
Stream Ancestor Function:

A Mechanism for Fine-Grained Provenance

in Stream Processing Systems

Watsawee Sansrimahachai

School of Electronics

and Computer Science

University of Southampton

Email: ws07r@ecs.soton.ac.uk

Mark J. Weal

School of Electronics

and Computer Science

University of Southampton

Email: mjw@ecs.soton.ac.uk

Luc Moreau

School of Electronics

and Computer Science

University of Southampton

Email: L.Moreau@ecs.soton.ac.uk

Abstract—Applications that require continuous processing of
high-volume data streams have grown in prevalence and impor-
tance. These systems process streaming data in real-time and
provide instantaneous response to support precise and ontime
decisions. In such systems, it is difficult to know exactly how
a particular result is generated or more particularly how to
precisely trace stream events that caused a particular result.
However, such information is extremely important for validating
stream processing results. Therefore, it is crucial that stream
processing systems have a mechanism for capturing and querying
provenance information - the information pertaining to the
process that produced result data - at the level of individual
stream events, which we refer to as fine-grained provenance. In
this paper, we propose a novel fine-grained provenance solution
called Stream Ancestor Function - a reverse mapping function
used to express precise dependencies between input and output
stream elements. We demonstrate how to utilize stream ancestor
functions by means of a stream provenance query and replay
execution algorithm. Finally, we evaluate the stream ancestor
function in terms of storage consumption for provenance collec-
tion and system throughput, demonstrating significant reductions
in storage size and reasonable processing overheads.

I. INTRODUCTION

The use of real-time data streams has played an important

role in data-driven computational science. A data stream is a

real-time, continuous, ordered sequence of data items which

can be submitted from different kinds of data source (e.g.

sensors) [11]. The size of data streams is usually unbounded

and once each individual stream element has been processed it

is eventually discarded or archived [1]. Because of the unique

characteristics of data streams, the scientific community is

adopting the data streaming technique for various kinds of

applications that need instantaneous responses. Examples of

stream-based applications include sensor network applications,

real-time mapping systems and network monitoring systems.

Imagine that in a radioactivity leak incident in a nuclear

submarine (such as [18]), an operator relies on a real-time

mapping (geographic information system - GIS) application

in order to manage and control the disaster. The information

displayed on the GIS application is submitted by several

sensors located near the scene of the incident in real-time. At

some point during the incident, the operator found an anomaly

in a number of results displayed in the GIS application.

The operator anticipates that this problem has resulted from

damage to, or malfunction of, sensors. The operator queries

to find out which raw observations caused this anomaly and

which sensors are responsible for sending the observations. If

there is currently no provenance information - the information

pertaining to the process that produced result data - available

from the GIS application, the operator cannot easily determine

why the unusual information is generated, which were the raw

observations that led to the unusual information and which

sensors contributed to that information being displayed in the

GIS application.

This simple scenario illustrates the need for tracing individ-

ual results produced by existing stream processing systems.

In such systems, a mechanism for tracking provenance at the

level of individual stream elements, which we refer to as

fine-grained provenance, is very important. The existence of

such a functionality would allow users to be able to perform

fault-diagnosis in the case of anomalies, to validate processing

steps and to reproduce particular results in the case of stream

imperfections. By understanding the process that led to each

individual result produced by a stream system, users can have

confidence in the data that is the output from the system.

To address fine-grained provenance tracking in stream pro-

cessing systems, we propose a reverse mapping method called

a stream ancestor function for each stream operation. The

key concept of the stream ancestor function is that given

the reference to a particular output element, it identifies the

references to input elements involved in the production of

the output. By utilizing an event key as an index for each

individual stream element, all the input elements used in the

generation of the output can be exactly identified.

To evaluate how precisely the stream ancestor function can

identify individual stream elements involved in the production

of a given output, a replay execution method is proposed. The

key idea of the replay execution is that it utilizes provenance

information stored in a provenance store in order to derive

a particular output stream element. The support of the replay

execution would allow the stream systems to verify provenance

query results and also to validate original results produced by

the stream processing systems.

Applying the concept of the stream ancestor function to an

actual stream processing system, however, may rise to a prac-

tical challenge. Because every intermediate stream element is

required for the computing of stream ancestor functions, the

persistence of high volume stream elements potentially results

in a storage problem. To deal with this challenge, we present

an enhanced solution for provenance collection that reduces

the storage cost of the stream ancestor function model. With

this solution, the implementation of our stream provenance

model can offer a reasonable storage consumption.

This paper makes the following key contributions:

• It introduces a novel stream provenance model based on

the key principle - the stream ancestor function which

precisely captures dependency relationships for every

individual stream element.

• It presents an enhanced solution for provenance collection

that eliminates the requirement for storing every interme-

diate stream element.

• It identifies a set of primitive stream operations for which

fine-grained provenance can be computed.

• It presents a novel fine-grained stream provenance query

and replay execution algorithm.

The rest of this paper is organized as follows. Section 2

reviews previous work in the area of provenance and stream

processing systems. Section 3 introduces a fine-grained prove-

nance model for stream processing systems. Section 4 presents

algorithms for provenance query and replay execution. Section

5 demonstrates the evaluation of stream ancestor functions

in terms of storage consumption for provenance collection

and the impact of provenance recording (system throughput).

Finally, section 6 presents conclusions and further work.

II. RELATED WORK

Tan [20] classifies research studies on data provenance

(sometimes called lineage) into two distinct approaches: in the

lazy approach, provenance is generated on demand, by means

of a query, only when requested [24], [7], [8], whereas in the

eager approach information is propagated at runtime [4], [6].

We now discuss them in turn.

To address the data lineage problem, Woodruff and Stone-

braker [24] proposed a technique called weak inversion which

is used to regenerate input data items that produced a particular

output. The drawback of this technique is that the answer

returned by this function is not guaranteed to be perfectly

accurate and the weak inversion need to be defined by a user

who creates a new database. In [7], [8], a lineage tracing

algorithm has been proposed. This lazy algorithm can generate

provenance information through analyzing view definitions

and query algebraic structures.

Buneman et al. [3] formalize the data provenance problem

and draw a distinction between two types of provenance:

“why-provenance” and “where-provenance”. Why-provenance

determines what tuples in the source database contributed to

an output data item. Where-provenance, on the other hand,

identifies locations in the source database from which the

data item was extracted. Based on these types of prove-

nance, an eager approach propagating annotation according to

propagation rules [4] has been proposed to address where-

provenance. The idea of annotation propagation is further

extended by DBNotes [6]. In DBNotes, an extension of a

fragment of SQL was introduced to allow users to specify

how annotations should propagate. Green et al. [12] define

provenance semirings as a formal way of understanding “how-

provenance” which describes how the input data leads to

the existence of the output data. Annotations in the form

of variables are propagated so as to form polynomials with

integer coefficients for the output tuples.

Based on literature in the context of database systems,

our provenance solution aims to address a form of “why-

provenance” for stream systems since it aims to identify a

minimal set of input elements used in the production of a

particular output element. The approach presented in this paper

combines both eager and lazy techniques, eagerly propagating

minimum information at runtime, and relying on queries to

extract fine-grained provenance, lazily, on demand. Instead of

using a simple or non-structural annotation, our provenance

model uses a structural annotation (event key). We show

that this type of annotation is more suitable for expressing

dependencies between input and output stream elements.

In the context of scientific workflow, the data provenance

problem has received substantial attention. Taverna [17] pro-

vides support for provenance tracking to allow scientists to

understand how results from experiments were obtained. In

Taverna, provenance information is collected by recording

metadata information and intermediate results during workflow

enactment. Another system, the COMAD provenance frame-

work [2], is designed specifically to deal with collections of

data. To trace provenance of scientific data products, output

collections are embedded with a metadata annotation contain-

ing explicit data dependency information. Such annotations are

used to describe the derivation of output objects computed in

a scientific workflow.

PASOA [13], [14] investigates the concept of provenance

and built an infrastructure for recording and reasoning over

provenance in service-oriented architectures. It is mainly de-

signed for supporting interactions between loosely-coupled

services. By recording assertions comprising interaction mes-

sages and causal relationships between messages, provenance

of output data products can be captured. Our provenance

solution for streams extends the PASOA provenance mech-

anism. In our model, a stream operation is treated as a “grey

box” [9] and provenance is collected based on dependencies

between input and output elements of the operation. However,

because PASOA need to store all dependencies and interme-

diate data objects, the amount of information recorded can

potentially cause a storage problem when dealing with high

volume data streams. Therefore, one of requirements for our

provenance solution is to find out an enhanced technique that

can address this storage problem. Furthermore, our approach is

also compatible with the community-based Open Provenance

Model [16], though it proposes a compact representation of

its was-derived-from edges.

A few research efforts have been made in exploring prove-

nance techniques for data streams. Vijayakumar et al. [21],

[22] propose a provenance model and architecture to track

provenance in stream filtering systems. Their study focuses

on a coarse-grained provenance method that identifies depen-

dencies between streams or sets of stream elements as the

smallest unit for which provenance is collected. However, the

method does not offer a level of granularity for capturing

provenance that is detailed enough to identify dependencies

among individual stream elements. The Time-Value-Centric

model [23], [15] (TVC) is a finer-grained provenance solu-

tion that provides the ability to express data dependencies

for individual stream elements. In this model, dependencies

between input and output stream elements are described in

terms of three primitive invariants: time, value and sequence.

This model assumes that all elements of all data streams

are persisted. By composing these primitives, provenance of

individual stream elements can be explained. Nevertheless, this

model still has some limitations, since it can fail to identify

precisely input stream elements that are used in the production

of an output. Another limitation of this model is pertaining to

storage consumption for provenance collection. Because all

intermediate stream elements need to be stored for computing

the provenance of an output element, the persistence of high

volume stream events potentially results in a storage burden

problem. Therefore, to address these limitations, we introduce

a finer-grained provenance solution that precisely captures

the provenance of every individual stream element without

requiring every intermediate stream elements to be stored.

So, to sum up, the approach that is presented in this paper

improves over the state-of-the-art in multiple ways. It defines

a fine-grained notion of provenance for streams similar to

why-provenance, which can explain the presence of individual

elements in streams. In doing so, it identifies a class of stream

operations for which such fine-grained provenance can be

determined. It blurs the distinction between lazy and eager

approaches, since it propagates structured information at run-

time, which is exploited for retrieving provenance by queries,

on demand. Furthermore, it reduces the storage requirement

compared to a related stream provenance approach.

III. FINE-GRAINED STREAM PROVENANCE MODEL

Our requirement for the provenance support in stream

processing systems is to track provenance information at the

level of individual stream events so that data dependencies

for each individual stream event in a particular processing

step can be examined. To address the requirement, we in-

troduce a reverse mapping method called a stream ancestor

function for each stream transformation (stream operation).

The purpose of the stream ancestor function is to explicitly

express dependency relationships between input and output

elements of a stream operation. We first present primitive

����

����

���� ����

����

��� ����	�

	

	�

�
��

��
�����
���������������

�����	
����
���	���

�����	

���������
����
�����

��� ����

��� ����

��� ���� ��� ����

��� ����

Fig. 1. Infrastructure of a stream processing system

stream operations to demonstrate how the output element for

each stream operation is produced in terms of input elements.

Based on these operations, the specification of a stream

ancestor function for each stream operation is described. It

is important to note that all stream operations are defined

by using Event Processing Language (EPL) (sometime called

StreamSQL [19])- an SQL-like language extended to handle

event streams. We use EPL provided by Esper [10] - an open-

source stream processing engine - to illustrate how continuous

queries is formulated in stream operations and how provenance

assertions are computed. The definition of stream ancestor

functions is presented by using standard Structured Query

Language (SQL). By using SQL and EPL which is a variant

of the SQL language, we believe that a concise and clear

definition of stream ancestor functions can be explained.

A. Basic assumptions for stream provenance model

To design a fine-grained provenance model, we make the

following assumptions describing stream systems and a stream

model that our provenance model is intended to support.

• A stream processing system is represented as a set of in-

terconnected nodes, with each node representing a stream

operation or a stream processing unit (SPU). Input stream

events flow through a directed graph of stream process-

ing operations and finally, streams of output events are

presented to applications that subscribe to receive results.

• Each data stream consists of a sequence of time ordered

stream events and each individual stream event is com-

posed of an event key and a content of stream event

(data). An event key - a unique reference of an individual

stream event - contains a timestamp, a sequence number,

a stream identifier and a delay time for processing.

• Streams are implicitly timestamped. In this kind of stream

timestamps, stream events that first enters a stream system

from data sources are timestamped on entry to a stream

system. Timestamps are derived from a stream system

time, and are typically based on the order in which stream

events arrive at the stream system.

From the definitions of a data stream, a timestamp and

a sequence number serve to define a temporal order and

sequential order among stream events in a stream. Because

����������

	���
��

��������	
������
��

�
�

���
��
����
��

������������
����

������������
���
��

����

	����������������
���
��

���������	
�

����������	
�

����������������

���� ����

����

���� ����

Fig. 2. Provenance architecture for stream processing systems

a processing delay time for each stream event is generally

different, it is necessary to include a delay time in an event

key. The delay time is used as a variable for computing time

dependencies between stream events. The stream processing

infrastructure based on our assumptions is shown in Figure 1.

To overview our stream provenance system, we present

a provenance architecture for stream processing systems in

Figure 2. A provenance service plays a central role in this

architecture. The provenance service consisting of a recording

service and a query service is responsible for receiving prove-

nance assertions from a stream system. Provenance assertions

are typically recorded as a stream. In the case that replay

execution is required, a provenance store - a central storage

component that offers a long-term persistent storage - is used

to stored streams of provenance assertions. The provenance

of stream processing results can be retrieved by performing

provenance query through a query interface.

B. Primitive stream processing operations

In this section, primitive stream operations for expressing

stream processing requirements are presented. These stream

operations include windowed operations that operate on sets

of consecutive events from a stream at a time and operations

that operate on a single event at a time. These operations are

recognized as common stream operations developed in several

stream projects [11], [5].

• Map Map(F,sid): A map operation is a stream operation

that operate on a single stream element at a time. The

operation applies an input function (F) to the content of

every element in a stream.

• Filter Filter(P,sid): A filter operation screens events in a

stream for those that satisfy an input predicate (P).

• Sliding time window TW(w,sid): A time window is a

data window where the extent of the window is defined

in terms of time interval. At any point in time, the time

window generates an output event from the most recent

input events over a given time period (w).

• Length window LW(l,sid): A length window is a data

window where the extent of the window is defined in

terms of the number of events. At any point in time, a

length window covers the most recent N events (size of

window - l) of a stream.

• Time-window join JoinTW(w1,w2,sid): A time-window

join is a binary operation that pairs stream events from

two input streams. Stream events from two time-based

windows are combined and output events are produced

according to a join condition. The required parameters

consists of duration of time windows (w1,w2).

• Length-window join JoinLW(l1,l2,sid): Similar to the

time-window join, a length-window join is a binary

operation that join pairs stream events from two input

streams. The difference between these two operation is

that the length-window join operates on stream events

from two tuple-based windows. The required parameters

consists of size of length windows (l1,l2).

The definitions of primitive stream operations are described

in Table I. In this context, a stream id (sid) for every operation

is the ID of an output stream. Note that the filter, time-

window join and length-window join operations use a se-

quence number (sn) as an internal variable which is generated

according to a number of output events. Furthermore, every

stream operation presented in the table takes a stream event -

Event(key(t,n,s,d),data) - as an input.

C. Stream ancestor functions

We can express dependencies between input and output

events of stream operations by means of a stream ancestor

function (SAF) that is defined for each stream operation.

The key idea of stream ancestor function is that for a given

reference to an output element, it identifies which references

to input events involved in the production of that output. The

stream ancestor function does not work directly with individual

stream elements, but instead it operates on a representation

of each individual stream element - provenance assertion -

that is recorded by each stream operation. We assume that

every provenance assertion contains an event key. The event

key plays an important role in the mapping process of the

stream ancestor function. It serves as a unique reference for

identifying each provenance assertion of an individual stream

element in a stream. By composing stream ancestor functions

for all stream operations in a stream system, all the elements of

the intermediate streams (represented by particular provenance

assertions) involved in the processing of a particular output,

which we refer to as the complete provenance of a stream

processing result, can be exactly identified.

The concept of stream ancestor function is illustrated in

Figure 3(a). This figure shows how the stream ancestor

function is used to express dependencies between input and

output stream elements. In this example, we can determine the

input events involved in the processing of the output event Y0

by passing the provenance assertion PA(Y0) to the stream

ancestor function defined explicitly for SPU2. The stream

ancestor function returns the provenance assertions PA(X0)
and PA(X1) which represent the stream events X0 and X1

belonging to the input stream of SPU2.

TABLE I
THE DEFINITIONS OF PRIMITIVE STREAM PROCESSING OPERATIONS

Stream operations (input: Event(key(t,n,s,d),data))

Map(F, sid)

(∗ fn : (′a →′ b) ∗ INT → ′a EV ENT list → ′b EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t),F(data) from Event

F ilter(P, sid)

(∗ fn : (′a → bool) ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp− t), data from Event where P(data)

TW (w, sid)

(∗ fn : TIME ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t), list(data) from Event.win : time(w)

LW (l, sid)

(∗ fn : INT ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t), list(data) from Event.win : length(l)

JoinTW (w1, w2, sid)

(∗ fn : TIME ∗ TIME ∗ INT → ′a EV ENT list → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp−MaxTime(e1.t, e2.t)), J(e1.data, e2.data)

from Event1.win : time(w1) as e1, Event2.win : time(w2) as e2

JoinLW (l1, l2, sid)

(∗ fn : INT ∗ INT ∗ INT → ′a EV ENT list → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp−MaxTime(e1.t, e2.t)), J(e1.data, e2.data)

from Event1.win : length(l1) as e1, Event2.win : length(l2) as e2

TABLE II
THE DEFINITIONS OF STREAM ANCESTOR FUNCTIONS

Stream ancestor functions (input: key(t,n,s,d))

MapA(sid)

(∗ fn : INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions

where streamID = sid and (timestamp = t− d)

FilterA(sid)

(∗ fn : INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions

where streamID = sid and (timestamp = t− d)

TWA(w, sid)

(∗ fn : TIME ∗ INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions

where streamID = sid and (timestamp ≥ t− d− w) and (timestamp ≤ t− d)

LWA(l, sid)

(∗ fn : INT ∗ INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions

where streamID = sid and (seqNo ≥ (n− l) + 1) and (seqNo ≤ n)

JoinTWA(w1, w2, sid1, sid2)

(∗ fn : TIME ∗ TIME ∗ INT ∗ INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions where streamID = sid1 and (timestamp ≥ t− d− w1) and (timestamp ≤ t− d)
union

select timestamp, seqNo, streamID, delay

from assertions where streamID = sid2 and (timestamp ≥ t− d− w2) and (timestamp ≤ t− d)

JoinLWA(l1, l2, sid1, sid2)

(∗ fn : INT ∗ INT ∗ INT ∗ INT → KEY → KEY list ∗)
select timestamp, seqNo, streamID, delay

from assertions where streamID = sid1 and (timestamp ≤ t− d)
order by timestamp desc fetch first l1 rows only

union

select timestamp, seqNo, streamID, delay

from assertions where streamID = sid2 and (timestamp ≤ t− d)
order by timestamp desc fetch first l2 rows only

����

�����	
����
���

��������

��� ���� ��� ���� ��� ���� ��� ���� ��� ����

��� ���� �����	
��
�
��� ���� �����	
��
�

��� ���� �����	
��
�

��� ���� �����	
��
�

��� ���� �����	
��
�

������

������

������

������

������

������
����������

�

������
����

������
����������

�

������
����

�� �� �� �� ��

���

����

����	����

����	

����
���
��������

��� ���� ��� ���� ��� ���� ��� ���� ��� ����

������

������

������

������

������

������
����������

�

������
����

������
����������

�

������
����

�� �� �� �� ��

���

��� �����	
��
�

��� �����	
��
�

��� �����	
��
�

��� �����	
��
�

��� �����	
��
�

Fig. 3. Unoptimized (a) vs optimized stream ancestor function (b)

To extend the concept of stream ancestor functions, we

introduce an enhanced solution called an optimized stream

ancestor function. The aim of this optimized function is to

reduce storage consumption of the original function by record-

ing only necessary information. For this solution, only contents

of stream events that act as first input to a stream processing

system are stored. Every intermediate stream event is recorded

only its key. Considering the fact that we use provenance

assertions as representations of individual stream elements;

therefore, the generation of the provenance assertions for every

intermediate stream event does not include the contents of

stream events, except for the first-input events - stream events

that enter a stream system from data sources (e.g. sensors) and

are first processed by stream operations. In addition, when the

content of each individual event is required, we can obtain the

content by replaying the execution of stream operations. With

the concept of optimized stream ancestor functions, the amount

of storage consumed for provenance collection is reduced and

thus this can address the storage burden problem. Figure 3(b)

illustrates the concept of optimized stream ancestor functions.

As illustrated in Figure 3(b), for each provenance assertion

that represents individual event, only an event key is contained.

The content of each intermediate event is discarded because

it can be obtained later by replaying the stream execution

if required. In this example the optimized stream ancestor

function takes the provenance assertion PA(Y0) representing

the output event Y0 as an input and returns the provenance

assertions PA(X0) and PA(X1) which represent the input

events X0 and X1 that are involved in the production of Y0.

The definitions of stream ancestor functions are presented

in table II. Because of the reason of space, we can only

present the optimized stream ancestor functions. Furthermore,

because of the simplicity and conciseness of the specifications,

the stream ancestor functions that will be presented are used

event keys as inputs and outputs of the functions instead of

provenance assertions. Every stream ancestor function takes

an event key - key(t, n, s, d) - as an input and returns a set of

output event keys. The important parameter used in all stream

ancestor functions is sid (stream identifier). In this context,

sid for every ancestor function is the ID of an input stream.

According to the definition, stream ancestor functions for

windowed operations (TW, LW, JoinTW and JoinLW) utilize

parameters a size of data window and a delay time for

each stream element in order to define the extent of a past

data window which a particular output element is generated

from. For example, the definition of TWA(w, sid) indicates

that an output element containing an event key(key(t,n,s,d))

(represented by a provenance assertion) is generated from

a past data window where the interval of the window is

between t - d - w (lower bound) and t - d (upper bound).

Aside from windowed operations are stream operations that

operate on a single element at a time such as Map and Filter

operations. Stream ancestor functions for these operations

straightforwardly utilize a timestamp and a delay time for

each output element to identify ancestor elements (provenance

assertions) belonging to an input stream. For example, the

definition of MapA(sid) indicates that an output element

containing an event key (key(t,n,s,d)) is generated from an

input element that was timestamped with a value t - d.

IV. PROVENANCE QUERIES AND REPLAY EXECUTION

A. Provenance queries

We now describe how to utilize stream ancestor functions to

address the fine-grained provenance query. In this context, the

processing flow of a stream processing system is represented

as a set of interconnected nodes (stream operations). By

composing all nodes, the output of the stream system can

be retrieved. To trace back a particular output event, it is

necessary to compose stream ancestor functions for stream

operations as well. For each stream ancestor function, we can

identify input events (representations of input events) involved

in the processing of a particular output event. By composing

all stream ancestor functions in a stream system, the complete

provenance of an individual stream element can be captured.

Figure 4 illustrates the pseudo-code for the fine-grained

provenance query. The important concept of this provenance

query algorithm is that for a given event key of output stream

element, the provenance query algorithm dynamically com-

poses stream ancestor functions for all stream operations in the

processing flow of a stream processing system together (like

traversing a graph in reverse order on a node by node basis)

in order to resolve data dependencies among intermediate

stream elements. This provenance query algorithm consists

of two internal functions: retrieveAncestors and composeSAF

functions. The retrieveAncestors is the entry-point function

that takes a list of event keys and a list of targeted stream IDs

(stream IDs used to terminate the query) as input parameters

and returns a set of event keys which is a query result.

1: /* fn: KEY list * INT list → KEY list */

2: Function retrieveAncestors(

3: keyList :KEY list,

4: sidList :INT list) {
5: resultList = [] :KEY list

6: composeSAF(keyList,sidList,resultList);

7: return resultList;

8: }

1: Function composeSAF(

2: keyList :KEY list,

3: sidList :INT list,

4: resultList :KEY list) {
5: bufferList = [] :KEY list

6: for each element (key) ∈ keyList do

7: /*check whether sid of the element is the terminated

sid or not*/

8: if key.sid ∈ sidList then

9: resultList.add(key);

10: else

11: /*get a stream ancestor function by using sid*/

12: saf = getSAF(key.sid);

13: /*execute the stream ancestor function on the

element*/

14: outputList = saf.execute(key);

15: bufferList.add(outputList);

16: end if

17: end for

18: if bufferList 6= empty then

19: /*recursive call if there are elements in

bufferList*/

20: composeSAF(bufferList,sidList,resultList);

21: end if

22: }

Fig. 4. Algorithm for a fine-grained provenance query

The other function, composeSAF, is the recursive function

that contains the business logic of the provenance query. The

process of the function consists of first receiving parameters

passed by the retrieveAncestors function. Then, it iterates over

a list of event keys (keyList) in order to execute stream

ancestor functions on every input event key. For each event

key, it will be processed by its associated stream ancestor

function. Finally, if there are output event keys in the data

buffer (it means some intermediate event keys still waiting

to be processed), the composeSAF function will be called

recursively until no event keys in the data buffer.

B. Replay execution

Similar to the provenance query, our replay execution

method applies the idea of function composition. The funda-

mental concept of the replay method is that it utilizes prove-

nance assertions, configuration parameters of a processing flow

and stream operation parameters which are stored in a prove-

nance store in order to derive an output stream element. We

assume that the processing flow of a stream processing system

is represented as a set of interconnected nodes and stream

events flow through a directed graph of stream processing

operations. Therefore, we can derive a particular output stream

event in the processing flow by composing stream operations

involved in the production of that output element.

Figure 5 illustrates the pseudo-code for the replay execution.

In our replay execution algorithm, a hash map (HashMap)

,which consists of a stream ID as a key and a list of stream

events as its associated value, is mainly used to store interme-

diate results. The replay execution algorithm consists of two

1: /* fn: HashMap<INT,Event list> * INT list →
HashMap<INT,Event list> */

2: Function replayExecution(

3: inputMap :HashMap,

4: sidList :INT list) {
5: resultMap = new HashMap();

6: composeStreamOp(inputMap,sidList,resultMap);

7: return resultMap;

8: }

1: Function composeStreamOp(

2: inputMap :HashMap,

3: sidList :INT list,

4: resultMap :HashMap) {
5: bufferMap = new HashMap();

6: for each key element (sid_in) ∈ inputMap do

7: tempMap = new HashMap();

8: tempMap.put(sid_in,inputMap.get(sid_in));

9: opID = getOperationID(sid_in);

10: /*obtain all required parameters*/

11: paramMap = getParameters(opID);

12: istreamList = getInputStream(opID);

13:
14: /*if the operation has more than one input stream*/

15: notFoundFlag = false;

16: if istreamList.size() > 1 then

17: for each element (istr) ∈ istreamList do

18: if istr ∈ inputMap.key() then

19: tempMap.put(istr,inputMap.get(istr));

20: else

21: bufferMap.put(sid_in,inputMap.get(istr));

22: notFoundFlag = true;

23: end if

24: end for

25: end if

26: if notFoundFlag = true then

27: continue; /*skips the current iteration*/

28: end if

29:
30: /*get a stream operation by using operation ID*/

31: streamOp = getStreamOperation(opID);

32: /*execute the stream operation*/

33: returnMap = streamOp.execute(tempMap,paramMap);

34:
35: for each key element (sid_out) ∈ returnMap do

36: /*check if sid_out is the terminated sid*/

37: if sid_out ∈ sidList then

38: resultMap.put(sid_out,returnMap.get(sid_out));

39: else

40: bufferMap.put(sid_out,returnMap.get(sid_out));

41: end if

42: end for

43: end for

44: if bufferMap 6= empty then

45: /*recursive call if there are elements in bufferMap*/

46: composeStreamOp(bufferMap,sidList,resultMap);

47: end if

48: }

Fig. 5. Algorithm for replay execution

internal functions: replayExecution and composeStreamOp.

The replayExecution function is the entry-point function that

takes a hash map containing input stream events and a list of

stream IDs used to terminate the replay execution as input

parameters and returns a result hash map which contains

output events produced by the replay execution process. Like

the provenance query algorithm, the composeStreamOp, is

the recursive function that contains the business logic of the

replay execution method. The process of the function begins

by receiving parameters passed by the replayExecution func-

tion. Then, it iterates over a list of input stream IDs (sid in)

in order to execute stream operations on every input stream

and every input event. For each input stream, all parameters

���

��

���	
�

���

������

�

�

�

�

�

�����

������	

����	

������

������	������
�����	

������

���
�

�

�

�

�

�

	

���
�

���
��

����

�����

���	�

����

����

�����

�������
����
�

��

�

��
�
�
�

��
�
�
�

�����
��	��	

�
�	�

����� �����
�����

����
�����

�����

����

�����

���������

������������

����������������

������������

���� � ��������� �!

����������	
��

�������
��
���

�������
��
������
��

������� ���
 ���
!�

����	

������

�����	

������

�����

����

����� ������	

�����
�������

��
��

�

��
��

�

��
��

�
Fig. 6. The processing flow of a stream processing system

required for the processing of its associated stream operation

are collected (using getParameters function). If the stream

operation has more than one input streams, the other input

stream of the operation is obtained. Then, the stream operation

is executed by using all events of the input streams and

the required parameters. Finally, if there are streams in the

data buffer, the composeStreamOp function will be called

recursively until no intermediate streams in the data buffer.

C. A case study for fine-grained provenance queries

To demonstrate that our provenance solution is expressive

enough for precisely tracking provenance at the level of

individual stream events, we use a simple synthetic processing

flow of a stream system as an example. A provenance query

constructed by composing stream ancestor functions is pre-

sented to capture the provenance of the synthetic processing

flow. Then, the outputs of the provenance query are used as an

input for our replay execution method in order to demonstrate

how to validate provenance query results.

The processing flow of a stream processing system is

presented in Figure 6. It is constructed by composing stream

operations including Map, Filter, Sliding time window (TW)

and Time window join (JoinTW). For each operation, input

and output streams are labelled with unique IDs (stream iden-

tifiers). Each stream operation is assigned a unique operation

ID as well. Figure 7 presents the assertions table which is

used to store a set of provenance assertions recorded during

the execution of the synthetic processing flow. The assertions

table consists of the following fields: an assertion identifier

(assertion id), a set of fields representing an event key of a

stream element(timestamp, seqno, stream id and delay), event

content and an assertor (operation ID of a stream operation

that records provenance assertions). In this example, three

input stream events are fed into the system. In addition, we

also provide an extra field for event content that are discarded

during the generation of provenance assertions.

To capture the provenance of the processing flow, stream

ancestor functions including MapA, FilterA, TWA and

JoinTWA are composed. The provenance assertions of all

intermediate streams are required to be stored in a provenance

store to support provenance queries. The provenance query

���������	�
 ��������� ��
�� ������	�

���� �����	������� �������� ��������
�����
�

� ����������	�� � � � �	
	� �

� ����������	�� � � � � ��
��

� ����������	�� � � � � ��
��

� ����������	�� � � � � ��
��

� ������������� � � �� � ���
��

	 ������������� � 	 � � ��
��

� ����������	�� � � � ��
�� �

� ����������	�� � � � � ���
��

� ����������	�� � � � � ���
��

�� ����������	�� � � � � ���
������
��

�� ����������	�� � � � � ���
��

�� ����������	�� � 	 � � ��
��

�� ����������	�� � � � ��
�� �

�� ����������	�� � � � � ��
��

�� ����������	�� � � � � ��
��

�	 ����������	�� � � � � ���
������
�����
��

�� ����������	�� � � � � ��
��

�� ����������	�� � 	 � � ��
��

Fig. 7. The assertions table

���

���

���

��������	

�	

���
�

����������
�����	�

�����	� �����

���

�������
��������	

�	

���
������	�

�����	�
�����

���

�����

���

���

��

��

�	

�
 ��

��

����

���� ������
���
� �
������� ����� �������
� ����� ������������

	 � 	������	
�
�� � � �

� 	� 	������	
�
�	 � � �

� 	� 	������	
�
�� �
 �

� 	
 	������	
�
�
 � � �

� 	� 	������	
�
�� � �

 	� 	������	
�
�� � �

� � 	������	
�
�� � �

� � 	������	
�
�� 	 � �

� 	� 	������	
�
�� � 	
 �

	
 	� 	������	
�
�� � 	
 �

		 � 	������	
�
�� � 	
 �

	� 	 	������	
�
�� 	 	
 �

���

���

Fig. 8. The trace table (a) and the provenance graph (b)

algorithm (described in Figure 4) is applied to compose all

stream ancestor functions dynamically. In Figure 8(a), the trace

table, the internal table used to temporarily store intermedi-

ate results produced during the execution of the provenance

query, is presented. In the trace table, the top row (index:#1)

represents the event key of the provenance assertion which

is the input of the provenance query, and the last four rows

(index:#9-#12) represent the query results. In Figure 8(b),

a provenance graph related to the trace table is presented.

Each node labeled with an index number represents individual

records in the trace table. By traversing the provenance graph

in reverse, we can exactly identify that the events from the

stream 1 (index:#9-#12) are the source events used in the

production of the output event from the stream 7 (index:#1).

To demonstrate stream reproduction and validate prove-

nance query results, we apply the replay execution algorithm

(described in Figure 5) in order to compose all stream op-

erations dynamically. Figure 9(a) shows the replay table -

����� �����	�
���� 	����	��
 ����
 �	������� ����� ����	��
�	��	 	������	�	��

� �� ������������� � � � ��	�� �

� �
 ������������� � � � �
 �

� �� ������������� �
 � �
 �

 �� ������������� � � � ���
���
�
� �

� �� ������������� � � � �
 �

� �� ������������� � � � ��	�� �

� � ������������� � � � ���	��
�
� �

���

���

��������
��

��

�������
�� �������
��

��� �������
����
�
��

!��"�#�$#�%
�
��

��

��

�� ��

��

��

��

Fig. 9. The replay table (a) and the processing graph (b)

the internal table used by the replay execution algorithm for

processing the stream replay execution. In the replay table

the top row (index:#1) represents the provenance assertion

which is the input of the replay execution, and the last row

(index:#7) represents the replay result. We also present a

processing graph related to the replay table in Figure 9(b)

to describe dependencies between each intermediate replay

result. We start validating the query result of the previous

provenance query by passing the query result (index:#1) to

the replay execution algorithm. Then, the intermediate results

produced during the processing of replay execution are stored

in the replay table. Finally, we can derive the output event

(index:#7). By comparing the output derived from this replay

execution and the assertion input to the previous query, we can

demonstrate the precision of our provenance query solution.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the implementation of our

provenance solution - the fine-grained provenance model for

streams. For all experiments, the experimental setup was as

follows: Our provenance service and a stream processing

system were hosted on a Linux PC with 1.60GHz Intel Xeon

Quad Core CPU and 4 GB memory. To store provenance

information, our implementation used MySQL 5 as a database

backend and MyISAM is used as our storage engine. All our

application components were implemented in Java. In addition,

we use JMS as our messaging infrastructure with ActiveMQ

5 as the implementation choice.

A. Storage overheads for provenance collection

We now evaluate our fine-grained provenance model in

terms of storage consumption for provenance collection. We

compare storage space consumed by the implementation of our

provenance model applying our storage reduction technique

(optimized SAF) to another implementation that do not employ

the reduction technique (unoptimized SAF). The synthetic

processing flow used is a linear stream processing flow where

stream components (stream operations) are chained together

TABLE III
MATHEMATICAL SYMBOLS FOR STORAGE FORMULAS

Symbol Definition

SCSAF−unopt Storage cost of the unoptimized ancestor function

SCSAF−opt Storage cost of the optimized ancestor function

MCSAF−unopt Marginal cost of the unoptimized ancestor function

MCSAF−opt Marginal cost of the optimized ancestor function

SS The percentage of storage saved

k Size of an event key

e Size of an event’s content

m No. of messages fed to a stream processing system

c No. of stream processing components

and each component takes input events from a previous

component. In each set of experiments, we first measured the

original storage cost of provenance recording (without apply-

ing the storage reduction technique). This experiment aims to

demonstrate how much storage space the system requires to

store every intermediate stream element. Then, we measured

the storage cost resulting from the system that applies our

reduction technique. By analyzing the storage measurements

collected from these experiments, we can indicate the amount

of storage saved when applying our reduction technique.

To understand the variation of storage overheads incurred

by the system, the number of stream components used in the

experiments was increased from 2 up to 15. Two message

payload sizes, 100 Bytes and 1 Kbytes, were considered to

demonstrate the storage overheads for different message sizes.

In addition, for each test, the number of stream events fed to

the stream system is 100,000 stream events.

The storage cost for provenance collection in our prove-

nance solution can be explained in terms of some straightfor-

ward mathematical formulas. Table III lists the mathematical

symbols used in our storage formulas. For the unoptimized

stream ancestor function approach (SAF-unopt) which stores

every intermediate stream elements, we can derive the storage

cost from the following equation:

SCSAF−unopt = ((k + e) ∗m) ∗ c

For the optimized stream ancestor function approach (SAF-

opt), only contents of stream elements that act as the first

input to a stream processing system are recorded. The content

of each intermediate event is discarded and only its event key

is stored. Hence, the storage cost for provenance collection

can be calculated as follows:

SCSAF−opt = ((k + e) ∗m) + ((k ∗m) ∗ (c− 1))

By utilizing the previous storage formulas, we can derive

the storage saving rate (SS) from the following equation:

SS =

(

SCSAF−unopt − SCSAF−opt

SCSAF−unopt

)

∗ 100

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14

S
to

ra
g
e
 s

p
a
c
e
 (

M
B

)

Number of stream components

Storage space as the number of components increases (100 bytes)

unoptimized SAF
optimized SAF

unoptimized SAF (predicted)
optimized SAF (predicted)

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
s
to

ra
g
e
 s

a
v
e
d
 (

%
)

Number of stream components

Percentage of storage saved (100 bytes)

Actual storage saved
Predicted storage saved

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14

S
to

ra
g
e
 s

p
a
c
e
 (

M
B

)

Number of stream components

Marginal cost of storage consumption (100 bytes)

Marginal cost for unoptimized SAF
Marginal cost for optimized SAF

(a) (b) (c)

Fig. 10. Provenance storage cost for 100 bytes stream events as the number of stream components increases

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14

S
to

ra
g
e
 s

p
a
c
e
 (

M
B

)

Number of stream components

Storage space as the number of components increases (1 KBytes)

unoptimized SAF
optimized SAF

unoptimized SAF (predicted)
optimized SAF (predicted)

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
s
to

ra
g
e
 s

a
v
e
d
 (

%
)

Number of stream components

Percentage of storage saved (1 KBytes)

Actual storage saved
Predicted storage saved

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14

S
to

ra
g
e
 s

p
a
c
e
 (

M
B

)

Number of stream components

Marginal cost of storage consumption (1 KBytes)

Marginal cost for unoptimized SAF
Marginal cost for optimized SAF

(a) (b) (c)

Fig. 11. Provenance storage cost for 1 KBytes stream events as the number of stream components increases

We can further utilize the storage measurement information

to predict the marginal cost of storage consumption for prove-

nance collection. In our context, we consider the marginal

cost as the amount of storage space required for adding an

additional component to a stream system. For the unoptimized

stream ancestor function, we can derive the marginal cost of

storage consumption from the following equation:

MCSAF−unopt = (k + e) ∗m

For the optimized stream ancestor function, the marginal

cost of storage consumption can be calculated as follows:

MCSAF−opt = (k ∗m)

Figure 10(a) and 11(a) show the storage cost needed to

store provenance information for different provenance storage

approaches and different payload sizes (message sizes). We

show the storage cost observed for the synthetic processing

flow applying our storage reduction technique (optimized

SAF) and the other that does not employ the storage reduction

technique (unoptimized SAF). The predicted storage cost of

both approaches derived from our storage formulas are also

presented. In the both figures, the storage cost of unoptimized

SAF grows significantly because both event keys and event

contents for every intermediate events need to be stored in

a provenance store. On the other hand, compared to the

optimized SAF which applies the storage reduction technique,

the amount of storage consumed by the stream system is just

slightly increased. This is because many event contents for

every intermediate event are discarded.

The storage saving rates shown in Figure 10(b) and 11(b)

indicate that our storage reduction technique (optimized SAF)

is extremely effective when dealing with large message sizes.

For instance, at 10 stream components, the percentage of

storage space we can save from discarding event contents of

intermediate stream elements with 1 Kbytes payloads is almost

85 percent. It is much higher than the percentage of storage

saved for 100 bytes payloads stream events at the same number

of stream components which is about 60 percent. This finding

shows that the bigger the message size that a stream processing

system exploits, the greater the storage overheads can be saved

by our storage reduction technique.

Furthermore, the marginal costs of storage consumption

in Figure 10(c) and 11(c) indicates that our storage reduc-

tion solution can economize the storage cost for provenance

collection when a stream processing system is scaled up. In

the both figures, the marginal cost for unoptimized SAF and

that for optimized SAF remain stable when the number of

stream components increases. However, the fixed rate of the

marginal cost for optimized SAF is considerably less than

that for unoptimized SAF. Compared to unoptimized SAF, the

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (no delay)

No provenance
Just receive provenance assertions

Store provenance assertions

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (delay: 1 ms)

No provenance
Just receive provenance assertions

Store provenance assertions

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (delay: 2 ms)

No provenance
Just receive provenance assertions

Store provenance assertions

(a) (b) (c)

Fig. 12. System throughputs of the implementation of our stream provenance system as time delays for stream processing increase

percentage of the marginal costs reduced by the optimized

SAF approach for 100 bytes payloads stream events is around

65 percent and that for 1 Kbytes payloads stream events is

about 95 percent. These results show the substantial reduction

in storage consumption when stream components increase. The

results do not only present the fixed rate of storage costs but

also indicate that the marginal costs for the optimized SAF

does not depend on the size of stream event. Therefore, with

the considerably smaller and fixed marginal costs, practical

storage cost control can be greatly maintained by application

developers when a stream system needs to be scaled up.

B. Provenance recording impact

The purpose of this evaluation is to observe the impact

of provenance recording on a stream processing system in a

controlled environment. In this evaluation, system throughput

- the number of messages (stream events) processed by a

stream system over a given interval of time - is used as our

performance indicator. Similar to the storage experiments, the

synthetic processing flow used is a linear processing flow.

In each set of experiments, we first measured the system

throughput of the implementation of a stream processing

system that does not record provenance information. This

experiment aims to demonstrate how much is the system

throughput that we can expect under normal processing. Then,

we measured the system throughput of a stream process-

ing system that records provenance information for differ-

ent provenance processing modes of the provenance service

including Just receive provenance assertions (without any

provenance processing by the provenance service) and Store

provenance assertions into a provenance store. This experiment

aims to present the effect of provenance recording on the

system throughput of a stream processing system.

To understand the impact of provenance recording when

a stream processing system is scaled up, the number of

stream components (stream operations) used in the experi-

ments was increased from 2 up to 15. In addition, because

different stream-based applications have different time delays

for processing depending on how fast stream operations can

be executed or more particularly the complexity of stream

computation performed, therefore three different time delays

for stream processing - no delay, 1ms and 2ms - were

considered as significant parameters in the experiments. With

the introduction of various time delays for processing, we

can evaluate the effectiveness of our provenance system when

dealing with stream systems at different levels of complexity.

Figure 12(a) displays the system throughputs of our imple-

mentations with no time delays in processing, as a number of

stream components increases. The figure shows a significant

drop-off in the system throughput of the implementation that

does not record provenance information from the maximum

throughput (around 23,000 messages/second). Similar but sig-

nificant lower trends in system throughput were observed for

the other implementations that record provenance information.

At the same number of stream components, the throughput

decreases more than 50 percent for all implementations com-

pared to the case of “no provenance” implementation. We

determined that this degradation is due to the introduction of

provenance recording functionality which doubles the number

of data streams maintained by the message broker software.

Figure 12(b) and 12(c) demonstrate the system throughputs

of our implementations that increase time delays for process-

ing. The time delays are increased from no delay to 1ms and

2ms respectively. In Figure 12(b), all system throughputs sig-

nificantly drop from that in “no processing delay” experiment

(shown in Figure 12(a)) as expected due to the introduction of

time delay 1ms. The overall trends of the system throughputs

for our implementations using different provenance processing

modes has been changed by the introduction of time delay as

well. The system throughput of store provenance assertions

implementation gradually decreases when a number of stream

components increases. This degradation of the system through-

puts is considerably smaller compared to the reduction of the

system throughputs in “no processing delay” experiment. In

addition, as shown in Figure 12(c), the trends of the system

throughputs for all our implementations are almost flat and

there are almost no significant difference between the system

throughputs of “no provenance” implementation and that of

store provenance assertions implementation. The more the

time delay for processing increases the more the processing

overheads for provenance recording can be reduced. As a

result, we conclude that the processing overheads caused by

our provenance solution can be greatly reduced when time

delay of a stream processing system is large.

Furthermore, considering the percentage of the processing

overheads incurred by our provenance solution, the average

processing overheads for the ‘no processing delay” experiment

are excessively high - about 70 percent for store provenance

assertions approach. On the other hand, when the time delays

for processing are introduced (1ms and 2ms), the average

processing overheads are significantly reduced to be less than

10 percent for our provenance recording approach. Therefore,

with the experimental results, we can establish that the impact

of provenance recording is relatively small or more particularly

it generally does not have a significant effect on the normal

processing of stream systems. In addition, our provenance

solution is more suitable for stream-based applications that

process slightly low-rate data streams (e.g. greater than 1ms

per event used in our experiments) due to the fact that the

impact of provenance recording is minimal.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel fine-grained prove-

nance solution - the stream ancestor function - that enables

stream processing systems to precisely capture dependency

relationships for every individual stream element. We have

also demonstrated that, by utilizing stream ancestor functions,

fine-grained provenance query and stream reproduction func-

tionality for stream processing systems can be facilitated. To

deal with a practical storage issue, we introduced an enhanced

solution called the optimized stream ancestor function which

can significantly reduce the amount of storage consumed

for provenance collection and eliminate the requirement for

storing every intermediate stream element. The experimental

evaluation demonstrated that our stream provenance solu-

tion enables the fine-grained provenance problem in stream

processing systems to be addressed with reasonable storage

consumption and acceptable processing overheads.

Although we have proposed the fine-grained provenance

solution for streams that offers reasonable overheads, there

are practical challenges related to the unique characteristic of

streams we plan to address. Our ongoing work is to design

stream-specific provenance queries that can be performed on-

the-fly over streams of provenance assertions. These queries

should exploit our stream ancestor functions and compose

them dynamically without requiring additional storage space.

With this enhanced solution, we believe that our provenance

solution can offer very low processing and storage overheads

for provenance collection in stream processing systems.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in the twenty-first ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, Madi-
son, Wisconsin, 2002, pp. 1–16.

[2] S. Bowers, T. M. McPhillips, and B. Ludascher, “Provenance in
collection-oriented scientific workflows,” Concurrency and Computa-

tion: Practice and Experience, vol. 20, no. 5, pp. 519–529, 2008.
[3] P. Buneman, S. Khanna, and W.-C. Tan, “Why and where: A charac-

terization of data provenance,” in the 8th International Conference on

Database Theory, ser. LNCS 1973, 2001, pp. 316–330.

[4] ——, “On propagation of deletions and annotations through views,” in
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, ser. Symposium on Principles of Database
Systems, Madison, Wisconsin, 2002, pp. 150 – 158.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams a
new class of data management applications,” in the 28th international

conference on Very Large Data Bases. Hong Kong, China: VLDB
Endowment, 2002, pp. 215–226.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “Dbnotes: A post-it
system for relational databases based on provenance,” in the ACM

SIGMOD International Conference on Management of Data (SIGMOD),
2005, pp. 942–944.

[7] Y. Cui and J. Widom, “Tracing the lineage of view data in a warehousing
environment,” ACM Transactions on Database Systems, vol. 25, no. 2,
pp. 179–227, 2000.

[8] ——, “Lineage tracing for general data warehouse transformations,” The

VLDB Journal, vol. 12, no. 1, p. 4158, 2003.
[9] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludaescher, T. M.

McPhillips, S. Bowers, M. K. Anand, and J. Freire, “Provenance in
scientific workflow systems,” IEEE Data Eng. Bull., vol. 30, no. 4, pp.
44–50, 2007.

[10] Esper, “Espertech: Esper reference documentation,” Technical
Report, Version 2.0.0, retrieved March, 2008. [Online]. Available:
http://esper.codehaus.org/

[11] L. Golab and M. T. Ozsu, “Issues in data stream management,” ACM

SIGMOD Record, vol. 32, no. 2, pp. 5–14, 2003.
[12] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”

in the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, ser. Symposium on Principles of Database
Systems, 2007, pp. 31–40.

[13] P. Groth, S. Miles, and L. Moreau, “A Model of Process Documenta-
tion to Determine Provenance in Mash-ups,” Transactions on Internet

Technology (TOIT), vol. 9, no. 1, pp. 1–31, 2009.
[14] P. Groth and L. Moreau, “Recording process documentation for prove-

nance,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 9, pp. 1246 –1259, 2009.

[15] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang,
“Advances and challenges for scalable data provenance in stream pro-
cessing systems,” in Proceedings of Second International Provenance

and Annotation Workshop (IPAW’08), ser. LNCS 5272. Salt Lake City,
Utha, USA: Springer, 2008, pp. 253–265.

[16] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. V. den Bussche, “The open provenance model —
core specification (v1.1),” Future Generation Computer Systems, Jul.
2010.

[17] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a
tool for the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[18] SouthamptonCityCouncil, “Port of southampton off-site reactor emer-
gency plan,” SotonSafe report, Version 4, 2006.

[19] M. Stonebraker, U. etintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp.
42–47, 2005.

[20] W.-C. Tan, “Provenance in databases: Past, current, and future,” IEEE

Data Engineering Bulletin, vol. 30, no. 4, pp. 3–12, 2007.
[21] N. Vijayakumar and B. Plale, “Towards low overhead provenance

tracking in near real-time stream filtering,” in International Provenance

and Annotation Workshop (IPAW’06), ser. LNCS 4145. Chicago,
Illinois: Springer, 2006, pp. 46–54.

[22] ——, “Tracking stream provenance in complex event processing systems
for workflow-driven computing,” Second Int’l Workshop on Event-driven

Architecture, Processing, and Systems (EDA-PS’07), in conjunction with

VLDB’07, 2007.
[23] M. Wang, M. Blount, J. Davis, A. Misra, and D. Sow, “A time-and-value

centric provenance model and architecture for medical event streams,” in
International Conference On Mobile Systems, Applications And Services,
San Juan, Puerto Rico, 2007, pp. 95–100.

[24] A. Woodruff and M. Stonebraker, “Supporting fine-grained data lineage
in a database visualization environment,” in the 13th International

Conference on Data Engineering (ICDE), 1997, pp. 91–102.

