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Summary 

Wheel roughness measurements available from several different campaigns are 

presented in terms of average levels and dispersion. The dependence on factors 

such as brake type and whether the wheel is powered or trailing is also addressed. 

A method to decide how many wheels from a train are to be measured is then 

presented. Finally, the main outcomes are described from a round robin test aimed 

at assessing the effect on wheel roughness measurements of adopting different 

equipment, used independently by different teams,. 

1 Introduction 

The role played by the combined wheel and rail roughness in generating rolling 

noise is of fundamental importance ‎[1]. Along with the mobilities of the rail, of 

the wheel and of the contact, the roughness can be used in estimating the 

wheel-rail contact force. The motion of a wheel rolling along a track generates a 

force with an amplitude that is proportional to the roughness amplitude and at a 

frequency given by the ratio between the speed of the wheel centre and the 

roughness wavelength. A method to measure and analyse rail roughness is 

described in the standard EN15610:2009 [2]; however no equivalent standard 

exists for the measurement of wheel roughness. 

The EU project ACOUTRAIN is exploring the possibility of introducing some 

elements of virtual testing in the acoustic certification process of new rolling 

stock. In doing so, it is important to estimate the effect of uncertainty and 

variability. For example, in rolling noise prediction models, variability in 

measured wheel roughness will result in variability in the predictions of rolling 

noise. A measurement procedure has been proposed aimed at reducing this 

variability [3]. Construction of a database of measured wheel roughness is also 

desirable. Such a database can be used in the first instance to estimate the 

statistical distribution of roughness. Moreover, it can be used to identify the 

important factors influencing wheel roughness, e.g. braking system and powered 

or unpowered wheels. Finally, since it is not always possible to measure all the 
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wheels of a train, the database could be used to estimate the number of wheels 

required to be measured to obtain a representative sample for a whole train. 

The paper will first describe wheel roughness data measured in the last two 

decades among the ACOUTRAIN project partners in terms of statistical 

properties. The question of how many wheels should be measured from a 

particular train is addressed in Section 3. Finally, Section 4 is devoted to 

describing the results of a round robin test performed within the ACOUTRAIN 

project to assess the effect on wheel roughness measurements of adopting 

different equipment used independently by different teams. 

2 Wheel Roughness Description 

2.1 Description of the Database 

Wheel roughness data are currently available from seven campaigns between 1999 

and 2012 (see Table 1) and are continuously being updated. In total, data from 310 

wheels have been input into the database. The database is implemented with 

MATLAB objects, and the main wheel properties are described in Table 2. 

Table 1. Summary of available measurement campaigns with corresponding number of wheels 

Campaign Vehicle  Disc brakes Cast iron brakes Composite brakes 

A Regional  64 - - 

B Regional 26 - - 

C Regional  16 - - 

D Freight 32 28 - 

E Freight - 8 8 

F Freight - 16 48 

G Regional - 32 - 

Table 2. Summary of database wheel properties 

Property Database stored data 

Type of braking system Disc, cast iron, composite or metal sinter 

Tag for traction identification Powered, trailer 

Measurement campaign information Campaign name, train type, etc. 

Mileage since last reprofiling Not always available 

Position of the measured line(s) e.g. 60-70-80 mm from the flange back 

Acoustic roughness level One-third octave band data 

Out of roundness Harmonics 1-10 included where available 

One-third octave band wavelength  Wavelengths 

 

These campaigns took place over a time of 15 years and they were performed 

by different people with different equipment and with different post-processing 

software, thus adding a certain amount of additional variability, as will be 

discussed in Section 4. As a consequence, the wavelength range is not always 
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consistent among the campaigns; some of them in fact do not report the very long 

and/or the very short wavelengths. 

 

2.2 Analysis Procedure 

A single analysis is performed on a subset of N wheels and each subset is 

identified by certain factors. Normally, each wheel was measured along three 

different running lines. However, only the line corresponding to the nominal 

contact point (70 mm from the flange back) is considered here. 

The quantity observed is the wheel roughness level expressed in decibels as: 
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where rrms is the root mean square value of the measured roughness in a particular 

one-third octave band. The statistical analysis is based entirely on processed data 

in one-third octaves after application of suitable pre-processing such as removal of 

pits and spikes [2, 3]. 

T-Tests [4] are used to compare different sets of data to see if the factors 

characterising the set are sufficient to indicate a significant difference in the 

population. The brake type is known to have a significant effect on wheel 

roughness; statistical tests have confirmed this but results are not reported here. 

The t-test has also been performed to compare trailer wheels with powered wheels 

or to compare different campaigns. Once a set is defined, for each wavelength, a 

Lilliefors normality test [5] at 5 % significance level is used to understand the 

likelihood of the data being normally distributed. 

To summarize the variability of measured wheel roughness data, the 

measurements of each set will be presented in terms of the arithmetic mean of the 

levels, the energy average (as the noise level is expected to depend on the energy 

average contribution of each wheel) and of width of the distribution defined by the 

15.8
th

 and the 84.2
th
 percentile, corresponding, for a normal distribution, to one 

positive and one negative standard deviation relative to the mean. 

 

2.3 Powered versus Trailer Wheels 

The wheels of campaign A of Table 2 are taken from a single type of EMU, with 

equal numbers of powered and trailer wheels. A t-test has been used to test the 

null hypothesis that two sub-sets of data (powered versus trailer wheels) are 

independent random samples from normal distributions with equal means and 

equal but unknown variances. This shows that for all the wavelengths, apart from 

one, the null hypothesis of the data belonging to the same population cannot be 

rejected. This implies that there is no significant difference between trailer and 

powered wheels. Other analyses on different subsets of data have confirmed this. 

The results for the two subsets are summarised in Fig. 1 showing the energy 

average, the mean value and the standard deviation corridor computed in terms of 

percentiles as explained above. A standard limit curve for rail roughness [6] is 

shown for reference. Clearly the average levels and variability of the powered and 

trailer wheels are similar. 
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Fig. 1. Roughness levels for disc brake wheels from campaign A. (a): powered; (b): trailer. 

: [6]; : energy mean; : sample mean;   :± one standard deviation corridor 

 

Fig. 2. Roughness levels disc brake wheels. (a): all campaigns; (b): campaign A. : [6]; 

: energy mean; : sample mean;   :± one standard deviation corridor 

2.4 Disc Braked Wheels 

For sake of simplicity one may include all 69 wheelsets with disc brakes in one 

single set and analyse it as a whole. However, there might arguably be other 

important factors to consider and the campaigns may be a subset of different 

populations defined, for example, by the mileage. Unfortunately the information 

of mileage since last re-profiling is only available for campaign B. However, a 

t-test between the sets defined by two campaigns at a time can be performed. By 

comparing Campaign A with B the null hypothesis that the two subsets are from 

the same population must be rejected for 16 wavelength bands out of 30, and the 

two campaigns are likely to be part of two different populations. The same test 

performed between other pairs of campaigns confirms this. 

Despite this outcome all the disc-braked wheels are presented as one single set 

in Fig. 2a, and then the same analysis has later been repeated for each single 

campaign (but it is not reported here). In fact, for the purpose of producing input 

data for a Monte Carlo analysis, it is more convenient to have one single mean 

value and one single standard deviation describing all the disc-braked wheels. The 

presence of more campaigns will then result in an increased estimated variance of 
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the considered population, but this might not be normally distributed. A normality 

test on the entire set of available disc braked wheels rejects the null hypothesis 

that the data is normally distributed for 15 wavelengths bands out of 30. Fig. 2a 

summarises average levels and standard deviation distributions for these wheels. 

As an example Fig. 2b shows the same type of analysis performed on wheels 

with disc brakes from campaign A only. By comparing Fig. 2a with Fig. 2b it can 

be observed how the variability increases if several campaigns are analysed 

together and how the energy mean can assume significantly different values (up to 

7-8 dB in this example). 

 

2.5 Wheels with Cast-Iron Block Tread Brakes 

Fig. 3a presents average wheel roughness levels and variability for all 84 wheels 

with cast-iron brake blocks. In this case not all the datasets are available over the 

same wavelength range; therefore the variability appears not to be consistent, 

being quite low at short wavelengths. Again, introducing more data in the analysis 

results in a wider range of variability. The null hypothesis of the data being 

normally distributed is to be rejected for seventeen wavelength bands out of thirty. 

It can be observed that the shape of the roughness curve as a function of 

wavelength shows a peak at around 5 cm. In three cases a similar behaviour can be 

found by considering the campaigns one at time. However, both the normality test 

(null hypothesis is often to be rejected) and the t-test between two sets defined by 

the campaigns suggest that it is not straightforward to consider all the available 

wheels with cast-iron brake blocks as members of one single population. Again, 

other factors, such as mileage or running condition, might be too important to be 

discarded. 

Fig. 3b presents average roughness levels for wheels with cast-iron brake 

blocks of campaign G. These measurements were on a single vehicle type and 

consequently show a much smaller variability. 

   

Fig. 3. Roughness levels wheels with cast-iron brakes block. (a): all campaigns; (b): campaign G. 

: [6]; : energy mean; : sample mean;   :± one standard deviation corridor 

2.6 Wheels with Composite Brake Blocks 

Fig. 4a presents average wheel roughness levels and variability for all 56 wheels 

with composite brake blocks. The null hypothesis of the data being normally 
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distributed is to be rejected for only three wavelength bands out of thirty. The 

strange difference in terms of standard deviation above and below 0.2 m is, again, 

because the two campaigns were not post-processed over the same wavelength 

range, therefore the wavelengths between 0.2 and 0.8 m are here represented by 

only eight wheels from campaign E. A similar phenomenon occurs at wavelengths 

shorter than 0.003 m. 

Wheels with composite brake blocks from campaign F are presented in Fig. 4b. 

Measurements in this campaign were taken from a train composed of different 

vehicle types, which is the reason for the high variability shown. 

   

Fig. 4. Roughness level, wheels with composite brakes. (a): all campaigns; (b): campaign F. 

: [6]; : energy mean; : sample mean;   :± one standard deviation corridor 

3 Estimation of Sample Size 

When planning wheel roughness measurements an important decision is the 

number of wheels to be measured necessary to give a representative evaluation of 

a whole train. Measuring all the wheels will give the exact representation of the 

specific train under test, but this might not always be possible. In the final report 

of the NOEMIE project [7] a suggestion was given for the minimum number and 

positions of wheels to be measured in a campaign. However, this was based on 

experience rather than on statistical considerations. The aim of this section is to 

add some statistical considerations which may also be taken into account in 

deciding the number of wheels that would be representative of a specific set. 

Considering the simplest example of a population whose variance, σ
2
, is known 

a priori, the number of samples n to be measured in order for the error between the 

sample mean and the real mean of the population not to exceed the amount E, with 

confidence 1-α, is: 

 2/2 Ezn        (3.1) 

where zα/2 is the ‘standard normal deviate’, or ‘standard normal random variable’ 

[4], corresponding to an upper tail of α/2 (for example: z0.025=1.96 ). 

Where the variance of the population is not known, the Student T distribution 

should be used instead of the normal one and an estimator for the variance should 

be adopted. However, as the Student T distribution itself is dependent on the 
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sample size, n, a closed form cannot be found (see e.g. [4]). Instead, the 

information acquired from the previous sections can be used to estimate the value 

of the variance of each population (disc brakes, cast-iron brake blocks etc.) and 

such an estimator can be used to replace the actual value of σ. This can be either 

the upper bound of the standard deviation confidence interval or the sample 

standard deviation itself. 

A calculation for n should be done for each wavelength and the greatest value 

will give the actual sample size. Eq. (3.1) should be applied only at those 

wavelengths where data appear to be normally distributed. 

To give an example, for a hypothetical campaign on wheels with disc brakes 

(see Fig. 2a), by setting E = 4 dB and using the upper bound of the standard 

deviation confidence interval (6.5 dB) the number of wheels to be measured 

should be 10, in accordance with [7]. Adopting the lower bound of the standard 

deviation (4.9 dB) would result in 6 wheels to be measured. 

4 ACOUTRAIN Round Robin Test 

Wheel roughness measurements have been carried out independently by four 

partners of the ACOUTRAIN project for the purpose of comparing five systems 

available in the consortium (one of the partners contributed with two systems) and 

the post-processing methodology used. Two freight vehicles were made available; 

both were tread braked, one equipped with cast-iron brake blocks, the other with 

composite brake blocks. The measurements and the post-processing of data were 

made by following the same procedure [3]. 

   

Fig. 5. Wheel roughness from the ACOUTRAIN project test. (a): cast-iron brakes; (b): 

composite brakes. : [6]; ○: P1; □: P2; +: P3; : P4; : P5 

Measurements made by the five teams (P1 to P5) are shown in Fig. 5a for the 

vehicle with cast-iron brakes and in Fig. 5b for the vehicle with composite brakes. 

Lines P1, P2 and P5 agree, apart from two one-third octave bands, within 2.5 dB 

in the entire range for both the brake types. Measurements labelled as P3 and P4, 

to differing extents, represent anomalous values, indicating either a malfunction of 

the equipment and/or incorrect data post-processing. 
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5 Conclusions 

With the aim of estimating the effect of uncertainty and variability in preparing 

input data for rolling noise models, this paper describes, in terms of the average 

and standard deviation, wheel roughness data for seven different campaigns 

collected in a database. By addressing their statistical distribution, considering one 

campaign at a time, it was shown to be likely that the roughness level is normally 

distributed. If all the available campaigns are analysed at once, however, the 

likelihood of data being normally distributed decreases. However, the likelihood is 

expected to increase again by introducing into the database more measurements, 

although, as a side effect, the estimated deviation from the average would 

increase. 

A simple method to estimate the minimum number of wheels necessary to be 

measured to represent, with enough confidence, the whole train has been 

addressed. The method has been shown to give results in agreement with previous 

research projects [7]. 

Finally, a round robin test performed within the ACOUTRAIN project, has 

shown that, in the particular case considered, the amount of measurement 

variability due to different equipment used by different teams following the same 

protocol can be estimated to be within 2.5 dB, provided that no major equipment 

malfunctions or post-processing errors occur. 
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