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Abstract 
 

In this paper we discuss two different approaches to simulation, discrete event simulation and system 
dynamics.  Both have been used widely in the health care domain, although there are fewer applications of 
system dynamics. The aim of this paper is not to give a comprehensive survey of the literature, but rather to 
discuss whether the choice of methodology is purely the personal preference of the modeller, or whether 
there are identifiable features of certain systems that make one methodology superior to the other.  We 
illustrate the use of these techniques by considering two case studies, a simple discrete event simulation 
model of HIV/AIDS and a system dynamics model of the UK cardiac surgery system. We attempt to draw 
up some guidelines to assist the modeller in making the choice of technique.  
 
 
1.  Introduction 
 
Simulation is arguably the most commonly used Operational Research technique and it 
has been widely used in the health care domain, chiefly because of the advantages it has 
over other techniques in its flexibility, ability to deal with variability and uncertainty, and 
its use of graphical interfaces to facilitate communication with, and comprehension by, 
health care professionals. These features have often made simulation the technique of 
choice in modelling health care systems, which may involve complex biological, 
organisational and human behavioural processes, and multidisciplinary teams of 
modellers (e.g. epidemiologists, clinicians, managers, nurses, GPs, or health economists). 
 
Discrete event simulation and system dynamics are two quite different approaches to 
simulation modelling. Discrete event simulation models systems as networks of queues 
and activities, where state changes in the system occur at discrete points of time. The 
objects in the system are distinct individuals, each possessing characteristics that 
determine what happens to that individual, and the activity durations are sampled for each 
individual from probability distributions. 
 
On the other hand system dynamics models a system as a series of stocks and flows, in 
which the state changes are continuous. A system dynamics model views “entities” as a 
continuous quantity, rather like a fluid, flowing through a system of reservoirs or tanks 
connected by pipes. The rates of flow are controlled by valves, and so the time spent in 
each reservoir is modelled by fixing the rates of inflow and outflow. Although the state 
changes are regarded as continuous, the underlying equations used to solve the model are 
difference equations (usually solved by numerical integration) which discretise time 
using a time-slicing approach. 
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System dynamics is essentially deterministic whereas discrete event simulation is 
stochastic.  System dynamics can be used qualitatively and has strong links with the 
problem structuring approach of causal link or influence diagrams, and so there is a 
tendency to use system dynamics at a higher, more strategic level in order to gain insight 
into the interrelations between the different parts of a complex system. Discrete event 
simulation, on the other hand, has traditionally been used at a more operational or tactical 
level to answer specific questions; for example, in the healthcare domain, to solve 
resource allocation problems or to compare and evaluate medical interventions.  
 
 
 
2.   The basic elements of system dynamics  
 
System dynamics (SD) is an analytical modelling methodology that can be attributed to 
Jay Forrester [1,2], whose work on “industrial dynamics” at the Massachusetts Institute 
of Technology led to the development of the process.  It combines two distinct aspects; 
one qualitative and one quantitative, with the aim of enhancing the understanding of an 
identified problem and improving comprehension of the structure of the problem and the 
relationships present between relevant variables. 
 
Because of the flexibility of the process, along with its ability to combine both qualitative 
and quantitative information, SD has been applied in many different fields of study 
including project management, defence analysis and, most relevantly to the following 
examples illustrated here, health care.  
 
The qualitative aspect of SD was not initially considered to be a very important part of 
the approach.  However in recent years the benefits of focussing on this aspect have been 
increasingly appreciated [3].  The initial discussion of the problem being modelled works 
to identify the elements considered fundamental to the system and those that are likely to 
generate an influence in the problem situation.  The identified elements are presented in 
the form of an influence diagram, an example of which is shown in Figure 1. 
 

Food in stomach

hunger

eating

+

+

-
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digestion
-

 
 

Figure 1.  Influence diagram to demonstrate notation 
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The identified elements are connected by arrows. The “+” and  “−” signs denote the 
direction of the influence, but do not show the magnitude of the influence.  For example, 
as eating increases food in stomach increases, shown by a “+”; as digestion increases,  
food in stomach decreases, shown by a “−”.  In this way complex and informative 
diagrams can be built up to represent and clarify the problem being investigated, 
providing insights into how the variables interact. 
 
In many cases the qualitative analysis of these diagrams is of considerable value in its 
own right. The aim of this analysis is to find loops, as in the above example, where 
elements are connected by a directed cycle of arrows. Balanced loops contain an odd 
number of “−” signs, whereas reinforcing loops or vicious circles contain an even number 
of “−” signs. The above example, a balanced loop, shows how the system regulates itself. 
The hungrier we are, the more we want to eat.  Eating obviously increases the amount of 
food in our stomach, but this makes us feel less hungry, so we stop eating.  Identifying 
both types of loop can be very helpful in understanding system behaviour. 
 
If a quantitative model is to be developed, the influence diagram is converted to a flow 
diagram. Figure 2 shows the flow diagram for this system in the notation of the software 
STELLA [4]. This flow diagram has been constructed from the influence diagram shown 
in Figure 1.  The two “clouds” represent a source and a sink, in other words infinite 
amounts of the material (in this case, food) that flows through the system. The stomach is 
modelled as a stock or level of food.    Eating and digestion are defined as rates, in this 
case the rates at which food flows into and out of the stomach. Food can flow into or out 
of a stock according to numerical values defining the rates of eating and digesting.  
Hunger is a  “soft” variable that can be measured, as opposed to quantified, and can be 
defined graphically.  It is linked to, and therefore influences, the rate at which eating 
takes place.  The quantity of food in the stomach in turn influences hunger, completing 
the cycle.  
 

Food in stomach

hunger

eating digestion

 
 

Figure 2.  Example of a simple model using STELLA notation 
 

Using computer software such as STELLA, the relevant numerical data can be entered in 
integer, equation or graphical format and the model can then be run as a simulation.  It 
shows how variables change over time, allowing their behaviour to be monitored and 
analysed. Time is handled in these quantitative models by a discretisation process where 
the time-step, dt, is usually chosen such that all the rates can be regarded as constant over 
the period dt.  In the above example, denoting by St(t) the amount of food in the stomach 
at time t, we have the level equation 
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St(t+1) = St(t) + eating rate *dt – digestion rate * dt 

 
The time spent in each stage can be modelled by the use of delays. The simplest type of 
delay is the exponential delay.  If for example the average time taken to digest food is 4 

time units, the digestion rate is equal to
4

)(tSt .   Modern SD software has the facility to 

implement more complex types of delay function, such as pipeline delays and batch 
delays, which permit non-exponential dwelling times in the various stages to be 
modelled. However SD undeniably lacks the total flexibility of discrete event simulation, 
which can use virtually any probability distribution function, or empirical data, to model 
state dwelling times. 
 
As with most modelling approaches, the process of formulating the problem improves 
communication and increases understanding of the problem.  More tangible outputs are 
numerical in the form of tables and graphs providing specific data on how the variables 
are changing with time.  In recent years there has been a trend towards SD software that 
is easy to use and does not require any knowledge of computer programming. STELLA, 
for example, has a “drag and drop” interface so that the user can select icons for levels, 
rates, etc, place them on the screen, connect them up, and edit their properties; the 
software then automatically generates the underlying equations and runs the model, 
collecting and presenting the output. 
 
 
3.  Applications of system dynamics models 
 
SD models have the capability of using descriptive or judgmental data as well as 
numerical data. The overall emphasis, particularly of qualitative models, is on policy 
rather than decisions. SD models are not used for optimisation or point prediction. In fact, 
Jay Forrester [2] said that SD models are “learning laboratories” and rather more 
contentiously, David Lane [5] argued that SD models are never more than 40% accurate.  
 
In a special issue of the Journal of the British Operational Research Society [3] on the 
theme “System Dynamics for Policy, Strategy and Management Education”,  Brian 
Dangerfield presented a survey of applications of system dynamics to health care issues 
in Europe [6]. Dangerfield’s own work with Carole Roberts in the field of HIV/AIDS 
modelling is well known, and their 1990 paper [7] on quantitative SD models for AIDS 
won the OR Society President’s Medal for its role in increasing public awareness of OR 
modelling. 
 
An example of a qualitative SD application is Wolstenholme’s model [8] for community 
care.  The intention behind the government Community Care legislation in 1993 was to 
reduce public spending on social services. This was to be achieved by transferring 
responsibility for the home care of the elderly from central government to strictly cash-
limited local social services departments. Thus hospitals would no longer be able to 
discharge patients on purely medical grounds, but would first have to check that money 
was available in the local social services budget to support each patient before he or she 
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was discharged. In theory, this would reduce the number of discharges and would reduce 
overall social services costs. 
 
 

 

 

 

 
 

 

Community care budget

Hospital discharge 
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Community care costs 

Hospital 
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Figure 3. Wolstenholme’s model for community care (after Wolstenholme
 
This intended effect is shown in the inner loop of the influence diagram in Figu
However the outer loop of this model shows that an (unintended) effect of the 
Community Care Act would actually be actually to increase social service spen
as hospital discharges decrease fewer beds become available, thus limiting adm
and increasing the number of sick elderly people in the community awaiting ad
and requiring costly care at home. 
 
Wolstenholme chose SD because he wished to communicate with politicians an
care planners in order to expose how unintended effects might cause waiting lis
increase. Accurately estimating the actual numbers of patients was less importa
gaining an understanding of how the system worked. The model was extended 
other types of residential care and was implemented in an interactive gaming m
 
A more recent example, this time of a quantitative SD model, is Townshend an
model [9] for screening for Chlamydia, a sexually transmitted infection that is a
cause of infertility in the UK. Chlamydia infection is a good candidate for scree
is asymptomatic in its early stages yet can still be detected and successfully trea
Townshend and Turner constructed an ithink  (STELLA) model of a population
by age and by risk group, using subscripted arrays. They chose SD partly becau
large populations in the model, which would make a DES model too cumberso
and partly because of the need to model the feedback effects due to re-infection
people, and the reduction in the prevalence of Chlamydia after screening. 
 
Other health care-related SD models well known in the literature are Coyle’s qu
study of short-stay psychiatric patients [10] and Lane et al’s model [11] for an 
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and emergency department. SD models developed by ORAHS members include Rauner’s 
quantitative model for predicting the size of the AIDS epidemic in Austria [12]. These 
models all handle very large populations. 
 
To summarise, SD models are mainly used at a strategic or conceptual level; they are 
basically deterministic, and they treat simulated objects as a continuous mass. The aim of 
an SD model is usually to gain an understanding of feedback dynamics and long-term 
system behaviour. The models may not be simulated at all since the influence diagrams 
are often found to be the most useful part of the modelling process. SD does not attempt 
optimisation or point prediction, but it is capable of modelling very large complex 
systems and can deliver a wealth of qualitative and quantitative output measures. SD is 
less good at detailed resource allocation problems.  Parameter estimation and validation 
are less of an issue with SD than with DES (but still difficult).  Compared with DES, and 
with a few notable exceptions, SD models are not all that well-known in the academic 
community and are not widely used by practitioners. 
 
 
4.  Case study: Hilton’s SD model for cardiac surgery 
 
The case study was developed as an initial stage in Hilton’s doctoral thesis.  The model 
used the SD software STELLA, in order to investigate the long waiting lists known to 
exist for NHS patients requiring cardiac surgery. 
 
In the model, patients suffering from coronary artery disease were referred to a cardiac 
surgeon who clinically assessed them.  If they were considered suitable for Coronary 
Artery Bypass surgery, they were then placed on a waiting list.  There were three types of 
waiting list, depending on the severity of disease.  Patients could switch between waiting 
lists and could also come into the system as emergency admissions. 
 
In the model, the number of patients who could be treated per annum was governed by 
the contract level.  The contract level is a fixed number of operations that the local Health 
Authority agrees (annually in advance) to buy from the providing hospitals. It was 
assumed that surgery was carried out on a “worst-come-first-served” basis, so patients 
considered to have the greatest clinical need were treated first. 
 
The aims of this early model were  

• to identify the influences acting on the waiting lists; 
• to improve understanding of the dynamics of the lists; 
• to investigate how the lists interact with each other.  

 
An influence diagram was drawn, specifically linking waiting list length with other 
identified relevant system variables. This influence diagram contains four loops, all of 
which affect waiting list length; three are reinforcing with only one balancing, shown in 
Figures 4a – 4d.  
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Figure 4a.  Cancellations have an adverse Figure 4b.   Patients wait for treatment so 
effect on waiting list length   end up requiring a longer stay in hospital 
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Figure 4c.  If patients have to stay in   Figure 4d.  A balancing loop; patients 
hospital longer, costs increase   leave waiting list so it reduces 
 
 
From this influence diagram a representation of the basic structure of the cardiac system 
was devised, as shown in Figure 5.  This schematically represents the possible pathways 
for patients to follow, after they have presented with cardiac symptoms and been referred 
for a surgical consultation. 
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Figure 5.  Schematic representation of Cardiac
waiting lists of different  priorites.
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In Figure 5, following a decision made by the surgeon, and assuming that the patient is 
considered suitable for surgery, the patient is placed on a waiting list either as a routine, 
urgent or unstable patient.  
 
Based on the simple diagram a system dynamics flowchart was constructed to enable the 
model to be completed.  The waiting lists have been considered to be a stock of patients 
with the valves that determine the input and output of the waiting lists to be the referral 
rate and the admission rate in each case.  The SD diagram is shown in Figure 6. 
 
Quantitative data were required in order to complete the model and allow it to run.  This 
was gathered from surgeons and databases in a large teaching hospital.  Several 
simulations were run altering, systematically, the variables and the results analysed, some 
of which are presented here. 
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Figure  7.  Graph to show the change in
 routine throughput with differing

contract levels

Figure  8.  Graph to show the effect of
contract level on the number of

emergencies  
 
Figure 7 shows that as contract levels increase, so does the number of routine patients 
who are treated. At very low contract levels, the number of treatments available is only 
just sufficient to cope with the unstable and urgent patients.  In this scenario almost no 
routine patients can be scheduled for treatment as routine patients, and they are only 
treated when their condition deteriorates and they are reclassified as unstable or 
emergency.  As more treatments become available, more routine patients can be treated 
directly from the routine waiting list and not following an “upgrade” due to a change in 
clinical status. 
 
Figure 8 shows that the effect of the contract level on the number of emergency patients 
requiring admission is considerable.  An insufficient contract level puts pressure on the 
waiting lists.  Patients wait a long time for treatment as throughput is limited.  As the 
disease suffered by the patient advances the likelihood of the patient coming to hospital 
as an emergency is increased, leading to an increased number of emergency admissions. 
 
As the contract level increases, the emergency arrival rate can only be reduced to a 
certain level, as there is always a cohort of patients who do not know that they are 
suffering from coronary artery disease as it is not always manifested by recognisable 
symptoms.  This means that timely provision of treatment will prevent patient disease 
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levels progressing to a point where an emergency admission is necessary, but some 
patients will only realise that treatment is required following a severe heart attack. 
 
System dynamics was used in this model since the focus of the study was not to follow 
individual patients around the system, but to look at the behaviour of certain aspects of 
the system.  No attempt was to be made to optimise the running of the cardiac system.  
However, an understanding of how the system as a whole reacted to changes in, for 
instance, contract policy, was to be gained.  In addition SD allowed qualitative factors to 
be considered in the construction of the influence diagram. 
 
Further study is currently being carried out, expanding the system observed here to 
include other stages of the cardiac pathway, that is General Practitioners and 
Cardiologists.  This will enable additional understanding to be gained about how different 
waiting lists interact across a medical/surgical interface. 
 
 
5.  The basic elements of discrete event simulation 
 
DES is arguably the most widely used OR technique in practice. It is used to model 
systems that can be viewed as a queueing network. Individual objects (entities) pass 
through a series of activities, in between which they wait in queues. The rules governing 
the order in which these activities occur and the conditions for them to take place can be 
extremely complex. Each individual entity can be given characteristics that determine 
what happens to that individual in the system. The durations of the activities are usually 
sampled from probability distribution functions. The modeller has almost unlimited 
flexibility in the choice of these functions and the logic governing the flow of entities 
around the system. 
 
DES models make frequent use of animation and graphics, and can be made interactive; 
all these features are very useful for communication with clients. The models produce a 
vast range of output, often showing the whole distribution of possible outcomes in 
addition to summary measures. However each simulation run or iteration only represents 
one realisation of the system (one possible outcome), and highly variable systems require 
many iterations. Reducing the variance of the simulation results can be extremely 
important, and the interpretation of results needs care. Model validation is an important 
issue because of the quantitative nature of the results. 
 
DES models have traditionally been applied at a tactical, operational level. They are by 
definition stochastic in nature and deal with distinct entities, scheduled activities, queues 
and decision rules. DES models are simulated in unequal timesteps (when “something 
happens”); the model is almost always simulated, and DES requires large amounts of 
quantitative, numerical data. The aim of these models is often comparison of scenarios, 
prediction, or optimising specified performance criteria. 
 
The preliminary or conceptual model in DES is the activity diagram, which can play a 
similar role to the influence diagram in SD in facilitating discussion between modeller 
and client to gain understanding of the system. An activity diagram shows the logic of the 
flow of entities through queues and activities in the form of a linked network of circles 
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and rectangles. An example of a simple activity diagram is shown in Figure 9. The circle 
“Wait” is a queue, and the rectangle “Service” is an activity requiring the resource 
“Server”. Customer entry and exit points in the system are shown by zigzag lines. 
 
 
 
 
 
 
 
 
 
 

 

Wait

ServiceServer 

Figure 9.   Activity diagram for a simple queueing system 
 
 
As with SD software, the increase in power and availability of PC’s has led to a trend 
towards user-friendly and cheap DES software. The advantages are obvious – it is easy to 
develop a rough working model very quickly, no knowledge of programming is required, 
and it facilitates communications with clients if the modeller can develop and run a 
demonstration model during a single meeting.  A well-known example of this type of 
software is SIMUL8 [13]. However these packages need to be handled with care; the 
simulation results need intelligent analysis by people with some knowledge of statistics, 
as it is easy to draw disastrously wrong conclusions. The software does have its 
limitations – it can be too rigid, and it can be difficult to model simultaneous or 
interrupted activities, or complex logical rules. For some situations, for example in 
academic research or for unusual complex systems, the only solution may be to write the 
simulation from scratch in a programming language such as C++ or Pascal. This of 
course can be expensive and time-consuming. 
 
 
6.  Applications of discrete event simulation models 
 
The relative dominance of DES over SD in practice is reflected by the vast number of 
health care applications of DES, compared with SD. Examples abound in the literature in 
a very wide range of application areas. A recent survey paper by Jun et al [14] contained 
117 references for clinic models alone. Examples of models by members of the ORAHS 
Working Group include Davies and Brailsford’s model for screening for diabetic 
retinopathy [15], Riley’s model of Accident and Emergency departments [16], Shahani et 
al’s hospital capacity model [17], and Davies’ renal transplant model [18].  Davies and 
Davies [19] argue that DES is the technique of choice for modelling health care systems, 
which are characterised by variability, uncertainty, and complexity.  
 
To summarise, DES is capable of modelling great complexity and detail, yet the models 
remain transparent to clients. DES models are nearly always expensive to develop and 
run-times can be long. Animation and graphics are very useful in communicating with 
clients. Parameter estimation can be a problem and DES models often require vast 
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amounts of data. Validation can be difficult. Many DES models are well-known in the 
academic community, yet are still not always widely used in practice; the reasons for this 
are not clear. 
 
 
7. Case study: Brailsford’s DES model for AIDS 
 
This model was developed as part of Brailsford’s MSc dissertation [20]. The model used 
an early version of Davies and O’Keefe’s PASCAL_SIM [21] and was coded in Pascal. 
The model simulated a population of male homosexuals, including recruitment of new 
individuals, and was basically driven by a “natural history” model of the progression of 
HIV infection in an individual. The model also included resource use and transmission of 
the virus.   
 
In the model, the number of new cases caused by an infected individual depended on 
three things; the proportion of susceptible (HIV-negative) men in the population, the 
average number of different sexual partners the infected individual has per unit time, and 
the probability that a contact between that infected individual and an HIV-negative man 
would result in a new infection.  This probability, known as the force of infection, 
depended on the clinical status of the infected individual. 
 
The natural history model contained five clinical states, shown in Figure 10, in increasing 
degrees of severity:  HIV+, Persistent Generalised Lymphadenopathy (PGL), AIDS 
Related Complex (ARC), AIDS, and Dead.  Individual differences in sexual behaviour 
were modelled by sampling the average number of sexual partners each individual had 
per annum from a negative exponential distribution. Evidence [22] showed that there is 
considerable variation between individuals; a few high-risk individuals have a large 
number of partners, but the majority of individuals have a small number of different 
partners. Figure 5 also shows how clinical progression is linked to resource use and viral 
transmission. A very limited set of resources was used: GP time, hospital out-patient 
visits and hospital bed utilisation.  Clinical status was known to affect the viral 
transmission rate. Infectivity is high in the early stages of infection, but then falls and 
only rises again just before the onset of clinical AIDS.  
 
This was a very detailed model requiring the estimation of many unknown parameters. 
One technical difficulty, the modelling of simultaneous activities (clinical progression, 
consumption of resources and infecting other people) was overcome by the use of 
shadow entities, a device proposed by Tocher [23]. Each individual in the simulation had 
two shadows, one that consumed resources and one that generated new infections, both 
depending on the current clinical status of the individual. The “parent” entity is linked to 
its shadows by the use of pointers, and so when a person passes from one clinical stage to 
the next, the shadows can be easily located, removed from their current activity or queue, 
and moved on. 
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Figure 10. Three parallel processes in the AIDS simulation 
 
 
DES was selected as a modelling technique because of the need to track individuals 
through the system, and to capture the considerable variation between individuals. 
Variability in sexual behaviour is known to be a critical variable affecting the spread of 
the epidemic [24]. There were relatively few HIV+ cases compared with the total 
population, so large numbers were not a problem. Some activities were of very short 
duration, for example GP visits, whereas the clinical transition times were very long. 
Lack of data was inevitably a problem, partly due to the time constraints of the MSc 
dissertation, and the data used were mainly a combination of hypothetical data plus 
expert medical opinion. The model output consisted of the numbers in each clinical state, 
plus resource utilisation.  The model was further developed over the next three years in 
Brailsford’s PhD thesis [25]. 
 
 
8. The crucial question: which is better? 
 
How do you choose which method to use? Are some systems “naturally” better modelled 
by SD or by DES … and if so, why? Does the choice of technique simply depend on the 
personal preference of the modeller, because people tend to stick to what they know best 
and feel most comfortable with? The answers may depend less on the system being 
modelled, than on the purpose of the model: what sort of questions do we want our 
model to answer? 
 
The criteria on which the selection should be made are summarised in Table 1. Of course, 
these are not hard and fast rules, and value judgments are involved: for example, how 
large is “large”. Many problems will have features of both approaches and it will be 
necessary to prioritise, and decide which approach tackles the most important issues. 
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 DES SD 
Scope Operational, tactical Strategic 
Importance of 
variability 

High Low 

Importance of tracking 
individuals 

High Low 

Number of entities Small Large 
Control Holding (queues) Rates (flows) 
Relative timescale Short Long 
Purpose 
 

Decisions: optimisation, 
prediction and comparison 

Policy making: gaining 
understanding 

 
Table 1. Criteria for selection of modelling approach 

 
For example, suppose the system under consideration is a hospital out-patients clinic. We 
might choose SD if we are looking at the clinic in a broad context, and we are interested 
in its interaction with other parts of the hospital or the community health service; if all 
patients are roughly similar in behaviour; if there are large numbers of patients; if we 
want qualitative output (for example why certain clinics overrun, and how this affects 
discharges from surgical wards); and if we have a timescale of weeks, months or years. 
 
On the other hand, we might choose DES if we are looking at the clinic in a narrow 
context, and there is little contact with the outside world; if individual patients differ 
considerably in behaviour; if there are relatively small numbers of patients; if we want 
quantitative output (patient waiting times, resource utilisation, etc); if we want to 
compare scenarios, for example different staffing levels; and if we have a timescale of 
hours or days. 
 
Two comparisons in the literature are of interest in this context. It should be pointed out 
that both comparisons were made by afficionados of SD, and that the earlier comparison 
by Randers [26] was not a direct comparison between SD and DES, but between SD and 
quantitative modelling approaches in general. The authors are grateful to David Lane for 
bringing the Randers’ comparison to their attention. The technological developments in 
computer hardware and software since 1980, when Randers made his comparison, also 
affect the validity of this comparison today. 
 
Randers’ comparison is shown in Figure 11. The nine axes represent the criteria for 
comparison. Few would disagree with Randers’ view that SD outperforms DES in the 
areas of insight generating ability, mode reproduction ability (the ability for models to be 
used in different contexts),  fertility (the ability to spark off creative new ideas through 
the modelling process), and ease of enrichment (the ease with which the model can be 
extended or developed). Adherents of DES might argue that today DES models are 
equally, or even more, transparent than SD models because of the powerful graphical and 
animation facilities provided by modern software.  For the same reasons DES users might 
also disagree with Randers that SD models score higher on descriptive realism. 
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Figure 11. Randers’ comparison  (after Randers [26]) 
 
 
The keenest proponent of SD would have to admit that DES is superior in the areas of 
formal correspondence with data and point predictive ability, although in fairness SD 
does not attempt to compete here.  In the authors’ view, both approaches can be equally 
useful and relevant if used appropriately, although DES has actually been used more 
widely than SD. 
 
David Lane himself presented the following comparison [5], shown in Table 2. Lane 
argues that DES models are analytic, in the literal sense that they break a system down 
into its constituent parts.  The complexity of a DES model lies in the detail, whereas SD 
takes a holistic view and its complexity lies in the dynamic interactions between the 
elements of the system. Lane also argues that clients find DES models convincing, but 
that they do not really understand all the underlying mechanics of the model, for example 
the probability distributions, sampling procedures and simulation methodology – three 
phase, process-based. He uses Pidd’s analogy of modelling [27], contrasting a white box, 
where the client totally understands the internal workings of the model, with a black box, 
where the client has no idea whatsoever what goes on inside the model. Lane argues that 
DES is a “dark grey box” where the client has an inkling of how the model works, 
whereas SD is an “fuzzy glass box”, where the client has really quite a good grasp of 
what the model does. We feel that while this may be true of qualitative SD models, it is 
unlikely to be true of quantitative models; few clients would feel comfortable with 
numerical integration or the mathematical formulae underlying a large complex model. 
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 DES SD 
Perspective Analytic, emphasis on detail 

complexity 
Holistic, emphasis on dynamic 
complexity 

Resolution Individual entities, attributes, 
decisions and events 
 

Homogenised entities, continuous 
policy pressures and emergent 
behaviour 

Data sources Numerical with some                 
judgmental elements 

Broadly drawn 

Problems 
studied 

Operational (?) Strategic (?) 

Model 
elements 

Physical, tangible plus some 
information 

Physical, tangible, judgmental and 
information links 

Human agents Decisions Policies 
Clients find the 
model 

Opaque, “dark grey box”: 
convincing 

Transparent, “Fuzzy glass box”; 
compelling 

Outputs Point predictions,          
performance measures 

Understanding of structural source of 
behaviour modes 

 
Table 2.  Lane’s comparison (due to Lane [27]) 

 
In Lane’s experience clients find SD models compelling; he believes they are excited by 
SD models whereas they find DES models more mundane (although convincing).  It 
should be borne in mind that Lane is a proponent of SD, and users of DES might well 
argue that their clients have found their models both exciting and convincing!  However 
Lane calls for closer links between the two communities of modellers, which can only be 
of mutual benefit. 
 
 
9. Conclusion 
 
We have attempted to give an overview of discrete event simulation and system 
dynamics, to describe the strengths and weaknesses of each approach in (hopefully) an 
unbiased way, and to offer some guidelines to potential users about the selection of an 
appropriate technique for a given problem. We echo David Lane’s opinion that more 
communication and discourse between the communities of SD and DES modellers would 
have great benefit, particularly in the field of health care.  
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