia infection is a good candidate for screening as it
1s asymptomatic in its early stages yet can still be detected and successfully treated.
Townshend and Turner constructed an ithink (STELLA) model of a population stratified
by age and by risk group, using subscripted arrays. They chose SD partly because of the
large populations in the model, which would make a DES model too cumbersome to run,
and partly because of the need to model the feedback effects due to re-infection of treated
people, and the reduction in the prevalence of Chlamydia after screening.

Other health care-related SD models well known in the literature are Coyle’s qualitative
study of short-stay psychiatric patients [10] and Lane ef al’s model [11] for an accident



and emergency department. SD models developed by ORAHS members include Rauner’s
quantitative model for predicting the size of the AIDS epidemic in Austria [12]. These
models all handle very large populations.

To summarise, SD models are mainly used at a strategic or conceptual level; they are
basically deterministic, and they treat simulated objects as a continuous mass. The aim of
an SD model is usually to gain an understanding of feedback dynamics and long-term
system behaviour. The models may not be simulated at all since the influence diagrams
are often found to be the most useful part of the modelling process. SD does not attempt
optimisation or point prediction, but it is capable of modelling very large complex
systems and can deliver a wealth of qualitative and quantitative output measures. SD is
less good at detailed resource allocation problems. Parameter estimation and validation
are less of an issue with SD than with DES (but still difficult). Compared with DES, and
with a few notable exceptions, SD models are not all that well-known in the academic
community and are not widely used by practitioners.

4. Case study: Hilton’s SD model for cardiac surgery

The case study was developed as an initial stage in Hilton’s doctoral thesis. The model
used the SD software STELLA, in order to investigate the long waiting lists known to
exist for NHS patients requiring cardiac surgery.

In the model, patients suffering from coronary artery disease were referred to a cardiac
surgeon who clinically assessed them. If they were considered suitable for Coronary
Artery Bypass surgery, they were then placed on a waiting list. There were three types of
waiting list, depending on the severity of disease. Patients could switch between waiting
lists and could also come into the system as emergency admissions.

In the model, the number of patients who could be treated per annum was governed by
the contract level. The contract level is a fixed number of operations that the local Health
Authority agrees (annually in advance) to buy from the providing hospitals. It was
assumed that surgery was carried out on a “worst-come-first-served” basis, so patients
considered to have the greatest clinical need were treated first.

The aims of this early model were
¢ to identify the influences acting on the waiting lists;
e to improve understanding of the dynamics of the lists;
e to investigate how the lists interact with each other.

An influence diagram was drawn, specifically linking waiting list length with other
identified relevant system variables. This influence diagram contains four loops, all of
which affect waiting list length; three are reinforcing with only one balancing, shown in
Figures 4a — 4d.
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Figure 4a. Cancellations have an adverse
effect on waiting list length

Figure 4b. Patients wait for treatment so
end up requiring a longer stay in hospital
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Figure 4d. A balancing loop; patients
leave waiting list so it reduces

From this influence diagram a representation of the basic structure of the cardiac system
was devised, as shown in Figure 5. This schematically represents the possible pathways
for patients to follow, after they have presented with cardiac symptoms and been referred

for a surgical consultation.
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Figure 5. Schematic representation of Cardiac
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In Figure 5, following a decision made by the surgeon, and assuming that the patient is
considered suitable for surgery, the patient is placed on a waiting list either as a routine,
urgent or unstable patient.

Based on the simple diagram a system dynamics flowchart was constructed to enable the
model to be completed. The waiting lists have been considered to be a stock of patients
with the valves that determine the input and output of the waiting lists to be the referral
rate and the admission rate in each case. The SD diagram is shown in Figure 6.

Quantitative data were required in order to complete the model and allow it to run. This
was gathered from surgeons and databases in a large teaching hospital. Several
simulations were run altering, systematically, the variables and the results analysed, some
of which are presented here.
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Figure 7 shows that as contract levels increase, so does the number of routine patients
who are treated. At very low contract levels, the number of treatments available is only
just sufficient to cope with the unstable and urgent patients. In this scenario almost no
routine patients can be scheduled for treatment as routine patients, and they are only
treated when their condition deteriorates and they are reclassified as unstable or
emergency. As more treatments become available, more routine patients can be treated
directly from the routine waiting list and not following an “upgrade” due to a change in
clinical status.

Figure 8 shows that the effect of the contract level on the number of emergency patients
requiring admission is considerable. An insufficient contract level puts pressure on the
waiting lists. Patients wait a long time for treatment as throughput is limited. As the
disease suffered by the patient advances the likelihood of the patient coming to hospital
as an emergency is increased, leading to an increased number of emergency admissions.

As the contract level increases, the emergency arrival rate can only be reduced to a
certain level, as there is always a cohort of patients who do not know that they are
suffering from coronary artery disease as it is not always manifested by recognisable
symptoms. This means that timely provision of treatment will prevent patient disease



levels progressing to a point where an emergency admission is necessary, but some
patients will only realise that treatment is required following a severe heart attack.

System dynamics was used in this model since the focus of the study was not to follow
individual patients around the system, but to look at the behaviour of certain aspects of
the system. No attempt was to be made to optimise the running of the cardiac system.
However, an understanding of how the system as a whole reacted to changes in, for
instance, contract policy, was to be gained. In addition SD allowed qualitative factors to
be considered in the construction of the influence diagram.

Further study is currently being carried out, expanding the system observed here to
include other stages of the cardiac pathway, that is General Practitioners and
Cardiologists. This will enable additional understanding to be gained about how different
waiting lists interact across a medical/surgical interface.

5. The basic elements of discrete event simulation

DES is arguably the most widely used OR technique in practice. It is used to model
systems that can be viewed as a queueing network. Individual objects (entities) pass
through a series of activities, in between which they wait in queues. The rules governing
the order in which these activities occur and the conditions for them to take place can be
extremely complex. Each individual entity can be given characteristics that determine
what happens to that individual in the system. The durations of the activities are usually
sampled from probability distribution functions. The modeller has almost unlimited
flexibility in the choice of these functions and the logic governing the flow of entities
around the system.

DES models make frequent use of animation and graphics, and can be made interactive;
all these features are very useful for communication with clients. The models produce a
vast range of output, often showing the whole distribution of possible outcomes in
addition to summary measures. However each simulation run or iteration only represents
one realisation of the system (one possible outcome), and highly variable systems require
many iterations. Reducing the variance of the simulation results can be extremely
important, and the interpretation of results needs care. Model validation is an important
issue because of the quantitative nature of the results.

DES models have traditionally been applied at a tactical, operational level. They are by
definition stochastic in nature and deal with distinct entities, scheduled activities, queues
and decision rules. DES models are simulated in unequal timesteps (when “something
happens”); the model is almost always simulated, and DES requires large amounts of
quantitative, numerical data. The aim of these models is often comparison of scenarios,
prediction, or optimising specified performance criteria.

The preliminary or conceptual model in DES is the activity diagram, which can play a
similar role to the influence diagram in SD in facilitating discussion between modeller
and client to gain understanding of the system. An activity diagram shows the logic of the
flow of entities through queues and activities in the form of a linked network of circles



and rectangles. An example of a simple activity diagram is shown in Figure 9. The circle
“Wait” is a queue, and the rectangle “Service” is an activity requiring the resource
“Server”. Customer entry and exit points in the system are shown by zigzag lines.
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Figure 9. Activity diagram for a simple queueing system

As with SD software, the increase in power and availability of PC’s has led to a trend
towards user-friendly and cheap DES software. The advantages are obvious — it is easy to
develop a rough working model very quickly, no knowledge of programming is required,
and it facilitates communications with clients if the modeller can develop and run a
demonstration model during a single meeting. A well-known example of this type of
software is SIMULS [13]. However these packages need to be handled with care; the
simulation results need intelligent analysis by people with some knowledge of statistics,
as it is easy to draw disastrously wrong conclusions. The software does have its
limitations — it can be too rigid, and it can be difficult to model simultaneous or
interrupted activities, or complex logical rules. For some situations, for example in
academic research or for unusual complex systems, the only solution may be to write the
simulation from scratch in a programming language such as C++ or Pascal. This of
course can be expensive and time-consuming.

6. Applications of discrete event simulation models

The relative dominance of DES over SD in practice is reflected by the vast number of
health care applications of DES, compared with SD. Examples abound in the literature in
a very wide range of application areas. A recent survey paper by Jun et al [14] contained
117 references for clinic models alone. Examples of models by members of the ORAHS
Working Group include Davies and Brailsford’s model for screening for diabetic
retinopathy [15], Riley’s model of Accident and Emergency departments [16], Shahani et
al’s hospital capacity model [17], and Davies’ renal transplant model [18]. Davies and
Davies [19] argue that DES is the technique of choice for modelling health care systems,
which are characterised by variability, uncertainty, and complexity.

To summarise, DES is capable of modelling great complexity and detail, yet the models
remain transparent to clients. DES models are nearly always expensive to develop and
run-times can be long. Animation and graphics are very useful in communicating with
clients. Parameter estimation can be a problem and DES models often require vast
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amounts of data. Validation can be difficult. Many DES models are well-known in the
academic community, yet are still not always widely used in practice; the reasons for this
are not clear.

7. Case study: Brailsford’s DES model for AIDS

This model was developed as part of Brailsford’s MSc dissertation [20]. The model used
an early version of Davies and O’Keefe’s PASCAL SIM [21] and was coded in Pascal.
The model simulated a population of male homosexuals, including recruitment of new
individuals, and was basically driven by a “natural history” model of the progression of
HIV infection in an individual. The model also included resource use and transmission of
the virus.

In the model, the number of new cases caused by an infected individual depended on
three things; the proportion of susceptible (HIV-negative) men in the population, the
average number of different sexual partners the infected individual has per unit time, and
the probability that a contact between that infected individual and an HIV-negative man
would result in a new infection. This probability, known as the force of infection,
depended on the clinical status of the infected individual.

The natural history model contained five clinical states, shown in Figure 10, in increasing
degrees of severity: HIV+, Persistent Generalised Lymphadenopathy (PGL), AIDS
Related Complex (ARC), AIDS, and Dead. Individual differences in sexual behaviour
were modelled by sampling the average number of sexual partners each individual had
per annum from a negative exponential distribution. Evidence [22] showed that there is
considerable variation between individuals; a few high-risk individuals have a large
number of partners, but the majority of individuals have a small number of different
partners. Figure 5 also shows how clinical progression is linked to resource use and viral
transmission. A very limited set of resources was used: GP time, hospital out-patient
visits and hospital bed utilisation. Clinical status was known to affect the viral
transmission rate. Infectivity is high in the early stages of infection, but then falls and
only rises again just before the onset of clinical AIDS.

This was a very detailed model requiring the estimation of many unknown parameters.
One technical difficulty, the modelling of simultaneous activities (clinical progression,
consumption of resources and infecting other people) was overcome by the use of
shadow entities, a device proposed by Tocher [23]. Each individual in the simulation had
two shadows, one that consumed resources and one that generated new infections, both
depending on the current clinical status of the individual. The “parent” entity is linked to
its shadows by the use of pointers, and so when a person passes from one clinical stage to
the next, the shadows can be easily located, removed from their current activity or queue,
and moved on.
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Figure 10. Three parallel processes in the AIDS simulation

DES was selected as a modelling technique because of the need to track individuals
through the system, and to capture the considerable variation between individuals.
Variability in sexual behaviour is known to be a critical variable affecting the spread of
the epidemic [24]. There were relatively few HIV+ cases compared with the total
population, so large numbers were not a problem. Some activities were of very short
duration, for example GP visits, whereas the clinical transition times were very long.
Lack of data was inevitably a problem, partly due to the time constraints of the MSc
dissertation, and the data used were mainly a combination of hypothetical data plus
expert medical opinion. The model output consisted of the numbers in each clinical state,
plus resource utilisation. The model was further developed over the next three years in
Brailsford’s PhD thesis [25].

8. The crucial question: which is better?

How do you choose which method to use? Are some systems “naturally” better modelled
by SD or by DES ... and if so, why? Does the choice of technique simply depend on the
personal preference of the modeller, because people tend to stick to what they know best
and feel most comfortable with? The answers may depend less on the system being
modelled, than on the purpose of the model: what sort of questions do we want our
model to answer?

The criteria on which the selection should be made are summarised in Table 1. Of course,
these are not hard and fast rules, and value judgments are involved: for example, how
large is “large”. Many problems will have features of both approaches and it will be
necessary to prioritise, and decide which approach tackles the most important issues.
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DES SD

Scope Operational, tactical Strategic
Importance of High Low
variability
Importance of tracking | High Low
individuals
Number of entities Small Large
Control Holding (queues) Rates (flows)
Relative timescale Short Long
Purpose Decisions: optimisation, Policy making: gaining

prediction and comparison understanding

Table 1. Criteria for selection of modelling approach

For example, suppose the system under consideration is a hospital out-patients clinic. We
might choose SD if we are looking at the clinic in a broad context, and we are interested
in its interaction with other parts of the hospital or the community health service; if all
patients are roughly similar in behaviour; if there are large numbers of patients; if we
want qualitative output (for example why certain clinics overrun, and how this affects
discharges from surgical wards); and if we have a timescale of weeks, months or years.

On the other hand, we might choose DES if we are looking at the clinic in a narrow
context, and there is little contact with the outside world; if individual patients differ
considerably in behaviour; if there are relatively small numbers of patients; if we want
quantitative output (patient waiting times, resource utilisation, etc); if we want to
compare scenarios, for example different staffing levels; and if we have a timescale of
hours or days.

Two comparisons in the literature are of interest in this context. It should be pointed out
that both comparisons were made by afficionados of SD, and that the earlier comparison
by Randers [26] was not a direct comparison between SD and DES, but between SD and
quantitative modelling approaches in general. The authors are grateful to David Lane for
bringing the Randers’ comparison to their attention. The technological developments in
computer hardware and software since 1980, when Randers made his comparison, also
affect the validity of this comparison today.

Randers’ comparison is shown in Figure 11. The nine axes represent the criteria for
comparison. Few would disagree with Randers’ view that SD outperforms DES in the
areas of insight generating ability, mode reproduction ability (the ability for models to be
used in different contexts), fertility (the ability to spark off creative new ideas through
the modelling process), and ease of enrichment (the ease with which the model can be
extended or developed). Adherents of DES might argue that today DES models are
equally, or even more, transparent than SD models because of the powerful graphical and
animation facilities provided by modern software. For the same reasons DES users might
also disagree with Randers that SD models score higher on descriptive realism.
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Figure 11. Randers’ comparison (after Randers [26])

The keenest proponent of SD would have to admit that DES is superior in the areas of
formal correspondence with data and point predictive ability, although in fairness SD
does not attempt to compete here. In the authors’ view, both approaches can be equally
useful and relevant if used appropriately, although DES has actually been used more
widely than SD.

David Lane himself presented the following comparison [5], shown in Table 2. Lane
argues that DES models are analytic, in the literal sense that they break a system down
into its constituent parts. The complexity of a DES model lies in the detail, whereas SD
takes a holistic view and its complexity lies in the dynamic interactions between the
elements of the system. Lane also argues that clients find DES models convincing, but
that they do not really understand all the underlying mechanics of the model, for example
the probability distributions, sampling procedures and simulation methodology — three
phase, process-based. He uses Pidd’s analogy of modelling [27], contrasting a white box,
where the client totally understands the internal workings of the model, with a black box,
where the client has no idea whatsoever what goes on inside the model. Lane argues that
DES is a “dark grey box” where the client has an inkling of how the model works,
whereas SD is an “fuzzy glass box”, where the client has really quite a good grasp of
what the model does. We feel that while this may be true of qualitative SD models, it is
unlikely to be true of quantitative models; few clients would feel comfortable with
numerical integration or the mathematical formulae underlying a large complex model.
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DES

SD

Perspective Analytic, emphasis on detail Holistic, emphasis on dynamic
complexity complexity
Resolution Individual entities, attributes, | Homogenised entities, continuous

decisions and events

policy pressures and emergent
behaviour

Data sources

Numerical with some
judgmental elements

Broadly drawn

Problems Operational (?) Strategic (?)

studied

Model Physical, tangible plus some | Physical, tangible, judgmental and
elements information information links

Human agents | Decisions Policies

Clients find the | Opaque, “dark grey box™: Transparent, “Fuzzy glass box”;
model convincing compelling

Outputs Point predictions, Understanding of structural source of

performance measurcs

behaviour modes

Table 2. Lane’s comparison (due to Lane [27])

In Lane’s experience clients find SD models compelling; he believes they are excited by
SD models whereas they find DES models more mundane (although convincing). It
should be borne in mind that Lane is a proponent of SD, and users of DES might well

argue that their clients have found their models both exciting and convincing! However
Lane calls for closer links between the two communities of modellers, which can only be
of mutual benefit.

9. Conclusion

We have attempted to give an overview of discrete event simulation and system
dynamics, to describe the strengths and weaknesses of each approach in (hopefully) an
unbiased way, and to offer some guidelines to potential users about the selection of an
appropriate technique for a given problem. We echo David Lane’s opinion that more
communication and discourse between the communities of SD and DES modellers would
have great benefit, particularly in the field of health care.
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