
An On-the-fly Provenance Tracking Mechanism for

Stream Processing Systems

Watsawee Sansrimahachai

School of Science and Technology

University of the Thai

Chamber of Commerce

Email: watsawee san@utcc.ac.th

Luc Moreau

School of Electronics

and Computer Science

University of Southampton

Email: L.Moreau@ecs.soton.ac.uk

Mark J. Weal

School of Electronics

and Computer Science

University of Southampton

Email: mjw@ecs.soton.ac.uk

Abstract—Applications that operate over streaming data with
high-volume and real-time processing requirements are becoming
increasingly important. These applications process streaming
data in real-time and deliver instantaneous responses to support
precise and on-time decisions. In such systems, traceability -
the ability to verify and investigate the source of a particular
output - in real-time is extremely important. This ability allows
raw streaming data to be checked and processing steps to be
verified and validated in timely manner. Therefore, it is crucial
that stream systems have a mechanism for dynamically tracking
provenance - the process that produced result data - at execution
time, which we refer to as on-the-fly stream provenance tracking.
In this paper, we propose a novel on-the-fly provenance tracking
mechanism that enables provenance queries to be performed
dynamically without requiring provenance assertions to be stored
persistently. We demonstrate how our provenance mechanism
works by means of an on-the-fly provenance tracking algorithm.
The experimental evaluation shows that our provenance solution
does not have a significant effect on the normal processing of
stream systems given a 7% overhead. Moreover, our provenance
solution offers low-latency processing (0.3 ms per additional
component) with reasonable memory consumption.

I. INTRODUCTION

Major changes in daily life have been caused by recent

advancements in micro-sensor and wireless communication

technologies. The functionality and usability of sensor tech-

nologies enables several kinds of sensors to be deployed in

a wide variety of environments. The price of these devices is

becoming cheaper and sensors are increasingly considered as

commodity products that anyone can afford to buy. This will

lead to a significant increase of wide range environment mon-

itoring and control applications that operate over streaming

data with high-volume and real-time processing requirements.

There are a number of significant requirements that these

kinds of systems need to satisfy [12]. The first is that a stream

system needs to process data streams in real-time to support

a precise and on time decision. The second requirement is

that a stream system must be able to process stream events

on-the-fly without any requirement to store them. With these

requirements, traceability - the ability to verify and investigate

the source of a particular output stream element - is extremely

important. Stream systems that do not provide provenance

information - the information pertaining to the process that

led to result data - can suffer from problems of traceability.

Imagine that in a radioactivity leak incident in a nuclear

submarine, emergency services operators rely on a real-time

mapping (GIS) application to manage the disaster. The in-

formation displayed on the GIS application is submitted by

sensors located near the scene of the incident. The sensor

measurements are also forwarded to an early warning system

where predictions of a possible ‘dirty bomb” event are made in

real-time. Because extreme weather conditions, some sensors

were damaged and they continuously submit their faulty

measurements into the GIS system. At some point, an operator

has received a report indicating that there is an explosion in

the nuclear reactor. The operator questions why this explosion

was not automatically detected and why the level of radioactive

material shown on the map display was not classified as being

potentially dangerous radioactive intensity levels. If the stream

systems have support for a provenance functionality that can

be operated dynamically in real-time, this would allow the

operator to validate processing results in a timely manner,

trace back incorrect information to its origin and also verify

sequence of processing steps used to produce those results.

To address such a provenance challenge in stream systems,

we introduce a novel on-the-fly provenance tracking mecha-

nism. The key concept is that we exploit a provenance service

as a stream component. Provenance assertions – assertions

pertaining to provenance recorded by each stream operation

for individual stream elements – are processed dynamically

without any requirement to store them persistently. We extend

the persistent provenance mechanism presented in our previous

work [11] by introducing the idea of property propagation. By

utilizing a new version of stream ancestor functions - reverse

mapping functions used to express dependencies between

input and output stream elements, properties can be propagated

and provenance query results are produced as a stream.

This paper makes the following key contributions:

• It presents a novel on-the-fly provenance tracking mech-

anism for stream processing systems.

• It defines a set of stream ancestor functions designed to

work with the on-the-fly provenance mechanism.

• It proposes a novel on-the-fly provenance tracking algo-

rithm for stream processing systems.

• It presents the performance characteristics of our prove-

nance solution for streams.

The rest of this paper is organized as follows. Section

2 reviews previous work in the area of provenance and

stream processing systems. Section 3 introduces an on-the-

fly provenance tracking mechanism for streams. Section 4

presents an on-the-fly provenance tracking algorithm. Section

5 demonstrates the experimental evaluation in terms of the

impact of provenance recording, the memory consumption and

the time latency. Finally, Section 6 presents conclusions.

II. RELATED WORK

Considerable research efforts have been made by the

database community to address the provenance problem.

Woodruff and Stonebraker [15] proposed a technique called

weak inversion used to regenerate input data items that pro-

duced an output. The drawback is that the answer returned

by this function is not guaranteed to be perfectly accurate

and in several cases it is not possible to define inversion

functions. Buneman et al. [1] draw a distinction between

two types of provenance: “why-provenance” and “where-

provenance”. Why-provenance determines what tuples in the

source database contributed to an output data item. Where-

provenance, on the other hand, identifies locations in the

source database from which the data item was extracted. Based

on these types of provenance, a technique that propagates an-

notation according to propagation rules [2] has been proposed.

In the context of scientific work flow systems, Taverna [10]

provides support for provenance tracking to allow scientists

to understand how results from experiments were obtained.

Provenance information is collected by recording metadata

and intermediate results during workflow enactment. Another

system, PASOA [6], [7], built an infrastructure for reasoning

over provenance in service-oriented architectures. By record-

ing assertions comprising interaction messages and causal

relationships between messages, provenance of data products

can be captured. Our provenance solution extends the PASOA

provenance mechanism. In our solution, a stream operation

is treated as a “grey box” [4] and provenance is collected

based on input-output dependencies of the operation. However,

because PASOA need to store all dependencies and interme-

diate data objects, the amount of information recorded can

potentially cause a storage burden problem.

In the area of distributed stream processing, Vijayakumar

et al. [14] propose a coarse-grained provenance model that

identifies dependencies between streams or sets of stream el-

ements as the smallest unit for which provenance is collected.

However, the level of granularity for capturing provenance in

this model is not detailed enough to identify dependencies

among individual stream elements. The Time-Value-Centric

model [9] (TVC) is a finer-grained provenance solution that

provides the ability to express dependencies for individual

stream elements by utilizing input-output dependencies de-

scribed in terms of three primitive invariants: time, value and

sequence. Nevertheless, this model still has some limitations,

since it can fail to identify precisely input elements used in the

production of an output. Another limitation is that because all

intermediate stream elements need to be stored for querying,

Provenance

Service

Recording

interface

Q
u
e
ry

in
te
rfa
c
e

Provenance query

browser application

User

SPU1

SPU2 SPU5

SPU3 SPU4

Stream-based application

Input stream

Output stream

Provenance store

Real-time provenance

monitoring application

Subscribe to receive

query results

On-the-fly

provenance tracking

service

Provenance

assertion

streams

Query result

streams

Query requests

and responses

Non-persistent

subsystem

Persistent

subsystem

Streams

Non-streams

Compact

provenance

store

Fig. 1. The provenance architecture for streams

this potentially leads to a storage problem when dealing with

high volume data streams. Another similar model [8] has the

same limitation as TVC as well.

To sum up, the approach presented in this paper improves

over the state-of-the-art in multiple ways. It defines a fine-

grained notion of provenance for streams similar to why-

provenance, which can explain the presence of individual

stream elements. It identifies a set of stream operations for

which on-the-fly provenance tracking can be computed. It

applies eager approach [13], since it propagates provenance-

related information at runtime to obtain provenance tracking

results in real-time. Furthermore, it eliminate the storage

problem caused by storing provenance information.

III. ON-THE-FLY PROVENANCE TRACKING

To design an on-the-fly provenance tracking mechanism, we

make the following assumptions describing stream processing

systems that our provenance mechanism is intended to support.

• A stream processing system is represented as a set of

interconnected nodes, with each node representing a

stream operation.

• Each data stream consists of a sequence of time or-

dered stream events and each individual stream event is

composed of an event key - a unique reference of an

individual event - and a content of stream event (data).

• Each individual stream element is associated with one or

more properties. A property in our context is a piece of

information describing a quality, characteristic or attribute

that belongs to an individual stream element.

To overview our stream provenance system, we present

a provenance architecture for streams in Figure 1. In this

paper we focus on the non-persistent subsystem. An on-the-

fly provenance tracking service plays a central role in this

subsystem. It is designed to be utilized as a stream component

that executes continuous queries over continuous data streams.

During execution time, provenance assertions are recorded as a

stream by each stream operation for each individual stream el-

ement. The provenance assertions are not generated at a single

�

�

�

������
�

��	
�

���

���

���

����

����

����

�����	
��

��������
��

�����	
���������

�����	
�����

���
 ��������
����������

���

���

���

�

����

����

����

Fig. 2. An example of property propagation in a stream processing system

time, but instead their generation is interleaved continuously

with execution. As provenance assertions are being received by

the on-the-fly provenance tracking service, provenance queries

are performed continuously over the streams of provenance

assertions. Note that the generation of on-the-fly provenance

queries is based on configuration parameters and stream

topology information specified during system registration time.

Such information is stored in a compact provenance store - a

compact version of the provenance store.

A. Fundamental concept of on-the-fly provenance tracking

We extend the concept of Stream Ancestor Function (SAF)

in our previous work [11] by adding stream-specific techniques

designed specifically for addressing on-the-fly provenance

tracking. Our key concept is inspired by the idea of property

propagation. We assume that each individual stream element

contains a provenance-related property in its accumulator -

a field used to accumulate property computing results. For

each stream operation, properties are computed and propagated

automatically from input streams to output streams based

on input-output dependencies between stream elements. Each

intermediate result produced by the processing of provenance-

related properties is temporarily stored in the accumulator

field of intermediate stream elements. The processing of

property propagation is performed continuously until reaching

the final stream operation of a stream processing flow. Figure 2

illustrates an example of our property propagation approach in

which properties are propagated through a stream processing

flow. However, we do not try to propagate properties within

a stream system layer because this would require the mod-

ification of the internal processing of stream operations, but

instead properties are computed and propagated through the

use of provenance assertions inside a provenance service.

An example process of our on-the-fly provenance track-

ing inside the provenance service is shown in Figure 3.

The execution begins with the provenance service receiving

streams of provenance assertions (AS) generated by stream

operations in a stream system. Each assertion is detected by an

assertion separation unit (ASU) - a component used to detect

provenance assertions for a particular stream and direct them to

a SAF that they are associated with. After that each individual

assertion is computed by its associated SAF. The SAF utilized

in our on-the-fly provenance tracking is the new version of

the original SAF - called a property stream ancestor function

(PSAF). It receives stream elements from both an assertion

stream (AS) and result streams (RS) - the output from the

��������	

��

���

���

���

���

�������

�������

�������

������ �

������ �

���

���

������ ���

���

������ ��

��	
���
��������������	��������	�

������

��	
���
��	�
����������������

�������	����
�����	������������

��������� ���� ��	���������������	�

������ �

������ �

������ �

 	���	
������!

������

������ ��

���

������ �������� �

��

��

��

��������	�
�������
��

����������

Fig. 3. On-the-fly provenance tracking inside the provenance service

previous step of property propagation - as an input and then

it produces an output element belonging to a property stream

(PS). Not only is the PSAF used to identify the ancestors of

a particular provenance assertion, it is also used to extract

properties from the ancestor assertions (elements from RS).

The output generated from the PSAF is fed into a PCU to

compute property propagation. Once the property propagation

is processed, an output provenance assertion containing a new

property is produced as an element of a result stream (RS).

B. Primitive stream processing operations

We now present the primitive stream operations that on-the-

fly provenance tracking can be computed. These operations are

recognized as common operations developed in several stream

projects [5], [3]. Note that all stream operations are defined

by using Event Processing Language (EPL) - an SQL-like lan-

guage extended to handle event streams. We use EPL provided

by Esper stream engine to illustrate how continuous queries are

formulated in stream operations and how provenance-related

properties can be computed and propagated.

• Map Map(F,sid): A map operation is a stream operation

that applies an input function (F) to the content of every

element in a stream.

• Filter Filter(P,sid): A filter operation screens events in a

stream for those that satisfy a predicate (P).

• Sliding time window TW(w,sid): A time window is a

data window where the extent of the window is defined

in terms of time interval. At any point in time, the time

window generates an output event from the most recent

input events over a given time period (w).

• Length window LW(l,sid): A length window is a data

window where the extent is defined in terms of the

number of events. At any point in time, a length window

covers the most recent l events of a stream.

• Time-window join JoinTW(w1,w2,sid): A time window

join is a binary operation that pairs stream events from

two input streams. Stream events from two time-based

windows (w1,w2) are combined and output events are

produced according to a join condition.

TABLE I
THE DEFINITIONS OF PRIMITIVE STREAM PROCESSING OPERATIONS

Stream operations (input: Event(key(t,n,s,d),data))

Map(F, sid)

(∗ fn : (′a →′ b) ∗ INT → ′a EV ENT list → ′b EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t),F(data) from Event

F ilter(P, sid)

(∗ fn : (′a → bool) ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp− t), data from Event where P(data)

TW (w, sid)

(∗ fn : TIME ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t), list(data) from Event.win : time(w)

LW (l, sid)

(∗ fn : INT ∗ INT → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, n,sid, (current_timestamp− t), list(data) from Event.win : length(l)

JoinTW (w1, w2, sid)

(∗ fn : TIME ∗ TIME ∗ INT → ′a EV ENT list → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp−MaxTime(e1.t, e2.t)), J(e1.data, e2.data)

from Event1.win : time(w1) as e1, Event2.win : time(w2) as e2

JoinLW (l1, l2, sid)

(∗ fn : INT ∗ INT ∗ INT → ′a EV ENT list → ′a EV ENT list → ′a EV ENT list ∗)

insert into resultEvent(timestamp, seqNo, streamID, delay, eventData)

select current_timestamp, sn,sid, (current_timestamp−MaxTime(e1.t, e2.t)), J(e1.data, e2.data)

from Event1.win : length(l1) as e1, Event2.win : length(l2) as e2

TABLE II
THE DEFINITIONS OF PROPERTY STREAM ANCESTOR FUNCTIONS (PSAFS)

Property stream ancestor functions (input: AS/RS - Assertion(key(t,n,s,d),prop))

Mappsaf ()

(∗ fn : ′a ASSERTION list → ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d, PExtract.compute((select ∗ from RS), t − d)
from AS

Filterpsaf ()

(∗ fn : ′a ASSERTION list → ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d, PExtract.compute((select ∗ from RS), t − d)
from AS

TWpsaf (w)

(∗ fn : TIME ∗ ′a ASSERTION list → ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d, PExtract.compute((select ∗ from RS), t − d, t − d − w)
from AS

LWpsaf (l)

(∗ fn : int ∗ ′a ASSERTION list → ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d, PExtract.compute((select ∗ from RS), n, n − l + 1)
from AS

JoinTWpsaf (w1, w2)

(∗ fn : TIME ∗ TIME → ′a ASSERTION list → ′a ASSERTION list

→ ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d

PExtract.compute((select ∗ from RS1), t − d, t − d − w1) ||
PExtract.compute((select ∗ from RS2), t − d, t − d − w2)

from AS

JoinLWpsaf (l1, l2)

(∗ fn : int ∗ int → ′a ASSERTION list → ′a ASSERTION list

→ ′b ASSERTION → ′a ASSERTION ∗)
insert into PS(timestamp, seqNo, streamID, delay, property)
select t, n, s, d,

PExtract.compute((select ∗ from RS1),l1, t − d) ||
PExtract.compute((select ∗ from RS2),l2, t − d)

from AS

• Length-window join JoinLW(l1,l2,sid): Similar to the

time-window join, a length-window join pairs events from

two input streams. The difference between these two

operations is the length-window join operates on stream

events from two tuple-based windows (l1,l2).

The definitions of the primitive stream operations are described

in Table I. Note that, a stream id (sid) for every operation is

the ID of an output stream.

C. Property stream ancestor functions

In this section, “Property stream ancestor functions”

(PSAFs) used for on-the-fly provenance tracking are described.

As presented in Table II, every PSAF utilizes internal values

of its associated stream operation as input parameters at

registration time. For example, the PSAF for a time-window

(TWpsaf) utilizes a duration of the time window (w) as a

parameter. Each PSAF takes a provenance assertion (AS) and

the elements of a result stream (RS) - a stream generated

from the previous property propagation step - as an input and

generates an element of a property stream (PS) containing all

provenance-related properties needed for further processing.

In addition, the PExtract function is used by each PSAF

to extract properties from elements in a result stream (RS). In

the PSAFs for windowed operations (e.g. TW and LW), the

PExtract function utilize the size of a data window and a

delay time for processing to define the extent of a past data

window at the time that the stream operation produced the

output. This extent of a past data window is then used to

identify the ancestor provenance assertions (the elements in

RS) and also to extract provenance-related properties from

them. For example, the definition of the PSAF for a sliding

time-window (TWpsaf) indicates that the PExtract function

extracts properties from elements in RS by creating the extent

of a past time-window where the interval of the window is

between t - d (upper bound) and t - d - w (lower bound).

IV. AN ON-THE-FLY PROVENANCE TRACKING ALGORITHM

We now demonstrate how the on-the-fly provenance mech-

anism works by means of an on-the-fly provenance tracking

algorithm. The main concept of the algorithm is that it

utilizes stream topology information and operation parameters

to automatically create the internal processing of on-the-fly

provenance queries. The algorithm is presented in Figure 4.

As shown in Figure 4, the algorithm consists of two

main functions: OTFpquery and composePSAF . The

OTFpquery is the entry-point function that takes a list of

provenance assertions (paList), a list of stream IDs (sidList

- used to terminate the query execution) as input parameters

and returns provenance tracking results (resultList). The

other function - composePSAF - is the recursive function

containing the business logic of the algorithm. The function

begins by receiving parameters passed by the OTFpquery.

For each assertion (pa), it is first processed by an assertion

separation unit (ASU) to create an extra field for storing

properties. Then, in the case that input assertions belong to the

first-input stream, they are executed by a property computing

1: /* ASSERTION list * INT list -> ASSERTION list */

2: Function OTFpquery(

3: paList: ASSERTION list,

4: sidList: INT list){
5: resultList = []:ASSERTION list;

6: bufferList = []:ASSERTION list;

7: composePSAF(paList,sidList,bufferList,resultList);

8: return resultList;

9: }

1: Function composePSAF(

2: paList: ASSERTION list,

3: sidList: INT list,

4: bufferList: ASSERTION list,

5: resultList: ASSERTION list){
6: elm = paList.removeElement();

7: pa = ASU.execute(elm);

8: if pa.sid is FirstInputStream then

9: pa’’ = PCU.execute(pa);

10: bufferList.add(pa’’);

11: else

12: psaf = getPSAF(pa.sid);

13: pa’ = executePSAF(bufferList,psaf,pa);

14: Dequeue(bufferList,psaf,pa);

15: pa’’ = PCU.execute(pa’);

16: bufferList.add(pa’’);

17: end if

18: if pa.sid ∈ sidList then

19: resultList.add(pa’’);

20: end if

21: if paList 6= empty then

22: composePSAF(paList,sidList,bufferList,resultList);

23: end if

24: }

Fig. 4. On-the-fly provenance tracking algorithm

unit (PCU) to extract properties. After that, each assertion

will be processed by its associated PSAF and PCU. Every

output of property computing (pa′′) is inserted to a data buffer

(bufferList). Finally, the composePSAF function will be

called recursively until no assertions remain in the paList.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the implementation of our

on-the-fly provenance tracking mechanism. Our evaluation

is conducted across three different aspects, including the

provenance recording impact, the memory consumption for a

provenance service and the time latency for on-the-fly prove-

nance tracking. For all experiments, the experimental setup

was as follows: Our provenance service and a stream system

were hosted on a Linux PC with 1.60GHz Intel Xeon Quad

Core CPU and 4 GB memory. All our application components

were implemented in Java. We use JMS as our messaging

infrastructure with ActiveMQ 5 as the implementation choice.

A. Provenance recording impact

In this evaluation, system throughput - the number of stream

events processed over a given interval of time - is used as

our performance indicator. In each set of experiments, we

first measured the throughput of a stream system that does

not record provenance information. Then, we measured the

throughput of a stream system that records provenance infor-

mation for different modes of the provenance service including

1) Just receive provenance assertions, 2) Store provenance

assertions and 3) Perform on-the-fly provenance queries. In

addition, because different stream-based applications have dif-

ferent time delays for processing depending on the complexity

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (no delay)

No provenance
Just receive provenance assertions

Store provenance assertions
On-the-fly provenance query

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (delay: 1 ms)

No provenance
Just receive provenance assertions

Store provenance assertions
On-the-fly provenance query

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
y
s
te

m
 t

h
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
e
c
o
n
d
)

Number of stream components

Throughputs as the number of components increases (delay: 2 ms)

No provenance
Just receive provenance assertions

Store provenance assertions
On-the-fly provenance query

(a) (b) (c)

Fig. 5. System throughputs of the implementation of our stream provenance system as time delays for stream processing increase

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 s
iz

e
 (

M
B

)

Number of stream components

Memory consumption for a provenance service (Map operation)

Just receive provenance assertions
On-the-fly provenance query

On-the-fly provenance query (predicted)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 s
iz

e
 (

M
B

)

Number of stream components

Memory consumption for a provenance service (Time-window operation)

Just receive provenance assertions
On-the-fly provenance query

On-the-fly provenance query (predicted)

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 s
iz

e
 (

M
B

)

Number of stream components

Marginal cost of the memory consumption for a provenance service

On-the-fly provenance query (Time-window)
On-the-fly provenance query (Map operation)

(a) (b) (c)

Fig. 6. Memory consumption of the implementation of an on-the-fly provenance service

of stream computation performed, therefore three different

time delays for processing - no delay, 1ms and 2ms - were

considered as significant parameters in the experiments.

Figure 5(a) displays the system throughputs of our imple-

mentations with no time delays in processing, as a number of

stream components increases. The figure shows a significant

drop-off in the system throughput of the implementation that

does not record provenance information from the maximum

throughput (around 23,000 messages/second). Similar but sig-

nificant lower trends in system throughput were observed for

the other implementations that record provenance information.

At the same number of stream components, the throughput

decreases more than 50 percent for all implementations com-

pared to the case of “no provenance” implementation. We

determined that this degradation is due to the introduction of

provenance recording functionality which doubles the number

of data streams maintained by the message broker software.

Figure 5(b) and 5(c) demonstrate the system throughputs of

our implementations that increase time delays for processing.

In Figure 5(b), all system throughputs significantly drop from

that in “no processing delay” experiment (shown in Figure

5(a)) as expected due to the introduction of time delay 1ms.

The system throughput of all our implementations gradually

decreases when a number of stream components increases.

In addition, as shown in Figure 5(c), there are almost no

significant difference between the throughputs of “no prove-

nance” implementation and that of the on-the-fly provenance

implementation. As a result, we conclude that the processing

overheads caused by our provenance solution can be greatly

reduced when the time delay of a stream system is large.

Furthermore, considering the percentage of the processing

overheads incurred by our provenance solution, the average

overheads for the ‘no processing delay” experiment are ex-

cessively high - about 75% for the on-the-fly provenance

approach. However, when the time delays for processing

are introduced, the overheads are significantly reduced to

be around 7%. Therefore, with the experimental results, we

can establish that the impact of provenance recording is

relatively small or more particularly it generally does not have

a significant effect on the normal processing of stream systems.

B. Memory consumption for a provenance service

This evaluation aims to examine the effect of the on-the-

fly provenance processing on the normal processing of a

provenance service, with respect to memory consumption. In

each set of experiments, we first measured the memory space

used by the provenance service when provenance assertions

are just collected but not executed. Then, we measured the

memory space used by the provenance service that is operated

on the on-the-fly provenance query mode. To investigate the

change of the memory consumption, two different stream

operations are considered: Map and Time-window operations.

Figures 6(a) and 6(b) present the memory space consumed

for the map operations and the time window operations

experiments respectively. The memory size for the on-the-fly

provenance approach is slightly higher in Figure 6(a), and

significantly higher in Figure 6(b) as the number of stream

components increases, compared to that for the baseline (Just

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

L
a
te

n
cy

 t
im

e
 (

m
s)

Number of stream components

Average latency for on-the-fly provenance query approach

Chain of map operations
Chain of time-windows (window size: 10 ms)

Chain of time-windows (window size: 100 ms)

Fig. 7. Average time latency for on-the-fly provenance query approach

receive provenance assertions). We determine this increase of

memory size is due to the processing of on-the-fly provenance

tracking that needs to store assertions in the memory.

Moreover, as shown in Figures 6(c), the overall trend of the

marginal cost of memory space consumed remains stable for

both the map operation and the time-window experiments. The

result shows that the marginal cost is relatively low compared

to the total memory consumption. For example, the average

marginal cost in the map operation experiment is slightly less

than 0.5 MB and that in the time window experiment is about

1.8 MB. Therefore, we conclude that the memory consumption

for a provenance service may vary based on the types of stream

operations and the size of data windows used in a stream

system, but the marginal cost of memory space consumed for

our provenance solution is relatively low and reasonable.

C. Latency for on-the-fly provenance tracking

We now examine the runtime overheads for our provenance

solution by measuring the time latency for on-the-fly prove-

nance tracking. In this context, the latency is defined as a

period of time difference between a stream system produces

a result and a corresponding provenance-related property is

computed. In this experiment, three different chains of stream

operations are considered: map operations, time-windows of

size 10ms and time-windows of size 100ms. The reason behind

the use of different operations is because for some operations

(e.g. time windows), more than one properties have to be

computed. This potentially results in delayed query results.

Figure 7 displays the average time latency of the imple-

mentation of our on-the-fly provenance solution. In the figure,

as the number of components increases, the latency for the

chain of map operations remains stable. On the other hand,

the time latency for both chains of time-window operations

increases significantly. This can be explained that for win-

dowed operations, internal data buffers of a stream engine

are used to store intermediate provenance assertions during

execution. This results in an increase of the average delay

time in processing. From the latency graph, the average time

latency increased per additional stream component is about

0.3 ms. Therefore, with a relatively low latency per additional

component, we can establish that our provenance solution

offers low-latency processing and our solution can provide

provenance tracking results in real-time.

VI. CONCLUSION

In this paper, we presented a novel on-the-fly provenance

tracking mechanism, which performs provenance queries dy-

namically over streams of provenance assertions without re-

quiring the assertions to be stored persistently. We have

discussed the important characteristics of the on-the-fly prove-

nance tracking and also defined the specifications of property

stream ancestor functions (PSAFs). To demonstrate how our

provenance mechanism works in practice, we have presented

an algorithm for on-the-fly provenance tracking. The exper-

imental evaluation demonstrated that our provenance solu-

tion enables the on-the-fly provenance tracking problem in

stream processing systems to be addressed with acceptable

performance and reasonable overheads. A 7% overhead is

observed as the impact of provenance recording on system

performance. Moreover, our on-the-fly provenance approach

offers low-latency processing (average latency: 0.3 ms per

additional component) with reasonable memory consumption.

REFERENCES

[1] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A charac-
terization of data provenance,” in Proceedings of ICDT’01, 2001, pp.
316–330.

[2] P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions
and annotations through views,” in Proceedings of PODS’02, 2002, pp.
150–158.

[3] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: a new
class of data management applications,” in Proceedings of VLDB’02,
2002, pp. 215–226.

[4] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludscher, T. M. McPhillips,
S. Bowers, M. K. Anand, and J. Freire, “Provenance in scientific
workflow systems,” IEEE Data Engineering Bulletin, vol. 30, no. 4,
pp. 44–50, 2007.

[5] L. Golab and M. T. Ozsu, “Issues in data stream management,” ACM

SIGMOD Record, vol. 32, no. 2, pp. 5–14, 2003.
[6] P. Groth, S. Miles, and L. Moreau, “A Model of Process Documenta-

tion to Determine Provenance in Mash-ups,” Transactions on Internet

Technology (TOIT), vol. 9, no. 1, pp. 1–31, 2009.
[7] P. Groth and L. Moreau, “Recording process documentation for prove-

nance,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 9, pp. 1246 –1259, 2009.

[8] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Facilitating fine
grained data provenance using temporal data model,” in Proceedings

of DMSN’10, 2010, pp. 8–13.
[9] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang,

“Advances and challenges for scalable provenance in stream process-
ing systems,” in Provenance and Annotation of Data and Processes,
J. Freire, D. Koop, and L. Moreau, Eds. Springer Berlin Heidelberg,
2008, pp. 253–265.

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a
tool for the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[11] W. Sansrimahachai, M. Weal, and L. Moreau, “Stream Ancestor func-
tion: A mechanism for fine-grained provenance in stream processing
systems,” in Proceedings of RCIS’12, 2012, pp. 245–256.

[12] M. Stonebraker, U. etintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp.
42 – 47, 2005.

[13] W.-C. Tan, “Provenance in databases: Past, current, and future,” IEEE

Data Engineering Bulletin, vol. 30, no. 4, pp. 3–12, 2007.
[14] N. Vijayakumar and B. Plale, “Towards low overhead provenance track-

ing in near real-time stream filtering,” in Provenance and Annotation of

Data, L. Moreau and I. Foster, Eds. Springer-Verlag, 2006, pp. 46–54.
[15] A. Woodruff and M. Stonebraker, “Supporting fine-grained data lineage

in a database visualization environment,” in Proceedings of ICDE’97,
1997, pp. 91–102.

