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Abstract—In this paper, we address the problem of detecting
the presence of myocardial scar from standard ECG/VCG
recordings, giving effort to develop a screening system for
the early detection of scar in the point-of-care. Based on the
pathophysiological implications of scarred myocardium, which
results in disordered electrical conduction, we have implemented
four distinct ECG signal processing methodologies in order
to obtain a set of features that can capture the presence of
myocardial scar. Two of these methodologies: a.) the use of
a template ECG heartbeat, from records with scar absence
coupled with Wavelet coherence analysis and b.) the utilization
of the VCG are novel approaches for detecting scar presence.
Following, the pool of extracted features is utilized to formulate
an SVM classification model through supervised learning. Feature
selection is also employed to remove redundant features and
maximize the classifier’s performance. Classification experiments
using 260 records from three different databases reveal that the
proposed system achieves 89.22% accuracy when applying 10-
fold cross validation, and 82.07% success rate when testing it
on databases with different inherent characteristics with similar
levels of sensitivity (76%) and specificity (87.5%).

Index Terms—Myocardial scar detection, ECG median beat,
VCG, SVM, feature selection

I. INTRODUCTION

Number of recent reports are indicative of the prevalence

of ischemic heart disease (IHD) as the leading cause
of death, both in developed and developing countries [1].
IHD can lead to the sudden interruption of the normal blood
supply of the heart, clinically referred to as Myocardial
Infarction (MI) or typically known as a heart attack. If proper
blood flow is not restored, in a timely fashion, heart cells
(myocardiocytes) near the area of the infarct die (necrosis)
and result in scar tissues (fibrosis). These scar tissues have
different electrical conduction properties than normal heart
tissues, resulting in a disordered electrical conduction in the
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heart. Such disordered conduction may potentially lead to fatal
arrhythmias like Ventricular Tachycardia (VT) or Ventricular
Fibrillation (VF) which are known to be the cause of sud-
den cardiac death (SCD). The risk of VF/VT occurrence is
primarily defined by detecting the presence of scar tissue
and estimating its size [2], [3]. Obtaining this information
allows identification of the cases where the implantation of
an Implantable Cardioverter-Defibrillator (ICD) device would
be beneficial. Imaging techniques such as Contrast-Enhanced
Cardiac Magnetic Resonance Imaging (CMR) can provide
detailed information on the presence, location and extent of
myocardial scar [4], [5]. However, in addition to its suitability
only as a bedside test, CMR is a resource-demanding process,
both in terms of cost and specialized personnel required for
its operation. Additionally, other approaches for an accurate
detection of scar are characterized as high interventional
methods [6].

On the other hand, 12/15 lead Electrocardiogram (ECG) is
widely available and can also be used in clinical as well as
remote settings owing to its availability in the form of portable
devices [7]. Since the ECG reflects the electrical conduction
through the heart, it is expected that possible conduction
anomalies, attributed to the presence of scar, would be directly
imprinted on the ECG trace.

Therefore an automated ECG-based solution for myocardial
scar detection deployable in fast and cost effective manner
both in the primary-care and nomadic point-of-care may
provide an effective tool for the initial screening of myocardial
scar en masse. The high risk patients could then be subjected
to a detailed CMR analysis and thereby optimizing the overall
cost and resources. From this perspective, in this paper we ex-
plore the problem of effectively detecting the presence/absence
of myocardial scar from standard ECG recordings.

The underlying idea is to investigate a set of ECG features -
obtained either directly from measurements or indirectly using
signal processing techniques - which may be indicative to the
anomalous conduction effect typical of myocardial scar and
develop a supervised learning model capable of detecting its
presence/absence. It’s worth mentioning that the goal is neither
to replace the existing scar detection modalities, nor to claim
that the proposed method would be more accurate compared
to the high-resolution imaging modalities, but to provide a tool
that may differentiate the patients who need further rigorous
clinical characterization so that the cost associated with di-
agnostic processes could be reduced and resource utilization
could be done in optimal way.

In our investigation the feature set is constructed by includ-
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ing different ECG parameters already known to be associated
with myocardial scar and then extending it with a number
of new features that are also expected to be correlated with
myocardial scar but have not been investigated before for scar
detection. Four distinct strategies are followed for generating
the feature set as follows:

o We introduce the concept of the “template-median ECG
heart beat”, produced from signal averaging of ECG
heartbeats with confirmed absence of scar, on a per-lead
basis. This median beat template is compared with the
ECG signals that are under test based on a specific set of
morphological features.

o A set of statistical features are computed from the ECG
time series.

o A set of time-domain features of the ECG signals with
known association to myocardial scar, e.g (durations, area
under the ECG curve, presence of fractionated QRS etc...)
are added in the feature pool.

o A set of spatial and vectorial features are estimated from
the Vectorcardiogram (VCG).

In total 344 features are extracted, which are then subjected
in a feature ranking process and the 25 most discriminating
features are selected. From our exhaustive experiments, Sup-
port Vector Machine (SVM) provides the optimal solution for
our classification system, which is tested in terms of accuracy
(sensitivity and specificity) with 260 ECG signals from three
different databases for which the presence/absence of scar and
its size is recorded using CMR. The proposed classification
system achieves a total accuracy of 89.22% (sensitivity 87.25%
91.18% specificity). The promising performance results indi-
cate the potential of the proposed classification system as a
non-invasive mechanism for the initial screening of the pres-
ence/absence of myocardial scar. Furthermore, given that the
proposed system requires only standard 12/15-lead ECG, it can
be effectively used as a risk-stratification scheme in situations
where an immediate decision on the presence/absence of scar
is needed but there is no availability of imaging modalities.
The rest of the paper is structured as follows. Section II
provides a background on the conduction effects caused by
the presence of myocardial scar. The process of feature-space
construction is described in Section III, while the derivation of
the optimal features and the classifier formulation are covered
in Section IV. Performance results from various classification
experiments are discussed in Section IV and conclusions are
drawn in Section V.

II. BACKGROUND

Scars are typically formed following an MI episode and
the subsequent death of healthy heart cells. In the area where
the heart cells die, a reactive process called fibrosis replaces
them with a collagen connective tissue which forms the scar
[8]. Myocardial scars create patches of delayed conduction
regions separated by regions of normal heart tissues with
normal conductive properties. Thus the probability of electrical
desynchronization occurring during the cardiac cycle, leads
to an increased possibility of fatal arrhythmias. In situations
where the scar is located in the ventricles, a typical scenario

after an MI episode, scar-related VI/VF can spontaneously
occur, leading to hemodynamic collapse and SCD. It has been
long established that these conduction abnormalities cause
characteristic alterations on the ECG trace, such as prolonged
R-waves, change of the value of the QRS-angle, fractionations
(notches, slurs) in the QRS-complex, elevation/depression of
the ST-segment [9]-[11]. In addition there have been studies
suggesting that the morphology of the T-wave (T-wave alter-
nans) is affected by the presence of scar since it represents the
repolarization of the ventricles [12]. Drawing inspiration for
the potential of the ECG as a modality capable of detecting
the presence of myocardial scar we have developed a novel
system, based on supervised learning, presented in details in
the following sections.

III. METHODOLOGY

In our approach, following the standard clinical practice, a
single representative heartbeat per lead from standard 12/15-
lead ECG recordings is selected for analysis from each signal.
The clinical philosophy behind this approach is that the pres-
ence of myocardial scar and hence the disordered conduction
effect resulting from, is in general uniformly present in each
heartbeat of the ECG/VCQG tracings with very little variability.
This is due to the fact that myocardial scar is a permanent
damage of the myocardium which will consistently affect
the propagation of the electrical signal during the operation
of the heart regardless of the heart rate. A small variability
(different QT, RR intervals, R-peak amplitude) may exist
between different heartbeats in the same ECG trace because
of the presence of noise, or breathing artefacts. However these
variations from beat to beat are not significant except for the
cases of performing different physical activities or developing
rapid pathological conditions such as arrhythmic episodes.
Since in the standard clinical practice 12/15-lead ECG is
recorded with patients in standard positions, such variability
is also minimal. Therefore selecting one beat from such a
recording is expected to represent the actual clinical condition
of the subject adequately. For each ECG recording used in
this work the representative heartbeats are selected by three
cardiologists, first blindly, and then reaching to a consensus.

In order to construct the feature space for our classification
investigation we have followed four distinct signal processing
strategies. Two of these are based on pure morphological
analysis of ECG and VCG signals, one based on the statistical
properties of ECG signal and the last one is based on formulat-
ing a median ECG beat as a template with which the similarity
of the incoming ECG beat to be classified is analyzed. The
overall approach of the features generation is depicted in Fig.
1 and each of the approaches are discussed in detail in the
following subsections.

Before applying the feature extraction process in the pre-
processing step, the ECG isoelectric line is removed using a
series of three median filters as in a similar way as described
in [13], [14] and all signals are resolved to the same resolution.
We also used the TDMG algorithm [15] for detecting the ECG
wave boundaries and peak that are used for feature extraction.
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Fig. 1. Flowchart of the proposed Methodology

A. Median-ECG beat analysis

The concept of the median-ECG beat is introduced here as
a novel approach for the detection of myocardial scar. The
basic philosophy is to create a “template” ECG heartbeat
vector - one beat per lead - for 12 ECG leads, that is
free of any disordered conduction effect and thus considered
representing condition of no-scar. Since disordered conduction
is a signature that is present in the ECG of a scar patient
(although the individual ECG lead capturing this effect could
be different from person to person depending on the position
and extent of scar), a per-lead based comparison of such
heartbeats with the template should be able to capture the
disordered conduction effect either through morphological
dissimilarity or a phase difference between these two sets. In
order to construct the median ECG template vector we selected
ECGs with verified absence of scar (i. e. scar size 0% in CMR)
and additionally with absence of a set of confounders which
may alter the ECG morphology in such a way resembling
scar. Three cardiologists evaluated the ECG signals from one
database (DB-I, see Section IV) blindly to each other and
finally made a consensus on 38 12-lead ECG signals which
could be considered to be “no-scar” ECG signals in clinical
sense. Please note that although these ECGs represent no-scar
or no confounding conditions, they may still have non-scar
related QRS, ST or T wave changes compared to a normal
ECG and therefore not necessarily are normal ECG beats.
First, from each of these 38 records for each lead, one single
heartbeat was isolated (again as per the consensus of the
cardiologists). Ectopic beats are excluded in this process of
formulation of the median beats. Then these selected beats
from all the records are averaged on per-lead basis to construct
the median beat vector. Mathematically this process can be
described as:

Mi = cng(Bm) (1)

, where M; is the median beat for lead ¢ and B;; is the
isolated beat for lead ¢ and record j, ¢ € 1,2,.....,12 and
j €1,2,....,38 and avg;() is the averaging operation over
the whole set of j. This operation creates the desired template
median ECG beat vector [M1, M2, ...., M12] which is used
for final comparison on per-lead basis with each incoming 12-
lead beat that requires classification. However, the duration
of a heartbeat in a specific lead may vary from person to
person. To overcome this issue we first selected the isolated
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Fig. 3. Extraction of the median beat

beat of maximum duration for a particular lead 7 - say, the
reference beat - over all the records and detected its maximum
deflection point (typically the R- or S-peak depending upon the
specific lead under consideration ¢ - say, the reference point).
The maximum deflection point of an isolated beat B; ; from
the record j for the same lead : is first aligned to the maximum
deflection point of this reference beat and then the whole beat
B; ; is interpolated accordingly to make it of the same length
as the reference beat. For example, if we have two signals for
lead 4, of 400 and 440 samples, and the R-peak is located in
the 170th and 194th sample respectively, then the R-peak of
the first signal has to be shifted 24 samples (by interpolating
the first part from the beginning of the signal to the R-peak)
and the remaining 16 samples have to be uniformly added to
the second part of the signal (from the R-peak to the end of
the beat) as shown in Fig. 2. This process is repeated for all
the records to make all B;, of equal duration for facilitating
the averaging process as depicted in Fig. 3. Once the set of
median beats is derived, they are compared on per-lead basis
with the incoming ECG beats.

The comparative analysis between the median-ECG beat
and the ECG beat under test takes place both in time and time-
frequency domain. In the time-domain, the Cross-Covariance
of these two time-series is calculated since it is a measure of
similarity between two signals and is commonly used to find
features of an unknown signal by comparing it to a known
one. It is a function of the relative time between the two
signals. Additionally, the cross-correlation which in essence is
the normalized covariance is computed for determining time-
delays in the propagation of electrical activity.

For the time-frequency domain analysis we have opted to
investigate the Wavelet Coherence (WC) between the median-
ECG and the testing ECG, using the complex Morlet Wavelet
(cmor1-0.5) as the basis function. It combines the concept
of wavelet transform with the coherence analysis, quantifies
the coherence and the phase synchrony between these two
time series as a function of both time and frequency (scale)
and is used to identify time and frequency intervals in which
they have a strong correlation. The WC in our case is a
complex product, where the level of coherence is shown by
the magnitude of the WC, while the phase lag between the two
signals is represented by the phase of the WC. The magnitude
and the phase coherence is averaged over time and over the
resolution scales.

As an example of the morphological alterations caused due
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to delayed conduction from the presence of scar, Fig. 4(a)
depicts the ECG trace of a record with scar and a record free
of scar, alongside the constructed median-ECG beat for this
particular lead. The fractionation in the QRS-complex as well
as the prolonged QRS-width are obvious in the scarred signal.
Furthermore, to illustrate the effect on the coherence levels,
both signals are compared to the median-ECG beat in terms of
modulus wavelet coherence and phase wavelet coherence. It is
evident from Fig. 4(b) and Fig. 4(c), that there exist noticeably
different levels of both magnitude and phase coherence for the
two signals.

B. Statistical parameters of the ECG timeseries

Apart from the aforementioned morphological parameters a
set of statistical features [16] on a per-lead basis have been
computed which underpins the statistical property of an ECG
signal. This set of statistical parameters is listed in TABLE I
which also provides a brief description of possible significance
of each feature in ECG analysis. In principle they provide
effective means for analyzing the level of complexity and the
type of distribution that a time-series exhibits. In the presence
of scar tissues both the complexity and the distribution of the
ECG trace will be affected, due to the alterations caused in
the ECG morphology. Subsequently, it is expected that these
parameters will capture these intricate changes which can then
be used as an indication of scar presence.

Apart from these parameters since ECG’s fluctuations could
be non-random and in essence a reflection of the dynamics
of the cardiovascular systems [19], measuring fluctuations
in the frequency and time domain may reveal significant
information on the dynamic characteristics, which are lost with
routine averaging or linear spectral methods. According to this
observation, the Detrended Fluctuation Analysis (DFA) is used
to quantify the fractal scaling properties and to determine the
self-affinity of the heartbeat.

C. Time domain ECG parameters

Various studies have described possible changes in QRS-
complex and T-wave morphology in an ECG trace due to the
presence of myocardial scar. Drawing from our experience
in Cardiology primary care in consultation with available
literatures, the ECG morphological features showing the effect
of disordered conduction more prominently, are the QRS du-
ration, the T-duration and the T-peak to T-offset duration. We

02 04 06 08

(b) Wavelet Magnitude Coherence (left:scar vs (c) Wavelet Phase Coherence (left:scar vs median,
median, right:no-scar vs median)

right:no-scar vs median)

, C is the Wavelet transform, a,b: scales,location parameter

TABLE 1
PHYSICAL MEANING OF STATISTICAL PARAMETERS

Physical Meaning
Measure of randomness of
the ECG signal

Measure of long-range de-
pendence, indicative of non-
stationary nature, increase
in complexity and changes
in space-filling properties of
the ECG signal

Measure of mean power /
ratio of higher frequency
energy over the total energy
of the ECG signal. Indica-
tive of the signal’s complex-
ity

Index of the distribution of
the ECG signal

Measure of the asymme-
try of the probability distri-
bution of the ECG signal,
more specifically, the QT in-
terval

Index of how much peaked
the ECG signal is around
its mean, may characterized
QT interval

Index of the average (ex-
pected) value and the vari-
ation/dispersion of the ECG
signal

Statistical parameter
Shannon entropy

Hurst parameter [17]

Hjorth Complexity/ Hjorth Mobility [18]

Median value, interquartile range

Skewness

Kurtosis

Mean, standard deviation, variance

first derive these features on per-lead basis and also calculate
the RMS and dispersion (maximum-minimum) values of these,
using all 12 leads. In addition, in order to capture potential
morphological changes in these waves more accurately, we
calculate the area under the curve of the QRS-complex and
the T-wave, using trapezoid integration with the isoelectric
line as the reference. It has also been shown in literature that
presence of fractionations (notches, slurs) in the QRS complex
is a potential manifestation of disordered conduction effect.
Therefore we include the total number of fractionations present
in the QRS and a binary value indicating the presence/absence
of fractionation in the terminal QRS deflection as two separate
features. We follow the definitions provided in [14] for identi-
fying the fractionations present in the QRS complex. Finally, a
binary parameter that indicates whether or not, the QRS-offset
(j-point) is elevated by more than 0.1 mV is also calculated.
The final type of feature we computed is the spectral energy
of the QRS-complex and the T-wave using Discrete Wavelet
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Transform (DWT).

D. VCG based features

The electrical impulse that is propagated along the heart
regions can be described from the magnitude and the direction
of the electrical forces that the heart generates. The magnitude
and direction of these forces form a resultant vector that
evolves in time on the 3-D space around the origin [20]. The
continuous recording of the electrical potentials (resultant’s
vector’s end points), presented in the 3-D space, generates
curved lines (loops) along two or three perpendicular axes
and it is known as the VCG (Fig. 5). In contrast, the ECG
represents the electrical potential only on a single axis.

The predominant method for the recording of the VCG
is attributed to Frank [21]. Frank’s XYZ leads consist of
three leads derived from seven electrodes and represent
the right-left axis (X), head-to-feet axis (Y) and front-
back (anteroposterior) axis (Z) which constitute the three
components of the resultant vector. In clinical practice there
is poor utilization of the VCG, thus the recordings from
Frank’s orthogonal leads are quite rare. In principle each
lead of the standard 12-lead ECG, can be reconstructed from
Frank’s XYZ lead. Therefore, Frank’s XYZ leads can also
be reconstructed from 12-lead ECG recordings. Among all
the approaches of reconstructing the ECG from VCG and
vice versa, Dower’s approach [22] is the most clinically
accepted method and is adopted for constructing the VCG
from a 12-lead ECG. Dower’s matrix consists of lead specific
coefficients that are used to calculate the eight independent
leads (V1-V6, I and II) as a linear combination of the VCG.
Subsequently, the inverse process produces the VCG leads
from the 12-lead ECG. The 3 x 8 inverse Dower matrix (iD)
is given as:

—-0.172 —-0.074 0.122  0.231 0.239 0.194 0.156 —0.010
iD= 0.057 —0.019 -0.106 —0.022 0.041 0.048 —0.227 0.887
—0.229 —0.310 —-0.246 —0.063 0.055 0.108 0.022  0.102

L=[v1 V2 v3 v4 V5 v6 I I1]7,vCG=[VCGx VCGy vea:]"
VCG =L xiD 2)

In our work, we employed the recorded VCG, if avail-
able, and used the inverse Dower transform where recorded
VCGs were not available. As it is already mentioned, the
conduction delays and disordered heart activity, caused by
myocardial scar, are reflected on the ECG as fractionated QRS-
complex and/or prolonged R-wave and/or alterations on T-
wave’s morphology. Since the VCG is a linear combination of
the ECG leads we expect that these morphological alterations
will also be reflected on the VCG’s spatial characteristics
Fig. 5. The QRS-complex and T-waves boundaries, extracted
using TDMG [15], allowed the localization of these waves in
the VCG loop. Also the temporal position of the R- and T-
peak allowed the construction of the R- and T-peak vectors.
Additionally we constructed the vectors that represent the
maximum width of the QRS- and T-loop respectively. For
these four vectors we calculated the magnitudes and angles for
each of the three 2-D projections(X-Y, X-Z, Y-Z) of the 3-D
VCG. The areas for each of the 2-D projections were extracted
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Fig. 6. R- and T-peak angle in No-Scar(left) and Scar(right) VCG

by calculating the number of pixels that each of the two waves
enclose. Finally the centroid point - defined as C' = %
- is calculated and the respective vector of the VCG loop was
constructed, since it is expected to be affected by the VCG
morphological alterations. The feature dataset was further fed
with the magnitude and angle of the centroids’ vectors. An
indicative example of how the scar presence is reflected to the
VCG’s spatial features is depicted in Fig. 6, where the R- and
T-peak angles are significantly different for scar and no-scar
records.

TABLE II summarizes all the features considered in this
work. Given the inherent variability in ECG signals among
patients, each of these feature spaces offers information that

TABLE 11
COMPLETE FEATURE SET

cross correlation

covariance

wavelet magnitude & phase coherrence
Mean, Variance & Standard Deviation values
Median value & Interquartile Range

Entropy

Kurtosis & Skewness

Hjorth Mobility &Complexity

Hurst Exponent

Detrended Fluctuation analysis

median analysis
metrics(1)

FS1

statistical timeseries
metrics (2)

J point elevation/depression
Fractionations in terminal deflection
QRS/T rms & dispertion width
Tpeak-Toffset interval (per lead & rms)
QRS/T wave width,energy & area
Fractionations in QRS

VCG area

R-width, T-width magnitude

R-peak, T-peak & Centroid vector magnitudes
R-peak T-peak & Centroid vector angles

ECG time domain
metrics(3)

FS 11

VCG spatial
metrics(4)

FS 111
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can possibly be used to distinguish between the presence and
absence of scar.

It is to be noted that while constructing the feature space
we did not consider the location of scar. The main reason
behind this is, due to the surface recording nature of ECG
the signature of scar on a lead is manifested as a complex
interaction between its location and extent. Therefore any
attempt in trying to localize scar from ECG only, is not
encouraged in clinical practice as it may not give clinically
acceptable result. On the other hand, since each ECG lead
captures a different spatial view of the heart, it is expected that
depending on the location and extent of the scar, its overall
effect will be manifested in one or more leads. Therefore with
our adopted strategy of analysis in a per-lead basis it should
be possible to capture the overall effect of the presence of scar
irrespective of its location.

IV. CLASSIFICATION STRATEGY AND VALIDATION
A. Databases

The above mentioned parameters are then used to formu-
late a robust classification model, able to discriminate the
presence/absence of myocardial scar, following a supervised
learning approach. In our classification investigation we uti-
lized ECG records from three databases, two of them (DB-
I and II) constructed during clinical evaluation of patients
at the Cardiology Department of the University Hospital
Southampton NHS Trust. These constitute of patients which
had 12-lead ECGs and CMR measurements performed within
the same period. Standard 12-lead ECG recording was done
by trained cardiographer with the patients in a supine position.
The CMR result provides also the size (in terms of %) of the
scarred tissue. For our classification purposes any scar size
> 0% is considered as presence of scar. It is worth noting
that the CMR resolution is also limited and therefore some
of the smaller scar sizes could be considered as 0% scar
in its analysis. However CMR is a standard procedure that
is clinically accepted and employed in clinical practice on a
daily basis and appropriate clinical action is taken based on its
outcome. Therefore CMR analysis is widely used as a clinical
standard for assessing the extent of scar in real life. Given
this fact we have used CMR outcome as the ground truth for
assessing the extent of scar.

In order to balance our dataset as much as possible we
have included a third database (DB-III) containing ECGs with
no scar presence. This was obtained from the 52 healthy
control records of the PTB Diagnostic ECG Database (DB-III),
publicly available in Physionet [23]. Although DB-III offers
no CMR measurements, the annotation of these records as
healthy controls, allowed us to imply that no scarred tissue is

TABLE III
CHARACTERISTICS OF THE DATABASES
Database | Nature of records | Sampling frequency(Hz) VCG
Scar No-Scar
DB-1 108 46 500 Reconstructed
DB-1I 50 4 1000 Reconstructed
DB-III 0 52 1000 Recorded

present. The frequency and the resolution are the same as (DB-
II). DB-III includes measurements of Frank’s XYZ orthogonal
leads, so the VCG was directly obtained without the need
for reconstruction through iD. From all available records we
isolated a single heart-beat and used it in our analysis. Expert
cardiologists ensured that from the records that had scar no
ectopic beat was selected. In total 260 records were considered
with 158 records having CMR verified scarred tissue. The
fundamental characteristics of the databases are summarized
in TABLE III.

Although it is conceivable that DB-III is mainly taken from
the public available database and thus may be debatable in
terms of its utility regarding the actual clinical conditions of
myocardial scar, DB-I and II contain data that are prospec-
tively collected by expert clinicians and these two databases
are in true sense representative of clinical patients since they
are collected from those under investigation of myocardial scar
at the Cardiology Department of the Southampton University
Hospital NHS Trust. One important issue here is that, as
mentioned earlier, presence of certain types of confounders
may be manifested in ECG in the same way as the scar. It is
for this reason that we did not exclude patients with these
confounding ECG changes, and that accurate classification
despite these ECG confounders was an important aim of this
work.

B. Classification Model

The classification algorithm that has been utilized in this
work is the Support Vector Machine(SVM) [24]. The analysis
was facilitated by employing the Weka machine learning
software, which implements the Sequential Minimal Opti-
mization algorithm (SMO) for solving the quadratic program-
ming optimization problem that arises when determining the
maximum margin hyperplane of the SVM classifier. Several
experiments with Gaussian and polynomial SVM, and with
different configuration parameters were conducted, until an
optimal setup was found. The performance evaluation metrics
we present in our experiments are the classification accuracy,

. . o, 0 o . o TP
the spemﬁc;tjz and the sens1t1V1TtI3; a; Jgollows. SENs = Fp s
spec = TNLFP® acc = m‘rw Where, True Posi-

tive(TP)/False Negative(FN) the records that have scar and are
correctly/incorrectly identified, while False Positive(FP)/True
Negative (TN) the records that do not have scar and are
incorrectly/correctly classified.

For building the classification model two particular issues
were considered as fundamental requirements: minimization
of possible overfitting and consistency of the three evaluation
metrics - sensitivity, specificity and accuracy - between se-
quential experiments. The overfitting problem is common in
classification schemes and is typically apparent when the clas-
sification model trained on a dataset fails to give satisfactory
result for another arbitrarily chosen dataset. It may occur due
to a) presence of noise or redundant features in the feature
vector and b) due to existence of irrelevant patterns resulting
from inherently error prone data entry and acquisition process.
Subsequently the irrelevant input features should be excluded
from the feature vector in order to produce a desired learning
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TABLE IV
EVALUATION RESULTS OF THE PROPOSED METHODOLOGY

Metric Performance% Details

FS-1 FS-11 FS-1II RFS-1 RFS-II  RFS-III AFS RAFS
Exp. I 10 \ VI
Acc. 63.04% 6521% 69.56% | 84.718%  81.52%  71.45% 61.95% 91.3% 10-runs 10-fold CV
Sens. 65.22% 63.04% T71.74% | 86.96% 89.13%  73.91% 60.87% 91.3% Balanced DB-I
Spec. 60.87% 67.39% 67.39% | 82.61% 73.91%  63.04% 63.04% 91.3%
Exp. il VIl
Acc. 71.7% 78.3% 85.85% 82.07% Train with balanced DB-I
Sens. 74% 56% 88% 76% Test on DB-1I,DB-IIT
Spec. 69.6% 98.21% 83.93% 87.5%
Exp. v VIII
Acc. 84.31% 83.33% 82.36% 89.22% 10-runs 10-fold CV
Sens. 87.25%  86.27% 84.31% 87.25% Balanced DB-I/II/IIT
Spec. 81.37% 80.39%  77.36% 91.18%
Exp. IX
Acc. 69.05% Train Balanced DB-I
Sens. 59.82% | Test on the remaining of DB-I and DB-II/III
Spec. 87.5%
Exp. X
Acc. 91.3% LOO
Sens. 91.3% Balanced DB-1
Spec. 91.3%
Exp. XI
Acc. 87.25% LOO
Sens. 87.3% Balanced DB-I/II/IIT
Spec. 87.3%

(R)FS -I -1I -1II: (Reduced) Feature Space from Median-, Time-, VCG-domain (R)AFS: (Reduced) All domains Feature Space

result and avoid the learning algorithm to overfit to the noise.
Owing to the relatively small size of the database and the
high dimensionality of the produced feature set in our case, to
identify the most informative feature set capable of identifying
presence or absence of scar, we ran extensive feature selec-
tion experiments using the algorithms like, Information Gain,
Relief, SVM Attribute Evaluation (SVMAttributeEval), and
based on their performance SVMAttributeEval was chosen.
SVMAttributeEval is implemented with the Ranker search
method which evaluates the importance of a feature by using
an SVM classifier. Features are ranked according to the square
of the weight assigned to them by the SVM. After excluding
the redundant features the model is iteratively trained with the
reduced feature set. This process is expected to reduce the
possible overfitting as in principle the redundant features are
eliminated from the original feature set. In order to evaluate
the efficiency of the system and to identify the degree of
overfitting we employed the traditional approach of 10-fold
Cross-Validation (CV) 10 times. The generated model was
evaluated in terms of accuracy, sensitivity and specificity
over a number of carefully constructed experiments to check
the consistency of the three above mentioned performance
parameters. In addition, the generated model trained with one
database is applied on the other databases with inherently
different characteristics to ascertain the effect of possible
overfitting. Furthermore, we employed the Leave One Out
(LOO) Cross Validation, which is a K-fold cross-validation
strategy, K being equal to the number of instances in the
original dataset, to evaluate the efficiency of our model. In
summary, our experimental strategy uses the 10-times of
10-fold CV as the basic experiment, which gives a good
estimation of the classification performance of the generated

model. In case the model does not satisfy the predictability
(i.e. low accuracy) there is no reason to continue with the
other testing experiments, as the basic classification capability
of the system does not exist in this case. Otherwise, it is tested
with other databases so as to investigate the capability of the
model to classify unknown instances correctly and to estimate
the possibility that the model has been fitted with features
that are irrelevant to the myocardial scar. The consistency
of the evaluation metrics and their comprehensive analysis
establishes the predictability, robustness and reliability of the
classification model.

C. Analysis of Results and Model Performance Evaluation

The overall results of our experiments are shown in TA-
BLE IV. As presented in TABLE II we have four subsets
of features. Initially we merge the first two subsets into one
feature space FS-I, while the two remaining subsets consist of
feature space II & III (FS-II and FS-III) respectively. The total
number of parameters is 192,125 and 27 for FS-1, II, and III
respectively. At first (Exp.-I in TABLE IV), a balanced dataset
from DB-I is constructed, using 46 records without scar tissues
and 46 records with the highest scar size. On this database 10
runs of 10-fold CV was performed using the features from
FS-I, II, and III independently without invoking any feature
selection algorithm. As it is shown, the performance results are
not sufficient enough to achieve an acceptable classification
rate. This leads us to believe that there exist significant
redundancies in all the three feature spaces. Therefore a feature
selection step is carried out for each of the feature spaces using
the SVMAttributeEval algorithm iteratively and observing the
classification performance at each iteration step. Specifically,
the output of each iteration of the feature selection algorithm
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TABLE V

SELECTED PARAMETERS BASED ON THE SVMATTRIBUTEEVAL

RFS-I (Median & Statistical)

RFS-II (Time Domain)

RFS-III (VCG) RAFS

Variance lead aVR

T-wave area lead aVR

T-wave angle XY projection T-wave area lead I

covariance lead aVR

Area of QRS-wave lead 11

R-wave angle at XYprojection wavelet magnitude coherence lead V4

Kurtosis lead V4

T-wave area lead I

T peak vector magnitude YZ projection

T-wave angle XY projection

wavelet magnitude coherence lead V4

QRS-wave area lead aVR

T-width magnitude XY projection Variance of lead aVR

Entropy lead II

T-width lead V2

R-wave angle YZ projection QRS width lead aVF

Mean Value lead V9

T energy lead II

T-width magnitude YZ projection Hjorth Mobility lead II

Standard Deviation lead V4

T-wave area lead V5

T peak vector magnitude XY projection

Fractionations in terminal deflection lead V2

Hurst Exponent lead I

T-wave area lead aVR

VCG area YZ projection T wave area lead aVR

wavelet phase coherence lead aVF

T-wave area lead V3

R-wave angle XZ projection wavelet phase coherence lead aVF

Interquartile Range lead aVR

T-wave area lead II

R peak vector Magnitude at YZ projection

Entropy lead II

Hurst Exponent lead V1

QRS-width lead aVF

QRS energy lead V3

Standard Deviation lead V2

QRS-width lead V6

Fractionations in terminal deflection lead V3

wavelet phase coherence lead V6

QRS-width lead V2

Kurtosis lead V4

wavelet magnitude coherence lead aVR

QRS-wave area lead V1

cross-correlation lead IIT

Cross-correlation lead IIT

T-width lead V6

T-width lead II

Hjorth Mobility lead II

T-width lead II

wavelet magnitude coherence of lead avR

wavelet phase coherence lead aVL

T-wave area lead V4

Fractionations in QRS lead aVF

covariance lead aVF

QRS-wave energy lead V3

covariance lead aVF

Standard Deviation lead V5

Fractionations in QRS lead aVL

Mean Value lead V3

Kurtosis lead V4

T-wave energy lead aVR

Hurst Exponent lead V1

wavelet phase coherence lead II

QRS dispersion

T-wave energy lead V2

Kurtosis lead III

T energy lead aVR

Hjorth Mobility lead aVR

wavelet phase coherence lead V1

Fractionations in QRS lead aVF

T-wave energy lead aVR

Interquartile Range lead III

Fractionations in QRS lead V5

wavelet phase coherence lead V6

Hjorth Mobility lead aVR

T energy lead V2

VCG area YZ projection

(different number of selected features for each iteration), was
the input used to train our model. At the end of this exhaustive
simulation procedure, 25 features from each of FS-I and FS-II,
and 9 features from FS-III achieved maximum performance.
These optimal feature sets corresponding to FS-I/II/IIl are
designated as RFS-I/II/IIT respectively and are listed in the
first three columns of TABLE V. Using the same dataset (DB-
I) as before, 10 runs of 10-fold CV results in classification
accuracy of 84.78%, 81.52% and 71.45% in RFS-I, II and
II respectively (Exp-II in TABLE IV). In particular, the
sensitivity and specificity in RFS-I are also high (86.96% and
82.61% respectively) showing its capability for simultaneously
identifying ECGs with and without scar accurately. Therefore
the models generated during the training phase of Exp-II have
been applied on DB-II and IIT (Exp-III) to check the robustness
of the model and existence of possible overfitting. It was found
that the performance of the model is poorer in terms of all the
three metrics in RFS-I and II (except specificity in RFS-II)
whereas it showed good performance in RFS-III. However
the conflict between the performance results in RFS-III in
Exp. II and III imposed further investigation into the feature
space. In the last experiment, where the three feature spaces
were investigated separately, we merged the records from all
the three DBs and constructed a balanced dataset with equal
number of scar and no scar records (Exp-IV). As the available
number of no-scar records is 102 (the remaining 158 records
have scar tissue), we construct a dataset of 204 instances, and
applied 10 runs of 10-fold cross validation on this dataset for
each RFS. In this case, all the RFS showed comparable results
although the specificity in RFS-III is slightly lower than the
other two.

The inconsistency between the results of the above men-
tioned experiments carried out on separate feature spaces
prompted us to believe that either the feature sets are not
enough descriptive or a degree of overfitting exists. Therefore

we merged the parameters from the three feature spaces into
one pool of features (All Features Space-AFS) and applied
10 runs of 10-fold cross validation (Exp-V) without feature
selection step. The poor results indicate towards existence of
significant redundancies.

Following the same strategy as before we perform feature
selection in the AFS feature space, producing the Reduced All
Features Space (RAFS) consisting of 25 features as shown in
the fourth column of TABLE V. Within these 25, six features
came from the comparison of the testing ECG with the median
beat, two of them are spatial characteristics from the VCG
domain, eight of them are from the time domain analysis and
the remaining parameters are features from the time series
analysis. The importance of these parameters is shown in a 2-
D scatter plot between the T-area (lead I) and Wavelet modulus
Coherence (lead V4)- the top two parameters in the feature
ranking- in Fig. 8, where one may see the formulation of
two clusters (scar/no-scar records). It is important to observe
that the consistency of the features is demonstrated by the
fact that the majority of the dominant features of the RAFS
feature space, although maybe generated from a different
lead (which is typical in standard clinical practice and may
be attributable to the spatial location and extent of the scar
since different ECG leads are expected to capture effects from
different regions of heart), are also present in the list of the
dominant features of the individual feature spaces. This fact
verifies the significance of these particular features regardless
of the feature space to provide discriminative properties for the
detection of the presence/absence of myocardial scar. These
dominant features are highlighted in TABLE V.

Utilizing the feature vector of RAFS we ran repeated 10-
fold CV in Exp-VI. The results show that high classification
rate of 91.3% is achieved. In addition, the model achieved
significant level of sensitivity and specificity indicating that
the model is able to discriminate the presence/absence of
significant myocardial scar. However, as the training set used
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only instances from the DB-I, we tested the model on instances
that came from different sources as in the presence of possible
overfitting, in this case, the classification behavior of the model
is expected to be markedly different. Exp-VII is carried out
from this point of view where we used DB-II and III as the
testing sets which are inherently different from the character-
istics of DB-I. The overall accuracy achieved is 82.07%, while
the specificity is in the same high levels (Exp-VII). Moreover,
it is established in [25] that a model is robust enough if its
behavior doesn’t change significantly when it is fed with new
data. This is why we applied Exp. VIII, where we merge all the
available instances from the three databases and we construct
a balanced dataset of 204 instances (all no-scar records and
102 scar records), using all features from the RAFS. Repeated
10-fold cross-validation results in this experiment also shows
consistency with Exp VI and VII indicating that the model
provides classification performance (89.22% with similar high
level of specificity and sensitivity values) with high degree of
confidence. Since the Leave-One-Out process is considered as
good indicator of a system’s robustness [26], we applied that
strategy on the setup of Exp. VI and Exp. VIII and executed
two additional experiments Exp. X and Exp. XI, which once
again show consistent performance with high level of accuracy,
sensitivity and specificity. Summarizing the results of all the
experiments in addition to the adopted standard processes of
reducing overfitting in the model building phase, it is apparent
that although there is possibility of existence of overfitting, it
is minimal.

We further carried out an extension of Exp-VII in Exp-
IX by adding the remaining records from DB-I as testing

records. As the results show, the accuracy and sensitivity
are decreased (69.05%), while the specificity remains at the
same levels. Further investigation revealed that the drop of
classification rate in this experiment may be attributable to
the misclassification of the lower scar size records. As it is
illustrated in Fig. 9 the number of False Negatives decreases
as the scar size increases. More specifically, we observed that
when the scar size exceeds the threshold of 9.8% our model’s
sensitivity reaches to 81.4%. To explore this further we created
the ROC curve, where the Exp-IX is repeated by keeping
the training model the same but refining the class label only
for the testing set, according to a tuning cut-off scar size as
shown below (Fig. 7). It is evident that as the labeling of the
scar size cut-off increases to > 10%, both the sensitivity and
consequently the classification accuracy increases appreciably,
while the specificity remains at the same levels whereas for
lower scar cut-offs the sensitivity ranges between 60-75%.
This fact leads to the conclusion that the model can faithfully
distinguish between significant scarring and no-scar whereas
it is comparatively less accurate for lower scar size.

The evaluation results presented so far are based on the
>0% scar size as the definition of presence of scar. We
further investigated the system’s performance by changing this
threshold and then retraining and reapplying the entire system
in order to accommodate possible resolution issues of CMR
measurement. The performance of the system is explored
considering different cut off values (0%-10%). This analysis
is conducted using the setup of Exp. VIII, where a balanced
dataset is constructed between the two classes and the 10-fold
CV process is applied for estimating the performance. The
resulting ROC curves are depicted in Fig. 10. From the ROCs
comparison we observe that the 0% threshold demonstrated
the best performance as it is located near the left upper
edge and the area under the curve (AUC) is the maximum
among all the other cases. The obtained performance resulting
from the experiments in the RAFS space confirms that the
signal processing techniques that we have followed can indeed
provide a set of features able to discriminate the presence of
myocardial scar from ECG recordings, particularly when the
scar size is significant - a condition where immediate clinical
attention is needed.

However the model proposed here should be considered as

0.9
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Fig. 10. Cross validation results using different cutoff sizes
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a promising first-step result for classifying myocardial scar
from ECG and not as a completely ready method for clini-
cal translation. This is due to the retrospective nature of the
experiments conducted. The accuracy, sensitivity, specifici-
ty and the possible extent of existing overfitting need to be
evaluated under a prospective trial which is planned in the
future but currently beyond the scope of the present work.

V. CONCLUSIONS

In this paper we have presented the development of a
classification scheme, for the detection of myocardial scar
from ECG and VCG recordings. Four different strategies have
been explored so as to obtain a set of features that will
enable the discrimination between scar presence and absence.
The application of dimensionality reduction along with the
use of the SVM classifier, formulated a classification strategy
that achieves 89.22% classification accuracy, as evaluated in
CV experiments. The robustness of our proposed model is
also justified in experiments where the training and testing
sets are from different databases, in which the proposed
system maintains the high performance, achieving an 82.07%
overall accuracy with similar levels of sensitivity (76%) and
specificity (87.5%). The obtained performance results reveal
the potential of the proposed classification methodology to
provide an efficient tool for the early screening in the point-
of-care of myocardial scar in the point-of-care using cost-
effective, ubiquitous ECG/VCG recordings.
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