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.  

There has been considerable discussion in recent years about the potential of 

micro-algae for the production of sustainable and renewable biofuels. 

Unfortunately the scientific studies are accompanied by a multitude of semi-

technical and commercial literature in which the claims made are difficult to 

substantiate or validate on the basis of theoretical considerations.  

 

To determine whether biofuel from micro-algae is a viable source of renewable 

energy three questions must be answered: 

a. How much energy can be produced by the micro-algae? 

b. How much energy is used in the production of micro-algae? 

c. Is more energy produced than used? 

 

A simple approach has been developed that allows calculation of maximum 

theoretical dry algal biomass and oil yields which can be used to counter some 

of the extreme yield values suggested in the 'grey' literature.  

 

No ready-made platform was found that was capable of producing an energy 

balance model for micro-algal biofuel. A mechanistic energy balance model 

was successfully developed for the production of biogas from the anaerobic 

digestion of micro-algal biomass from raceways. Preliminary calculations had 

suggested this was the most promising approach. The energy balance model 

was used to consider the energetic viability of a number of production 

scenarios, and to identify the most critical parameters affecting net energy 

production. These were:  
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a. Favourable climatic conditions. The production of micro-algal biofuel in 

UK would be energetically challenging at best. 

b. Achievement of ‘reasonable yields’ equivalent to ~3 % photosynthetic 

efficiency (25 g m
-2

 day
-1

) 

c. Low or no cost and embodied energy sources of CO
2

 and nutrients from 

flue gas and wastewater 

d. Mesophilic rather than thermophilic digestion 

e. Adequate conversion of the organic carbon to biogas (≥ 60 %) 

f. A low dose and low embodied energy organic flocculant that is readily 

digested, or micro-algal communities that settle readily 

g. Additional concentration after flocculation or sedimentation 

h. Exploitation of the heat produced from parasitic combustion of micro-

algal biogas in CHP units 

i. Minimisation of pumping of dilute micro-algal suspension  

 

It was concluded that the production of only biodiesel from micro-algae is not 

economically or energetically viable using current commercial technology, 

however, the production of micro-algal biogas is energetically viable, but is 

dependent on the exploitation of the heat generated by the combustion of 

biogas in combined heat and power units to show a positive balance. 

 

Two novel concepts are briefly examined and proposed for further research: 

a. The co-production of Dunaliella in open pan salt pans. 

b. A 'Horizontal biorefinery' where micro-algae species and useful products 

vary with salt concentration driven by solar evaporation. 
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 Introduction 1.

 Fossil fuels and global warming 1.1

Fossil fuel has been produced over ‘geological time’, primarily by 

photosynthesis using solar energy, and has powered an industrial revolution: 

but reserves are finite. Liquid fossil fuel has allowed a transport and organic 

chemical industry revolution, but estimated reserves are being rapidly depleted. 

BP has estimated proven world oil reserves in 2010 as sufficient to meet 46 

years of current global production. Demand is increasing due to industrial 

growth and development particularly in the Asia Pacific region; and increasing 

demand and limited supply are putting upward pressure on oil prices: Brent 

crude oil prices increased 29 % from 2009 to 2010 (BP, 2011). 

 

Limited supply together with increasing demand and prices will normally drive 

a search for alternatives in any market, but the search for alternatives to 

energy provided by fossil fuel is also being driven by concerns over climate 

change and continuity of supply due to ‘political instability’. The overwhelming 

majority of scientists agree that the world climate is changing, with average 

global temperature increasing; and that this is due to rising concentrations of 

heat-trapping gases in the atmosphere caused by human activities. Carbon 

dioxide present in the atmosphere is transparent to incoming short wave 

radiation, but absorbs outgoing infra-red radiation. As the concentrations of 

carbon dioxide and other gases (methane, nitrous oxide, ozone and certain 

chlorofluorocarbons) increase it is believed that heat radiating into space will 

be reduced, resulting in the average world temperature rising - a phenomenon 

known as Global Warming. The effect of carbon dioxide and other gases, 

produced by human activity on global temperature is often termed the 

Greenhouse Effect with the gases involved being known as Greenhouse Gases 

(Cannell and Hooper, 1990). Concern about global warming has resulted in a 

variety of legislation throughout the world to reduce greenhouse gas (GHG) 

emissions resulting in many cases in a cost for GHG production and a market 

to ‘trade’ emissions of GHG. In 2011one tonne of carbon dioxide was trading, 

at €13 to €16 on the European Energy Exchange. 

 



 

 2 

In addition to warming due to greenhouse gases, concerns have recently been 

expressed on 'waste heat warming' of the Earth. It has been concluded that the 

main type of "energy that is not going to additionally heat the Earth is solar 

and its derivatives" (Ananthaswamy, 2012). 

 

Most of the world production of liquid fossil fuel is not in the developed 

democratic countries and there are considerable concerns, particular in the 

USA and the UK, about the supply of imported oil and the risk of political 

instability and price. The UK government has recently published a report "to 

highlight specific areas of concern in the security of the UK's energy supply" 

(House of Commons Energy and Climate Change Committee, 2011). In 2007 

the Energy Independence and Security Act (EISA) was introduced in the United 

States to increase energy independence and security by increasing the 

efficiency of products, buildings, and vehicles; promoting research on and 

deploying greenhouse gas capture and storage options; and increasing the 

production of clean renewable fuels (US Congress, 2007). In the EU the two 

main objectives of energy policy are, to reduce greenhouse gas emissions and 

increase the security of energy supply (European Commission, 2011) .  

 

Reserves of solid fossil fuel in the form of coal are considerably greater than of 

liquid fossil fuel and many developed democratic nations, including the USA 

and UK, have considerable reserves (BP, 2011, DECC, 2011, World Energy 

Council, 2010 ). Coal could have an important continuing place in the fuel mix 

and particularly in the production of electricity and the political security of 

energy supply (DECC, 2010). Jerry Costello, a US Democratic House 

Representative and member of the sub-committee on energy and the 

environment believes that: "coal is absolutely critical to national (USA) 

economic health and global competiveness".  

 

Mary Harris Jones (1830 to 1930) an American labour rights activist, 

sometimes called "the most dangerous woman in America", said; "not all the 

coal that is dug warms the world". Although this statement was used in 

another context it could be apt for the debate about the continued and future 

use of coal and its effect on global warming. Coal, when burnt, will increase 

the concentration of GHG in the atmosphere, and some form of carbon capture 

or storage will be essential for the future exploitation of coal or "Carbon 
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capture and storage – sine qua non" (DECC, 2010). A variety of carbon capture 

and storage (CCS) technologies have been suggested including, amine 

stripping, chilled ammonia and oxy-combustion (Chung et al., 2011), but it has 

been concluded that although technically possible generation of electricity 

from coal using CCS could be up to 130 % more expensive and significant cost 

reductions need to be made (Kadam, 2002). Amine stripping is the closest 

method to commercial application, but the potential for lowering cost is 

limited, and although both chilled ammonia and oxy-combustion may have 

greater scope for cost reduction there is considerable uncertainty concerning 

scale-up (Chung et al., 2011). 

 Renewable and bioenergy 1.2

Concern over global warming, dwindling fossil fuel reserves, increasing fuel 

prices and fuel security has prompted research into the more efficient use of 

fuel together with investigations of alternative and renewable energy sources. 

Renewable energy normally includes sources such as solar, hydroelectric, tidal, 

wave, wind and biofuels from biomass (DECC, 2011), but is more narrowly 

defined by the Energy Independence and Security Act of 2007 (EISA) as "fuel 

that is produced from renewable biomass and that is used to replace or reduce 

the quantity of fossil fuel" (US Congress, 2007). Biomass may be defined as; 

renewable and recently produced organic materials, such as wood, agricultural 

crops or wastes, and municipal wastes from recent sources that can be burned 

directly or processed into biofuels such as ethanol, biodiesel and methane. The 

term bioenergy is used to cover both energy generated from biomass and from 

biofuels derived from biomass (Twidell and Weir, 2006). In the UK over 80 % of 

renewable energy usage, excluding solar, is from biomass (DECC, 2011) and in 

the EU two thirds of total renewable energy is from biomass (European 

Commission, 2011).  

 

Humanity has been using bioenergy for millennia since the discovery of how to 

start fire (Figure 1) and biomass was the most important energy supply until 

the industrial revolution, but as fossil energy use grew biomass usage became 

"almost non-existent in the industrialised nations" (Quaschning, 2010). 

Bioenergy is significant worldwide, accounting for 13 % of the world’s energy 

consumption (Twidell and Weir, 2006, World Energy Council, 2010 ) and is of 
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vital importance in many non-industrialised nations with Mozambique, Ethiopia 

and Nepal using biomass for 90 % of their primary energy needs (Quaschning, 

2010, Sims, 2002).  

 

 

Figure 1 Firewood; seasoned wood for domestic use in Kent, England 

 

Although the contribution of bioenergy is low in most industrial countries, e.g. 

2 to 3 % of the total energy demand in the UK, USA and Germany, its use is 

growing and can be significant in sugar producing nations, accounting for 40 % 

of their energy supply (Quaschning, 2010, Twidell and Weir, 2006). Bioethanol 

and biodiesel production have increased every year from 2000 to 2010 with a 

16 % increase in 2010 to an output equivalent to 59 million tonnes of crude 

fossil oil (BP, 2011). In 2009, biofuels made up 2.9 % of total petrol and diesel 

sales in the UK, with the majority of this being accounted for by biodiesel. 

Biodiesel for use in diesel vehicles accounted for 77 % of total biofuels (1 

billion litres, 4 % of diesel sales), but only 9 % of biodiesel in the UK market 

was produced using domestic feedstocks (Committee on Climate Change, 

2011). Europe is currently the main market for biodiesel; Figure 2 shows the 
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importance of the European market in world biodiesel trade. The EU Renewable 

Energy Directive (RED) set targets for biofuel energy content in transport fuels 

as follows: 2005 – 2 %, 2010 - 5.75 %, 2020 – 10 %, but only Sweden and 

Germany met the 2005 target (Lemon, 2008). The UK met neither the 2005 or 

2010 targets. Although fuels suppliers are responsible for delivering the EU 

Fuel Quality Directive of a 10 % reduction in average life-cycle emissions of 

fuels between 2010 and 2020, the EU and Member States spent approximately 

€3.1 billion on biofuel support in 2010 (House of Commons Energy and 

Climate Change Committee, 2011). It would appear that demand for biodiesel 

in EU will continue to grow, but there are reservations in UK. The UK budget of 

2008 removed the reduced fuel duty for biodiesel, although secondary 

legislation was introduced to maintain the 20 pence per litre duty differential 

for biodiesel produced only from waste cooking oil for a period of two years. 

The UK Coalition Government has concerns about the sustainability of biofuels: 

it does not plan to increase biofuel targets before 2014 and it is reviewing 

biofuel policy, but targets are likely to increase from 2014 to 2020 to meet 

European targets (Bennett, 2011). 

 

 

Figure 2 Global biodiesel trade streams in 2010 [ktonne](Ecofys, 2011). 

 

Sustainability has been defined as; "Meeting the needs of the present 

generation without compromising the ability of future generations to meet 



 

 6 

their needs" (World Commission on Environment and Development, 1987). If 

biofuel production is to continue to increase and be considered renewable the 

biomass must be sustainable with the growth of material as great or greater 

than its use. There have been numerous examples in agriculture and forestry 

of overuse of a resource with serious environmental consequences and 

bioenergy should not accelerate the loss of scarce resources in attempting to 

reduce greenhouse gas emissions and resolve fuel scarcity, price and security 

issues.  

  

Bioenergy was initially seen as an ‘easy’ solution to energy and environmental 

issues as the organic carbon within the biofuel is produced via photosynthesis 

from carbon dioxide in the atmosphere. When biofuel is burnt the carbon 

dioxide is returned or recycled to the atmosphere. If the amount of carbon 

dioxide used in the production of bioenergy is equal to the amount released 

into the atmosphere there would be no increase or decrease in the 

concentration of carbon dioxide in the atmosphere, a situation often called 

carbon neutral. Unfortunately, it is now understood that the effect of the 

production and use of biofuels is more complex than this simple analysis. 

Biomass growth requires not only solar energy, but energy for planting, 

harvesting, processing, transport and production of fertilisers. These energy 

inputs and the resultant greenhouse gas emissions can be considerable, and in 

some cases the energy input may be greater than the energy in the fuel. Energy 

return on energy investment (EROEI or EROI) is the ratio of the energy 

produced compared to the amount of energy invested in its production. This 

‘simple’ ratio can be useful in assessing the viability of fuels. A ratio of less 

than one indicates that more energy is used than produced, and an EROI of 3 

has been suggested as the minimum that is sustainable (Clarens et al., 2011a). 

EROI for crude oil is currently about 20, but has declined over time. This 

decline is likely to continue as crude oil is extracted from more difficult 

locations, with oil extracted from Canadian oil shale having an EROI of 3 (Beal, 

2011, Hall and Klitgaard, 2012). The best practice in crops is an EROI between 

11 and 16, but biofuels produced from biomass are often considerably lower 

with sugar ethanol having a reported EROI between 1.25 to 8 and corn ethanol 

between 1 and 1.34 (Beal, 2011, Clarens et al., 2011a, Hall and Klitgaard, 2012, 

Mulder and Hagens, 2008, Twidell and Weir, 2006). The EROI can also be a 

useful indicator of economic viability and the emissions of a fuel. In general 
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the lower the EROI the higher the operational cost of producing and processing 

the fuel. If a renewable fuel has an EROI of one and all the energy is supplied 

by fossil fuel it would have greenhouse gas emissions roughly equivalent to the 

fossil fuel for its production. Care should be taken in interpreting EROI as the 

boundaries used for energy inputs and outputs may vary and incorporating all 

the energy values for non- energy co-products and inputs, although the fullest 

measure, can also be the most imprecise. EROI also assumes that all energy is 

fungible (freely exchangeable and replaceable) and ignores the ‘quality’ (cost 

and usefulness) of the energy inputs and outputs (Mulder and Hagens, 2008). 

However, "energy balance EROI or net energy gain is central to any evaluation 

of biofuels" (Walker, 2010). 

 

Biofuels are often classified by the origin of the biomass from which they are 

derived. First generation biofuels, also termed conventional biofuels, are made 

from sugar, starch or vegetable oil contained in part of a plant with the 

remainder of the plant becoming a non-fuel fuel product or waste. Examples of 

first generation biofuels are; bioethanol produced from sugarcane and corn; 

and biodiesel from rapeseed and palm oil. This type of biofuel is in direct 

competition with food production, as it uses crops and parts of crops that are 

also used for both human and animal food. Second generation biofuels are 

made from the whole of plant or ‘waste’ biomass and do not necessarily 

compete with food production as they can use a crop or part of a crop not 

used for food. Matter that is not digested by humans such as, cellulose, hemi-

cellulose or lignin can be processed into second generation biofuels such as 

cellulosic bioethanol. Third generation biofuels are not dependent on 

conventional agricultural or forestry and although production systems, such as 

algal cultivation systems, are currently under development no large-scale 

commercial facilities yet exist. The term ‘fourth generation biofuels’ has 

appeared recently and can have a variety of definitions. It may refer to biofuels 

that are not easily classified as first, second or third generation biofuels, but 

the vast majority of definitions refer to genetically modified organisms. A 

definition of fourth generation biofuels might be the direct production of 

readily useable fuels from carbon negative processes involving genetic 

modified organism: examples could be the direct ‘excretion’ of hydrogen and 

alkanes from the growth of genetically modified microorganisms. Fourth 
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generation biofuels are not only the least well defined, but would also appear 

be at the most fundamental stage of research.  

  Algae and algal biofuels 1.3

The demand for renewable biofuels is predicted to continue to grow, but the 

use of first generation biofuels, derived from food crops such as soya and 

sugarcane, to meet this demand is controversial due to their influence on 

world food markets and competition for agricultural land. The Gallagher 

Review, a major study commissioned by the UK Labour Government on the 

impacts of biofuels on carbon emissions from land use change and on food 

security, concluded; the EU targets for biofuels for transport fuel is unlikely to 

be met sustainably from first generation biofuels (Renewable Fuels Agency, 

2008). The UK Department of Energy puts current sources of biomass at the 

bottom of the list of desirable renewable energy sources (Walker, 2010). Third-

generation biofuels are proposed as a possible solution and are currently 

receiving a great deal of attention as they can be cultivated on marginal or 

non-agricultural land, can use brackish or salt water and may have 

productivities greater than first or second generation biofuels.  

 

Algae are a diverse range of aquatic ‘plants’, ranging from unicellular to multi-

cellular forms, and generally possess chlorophyll, but are without true stems 

and roots. The diverse nature of algae is clearly illustrated by an examination 

of the ‘Tree of Life’(Figure 3) where both plants and animals are shown circled 

on single branches and the various algal taxa are highlighted in rectangles on 

numerous branches (Schlarb-Ridley, 2011). It is suggest, however, that all algae 

may share a common cyanobacteria ancestor (Stephenson et al., 2011). The 

algae can be divided by size into two groups: macro-algae commonly known as 

‘seaweed’ and micro-algae, microscopic single cell organisms ranging in size 

from a few micrometres to a few hundred micrometres (µm) (Sheehan et al., 

1998). The term micro-algae is often used to include the prokaryotic 

cyanobacteria (blue green algae), although these are no longer classified as 

algae, together with the eukaryotic micro-algae such as diatoms and green 

algae (Mata et al., 2010). 
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Figure 3 Algae on the ‘Tree of Life’ (Schlarb-Ridley, 2011) 

 

Macro algae or seaweeds have been used by mankind for generations as a food 

and for soil conditioning or fertiliser. Seaweeds are used as food by a number 

of cultures around the world for example: Laver in Wales, Dillisk in Ireland, 

Dulse in Scotland, Nori in Japan and Limu in Hawaii. The main markets are in 

Asia. China accounted for over 70 % of the world’s macro-algal production in 

2006 with aquaculture accounting for 15.1 million wet tonnes of the annual 

world production and harvest from wild stocks about 1.1 million wet tonnes 

(Kellly and Dworjanyn, 2008, Roesijadi et al., 2010). The macro-algal industry 

is currently 100 times bigger in wet tonnage terms than the micro-algal 

industry (Lundquist et al., 2010). 

 

The high water content (80 to 90 %) of macro-algae has led to a focus on 

energy production from wet algae due to the relatively high energy demand of 

evaporating water from the biomass compared to the energy content within it 

(Ecofys, 2008). Seaweed cultivation for bioethanol and biogas is being explored 

in Asia, Europe and South America, while bio-butanol from macro-algae is 

attracting research interest and investment in the USA (Parliamentary Office of 

Science & Technology, 2011). The use of macro-algae as a commercial 

feedstock for fuels production is currently ‘non-existent’ (Roesijadi et al., 2010) 
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and the cost of production is high, with recent estimates suggesting that 

biogas from seaweed could be 7-15 times more expensive than natural gas 

(Parliamentary Office of Science & Technology, 2011). 

 

Humans have used micro-algae for thousands of years. The Chinese used 

Nostoc to survive famine and the blue green algae species, Aphanizomenon, 

has also been used (Singh et al., 2005, Spolaore et al., 2006). Spirulina has 

been exploited by ancient peoples in both Chad and Mexico as a source of 

food (Chisti, 2006, Henrikson, 2008). The use of algae for therapeutic 

purposes has a long history, but the search for biologically active substances 

from algae, especially examination for antibiotic activity, began only in the 

1950s. Much of the laboratory work up until the 1980s focused on macro-algae 

(Borowitzka, 1995). Approximately 15,000 natural marine products have now 

been screened for biological activity and 45 marine-derived natural products 

have been tested for medical use in preclinical and clinical trials. Only two have 

been developed into registered drugs, one from a marine snail and the other 

from a sea squirt, with none as yet from micro-algae (Wijffels, 2007).  

 

Micro-algae are responsible for over 50 % of primary photosynthetic 

productivity on earth and are sunlight-fuelled factories for a wide range of 

potentially useful products, but are barely used commercially compared to 

terrestrial plants and other microorganisms (Chisti, 2000, Chisti, 2006, 

Gavrilescu and Chisti, 2005, Milledge, 2011a, Wijffels, 2007). In 2004 the 

global market for micro-algal biomass for non-fuel use was estimated as 5000 

tonnes of dry matter per year and generated an annual turnover of US$1250 

million (Spolaore et al., 2006). Reviews of the non-fuel uses of micro-algae 

have been published (Milledge, 2011a, Milledge, 2012b) and some typical 

examples are:  

 

a. β-carotene, a substance converted by the body to Vitamin A, and used 

as food supplement and colourant, is produced from Dunaliella (Chisti, 

2006, Singh et al., 2005). 

b. Lina Blue, a blue Phycobiliprotein food colourant, which is used in 

chewing gum, ice slush, sweets, soft drinks, dairy products and wasabi, 

is produced from Spirulina (DIC, 2008, Raja et al., 2008, Spolaore et al., 

2006). 
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c. Docosahexaenoic acid (DHA), a polyunsaturated omega-3 fatty acid, 

used as a dietary supplement and supplement in infant formulas, is 

produced by heterotrophic culture of the dinoflagellate 

Crypthecodinium cohnii (Borowitzka, 2006, Spolaore et al., 2006).  

d. Food and feed additives for the commercial rearing of many aquatic 

animals are produced from a variety of micro-algal species (Borowitzka, 

2006). 

e. Sulphated polysaccharides, are being produced in Israel for cosmetic 

products, from Porphyridium (Arad and Levy-Ontman, 2010). 

 

The culture of micro-algae is one of the modern biotechnologies, with uni-algal 

culture (the culture of a single algal species) being first achieved in 1890 with 

Chlorella vulgaris (Borowitzka, 2006). Algae can be photoautotrophic, 

heterotrophic or mixotrophic. In photoautotrophic growth organic materials 

are synthesised from inorganic carbon using energy from light. In 

heterotrophic growth energy is derived from an organic substance. 

 

Heterotrophic growth of micro-algae has been used to convert distillery waste 

to algal biogas and other high value algal products (Aylott, 2010). Solazyme, in 

2010, delivered 80,000 litres of heterotrophic algal-derived marine diesel and 

jet fuel to the US Navy (Solazyme, 2012), but the cost of over $26 a US gallon 

was approximately fifteen times the price of crude oil (Kelly, 2011). The major 

drawback with heterotrophic growth is that it requires an organic carbon 

source derived from autotrophic growth and the conversion of one form of 

organic carbon chemical energy to another is not as ‘efficient’ as autotrophic 

growth (Chisti, 2007). The cost of the carbon source has been found to be over 

60 % of the biomass cost of heterotrophically grown Chlorella and energy 

losses due to respiration and conversion of organic material are significant (Liu 

et al., 2010).  

 

Mixotrophic algal growth is a combination of phototrophic and heterotrophic 

growth and may have advantages over purely autotrophic growth in low light 

and oligotrophic environments (low nutrients and rates of photosynthesis) 

(Arenovski, 1994). 
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The use of photoautotrophic algae allows the direct production of biomass for 

biofuel by exploiting solar radiation and avoids the losses in biomass energy in 

the conversion between different organisms. There is a vast amount of solar 

radiation that could be exploited by photoautotrophic organisms. Total solar 

radiation delivers a total energy input over the entire earth’s surface of 

2.7x10
27

 J (Smil, 1999). This exceeds the total energy demand of humans by 

three orders of magnitude (Stephenson et al., 2011). Only a small fraction of 

the total solar radiation (0.1 to 0.5 %)(Packer, 2009) enters into the global 

biological system, but this is still many times the total anthropogenic energy 

consumption (Sims, 2002). Energy production from the autotrophic growth of 

micro-algae is the focus of this research study. 

 

The lipid content of algae can be high at over 70 %, with oil levels of 20 to 50 % 

being common, but more typically 10 to 30 % when grown under nutrient 

replete conditions (Campbell et al., 2009, Gavrilescu and Chisti, 2005). This 

high lipid content led to serious consideration of the large-scale cultivation of 

micro-algae and use of the biomass for fuel production in Germany during 

World War II (Becker, 1994, Tamiya, 1957). The oil crisis of the 1970s led to a 

programme carried out by the US National Renewable Energy Laboratory (NREL), 

to develop renewable transportation fuels from algae which ran from 1978 to 

1996 at a cost of $25.05 million. The overall conclusion of these studies was, 

that "in principle and practice large-scale micro-algae production is not limited 

by design, engineering, or net energy considerations and could be 

economically competitive with other renewable energy sources" (Sheehan et al., 

1998).  

 

Current concerns about fuel cost and global warming have resulted in micro-

algal biomass cultivation as a potential source of biofuel receiving a great deal 

of attention. There are now over 50 algal biofuel companies, but none, as yet, 

are producing commercial-scale quantities at competitive prices and the 

process of producing fuel from algae would appear to be currently uneconomic 

(Pienkos and Darzins, 2009, Sills et al., 2012, St John, 2009). Estimates for the 

reduction in production cost needed for algal biofuel to become economic vary 

from a reduction of a factor of five up to two orders of magnitude (Bruton et al., 

2009, Kovalyova, 2009, Wijffels, 2007). 
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Nearly 70 years of sometimes intensive research on micro-algae fuels, and over 

two billion US dollars of private investment since 2000 (Service, 2011) have not 

produced economically viable commercial-scale quantities of algal fuel and this 

suggests that there are major technical and engineering difficulties to be 

resolved before economic algal biofuel production can be achieved. 

 

 Aims and objectives 1.4

The overall aim of the research was to develop tools for the assessment of the 

energy balance of micro-algal biofuel production.  

 

To achieve this, the following objectives were identified: 

1) To gather, critically review and assess information from the literature on 

process options for micro-algal biofuel production and identify key 

areas in which further information is required in relation to their 

contribution to the overall energy balance.  

2) To determine whether existing software packages are suitable for 

determination of the energy balance of micro-algal biofuel production.  

3) To establish maximum theoretical and 'achievable' micro-algal biomass 

growth and oil yields as a basis for estimation of the energy output of 

micro-algal biofuel production processes.  

4) To establish 'energy return on operational energy input' as a criterion 

for assessment of the energy balance of micro-algal biofuel production, 

using the example of paddlewheel mixing of a raceway cultivation 

system.  

5) To develop a mechanistic model of energy inputs and outputs as a 

rational basis for the assessment of algal biomass and biofuel 

production systems. 

6) To determine the energetic viability of a number of micro-algal biofuel 

production scenarios, and to identify the most critical parameters 

affecting net energy production.  

7) To carry out a case study of micro-algal biofuel production including 

assessment of its energetic and economic viability.  
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 Structure of thesis 1.5

The thesis consists of 8 chapters:  

 

The current chapter introduces key concepts and issues in renewable energy 

production from micro-algae, and summarises the aims and objectives of the 

work. 

 

Chapter 2 provides a critical review and analysis of process operations in 

micro-algal biofuel production, and identifies areas in which further 

information is required in relation to their contribution to the overall energy 

balance.  

 

Chapter 3 evaluates the suitability of available software for modelling and 

assessment of energy balances for micro-algal biofuel production.  

 

Chapter 4 describes initial investigations carried out to provide a baseline for 

assessment of micro-algal biofuel production by establishing maximum and 

realistic algal yields and operational energy returns for micro-algal growth in 

raceways.  

 

Chapter 5 describes the construction of a mechanistic energy balance model 

for micro-algal biofuel production in open raceway systems.  

 

Chapter 6 presents the results of energy balance modelling for the production 

of micro-algal biofuel under different scenarios.  

 

Chapter 7 presents a case study on the energetic and economic viability of 

micro-algal biodiesel production and presents some novel non-fuel micro-algal 

processes in which energy production takes a secondary role.  

 

Chapter 8 consists of brief conclusions and suggestions for further work. 
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 Algal biofuel process operations 2.

This chapter provides a contextual analysis of the processes for micro-algal 

biofuel production; reviewing, summarising and identifying gaps in the 

knowledge for each area.  

 

Process operations for algal biofuel production can be grouped into three areas: 

growth, harvesting and energy extraction. The methods available are 

summarised in Figure 4, and the success of micro-algal biofuel will be 

dependent on the achievement of an optimised process for these three areas.  

 

 

Figure 4 Summary of algal biofuel production options 

 

 Growth systems 2.1

Algae can be grown in simple open systems or closed systems known as 

photo-bioreactors (PBRs) (Becker, 1994, Chisti, 2007). Currently the majority of 

micro-algal production occurs in outdoor ponds (Spolaore et al., 2006), 

although at present only three taxa (Spirulina, Dunaliella and Chlorella) are 

grown commercially, where the use of highly selective environments make it 

possible to suppress the growth of competitive species. Chlorella grows well in 
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nutrient-rich media, Spirulina requires a high pH and bicarbonate 

concentration and Dunaliella salina grows at very high salinity (Huntley and 

Redalje, 2007). 

 Open systems 2.1.1

 

The growth of micro-algae in natural open water bodies has been exploited 

around the world for centuries, especially in time of famine, and simple 

unmixed unlined ponds are still used for micro-algal cultivation and 

wastewater treatment. 

 

Shallow natural or man-made ponds (normally under 0.5 m deep) are the 

lowest capital cost and least technically complex of all micro-algal mass culture 

methods (Shen et al., 2009). Dunaliella salina is cultivated, commercially in 

Australia, in very large, shallow unlined and highly saline ponds for the 

production of β-carotene as shown in Figure 5. This type of culture is suited to 

areas where land costs are low and climatic conditions favourable, with low 

rainfall and high solar insolation (Borowitzka, 2005), but productivity is low at 

only 1.5 tonnes ha
-1 

year 
-1 

(0.4 g m
-2 

day
-1

) (Campbell et al., 2009).  

 

The yields of Dunaliella can be increased by mixing the culture in the ponds; 

work in Spain using paddlewheel-mixed ponds found average daily productivity 

increased to 1.65 g m
-2 

day
-1

, four times that of unmixed systems (Garcia-

Gonzalez et al., 2003). Agitation or mixing of the culture medium has been 

found to be one of the most important factors in achieving "consistently high 

yields of biomass"; ensuring frequent exposure of all algal cells to light, 

prevention of settlement of algal cells, elimination of thermal stratification, 

even distribution and improved gaseous transfer (Becker, 1994). Since the 

1950s a number of different stirred open systems have been investigated for 

the production of micro-algae by a number of research groups, but the two 

most commercially successfully are (Becker, 1994, Shen et al., 2009): 

 

a. Circular ponds with mixing provided by a rotating arm 

b. Race-ways shallow ponds, where algal growth medium is circulated 

around a central rib. 
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Figure 5 Dunaliella growth ponds in Australia. Courtesy Cognis 

 

 Algal wastewater stabilisation ponds 2.1.1.1

 

Simple unmixed waste stabilisation ponds were introduced in the USA in the 

early 1900s as a low cost solution to wastewater treatment for a growing 

population. They were initially simply used for containment without discharge, 

rather than being designed and optimised for wastewater remediation (Banks, 

2011). In these relatively shallow man-made ponds the organic content of the 

effluent is converted to bacterial and micro-algal biomass with the symbiotic 

growth of micro-algae and bacteria reducing odours and pathogenic 

microorganisms (Buhr and Miller, 1983). Algae provide the oxygen for the 

growth of the bacteria to breakdown the organic waste matter, and the bacteria 

in turn provide carbon dioxide for the growth of the algae (Buhr and Miller, 

1983, Goldman, 1979a, Green et al., 1995). The ponds are also known as 

facultative ponds, having an aerobic zone at the top and an anaerobic zone at 

the bottom as shown in Figure 6.  
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In wastewater treatment aeration by mechanical means can be the most energy 

intensive process, with 0.4 to 1.1 kWh required to transfer 1 kg of oxygen 

(Green et al., 1995). The use of micro-algae for wastewater oxygenation is 

considered to be the most economical and energy efficient method available 

(Oswald, 1988). 

 

 

Figure 6 Operation of the facultative pond (Tchobanoglous and Schroeder, 

1985) 

 

Algal waste stabilisation ponds gained wide acceptance and by 1980 over 7000 

such ponds were in operation in the USA (Water Treatment, 2010). One of the 

major drawbacks of waste stabilisation ponds is that they require a large area 

of land (Goldman, 1979a). Favourable climate conditions, however, led to very 

large pond systems of 60 to 340 hectares being established in California 

(Benemann et al., 1980). 

 

The growth of bacteria and micro-algae in waste stabilisation ponds can not 

only reduce dissolved nutrients and Biological Oxygen Demand (BOD), but can 

also produce significant amounts of micro-algal and bacterial biomass. This 

biomass can present an environmental threat if it is allowed to flow out of the 

pond into the surrounding environment, but it can also be an opportunity if 

harvested as a source of organic material for feed and fuel (Goldman, 1979a).  
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Algal waste stabilisation ponds (1 to 3 m deep) were designed for optimal 

waste treatment and not micro-algal production (Benemann et al., 1977). The 

potential to increase and exploit micro-algal biomass and reduce the land 

demands of waste stabilisation ponds led to attempts to produce improved 

wastewater treatment systems involving micro-algae and the development of 

the High Rate Algal Pond or Raceway (Benemann et al., 1980, Buhr and Miller, 

1983). 

 Circular algal cultivation ponds  2.1.1.2

Circular ponds with a centrally pivoted mixing arm have been used in both 

Taiwan and Japan for the production of Chlorella (Becker, 1994, Borowitzka, 

2005, Shen et al., 2009). Ponds are normally 0.3 m to 0.7 m deep and up to 

45 m in diameter (Shen et al., 2009). The maximum diameter of the ponds is 

limited to approximately 50 m as mixing efficiency is poor when the rotating 

arm is too long (Borowitzka, 2005, Shen et al., 2009) and ‘mechanical 

problems’ occur with large diameter mixing arms (Becker, 1994). Other 

disadvantages of circular ponds are; low turbulence and mixing in the central 

part of the pond; supplying CO
2

 to the culture; and high capital costs relative 

to raceway ponds (Becker, 1994). Although circular ponds are the oldest large-

scale mixed algal growth system (Borowitzka, 2005) they are now currently 

only used to a limited extent and the most common open stirred growth 

system is the raceway (Becker, 1994, Borowitzka, 2005). 

 Raceway systems 2.1.1.3

 

Raceways (Figure 7) have become the most common method of growing algae 

in open systems (Becker, 1994, Ferrell and Sarisky-Reed, 2010, Oswald, 1988, 

Sheehan et al., 1998). They are suggested as "the most efficient design for 

large scale culture of micro-algae" (Borowitzka, 2005) and are probably the 

least expensive option for cultivation of micro-algae in both capital and 

operating costs (Sills et al., 2012). 

 

A raceway is a shallow closed-loop recirculation channel (James and Boriah, 

2010) where algal growth medium is circulated around a central rib. The 

raceway can be either a single loop (as shown in Figure 7) or may be serpentine, 
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but all raceways may be subdivided into four design areas; straights, bends, 

gaseous transfer and fluid propulsion areas. 

 

Figure 7 Raceway system (Sheehan et al., 1998) 

 Closed systems – Photo-bioreactors (PBRs)  2.1.2

 

Although the term photo-bioreactor (PBR) has been applied to open and closed 

micro-algal growth systems, it is primarily reserved for closed devices (Molina 

Grima et al., 1999) and a photo-bioreactor can be defined as a closed system 

for micro-algae cultivation (Tredici, 2010). In photo-bioreactors the growth 

medium is not directly exposed to the atmosphere, but is contained within a 

transparent material (Shen et al., 2009) that allows autotrophic micro-algal 

growth while isolating the culture from potential contamination (Molina Grima 

et al., 1999). 

 

Numerous photo-bioreactor configurations have been reported (Acién 

Fernández et al., 2013, Brennan and Owende, 2010, Tredici, 2012). Most may 

be classified into one of two types: either tubular devices (Figure 8) or flat 

panels (Figure 9), with additional categorisation according to orientation of 

tubes or panels, method of circulation of the culture, mechanism of light 

provision, type of gas exchange system and materials of construction (Molina 

Grima et al., 1999).  
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Figure 8 Tubular Photo-bioreactor at University of Almeria, Cajamar 

Experimental Station in Southern Spain 

  

 

Figure 9 Flat Panel Photo-bioreactor at University of Almeria, Cajamar 

Experimental Station in Southern Spain 
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 Comparison of open and closed systems 2.1.3

 

A comparison of photo-bioreactors and open raceway ponds is given in Table 1. 

Although, photo-bioreactors can have benefits, for example controlled 

environment and reduced contamination, their higher capital and operational 

costs may prohibit their use for the production of biofuel (Benemann, 2008). 

 

The circulation energy in photo-bioreactors has been estimated to be 13 to 28 

times that of open raceway ponds for the production of the same mass of 

micro-algae, although the algal concentration in the PBR was assumed to be 

five times that in an open system (Stephenson, 2009, Stephenson et al., 2010). 

It has been argued that lower extraction costs due to the higher algae 

concentrations, can make bioreactors more competitive (Chisti, 2007), but the 

claims that photo-bioreactors (PBRs) are many times more productive than 

open systems are ‘unsupported’ (Lundquist et al., 2010).  

 

Control over the micro-algal species grown is considered easier in a closed 

system PBR than in open system (Chisti, 2007, Mata et al., 2010), but 

maintaining a stable single species algal culture at full commercial biofuel 

production scale would be "exceptionally challenging" due to the large volumes 

of liquid and gas requiring sterilisation (Smith et al., 2010). The NREL study in 

the USA concluded that open systems were the only economic solution for 

large-scale production and a study by Auburn University reached the same 

conclusion (Putt, 2007, Sheehan et al., 1998). Although some micro-algal 

products are now being produced commercially in photo-bioreactors, the 

development of micro-algae biotechnology has been slowed by the limited 

performance of photo-bioreactors (Spolaore et al., 2006). The use of photo-

bioreactors will probably be restricted to very high value products, for example 

when purity is essential, or the production of inoculum for open ponds (Becker, 

1994). 
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Table 1 Comparison of closed and open micro-algal growth systems (adapted 

from Mata et al. (2010)) 

Culture systems for micro-

algae 

Closed systems (PBRs) Open systems 

(Raceway Ponds) 

Contamination control Easy Difficult 

Contamination risk Reduced High 

Process control Easy Difficult 

Species control Easy Difficult 

Mixing Uniform Very poor 

Area/volume ratio High (20–200 m−1) Low (3–10 m−1) 

Algal cell density High Low 

Investment High Low 

Operation costs High Low 

Capital/operating costs 

ponds 

Ponds 3–10 times lower 

cost 

PBRs > Ponds 

Light utilisation efficiency High Poor 

Temperature control More uniform  Difficult 

Productivity 3–5x more productive Low 

Hydrodynamic stress on 

algae 

Low–high Very low 

Evaporation of growth 

medium 

Low High 

Gas transfer control High Low 

O
2

 inhibition Greater problem in PBRs PBRs > Ponds 

Biomass concentration 3–5 times in PBRs PBRs > Ponds 

 

The cost of producing dry algal biomass in a tubular photo-bioreactor, similar 

to the type shown in Figure 8, was stated as US$ 32.16 kg
-1

 (Molina-Grima et al., 

2003). Some estimates have indicated that closed reactor systems will only be 

able to compete with crude oil at US$ 800 per barrel (US$ 5 per litre) (Broere, 

2008). Solix Biofuels has developed technologies to produce oil derived from 

algae, but at a cost of about $ 32.81 a gallon (over US$ 8 per litre) (Kanellos, 

2009). The production cost of oil from algae, grown in open saline ponds in a 

project involving Murdoch University in Perth, Western Australia, was reported 

below US$ 4 kg
-1

 (Lewis, 2009). A review of the potential of marine algae as a 

source of biofuel in Ireland estimated that the cost of algal biodiesel feedstock 

produced in open ponds in Israel is over $ 2.80 kg
-1

 (Bruton et al., 2009), both 

costs considerably below the previous estimates for PBRs. The cost of biomass 



 

 24 

productions in PBRs would appear to be an order of magnitude greater than in 

open raceways (Mata et al., 2010).  

 

The mass production of food and protein to solve world food/protein 

shortages by the use of bioreactors has not materialised and traditional 

farming is still the means by which the vast majority of food is produced. Using 

food production as an analogy for the cultivation of micro-algae for biofuel, 

open systems could be considered as farming and may be the route by which 

algal biofuels is produced. It will be the intention of this research to 

concentrate on the energy analysis and proposals for the energy optimisation 

of open algal growth systems. 

 Engineering aspects of raceway systems 2.2

 Materials of construction  2.2.1

 

Algal raceway ponds can be excavated or they can be constructed above 

ground with walls of concrete blocks or similar. Excavated raceways are 

normally cheaper, but it is more difficult to maintain a constant depth for even 

flow and there may be higher risks of contamination (Borowitzka, 2005). Lined 

ponds are approximately twice the cost of unlined ponds (Lundquist et al., 

2010), and a number of authors have suggested that this increase in costs will 

make lined ponds uneconomic for algal fuel production (Lundquist et al., 2010, 

Putt, 2007, Sheehan et al., 1998). An examination of photographs of open 

pond production facilities would indicate that liners are almost always used in 

both commercial and experimental open raceways. Operational problems have 

been reported with the use of unlined ponds (Ben-Amotz, 2008b). Liners 

should; result in lower head losses due to the smoother surface; lower seepage 

into the surrounding soil; be easier to clean; and reduce water clouding 

problems due to the suspension of soil and clay particles (Borowitzka, 2005). 

No difference in algal yields was found between lined and unlined raceway 

ponds (Sheehan et al., 1998).  

 

Liners need to be cheap and UV resistant (Ben-Amotz, 2008b). Possible liner 

materials are: 

a. HPDE – High Density Polyethylene 
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b. PVC – Polyvinyl Chloride 

c. Polypropylene 

d. Butyl rubber 

e. Geo-synthetic Clay Liners i.e. Bentomat a layer of clay fixed to a 

membrane 

 

Both PVC and HPDE can inhibit micro-algal growth due to the presence 

plasticisers, other additives and contaminates, but the use of food grade 

materials can prevent growth inhibition (Borowitzka, 2005) . HDPE has been 

used successfully in water and wastewater treatment. It is probably the most 

popular geo-membrane liner due to its high UV and chemical resistance, 

flexibility and relatively low cost compared to other liners. HPDE has a 

relatively high coefficient of thermal expansion which could present problems 

in areas where there are wide temperature variations and HPDE also requires a 

high degree of soil compaction as any movement under the liner may cause 

damage (Butyl Rubber Ltd private communication, 2009). Problems have been 

encountered with its use for algal raceways in Israel and it was replaced by PVC 

(Ben-Amotz, 2008b). PVC can last for over 5 years in temperate desert climates 

(Borowitzka, 2005). It has lasted for over 20 years in algal ponds in Israel (Ben-

Amotz, 2008b) and was used as a liner in the extensive studies by NREL 

(Sheehan et al., 1998). Food grade PVC has also been used in experimental 

growth ponds with an area of up to 450 m
2

 in Spain (Jimenez et al., 2003). 

 

Reinforced polypropylene and butyl rubber are both durable and flexible, but 

relatively expensive at over twice the price of HDPE (Butyl Rubber Ltd private 

communication, 2009). Geo-synthetic Clay liners have the advantage that they 

can self-seal, but are normally more expensive than PVC or HDPE and need to 

be covered with earth after installation (Butyl Rubber Ltd private 

communication, 2009). The use of Geo-synthetic Clay liners could have 

additional costs for excavation and maintaining flow and increased problems 

of suspended solids in the algal growth media. The advantages and 

disadvantages of the various liners are summarised in Table 2. 
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Table 2 Raceway liners advantages & disadvantages 

Liner Type Advantages Disadvantages 

HPDE – High Density 

Polyethylene 

 UV Resistant 

 Durable 

 Widely used in the 

water and 

wastewater 

treatment 

 High coefficient of 

thermal expansion 

 Requires high 

degree of soil 

compaction 

 Problems 

encountered in 

algal raceway 

PVC – Polyvinyl 

Chloride 

 Durable 

 UV Resistant 

 Successfully used 

in raceways 

 Possible growth 

inhibition from 

plasticisers and 

other additives 

Polypropylene  Durable and 

flexible 

 Cost 

Butyl rubber  Durable and 

flexible 

 Cost 

Geo-synthetic Clay 

Liners  

 Ability of clay to 

seal punctures, and 

self-seam  

 Cost 

 Suspended matter 

 Raceway channels 2.2.2

 

It has been suggested that the main objective of the design of an algal 

cultivation system is the selection of the flow and depth combination that will 

result in the optimum biomass concentration and yield (Goldman, 1979b). 

Optimising the design of the straights involves not only selecting width and 

length, but also depth of fluid, fluid velocity, material selection, freeboard, side 

slope and devices for mixing. 

 Mixing and fluid velocity in raceways 2.2.2.1

 

Mixing is required to expose all cells to light, distribute nutrients, enhance 

gaseous transfer and prevent settlement (Oswald, 1988, Terry and Raymond, 

1985, Williams and Laurens, 2010). The extent of thermal stratification in 

water bodies can be an indication of the degree of mixing. Unmixed 0.3 m 

deep ponds have been shown to have temperature variations of up to 8° C 

(Oswald, 1988). Velocities above 0.05 m s
-1

 have been shown to prevent 

thermal stratification and maintain algae in suspension, although it is 

suggested that an average velocity of 0.15 m s
-1

 is required within a raceway to 

maintain this velocity in all areas of a raceway (Oswald, 1988). The Arthur D 
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Little Company showed considerable micro-algal settlement at velocities below 

0.075 m s
-1 

in shallow micro-algal growth systems (<0.1m), but above 0.25 

m s
-1

 settling was eliminated (Terry and Raymond, 1985). In other open 

systems, however, significant algal settlement has been shown to occur at 

velocities of 0.32 m s
-1

 (Weissman et al., 1989). The recommended velocity to 

maintain silt in suspension is considerably higher at between 0.6 to 0.9 m s
-1

 

(2- 3fts
-1

) (Chanson, 1999), but silt, although of a similar size to micro-algae (2 

to 50 µm), is considerably denser (US Department of Agriculture Natural 

Resources Conservation Service, 2012) and settles out of suspension more 

readily than micro-algae. It has also been suggested that increased velocity and 

faster mixing can induce flocculation in micro-algae (Benemann et al., 1980). 

 

Optimum mixing in algal ponds is suggested to occur between 0.2 to 0.3 m s
-1

 

(Lundquist et al., 2010), while use of a CFD model showed no increase in 

micro-algal growth above 0.3 m s
-1

 (James and Boriah, 2010). Typical flow rates 

in micro-algal growth ponds are normally 0.15 to 0.3 m s
-1

 (Borowitzka, 2005, 

Chiaramonti et al., 2013). Literature values for fluid velocities in raceway ponds 

are summarised in Table 3. 

 

Fluid velocity has tended to be used for the description of flow in open raceway 

systems despite the differences in system dimensions. However, the type of 

flow that occurs in a channel depends, not only flow velocity, but also on the 

characteristics of the fluid and dimension of the flow channel (Cheng, 2007, 

Chow, 1959). 
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Table 3 Fluid velocities in raceway  

Prevention of thermal 

stratification 

0.05 to 0.15 m s
-1

 (Oswald, 1988) 

Prevention of 

sedimentation of algae 

0.25 m s
-1

 (Terry and Raymond, 

1985) 

Suggested optimal mixing 0.2 to 0.3 m s
-1

 (Lundquist et al., 2010) 

 

Fluid velocity above which 

growth does not increase 

0.3 m s
-1 

 (James and Boriah, 2010) 

Typical flow rates in algal 

raceways 

0.15 to 0.3 m s
-1

 (Borowitzka, 2005, 

Chiaramonti et al., 2013) 

 

 Reynolds number and turbulence 2.2.2.2

 

Reynolds number (R
e

) has been described as one of the most basic concepts in 

fluids and the most important dimensionless number (Lowe, 2003): it is the 

ratio of inertia forces to viscous forces within the fluid and can be expressed 

as (Coulson and Richardson, 1999); 

 

Equation 1 

 e  
ρvDc

 
 

 

where v is the average fluid velocity, D
c 

is characteristic dimension, ρ density 

and µ viscosity. The characteristic dimension used in the calculation of 

Reynolds Number is different for full flow systems and open systems (Lowe, 

2003). Open systems use hydraulic radius (area of stream cross-section divided 

by wetted perimeter) and closed systems use hydraulic diameter or pipe 

diameter which is four times hydraulic radius (Lowe, 2003). The hydraulic 

radius (R
h

) is expressed as; 

 

Equation 2 

 h  
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Where d is fluid depth and w is channel width. 

 

Use of the Reynolds number allows the flow to be described as turbulent or 

laminar, comparison of flow in similar shaped structures of different 

dimensions, and the scale-up of flowing fluid systems (Coulson and Richardson, 

1999, Vennard and Street, 1976). At low Reynolds numbers viscous forces 

dominate and flow is laminar, characterised by smooth motion of the fluid in 

layers, without significant mixing between layers. Turbulent flow occurs when 

inertial forces dominate, producing circulating currents or eddies, and there is 

exchange of momentum across the primary direction of fluid flow (Coulson 

and Richardson, 1999). Flow is said to be turbulent in open channels; above a 

Reynolds Number 1000, and 4000 for full flow in closed systems; flow is 

laminar below 500 for open systems, and 2000 for full flow closed systems 

(Lowe, 2003, Vennard and Street, 1976). 

 Effect of Reynolds number and turbulence on algal productivity  2.2.2.2.1

 

Flows in all of the micro-algal growth systems described above are turbulent, 

but variations in the reported velocity required to prevent micro-algal 

settlement might be due to differences in system dimensions together with 

different algal species. Increasing the Reynolds number can increase micro-

algal growth yield, but growth can be supressed if turbulence is too high. Flow 

rates with Reynolds Numbers as low as 6500 in closed tubular micro-algal 

growth systems have been found to have a negative effect on micro-algal 

productivity due to cell damage (Grobbelaar, 1994, Grobbelaar, 2009b). 

Disruption of the cells may occur as a result of localised velocity gradients 

within an eddy or between eddies (Rodriguez et al., 1993). The exact nature of 

the micro-eddy hydrodynamic forces acting on the cells; shear, compression, 

torsion or impact, causing cell disruption are not fully understood (Clarke et al., 

2010), but micro-algal cells appear to be damaged when the size of the micro-

eddies is the same or smaller than the algal cell (Fernandez et al., 2001, Molina 

et al., 2000, Molina Grima et al., 2010). Micro-eddy dimensions reduce with 

increasing velocity and decreasing hydraulic diameter or depth and the very 

low Reynolds number found to damage micro-algal cells in a closed photo-

bioreactor (Grobbelaar, 1994) may be due to the narrow tube diameter, 
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<0.05 m, used in the study. Increasing mixing and the length of time algae are 

mixed have been suggested to improve the ‘harvestability’ of micro-algae by 

encouraging flocculation, but no details of the mechanism that encourages 

flocculation or the fluid velocity or Reynolds required has been given 

(Benemann et al., 1980). 

 

Mixing in raceways is a complex concept and may not be adequately described 

by either fluid velocity or Reynolds number (Chiaramonti et al., 2013). Recent 

work by the University of Southampton and University of Almeria has shown 

that there is little vertical or horizontal movement of small particles across the 

flow direction in open raceways in turbulent flow (Mendoza et al., 2013a). 

Computational Fluid Dynamic analysis of the flow field of a raceway and 

practical studies by the University of Florence have produced similar 

observations and it was concluded that in raceway straights there is little 

vertical mixing (Chiaramonti et al., 2013, Tredici, 2012). This observation may 

be explained by the velocity within eddies being substantially lower than 

average fluid velocity (Vennard and Street, 1976). Studies of small-scale and 

full-scale raceway ponds have found that in turbulent flow there is good cross-

sectional mixing, but the flow is essentially plug flow with little or no back 

mixing (Buhr and Miller, 1983, Chiaramonti et al., 2013). 

 Head loss 2.2.2.3

 

The resistance to flow in a channel can be reported in terms of head loss. Head 

loss is unavoidable due to friction between the fluid and the walls of the 

channel and between adjacent fluid particles as they flow. Head loss in a 

straight channel can be expressed as: 

 

Equation 3 

   
   

   

  
 
 

 

 

Where v is the average fluid velocity, L
s

 is the length of the straight, n is the 

Manning Friction Factor (a dimensionless coefficient used to describe the 

relative roughness of a channel) and R
h

 is the hydraulic radius. The head loss in 
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the straight is a function of the square of the fluid velocity. The hydraulic 

power (P
h

) required to move a fluid in channel is a function of the head loss: 

 

Equation 4 

         

 

 

where Q is volumetric flow rate, the product of flow area and average fluid 

velocity. Hydraulic power is, therefore, a function of the cube of fluid velocity, 

and small changes in fluid velocity can cause large changes in the energy and 

power required to move fluid within a straight channel. The minimisation of 

fluid velocity needed in raceway ponds for optimum micro-algal growth could 

have a significant effect on the energy balance of algal cultivation.  

 

Inducing mixing by introduction of ‘flow obstructions’ acting as static mixers 

could offer a low energy method of maintaining algal suspension and 

improving mass transfer within the raceway rather than increasing fluid 

velocity. Both vertical and horizontal foils or vanes, made of 6 mm profile 

stainless steel, have been found to improve algal production in raceways (9 % 

and 14 % respectively) (Laws and Berning, 1991). A more recent study has also 

suggested that a large energy-saving opportunity may exist if the average flow 

velocity in raceways is reduced and mixing promoted by the installation of 

static mixing devices in the flow (Chiaramonti et al., 2013). 

 

The power and energy requirements of maintaining fluid flow in raceways are 

discussed further in subsequent Sections (2.2.3). 

 Depth of raceways 2.2.2.4

 

The depth of an algal raceway is a compromise between being sufficiently 

shallow to give adequate light for the algal cell growth; and deep enough for 

fluid to be moved around the raceway while avoiding the costs of raceway bed 

grading (Borowitzka, 1999). Raceways can be up to 0.5 m deep (Brennan and 

Owende, 2010), but are typically between 0.2 and 0.3 m deep (Aquafuels, 

2011, Jimenez et al., 2003, Johnson et al., 1988, Lundquist et al., 2010). Below 

0.15 m problems have been found with algal biomass sedimentation and with 
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achieving sufficiently even grading of the pond bottom to ensure consistent 

flow around the entire raceway (Weissman et al., 1989). Mixing problems, 

temperature variation and high rates of carbon dioxide outgassing may also 

occur at depths below 0.25 m (Lundquist et al., 2010). 

 Width of raceways 2.2.2.5

 

In wide channels, where the width of the channel is 10 times or more than the 

depth of the channel, the velocity distribution in the centre of the channel is 

essentially the same as an infinitely wide channel (Chow, 1959): this may 

indicate that the minimum width of the channel should be 3m if the depth of 

the channel is 0.3 m. Two dimensional channel flow, where all flow occurs in a 

set of parallel planes with no flow normal to them, occurs at aspect ratios, 

width-to-depth, of 7 to 1, but the development of such flow can take a distance 

of up to 500 times the depth (Monty, 2005). The US Energy Department study 

suggested a length to width ratio of 11 to 1 or greater (Weissman et al., 1989). 

Length is discussed in Section 2.2.6. 

 

No maximum channel width appears to have been given in the literature, but 

problems of consistent flow are likely to occur with excessively wide raceways. 

The fiction factor of an open raceway increases with increasing hydraulic radius 

and therefore with width as described in the Strickler friction factor equation:  

 

Equation 5 

                
   

 

 

 

where n is the Manning friction factor and f is a friction factor dependent on 

roughness, especially in highly turbulent flow (high Reynolds Number), and R
h

 

is hydraulic radius (Chow, 1959, Vennard and Street, 1976).  

 

The velocity profile of the turbulent flow in open channels will also change with 

increasing width as describe by the Prandtl Power Law (Chanson, 1999): 

 

Equation 6 
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  (
 

 
)

 
 
 

 

Where v
l 

is local fluid velocity, v
max

 is maximum fluid velocity at the surface, y is 

the distance from the bottom normal to the flow direction and N is the power 

law exponent. The value of N can vary from 4 for shallow flow in a wide rough 

channel to 12 in a smooth narrow channel, with a typical figure of 6 being 

representative of channel flow in smooth concrete channels (Chanson, 1999, 

Cheng, 2007). Using the Prandtl Power Law to calculate the extreme values of 

N, 4 and 12 the graphs of flow in Figure 10 can be derived. 

 

 

Figure 10 Velocity profiles of flow in open channel for extreme values of N. 

 

The value in the wide channel, with N of 4, gives the classic ‘snub nosed’ 

profile of turbulent flow, while the narrow smooth channel, with N of 12, 

results in a profile of the type found in laminar flow. These profiles may also 

help to explain the observations at the University of Southampton and 

University of Almeria that showed little vertical movement of micro-algal across 

the flow direction (Mendoza et al., 2013a). The experimental raceway used was 

narrow, 1m wide, and constructed of relatively smooth glass-fibre reinforced 

plastic which could have resulted in a laminar-type flow velocity profile despite 

the flow being turbulent. 
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The Froude number (a dimensionless ratio of inertial and gravitational forces 

that describes different flow regimes of open channel flow) is always below 0.3 

for the range of fluid velocities (0.1 to 0.3 m s
-1

) and depth (0.1 to 0.3m) 

typically found in typical open raceways and the flow is subcritical or tranquil 

in all cases and will tend to show little surface disturbance. "Waves are not 

usually a problem in raceway ponds" (Oswald, 1988), although wind fetch 

could be a problem in ponds larger than one hectare (Benemann and Oswald, 

1996). 

 Raceway bends 2.2.2.6

 

The head loss in a bend (h
b

) can be expressed as:  

 

Equation 7 

   
    

  
  

 

where k is the head loss factor. High head losses factors of 2.4 to 2.5 have 

been reported for bends in raceways (Chiaramonti et al., 2013, Green et al., 

1995), much higher than for hydraulic optimised bends (Chow, 1959, Idel'chik, 

1986, Vennard and Street, 1976).  

 

The high head losses on the bends relative to straights indicate that a simple 

raceway rather than a serpentine route would be more energy efficient. In a 

‘realistic’ assessment of algal biofuel production it was also concluded that a 

single loop rather than a serpentine layout was the preferred design to 

minimise head losses (Lundquist et al., 2010). Most open commercial raceways 

are of a single loop rather than serpentine design. Figure 11 shows the 

extensive single loop raceways for the production of non-fuel micro-algae in 

Hawaii. 

 

Head loss reductions could be made by increasing internal radii and by the 

addition of flow guides. Flow guides can reduce the head-loss factor of a 90° 

elbow from 1.15 to 0.55 (Idel'chik, 1986) and flow guides have been shown to 

even out flow and reduce areas of stagnation in raceways (Weissman et al., 

1989). Curved baffle boards directing flow around raceway bends have been 

shown to reduce the head loss factor in bends to 2 resulting in a raceway 
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mixing energy reduction of 7.5 % compared to a raceway with unbaffled bends 

(Chiaramonti et al., 2013). Three curved baffle boards in raceway bends were 

found to reduce the energy required to pump fluid around a 0.5 hectare 

raceway by 17 % compared to a raceway with unbaffled bends and also to 

reduce ‘dead zones’ (areas of low mixing with a flow velocity < 0.1 m s
-1

) from 

14.2 % of the raceway area to 0.9 % (Sompech et al., 2012). 

 

 

Figure 11 Single loop raceways in Hawaii. Courtesy Cyanotech. 

 

Bends offer the largest resistance where the curvature of the inner wall is sharp 

causing the flow to separate from the inner wall. In Figure 12 vortices 

(highlighted red) can be seen shedding from the sharp inner edge of an algal 

raceway. Rounding of the inner wall lowers resistance by making flow 

separation smoother; with the optimum internal radius being between 1.2 and 

1.5 times the channel width (Idel'chik, 1986). Such large internal radii may be 

impractical and uneconomic due to the large land requirement needed for the 

centre of the raceway; but small internal bend radii can give significant 

reductions in head loss, and commercial producers of micro-algae in open 

ponds often add a bulbous end to the internal wall to reduce head losses as 

can be seen in the raceways in Figure 11. A bulbous inner radius to a raceway 

bend was found to ‘fill in’ the potential dead zone region and reduce the 
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energy required to circulate fluid around a raceway, but curved flow guides 

were more effective (Sompech et al., 2012). A combination of flow guides and 

a bulbous inner radius to raceway bends was found to effectively remove all 

‘dead zones’, but was considered too costly for micro-algal cultivation 

raceways (Sompech et al., 2012) 

 

Computational fluid dynamic analysis has shown that most vertical mixing 

occurs in raceway bends rather than the straights (Chiaramonti et al., 2013, 

James and Boriah, 2010, Tredici, 2012). Interaction between the fluid and the 

bend walls and bottom sets up a ‘helical flow pattern’ that can be beneficial to 

algal growth by bringing micro-algal from the bottom to the top (James and 

Boriah, 2010).  

 

 

Figure 12 Vortices being shed from sharp inner corner of algal raceway 

 Fluid propulsion in raceways 2.2.3

 

Sorguven and Ozilgen (2010) stated that "the challenge of algal cultivation is to 

maintain mixing with the minimum of energy". The minimum circulation 

velocity to ensure adequate mixing has been discussed in Section 2.2.2.1, but 
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how is this fluid motion to be generated? The paddlewheel has become the 

universal method of producing fluid motion in raceways as they are 

mechanically simple, high volume, low head devices with a gentle mixing 

action (Borowitzka, 2005).  

 

Pumping is less energy efficient than stirring for mixing in a tank (Perry and 

Chilton, 1973) and paddlewheels may be more analogous to a ‘stirrer’ than a 

‘pump’. Algal growth has been shown to be inhibited by high shear (Hondzo et 

al., 1997) thereby probably excluding the use of many pump types. Axial 

pumps have been shown to be more efficient than centrifugal designs in 

pumping algae especially as volumetric flows increase and hydraulic head 

decreases. They are suitable for low head and high volume and could be an 

alternative to paddlewheels particularly in very shallow ponds e.g. ≤ 0.005 m 

(Chiaramonti et al., 2013).  

 

Fluid is returned by a pump into the raceway from the harvesting system to 

recycle water and nutrients. The use of the post algal harvest fluid stream to 

drive fluid around the raceway could potentially be used to provide fluid 

momentum to circulate liquid around the raceway. However, calculating the 

fluid velocity and pipe diameter using conservation of momentum and a simple 

mass balance have shown that this is impractical due to the very high fluid 

velocity (~150 m s
-1

) and narrow diameter pipes (1-2mm). 

 

In marine propulsion paddlewheels have been replaced by screw propellers, 

but this was for practical ship design and operational factors rather than 

advantages in efficiency (Rennie, 1853). Screw propellers have not replaced 

paddlewheels in raceways as they can have operational problems in the shallow 

depth of raceway ponds due to cavitation, and paddlewheels have been shown 

to be superior to screw propellers in open growth systems (Laws and Berning, 

1991). In New Zealand, paddlewheels have now also replaced propellers in 

advanced micro-algae waste treatment raceways as they were found to be more 

energy efficient (Craggs, 2003). 

 

Both Archimedes screws and gas lift systems have been found to be superior 

to paddlewheels for algal growth (Laws and Berning, 1991) (Ketheesan and 

Nirmalakhandan, 2011), but both require considerably greater head differences 
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than paddlewheels for effective operation. The pumping energy of an air-lift 

pump to circulate liquid in a raceway has been estimated at being twice that of 

a paddlewheel (Becker, 1994). 

 

The advantages and disadvantages of the various methods of circulating fluid 

around a raceway are summarised in Table 4. 

Table 4 Summary of advantages and disadvantage of raceway circulation 

methods 

Circulation 

Mechanism 

Advantages Disadvantages 

Paddlewheel  Mechanically simple, with 

a gentle mixing action 

 Widely used and proven 

in raceways 

 Low efficiency in many 

designs used in raceways 

 Design needs to optimised 

Axial Pump  Found to be effective in 

low depths ~ 5 mm 

 Cost 

 Shear 

Air-lift  Can combine gaseous 

transfer and fluid flow. 

 Operational energy 

 Sump depth 

Screw 

Propeller 

 Light weight 

 Low drag 

 Cavitation 

 Paddlewheel found to be 

more efficient in raceways 

Archimedes’ 

Screw 

 More efficient than most 

pumps and paddlewheels 

 Requires greater head 

than typically found in 

raceways 

 

Paddlewheels can be extremely efficient and are showing considerable promise 

as hydropower converters at very low head differences (Senior et al., 2010), but 

figures quoted for paddlewheel efficiency in algal growth systems are low at 10 

to 20 % (Borowitzka, 2005, Chiaramonti et al., 2013, Green et al., 1995, Putt, 

2007). The paddlewheel efficiency generally increases with increasing number 

of blades, increasing diameter and reducing clearance between the 

paddlewheel and the bottom (Müller et al., 2007, Rennie, 1853, Senior et al., 

2010). Paddlewheels of more than eight blades have been suggested as 

impractical for raceway ponds, and a paddlewheel of 1.5 m in diameter with 8 

blades, with a blade height of 0.35 m, running in a 0.3 m deep sump (0.1 m 

below the pond bed depth) with a clearance of 0.02 m has been suggested as a 

suitable design for a 0.2 m deep raceway (Borowitzka, 2005). Efficiencies of 

40 % have been suggested for optimised paddlewheel designs in raceways 

(Benemann and Oswald, 1996), and efficiencies of up to 75 % have been found 

for paddlewheels extracting energy from flows with low-head differences 
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(Senior et al., 2010). Reducing energy input for mixing micro-algal raceways 

has not been extensively studied (Chiaramonti et al., 2013, Ketheesan and 

Nirmalakhandan, 2011, Sorguven and Ozilgen, 2010) and it would appear that 

considerable improvements could be made to micro-algal raceway paddlewheel 

design. Work is currently being undertaken by the University of Southampton 

on improving paddlewheel efficiency. 

 Light penetration and light climate in raceways 2.2.4

 

The ‘light climate’ experienced by micro-algae will depend not only on culture 

depth and fluid mixing, but also on the light adsorption and dispersion from 

the micro-algal biomass, other particulate matter, dissolved materials and the 

water itself (Martinez, 1996). The intensity of bright light, 3.2 x 10
5

 Lx (30,000 

foot-candles), over three times the light intensity of a bright summers day 

(MAF NZ, 2007), is reduced by over 99 % in a depth of 0.1 m in an algal 

suspension of 0.025 % dry weight of Chlorella and if the algal concentration is 

increased to 0.25 % the 99 % reduction in light intensity is achieved within 

0.015m (Rabe and Benoit, 1962). The exponential nature of the Beer-Lambert 

law ensures that even substantial variations in light intensity will make little 

difference to light penetration in micro-algal cultures (Buhr and Miller, 1983). 

Very dense cultures of micro-algae (undefined) can absorb over 90 % of light 

within the first 0.01m (Love, 2011). Field observation using a Secchi disc 

established a simple correlation between light penetration depth d
p

 in 

centimetres and the concentration of algal C
c

 expressed as mg l
-1

 dry weight of 

algae per unit volume of algal suspension given in (Oswald, 1988). 

 

Equation 8 

    
    

  
 

 

 

Using micro-algal concentrations in the above equation of 0.025 % (250 mg l
-1

) 

and 0.25 % (2.5 g l
-1

) light penetration depths can be calculated of 0.24 m and 

0.024 m respectively.  

 

Light irradiance has been found to be a limiting factor in the growth of 

Spirulina in southern Spain during the summer. The maximum algal yield in 
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0.3 m deep ponds was at micro-algal dry weight concentrations of between 

0.04 to 0.05 % with higher concentrations of algae reducing yield due to poor 

light penetration into the medium (Jimenez et al., 2003). It has been suggested 

that in typical raceway conditions only the micro-algae in the upper 0.005 m to 

0.02 m of a pond are light saturated and that 90 to 95 % of the culture depth is 

light limited (Williams and Laurens, 2010). Improving light availability to all 

micro-algal cells within a culture continues to be one of the greatest challenges 

of micro-algal mass culture (Williams and Laurens, 2010). 

 

The rapid cycling of micro-algal cells from dark to light has been reported to 

increase growth rates (Grobbelaar, 2009a, Janssen et al., 2001), but the 

optimal light dark frequency appears to be culture specific and also depends 

on the light intensity (Molina et al., 2000). The effect may be enhanced by 

longer dark than light periods (Bosma et al., 2007), but phytoplankton have 

been shown to become acclimatised to the rapid light dark cycle and any 

increase in micro-algal production rates can be lost within three days 

(Grobbelaar, 2010). The increase in productivity is attributed to the slower dark 

reactions of photosynthesis catching up on light reactions of photosynthesis 

(Benemann and Oswald, 1996, Williams and Laurens, 2010). The minimum 

frequency to achieve an increase in micro-algal production rate from a rapid 

dark light cycle or flashing light effect is 1Hz (Molina Grima, 2011, Molina 

Grima et al., 2010, Williams and Laurens, 2010), but the maximum effect is 

probably achieved at much higher frequencies with a light period of under 

10 ms (Bosma et al., 2007, Grobbelaar, 2010, Janssen et al., 2001). The 

achievable frequency of the light-dark cycling is considerably slower in open 

systems (Grobbelaar, 2010) with typical values around 0.1 Hz at flow rates 

between 0.15 and 0.2 m s
-1

 in open ponds 0.15 to 0.2 m deep (Williams and 

Laurens, 2010). No effect on micro-algal productivity could be attributable to a 

light-dark cycle at fluid velocities between 0.02 to 0.5 m s
-1

 when other 

conditions (CO
2

 supply and oxygen tension) were constant (Benemann and 

Oswald, 1996) . It might be possible to achieve a rapid light-dark cycling in 

systems where the light path is short, e.g. under 0.05 m, but open raceways 

are likely to provide cycle times of seconds with minimal or no stimulation of 

growth rate due to the frequent exposure to light and dark (Garcia Camacho et 

al., 2011, Grobbelaar, 2009b, Molina Grima, 2011). Early studies of stirred 
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systems also concluded that the rapid light dark cycle or flashing light effect 

could only be achieved at "uneconomical stirring rates" (Tamiya, 1957). 

 Gaseous transfer zones and sumps in raceways 2.2.5

 

Photosynthesis can be simplified into two reactants (carbon dioxide and water) 

and two products (glucose and oxygen), represented by the equation:  

 

Equation 9 

6CO
2 

+ 6H
2

O = C
6

H
12

O
6

 + 6O
2

 

 

Stoichiometrically, this equation suggests that every 1 kg of algae produced 

will require 1.5 kg of CO
2

. Values for the amount of CO
2

 required to produce 

algal biomass are quoted at between 1.65 (Berg-Nilsen, 2006) and 2.2 

(Weissman and Goebel, 1987) kg per kg dry weight with a typical figure of 1.8 

kg of CO
2 

per kg of dry algae (Chisti, 2007). Stoichiometric analysis suggests 

that the amount of CO
2 

required increases as protein and especially lipid 

contents increases and carbohydrate decreases. 

 

Algae rapidly deplete the CO
2

 within a growth medium and to maximise algal 

growth additional CO
2

, to that available via atmospheric transfer, should be 

supplied (Gouveia, 2011, McGinn et al., 2011). If 1.8 kg of CO
2 

is consumed by 

photosynthesis this will produce 1.3 kg of O
2

 and again it can be demonstrated 

by basic calculation that this will accumulate within the algal growth medium 

unless some additional means of gaseous transfer is used. Elevated oxygen 

levels of only a few times saturation in water have been shown to inhibit algal 

growth (Jimenez et al., 2003, Laws and Berning, 1991, Li et al., 2003, Marquez 

et al., 1995, Molina Grima et al., 2001). 

 

CO
2 

can be supplied as gas via bubbles or by the addition of carbonated water, 

but the supply of gaseous CO
2 

has been shown to give higher growth (Laws and 

Berning, 1991) possibly due to removal of O
2

. It has been suggested, that from 

an engineering point of view, gaseous transfer is the key issue in the design of 

algal growth systems (Lundquist et al., 2010). 

 



 

 42 

Suggestions for gaseous exchange sumps range from simple open pits to more 

complex counter current units with depths ranging from under 1m to 3m deep 

and bubble sizes ranging from 1mm to 3mm (Putt, 2007, Weissman et al., 

1989). Sump depth to achieve 90 % gaseous transfer of CO
2

 from flue gas to 

the liquid medium in a raceway pond has been calculated at 3 m (Putt, 2007, 

Stephenson et al., 2010). The modelling of gas transfer in sumps is not highly 

accurate, in part due to uncertainties about bubble size and distribution, with 

the gaseous transfer rate in shallow sumps being greater than predicted by 

simple single-size bubble models (Weissman and Goebel, 1987), and the 

calculations used to arrive at a rough design of the carbonation sump being 

"fairly crude" (Stephenson, 2009). In a large-scale experimental micro-algal 

open growth pond 78 to 90 % of carbon dioxide gas in bubbles was transferred 

to the micro-algal growth medium in a sump 0.9 m deep, with results 

indicating that greatly increasing depth may not greatly increase the total 

transfer of carbon dioxide (Weissman et al., 1989). The cost of construction of 

a sump and the operational energy required increases with increasing depth, 

and it has therefore suggested that sump depths should be kept below 1.5 m 

(Weissman and Goebel, 1987). The reduction in depth of the sump from 3 to 

1.5 m has been estimated to reduce the energy required by over 50 % 

(Stephenson, 2009). 

 

Recent work by the University of Southampton, at the Cajamar Experimental 

Station in Southern Spain, has indicated that a simple 1.8 m deep sump can 

transfer 90 % of the carbon dioxide from flue gas containing 10 % CO
2

 to water. 

The gas transfer efficiency of a sump was found to reduce as the depth of the 

sump reduced.  

 

The head loss in a sump h
g

 can be represented by:  

 

Equation 10 

    
    

  
  

 

 

Only one head loss factor of 2 (Weissman et al., 1989) has been found in the 

literature for a simple open gaseous exchange sump in a raceway. Standard 



   

 43  

data on tees and bends (Idel'chik, 1986) indicate that more complex sumps will 

have higher head loss factors than horizontal bends. Results from a pilot scale 

pond (50 m long and 1m wide channels) at the Cajamar Experimental Station in 

Southern Spain suggest that that power required to circulate a fluid in a 

raceway is approximately doubled when a baffled counter current sump is used 

rather than a simple open sump. Mixing time was found to be more than 

doubled for a baffled counter current sump compared to a simple open sump 

(Mendoza et al., 2013a). 

 

The power to pump CO
2

 into the algal suspension could be considerable. The 

energy required to transfer 1 kg of oxygen into primary effluent in aerated 

activated sludge systems is 0.4 to 1.1 kWh (Green et al., 1995). There are some 

partially studies of the energy inputs required for gaseous sumps (Putt, 2007, 

Stephenson et al., 2010), and further work is being undertaken at the 

University of Southampton. 

 Raceway size 2.2.6

 

Work in Israel concluded that the maximum size of a raceway driven by a 

single paddlewheel is 1500 m
2

 (Ben-Amotz, 2008b). The largest commercial 

raceway, however, is reported to be 5000 m
2

 (Becker, 1994) and it has been 

proposed that raceways could be as large 10000 m
2 

(Borowitzka, 2005).  

 

The circuit length of the raceway pond is determined by the head drop 

permissible across the paddlewheel and/or the maximum variation of pond 

depth to allow consistent light penetration and mixing around the raceway. 

Oswald suggested that, in order to achieve consistent mixing and light 

penetration, the maximum head drop around a raceway should be half the 

mean depth (0.15 m for a depth of 0.3 m) and calculated the maximum length 

and area for 6m wide ponds as 5420 m and 32500 m
2

 for a 0.3 m deep pond 

flowing at 0.15 m s
-1

 (Oswald, 1988). This calculation considering only 

frictional head losses in the raceway straights and took no account of the 

additional head losses in raceway bends and other features such as gaseous 

exchange sumps, and therefore overestimated the potential maximum size of 

a raceway. 
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The maximum head variation across a paddlewheel may be less than 0.15 m 

further limiting the maximum size of a raceway. A maximum head difference 

of 0.076 m has been recommended by a paddlewheel manufacture for 

commercial algal raceways (Waterwheel Factory Inc. private communication, 

2010) and the head difference across a single paddlewheel in mixed crayfish 

ponds has been reported at only 0.031 m (Pfeiffer et al., 2007). Substituting a 

head of 0.076 m in Oswald calculation would halve the maximum length and 

area for a 0.3 m deep raceway, but still indicates that is feasible to build 

raceway ponds with an area greater than 1500 m
2

 and raceways of one hectare 

could be practicable. 

 

The head losses for power requirement to circulate growth medium around 

algal raceway are calculated and further discussed in Sections 4.2 & 6.3.1 

 Requirements for micro-algal growth 2.2.7

 

The growth of micro-algae requires water and a source of carbon together with 

both macro-nutrients such as nitrogen (N) and phosphorus (P) as phosphate 

and a range of micro-nutrients. Micro-algae have a high content of both N and 

P relative to land plants at 5 to 12 % and 0.3 to 1 % respectively (Hannon et al., 

2010, Williams and Laurens, 2010). An extensive review of the of potential 

resource demands of micro-algal biofuel in the USA has concluded that carbon 

dioxide, nitrogen and phosphate are likely to emerge as the dominant 

constraints for scale-up in autotrophic systems (Pate et al., 2011). 

 Nutrients and water 2.2.7.1

 

Although some cyanobacteria have the ability to fix nitrogen, virtually all algal 

species require an exogenous source of fixed nitrogen with most using 

ammonia preferentially (Hannon et al., 2010, Lundquist et al., 2010). Nitrogen 

fertilisers are often made using the Haber-Bosch process which uses methane 

and nitrogen to produce ammonia (NH
3

). This not only has a significant cost, at 

US$ 300 tonne
-1

 of NH
3 

(Williams and Laurens, 2010), but the embodied energy 

within the fertiliser also adds considerable energy inputs of 34 to 50 GJ tonne
-1

 

of nitrogen (Jenssen and Kongshaug, 2003). The embedded energy in the 

supply of nutrients and CO
2

 could be greater than energy produced unless they 

are from ‘discounted inputs’ such as wastewater for nutrients or flue gas for 
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CO
2

 (Beal et al., 2012a), and/or are recycled. Recycling of harvest water back to 

the growth system has been found, in a life cycle assessment of the production 

of micro-algal biodiesel, to reduce nutrient requirement by 55 % (Yang et al., 

2011b), while anaerobic digestion of algal biomass could allow recycling of 90 % 

of nutrients (Lundquist et al., 2010, Williams and Laurens, 2010). If biogas or 

lipids for biodiesel are being produced there will be little or no export of N and 

P in the products and the nutrients are therefore available for recycling with 

potentially only a small top-up to cover processing losses. 

 

Phosphorus, although required in smaller quantities than nitrogen, may 

present a greater challenge for micro-algal biofuel production. Agricultural 

fertilisers currently used in the USA contain less than optimal concentrations of 

phosphate due to limited supplies, as mined phosphate production peaked in 

the late 1980s (Hannon et al., 2010). Although LCAs have found very little 

impact from the use of phosphate on energy return and global warming 

potential, the effect on sustainability of micro-algal production could be 

significant due to the rapid depletion of mined phosphate reserves (Aquafuels, 

2011, Ferrell and Sarisky-Reed, 2010). Both phosphate and nitrogen are found 

in municipal wastewater at typical concentrations of 30-40 mg l
-1

 N and 5-10 

mg l
-1

 P (Williams and Laurens, 2010). Chlorella and Scenedesmus have both 

been found to grow in a wide range of wastewaters, often with sub-optimal 

ratios of N and P, with ‘complete decomposition’ of nitrogen and phosphate 

nutrients in 10 days (Ahrens and Sander, 2010). In what was termed a "realistic 

technology and engineering assessment of algae biofuel" it was found that 

there could be no favourable outcome for algal biofuel production unless 

wastewater treatment was the primary goal of the process (Lundquist et al., 

2010). A mass balance for the EU FP7 All-Gas project has not only shown that 

sufficient N & P can be provided for micro-algal growth by wastewater, but also 

that with recycling valuable N & P can be exported from the system for other 

fertiliser uses (Banks, 2011, Banks et al., 2011a). 

 

Beal (2011) stated that; "it does matter how much energy you produce per acre 

if it requires more water than is available". It will be vital to minimise 

freshwater use in micro-algal biofuel production not only to minimise cost, but 

to avoid future ‘water versus fuel’ debates (Hannon et al., 2010). Recycling can 

reduce water usage for micro-algal biofuel production by 84 % (Yang et al., 
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2011b). One of the main advantages of micro-algae for biofuel production is 

their ability to grow in water ‘unsuitable’ for land crops (Ferrell and Sarisky-

Reed, 2010). The use of wastewater or sea water for micro-algal biofuel 

production can reduce the freshwater demand by 90 % (Gouveia, 2011). 

Freshwater is required to compensate for water loss and avoid salt build-up 

due to evaporation (Yang et al., 2011b). 

 

Algae also have a requirement for other nutrients in small quantities. Twenty 

six of twenty seven micro-algae were found to require vitamin B
12

 for growth 

which can be produce by bacteria (Kazamia et al., 2012). Wastewater and 

seawater together with the bacteria found in them could provide the essential 

micronutrients, minerals and vitamins required. 

 

The supply and reuse of materials for micro-algal growth will have significant 

influence on the economics, energy balance and sustainability of micro-algal 

biofuel systems. For micro-algal biofuel to be successful it will need low cost 

and sustainable sources of water and nutrients, and both will need to be 

recycled. Wastewater could supply both nutrients and water. Seawater or 

brackish water can provide not only a useable water source, but also some 

nutrients and could be used in combination with nutrients from wastewater or 

low cost digestate from other organic wastes. 

 

The research will focus on operational energy inputs and technology of unit 

operations of micro-algal biofuel production systems, with embodied energy 

inputs in terms water and nutrients minimised; by recycling, using methods 

such as anaerobic digestion that allow return of nutrients and water to the 

growth system; and by the use of low embedded energy sources of water and 

nutrients, such as wastewater.  

 Carbon dioxide 2.2.7.2

 

Carbon dioxide is needed for the autotrophic growth of micro-algae. To 

maximise algal growth CO
2 

should be supplied in addition to that available via 

atmospheric transfer (Section 2.2.4). The manufacture and supply of pure CO
2

 

for algal biofuel production is not viable energetically or economically 

(Aquafuels, 2011, Beer et al., 2007, Campbell et al., 2009). Most studies have 
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generally considered flue gas from fuel combustion as the main source of CO
2

 

(Aquafuels, 2011, McGinn et al., 2011). 

 

Flue gases from power plants account for over 7 % of the world’s CO
2

 

emissions (Gouveia et al., 2010). They could be available at little or no cost and 

it has been suggested that micro-algae grown on CO
2

 from flue gas should be 

eligible for financial support as a GHG mitigation technology (Parliamentary 

Office of Science & Technology, 2010). However the EU and UN do not 

currently considered the use of fossil fuel flue gas for the production of micro-

algal biofuel eligible for financial support from climate change reduction 

funding, as the CO
2

 taken up by the micro-algae is released back into the 

atmosphere when the biofuel is burnt (Parliamentary Office of Science & 

Technology, 2011). Power plants also normally produce CO
2 

24 hours per day, 

but algae will only consume it during daylight, and are therefore unable to 

mitigate night-time CO
2

 emissions without flue gas storage, which is probably 

prohibitively expensive. 

 

The use of fossil fuel generated flue gas for the production of algae may not be 

considered sustainable, but use of flue gas from biomass or biofuel 

combustion, as in the EU FP7 All-Gas project (Banks et al., 2011a) could be 

sustainable. Although flue gas purchase costs are zero, or low, the costs of gas 

transport are not ‘trivial’ (Brune et al., 2009). Algal raceways should be located 

near to the source of flue gas allowing the use of a low pressure blower. If the 

transport distance increases a high pressure compressor will be required, 

increasing energy costs by an order of magnitude (Kadam, 2002).  

 

Flue gas typically has a CO
2

 content of
 

6 to 13 % (Brune et al., 2009, Douskova 

et al., 2009) with concentrations from gas-fired stations typically lower, at 7.4 

to 7.7%, than from coal-powered stations at 12.5 to 12.8 % (Xu et al., 2003). In 

addition to CO
2

 flue gas will contain nitrogen, water vapour and oxygen 

together with smaller amounts of potentially toxic gases: carbon monoxide, at 

50 to 300 ppm; mono-nitrogen oxides (NO
x

), at 60 to 420 ppm; and sulphur 

oxides (SO
x

), up to 420 ppm (Xu et al., 2003). The emission of flue gases, 

which are low in oxygen and contain CO, NO
x

 and SO
x

, at ground level could 

have Health and Safety implications, but 70 -80 % of the CO
2

, NO
x

 and SO
x

 is 
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readily removed from the flue gas by sparging the gas into a raceway pond 

(Downey, 2012), greatly reducing the potential hazard. 

 

Flue gases have been found to have no negative effect on the growth of micro-

algae (Aravanis, 2012, Laws and Berning, 1991) and growth rates for Chlorella 

were shown to be higher on flue gases with a CO
2 

content of 11-13 % than air 

enriched to 12 % CO
2 

(Douskova et al., 2009). NO
x

 in flue gases has been found 

to have little negative effect on micro- algae and can also provide a nitrogen 

source (Sheehan et al., 1998). In a study by MIT micro-algae were been found 

to be able to utilise not only the carbon dioxide from boiler emissions, but also 

85 % of NO
x 

(Envirotech, 2004), potentially reducing nitrogen fertiliser demand. 

 

Low cost carbon input appears to be vital for micro-algal growth, and flue gas 

could provide a source. The use of fossil fuel flue gas for micro-algal biomass 

production, although unsustainable, may be a valuable GHG mitigation 

strategy, as CO
2

 is used in a second fuel before being released to the 

atmosphere, but it is eventually released and not sequestered. The use of flue 

gas from biomass could be sustainable. The current research will therefore 

focus on the use of flue gas as a carbon source that is assumed to have no 

embodied energy. Energy inputs for CO
2 

supply can be reduced to those 

required to transport gas to the gaseous transfer sump. 

 Algal harvesting 2.3

Algal biomass can be ‘energy rich’, but the growth of algae in dilute 

suspension at around 0.02 to 0.05 % dry solids (Zamalloa et al., 2011) poses 

considerable challenges in achieving a viable energy balance from the process 

operations needed for biofuel production. The challenges of algae harvesting 

come from the small size of micro-algal cells, as most algae are below 30 µm 

(Molina Grima et al., 2003); the similarity of density of the algal cells to the 

growth medium (Reynolds, 1984); the negative surface charge on the algae 

that results in dispersed stable algal suspensions, especially during the growth 

phase (Edzwald, 1993, Moraine et al., 1979, Packer, 2009); and the algal 

growth rates which require frequent harvesting compared to terrestrial plants. 
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The cost effective harvesting of micro-algae is considered to be the most 

problematic area of algal biofuel production (Greenwell et al., 2010) and a key 

factor limiting the commercial use of micro-algae (Olguín, 2003). It has been 

suggested that 20 to 30 % of the costs of micro-algal biomass is due to the 

costs of harvesting (Mata et al., 2010, Molina Grima et al., 2003, Verma et al., 

2010), but estimates as high as 50 % of micro-algal biomass cost have been 

given (Greenwell et al., 2010). It has been estimated that 90 % of the 

equipment cost for algal biomass production in open systems may come from 

harvesting and dewatering (the removal of water from the micro-algal biomass 

by mechanical methods, such as centrifugation or filtration) (Amer et al., 2011). 

The need for continuous harvesting of the dilute suspension makes the 

harvesting of micro-algae 'inherently more expensive' than harvesting land 

plants (Benemann et al., 1977), and the separation of micro-algae by 

settlement and centrifugation has a typical harvesting energy requirement of 

1 MJ kg
-1

 of dry biomass (Sawayama et al., 1999). This is greater than the 

energy cost of harvesting wood at 0.7 – 0.9 MJ kg
-1 

(Sawayama et al., 1999). 

The cost of harvesting micro-algae, in both energy and economic terms, 

therefore needs to be reduced. A recent report by UK's Biotechnology and 

Biological Sciences Research Council (BBSRC) on algal research has concluded 

that: "hardly any commercial activity exists in downstream processing" 

(Schlarb-Ridley, 2011). Most work on micro-algal species selection for biofuel 

production has been focused on yield and composition rather than on ease of 

recovery (Brennan and Owende, 2010). 

 

The final moisture content of the harvested algal biomass is an important 

criterion in the selection of the harvesting method (Molina Grima et al., 2003). 

Micro-algal biomass can spoil in hours if the moisture content is greater than 

85 % (Mata et al., 2010), while high moisture content can have a substantial 

influence on the costs and methods of further processing (Molina Grima et al., 

2003) and energy extraction from the biomass. 

 

Algae can be harvested by a number of methods: sedimentation, flocculation, 

flotation, centrifugation and filtration or a combination of any of these. Despite 

the importance of harvesting to the economic and energy balance viability of 

micro-algal biofuel, there is no universal harvesting method for micro-algae 

(Mata et al., 2010, Shen et al., 2009). A recent extensive review of dewatering 
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micro-algal cultures concluded that "currently there is no superior method of 

harvesting and dewatering" (Uduman et al., 2010). A summary of advantages 

and disadvantages of the various methods to harvest micro-algae is given in 

Table 5 (Milledge and Heaven, 2011) 

 

Table 5 Comparison of micro-algal harvesting methods (Mohn, 1988, Molina 

Grima et al., 2003, Shen et al., 2009) 

 Advantages Disadvantages Total solids 

output 

concentration 

Centrifugation Can handle most algal 

types with rapid 

efficient cell 

harvesting. 

High capital and 

operational costs. 

10-22 % 

Filtration Wide variety of filter 

and membrane types 

available. 

Highly dependent on 

algal species, best 

suited to large algal 

cells. Clogging and 

fouling an issue. 

2-27 % 

Ultrafiltration Can handle delicate 

cells. 

High capital and 

operational costs 

1.5-4 % 

Sedimentation Low cost.  

Potential for use as a 

first stage to reduce 

energy input and cost 

of subsequent stages. 

Algal species specific, 

best suited to dense 

non-motile cells. 

Separation can be slow. 

Low final concentration 

0.5-3 % 

Chemical 

flocculation 

Wide range of 

flocculants available, 

price varies, although 

can be low cost. 

Removal of flocculants 

and chemical 

contamination  

  

3-8 %  

Flotation Can be more rapid 

than sedimentation. 

Possibility to combine 

with gaseous transfer. 

Algal species specific. 

High capital and 

operational cost. 

>7% 

 

 Sedimentation 2.3.1
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In sedimentation gravitational forces cause liquid or solid particles to separate 

from a liquid of different density, but the process can be extremely slow 

especially if density difference or particle size is small. Sedimentation can be 

described by Stokes’ Law which assumes that sedimentation velocity is 

proportional to the square of the (Stokes’) radius of the cells and the difference 

in density between the micro-algal cells and the medium as shown below: 

 

Equation 11 

                    
 

 
  
  
 

 
(      ) 

 

 

where r
c

 is cell radius, µ is fluid dynamic viscosity and ρ
s 

and ρ
l

 are the solid 

and liquid densities. 

 

The cytoplasm of marine micro-algae has a density between 1030 and 1100 kg 

m
-3 

(Smayda, 1970), the density of cyanobacteria is between 1082 and 1104 kg 

m
-3

 (Kromkamp and Walsby, 1990), marine diatom and dinoflagellates between 

1030 and 1230 kg m
-3

 and the freshwater green micro-algae (Chlorococcum) 

between 1040 and 1140 kg m
-3

 (Van Lerland and Peperzak, 1984). The density 

of micro-algae is thus close to that of water and of salt water (998 and 1024 kg 

m
-3

 at 20° C respectively) (El-Dessouky and Ettouney, 2002, Kestin et al., 1978, 

Millero and Lepple, 1973) and therefore there is little density difference driving 

micro-algal settlement. 

 

Stokes’ law holds for spheroid shapes, but micro-algae are most often not 

spherical having a diverse range of shapes (Peperzak et al., 2003, Smayda, 

1970, Sournia, 1978). The observed sinking rates of micro-algae have been 

found to deviate from calculated rates, being up to several times higher or 

lower than the calculated rate (Reynolds, 1984, Smayda, 1970). The settling 

velocity is very dependent upon the type of micro-algae present, but average 

settling velocities of 0.2 m day
-1

 for diatoms, 0.1 m day
-1

 for green micro-algae 

and 0.0-0.05 m day
-1

 for cyanobacteria have been suggested for water quality 

models (Cole and Wells, 1995). 
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A settlement velocity of 0.1 m day
-1

 was calculated using Stokes’ Law (Equation 

11) for a common spherical shaped micro-algae, Chlorella (density 1070 kg m
-3

 

and average cell diameter 5 µm (Edzwald, 1993)), in freshwater (density at 20°C 

998 kg m
-3

 and viscosity 1 x 10
-3 

Pa s
-1

 (Weast, 1985)). An experimental study 

found a considerably higher settling rate of 3.6 m day
-1 

(Collet et al., 2011), but 

in practice Chlorella does not normally settle readily (Nurdogan and Oswald, 

1996). The calculated settlement velocity of Cyclotella, a similar sized alga to 

Chlorella, is 0.04 m day
-1

, but the observed settlement rate was higher at 

0.16 m day
-1

 (Smayda, 1970).  

 

A study of the sinking rate of 24 autotrophic micro-algae (ranging in size from 

under 10 to 1000 µm) gave rates between -0.4 to over 2.2 m day
-1 

with an 

average of 0.6 m day
-1

. No correlation was found between size and sinking rate 

and no relationship was found between cell size and sinking rates for diatoms 

(Peperzak et al., 2003). In a study of 20 micro-algae only four always settled 

readily, although 14 settled out occasionally (Peperzak et al., 2003). In another 

study of 30 species of micro-algae, found in wastewater, most were ‘reluctant’ 

to settle, with needle like or long cylindrical micro-algae being particularly 

resistant to settling (Choi et al., 2006). Filamentous algae (Spirulina) and 

colonial algae (Micractinium, Scenedesmus) with a cluster diameter of ~60 µm 

have been shown to be harvestable by settlement, but smaller algae (Chlorella) 

and motile micro-algae (Euglena, Chlorogonium) do not readily settle out of 

suspension (Nurdogan and Oswald, 1996). Dinoflagellates have been found to 

be able to swim at speeds of up to 0.03 m min
-1

 (Smayda, 1970) and many 

species of micro-algae have been shown to move upwards towards light 

(Kromkamp and Walsby, 1990, Smayda, 1970, Sournia, 1978). 

 

Settlement behaviour of micro-algae varies between species, but can also alter 

within the same species. Settlements rates have been shown to vary with light 

intensity (Waite et al., 1992), nutrient deficiency has been shown to decrease 

settlement rate (Bienfang, 1981) and sinking rate increases in older cells, 

especially in senescent cells (non-dividing cells between maturity and death) 

(Smayda, 1970) and spore-producing cells (Bienfang, 1981). The average 

density of carbohydrate is 1500 kg m
-3

, protein 1300 kg m
-3

 and lipid 

860 kg m
-3

 (Reynolds, 1984), and micro-algae with a high lipid content are 

likely to settle less readily due to the lower density.  
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Sedimentation has not been widely used for separation of micro-algae (Uduman 

et al., 2010) and although settling has been demonstrated in pilot-scale 

wastewater treatment systems (Lundquist et al., 2010), it has not yet been 

achieved on a large scale. The sinking rate of small micro-algae 4-5 µm in the 

open ocean is 'insignificantly small' (Waite et al., 1992). A study of harvesting 

Chlorella by settlement found that only 30-35 % of the cells could be harvested 

and that concentration of the harvested algae was low, only 50 % higher than in 

the unsettled micro-algal suspension (Janelt et al., 1997). It was concluded that 

settlement may only be viable for micro-algal species with a high settlement 

rate such as Spirulina (Janelt et al., 1997). 

 

Cell recovery and solid concentrations from micro-algal settlement are low 

(Mata et al., 2010, Shen et al., 2009) with cell recoveries of 60 to 65 % (Collet 

et al., 2011, Ras et al., 2011) and solid concentrations of up to 1.5 % total 

suspended solids (Uduman et al., 2010). Energy consumption of harvesting by 

settlement is generally low, with a lamella separators using 0.1 kWh m
-3

 to 

achieve an output concentration of 0.1 to 1.5 % dry micro-algal biomass 

(Uduman et al., 2010, Van den Hende et al., 2011).  

 

Settlers have a simple construction, can be scaled up and have relatively low 

investment and operating expenses (Janelt et al., 1997). Many algal species do 

not readily settle and for those that do recovery rates and harvested 

concentrations are low, as already noted: but the settlement of colonial and 

larger micro-algae could be useful as a low energy input pre-concentration step 

for use with other harvesting techniques. 

 Flocculation 2.3.2

 

In flocculation dispersed micro-algal cells aggregate into larger clumps of cells, 

or flocs, with a higher sedimentation rate (Daintith and Martin, 2010, Gouveia, 

2011, Knuckey et al., 2006). Flocculation can occur naturally in certain micro-

algae, in a process known as auto-flocculation, and micro-algae may flocculate 

in response to environmental stress; changes in nitrogen, pH and dissolved 

oxygen (DO) (Schenk et al., 2008, Uduman et al., 2010). Auto-flocculation does 

not occur in all micro-algal species and can be slow and unreliable (Schenk et 
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al., 2008). Flocculation can be induced by chemicals, both inorganic and 

organic, or by microorganisms; but flocculants may be species-specific and 

recovery and recycling of the flocculants can be problematic (Mohn, 1988, 

Molina Grima et al., 2003, Oswald, 1988, Shen et al., 2009). The shape, size 

and composition of flocs can be very diverse depending on micro-algal species 

and flocculant (Jago et al., 2007). An ideal flocculant should be inexpensive, 

non-toxic and effective in low concentrations (Molina Grima et al., 2003) and it 

should also preferably be derived from non-fossil fuel sources, be sustainable 

and renewable. 

 

Flocculation has been suggested as a superior method to separate algae as it 

can handle large quantities of micro-algal suspension and a wide range of 

micro-algae (Uduman et al., 2010). Although flocculation can be a reliable and 

cost-effective method it is still ‘quite expensive’ (Benemann et al., 1980) and is 

normally used in conjunction with other harvesting methods (Brennan and 

Owende, 2010). 

 Non-organic flocculants 2.3.2.1

 

Lime (calcium hydroxide) has been used to remove suspended solids and 

micro-algae from wastewater since the 1920s (Oswald, 1988). Multi-valent 

metal salts, ferric chloride, ferric sulphate, and aluminium chloride (alum) are 

commonly used in water and wastewater treatment to remove algae, and alum 

has been found effective in flocculating both Chlorella and Scenedesmus 

(Molina Grima et al., 2003). Aluminium salts have been found more effective in 

the flocculation of Chlorella than ferric salts (Papazi et al., 2010). Ferric salts 

have also been found to be inferior to alum in the flocculation of micro-algae in 

respect of optimal dose, pH and the quality of the resultant water and slurry 

(Shelef et al., 1984a).  

 

Cyclotella, a diatom with a density of 1114 kg m
-3

 and an average diameter 

6 µm, does not settle rapidly and a floc of cells, at the same density, would 

need to be 88 µm in diameter to settle in a conventional settler (Edzwald, 

1993). Alum flocculated Cyclotella has a lower density of 1001 kg m
-3

, however, 

and the floc particle diameter would need to be 210 µm for settlement at 20 °C 

(Edzwald, 1993). Alum flocs typically range in diameter from 30 to 400 µm 
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(Hendricks, 2010), but despite this increased diameter of alum flocculated cells 

the low density of the floc can result in a slow rate of sedimentation (Edzwald, 

1993).  

 

Dosages of non-organic flocculants can be high at 1 g l
-1 

(Papazi et al., 2010) 

and although aluminium sulphate flocculated micro-algae have been used for 

aquaculture feed inorganic flocculants can be toxic (Harith et al., 2009). 

Inorganic flocculants can also have negative effects on micro-algal viability and 

can colour and modify micro-algal growth media, preventing recycling and 

reuse (Molina Grima et al., 2003, Papazi et al., 2010, Schenk et al., 2008). 

Although alum and other inorganic flocculants are relatively cheap compared 

to some synthetic organic flocculants, the higher dosage rates required can 

result in a higher cost per unit of micro-algae flocculated than more expensive 

organic flocculants (Mohn, 1988). It would appear that there is a need for 

alternatives to the traditional inorganic salt flocculants which are lower dose, 

less toxic and do not have adverse effects on growth medium recycling after 

flocculation. 

 Organic flocculants 2.3.2.2

 

Up to the late 1970s no polyelectrolyte flocculant effective for micro-algal 

effluent was available (Moraine et al., 1979), but effective polyelectrolytes were 

later found (Shelef et al., 1984a). Cationic polyelectrolytes are now considered 

as the most effective flocculants for recovery of micro-algae (Uduman et al., 

2010). Recent research at the University of Almeria has found cationic 

polyelectrolytes more effective at flocculating freshwater micro-algae than 

metal salts, achieving high biomass concentration (concentration factor up to 

35 times) at lower dosage rates of 2 to 25 mg l
-1

 (Granados et al., 2012). 

 

Magnafloc LT25, a non-ionic polymer from BASF, has been found effective in 

flocculating a wide range of micro-algae at an addition rate of 0.5 mg l
-1

 of 

algal suspension in conjunction with pH adjustment to 10-10.6, with micro-

algal concentrations in the settled floc 200-800 times higher than in the 

original suspension (Knuckey et al., 2006). Magnafloc LT25 has also been 

found effective in flocculating Chaetoceros at a dosage of less than 1mg l
-1

 

while maintaining high micro-algal cell viability (over 75 %) (Harith et al., 2009). 
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Magnafloc 1957, a low molecular weight cationic resin was found to be as 

effective as ferric chloride in dewatering of sludge in post Auto-thermal 

Thermophilic Aerated Digestion (ATAD) and Magnafloc 1957 replaced ferric 

chloride due to lower health safety risk at no additional operating cost at a 

water reclamation plant in Bendigo, Australia (Elliott, 2006). Praestol, a cationic 

organic flocculant based on polyacrylamide, has been found to be effective at 

dosages of 1mg l
-1

 in flocculating both Teraselmis and Spirulina with 70 % 

recovery of biomass and no inhibitory effect on the micro-algal growth in the 

recycled growth medium after flocculation (Pushparaj et al., 1993). 

 

Flocculants derived from renewable plant and animal materials could have 

environmental advantages over both inorganic flocculants and polyelectrolyte 

flocculants derived from fossil fuel. Chitosan, a cationic inorganic polymer 

derived from crustacean shells, has been used in the treatment of wastewater 

from the food industry (Harith et al., 2009). Chitosan has been shown to be 

effective on a wide range of freshwater micro-algae, but dosages are 

considerably higher than with synthetic organic flocculants at 20 to 150 mg l
-1

 

(Harith et al., 2009, Molina Grima et al., 2003). Recent research at the 

University of Almeria has shown that chitosan was not efficient in producing 

flocs from Muriellopsis, with low biomass recovery and biomass concentrations, 

while requiring significantly higher dosage than synthetic polyelectrolytes 

(Granados et al., 2012). No efficient flocculation was observed using only 

chitosan for Phaeodactylum, but 'satisfactory' flocculation results were 

obtained using chitosan at a dosage of 20 mg l
-1

 if the pH was increased to 9.9 

(Şirin et al., 2012). Although chitosan is considered non-toxic (Vandamme et 

al., 2010), there have been reports of reduced survival of oyster larvae fed 

chitosan flocculated micro-algae (Molina Grima et al., 2003). The costs of 

chitosan and the higher dosages compared to synthetic polyelectrolytes would 

appear to make it uneconomic for harvesting of micro-algae for biofuel 

production (Mohn, 1988, Vandamme et al., 2010).  

 

Starch and modified starch can settle micro-algae (Mohn, 1988). Cationic 

starch is increasingly being used as an alternative to inorganic and synthetic 

organic flocculants in the wastewater and paper mill industries and has been 

found to flocculate Scenedesmus and Parachlorella, but at higher dosages than 

chitosan and with a large degree of variation between effectiveness of the 
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cationic starches tested (Vandamme et al., 2010). Starch and modified starches 

do not appear to affect the viability of micro-algae and have been used in the 

treatment of drinking water (Vandamme et al., 2010). Modified starches could 

be more cost-effective than both inorganic and synthetic organic flocculants 

(Mohn, 1988, Vandamme et al., 2010), but current cationic starches are not 

specifically designed for micro-algae and their modification to improve micro-

algal performance could dramatically increase costs (Vandamme et al., 2010). 

 

The majority of research work on flocculation has been on freshwater algae 

(Uduman et al., 2010). Although many species of freshwater micro-algae can 

be successfully flocculated using organic cationic polymers, salinity levels 

above 5 g l
-1

 have been shown to inhibit flocculation (Knuckey et al., 2006, 

Molina Grima et al., 2003), while sea water typically has a salinity of ~35 g l
-1 

(Millero and Lepple, 1973, Speight, 2005). At high ionic strengths it is believed 

that polyelectrolytes tend to fold tightly and are unable to bridge between 

micro-algal cells to form a floc (Molina Grima et al., 2003). In marine systems 

the use of polyelectrolytes in conjunction with inorganic flocculants, ferric salts, 

alum and lime has been found to be effective (Knuckey et al., 2006, Sukenik et 

al., 1988), but the dosage of flocculants to flocculate marine micro-algae has 

been found to be 5 to 10 times higher than that for freshwater micro-algae 

(Knuckey et al., 2006, Uduman et al., 2010). The flocculant dosage required for 

the removal of 90 % of micro-algae from suspension has been found to 

increase linearly with salinity as expressed in ionic strength (Shelef et al., 

1984b, Sukenik et al., 1988). A very high total energy usage, 14.8 kWh m
-3

, has 

been reported for a suspension of Tetraselmis, a marine micro-alga, using a 

synthetic cationic polyelectrolyte polymer; a greater energy use per cubic 

metre than centrifugation or filtration (Danquah et al., 2009) 

 Flocculation by pH and environment modification 2.3.2.3

 

Flocculation of some micro-algae can be achieved by adjustment of pH (Molina 

Grima et al., 2003, Shelef et al., 1984a). Increasing pH to 11-12 has been 

shown to induce flocculation in Chlorella (Ras et al., 2011), but 

Chlamydomonas did not flocculate readily with the addition of alkali 

(Schlesinger et al., 2012). Extreme pH may cause micro-algal damage and 

death and could be unreliable and uneconomic on a commercial scale 
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(Benemann and Oswald, 1996, Lee et al., 2009). The amount of alkali required 

to cause flocculation of micro-algae can be lower than those normally found in 

high density micro-algae suspensions, greater than normally found in micro-

algal growth. This may make alkaline flocculation economically viable 

(Schlesinger et al., 2012), but a low energy pre-concentration settlement 

technology is required before flocculation, adding extra complexity and cost. It 

is possible that flocculation could be achieved through other forms of 

environmental modification, such as nitrogen limitation; however the exact 

mechanisms behind environmental modification induced flocculation have not 

yet been fully investigated and more research is needed in this area (Park et al., 

2011). As with extreme pH, flocculation induced by environmental 

modification may cause micro-algal damage and death and could be unreliable 

and uneconomic on a commercial scale (Benemann and Oswald, 1996, Lee et 

al., 2009). 

 Bio-flocculation 2.3.2.4

  

Bio-flocculant can be produced by bacteria and can cause the flocculation of 

micro-algae (Shelef et al., 1984a). Bio-flocculants produced from bacteria have 

been shown to be effective in the flocculation of Chlorella (Molina Grima et al., 

2003). Bacteria have also been found able to flocculate Pleurochrysis carterae, 

but a relatively high organic carbon content in the growth medium (0.01 %) is 

required to grow the bacteria to flocculate the micro-algae; approximately 20 % 

of the carbon content in the growth media from the micro-algae (0.05 %) (Lee 

et al., 2009). Bacteria can make up to 30 % of the biomass in the photic zone 

of open waters (Sournia, 1978), and a large proportion of the mixed micro-

algal biomass grown in wastewater. Many micro-algal species dominant in 

wastewater treatment HRAPs often form large colonies (Park et al., 2011). 

Effective separation of algae by sedimentation due to their incorporation into 

biomass flocs has been demonstrated in symbiotic algal-bacterial wastewater 

treatment (Medina and Neis, 2007). The use of bacteria grown on waste or 

wastewater could hold the possibility of a low fossil fuel input method of 

separating micro-algae, especially if the energy within the bacterial biomass 

could be recovered with that of the micro-algae. Micro-algal bacterial floc from 

the secondary treatment of sewage supplemented by flue gas from a coal 

power plant has recently been shown to settle readily, removing 97.5 % of the 
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biomass from the growth medium within 30 minutes and producing a 

sediment of 2 % bacterial/micro-algal dry biomass (Van den Hende et al., 2011). 

 Alternative methods of flocculation 2.3.2.5

 

Electro-coagulation-flocculation using sacrificial aluminium or iron anodes has 

been shown to be effective at a 1-litre bench scale in the flocculation of 

Chlorella and Phaeodactylum, with aluminium anodes being superior to iron 

(Vandamme et al., 2011). Power consumption was favourable in comparison to 

centrifugation, at between 0.3 and 2 kWh kg
-1

 with the lowest energy 

consumption in salt water, suggesting that electro-coagulation may be a 

"particularly attractive method for harvesting of marine micro-algae" 

(Vandamme et al., 2011). Aluminium concentration in the micro-algal biomass 

and growth medium for recycling was lower than with the use of alum. 

Although electro-coagulation-flocculation may be a promising technology there 

are concerns about increased power consumption in scale-up as the distance 

between electrodes greatly influences power consumption (Vandamme et al., 

2011). 

 

In electrolytic flocculation non-sacrificial anodes are used and negatively 

charged algae move towards the anode where the negative charge is lost 

enabling flocs to be formed (Poelman et al., 1997). This has the advantage that 

flocculants are not always required, but the electrodes are prone to fouling 

(Uduman et al., 2010). Electrolytic flocculation has been shown to be effective 

at a bench scale, removing 95 % of the original micro-algae in suspension with 

an energy consumption of 0.3 kWh m
-3

 (Poelman et al., 1997). Ultrasound has 

also been found to flocculate algae, but concentration factors are lower than 

for other methods with a maximum increase of twenty times the feed 

concentration (Bosma et al., 2003). Electro-coagulation-flocculation, electrolytic 

flocculation and ultrasonic flocculation have been shown to flocculate micro-

algae, but there are disadvantages with each method and none yet appears to 

have been demonstrated on a commercial scale. 

 

Another method that could be considered for increasing of the particle size to 

be harvested is the use of micro-algal predators. Larger predators could 

consume micro-algae and be more easily harvested than the micro-algae. The 
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conversion of plant biomass to animal biomass is inefficient, however, due to 

energy losses from respiration and other metabolic processes, and it appears 

unlikely that this method will be a viable commercial option for micro-algal 

biofuel. 

 

A wide range of flocculants are available, but there is currently no single 

flocculant or flocculation method suitable for all types of micro-algae, and the 

flocculation of marine micro-algae on an industrial scale has yet to be 

satisfactorily resolved. Sedimentation and flocculation appeared to offer 

potentially the lowest energy input.  

 Flotation 2.3.3

 

Flotation of micro-algae can be promoted by addition of air bubbles (Singh et 

al., 2011). Flotation processes are classified according to the method of bubble 

production: dissolved air flotation, electrolytic flotation and dispersed air 

flotation (Shelef et al., 1984a). 

 

Flotation can be a relatively fast technique for the harvesting of micro-algae 

compared to sedimentation for a number of micro-algal species (Edzwald, 

1993, Oswald, 1988, Singh et al., 2011). The addition of flocculants is required 

in most cases for flotation to be effective (Edzwald, 1993, Mohn, 1988). 

Flocculation and froth flotation has been found to be effective in the removal 

of micro-algae from wastewater using fine air bubbles (no dimensions given) 

generated by a sparger with gas pressure of 3-atmospheres (Moraine et al., 

1979). Flocculation flotation was found to be superior to sedimentation for the 

separation of a marine micro-alga, Isochrysis galbana, but only when large 

strong flocs were formed by the addition of a combination of organic and 

inorganic polymers (Shelef et al., 1984b). The reduced density of micro-algal 

flocs compared to micro-algal cells could favour flotation over sedimentation 

as a method of separation. The concentration of micro-algae in the separated 

suspension from flotation separation (7 %) is generally higher than micro-algal 

suspensions from sedimentation (Mohn, 1988, Oswald, 1988). 

 

Dissolved air flotation (DAF) is a process where small bubbles are generated, 

with a mean size of 40 µm and ranging from 10 to 100 µm (Edzwald, 1993). 
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Most wastewater treatment lagoons in the USA do not harvest algae, but at 

plants that do, chemical coagulation followed by dissolved air flotation (DAF) is 

the most common method; the micro-algae removal is for purification of 

effluent, however, rather than for micro-algal biomass production (Christenson 

and Sims, 2011). DAF has been found to be effective for harvesting of micro-

algae grown on pig slurry, but a high dosage of alum (0.3 g l
-1

) was required 

(Goh, 1984). Unfortunately DAF although an efficient flotation option, is energy 

intensive due to the high pressure required (Hanotu et al., 2012). 

 

Electro-flotation has been found to be effective at a bench scale on a range of 

micro-algae, but as with DAF it is energy intensive (Shelef et al., 1984a) and 

not the 'best choice for micro-algal recovery' (Uduman et al., 2010). Oswald 

(1988) suggested that it could be more useful in salt rather than fresh water. 

OriginOil developed a process called Quantum Fracturing™, in which pulsed 

electromagnetic fields and pH modification fracture the micro-algal cells with 

lipid floating to the surface and the remaining micro-algal biomass settling out 

(Gouveia, 2011), but there appears to be little independent published 

information on energy consumption. 

 

Micro-bubble generation by fluidic oscillation is a technique for generating 

small bubbles using less energy than traditional methods, developed at the 

University of Sheffield (Zimmerman et al., 2009). Micro-bubbles generated by 

fluidic oscillation have recently been shown to be effective in the recovery of 

algal biomass from growth medium (Hanotu et al., 2012). Considerably more 

research is required, however, to establish whether an energy-efficient large-

scale fluidic oscillation micro-bubble method for micro-algae harvesting is 

practicable.  

 

Flotation can have high investment and operational costs and high energy 

usage (Mohn, 1988) especially if small bubbles are required. It has been 

suggested that the cost of flotation can be as great or greater than 

centrifugation when the cost of flocculants are included (Mohn, 1988) and a 

recent review concluded that there is little evidence of the technical or 

economic feasibility of flotation (Brennan and Owende, 2010). 
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 Filtration 2.3.4

 

There is a wide a variety of filter designs, but membrane filters can be simply 

classified by pore or membrane size: macro-filtration >10 µm, micro-filtration 

0.1 to 10 µm, ultra-filtration 0.02 to 0.2 µm and reverse osmosis <0.001µm. 

The pressure to force fluid through a membrane, and therefore the operational 

energy required, generally increases with reducing membrane pore size. Micro-

algae are typically between 2 and 30 µm (Brennan and Owende, 2010, Edzwald, 

1993, Molina Grima et al., 2003). Filtration of Isochrysis galbana has shown 

that a pore size of less than 1.5 µm is required to remove 'most' marine micro-

algal cells from suspension, but on flocculation a pore size of 25 µm was 

found to be effective (Shelef et al., 1984b). Micro-filtration would appear to be 

the most appropriate filtration method for the majority of common species 

while macro filtration is the most appropriate for flocculated cells and larger 

cells. 

 Micro-filtration 2.3.4.1

 

Micro-filtration has been used for the recovery of micro-algal cells for 

aquaculture, but membrane filtration has not been widely used for producing 

micro-algal biomass on a large scale and could be less economic than 

centrifugation at commercial scale (Molina Grima et al., 2003).  

 Ultra-filtration 2.3.4.2

 

Ultra-filtration is a possible alternative for the recovery of very fragile cells, but 

has not been generally used for micro-algae (Mata et al., 2010, Molina Grima et 

al., 2003). Operating costs are high and maintenance costs very high (Mata et 

al., 2010, Purchas, 1981). It has been suggested that ultra-filtration of micro-

algae will develop in a similar way to reverse osmosis for the desalination of 

sea water, and that the energy input of an optimised micro-algal ultrafiltration 

plant could be 3 kWh m
-3

, equivalent to the lowest current energy usage in 

reverse osmosis desalination (Gouveia, 2011). Extracellular organic matter, 

however, can lead to rapid clogging of ultrafiltration membranes in the 

filtration of Spirulina (Rossi et al., 2004). An ultrafiltration membrane with 

0.03 µm pore size has been used to harvest micro-algae grown on carbon 

dioxide emissions from a semi-conductor manufacturing plant (Avanti 
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Membrane Technology, Inc. private communication, 2012). Average permeate 

flux was 70 l m
-2 

hour
-1

, but although 95 % of the micro-algae were recovered 

the concentration factor was only 20 and additional means of concentration 

are required for further processing. Energy consumption is believed to range 

between 1 to 3 kWh m
-3

 (Avanti Membrane Technology, Inc. private 

communication, 2012).  

 Macro-filtration 2.3.4.3

 

A wide range of macro-filtration units are available and have been used for 

water treatment. Many types have been used to harvest algae and found 

satisfactory at recovering relatively large algal cells (Molina Grima et al., 2003), 

but they can be hampered by low throughput and rapid clogging (Mohn, 1988, 

Oswald, 1988). 

 

Vibrating screens were able to separate Coelastrum and Spirulina, although 

not considered to be the optimum method for Spirulina (Mohn, 1988). The 

energy cost to produce 6 % dry weight of micro-algae has been estimated at 

0.4 kWh m
-3

 (Van den Hende et al., 2011). 

 

Filter presses are an assembly of perforated, filter plates alternating with 

hollow frames which are compressed in a framework to form a series of filter 

chambers with filtered liquid (filtrate) passing through the filter medium on the 

filter plates and solids being retain in the filter press. They have found wide 

application in industry due to the simple design, flexibility and capability to 

handle a wide range of slurries, and have been used to reduce the number of 

bacteria and yeast in wine (Brennan et al., 1969, Richardson et al., 2002). 

Although the equipment is relatively cheap, labour costs can be high and cake 

washing is not always effective (Brennan et al., 1969, Richardson et al., 2002). 

A modified filter press with plastic diaphragms that inflate to remove the 

micro-algae from the filter membrane has been found to be effective in the 

filtration of Scenedesmus, but capital costs were approximately one third 

higher than conventional filter presses and pre-coating of the membrane with 

starch was required to prevent clogging (Mohn, 1988). 
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Rotary vacuum filters consist of a cylindrical drum covered in a filter medium. 

The drum is partially submerged in the liquid to be filtered, with the filtrate 

being drawn through the filter medium by a vacuum applied to the interior of 

the drum. Filters of this type are common (Brennan et al., 1969, Richardson et 

al., 2002) and have been used to dewater organic sludge from anaerobic 

digestion (Bailey and Ollis, 1977, Srinivas, 2008). Coelastrum, a micro-alga that 

forms small colonies, can be filtered to a cake containing 18 % dry weight 

solids without a filter pre-coat, but filtration rates fall rapidly and high energy 

inputs are required, with the result that this filtration method is not being 

recommended for micro-algal recovery (Mohn, 1988). Filter aids have also been 

required for filtration of Penicillium and Streptomyces mycelia by rotary 

vacuum filter presses (Bailey and Ollis, 1977). Vacuum belt filters can filter 

larger or colonial micro-algae, but investment and energy costs are very high 

(Mohn, 1988). Larger species of micro-algae such as Spirulina and 

Micractinium have been found to filter on a rotary vacuum filter with a 12 µm 

pore diameter yielding a 1-3 % dry weight micro-algal slurry, but smaller 

species of micro-algae such as Chlorella did not filter effectively even when the 

pore size was reduced to 5 µm (Goh, 1984). 

 

Belt filters consist of two filter belts that are compressed through rollers, with 

water being squeezed through the belts and the solids retained on the belts for 

subsequently separation. They are widely used in the water treatment industry 

and have been suggested as suitable for separation of Spirulina (Mohn, 1988). 

Large micro-algae have been reported as readily filtered to a concentration of 

18 % dry weight if the belt filter press is fed with pre-concentrated algae at 4 %, 

at an energy consumption of 0.5 kWh m
-3

 (Molina Grima et al., 2003). A typical 

three-belt filter is used by Thames Water, UK to remove sludge from an 

activated sludge wastewater treatment plant. The sludge suspension is first 

settled in a large conical settler to 0.6 % dry solids and then feed to the belt 

filter press together with a low dose of polyelectrolyte flocculant, and then 

gravity filtered to over 6 % dry solids and further dewatered in the rotary belt 

filter to up to 25 % (Thames Water private communication, 2012). Such a 

process could be envisioned for harvesting micro-algae. The price of a three 

belt Klampress is approximately £360,000 to process 80 m
3 

hour
-1

 with 

estimated power consumption of 17 to 21 kW (Ashbrook Simon Hartley private 
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communications, 2009 and 2012), equivalent to an energy input of 

~0.25 kWh m
-3

. 

 

Two extensive reviews of the filtration of micro-algae have concluded that 

filtration methods are suitable for micro-algae with larger cells, but inadequate 

to recover micro-algal species with diameters of less than 10 µm (Molina Grima 

et al., 2003, Uduman et al., 2010). Filter aids and flocculants would both 

appear to assist filtration and reduce equipment operational energy 

requirements; but additional materials increase costs and may need to be 

removed from the micro-algal biomass and the spent micro-algal growth 

medium. Ultrafiltration is capable of the removal of small micro-algae, but its 

use is limited by high energy input and the low concentration of output micro-

algal suspensions. Flocculation and belt filtration has been successfully used in 

the water treatment industry as an effective low-cost separation method for 

microbial biomass, and could be a viable method for the large scale separation 

of micro-algae, but requires further investigation. 

 Centrifugation 2.3.5

 

In centrifugation, gravity is replaced as the force driving separation by a much 

greater centrifugal force, thus greatly reducing separation time. Almost all 

types of micro-algae can be separated by centrifugation (Mohn, 1988). There 

are many designs of centrifuge, but they can be roughly classified into three 

groups (Porteous, 1983): 

a. Disc-stack  

b. Simple bowl 

c. Scroll conveyor bowl (decanter)  

 

 Disc-stack centrifuges 2.3.5.1

 

Disc-stack centrifuges are the most common industrial centrifuge and are 

widely used in commercial plants for high value algal products and in algal 

biofuel pilot plants (Molina Grima et al., 2003). A disc-stack centrifuge consists 

of a relatively shallow cylindrical bowl containing a number (stack) of closely 

spaced metal cones (discs) that rotate with the bowl (Figure 13). The mixture 

to be separated is fed to the centre of the stack of discs and the dense phase 



 

 66 

travels outwards on the underside of the discs while the lighter phase is 

displaced to the centre. The centrifugal force applied may be from 4000 to 

14000 times gravitational force. Materials of different densities are thus 

separated into thin layers, and the narrow flow channel of 0.4 mm to 3 mm 

between the closely-spaced discs means that the distance materials must travel 

for this separation to occur is small (Mannweiler and Hoare, 1992, Perry and 

Chilton, 1973). Disc-stack centrifuges are ideally suited for separating particles 

of the size (3 -30 µm) and concentration (0.02 to 0.05 %) of algal cells in a 

growth medium, as shown in Figure 14. They can separate not only solid/liquid, 

but also liquid/liquid or liquid/liquid/solid on a continuous basis.  

 Energy requirements for disc-stack centrifugation  2.3.5.1.1

 

Disc-stack centrifuges generally have high energy consumption (Uduman et al., 

2010). As an example, a Westfalia HSB400 disc-bowl centrifuge with 

intermittent self-cleaning bowl centrifugal clarifier has a maximum capacity of 

95 m
3 

hour
-1

, but is limited to 35 m
3

 hour
-1

 for algae harvesting (Cawdery, D, 

GEA Westfalia, personal communication, 2009). The maximum power of the 

motor is 75 kW, but normal operating demand is probably around 50 kW, 

giving an energy cost for separation of 1.4 kWh m
-3

 (Cawdery, D, GEA Westfalia, 

personal communication, 2009). A value of 1 kWh m
-3 

has been reported for 

concentrating Scenedesmus from 0.1 to 12 % using a Westfalia self-cleaning 

disk stack centrifuge (Molina Grima et al., 2003) and an energy consumption of 

1.4 kWh m
-3

 has been reported for the disc bowl centrifuge harvesting of micro-

algae grown on pig waste (Goh, 1984). If a HSB400 centrifuge is fed with a 

suspension of 0.02 % dry weight of micro-algae having an oil content of 20 %, 

this would yield the equivalent 7 kg of dry algal material per hour and 1.4 kg 

of algal oil. If 90 % of the algal oil is converted to methyl ester biodiesel then 

1.26 kg is produced with a calorific value of 13 kWh, assuming a net calorific 

value 10.33 kWh kg
-1

 (DEFRA, 2010, Milledge and Heaven, 2011). The operating 

energy for centrifugation is thus approximately four times the energy available 

in the algal biodiesel. Although this calculation is based on the data from one 

manufacturer, similar information for Alfa-Laval models (Ord, D., Alfa Laval, 

personal communication, 2009) also indicates that more energy is used in 

centrifugation than is available in the biodiesel produced. 

 



   

 67  

This simple calculation together with other studies (Ferrell and Sarisky-Reed, 

2010, Molina Grima et al., 2003) indicates the high energy usage of disc-stack 

centrifuges. The energy return using centrifugation could be improved by: pre-

concentration using a combination of separation techniques; use of the entire 

algal biomass rather than just the lipid fraction for energy production; or the 

use of the centrifuge to eliminate other energy consuming unit operations in 

algal biofuel production process. Pre-concentration, by settlement or other low 

energy methods, to 0.5 % (algal dry weight) could improve the energy balance, 

but would still require 15 % of the energy in the biodiesel product for 

centrifugation (Milledge and Heaven, 2011). The energetic position of using a 

disc-stack centrifuge for the production of biofuel could also be improved by 

the use of the entire algal biomass (Milledge, 2010a). A kilogram of dry algal 

biomass containing 20 % oil would yield around 1.9 kWh of biodiesel, but the 

calorific value of the entire biomass is around 6 kWh (Milledge, 2010b) and the 

exploitation of the entire biomass could thus be a key factor in a positive 

energy balance in the production of biofuel (Heaven et al., 2011, Milledge, 

2010a, Sialve et al., 2009, Stephenson et al., 2010). 
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Figure 13 Disc-stack centrifuge for liquid/liquid/solid separation. Courtesy GEA 

Westfalia. 
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Figure 14 Centrifuge application graph; Particle sizes and concentration range. 

Courtesy Alfa Laval 

 

 Disc-stack centrifugation for combined cell separation and 2.3.5.2

disruption 

 

In the production of micro-algal biodiesel cells must be harvested and 

disrupted to release triglycerides for trans-esterification (Section 2.4.8). The 

breaking of cell walls can require large amounts of energy, and disc-stack 

centrifuges, although effective in harvesting a wide range of micro-algae, are 

also energy intensive. If these processes could be combined a considerable 

reduction could potentially be made in the overall operational energy 

requirements needed to produce algal biodiesel. As a result of this work the 

novel concept of use of a disc-stack centrifuges to rupture and harvest micro-

algal cell was suggested and examined further (Milledge and Heaven, 2011) 

 Micro-eddies and algal cell disruption  2.3.5.2.1

 

Many algae are sensitive to hydrodynamic forces and cells may be damaged in 

mixing, pumping and gaseous transfer (Garcia Camacho et al., 2011, Hondzo 
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et al., 1997, Joshi et al., 1996). If the hydro-mechanical forces are sufficient 

they can fracture cells, but lesser forces may cause reduced growth and cell 

death without any obvious physical damage. Although information exists on 

the effect of hydrodynamic forces on a wide range of bacterial, animal and 

plant cells in defined flow experimental systems, much less is known about the 

effect of hydrodynamic forces in process equipment (Chisti, 2001). It has been 

suggested that the micro-algal cells are damaged when the size of the micro-

eddies is of the same order as or smaller than the algal cell (Molina Grima et 

al., 2010). Eddies with scales larger than a cell simply carry the cell from place 

to place, but eddies of similar size or smaller than a cell exert mechanical 

forces on the cell wall, and if these are greater than cell wall strength the wall 

is fractured (Doulah, 1977). Disruption of the cells may occur as a result of 

localised velocity gradients within an eddy or between eddies (Rodriguez et al., 

1993), although the exact nature of the of the micro-eddy hydrodynamic forces 

acting on the cells; shear, compression, torsion or impact, causing cell 

disruption are not fully understood (Clarke et al., 2010). The size of a micro-

eddy may be estimated using Kolomogrof’s theory (Davidson, 2004, Molina 

Grima et al., 2010).  

 

Equation 12 

λ  (
μ

ρ
) 
3

        

 

 

where λ is the micro-eddy length and ξ is the energy dissipation per unit mass.  

 Cell disruption in disc-stack centrifuges 2.3.5.2.2

 

Damage to yeast cells has been demonstrated in disc-stack centrifuges in the 

brewing industry (Chlup et al., 2008). If sufficiently high hydrodynamic forces 

could be generated in a disc-stack centrifuge to provide cell disruption, with 

simultaneous lipid separation through liquid/liquid/solid separation of the 

type in Figure 13, considerable energy could be saved in the production of 

algal oil. Areas of high shear stress have been demonstrated in disc centrifuges 

as shown in Figure 15 (Boychyn et al., 2004)). Using Equation 12 with a 

maximum energy dissipation per unit of 2.00 x 10
5 

W kg
-1

, viscosity 

9 x 10
-3 

Pa s and density 1115 kg m
-3

, the minimum size of micro-eddies is 
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estimated at 7 µm which is the size of many micro-algae. This calculation is 

based on one manufacturer’s disc-stack centrifuge, but the similarity in the 

general design of disc centrifuges and similar or higher maximum hydraulic 

energy dissipation rates occurring in an alternative type of centrifuge (Boychyn 

et al., 2004) indicates that damage to algal cells could occur during disc-stack 

centrifugation.  

 

Disc-stack centrifuges although suited to the separation of the particle sizes 

and concentrations found in micro-algal suspensions, have too high an energy 

consumption to be suitable for the production of algal biodiesel rather than 

higher value commercial algal products. The energy balance could be improved 

by combination with other separation methods and by the exploitation of 

entire biomass to produce energy. 

 

Disc-stack centrifuges have been shown to cause cell damage to yeast, and 

calculation of micro-eddies sizes indicates that micro-algal cells could also be 

damaged. If the algal cell fracture was sufficient to liberate oil it is possible 

that a disc-stack centrifuge operating as a liquid/ liquid /solid separator could 

achieve or be designed to achieve cell destruction, oil separation and algal 

biomass separation in a single operation. Considerable energy could be saved 

by eliminating the energy requirement in the process operations of cell 

fracture and lipid extraction. Although this is an intriguing prospect, it is 

unlikely that current disc-stack centrifuges will cause sufficient algal cell 

disruption in a single pass. Work on yeast has shown some cell damage and 

viability reduction on a single pass through the centrifuge, but 9 passes were 

required to achieve 92.4 % decrease in cell viability (Chlup et al., 2008). If cells 

are fractured the smaller solid particles may also reduce centrifugation 

efficiency and reduced algal solids recovery as has been shown with both yeast 

and mammalian cells (Chlup et al., 2008, Hutchinson et al., 2006). 

 

It would appear that current disc-stack centrifuges can cause damage to algal 

cells, but their use to achieve combined algal cell fracture and oil separation 

will require some redesign and extensive further research. 
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Greatest energy dissipation rates are indicated in red, while the lowest ones are in purple. 

Figure 15 CFD analysis of the feed zone of a pilot disc-stack centrifuge 

(Boychyn, et al., 2004) 

 

 Solid bowl and other centrifuge types 2.3.5.3

 

Solid bowl centrifuges were found not to be superior to disc-bowl centrifuges 

when used for the recovery of micro-algae grown on pig waste (Goh, 1984). 

Decanter centrifuges have been found to be as effective as solid bowl 

centrifuges for separating micro-algae (Goh, 1984), but the energy 

consumption of decanter centrifuges is higher than that of disc bowl 

centrifuges at 8 kWh m
-3 

(Molina Grima et al., 2003). Decanter centrifuges can 

produce a more concentrated output than disc bowl centrifuges, but as can be 

seen in Figure 14 they are better suited to higher solid suspensions than those 
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generated by micro-algal growth ponds (Brennan et al., 1969, Mohn, 1988, 

Perry and Chilton, 1973, Purchas, 1981). It is suggested that decanter 

centrifuges could be useful for the further concentration of micro-algal slurries 

from other harvesting methods (Goh, 1984, Molina Grima et al., 2003).  

 

Hydro-cyclones, although relatively low energy (0.3 kWh m
-3

) compared to other 

harvesting methods, are reported to be an unreliable means of concentrating 

micro-algae as they only achieve a maximum concentration 0.4 % with a 

concentration factor of 4 (Molina Grima et al., 2003). The advantage of hydro-

cyclones for micro-algal separation has been given as low capital costs, but the 

disadvantages are that they can only process a limited number of micro-algal 

strains and efficiency is highly dependent on solids concentration (Origin Oil, 

2010). Hydro-cyclones have been found to disrupt natural flocs of the marine 

micro-algae Phaeocystis (Veldhuis et al., 2006), and may also break up other 

micro-algal flocs, increasing subsequent harvesting difficulties. It would appear 

that if hydro-cyclones have a role in the harvesting of micro-algae it will be 

limited to pre-concentration of micro-algae prior to another harvesting method.  

 

In a new type of spiral plate centrifuge, manufactured by Evodus, the 

suspension flows outwards in thin films over vertical plates with the solid 

sediment or micro-algae being forced to collect on the outer bottom edge of 

the vanes. Work by Evodus with the James Cook University in Australia 

suggests a 0.025 % suspension of Nannochloropsis can be harvested to a 

micro-algal paste of 31.5 % dry weight for an energy usage of 1.9 kWh kg
-1

 

dried algae, equivalent to 34 % of the total energy within the micro-algae 

(Evodus private communication, 2011). This energy requirement is 

considerably below that calculated for the harvesting of algae by disc-stack 

centrifugation (Milledge and Heaven, 2011), but the discharge of the harvested 

algae is not continuous and current maximum throughput is limited to 4 m
3 

hour
-1

. Evodus report that trials are continuing in both commercial and 

research organisations (Evodus private communication, 2011). 

 

Centrifuges and disc-stack centrifuges in particular are effective at removing a 

wide range of micro-algal cells, but at a high operational energy cost. Pre-

concentration prior to centrifugation could reduce energy costs and allow 

centrifugation to be part of the harvesting operation for micro-algal biofuel. 
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 Materials handling 2.3.6

 

The harvesting of micro-algae is one stage in the process of the production of 

micro-algal biofuel and the harvesting operation must be linked to both a 

growth system and a method of exploiting the energy within the micro-algal 

organic matter. The energy costs of moving materials between process 

operations could be considerable, especially for the flow of the dilute micro-

algal suspension from the growth system and for the recycling of the growth 

media after harvesting. In an outline design developed for Pure Energy Fuels 

for the production of micro-algal biodiesel the energy required for the 

movement and recycling of material between major unit operations was 

estimated to be as great as, or greater than, the operational energy for the 

mixing and gaseous transfer in micro-algal raceway growth ponds (Section 

7.1.5). 

 

The physical properties of the micro-algal suspension vary with concentration 

and may influence subsequent treatment and handling. A 1 to 2 % suspension 

is milk-like (Oswald, 1988) with a viscosity of 1.1 to 1.7 mPa-s similar to water 

(Adesanya et al., 2012, Bolhouse, 2010). Algal suspensions behave as 

Newtonian fluids up to concentrations of between 4 and 8 % depending on 

algal species (Bolhouse, 2010, Wileman et al., 2012). Differences in viscosity in 

low concentration algal suspension (<5 %) are considered not to be ‘significant’ 

for the design and operation of algal growth systems (Adesanya et al., 2012). 

 

At concentrations above about 7 % the micro-algal suspensions are non-

Newtonian, exhibiting shear thinning (Adesanya et al., 2012, Wileman et al., 

2012) and are described as cream-like (Oswald, 1988). The increase of 

viscosity to 30 mPa-s (Wileman et al., 2012) may increase the energy to pump 

and mix algal suspensions and non-Newtonian behaviour could contribute to 

handling and pump problems.  

 

At 15-20 % micro-algal suspensions are cheese-like (Oswald, 1988) and may no 

longer be fluid (Greenwell et al., 2010), further increasing handling difficulties 

and costs. 
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 Drying 2.3.7

 

Drying may be required prior to energy extraction as many processes, such as 

direct combustion, pyrolysis and current commercial biodiesel production, 

require dry feedstock. The removal of water from the algal biomass by 

evaporation can be very energy intensive. To heat and evaporate water at 

atmospheric pressure from a temperature of 20 °C, requires an energy input of 

approximately 2.6 MJ kg
-1

 or over 700 kWh m
-3

 (Mayhew and Rogers, 1972, 

Weast, 1985).  

 

A variety of methods have been used to dry micro-algae prior to further 

processing or energy extraction: these include solar drying, roller drying, spray 

drying and freeze drying. Solar drying does not require fossil fuel energy, but 

is weather dependent and can cause considerable denaturisation of organic 

compounds. It is the least expensive drying option (Brennan and Owende, 

2010), but large areas are required as only around 100 g of dry matter can be 

produced from each square metre of sun-drier surface (Oswald, 1988). Roller, 

spray and freeze driers have been widely used in the food industry and have all 

produced satisfactory result in the drying of Dunaliella (Molina Grima et al., 

2003). Spray drying has been the preferred method of drying high value micro-

algal products, but is expensive (Brennan and Owende, 2010, Molina Grima et 

al., 2003, Oswald, 1988) and probably uneconomic for the production of 

micro-algal biofuels. Although spray drying can produce a dark green powder 

(Oswald, 1988) it can cause significant deterioration of micro-algal pigments 

(Brennan and Owende, 2010, Molina Grima et al., 2003). Freeze drying tends to 

cause less damage to organic materials than spray drying, but is more 

expensive (Brennan et al., 1969) and is typically used for products such as 

premium instant coffee to give a better flavour than spray dried coffee. The 

use of freeze dying is considered too expensive for the large-scale commercial 

recovery of micro-algae and its use is confined to research (Molina Grima et al., 

2003). 

 

Dewatering during harvesting uses less energy than evaporation to remove 

water and it would appear preferable to minimise the water content of the 

harvested micro-algae prior to drying and to select energy extraction methods 

that do not necessitate drying of the micro-algae.  
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 Energy extraction from micro-algal biomass 2.4

Energy may be extracted from micro-algae by:  

a. direct combustion 

b. pyrolysis  

c. gasification 

d. liquefaction  

e. hydrogen production by biochemical processes in certain algae 

f. fuel cells  

g. fermentation to bioethanol 

h. trans-esterification to biodiesel 

i. anaerobic digestion  

 

Table 6 Methods of energy extraction from micro-algal biomass 

 Utilises entire 

organic biomass 

Requires drying of 

biomass after 

harvesting 

Primary energy 

product 

Direct Combustion Yes Yes Heat 

Pyrolysis Yes Yes Primarily liquid by 

flash pyrolysis 

Gasification Yes  Yes
 b

 (conventional) Primarily Gas 

Liquefaction Yes No Primarily Liquid 

Bio-hydrogen Yes No  Gas 

Fuel Cells Yes No Electricity 

Bioethanol No 
a

 No  Liquid 

Biodiesel No Yes 
c

 Liquid 

Anaerobic digestion Yes No  Gas 

a 

Currently restricted to fermentable sugars as no large-scale commercial production 

of fuel bioethanol from lignocellulosic materials  

b 

Supercritical water gasification (SCWG) an alternative gasification technology can 

convert high moisture biomass 

c 

No current commercial process for the wet trans-esterification of wet micro-algal 

biomass  

 

Table 6 summarises the energy outputs (heat, electricity, liquid, gaseous or 

solid fuel) of the various potential methods of producing useful energy from 
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micro-algae together with the need for drying the biomass after harvesting and 

the capacity to exploit the entire biomass. 

 Direct combustion 2.4.1

 

Direct combustion is, historically and currently, the main method by which 

biomass energy is utilised (Demirbas, 2001), but does not appear to have been 

greatly explored for the production of energy from micro-algae. Biomass direct 

combustion can provide heat or steam for household and industrial uses or for 

the production of electricity (Demirbas, 2001). Many industries devote a 

considerable amount of energy to the production of steam, with the pulp and 

paper industry using 81 % of its total energy consumption for this purpose 

(Saidur et al., 2011). The lumber pulp and paper industry uses biomass to 

provide 60 % of its energy needs (Demirbas, 2001). The efficiency of biomass 

direct combustion for the production of electrical energy is between 20 to 40 % 

with the highest efficiencies being achieved in large plants of 100 MW and in 

the co-combustion of biomass and coal (Demirbas, 2001, McKendry, 2002). 

The co-combustion of biomass in coal fired plants is considered an especially 

attractive option for biomass exploitation due to its higher efficiencies 

(Demirbas, 2001, McKendry, 2002, Saidur et al., 2011). The co-generation of 

heat and electricity can significantly improve the economics of biomass 

combustion, but requires that there is a local demand for heat (Demirbas, 

2001). The co-firing of a power plant with micro-algae grown using the carbon 

dioxide emissions of the power plant appears conceptually to be an elegant 

method of reducing the GHG emissions per unit of electrical power generated 

by the plant, but unfortunately may not be practicable. A Life Cycle Assessment 

of co-firing of coal and solar dried micro-algae found that, although GHG 

emissions and air acidification could be reduced by co-firing with micro-algae 

grown on the power plant emissions, the depletion of natural resources and 

eutrophication potential increased and the use of micro-algae is "obviously 

more expensive than coal" (Kadam, 2002). 

 

The moisture content of biomass can reduce the heat available compared to 

that from dry biomass by 20 % (Demirbas, 2001) and the direct combustion of 

biomass is feasible only for biomass with a moisture content of less than 50 % 

(McKendry, 2002, Varfolomeev and Wasserman, 2011). Large biomass plants 
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can be as efficient as fossil fuel plants, but the higher moisture content of 

biomass results in additional costs (Demirbas, 2001). Micro-algal biomass will 

need considerable further drying after harvesting before it could be used for 

direct combustion. Generally high moisture content biomass is considered 

better suited to biological conversion, by anaerobic digestion or fermentation, 

to other more readily useable fuels (McKendry, 2002). 

 

Ash content can be a considerable problem in direct combustion of biomass 

due to fouling of the boilers restricting the use of high ash content biomass 

(Demirbas, 2001). Wood has a typical ash content of 0.5 to 2 % (Misra et al., 

1993, Saidur et al., 2011), but the ash content of micro-algae can be high: 

Spirulina having an ash content 7 to 10 % (Tokusoglu and Unal, 2003), diatoms 

containing 9 to 35 % ash due to the silica outer wall (Brown and Jeffrey, 1995) 

and Pleurochrysis carterae a coccolithophorid, containing 10 % calcium 

carbonate (Moheimani and Borowitzka, 2006, Moheimani, 2005).  

 

The fine particulate nature of dry micro-algae may be advantageous in co-

combustion with pulverised coal as it will not require additional particle size 

reduction. Non-micro-algal biomass particles are normally much bigger than 

pulverised coal and the amount of energy required for the grinding of the 

biomass to a diameter of less than 1 mm (2-3 % of the heating value) is almost 

double that compared to the energy required for coal pulverisation (0.9-1.2 % 

of the heating value). The energy requirements for biomass pulverisation 

increase significantly (>20 % of the heating value) for fibrous and or moist 

biomass (Belosevic, 2010). The combustion of biomass can generate fine 

particle emissions which can be harmful to health, with the amount, type and 

quantity of particle emissions being influenced by biomass, combustion 

technology and emission control equipment (Sippula, 2010). If micro-algal 

biomass is to be a used in direct combustion extensive research will be 

required to optimise combustion, co-combustion and reduce emissions. 

 

Using direct combustion of micro-algae it is possible to produce both heat and 

electrical energy; however, the problem of drying the micro-algae together with 

challenges of ash and emission control may make the direct combustion of 

micro-algae impractical on a commercial scale. 
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 Pyrolysis 2.4.2

 

Pyrolysis is the thermal decomposition of the organic component of dry 

biomass by heating in the absence of air, producing, as its primary product, a 

hydro-carbon rich liquid (bio-oil or bio crude) (McKendry, 2002, Saidur et al., 

2011). The exploitation of pyrolysis products dates back to ancient times with 

the ancient Egyptians using the pyrolysis of wood to produce tars for use in 

embalming (Demirbas, 2001). Pyrolysis can produce high volumes of fuel 

relative to biomass feed and the process can be modified to favour the 

production of bio-oil, syngas or solid char (Miao et al., 2004). Bio-oil is perhaps 

a more attractive end product than char or syngas as it has a higher energy 

density and is easily transport and stored (Jena and Das, 2011). 

 Methods of pyrolysis  2.4.2.1

 

Pyrolysis processes can be classified by temperature and process time as; slow, 

fast and flash (Ghasemi et al., 2012) . Slow pyrolysis results in higher yields of 

char rather than the liquid or gaseous products (Brennan and Owende, 2010, 

Ghasemi et al., 2012). Fast pyrolysis is considered a better process than slow 

pyrolysis (Ghasemi et al., 2012), with higher temperatures and the capability of 

achieving greater liquid product and gas yields of around 70- 80 %, compared 

to 15 to 65 % for slow pyrolysis (Brennan and Owende, 2010, Varfolomeev and 

Wasserman, 2011). The properties of bio-oil from fast pyrolysis have also been 

reported to be more suitable for refining to liquid fuels (Miao et al., 2004). 

Flash pyrolysis covers a range of newer technologies with temperatures above 

500 °C and short residence times of a few seconds or less (Ghasemi et al., 

2012, McKendry, 2002). These are considered as having future potential for 

the commercial production of biofuel from biomass (Brennan and Owende, 

2010). The optimum pyrolysis reaction range for Chlorella has been found to 

be close to the conditions found in flash pyrolysis (Bhola et al., 2011). A new 

experimental microwave assisted method of pyrolysis has been laboratory 

tested on Chlorella yielding up to 22 % bio-oil (Du et al., 2011). 

 Pyrolysis of micro-algae 2.4.2.2

 

The pyrolysis of dry Chlorella has been found to give higher yields and better 

quality bio-oil (higher calorific value) than from macro-algal or moss biomass. 
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(Demirbas, 2010). The maximum bio-oil yield from pyrolysis of dry Chlorella 

was found to be between 50.8 and 57.9 % of the weight of the original dry 

biomass (Ozkurt, 2009) and (Demirbas, 2010, Miao and Wu, 2004, Miao et al., 

2004, Ozkurt, 2009).The Higher Heating Values (HHV) of Chlorella and the 

micro-algal bio-oil were 23.6 MJ kg
-1

 and 39.7 MJ kg
-1

 respectively (Demirbas, 

2010). Therefore the yield of bio-oil energy is 85 % of the initial energy in the 

micro-algal biomass in the conversion of 50.8 % w/w of biomass to bio-oil. The 

lipid content of micro-algae is believed to influence the energy balance of 

pyrolysis with higher lipid content micro-algae having an improved energy 

balance and producing bio-oil that requires less refining (Bhola et al., 2011). 

 

It is suggested that the energy required to produce bio-oil by pyrolysis from 

micro-algae would be similar to the narrow range 200-400 kJ kg
-1

 reported in 

the published literature for a ‘diverse’ range of dry biomass feedstocks (Maddi 

et al., 2011). An energy input for pyrolysis has been quoted as 1.3 to 2.7 % of 

the calorific value of the micro-algae, but no estimate of the energy to dry the 

micro-algae, which can be very significant, was given. The major challenge for 

pyrolysis of micro-algal biomass is that it requires dry biomass. When drying of 

algal biomass was included pyrolysis used more energy than was produced as 

usable solid, liquid and gaseous fuels (Jena and Das, 2011). The Energy 

Consumption Ratio for the production of bio-oil from micro-algae, a ratio of 

the energy input for thermochemical treatment to the energy in the bio-oil, was 

found to be 0.44 to 0.63 for hydrothermal liquefaction and 0.92 to 1.24 

pyrolysis due to the requirement for the moisture to be evaporated prior to 

pyrolysis (Vardon et al., 2012). Indicating again that pyrolysis can use as much, 

or more, energy than is generated as biofuels.  

 Refining of pyrolysis bio-oil 2.4.2.3

 

The bio-oils from pyrolysis are normally highly oxygenated complex mixtures 

of organic compounds that results in a mixture than can be polar, viscous, 

corrosive, unstable and unsuitable for use in conventional fuel engines unless 

refined (Peng et al., 2000). Bio-oil from micro-algae pyrolysis has been 

reported to have a lower oxygen content and viscosity and higher heating 

value than bio-oil from wood or other terrestrial plant material (Du et al., 2011, 

Miao and Wu, 2004, Miao et al., 2004), and could be more suitable for refining 
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into liquid fuels. However bio-oil from both macro-algae and micro-algae may 

contain nitrogen compounds that bring additional fuel refining costs (Maddi et 

al., 2011). It is probable that bio-oil from micro-algae will need to be refined 

requiring additional energy input prior to the production of a readily useable 

energy source. There may be a difference between the optimum process for 

energy return from pyrolysis alone and for a process that produces the best 

energy return after refining. The use of a catalyst (sodium carbonate) during 

pyrolysis has been suggested to upgrade bio-oil from pyrolysis, reducing or 

eliminating the need for further refining and has been found to improve the 

bio-oil quality, reducing acidity and oxygenation, from the pyrolysis of 

Chlorella without a reduction in yield (Babich et al., 2011). 

 

Although pyrolysis is carried out at atmospheric pressure and is a well-

established and ‘simpler’ process than hydrothermal liquefaction (Babich et al., 

2011), the ability of hydrothermal liquefaction to use wet biomass would 

appear to give it an advantage over pyrolysis. As with direct combustion the 

need to dry the micro-algae prior to pyrolysis may preclude it as an 

energetically and economically viable method of producing bioenergy. 

 Gasification 2.4.3

 

Gasification is the conversion of organic matter by partial oxidation at high 

temperature (800 -1000 °C) mainly into a combustible gas mixture (syngas) 

(Demirbas, 2001, McKendry, 2002, Saidur et al., 2011). The syngas has a 

calorific value of 4-6 MJ m
-3

,
 

around half that of natural gas (McKendry, 2002), 

and is a mixture of hydrogen (30-40 %), carbon monoxide (20-30 %) methane 

(10-15 %), ethylene (1 %), nitrogen and water vapour (Demirbas, 2001, Saidur et 

al., 2011). The gas can be burnt to produce heat or converted to electricity in 

combined gas turbine systems that can achieve an electric energy output of 50 % 

of the heating value of the incoming gas (Demirbas, 2001, McKendry, 2002). 

Conventional biomass gasification processes require dry feedstock (Guan et al., 

2012a), but supercritical water gasification (SCWG) is an alternative gasification 

technology for the conversion of high moisture biomass and it is suggested it 

can be net energy positive in a well-engineered systems (Guan et al., 2012b). 

The enthalpy change needed to take ambient liquid water to a low-density 

supercritical state (400 °C and 250 bar) is similar to that required to vaporise 
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liquid water at ambient temperature, but the advantage of the SCWG process is 

that much of the energy invested in reaching a supercritical state can be 

captured and used again, with the hot effluent from the gasification reactor 

being used to preheat the wet biomass feed stream (Guan et al., 2012a). 

 

The syngas from gasification can be used to produce methanol and hydrogen 

as a fuel for transport and other uses (McKendry, 2002, Saidur et al., 2011). 

Methanol from the gasification of biomass could also be used as a renewable 

alternative to methanol derived from fossil fuel for the production of biodiesel 

(including micro-algal biodiesel). This would make the biodiesel eligible for 

renewable fuel credits such as the Renewable Fuel Obligation Certificates (ROC) 

in the UK. ROCs may be grated for electricity generated from biodiesel and 

glycerol manufactured from biomass and biomass-derived alcohols, but if the 

fossil derived methanol is used in the production of the biodiesel it is ineligible 

for ROCs (Office of Gas and Electricity Markets, 2009). 

 Gasification of micro-algae 2.4.3.1

 

Experimental laboratory studies of the steam gasification of dry Chlorella, 

macro-algal and moss biomass found yields of syngas were higher for the 

micro-algae than for both moss and macro-algal biomass, with maximum 

syngas yields of 40.6 % of the weight of the original biomass and a hydrogen 

gas content of up to 48.7 % by volume (Demirbas, 2010). The syngas yield 

increased with increasing temperature from 302 to 652 °C, in agreement with a 

recent model of the kinetics of supercritical water gasification that indicate 

that higher temperatures favour production of intermediates which are more 

easily gasified together with the production of gas at the expense of char 

(Guan et al., 2012b). Unfortunately insufficient data was presented by Guan et 

al. (2012) to calculate the energy yield of the syngas and the energy inputs into 

the process. 

 

Gasification of Spirulina to a methane-rich syngas using supercritical water and 

ruthenium catalysts has been predicted to yield up to 60-70 % of the heating 

value contained in the algal biomass (Stucki et al., 2009). Experimental studies 

on supercritical water gasification at 550 °C of Nannochloropsis found energy 

conversion of biomass to syngas of up to 60 % (Guan et al., 2012a). A 
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theoretical study of the production of methanol from Spirulina, using the 

maximum theoretical yield of 0.64 g methanol g
-1

 dry micro-algal biomass, 

gave a ratio of produced energy to required energy of 1.1, with the gasification 

and methanol synthesis process using some 25 % of the total process energy 

(Hirano et al., 1998). As the energy content of methanol at 23 MJ kg
-1 

is similar 

to that of micro-algae this would equate to an energy conversion of 60-70 %. 

Although the energy balance is slightly positive, the evaluation assumes the 

maximum theoretical yield and that wet micro-algal biomass with 79 % 

moisture content can be successfully treated using gasification. Using a novel 

method of catalytic gasification of wet Chlorella biomass (87 % water), at lower 

temperature (350 °C) and higher pressure (18 MPa) than conventional 

gasification, up to 70 % of maximum theoretical syngas was produced (Minowa 

and Sawayama, 1999). The study also attempted a brief energy evaluation 

comparing gasification to direct combustion of micro-algae. Although the 

energy evaluation showed gasification to be superior to direct combustion the 

assumptions made included: the maximum theoretical yield of syngas, 

recycling of nutrient only in gasification and a halving of the calorific value of 

algal biomass for combustion, but no similar allowance for combustion of the 

syngas. The energy for gasification was given as 5.95 MJ kg
-1

 of dry cells, or 

approximately 28 % of total energy in the original biomass. It has been 

suggested for every 4.5 J of energy in the syngas gas, 1.0 J of unrecovered heat 

energy is required for supercritical water gasification (Guan et al., 2012a), 

equivalent to an energy input of 22 % of the syngas or 21 % of the calorific 

value of the original algal biomass. 

 

A recent review has concluded that there is little data available on the 

gasification of micro-algae and in particular on the energy balance and the 

need for drying of micro-algae prior to gasification (Brennan and Owende, 

2010). This work would endorse this conclusion. If gasification of micro-algae 

can be achieved with wet biomass it would possibly become more economic 

and energetically attractive. 

 

The economics and energy balance of gasification could also be improved by 

recycling of nutrients in the micro-algal biomass for the growth of new micro-

algae. It has been found that nitrogen recovered from the aqueous phase after 
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gasification can be used as part of a medium to successfully grow micro-algae 

(Minowa et al., 1995). 

 

Combustible gas can also be produced from wet micro-algal biomass by 

anaerobic digestion (Section 2.4.9) at much lower temperatures than 

gasification. Both gasification and anaerobic digestion have been suggested as 

promising methods for exploiting bioenergy from biomass in India (Singh and 

Gu, 2010). Anaerobic digestion of algal residues, however, has been shown to 

have a higher net energy return and much lower GHG emissions than 

gasification (Delrue et al., 2012). Although gasification is generally a more 

rapid process than anaerobic digestion it would appear than the energy input 

needed to achieve the temperatures required will make it uncompetitive in 

terms of energy ratio with anaerobic digestion, unless a much higher yield of 

combustible gas can be achieved than from anaerobic digestion. 

  Liquefaction and hydro-thermal upgrading 2.4.4

 

Liquefaction is a low temperature high pressure process where biomass is 

converted into a stable liquid hydrocarbon fuel (bio-oil) in the presence of a 

catalyst and hydrogen (Demirbas, 2001, McKendry, 2002). In hydro-thermal 

upgrading the biomass is converted to partially oxygenated hydrocarbons at 

high pressure in the presence of a catalyst in a wet environment (Demirbas, 

2001, McKendry, 2002). In practice it would appear that the terms liquefaction, 

hydro-liquefaction and hydro-thermal liquefaction are used for processes 

where wet biomass is converted to bio-oil by temperature and pressure in the 

presence of a catalyst, with and without the presence of gaseous hydrogen. 

Reviews of thermal treatments of biofuel have concluded that commercial 

interest in liquefaction is low due to the more complex feed systems and 

higher costs than pyrolysis and gasification (Demirbas, 2001, McKendry, 2002); 

but hydro-thermal upgrading has the advantage of the conversion taking place 

in an aqueous environment and drying of biomass after harvesting may not be 

required prior to liquefaction and hydro-thermal upgrading (Brown et al., 2010, 

Minowa et al., 1995, Sawayama et al., 1999). The ability of hydrothermal 

treatments to handle wet biomass make them some of the most interesting 

methods of producing biofuel from micro-algae (Torri et al., 2012). Dunaliella 

with a moisture content of over 78 % has been treated by hydro-thermal 
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upgrading (termed liquefaction by the authors) on laboratory scale (20 g of wet 

algae) yielding 37 % oil based on the volatile solids content of the micro-algal 

biomass (Minowa et al., 1995), but hydrothermal liquation of biomass with a 

moisture content above 90 % is believed to have an unfavourable energy 

balance (Vardon et al., 2012). 

 

Hydrothermal carbonisation is a process in which biomass is heated in water 

under pressure to create char rather than liquid products. In an experimental 

study of various micro-algae a char with an energy content similar to 

bituminous coal and containing 55 % of the carbon from the original biomass 

was produced by hydrothermal carbonisation (Heilmann et al., 2010). The 

hydrothermal carbonisation process requires a 10 % solids concentration and 

drying of algal biomass may not be required prior to conversion. The 

hydrothermal carbonisation process can produce char with a calorific value of 

12.01 MJ from 1kg of dry algal biomass, but to heat a system contain 1kg of 

dry algal biomass and 9 kg of water from ambient to 203 °C will require, 

7.31 MJ. With insulation and temperature control, however, no significant 

additional energy was needed to maintain reaction temperature for 2 hours 

(Heilmann et al., 2010). It is suggested that hydrothermal carbonisation gives a 

better return on energy investment than direct combustion as the micro-algae 

do not need to be dried after harvesting and heat recovery employed in any 

industrial process would result in additional energy improvement. Lack of 

production of char is generally considered to be an advantage of hydrothermal 

treatment as bio-oil is a more useful product to both char and syngas (Jena and 

Das, 2011), and the application of hydrothermal carbonisation for biofuel 

production may therefore be more limited than hydrothermal liquefaction. 

 

Although biomass liquefaction has been extensive researched, micro-algae 

have seldom been studied despite the fact that they should decompose and 

hydrolysed more easily than biomass containing lignin (Yang et al., 2011a). 

The cell wall of Desmodesmus has been found to be resistant to hydrothermal 

liquefaction (Alba et al., 2012). The yield of bio-oil from the liquefaction of 

Dunaliella has been reported to be as much as 87 % of the original micro-algal 

volatile solids (VS) on a weight basis (Yang et al., 2011a), but this appears to 

be unrealistically high. The calculated energy is over 140 % of that in the 

original biomass and there appears to be over 24 % more carbon in bio-oil than 
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in the original biomass. This may be due to a simple error in assessment 

methods and calculations, or may be due to a reaction between the algal 

biomass and the large quantity of ethanol (9 times the weight of wet biomass) 

used in the liquefaction. The maximum bio-oil yield from the liquefaction of 

Microcystis has been reported as 33 % of the weight of biomass VS and 40 % of 

the energy in the micro-algal biomass. (Yang et al., 2004). Bio-oil yield from the 

liquefaction of wet Nannochloropsis (79 % moisture content) has been found to 

be a maximum of 43 % of the biomass dry weight with 80 % recovery of the 

carbon and 90 % of the energy in the Nannochloropsis organic material (Brown 

et al., 2010). Bio-oil yields from hydrothermal liquefaction, as percentage mass 

of original dry micro-algal biomass, have been reported as: up to 41 % for 

Spirulina (Jena and Das, 2011), between 24 and 45 % for Scenedesmus (Vardon 

et al., 2012) and up to 49 % for Desmodesmus or 75 % recovery of the energy 

in the micro-algal biomass as bio-oil (Alba et al., 2012).  

 

The energy needed to heat the wet algal biomass to operating temperature for 

liquefaction has been estimated at between 65 and 85 % of the total energy 

available in the bio-oil produced (Minowa et al., 1995). A more recent estimate 

reported the energy required for hydrothermal liquefaction as a percentage of 

bio-oil energy produced at between 44 and 63 % for micro-algal biomass with a 

moisture content of 80 % (Vardon et al., 2012). Although the liquefaction of 

micro-algal biomass can be a net energy producer and the bio-oil has a high 

calorific value and can be readily refined into a variety of liquid fuels, it would 

appear that a complete process for the production of micro-algal biofuel from 

liquefaction using existing micro-algal growth and harvesting techniques may 

use more energy than is produced.  

 

The ability of liquefaction to use wet biomass and to convert the vast majority 

of the chemical energy into readily refined liquid fuels may make it worthy of 

further study, but the heat energy required for the process is the major 

challenge. The enthalpy of compressed water at 200 °C and 15.55 bar, the 

least energetic conditions found in the literature (Brown et al., 2010), is 

852 kJ kg
-1

 (Mayhew and Rogers, 1972) an increase of around 768 kJ kg
-1

 from 

water at 20°C and atmospheric pressure. As outlined in the review of 

harvesting a moisture content of 75 % appears to be the minimum achievable 

by current techniques without drying. A kilogram of micro-algal slurry with 75 % 
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moisture content would contain 0.25 kg of dry micro-algal biomass: if this 

algal biomass had 20 % lipid content its calorific value would be approximately 

1.5 kWh. The enthalpy change from atmospheric temperature and pressure to 

the minimum requirements for micro-algal liquefaction (200 °C and 15.55 bar) 

would be approximately 0.16 kWh or under 11 % of calorific value of the micro-

algal slurry. The enthalpy change of the dry algal biomass is not known, but if 

it is assumed to be similar to that of water the total energy required to 

increase the enthalpy of the entire slurry would still be below 15 % of the 

calorific value of the algal biomass. It may therefore be possible to 

considerably reduce the energy requirements of liquefaction and liquefaction 

may be viable if the energy input can be reduced to closer to minimum 

theoretical input. 

 

The hydro-thermal liquefaction of micro-algae can produce bio-oil of similar or 

higher calorific value to that from pyrolysis, but the chemical composition is 

different and hydrothermal liquefied oil can have higher viscosity and 

percentage of higher boiling point compounds (Jena and Das, 2011, Vardon et 

al., 2012). As with bio-oil from pyrolysis, bio-oil from hydrothermal 

liquefaction will probably need further refining to produce a commercial 

useable biofuel. The lower quantity of low boiling point compounds in 

hydrothermal bio-oil will make it less desirable for light fuel applications 

(Vardon et al., 2012). 

 

The recycling of nutrients particularly nitrogen and phosphorus, could reduce 

the net energy inputs for micro-algal biofuel production, and the nitrogen and 

phosphorus dissolved in the aqueous phase from hydrothermal liquefaction is 

believed to be capable of reuse as a growth medium for micro-algae (Alba et al., 

2012) 

 

Liquefaction and hydro-thermal upgrading can handle wet biomass eliminating 

the need for drying after harvesting, but the process is more complex and has 

higher costs than pyrolysis and gasification. Large amounts of energy are 

required to heat and compress the wet biomass and processes that require 

lower temperatures such as anaerobic digestion (Section 2.4.9) will have a 

lower energy input and potentially higher return on energy investment. 
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 Bio-hydrogen 2.4.5

 

Hydrogen is considered a particularly attractive replacement for fossil fuel as it 

combustion produces water vapour rather than greenhouse gases. Fuel cells 

and other technologies are commercially available to exploit hydrogen, and 

vehicles using hydrogen as fuel are already in operation, for example Honda’s 

FCX. Although, hydrogen is believed to be beginning to move from a "fuel of 

the future to an energy carrier of the present" (Benemann, 2000), the major 

challenge remains producing renewable hydrogen at an affordable and 

competitive cost remains. 

 

The production of hydrogen by cyanobacteria has been known since the late 

19
th

 century (Benemann, 2000). Gaffon is generally credited with the first 

scientific study of bio-hydrogen from micro-algae in research on Scenedesmus 

in the late 1930s and early 1940s (Benemann, 2000, Kruse et al., 2005, 

Varfolomeev and Wasserman, 2011). A variety of metabolic pathways for the 

production of bio-hydrogen have been studied (Kruse and Hankamer, 2010, 

Ljunggren, 2011, McKinlay and Harwood, 2010) with hydrogenase, the enzyme 

mainly responsible for hydrogen production, being widely found in both 

prokaryotic organisms and eukaryotic plants and with all five major taxonomic 

groups of cyanobacteria containing hydrogenase genes (Kruse and Hankamer, 

2010). 

 

Considerable research on bio-hydrogen has been carried out since the 1970s, 

and over a hundred million dollars had been spent on research up to 2000, but 

with "little progress toward the goal of a practical and commercial process" 

(Benemann, 2000). Research has been continued since 2000, but yields of 

energy from bio-hydrogen production systems are low at 0.3 % up to 1.3 % of 

the total light energy arriving at the surface of the reactor and 5 % is required 

for an economically viable system (Kruse and Hankamer, 2010). It is has been 

suggested, however, that the maximum practical efficiency of conversion of 

solar energy is 1 %, with cyanobacteria only able to achieve this conversion rate 

for a short period in a pure argon atmosphere, and outdoor systems achieve an 

average of only 0.05 % (Sorensen, 2012). The considerable challenges of 

oxygen inhibition and scale-up also still need to be overcome (Kruse and 

Hankamer, 2010, McKinlay and Harwood, 2010, Varfolomeev and Wasserman, 
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2011). Substantial research effort appears to be being directed at the genetic 

modification of micro-algae (Gressel, 2008, McKinlay and Harwood, 2010, 

Varfolomeev and Wasserman, 2011), but although this may overcome the 

challenges of yield and oxygen inhibition it may produce fresh issues of 

containment and public perception. 

 

A major advantage of bio-hydrogen production is that hydrogen does not 

accumulate in the culture (Ghasemi et al., 2012) and harvesting and energy 

extraction costs could be reduced; but despite extensive research a 

commercially viable production appears to be some way off. 

 Micro-algal fuel cells 2.4.6

 

In microbial fuel cells (MFCs) electrical current is generated from oxidation-

reduction reactions that occur within living microorganisms with the oxidation 

of an organic compound at the anode generating electrons that produce an 

electric current (De Schamphelaire and Verstraete, 2009, Powell et al., 2011). 

Micro-algae have been used as a source of organic material for bacterial 

oxidation at the anode. With marine plankton as a substrate 80 % of organic 

carbon was removed in a microbial fuel cell (De Schamphelaire and Verstraete, 

2009). Using Chlorella as a substrate around 60 % of the chemical oxygen 

demand was removed, but conversion of chemical energy to electrical energy 

was low at between 10 and 25 % (Velasquez-Orta et al., 2009). The electrical 

yield from microbial fuel cells has been quoted at 2.5 kWh kg
-1

 of dry Chlorella 

biomass (Velasquez-Orta et al., 2009), but this appears to be over stated by a 

factor of 10 due to the use of an incorrect conversion factor of 2.77 kWh per 

MJ rather than 0.277 kWh per MJ (Perry and Chilton, 1973). However when the 

data presented is corrected, the energy produced from dry micro-algal biomass 

by fuel a cell is approximately a quarter of that achieved by both direct 

combustion and anaerobic digestion. The maximum power generation of 

microbial fuel cells oxidising biomass is currently only up to 1 W m
-2

 (Howe, 

2012, Thorne et al., 2011) and could only produce the power equivalent to 3.8 

tonnes ha
-1

 (Howe, 2012) considerable below that anticipated from growth of 

micro-algae for the production of biodiesel. 
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A recent development in microbial fuel cells is a photo-microbial fuel cell or 

bio-photovoltaic fuel cell where photosynthetic algae growing at the anode 

generate the electrons, thereby removing the need for an organic substrate 

(Howe, 2012, Thorne et al., 2011). Bio-photovoltaic fuel cells currently have 

very low efficiency and energy production is between 1 and 1.5 orders of 

magnitude lower than microbial fuel cells oxidising biomass (Howe, 2012). 

 

Photosynthetic micro-algae can also act as electron acceptors at the cathode 

(Powell et al., 2011). A power density 0.95 mW m
-2

 was achieved in a coupled 

microbial fuel cell, with Chlorella growing at the cathode and yeast growing 

heterotrophically on glucose as an electron donor (Powell et al., 2011): this is 

considerable below the best output of MFCs. In a unique design combining 

anaerobic digestion and a coupled microbial fuel cell, bacteria growing on the 

waste from the anaerobic digestion of micro-algae biomass act as the electron 

donor, with micro-algae, being grown for the biomass for anaerobic digestion, 

acting as the electron acceptor, but power output is low at an average of 12 

mW m
-3

 (De Schamphelaire and Verstraete, 2009). 

 

The energy output of microbial fuel cells can be low and is currently many 

times lower when growing micro-algae are used either as an electron donor or 

acceptor. It is clear that there is a need for a considerable improvement in 

micro-algal fuel cell efficiencies before they can be considered as a commercial 

option for exploiting micro-algae for biofuel. There will also be considerable 

problems in the scale-up of MFCs, in particular those requiring the growth of 

photosynthetically active micro-algae (Rosenbaum et al., 2010). Micro-algal 

fuels cells, if they have a future in the production of micro-algal biofuels, may 

be limited to exploiting addition energy production opportunities generated by 

their use in conjunction with other methods of micro-algal biofuel production, 

principally anaerobic digestion and fermentation where micro-algal fuel cells 

may have the capability of giving incremental energy output gains. 

 Bioethanol 2.4.7

 

First generation bioethanol, such as that produce from corn in the USA and 

sugarcane ethanol in Brazil, is now widely produced and used (Yang et al., 

2011b) and there is considerable interest in producing second generation 
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bioethanol from cellulosic biomass (Balat et al., 2008). Bioethanol can be 

readily used in current technology, with 86 % of cars sold in Brazil in 2008 

capable of using ethanol or a mixture of ethanol and fossil fuel petroleum 

(Walker, 2010). Bioethanol accounted for more than 94 % of global biofuel 

production in 2008, with the majority coming from sugarcane (Balat et al., 

2008). Bioethanol has been suggested as having a better development 

potential than conventional biodiesel (Lee, 2011). However, there are 

disadvantages with bioethanol; "lower energy density than gasoline, 

corrosiveness, low flame luminosity, lower vapour pressure (making cold starts 

difficult), miscibility with water, and toxicity to ecosystems" (Balat et al., 2008). 

The energy balance of corn ethanol is probably marginal (Beal, 2011) and it has 

been suggested that "at present, bioethanol produced from sugarcane in Brazil 

is the only credible example of a biofuel that exhibits a significant net energy 

gain" (Walker, 2010). The growth of crops such as sugarcane and corn for the 

production of sugar for bioethanol will be considerably constrained, as these 

compete directly with food production. 

 

In grain crops about half of the above ground biomass, straw, is ‘wasted’ and 

worldwide 2 billion tonnes of cereal straw are produced annually (Gressel, 

2008) and there is now considerable interest in exploiting straw and other 

lignocellulosic materials for ethanol production (Balat et al., 2008). In sugar 

and ethanol production from sugarcane considerable quantities of bagasse are 

produced which can be burnt to produce heat to distil bioethanol, but there are 

concerns about the environmental effects of this and it may be beneficial to 

convert bagasse to bioethanol (Gressel, 2008). The total potential worldwide 

bioethanol production from crop residues and wasted crops has been 

estimated at 491 billion litres year
-1

, about 16 times higher than the current 

world bioethanol production (Balat et al., 2008). Cellulosic ethanol was 

expected to play a large role in meeting the goals of the US Energy 

Independence and Security Act of 2007 for renewable biofuels (Ferrell and 

Sarisky-Reed, 2010); but despite extensive research and the availability of low 

cost lignocellulosic biomass there is, as yet, no large-scale commercial 

production of fuel bioethanol from lignocellulosic materials (Balat et al., 2008). 

One of the problems encountered with production of bioethanol from straw is 

that biodegradation of hemicelluloses and cellulose by cellulases can be 

inhibited by lignin, found in many terrestrial sources of second generation 
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biofuel biomass (Gressel, 2008). Micro-algae do not normally contain 

significant quantities of lignin and therefore hold out the prospect of the 

cellulosic components of micro-algae being more readily converted to sugars 

by cellulases. 

 Micro-algal bioethanol 2.4.7.1

 

Micro-algae can contain significant quantities of carbohydrates and proteins 

that can be converted to bioethanol via fermentation (Harun et al., 2010) with 

Chlorella containing up to 50 % w/w of starch under favourable growth 

conditions (Doucha and Lívanský, 2009). Other micro-algae are also known to 

contain up to 50 % w/w of carbohydrates that can be fermented to bioethanol 

(Singh and Olsen, 2011). The yield of ethanol from the fermentation of micro-

algal biomass has been found to be up to 38 % of the dry micro-algal biomass 

(Harun et al., 2010). An advantage of using fermentation of micro-algae could 

be that wet biomass could be used, but a recent study has found that the 

sugar released from fermentation of dried biomass was 55 % higher than that 

from wet micro-algal biomass (Miranda et al., 2012). If the micro-algal biomass 

needs to be dried prior to conversion to fermentable sugars for bioethanol 

production it is likely that bioethanol production will not be energy efficient or 

economic.  

 

Ethanol yield has been found to be improved by the removal of lipid from 

micro-algae prior to fermentation (Harun et al., 2010), raising the prospect of 

bioethanol production being combined with biodiesel production.  

 

In addition to simple carbohydrates and sugars within the cell, more complex 

carbohydrate associated with the cell wall will need to be broken down into 

fermentable sugar if the entire micro-algal biomass is to be exploited for 

bioethanol (Harun et al., 2011b). Most micro-algal species have cell walls based 

on cellulose (Harun and Danquah, 2011), however there is considerable 

diversity in algal structural polysaccharides. Many algae lack cellulose and have 

other polymers that provide structure to the cell while some lack cell walls 

entirely (Ferrell and Sarisky-Reed, 2010, Tarchevsky and Marchenko, 1991).  
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Cell wall disruption is considered essential to release the carbohydrates and 

sugars to maximise bioethanol yields. A sugar extraction efficiency of 96 % has 

been achieved by acid hydrolysis of dried Scenedesmus biomass (Miranda et al., 

2012). Ultrasonic cell disruption followed by enzymatic saccharification 

released 64 %, of the dry biomass of Chlorococcum, as glucose that could be 

fermented to ethanol (Harun and Danquah, 2011). Enzyme pre-treatment of 

Chlamydomonas, liquefaction by amylase followed by enzymatic 

saccharification, yielded 23.5 % w/w ethanol after fermentation (Choi et al., 

2010). The alkaline pre-treatment of cells to release fermentable sugars 

increased the ethanol production from Chlorococcum biomass containing 33 % 

carbohydrate, with a maximum yield of 26 % w/w of the dry biomass (Harun et 

al., 2011b). 

 

Some micro-algae contain cellulases and it may be possible to recover these 

and other industrial enzymes from the micro-algal biomass (Ferrell and Sarisky-

Reed, 2010). A possible process could be to use extracted micro-algal enzymes 

to produce fermentable sugars from micro-algal biomass for bioethanol 

production, but although elegant it will require considerably more research and 

is probably currently uneconomic.  

 

Like yeast, some micro-algae such as Chlorella and Chlamydomonas are 

capable of producing ethanol and other alcohols through heterotrophic 

fermentation (Ferrell and Sarisky-Reed, 2010), but micro-algae are probably of 

more interest as feedstock rather than as biological means of converting 

biomass to ethanol as yeast fermentation is an established and extensively 

researched process. 

 

Continuous fermentation of glucose can produce a yield of ethanol of 51 % 

w/w (McGhee et al., 1982) an energy conversion of 98 % (glucose HHV 15.6 kJ 

g
-1

 and ethanol HHV 29.8 kJ g
-1

). Reported yields of ethanol from disrupted 

micro-algal cells range 23.5 to 38 % w/w with the higher figure giving a 

maximum energy yield of 57 % assuming a HHV of 5.5 kWh kg
-1

 for low lipid 

content micro-algae (Milledge, 2010b). The challenge of producing bioethanol 

from micro-algae, as with lignocellulosic biomass, will be to convert the entire 

organic micro-algal biomass to fermentable sugars economically and energy 

efficiently. There appears to be considerably less research on the production of 
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bioethanol than biodiesel, but bioethanol has been suggested as one of three 

top targets for future micro-algal biofuel production (Gouveia, 2011). The 

fermentation of micro-algae has the potential advantage of exploiting the 

entire biomass, if an economic method of producing fermentable sugars from 

complex organic material is found. However there are considerable quantities 

of complex waste organic matter from agriculture that could potentially 

provide a lower cost feedstock for fermentation than purpose grown micro-

algae. 

 Biodiesel and trans-esterification 2.4.8

 

"Biodiesel is a fuel that is obtained from a manufacturing process that converts 

plant oils or animal fats together with alcohol into a fuel that can be used in an 

internal combustion engine" (Office of Gas and Electricity Markets, 2009). 

Chemically it is the alkyl esters of fatty acids which are produced by trans-

esterification of triglycerides of fatty acids using an alcohol, normally methanol 

or ethanol (Knothe et al., 2005). 

 

The higher lipid content of some micro-algae has focused much of the 

published research work on the production of biodiesel from the micro-algal 

lipids via trans-esterification. The most often quoted and long running study 

by the NREL (Sheehan et al., 1998) focused almost entirely on biodiesel with 

relatively little discussion of alternative methods of exploiting the energy 

within the micro-algal biomass. 

 

There are a number of challenges for the production of micro-algal biodiesel: 

a. In conventional commercial trans-esterification processes the biomass 

needs to be dry (Hidalgo et al., 2013)  

b. The cell wall may require disruption to release the lipid which is 

energetically demanding (de Boer et al., 2012). 

c. Lipid needs to be extracted from micro-algal biomass by solvents and 

other methods (Rawat et al., 2013). 

 

Drying of the biomass prior to oil extraction can use considerable energy and 

can be the main energy input in the production of biodiesel (de Boer et al., 

2012). Wet solvent extraction of lipid from micro-algae biomass which 
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eliminates the need for drying and potentially reducing energy input may be 

possible, but has yet to be proven at industrial scale (de Boer et al., 2012, 

Lardon et al., 2009, Sills et al., 2012), but for algal biofuels to yield net gains 

in energy lipid extraction methods for wet biomass must be developed (Delrue 

et al., 2012, Sills et al., 2012).  

 

Intact cell walls hamper lipid recovery and the most effective methods of 

recovery are from disrupted algal cells (Greenwell et al., 2010). Mechanical 

pressing is the industry standard for oil recovery from oilseeds for both food 

and biofuel production, but it is ineffective for micro-algae (de Boer et al., 

2012). A number of cell disruption techniques have been applied to micro-

algae, but mechanical disruption is generally considered preferable to chemical 

disruption as it avoids chemical contamination and preserves the functionality 

of the cell contents (Chisti and Moo Young, 1986). The breaking of cell walls 

can require large amounts of energy, and can be achieved by ultrasound, 

milling, autoclaving or homogenisation (Mata et al., 2010). Homogenisation 

can be very efficient, with between 77 and 96 % of algal cells ruptured per pass 

(GEA Process Engineering, 2011), but to homogenise 10 l of algal suspension 

with algal cell concentrations between 100 and 200 g l
-1

 requires 1.5-2.0 kWh 

(Greenwell et al., 2010) or 0.75 to 2 kWh kg
-1

 of algal cells disrupted. It has 

been suggested that cell disruption and subsequent oil extraction represent 

the largest energy input in the production of micro-algal biodiesel (Razon and 

Tan, 2011). If cell disruption processes could be combined with algal 

harvesting then a considerable reductions could be made in operation energy 

requirements (Section 2.3.5.2).  

 

The high energy demands from micro-algal biomass drying, cell disruption and 

lipids extraction have led to interest in in-situ or direct trans-esterification, 

where the biomass is directly in contact with the alcohol and catalyst (Hidalgo 

et al., 2013, Velasquez-Orta et al., 2012), thus reducing the number of unit 

operations, simplifying the process and potentially reducing energy inputs 

(Rawat et al., 2013, Velasquez-Orta et al., 2012). Direct trans-esterification of 

oilseeds using an alkaline catalyst has a high tolerance for water (Velasquez-

Orta et al., 2012), but increasing the biomass water content decreases trans-

esterification efficiency (Hidalgo et al., 2013). The amount of methanol 

required for biodiesel production by in-situ trans-esterification is ‘extremely 
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high’ and will need to be reduced for direct trans-esterification to become 

economic (Velasquez-Orta et al., 2012). In-situ trans-esterification also faces 

energetic hurdles, due to the large volumes of water, solvents or reactant that 

need to be evaporated from the biomass, and these must be overcome if it is 

to be energetically viable (de Boer et al., 2012). 

 

Although the lipid content of micro-algae can be high this is not the case for all 

species and generally the production of lipids, as an energy storage 

compounds, occurs under nutrient stress where the growth rate is reduced. 

The NREL and others (Bhola et al., 2011, Illman et al., 2000) have shown a 

considerable reductions in algal yield under nutrient stress condition that 

promote high lipid content. Despite the higher lipid content , the actual lipid 

yield can be lower under nutrient stress than in nutrient replete conditions due 

to a much lower growth rate (Liu et al., 2013, Sheehan et al., 1998). 

Unfortunately not all micro-algal lipids are suitable for conversion to biodiesel 

by trans-esterification (Chisti, 2007). The presence of lipids other than 

triglyceride may require energy intensive pre-treatment steps before the 

alkaline trans-esterification (de Boer et al., 2012). 

 

A considerable number of Life Cycle Assessments (LCAs) have been carried out 

on the production of biodiesel and it has been concluded that the process may 

be marginal in terms of energy balance, global warming potential (GWP) and 

economics. Only in the best case scenarios was algal biodiesel found to be 

comparable to first generation biodiesel and algal biodiesel was not "really 

competitive under current feasibility assumptions" (Lardon et al., 2009). A 

reworking of the data from 6 LCAs, in what was termed a Meta-model of Algae 

Bio-Energy Life cycles (MABEL), found that the energy return on energy invested 

(EROI) ranged from one, no return on the energy invested to two, twice the 

energy invested (Liu et al., 2011). A recent extensive review and 

LCA using a Monte Carlo approach to estimate ranges of expected values 

found that nearly half of all the LCA results had an EROI of less than one 

(Figure 16)(Sills et al., 2012). The Sills’ (2012) study also showed that methane 

from anaerobic digestion of defatted algae is required for net gains in energy 

and must be an integral part of algal biodiesel production process to yield EROI 

values that are greater than one. 
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Figure 16 Energy Return on Energy Invested (EROI) values from published LCA 

studies (Sills et al., 2012) 

 

The anaerobic digestion of micro-algal biomass to produce biogas following 

lipid removal for biodiesel production has been suggested in order to reduce 

the cost of biodiesel production by over 40 % due to the use of biogas to 

power parts of the micro-algal biofuel process (Harun et al., 2011a). The partial 

extraction of energy from the algae in the form of biodiesel does not appear to 

be energetically or commercially viable on its own and anaerobic digestion 

appears vital to any efficient and economic process for producing biodiesel 

from algae (Delrue et al., 2012, Milledge, 2010a, Stephenson et al., 2010, 

Zamalloa et al., 2011). A study has shown that when the lipid content is below 

40 % the anaerobic digestion of the entire biomass without lipid extraction may 

be the optimal strategy for energy recovery (Sialve et al., 2009). The Sialve 

(2009) study contains errors and if lipid is digestible then energetically it is 

always better to digest algae (Heaven et al., 2011).  
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Micro-algal biodiesel production has been shown, in many studies, to produce 

negative net energy output and where there is a positive output it depends on 

technology that is not available on industrial scale and/or the exploitation of 

the defatted biomass to produce biogas from anaerobic digestion. Anaerobic 

digestion of the entire algal biomass is thus more energy efficient as it utilises 

the entire wet algal biomass and can exploit algae with a wide range of lipid 

contents (Milledge, 2010a). 

 Anaerobic digestion 2.4.9

 

The advantages of producing biogas from the anaerobic digestion of micro-

algae are that wet biomass can be used and there is the potential to exploit the 

entire organic biomass for energy production. Considerable research has been 

carried out on the anaerobic digestion of a variety of organic materials and 

some of the earliest studies on extracting bioenergy from micro-algae 

examined anaerobic digestion (Golueke et al., 1957). However relatively few 

studies have been carried on the anaerobic digestion of freshwater micro-algae 

and almost none on marine micro-algae (Gonzalez-Fernandez et al., 2012a, 

Zamalloa et al., 2011). Micro-algae have been successfully digested to produce 

methane at a concentration of 1 % dry weight, but higher concentrations are 

considered more practicable (Oswald, 1988). Anaerobic digestion may also 

allow the recycling of nutrients back to the micro-algal growth system (Singh 

and Olsen, 2011), reducing costs and embodied energy inputs, but concerns 

have been expressed about pigmentation of micro-algal digestate inhibiting 

light penetration if it is used in growth ponds (Oswald, 1988).  

 

The theoretical yield of biogas, calculated from the chemical composition of 

micro-algae using the "Buswell equation" (Buswell and Mueller, 1952, Symons 

and Buswell, 1933), can be high. The proportions of carbohydrates, proteins 

and lipids affect the potential of micro-algae as a substrate for anaerobic 

digestion (Park and Li, 2012) with lipid yielding higher volumes of biogas per 

gram of feed material than both carbohydrate and protein (Heaven et al., 2011, 

Weiland, 2010, Zamalloa et al., 2011). Practical yields from the anaerobic 

digestion of micro-algae are considerably below the theoretical maximum. The 

destruction of organic volatile solids from micro-algae was found to be only 60 

to 70 % of that found in raw sewage (Golueke et al., 1957). Methane yields 
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from the anaerobic digestion of micro-algae have been reported in the range of 

0.09 to 0.34 l g
-1

 of volatile solids (Gonzalez-Fernandez et al., 2012a, Zamalloa 

et al., 2011). There is considerable conjecture about the reason for the 

relatively low practical methane yields compared to the theoretical values. Is it; 

the cell wall protecting the contents of the cells from digestion, the relative 

high amount of cell wall to contents, the nature of the cell wall or cell contents?  

 

The low methane production rates from anaerobic digestion have been 

attributed to the resistance of the micro-algal cell wall to digestion even after 

death (Zamalloa et al., 2011). Micro-algal cells walls typically make up 13-15 % 

of the weight of the cell, but some species may contain up to 40 % (Tarchevsky 

and Marchenko, 1991). The largest variation of cell wall composition is found 

in micro-algae, as if "nature decided to conduct a vast experiment with algae to 

select from the numerous polysaccharides the one that suits a cell wall best" 

(Tarchevsky and Marchenko, 1991). The degree of polymerisation of cellulose 

and the diameter of cellulose fibres is higher in algae than bacteria and 

terrestrial plants (Klemm et al., 2005). Could the nature of micro-algal cellulose 

be a factor in low biogas yields? Others have suggested glycoproteins in the 

cell wall may be a possible factor in poor biogas yield from micro-algae as 

these are highly resistant to bacterial degradation. (Banks & Heaven private 

communication, 2012). The cell walls of micro-algae have been shown in many 

cases not to be a simple micro-fibre cellulose structure, but a complex 

structure comprised of several distinct layers, some of which form a highly 

ordered crystalline lattice (Roberts, 1974).  

 

The tough cell wall of some species of micro-algae may also prevent the 

contents being digested to produce biogas and the low conversion of micro-

algae to methane has been attributed to the resistance of intact micro-algal 

cells to bacterial invasion and destruction (Golueke et al., 1957) Rupturing the 

cell wall by thermal, chemical and mechanical methods prior to anaerobic 

digestion has been shown to improve methane yields (Park et al., 2011). 

Thermal pre-treatment of Scenedesmus biomass doubled its anaerobic 

biodegradability (Gonzalez-Fernandez et al., 2012b). However the energy 

required for breaking the cell wall will negatively impact on the energy balance 

unless more energy is released as additional methane than is used to fracture 

the cells. 
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The bacteria involved in the production of methane by anaerobic digestion are 

sensitive to the chemical composition of the feedstock in particular the carbon 

to nitrogen ratio of the substrates (Gonzalez-Fernandez et al., 2012a, Park et 

al., 2011, Samson and LeDuy, 1983). The low methane yield has been 

attributed to ammonia toxicity derived from high concentrations of protein 

found in many micro-algae (Golueke and Oswald, 1959, Park and Li, 2012, 

Samson and LeDuy, 1983). The co-digestion of organic nitrogen rich micro-

algae with low nitrogen/ high carbon substrates, such as sewage sludge or 

glycerol, has been found to produce a synergistic effect with methane yields 

higher than from either substrate (Gonzalez-Fernandez et al., 2012a, Samson 

and LeDuy, 1983). Methane yields of double that of micro-algal biomass alone 

have been achieved by co-digestion with low nitrogen wastes (Samson and 

LeDuy, 1983). 

 

One of the advantages of growing micro-algae for biofuel is that many species 

can be grown in salt water. Low salt concentrations can stimulate microbial 

growth, but high salt concentrations (≥10 gl
-1

) are known to inhibit anaerobic 

systems through an increase of osmotic pressure or dehydration of 

methanogenic micro-organisms (Hierholtzer and Akunna, 2012, Lefebvre and 

Moletta, 2006). The toxicity of salt is predominantly determined by the sodium 

cation and other light metal ions, such as potassium, have also been found to 

be toxic to methanogens at high levels (Chen et al., 2008). An optimal sodium 

concentration for mesophilic methanogens in waste treatment processes of 

230 mg Na l
-1

 has been recommended
 

(Chen et al., 2003). Mesophilic 

methanogenic activity is halved at 14 g Na l
-1

 (Chen et al., 2003, Ramakrishnan 

et al., 1998), the approximate level of sodium found in sea water (El-Dessouky 

and Ettouney, 2002). Anaerobic digesters can be acclimatised to higher salt 

levels if they are continuously exposed to gradually increasing salt 

concentration rather than salt shock (Lefebvre and Moletta, 2006). Adaptation 

of methanogens to high concentrations of sodium over prolonged periods of 

time can allow the anaerobic digestion of high salt concentration wet biomass 

with the sodium concentration to halve methanogenic activity increasing to 

37.4 g Na l
-1

 after acclimation (Chen et al., 2003). It may therefore be possible 

to produce biogas from micro-algae grown in sea water and research is being 
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undertaken at the University of Southampton on the effect of salt concentration 

on the anaerobic digestion of various micro-algae. 

 

Micro-algal biomass has shown its potential for the production of various 

biofuels, although it is clear that there are significant technologically hurdles 

to be overcome before micro-algal biofuel is energetically and commercially 

viable. It is probably too early, at the current stage of biofuel development, to 

definitively select which method or combinations of methods for exploiting 

energy from micro-algae will be commercial exploited. However anaerobic 

digestion is relatively simple, has the potential to exploit the entire organic 

carbon content of micro-algae and can utilise wet biomass. It is likely to play a 

leading role in combination with other methods and could be the major 

method of biofuel production from micro-algae. 

 Co-production and biorefineries 2.4.10

 

Current commercially viable exploitation of micro-algae products is limited to 

products other than fuel, and the immediate future for the commercialisation 

of micro-algae may be with non-fuel products (Milledge, 2011a, Milledge, 

2012a). However the lessons learned from non-fuel products, together with 

their potential for co-production with fuel, may lead to the more rapid 

commercial realisation of micro-algal biofuel. Micro-algal co-products "have 

potential to provide a ‘bridge’ while the economics of algal biofuels improve" 

(Hannon et al., 2010).  

 

The cultivation of micro-algae simply for biofuels may not be currently 

profitable and the micro-algal industry must take advantage of markets for 

additional high-value products such as ‘nutraceuticals’, pigments and vitamins 

(Hannon et al., 2010, Milledge, 2010a, Milledge, 2012b). Co-production of 

micro-algal bioenergy with high-value products is currently more economically 

viable than the production of just micro-algal biofuel alone (Jonker and Faaij, 

2013, Subhadra and Grinson, 2011). A recent economic model of the 

production of algal biofuel found that oil for biofuel production could 

represent a relatively small portion of algae related revenue opportunities 

(Brown, 2009).  
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The term ‘biorefinery’ has been used in the literature since the 1980s, and 

refers to the co-production of a spectrum of high value bio-based products 

(food, feed, nutraceuticals, pharmaceutical and chemicals) and energy (fuels, 

power, heat) from biomass (Gonzalez-Delgado and Kafarov, 2011, Olguin, 

2012, Taylor, 2008, Wageningen University, 2011). The biorefinery concept is 

an ‘emerging research field’ (Rawat et al., 2013) and in December 2009 the US 

Department of Energy announced a US$ 100 million grant for three 

organisations to research algae biorefineries (Singh and Ahluwalia, 2013). 

 

Biorefineries could allow the exploitation of the entire micro-algal biomass. 

Dunaliella salina is grown for the production of β-carotene (Milledge, 2011a) 

and is also a source of glycerol for potential use as biofuel and a green 

chemical feedstock. A recent study has concluded, however, that the 

production of glycerol for use as biofuel would be currently uneconomic 

without high value co-products (Harvey et al., 2012). The growth of Dunaliella 

could provide the biomass for a biorefinery. Laboratory studies suggest that 

Dunaliella tertiolecta could also be potentially used as a source; of high value 

lipids; extracellular polysaccharide, for polymer production; and glucose for 

bioethanol production (Geun Goo et al., 2013). This type of biorefinery, that 

produces a variety of products from a single biomass source, may be termed a 

vertical biorefinery (Milledge, 2013). Although biorefineries could improve the 

economics of biofuel production (Pires et al., 2012) they are likely to be energy 

intensive (Olguin, 2012, Rawat et al., 2013), and will involve increased energy 

inputs, process complexity and possibly reduce energy outputs. A biorefinery 

plant should operate sustainably with its energy met by biofuels produced 

(Cherubini, 2010). Despite increasing interest, however, it has yet to be 

established whether micro-algal biorefineries can produce more energy than is 

required by the processes within them. 

  

Although high value algal products may allow the commercialisation of algae in 

the short term, the immense potential scale of algal fuel production could 

result in the creation of such large quantities of algal non-fuel materials that 

the market price is dramatically reduced. Therefore, this study will concentrate 

on the maximisation of fuel production and minimisation of operational energy 

inputs. 
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 Conclusions 2.5

There is a wide range of combinations of growth, harvesting and energy 

extraction unit operations that could form a micro-algal biofuel production 

system, but as yet there is no successful economically viable commercial 

system producing biofuel. The literature review has shown that the 

overwhelming balance of the published information indicates that the energy 

inputs and costs of producing micro-algal biomass in open systems are lower 

than PBRs. One of the drawbacks of open systems is the difficulty of species 

control and contamination. The algal species that currently form the vast bulk 

of commercially-grown micro-algal biomass (i.e. Chlorella, Spirulina and 

Dunaliella) are grown in highly selective environments, which means that they 

can be grown in open air cultures and still remain relatively free of 

contamination by other algae. Another approach is to grow mixed micro-algal 

cultures that grow naturally in the local environment, recently referred to as 

"synthetic ecology" (Kazamia et al., 2012) or 'grow what grows'. This latter 

approach may not be suited to the production of biodiesel that exploits only 

triglycerides found in the micro-algae, as "synthetic ecology" may not yield 

high volumes of lipid; but may be a viable process when coupled to an energy 

extraction process, such as anaerobic digestion, that can potentially exploit the 

majority of organic materials in micro-algal biomass. A recent meeting 

organised by InCrops and EnAlgae in 2012 in Bury St Edmunds, titled "AD and 

Algae", highlighted the dearth of information on the anaerobic digestion of 

micro-algae, but also noted the complete lack of information on full process 

design and energy balances. Therefore this research will concentrate on 

assessment of the energy balance for micro-algal biofuel processes based on 

open raceway systems, with biogas production from anaerobic digestion of 

micro-algal biomass as the preferred fuel conversion technology.  

 

Harvesting of micro-algal biomass is a critical issue in the development of a 

commercially viable process for production of micro-algal biofuel due to the 

dilute nature of micro-algal suspension. The optimum post-harvest micro-algal 

concentration for anaerobic digestion may not be the optimum for the overall 

process. The research will examine changes in harvesting method and the 

degree of micro-algal concentration, or concentration factor, and their effects 

not only on harvesting energy requirements, but also on the downstream 



 

 104 

energy requirements for transfer and recycling together with the mixing and 

heat energy required by an anaerobic digester. 
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 Software evaluation 3.

 

Before commencing on the development of a tool for the assessment of energy 

balances, commercially available software packages were assessed for their 

potential suitability for this purpose. When flow-sheets consist of more than a 

few unit operations, using purpose-built software may be an effective solution 

in the production of mass and energy balances (Gosling, 2005). Specialist 

process flow-sheet software could allow the development not only of a mass 

and energy balance, but of a dynamic model that could describe the 

‘behaviour’ of the system over time. A previous review of process simulation 

and modelling for industrial bioprocessing suggested that Aspen (Aspen 

Technology Inc., Burlington, MA, USA and SuperPro (Intelligen, Scotch Plain, NJ, 

USA) are capable of producing mass and energy balances for flow-sheet 

simulations containing both continuous and batch processes (Gosling, 2005). 

UNISIM from Honeywell (Process Solutions, Honeywell, Phoenix, AZ, USA) has 

been used to evaluate 15 integrated processes including biodiesel and micro-

algae biomass production (Monteiro et al., 2010). It was concluded that 

SuperPro, Aspen, UNISIM together with Life Cycle Assessment (LCA) Software, 

which have been widely used for GHG and environmental impact assessment of 

algal biofuel, should be evaluated for their ability to produce a dynamic mass 

and energy balance for algal biofuel flow-sheets. 

 FP7 All-Gas project 3.1.1

 

The FP7 All-Gas project aims to produce biogas from the anaerobic digestion 

of algal biomass grown in open high rate ponds using nutrients from 

wastewater. Carbon dioxide is supplied from the combustion of local 

agricultural biomass with a proportion provided from upgrading or combustion 

of the micro-algal biogas (Banks et al., 2011a). The carbon needs of the system 

may also be partly supplied from pre-treatment of the wastewater by anaerobic 

digestion and the growth of bacteria on the residual organic carbon entering 

the micro-algal growth ponds. The process is a mixture of continuous and 

discontinuous (batch) processes. At the heart of the process are the open high 

rate algal growth ponds (HRAPs), with the outputs (algal biomass and oxygen) 

and required inputs (N, P and C) controlled by the photosynthetic growth and 
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respiration of the algae. The photosynthetic growth of the algae will, in 

nutrient-replete conditions (N, P and C), be controlled by the level of solar 

insolation and temperature and therefore will vary throughout the day and year 

and will be very different between night and day and winter and summer. 

Preliminary flow-sheets and mass balances (Figure 17) had been developed for 

the process by Aqualia SA and the University of Southampton and were used as 

the basis for software evaluation. The development of a dynamic model of the 

process flow-sheet, with respect to time, might allow; the identification and 

resolution of potential ‘conflicts’ between unit operations; the optimisation of 

the process; and the production of a comprehensive energy balance. It was 

decided to use the All-Gas flow-sheets as a test case for the suitability of the 

software. 

 

 

Figure 17 All-Gas initial flow-sheet. Courtesy of Aqualia SA. 

 Life Cycle Assessment software 3.1.2

 

There have been a number Life Cycle Assessments (LCAs) on algal biofuels 

production (Liu et al., 2011, Sills et al., 2012, Stephenson et al., 2010). 

SimaPro (SimaPro, Carshalton, UK) has been used to carry out a net energy 

analysis for the production of algal biogas (Razon and Tan, 2011) and is the 

most widely used LCA software (Simapro UK, 2011). Unfortunately, it is not 

60 m3/day 60 m3/day

600 m3/day 493 kg TSS/day 1973 l/d 548 l/d

338 kg CO2/h

9.7% v/v CO2 396 Kg CO2/h 97 kg CO2/h

2891 m3/h 11.4% v/v CO2

812236 kcal/h 180ºC 86785 kcal/h

226 kg DM/h 166.7 m3/h

1705 m3 air/h

5.0 m3 methane/h

58 kg ASH/d 240 m3/d

108 kg N/d

166.7 m3/h 1644 kg TSS algae/d

299 kgCO2/h 518 kg TSS bacter/d

4000 m3/day 323 m3/h 157 m3/h

900 mg COD/l 166.7 m3/h 333.3 m3/h

60 mg N/l

10 mg P/l 1705 m3/h 14.3 m3/h

51.4 m3 biogas/h 2054 kg TSS/d

31 kg CO2/h

0.9 m3/h 23 kg CO2/h

432 kg TSS/d 57.3 kg CO2/h

 x kg H2S/h?

802 m3 CH4/d

44.0 m3 biogas/h 12.1 m3/h

26 kg CO2/h

2.1 m3/h

100000 kcal/h 2054 kg TSS/d

3.0 m3/h

1459 kg TSS/d 347 l/h

122 kg TSS/h

 OPCION: Internal Biomass to Boiler
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AIR 

SEA WATER
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ALGAE
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WASTE WATER

CO2 bacteria production
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8 units HRAPs
WW. 8 ha.

EVAPORATION&
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Air with methane to combustion
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suitable for a mass balance, but it was suggested that Umberto (IFU Hamburg 

GmbH, Germany) may be capable of producing a dynamic mass balance 

(SimaPro private communication, 2011). On further investigation, however, it 

was established that while Umberto could be capable of producing a combined 

material and energy balance of the entire process system, it cannot provide a 

‘live’ or dynamic model (IFU Hamburg private communication, 2011).  

 

LCAs depend on modelling assumptions and this is a problem with a micro-

algal biofuel system where there is a lack of long-term full-scale operational 

data. Although it is important to distinguish between modelling assumptions 

and modelling errors (Clarens et al., 2011b) the assumptions used in many 

LCAs have been and can be challenged leading to a considerable degree of 

uncertainty in the validity of LCAs. 

 

Pfromm et al. (2011) has suggested that algal biofuel LCAs focus on materials 

rather than processes. They are essentially an inventory that lack the rigorous 

checks on data consistency offered by an engineering mass balance and the 

expansion of LCAs to energy balances therefore cannot succeed (Pfromm et al., 

2011). Although LCAs are an accepted methodology for assessing the potential 

of algal energy production systems (Razon and Tan, 2011), it appears that 

current LCA software is unlikely to produce a rigorous dynamic mass and 

energy balance model. 

 SuperPro software 3.1.3

 

SuperPro software is a flow-sheet modelling program that is claimed by the 

manufacture, Intelligen, as facilitating modelling, evaluation and optimisation 

of integrated processes in a wide range of industries including wastewater 

treatment. The University of Southampton has had some past experience of 

SuperPro and the evaluation of software for the production of a dynamic model 

for the FP7 All-Gas micro-algal biogas production began with SuperPro. An 

evaluation copy was downloaded from Intelligen, but was limited to only two 

unit operations. To evaluate SuperPro software a simple flow-sheet for the 

separation of micro-algal cells was used consisting of a settlement tank 

followed by a centrifuge.  
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An aspect of the SuperPro software is that it allows cells together with intra-

cellular and extra-cellular contents to be defined. The ability to model cells was 

thought to be valuable in subsequent unit operations, such as oil extraction, 

where cells may be disrupted and cell contents released and in particular allow 

the tracking of nutrients (N & P) for recycling. For the evaluation the 

parameters for the micro-algae were set to those of yeast, the nearest of the 

standard inputs to micro-algae, although cell size was increased. Problems 

were encountered with the software with the cell contents function, however; 

the algal suspension input was set with 0 % extra cellular content, but the 

output to the settler was changed to 100 % extra-cellular content, despite it 

being highly unlikely that there is complete cell disruption of algal or yeast 

cells within a settlement tank. It was recommended by Intelligen not to use the 

cell function (Intelligen private communication, 2011). 

 

The examination of SuperPro confirmed a previous review (Gosling, 2005) that, 

although SuperPro can produce mass balances for both continuous and batch 

processes, it is unable to produce a dynamic model. Intelligen confirmed that 

SuperPro cannot develop a fully dynamic model, but suggested that a dynamic 

model would be overkill for an algal biofuel process and that such a model 

would be difficult to interpret and make work reliably (Intelligen private 

communication, 2011). The Joint Bioenergy Institute in California (a US DOE 

Research Centre) is reported to be using SuperPro for multiple models of a 

micro-algal production process, rather than one dynamic model, to assess daily 

and seasonal variations in a batch reactor. 

 

SuperPro can produce excellent graphics and could be used to produce 

multiple mass balances of an algal process for night and day and a variety of 

seasons, but it was unable to develop a dynamic model and further 

investigation of the SuperPro software was halted. 

 UNISIM software 3.1.4

 

A copy of UNISIM Design was provided by Honeywell, Bracknell, Berkshire. It is 

described as intuitive and interactive process modelling software that enables 

the creation of steady-state and dynamic models for plant design, performance 

monitoring, troubleshooting and operational improvement and uses unit 
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operation models mainly from the oil and gas refining and chemical process 

industries (Honeywell, 2011). 

 

A section of the proposed FP7 All-Gas flow-sheet consisting of the methane 

stripper, biomass boiler and algal high rate growth pond (HRAP) or raceway 

was selected, and an outline model was developed using UNISIM for evaluation 

of the software (Figure 18). Discussions were then held with Honeywell to 

explore the applicability and limitations of the model. 

 

 

Figure 18 UNISIM flow-sheet of part of the proposed FP7 All-Gas Micro-algal 

biogas production plant 

 

After examination of the initial UNISIM flow-sheet, Honeywell commented that; 

"it is unusual kind of flow-sheet to be modelled within UNISIM Design and is 

innovative and challenging, involving unusual unit operations and components 

that are not among the default unit operations available" (Niemirowski, 

Honeywell private communication, 2011). UNISIM Design does not have all the 

unit operations required for FP7 All-Gas flow-sheet, but the user may create 

custom unit operations, property packages and kinetic reactions. 
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UNISIM, unlike SuperPro, does not have a "cell function", but the components 

of a fluid within a stream can be distributed among 3 phases; gas, liquid and 

solid. The modelling of an algal cell as complex of water, carbohydrate, 

proteins lipid and other organic and non-organic compounds would appear 

impractical. Algae could be modelled as a solid using an average chemical 

composition for algae, and this approach was applied to the woody biomass 

feed for the biomass generators using the chemical composition of cellulose 

((C
6

H
10

O
5

)
n

). Unfortunately, a problem was encountered as no combustion of the 

woody biomass occurred in the biomass boiler using the standard UNISIM fired 

heater unit operation model. The UNISIM operation manual supplied with 

software states, "the combustion reaction in the burner model of the fired 

heater performs pure hydrocarbon combustion calculations only". A simulated 

fuel containing elements other than C and H does not appear to run in 

standard fired boiler model and an alternative unit operation must be modelled. 

 

UNISIM appears to be capable of producing dynamic flow-sheet mass and 

energy balance models for the oil, gas and related industries using a standard 

suite of component materials and unit operations. It also is capable of 

customisation with the ability to produce additional customised unit operations. 

It was always envisioned that a customised model of the HRAP based on algal 

growth unit operation would need to be produced for UNISIM, but it was hoped 

that many of the unit operations surrounding the HRAP could be simulated 

using the standard options available. Unfortunately, from initial experience it 

would appear that a considerable number of unit operations will need to be 

developed in the customisation of UNISIM for an algal biofuel flow-sheet and 

this view is supported by Honeywell (Niemirowski, Honeywell private 

communication, 2011). Although UNISIM could be capable of producing 

dynamic mass and energy balances for an algal biofuel production process a 

very considerable amount of effort and time, greater than 3 years, could be 

needed to produce them and it was decided that Aspen should be evaluated 

before further time was spent on UNISIM. 

 Aspen Plus software 3.1.5

 

Aspen Plus is the most widely used commercial process simulation software 

(Jana, 2009). It appears capable of producing batch, continuous and dynamic 
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flow-sheet mass balances, but requires customisation for bioprocesses 

(Gosling, 2005). Custom unit operations can be generated using Excel 

workbooks or Fortran subroutines (Jana, 2009, Schefflan, 2011). A 

considerable database of potential process stream materials is available within 

Aspen. In a project to develop a physical property database for biofuel 

components for Aspen Plus, focusing on production of ethanol from 

lignocellulose, it was found, however, that many key components were not 

available in the standard Aspen database and many properties of biological 

materials needed for successful process simulation were not available 

anywhere (Wooley and Putsche, 1996). 

 

Aspen has been used for a variety of analyses of parts of processes for the 

production of bioenergy from micro-algae and other organic materials, but 

does not, as yet, appear to have been used for a dynamic model of an entire 

micro-algal biofuel flow-sheet. Aspen has been used for a techno-economic 

assessment for the production of hydrogen, methane and ethanol from potato 

processing waste and barley straw (Ljunggren, 2011) and for four studies on 

‘biodiesel’ production from micro-algae (Carlson et al., 2010, Davis et al., 2011, 

Peralta et al., 2010, Pokoo-Aikins et al., 2010). 

 

A senior design report has been carried out on Algae to Alkanes, at the 

University of Pennsylvania. The study looked at growth, harvesting and oil 

extraction; however Aspen was only used for the ‘catalytic hydro-treatment’ of 

triglycerides to produce n-alkanes for blending in mineral diesel (Carlson et al., 

2010). Another study used Aspen Plus to assess the economic impact of oil 

content, oil conversion and selling prices of glycerol and biodiesel from the 

alkali trans-esterification of algal oil from heterotrophic growth of Chlorella, 

but focused on the downstream processing following micro-algal growth, 

harvesting and oil extraction (Pokoo-Aikins et al., 2010). Some thermodynamic 

data was available in Aspen for fatty acids, but some crucial properties were 

not present for fatty acids and data for most components was not present. 

Data and properties had to be entered using the user definitions or estimated 

using Aspen Plus from the molecular structure, although the program does not 

automatically distinguish between cis and trans compounds. Little information 

is given on the production of mass and energy balances or the ability of Aspen 

Plus to produce dynamic models. Aspen Plus has also been used for an exergy 
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analysis for the trans-esterification, methanol recovery, washing and FAME 

production in the conversion of Chlorella algal oil to biodiesel with the physical 

and chemical exergy of each stream being "calculated with the help of the 

thermodynamic properties calculated by Aspen Plus" (Peralta et al., 2010) 

 

A detailed techno-economic analysis of the growth of autotrophic algae, in 

both open ponds and photo-bioreactors, for biofuel production has been 

carried out using Aspen Plus (Davis et al., 2011). Aspen software was used; "in 

order to obtain more accurate mass balance information than is typically 

assumed", to estimate key requirements (such as hydrogen demand in hydro-

treating the algal oil to produce biodiesel) and to estimate the power 

requirements of the process. Although this study indicates that accurate mass 

balances can be produced from Aspen for algal fuel process flow-sheets, it 

does not comment on the ability of the software to produce dynamic models, 

but does add a caveat concerning process power calculations. Additional 

assumptions had to be made for estimation of the power required by the 

process which did not affect the mass balance, but "the data produced should 

be viewed as a qualitative estimate rather than an absolute quantitative basis" 

(Davis et al., 2011). 

 

There have recent reports that a complete non-dynamic techno-economic 

model has been developed for production of liquid biofuel from micro-algae, 

but no details of the model have been published and it is not freely available 

for evaluation and adaption (Aspen Technology Inc., 2012, Dunlop, 2012). The 

model took over three years to develop and a dynamic energy balance model, 

although considered possible, would take considerably longer (Dunlop private 

communication, 2012). 

 

Evaluation of Aspen Plus to model micro-algal biofuel flow-sheets was carried 

out based on the section of the proposed FP7 All-Gas flow-sheet consisting of 

the methane stripper, biomass boiler and algal high rate growth pond also 

used to evaluate UNISIM. The evaluation indicated that, as with UNISIM, Aspen 

is capable of producing dynamic mass and energy balances, but much of the 

data and many of the unit operations required for micro-algal biofuel 

production are not available within the program. Some of the unit operations 

would need modification and adaption to be used: for example, the biomass 
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burner model produced heat output, but no carbon dioxide and an additional 

model would need to be added to produce the combustion products. 

 

Aspen Plus may be capable of producing dynamic mass and energy balances 

for an entire algal biofuel production process. However, the production of a 

dynamic model for a complete flow-sheet is probably currently impractical. 

Work as part of another project at the University of Southampton using Aspen 

Plus to model part of a micro-algal biofuel process, anaerobic digestion, rather 

than a full dynamic model of an entire micro-algal biofuel process has 

confirmed the difficulties of producing a functioning steady state model for 

even one part of a micro-algal biofuel process and the need for more data. 

 Pinch analysis 3.1.6

 

Pinch analysis has been used successfully in process optimisation for over 30 

years, initially for the efficient use of energy for heating and cooling and 

subsequently for reducing water and hydrogen usage (Klemes et al., 2010, 

Knopf, 2011, Miller et al., 2010). When heating and cooling curves of a process 

are plotted the point where the two curves are at their closest is known as the 

‘pinch’ and defines the minimum rate of heat exchange. There are two process 

design problems in bio-chemical processes; unit operation design and the 

design of the whole system. Pinch analysis addresses the whole system with 

the application of targets and begins with the most constrained point in the 

network or pinch (Kemp, 2007). 

 

Pinch analysis has been used to analyse the process streams that are available 

for thermal integration and energy consumption optimisation of bioethanol 

production process from sugarcane juice (Dias et al., 2009). A pinch analysis 

has also been carried out to optimise energy and water demands for ethanol 

from corn (Franceschin et al., 2008). There currently appears to be very little 

reported use of pinch analysis for parts of a micro-algal biofuel process and 

none for a complete process from growth of micro-algae to biofuel production. 

Pinch analysis has been used to optimise heat transfer integration in the trans-

esterification of micro-algal oil in a model using Aspen software and simulated 

potential micro-algal oil based on nine triglycerides and fatty acids (Sanchez et 

al., 2011). 
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Carbon Emissions Pinch Analysis has been developed from ‘traditional’ pinch 

analysis for optimisation of the power generation mix based on 

demand/emissions targeting and has been further extended to include carbon 

capture and storage (Atkins et al., 2010, Shenoy and Shenoy, 2012). The use of 

a novel carbon pinch analysis may be useful in examining and optimising use 

of carbon dioxide and the conversion of inorganic to organic carbon and 

organic carbon to carbon dioxide in a micro-algal biofuel production process 

(Milledge, 2012a). 

 

Pinch analysis cannot produce energy balances, but could be useful in 

optimising heat transfer and carbon and water usage; however it is probably 

not appropriate at this early stage of micro-algal biofuel process development.  

 Conclusions 3.1.7

 

UNISIM and Aspen Plus may be capable of producing dynamic mass and energy 

balances for an entire algal biofuel production process. However, the 

production of a dynamic model for a complete flow-sheet, from either software, 

for micro-algal biofuel, although innovative and challenging, is probably 

currently impractical. A very considerable amount of further effort and time 

(greater than 3 years) will be needed to produce algal biofuel dynamic models 

as many unit operations and components are not among the defaults available 

in either UNISIM or Aspen Plus. The lack of long-term full-scale operational data 

for micro-algal biofuel production may also require a large number of 

modelling assumptions for each unit operation within the processes, leading to 

a model that is at best easily criticised and probably inaccurate.  

 

Pinch analysis, although useful for the optimisation of heat and water usage, 

cannot produce energy balances. There have been a limited number of energy 

balance assessments of micro-algal biofuel production and a greater number 

of LCAs that have some element of energy balance assessment, but these 

generally lack the rigor of an engineering mass and energy balance and none 

have assessed the interaction of growth system, harvesting and biomass 

exploitation on operational energies and net recovered energy.  
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There is currently no ready-made platform that can be used to produce an 

energy balance model for micro-algal biofuel, and there thus is an overriding 

need to develop a simple fundamental energy balance model of the micro-algal 

biofuel process. As noted at the end of Chapter 2, the proposed model should 

focus on open raceway ponds and anaerobic digestion; the following chapters 

described the process of development of the model and the results of scenario 

analysis carried out with it.  
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 Initial investigations 4.

As a preparatory step in the development of an algal biofuel energy balance 

model, initial investigations were carried out to establish the algal biomass and 

oil growth yields as a basis for the estimation of maximum theoretical and 

‘achievable’ yields; and to define the operational energy returns on 

paddlewheel mixing in a raceway. 

 Micro-algal yield 4.1

Many authors believe that the productivity of micro-algal systems could 

potentially exceed that of land-based agriculture (Chisti, 2007, Rawat et al., 

2013, Sheehan et al., 1998), but as early as the 1950s there were complaints 

of ‘far-fetched estimates’ (Tamiya, 1957) and very optimistic assessments of 

potential algal production have continued to appear. It has been suggested 

that "some proponents of algae mass culture would appear to go far beyond 

exaggeration into the realms of science fantasy" (Walker, 2009). A recent 

report on algal research in the UK has suggested unrealistic claims threaten 

the credibility of algal biofuels (Schlarb-Ridley, 2011). It thus appears vital for 

any energy assessment of micro-algal biofuel that the maximum and potential 

operational micro-algal yields are established. 

 Photosynthesis and photosynthetic efficiency 4.1.1

 

In autotrophic micro-algae, energy from solar radiation is converted into stored 

biomass by photosynthesis. Not all of the solar energy arriving at the cell can 

be used in photosynthesis. The photosynthetic efficiency (PE) is the percentage 

fraction of total light energy (solar insolation) converted into chemical energy 

(higher heating value (HHV) of biomass) during photosynthesis by algae or 

plants. Only light within the wavelength range of 400 to 700 nm 

(photosynthetically active radiation, PAR) corresponding to ~45 % of total solar 

energy can be utilised by plants, (FAO, 1997, Goldman, 1979b, Weyer et al., 

2010).  

 

Fixation, the process by which photosynthetic organisms convert carbon 

dioxide into organic compounds, has a minimum quantum requirement of 

between eight and ten photons of PAR to fix a CO
2

 molecule (Brennan and 
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Owende, 2010, Kruse et al., 2005, Williams and Laurens, 2010), although over 

twelve photons are required to produce complex organic molecules (Wilhelm 

and Jakob, 2011). 1W m
-2

 of PAR is equivalent to 4.56 µmol
 

m
-2

 of PAR photons 

(Thimijan and Heins, 1983) and therefore 1 mol
 

m
-2

 is equivalent to 220 kJ m
-2

. 

If eight photons are required to fix one atom of carbon then eight moles of 

PAR photons are required to fix one mole of carbon, equivalent to 1760 kJ of 

energy (8 * 220 kJ).  

 

Photosynthesis can be simplified by regarding it as two reactants (carbon 

dioxide and water) and two products (glucose and oxygen) (Section 2.2.3). Six 

moles of carbon are required to produce one mole of glucose which has an 

enthalpy of combustion, higher heating value (HHV) or calorific value, of 

2805 kJ (Wooley and Putsche, 1996). It requires 10560 kJ (6*1760 kJ) of energy 

from PAR to carry out the conversion via the photosynthesis. The maximum 

utilisation of PAR is therefore only 26.5 % (2805 kJ/10560 kJ). The theoretical 

maximum efficiency of total solar energy conversion by photosynthesis is 

therefore 11.9 % (45 % PAR in Solar radiation * 26.5 %). Other authors have 

suggested values of 12.4 % (Tredici, 2010), 11.7 % (Williams and Laurens, 2010) 

and 11 % (FAO, 1997) for the maximum theoretical photosynthetic efficiency 

(PE), based on similar calculations. 

 

In practice, the photosynthetic efficiency (PE) observed in the field may be 

further decreased by factors such as: poor absorption of sunlight due to its 

reflection; respiration; and the need for optimal solar radiation levels (Tredici, 

2010, Weyer et al., 2010, Williams and Laurens, 2010). Although micro-algae 

are often said to be more photosynthetically efficient than land plants (Wilhelm 

and Jakob, 2011) it is generally agreed there is little or no difference in the 

maximum efficiency (Tredici, 2010). If algal biomass yields are higher this it is 

a result of: a) every micro-algal cell being capable of photosynthetic activity, 

unlike terrestrial plants (Chisti, 2010); b) the lack of "waste" (no roots, stem or 

leaves that are not the target material); c) the more intimate contact between 

the algal cells and their nutrient medium (Tredici, 2010, Walker, 2009, Williams 

and Laurens, 2010). Sugarcane has been reported to achieve up to 8 % 

photosynthetic efficiency, but generally most land plants achieve 1 % or less 

(Kruse and Hankamer, 2010, Packer, 2009).  
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The conversion efficiency of photosynthesis can be compared with that of 

other light-based energy systems. Photo-voltaic cells can have conversion 

efficiencies of over 30 % (Green et al., 2011, NREL, 2011, Stephenson et al., 

2011), with commercial systems having efficiencies of 10-22 % (Twidell and 

Weir, 2006) and experimental organic systems having an efficiency over 8 % 

(Green et al., 2011, NREL, 2011). Photosynthesis has the advantage that it can 

synthesise high energy molecules for liquid fuels. 

 Solar insolation 4.1.2

 

The solar insolation or solar energy reaching the earth surface varies with 

latitude and local climate conditions, as illustrated in Figure 19. 

 

 

Figure 19 Total annual solar insolation. Courtesy METEOTEST 

www.meteonorm.com 

 

In areas commonly considered suitable for commercial growth of micro-algae, 

such as the south-western USA (Sheehan et al., 1998), southern Spain (Banks et 

al., 2011a), Israel (Ben-Amotz, 2008a) or costal Namibia (Harvey et al., 2012, 

Milledge, 2013), solar energy reaching the ground is approximately 

2000 kWh m
-2 

year
-1 

(Maryland, 2007, Meteotest, 2009, Ministry of Environment 

and Tourism Namibia, 2002, NASA, 2009, NREL, 2009). Levels in Southern 

England are about 50 % of this, and the maximum in places such as north-west 

Australia and central Sahara, is of the order of 25 % higher.  

 

Using an annual total solar insolation of 2000 kWh m
-2 

year
-1

 typical of areas 

suggested for micro-algal biofuel production, and a maximum 11 % efficiency 
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of solar energy conversion by photosynthesis, a potential maximum production 

biomass energy can be calculated as 220 kWh year
-1

. 

 Micro-algal calorific value and calculated biomass yield 4.1.3

 

To estimate the maximum micro-algal biomass yield the calorific value of the 

biomass must be established. The potential lipid yield is also of interest for 

production of biodiesel, the focus of most the research on micro-algae (Chisti, 

2007, Sheehan et al., 1998, Sills et al., 2012) (Section 2.4.8). The calorific value 

of food products can be estimated from the typical calorific values of 

carbohydrate, protein and lipid (Merrill and Watts, 1955). A similar simplified 

approach could thus be used to estimate the calorific value of micro-algae for a 

range of lipid contents as shown in the following paragraphs.  

A typical calorific value for carbohydrate is 4.9 kWh kg
1

 and for lipid is 

10.9 kWh kg
1

 with value for protein approximately similar to that of 

carbohydrate (Merrill and Watts, 1955, Platt and Irwin, 1973). Based on the 

above values the calorific value of algae for a range of oil contents (10 to 90 %) 

was calculated. Using the calculated calorific values of the micro-algae, the 

potential caloric value of biomass derived from the photosynthetic efficiency 

(11 %) and solar insolation it is possible to estimate the maximum yields of 

micro-algal biomass and oil. The same approach could be used with alternative 

calorific value data such as that generated from typical empirical formulae 

using the Du Long equation (IFRF. International Flame Research Foundation, 

2004) (Equation 13).  

 Results and discussion 4.1.4

 

Table 7 shows calculated micro-algal biomass and oil yields for a range of oil 

contents (10-90 %) at a solar insulation of 2000 kWh m
-2

 year
-1

 the level typical 

of the south-west USA, Spain, south-west Africa, western Australia and many 

other suggested micro-algal growth locations.  

 Calorific value of micro-algae 4.1.4.1

 

An estimated calorific value for algae with 20 % oil content is 6.0 kWh kg
-1

. This 

is in agreement with: 
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a. the calorific values of marine algae of 4.16 - 6.36 kWh kg
-1 

(Paine 

and Vadas, 1969) 

b. a range of reported literature values of 20 - 23.75 kJ g
-1 

(5.56 -
 

6.6 kWh kg
-1

) for algae with an average lipid content of up to 20 % 

(Tredici, 2010, Weyer et al., 2010) 

c. a reported calorific value of Chlorella at 6.3 kWh kg
-1 

(Goldman, 

1979b). 

 

The value from Table 7 for 50 % oil content algae of 7.9 kWh kg
-1

 is in good 

agreement with the 26.9 kJ g
-1 

(7.5 kWh kg
-1

) calculated for 50 % oil content 

algae Nannochloropsis (Weyer et al., 2010). 

 

Table 7 Calculated maximum theoretical algal biomass and oil yields 

Algae oil 

Content 

Calorific 

value 

Yield Algae Yield Algae Yield Algal Oil 

  kWh kg
-1

 Tonnes Ha
-1

 

year
-1 

g m
-2 

day
-1 

Tonnes Ha
-1

 

year
-1

 

10% 5.5 401 110 40 

20% 6.0 361 99 72 

30% 6.7 328 90 99 

40% 7.3 301 83 120 

50% 7.9 278 76 139 

60% 8.5 258 71 155 

70% 9.1 241 66 169 

80% 9.8 226 62 181 

90% 10.4 213 58 192 

 

 Maximum theoretical micro-algal biomass yield 4.1.4.2

 

Maximum theoretical algal dry biomass yield was estimated at 401 tonnes ha
-1

 

year
-1

 or a daily average of 110 g m
-2 

day
-1

 (Table 7) for10 % oil content, but 

algae with negligible oil content could have an estimated maximum yield of 

123 g m
-2 

day
-1

. 
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Grobbelaar (2009b) (2010) calculated a maximum algal biomass dry weight 

yield of 179 g m
-2 

day
-1 

assuming 40 % carbon content of the VS and 1104 µmol 

quanta m
-2 

s
-1

 of solar radiation reaching the earth’s surface over a 12 hour 

diurnal cycle (equivalent to 2482 kWh m
-2 

year
-1

). The carbon content is low. 

The carbon content of glucose is 40 %. and its calorific value is 4.3 kWh kg
-1

, 

(Merrill and Watts, 1955, Wooley and Putsche, 1996). If the calorific value of 

glucose is assumed for 40 % carbon content algae a yield of 140 g m
-2 

day
-1

 can 

be calculated (in the same way as the data in Table 7 was calculated), but if 

adjusted for the higher solar insolation (equivalent to 2482 kWh m
-2 

year
-1

) 

(Grobbelaar, 2009b) the result is 174 g m
-2 

day
-1

. Although reducing the 

calorific value of algae to that of glucose increases the maximum calculated 

yield, and into agreement with that calculated by Grobbelaar (2009), the low 

carbon content of 40 % is not realistic and leads to an overestimation of 

maximum yield. 

 

A typical carbon content of 50 % has been suggested for micro-algae 

(Aquafuels, 2011, Chisti, 2007) and a carbon content of 59 % has been 

calculated from a suggested stoichiochemistry of algal growth (Buhr and Miller, 

1983). The CE-QUAL-W2 water quality model gives a range of reported 

literature values for micro-algae carbon content between 46 and 56 % (Cole 

and Wells, 1995). The carbon content as a percentage of algal VS has been 

calculated as 53 % for low lipid content algae and 60 % for high lipid content 

algae (Williams and Laurens, 2010) and measured at 51 and 56 % for 

Chlorophyceae (green micro-algae) (Ketchum and Redfield, 1949). The typical 

carbon contents of algal carbohydrate, protein and lipid are: 44 %, 46 % and 

77 % based on a review of reported results (Heaven et al., 2011). Carbon 

content and calorific value increase with increasing lipid content and it can be 

estimated using stoichiometry that algae with oil content of 20 % would have a 

carbon content of ~50 %.  

 

Williams and Laurens (2010) estimated the dry biomass yield of algae at a 

range of latitudes, based on an overall photosynthetic efficiency (PE) of 10 %, 

reduced from 12 % to allow for respiration. For algae with an oil content of 25 % 

and calorific value of 24.7 kJ g
-1

 (6.9 kWh kg
-1

), estimated annual yields were 

approximately 300 tonne ha
-1 

year
-1

 at latitude 30° N (corresponding 

approximately to the south-west USA). Daily rates varied from 50 g m
-2 

day
-1

 in 
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winter to 117 g m
-2 

day
-1

 in mid-summer. When corrected for the lower 

photosynthetic efficiency and higher estimated calorific value this result is 

similar to those in Table 7. 

 Maximum theoretical micro-algal oil yield 4.1.4.3

 

A figure for algal oil production of 324 tonne ha
-1

 year
-1

 (196 g m
-2 

day
-1

) was 

calculated for the theoretical best case growth of algae with a 50 % oil content 

(Weyer et al., 2010), but a median literature calorific value of 21.9 kJ g
-1

 

(6.1 kWh kg
-1

) was used that significantly underestimate the calorific value of 

50 % oil content algae. This together with very high solar insolation value of 

11616 MJ m
-2 

year
-1

(3227 kWh m
-2 

year
-1

) result in a significant overestimate of 

potential oil yield. Zemke et al. (2010) calculated a maximum yield based on 

the assumption that the algal cell consisted entirely of triglyceride and 

obtained a value of 58 g m
-2 

day
-1

, in close agreement with the 90 % oil content 

algae calculated in Table 7 . 

 Potential achievable micro-algal biomass and oil yield 4.1.4.4

 

Realistic achievable annual average daily yields are substantially lower than the 

calculated theoretical maximum (Milledge, 2010b). An early review of the 

growth of algae found yields of 5 - 21 g m
-2

 day
-1

 with photosynthetic 

efficiencies of between 1.2 - 3.2 % and suggested that 20 - 28 g m
-2

 day
-1

 is 

achievable in open algal growth systems (Tamiya, 1957). Other reviews, 

summarised in Table 8, have found algal yields ranging from 3 - 30 g m
-2 

day
-1

 

and suggested achievable yields of 20 - 30 g m
-2

 day
-1

.
 

Yields of Spirulina from 

commercial open ponds for nutritional supplements are reported between 3 – 

8 g m
-2

 day
-1

 equivalent to a photosynthetic efficiency of 0.25 % - 0.75 % 

(Reijnders, 2009). 

 

The NREL in its extensive study reported single day productivities as high as 

50  g m
-2

 day
-1

, (equivalent to ~5% of overall solar radiation energy), but 

continuous production levels were substantially below this level with biomass 

productivities equivalent to a total solar energy conversion efficiency of about 

2 % (Sheehan et al., 1998). Seambiotic in Israel have reported yields of 

20 g m
-2 

day
-1

 equivalent to 73 tonne ha
1

 year
-1

 (Ben-Amotz, 2008a) and Auburn 

University also suggested economically practical rates of 20 g m
-2 

day
-1

 for the 
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south-eastern region of the USA (Putt, 2007),in both cases probably of the 

order of 2 - 2.5 % total solar energy conversion efficiency. Other published 

experimental data (Table 8) has shown growth rates between 2 - 35 g m
-2 

day
-1 

and an overall photosynthetic efficiency (PE) of 2.8 % for the growth of 

Chlorella in an open air lift photo-bioreactor (Strik et al., 2008). 

 

Table 8 Algal dry weight yields and photosynthetic efficiencies from published 

sources 

Reviews 

Yield 

g m
-2 

day
-1

 

Photosynthetic 

Efficiency  

% 

Suggested 

Achievable Yield 

g m
-2 

day
-1

 

Reference 

5-21 1.2 -3 20-28 (Tamiya, 1957) 

15-25 0.25 30 (Goldman, 1979a) 

3-8   (Reijnders, 2009) 

  20 (Brune et al., 2009) 

10-40   (Singh and Olsen, 2011) 

Published Experimental Data 

Yield 

g m
-2 

day
-1

 

Photosynthetic 

Efficiency  

% 

Suggested 

Achievable Yield 

g m
-2 

day
-1

 

Reference 

25 -29   (Johnson et al., 1988) 

16 1.1 – 3.15 20 (Weissman et al., 1989) 

15   (Laws and Berning, 

1991) 

16-35   (Moheimani and 

Borowitzka, 2006) 

 2.3  (Bosma et al., 2007) 

 2.8  (Strik et al., 2008) 

 

As noted above the maximum theoretical photosynthetic efficiency is around 

11 %, but losses from reflection, photo-respiration, respiration and photo-

saturation reduce the overall value to 5 - 6 % (Tredici, 2010, Walker, 2009, 

Williams and Laurens, 2010). Photons of different wavelengths have different 

energy contents and photosynthesis is unable to use the additional energy in 

blue light relative to red light, resulting in a loss of 6.6 % of the available 
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energy in PAR (Martinez, 1996, Stephenson et al., 2011). Although yields based 

on a photosynthetic efficiency of 5 % are possible, the published data suggest 

that current practical photosynthetic efficiencies for the growth of micro- algae 

are 2 to 3 %. In land plants grown for biofuels a photosynthetic efficiency of 1 % 

is considered to be the best currently achieved in commercial production, but a 

doubling to 2 % on a large scale could reasonably be aspired to in the future 

(Walker, 2009). It would appear to be unjustified to use algal yield data based 

on photosynthetic efficiencies above 5 % for energy balance, techno-economic 

or life cycle assessment models, and a photosynthetic efficiency of 2 - 3 % 

appears more appropriate. Other sources indicate that it is now becoming 

generally accepted that the upper practical limit for micro-algal overall 

photosynthetic efficiency (PE) is 3% (Ben-Amotz, 2013). Recalculation of the 

data in Table 7 for a photosynthetic efficiency of 2.5 % and a solar insolation of 

2000 kWh m
-2

 year
-1

 at micro-algae oil contents of 10- 30 % gives average daily 

micro-algal dry biomass yields of 20 - 25 g m
-2 

day
-1

 and this would appear to 

be a realistic yield for assessment of output in algal growth system models. 

Micro-algal yields in temperate climates, such as SE UK, for the same 

photosynthetic efficiency will be half of that of areas with solar insolation 2000 

kWh m
-2

 year
-1

. 

 Conclusions 4.1.5

 

The simple calculation used in Table 7 allows calculation of maximum 

theoretical dry algal biomass and oil yields that can be used to counter some 

of the extreme yield values suggested in the ‘grey literature’. It takes into 

account the increase in calorific value with increasing oil content, unlike other 

studies such as Weyer et al. (2010). By reducing the maximum photosynthetic 

efficiency to take account of losses, such as photo-respiration, respiration and 

photo-saturation, it can be used to produce a realistic, practical or pragmatic 

yield, and by varying the value for solar insolation it can be adapted for a wide 

range of locations. 

 

The literature appears to indicate that the maximum realistic or achievable 

overall photosynthetic efficiency is 3 %. The method of calculation used, 

however, does not make allowances for the additional energy losses in the 

light independent reactions in the algal cell to produce complex carbohydrates, 
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proteins and lipids, or the reduced growth rates that are commonly found 

under nutrient stress. Further reductions below the pragmatic overall 

photosynthetic efficiency of 3% should be made in setting micro-algal yield 

targets for oil contents above ~30 % lipid to adjust for the reduced growth rate 

that occurs when nutrient stress is used to promotes lipid accumulation. 

 

The estimation of yields could be further improved by the use of separate 

calorific values for protein and carbohydrate, and of calorific values based on 

the chemical composition of micro-algal components rather than typical food 

component values. These improvements will be integrated into the final energy 

model. 

 

The establishment of maximum and realistic algal yields allows an energy 

balance and an energy return over operational energy invested (EROOI) to be 

postulated for individual growth systems, algal biofuel process operations and 

proposed complete algal biofuel production systems. Algal yield and energy 

contents figures will also permit the setting of appropriate input energy targets 

for processes operations.  

 Operational energy returns on paddlewheel mixing 4.2

Mixing in algal raceways is normally achieved by paddlewheels (Section 2.2.3), 

but how much energy of the potential calorific yield of micro-algae is used to 

maintain fluid flow?  

 Energy return on operational energy investment EROOI 4.2.1

 

Energy return on energy investment (EROEI or EROI) is the ratio of the energy 

produced compared to the amount of energy invested in its production. 

However as previously discussed (Section 1.2) problems arise in deciding which 

inputs and outputs count.  

 

It is often unclear in the literature what has been included in a particular 

calculation. Reported EROIs often exclude the embodied energy in process 

equipment, but the embodied energy in the equipment does not appear to 

have been reported as major factor in the production of micro-algal biofuels. 

The embodied energy within process equipment is not considered in the 
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energy balances of this work. The major energy inputs in the production of 

micro-algal biofuel are operational energy and the embodied energy of 

nutrients (Aquafuels, 2011). The use of low embedded energy sources of 

water, nutrients and CO
2

, such as wastewater and flue gas have been assumed 

through-out. The embodied energy of materials has been excluded from the 

energy balances calculated subsequently unless specifically mentioned in any 

results such as that for flocculation harvesting (Section 6.9). 

 

The term energy return on operational energy invested (EROOI) is ratio of the 

energy output to the operational energy input. The output will be the HHV of 

the biomass or where biogas is the end product the HHV of the methane in the 

estimated biogas production. The input will be the operational energy 

requirement, heat and electricity, of the process equipment. EROOI is used 

throughout this section and subsequent sections to measure energetic viability 

and net energy return. 

 Basis of calculation 4.2.2

 

Section 4.1 indicated that a pragmatic yield is 25 g m
-2 

day
-1

 for 20 % lipid 

micro-algal biomass having a calorific value of 6.0 kWh kg
-1

. The total potential 

energy produced per day in micro-algal biomass is therefore 

0.15 kWh m
-2

 day
-1

.  

 

The total hydraulic power required to move a micro-algal suspension around a 

raceway can be calculated from the head losses as previously discussed in 

Section 2.2.2.3 together with Sections 2.2.2.6 & 2.2.4 

 Results and discussion 4.2.3

 

Table 9 shows the estimated head losses in lined and unlined raceways of 

different dimensions based on Equation 3, 7 & 10 and assuming a friction 

factor of 0.01 for lined and 0.02 for unlined. 
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Table 9 Head losses in lined and unlined raceways 
a

. 

    Head loss m 

  

Velocity 

m s-
1

 0.15 0.3 

  

Friction 

Factor 0.01 0.02 0.01 0.02 

Raceway Dimension  Area m
2

         

Width / Straight Length  w*2L + πw
2

         

1m / 50 m 103 0.010 0.016 0.040 0.065 

10 / 100 m 2314 0.010 0.018 0.041 0.070 

20 m / 200 m 9267 0.013 0.026 0.050 0.106 

a

 Calculated from Equations 3, 7 & 10 

 

The head loss in lined raceways is approximately half that of unlined, halving 

the power and energy required for maintaining fluid flow within a raceway. 

Liners, therefore, are valuable in reducing raceway operational energy in 

addition to reducing seepage, improving cleanability and reduced water 

clouding problems due to the suspension of soil particles (Section 2.2.1). 

 

For a pilot-scale raceway with a smooth liner surface, of the type used in Spain 

by the University of Southampton (Manning friction factor 0.01, 1 m wide, 

0.3 m deep, with straights 50 m long and a mean fluid velocity of 0.3 ms
-1

) a 

hydraulic power requirement of 35 W can be calculated (Milledge, 2011b). If a 

raceway is mixed for 24 hours the hydraulic energy required is 0.84 kWh day
-1

. 

The hydraulic power required to mix the raceway is thus over 5 % of the total 

energy available in the biomass production of 25 g m
-2 

day
-1

. Typically, quoted 

paddlewheel efficiencies are 10 to 20 %, and therefore, from one quarter to 

over half of the total potential higher heating value of the algal biomass could 

be used in mixing such a raceway. Optimised paddlewheels can have higher 

efficiencies, but a 40 % efficient paddlewheel would still use the equivalent 13 % 

of the energy in algal biomass to mix a small raceway. 

 

Table 10 shows the calculated paddlewheel energy (assuming 40% overall 

efficiency), expressed as a percentage of micro-algal biomass energy content 

(based on a yield of 25 g m
-2 

day
-1

 and a calorific value of 6.0 kWh kg
-1

 for 

various size lined raceways at fluid velocities of 0.1 m s
-1

 and 0.3 m s
-1

.  
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Table 10 Paddlewheel energy consumption as percentage of micro-algal 

biomass calorific value 

 

   

Paddlewheel Energy as % of Algal Calorific 

Value 

  

Velocity 

m s
-1

 0.15 0.3 

Raceway Dimensions m Area m
2

     

Width / Straight Length  

 

    

1 m / 50 m 103 1.70% 13.50% 

10 m / 100 m 2314 0.70% 6.20% 

20 m / 200 m 9267 0.50% 3.80% 

 

Larger raceways
 

give a better energy return on mixing investment and reducing 

the fluid velocity also significantly improves energy return. The lower mixing 

energy requirement as a percentage of the potential micro-algal biomass 

energy yield in larger ponds compared to smaller ones is a result of the higher 

proportion of straight sections with a relatively low head loss. The eight-fold 

reduction in power requirement from halving of fluid velocity is due to 

hydraulic power being a function of the cube of fluid velocity.  

 

The results in Table 10 are in agreement with the recalculated experimental 

data from Green et al. (1995), for an 0.1 hectare raceway in California, with a 

mixing energy requirement of 0.12 to 0.25 kWh to produce 1 kg of algae in an 

open pond operating at fluid velocity of 0.15 m s
-1

, equivalent to an energy 

requirement for mixing of between 2 - 4 % of the calorific value of the micro-

algae produced. LCA s have used figures between 0.05 and 3.3 % (Collet et al., 

2011). 

 

The power required to give a flow velocity of 0.15 m s
-1

 in a 0.3 m deep unlined 

raceway of one hectare using a paddlewheel with 40 % efficiency has been 

estimated at 18 kWh day
-1 

ha
-1

 (1 horsepower) (Benemann and Oswald, 

1996).This is equivalent to an energy requirement for mixing of 1.2 % of the 

calorific value of micro-algae and is again in good agreement with the results 

in Table 10. 
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 Conclusions 4.2.4

 

The spreadsheet developed to calculate the mixing energy requirement for 

raceways produced results that are in agreement with other published data. A 

simple EROOI has been produced, using this calculation and a pragmatic yield. 

This will be further developed and used in calculations of operation energy 

returns for entire micro-algal bioenergy production systems. 

 

The required energy inputs relative to the biomass calorific value decreases 

with the addition of a liner, reduction in fluid velocity and increase in raceway 

size. For maximise EROOI ponds should, therefore, be lined and as large as 

practicable. The fluid velocity should be the minimum to provide mixing and 

regular exposure of the cells to light. It is possible that small gains in micro-

algal yield due to improved mixing and exposure to light through increased 

fluid velocity may not be energetically or economically efficient, and sub-

optimal micro-algal yields at lower flow-rates could offer a better energy return 

on energy investment. The effect of fluid velocity on EROOI is investigated 

further in Sections 5.1.2.1, 6.2.1 & 6.3.2.4, and the results of the work in this 

chapter were used in the development of a more extensive energy balance 

model, in the next chapter 
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 Model construction 5.

This chapter describes the construction and validation of the model, and some 

associated studies carried out to support the model development. 

 Model structure and assumptions 5.1

An operational energy and mass balance process integration model for micro-

algal biogas production was developed, and implemented in a Microsoft Excel 

spreadsheet. The model was divided into three main operational areas based 

on those identified and explored in Section 2: growth, harvesting and energy 

extraction. The three areas were considered to be linked by a requirement for 

pumping power (Figure 20), which has not been fully accounted for in many 

studies (Dunlop, 2012). The model was comprised of nine worksheets, and was 

built up from fundamental equations such as those for fluid flow in pipes 

(Moody, 1944) and literature data such as that for fresh and salt water 

densities and viscosities (El-Dessouky and Ettouney, 2002, Kestin et al., 1978).  

 

 

 

Figure 20 Excel model simplified process flow diagram 

 

The construction of the model is described below with additional detail and 

specific assumptions discussed in the appropriate result and discussions 

sections. 

 Micro-algal biomass and biogas yields 5.1.1

 

Growth System Harvesting Anaerobic Digestion

CO
2 
Supply

Mixer

Recycled Algal  Growth Medium Spent Algal Growth Medium Biogas

Evaporation

Conc' Algal Suspension

Paddlewheel

Spent Digestate
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The calorific yield of algal biomass was calculated using the annualised solar 

insolation and overall photosynthetic efficiency as described in Section 4.1. 

The algal biomass was assumed to consist of lipids, carbohydrate, proteins and 

inorganic material. The value of each could be set from 0 to 100 % with the 

total of all these components always being equal to 100 %. Default values were 

assumed of 20 % lipids, 30 % carbohydrate, 50 % proteins and 0 % inorganic 

material, equivalent to an overall empirical formula of C
1

H
1.8

O
0.5

N
0.1

 typical of 

micro-algae (Chisti, 2007, Grobbelaar, 2009a). 

  

The higher heating value of the algal biomass was calculated from the typical 

empirical formulae for micro-algal lipid, carbohydrate and protein (Heaven et 

al., 2011) using a version of the Du Long equation (IFRF. International Flame 

Research Foundation, 2004) 

 

Equation 13 

HH (M       dry fuel) 
                            

   
  

 

where C, H, N, S and O are the carbon, hydrogen, nitrogen, sulphur and 

oxygen in the biomass expressed as % VS; in the absence of values for 

sulphur this component is taken as zero. The biomass yield was calculated 

from the calorific yield and the estimated HHV of the micro-algae as in Section 

4.1.4.1. 

 

The potential methane and biogas yields were estimated from the typical 

empirical formulae for micro-algal lipid, carbohydrate and protein (Heaven et 

al., 2011) using the Buswell equation (Buswell and Mueller, 1952, Symons and 

Buswell, 1933). The HHV of methane was taken as 55.662 KJ g
-1

 at 0° C and 

101.325 kPa (BSI, 2005).  

 Growth system  5.1.2

 

Open raceways were selected as the growth system because the overwhelming 

balance of the published information indicated that the energy inputs and 

costs of producing micro-algal biomass in open systems are significantly lower 

than PBRs (Section 2.1). The energy inputs in raceways are for ‘mixing’ and gas 

transfer. 
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 Paddlewheel ‘mixing’ energy 5.1.2.1

 

Mixing in the raceway was assumed to be achieved by a paddlewheel, and the 

power and energy requirements were calculated using the fundamental 

equations for open channel flow previously used to estimate head losses and 

energy required to move a micro-algal suspension around a raceway (Sections 

2.2.2.3 & 4.2).  

 Gaseous transfer energy 5.1.3

 

The carbon source for micro-algal growth was assumed to be gaseous CO
2

 

supplied from a waste source such as flue gas or biogas upgrading, and the 

embodied energy was assumed to be negligible. The concentration of CO
2 

in 

the gas stream could be varied between 0 to 100 %. Gas was assumed to be 

bubbled into the cultivation medium via a sparger in a sump, with the total 

pressure drop being the sum of the hydrostatic head above the sparger and 

the pressure drop across the sparger from the friction losses in the supply 

pipework. It was assumed that CO
2

 would only be supplied for an average of 12 

hours per day during daylight hours (see Section 5.3.2.2). 

 

The model allows both the sump depth and the sparger pressure drop to be 

set at any value. A typical pressure drop across a sparger of 6.89 kPa (1 psi) 

(Weissman and Goebel, 1987) was assumed. A sump depth of 2m was selected, 

as recent work has shown that a simple 1.8 m deep sump can transfer 90 % of 

the carbon dioxide from flue gas (University of Southampton, unpublished 

work).  

 

The energy requirements for a blower to compress a gas can be calculated 

from the power for isothermal or adiabatic (where heat does not enter or leave 

the system concerned) compression. The model calculates both isothermal and 

adiabatic power requirements, but adiabatic power requirements are always 

greater and are typical of commercial blowers and compressors (Perry and 

Chilton, 1973, Rogers and Mayhew, 1992, Sinnott, 2005). The adiabatic 

compression power was therefore used to calculate the energy required for 

gaseous exchange in the raceway based on equations 14 and 15: 
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Equation 14 

         (
    
   

)
((     )  )

  

 

Where z is the ratio of specific heat at constant pressure to specific heat at 

constant volume and was assumed to be 1.4 as for air (Rogers and Mayhew, 

1992). T
in

 and T
out 

are temperatures (degree K) in and out of the compressor 

and p
in 

and p
out

 are pressures (Pa) in out of the compressor 

 

Equation 15 

Adiabatic Power (ideal gas)   M    [        ] 
 

 

Where M (kg s
-1

) is mass flow and C
p

 is specific heat capacity at constant 

pressure taken as 1.005 kJ kg
-1 

K
-1

 for air (Rogers and Mayhew, 1992). 

 

The mass flow requirement was determined from the CO
2 

requirement for algal 

growth, calculated from the percentage of carbon in the micro-algal biomass 

based on the content and empirical formulae of lipid, carbohydrate and protein. 

An 80% transfer of carbon dioxide in the bubble to the growth media was 

assumed. Weissman et al. (1989) found 78 to 90% of CO
2

 gas in bubbles was 

transferred in large scale open raceway sumps. Transfer declines exponentially 

with declining CO
2

 concentration in the gas and higher transfer rates may not 

be economically attractive (Putt, 2007) 

 Outgassing of CO
2

 5.1.4

 

In addition to that used for growth, CO
2

 will be ‘lost’ to atmosphere as the 

growth medium is circulated around the raceway.  

 

In raceways, gaseous exchange will not only take place at the site of the 

addition of CO
2

 or flue gas (the sump), but also at the paddlewheel and around 

the entire raceway. Although high gas transfer coefficients occur at the 

paddlewheel, the low volume and the short residence time in the paddlewheel 

section result in lower gas transfer than the raceway and the sump (Mendoza 

et al., 2013b). The gas transfer at the paddlewheel was therefore excluded in 

order to simplify the model. 
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The rate of gas transfer to and from a liquid can be expressed as: 

 

Equation 16 

 

  

  
      (       ) 

 

where 
  

  
 is the rate of gas transfer (kg m

-3

 s
-1

), k
gt

 is the gas transfer constant 

(s
-1

), C
s 

is the saturation concentration of the gas and C
0

 the concentration of 

the gas
 

in the fluid (kg m
-3

). 

 

Initially gas transfer coefficients taken from results for ocean surfaces (Cole 

and Caraco, 1998, Wanninkhof, 1992) were considered for use in the model, 

but although this is a rich source of data it does not appear to be readily 

applicable to raceways with their shallow depth and fluid velocity. The re-

aeration of polluted streams has produced a number of equations for the 

calculation of re-aeration coefficients or oxygen mass transfer coefficients 

(Chin, 2006, Cole and Wells, 1995, Jolhnkai, 1997, Melching and Flores, 1999), 

and are probably more applicable to the depths and velocities typically found 

in raceways. The equation originally developed by Owens (Chin, 2006, Cole 

and Wells, 1995) for depths of 0.1 to 3 m and fluid velocities of 0.03 to 

1.5 m s
-1

 was chosen as being the most appropriate. 

 

Equation 17 

         
     

     
 

 

Where d is depth of the stream (m) and v is the fluid velocity (m s
-1

). 

 

The re-aeration coefficient for a 0.3 m deep raceway flowing at 0.3 m s
-1

 was 

calculated using Equation 17 as 22 day
-1

 (2.5 x 10
-4

 s
-1

) which is in the range of 

values from 1 - 4 x 10
-4

 s
-1

 found for a large and small experimental raceway 

(University of Southampton, unpublished work). 

 

The mechanism of gas transfer is similar for CO
2

 and O
2

 with the gas transfer 

coefficient of CO
2

 being 0.923 times that of O
2

 (Cole and Wells, 1995). The 
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higher solubility of CO
2

 relative to O
2

 results in the mass transfer from a gas to 

a liquid being much greater for CO
2

 than O
2

 for the same gas partial pressure; 

there is much less CO
2

 than O
2

 in atmospheric air, however, so there is a bigger 

driving force for removal of CO
2

 from the channels of a raceway. The mass 

transfer for outgassing of CO
2

 from a raceway can therefore be expressed as: 

 

Equation 18 

                   
     

     
 

 

Raceways typically exhibit plug flow behaviour, with little or no longitudinal 

mixing (James and Boriah, 2010, Mendoza et al., 2013a, Molina Grima, 2011, 

Sompech et al., 2012). The Streeter Phelps equation is normally used to model 

how dissolved oxygen (DO) changes with distance in rivers or streams 

behaving as plug flow reactors (Chin, 2006). A modified Streeter Phelps 

equation was used to estimate the amount of CO
2

 outgassed by using the mass 

transfer coefficient calculated from Equation 18 to replace the O
2

 mass transfer 

coefficient.  

 Accumulation of O
2

 5.1.5

 

O
2

 produced during photosynthesis will accumulate in the fluid in the raceway 

until the concentration is such that the rate of outgassing is equal to that of 

net rate of production. 

 

The equilibrium concentration reached in a raceway can then be determined 

using the equation below.  

 

Equation 19 

 

            (     ) 

 

 where q
O2

 is the net rate of oxygen production from algal growth in the 

raceway (kg m
-3

 s
-1

). 

 Pumping 5.1.6
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The pumping energy required for each of the pumping stages was calculated 

for the frictional and static heads. Frictional head losses are due to shear stress 

on the pipe walls and are a complex function of the system geometry, the fluid 

properties and the flow rate in the system. The shear stress varies with velocity 

of flow and hence with Reynolds number.  

 

The general Darcy-Weisbach equation for head loss due to friction was used to 

calculate head loss, h
p

 (m): 

 

Equation 20 

      
 

 

  

  
 

 

Where D is the pipe diameter (m) and head loss is a function of the friction 

factor f
D

 which is not a constant, but depends on the parameters of the pipe 

and the velocity of the fluid flow.  

 

For the laminar flow regime (Re < 2000) roughness has no discernible effect 

and friction factor was calculated using the following 

 

Equation 21 

    
6  

  
 

 

 

For the turbulent flow regime the friction factor was calculated from the 

simplified equation developed by (Moody, 1944) based on the Colebrook-White 

equation: 

 

Equation 22 

   1.1            (
  

 
)
  

 

 

where D pipe diameter (m) and e is average roughness (m). Both values could 

be set in the model to any value. A default value of 0.046 mm was assumed for 

average roughness (e) (Coulson and Richardson, 1999). Typical commercial 

pipe diameters of 100 mm and 50 mm were also assumed. The diameter for 



 

 138 

the outflow pipe (50 or 100mm) for each pump being selected to give a flow 

velocity nearest to the suggested optimum velocity 3.0 m s
-1

 (Coulson and 

Richardson, 1999). Pipework length between units was initially assumed to be 

a nominal 10 m. 

 

Static head losses could be set to any value, but were assumed to be minimal 

with default values of 0 m for suction heads and 0.3 – 3 m for outlet heads 

depending on the equipment type (raceway feed, 0.3m; centrifuge and lamellar 

harvester feed, 2m; conical settler feed, 3m; harvest return, 1m; and digestate 

return, 2m). The head for the supply pump to the digester was calculated from 

the required volume of the digester (see Section 5.1.8.1).  

 

Fluid viscosity and density of fluids entering or exiting any one of the 3 areas 

of growth, harvesting or energy extraction via pumps could be set to any value. 

A data table  was provided in the model giving the values for fresh (Kestin et 

al., 1978) or salt water (El-Dessouky and Ettouney, 2002) for a range of 

ambient temperatures between 10 and 70 °C (see data sheet within the 

spreadsheet titled "maxmin simple flow 1 fix vol ad", in the CD of 

accompanying material ). Default values for all sections of the model were set 

at the values for fresh water as the viscosity and density of low concentration 

algal suspensions (<5%) are similar to water and the vast majority of the 

materials pumped and mixed were low concentration algal suspensions 

(Section 2.3.6).  

 Harvesting 5.1.7

 

The model was originally developed with one harvesting unit in which 

concentration factor, percentage recovery and energy input (kWh m
-3

) could be 

varied. The flow volumes and concentration of micro-algae exiting the raceway 

and entering the harvesting system were calculated from the raceway volume 

and HRT and the biomass yields. The flow (m
3

 hr
-1

) and micro-algal 

concentration (% dry weight) leaving the harvesting unit were calculated based 

on the concentration factor and percentage recovery.  

 

The model was later modified to include multiple harvesting units and to allow 

varying the flocculant dose and embodied and mixing energy (Section 6.9). 
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 Anaerobic digestion 5.1.8

 

Completely Stirred Tank Reactor (CSTR) digesters are widely used to for 

treating liquid wastes with up to 10 % solids (Wilkie, 2005). They often operate 

mesophilically, with hydraulic retention times of about 20 days (Persson et al., 

1979, Rittmann and McCarty, 2001). The CSTR digester design was therefore 

selected as suitable for handling micro-algal biomass suspensions. 

 Digester volume and dimensions 5.1.8.1

 

There are many shapes of digester, but a vertical cylindrical tank design is the 

most common in the UK and USA (Christodoulides, 2001). The digester was 

therefore assumed to be a vertical cylinder. The tank depth was taken to be 

equal to its diameter as recommended as an ‘engineering rule of thumb’ 

(Couper et al., 2005), and thus the area of the different sections of digester 

(top, bottom and sides) could be calculated for heat loss estimation.  

 

The digester volume (m
3

) was calculated from the daily flow rate from the 

harvesting system (m
3

 day
-1

) and the digester HRT (days).  

 Heating 5.1.8.2

 

Although anaerobic digestion can occur naturally at atmospheric temperature 

it is slow and digesters are typically heated to enhance biogas production 

(Rittmann and McCarty, 2001, Salter and Banks, 2008). The digester 

temperature could be set to any value between 10 – 70 °C. Default 

temperatures of 35 and 55 °C were assumed for mesophilic and thermophilic 

digestion. 

 

The heat energy required by a digester is not only that to raise the temperature 

of the feedstock. Heat is also needed to replace that lost through the walls, 

roof and base of the digester. The heat required can be calculated using the 

following formulae: 

 

Equation 23 Heat loss (kJ s
-1

) 
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Equation 24 Initial Heating of Feedstock (kJ s
-1

) 

 

         
 

 

Equation 25 Total Heat Requirement (kJ s
-1

) 

 

          

 

where T is temperature (degree K), C
p 

 is specific heat
 

 kJ kg
-3

 K
-1

, Q is volumetric 

flow rate m
3

 s
-1

 and U is heat transfer coefficient W m
-2 

K
-1

.  

 

The heat transfer coefficients U for digesters range from 0.3 to 5.2 W m
-2 

K
-1

 (US 

Enviromental Protection Agency, 1979) with typical values of 2 W m
-2 

K
-1

 (Energy 

Systems Research Unit, 1998). A digester with insulation 100 mm thick can 

have a heat transfer coefficient of 0.35 W m
-2

 K
-1

 (Banks, 2012). The model 

allows selection of any value of heat transfer coefficient for the top, sides and 

base, with a default value of 0.35 W m
-2

 K
-1

,

 typical of a well-insulated digester. 

 Mixing 5.1.8.3

 

It is widely accepted that digesters need to be mixed to distribute enzymes and 

microorganisms and prevent the settling of solid particles (US Enviromental 

Protection Agency, 1979, Wu, 2012). It was assumed that the digester would 

be mixed continuously and a method of estimating mixing energy was needed 

and a number of approaches were considered. 

 

The turbulent flow in impeller mixed systems is "inherently complex and not 

amenable to rigorous theoretical treatment" (Coulson and Richardson, 1999) 

and "there is no single design parameter that can be applied to all systems" 

(Gilbert, 1987). The root-mean square velocity gradient (G), which is function 

of energy per unit volume and viscosity, has been suggested as a measure for 

adequate reactor mixing with a value of between 50 to 80 s
-1

 being proposed 

as an adequate level of mixing in digesters (Meroney and Colorado, 2009). For 

low viscosity Newtonian liquid feedstocks that differ little in viscosity the 

simple measure of energy per unit volume is probably an adequate description 
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of digester mixing, and the degree of mixing in anaerobic digesters has also 

been related to power delivered per unit volume of the digester 

(Christodoulides, 2001, Gilbert, 1987, Wu, 2012). The model therefore uses a 

power-per-unit-volume approach that can be set to any value. 

 

Typically mixing power inputs are 5 - 8 W m
-3

 (Christodoulides, 2001, US 

Enviromental Protection Agency, 1979), although a more recent study has 

found that lower figures of 0.5 – 4 W m
-3

 may be sufficient (Wu, 2012). These 

recommendations are below the ‘engineering rule of thumb' for blending of 40 

- 100 W m
-3

 (Couper et al., 2005) and considerably below the average power 

consumption for mixed biochemical vessels of 1 - 2 kW m
-3

 (Uzir and Mat Don, 

2007), but match those recently reported by the AD industry (Methanogen via 

Heaven personal communication, 2013). A default value of 5 W m
-3

 for AD 

mixing input was therefore used. 

 

A Rushton turbine was assumed to be used. They are frequently used for 

industrial fermentation with low to medium viscosities. A power number of 5.5 

(Uzir and Mat Don, 2007) and impeller diameter of 0.3 of the tank diameter 

(Couper et al., 2005) were taken as default values; other power numbers and 

diameters can be used. The speed of the impeller and mixing Reynolds number 

were calculated using standard mixing power equations (Perry and Chilton, 

1973, Uzir and Mat Don, 2007). Root-mean square velocity gradient was also 

calculated. This additional data can be used to check that the flow is turbulent 

and for comparison, if required, with alternative mixing measurements 

 Spreadsheet 5.1.9

 

An example of the Excel spreadsheet, titled "maxmin simple flow 1 fix vol ad", 

is provided in the CD of accompanying materials. Some cells have a small red 

triangle in the top right corner. By placing the mouse pointer over the cell a 

comment box will open giving additional information or references relating to 

that cell. Data input cells are shaded grey. 
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 Validation and calibration 5.2

The anaerobic digester section of the model was validated against an existing 

AD model, and checks on both loading rate and mass balance were built into 

the model. 

 Comparison with an existing AD model 5.2.1

 

In order to verify energy inputs and outputs of the AD section of the model an 

existing AD model was required. The AD4RD model developed by Salter and 

Banks (2008) was selected. It is a spreadsheet based tool, which calculates 

energy balances using a crop based AD system (http://www.ad4rd.soton.ac.uk). 

The AD4RD model produced energy inputs and biogas outputs for a range of 

terrestrial agriculture products and wastes, but not micro-algae.  

 Method and conditions of comparison 5.2.1.1

 

One feedstock in AD4RD is whey and the feedstock for comparison was 

assumed to be whey in both models. The micro-algal biogas energy balance 

was simplified to consist only of the anaerobic digester. The composition of 

the feed was adjusted to 13.2 % protein, 0.8 % fat, 76 % carbohydrate and 10 % 

ash with a total solids content TS of 6.1 % typical of that found in whey (de Wit, 

2001). The average ambient temperature in the model was assumed to 10 °C 

and the Southampton location in AD4RD (average ambient temperature 10.6 °C) 

 

The output of the modified model, with a simulated whey feedstock, was 

compared to the output of the AD4RD with whey as a feedstock. An Excel file, 

titled "whey ad energy inputs", is in the CD of accompanying materials.  

 Results and discussion  5.2.1.2

 

The results of comparison between the two anaerobic digestion models are 

shown in Table 11. There was fairly close agreement for the heating 

requirement; however energy for mixing was less than a quarter of the input 

calculated in the AD4RD model. The mixer efficiency in the model was set at 

100 %. Adjusting for a typical small motor mixer efficiency of 50 % (Couper et 
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al., 2005) increased the estimate of energy input, but it was still approximately 

half AD4RD model’s estimate.  

Table 11 Comparison with AD4RD AD model 

   AD4RD  Model 

Inputs      

Digestate   Whey  ‘Whey’ 

TS%   6.1  6.1 

VS % of TS   90  90 

Lipid % of TS     76 

Carb’ % of TS     13.2 

Protein % of TS     0.8 

% C conversion   95  95 

HRT days  18  18 

Calculated Outputs      

CH
4

 Yield l CH
4

 g
-1

VS  0.45  0.43 

% CH
4

 in biogas   51  51 

Biogas produced m
3

 day
-1

  1162  1011 

CH
4

 produced m
3

 day
-1

  593  532 

      

Energy input      

Heat kWh day
-1

  800  763 

Electric kWh day
-1

  220  51 

 

The AD  D model’s energy input was based on the figures of Berglund and 

Borjesson (2006), which assumed that electrical energy for mixing was 

generated from natural gas with a conversion efficiency of <50%; "With 1 MJ of 

electricity corresponding to 2.2 MJ of primary energy, including distribution 

losses in the electricity grid and energy requirements in the production and 

distribution of natural gas" (Berglund and Borjesson, 2006). Further adjusting 

the models mixing energy for electricity production from natural gas gives a 
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revised mixing energy input of 224 kWh day
-1

 that is in close agreement with 

220 kWh day
-1

 estimated by AD4RD. 

 

The data for gas output and input of the micro-algal biogas model and AD4RD 

are in reasonable agreement, and therefore this provides confidence that the 

model can be used to estimate biogas yields and energy inputs and outputs of 

micro-algal digestion. 

 Loading rate 5.2.2

 

A check was built into the system which compared digester loading rate to a 

maximum loading rate that could be set to any value. If the maximum loading 

rate was exceeded a warning message appeared and the digester volume was 

automatically increased to reduce loading rate. A default value of 6 kg VS m
-3

 

day
-1

 (Banks, 2012) was assumed. All the variations of parameters in this 

research were within the assumed maximum loading rate. 

 Mass balance 5.2.3

 

A mass balance was carried out on the system and on the inflows and outflows 

of the digester. If the system is out of balance an error message appears. In all 

the runs discussed subsequently the system balanced. 

 Associated studies during model development  5.3

During the development of the model, equations and methods, that were 

considered and used, were used to assess areas which potentially had 

implications for the assumptions made in the model and for the operation of 

micro-algal biofuel plants. Three areas were considered: 

a. The relative outgassing of oxygen in areas of the raceway 

b. The de-oxygenation of raceway and deeper growth ponds due to micro-

algal respiration. 

c. The potential effect of bacterial growth on wastewater nutrients on the 

availability of CO
2

 and nitrogen  

 Estimation of relative outgassing of oxygen in a raceway 5.3.1
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Photosynthesis generates oxygen, but dissolved oxygen levels much greater 

than air saturation values inhibit photosynthesis (Chisti, 2007). The dissolved 

oxygen levels inhibiting micro-algal growth can be a problem in PBRs (Acién 

Fernández et al., 2013, Molina Grima et al., 2001). It has been ‘generally 

assumed’ that O
2

 will be released to the atmosphere along the channels in a 

raceway (Mendoza et al., 2013b), but there have been reports of dissolved 

oxygen concentrations causing inhibition of micro-algal growth in raceways 

(Marquez et al., 1995, Mendoza et al., 2013b). Is the gaseous exchange sump 

or the raceway channel the main area controlling the level of dissolved oxygen? 

 Method of estimation 5.3.1.1

 

Stoichiometric analysis using a typical empirical micro-algal formula 

C
1

H
1.83

O
0.48

N
0.11 

(Chisti, 2007) estimates that photosynthesis will require 1.91 g 

of CO
2

 for the growth of one gram of typical dry micro-algal biomass and will 

produce 1.6 g of O
2

 giving a ratio of CO
2

 consumed to O
2

 produced of 0.83. 

 

The following equilibrium relation between O
2

 and CO
2

 in a closed system was 

used 

 

Equation 26 

      
    (             )

        (                )
 

 

Using Equation 26 the outgassing of O
2

 relative to the transfer of CO
2

 in the 

open channel sections of a raceway and the gaseous transfer sump were 

estimated, assuming typical flue gas concentrations of 12 % CO
2

 and 9 % O
2

. An 

Excel file, titled "oxygen relative outgassing", is in the CD of accompanying 

materials 

 Results and discussion 5.3.1.2

 

A plot of the outgassing of O
2

 relative to the transfer of CO
2

 in the open 

channel sections of a raceway and the gaseous transfer sump supplied with 

flue gas is shown in Figure 21.  
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The 0.83 rate of gas transfer for O
2

 relative to CO
2

 is achieved at lower 

concentrations in the raceway channels than in the sump indicating that the 

raceway may be more important in outgassing of O
2

 than the sump. It is 

generally assumed in the literature that there is no major accumulation of DO 

in a raceway as it is released to the atmosphere along the channels (Mendoza 

et al., 2013b). These initial results confirm that the channels of the raceway are 

important in lowering O
2

 concentration, but there may be still a significant 

build-up of O
2

 which is further examined in Section 6.5. The results of these 

calculations also confirm the view of the literature that one of the advantages 

of raceways over PBRs is their potentially lower build-up of O
2

 (Mendoza et al., 

2013b).  

 

 

Figure 21 Outgassing of O
2

 relative to CO
2

 transfer in a flue gas sump and open 

raceway 

 Night-time de-oxygenation by micro-algal respiration 5.3.2

 

At night no O
2

 is produced by micro-algal photosynthesis and O
2

 is consumed 

by respiration. There has been a report of night-time crashes of deep micro-

algal ponds (0.7 to 1.2 m) that were not mixed or aerated (Kroon private 

communication, 2012). Could this be due to de-oxygenation by micro-algal 

respiration? If de-oxygenation occurs in deep algal ponds could it occur in 

shallower micro-algal raceways? 

 Method of calculation 5.3.2.1
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The QUAL-W2 water quality model uses a default value for algal respiration of 

0.04 day
-1

 (Cole and Wells, 1995). Using the typical empirical formula for algae 

of C
1

H
1.83

O
0.48

N
0.11

 (Chisti, 2007, Grobbelaar, 2009a) gives a COD of 1.6 g g
-1

 VS. 

Assuming an average algal concentration of 0.035 % (typical algal suspensions 

0.02 % - 0.05 % dry solids (Zamalloa et al., 2011)), therefore, the de-

oxygenation rate by algal respiration is 22.4 g O
2

 m
-3

 day
-1

 (0.04*350*1.6). 

 

The re-aeration constant at 20°C for small still ponds is normally very low at 

between 0.1 and 0.2 day
-1

 (Chin, 2006). The saturation concentration of O
2

 is 

9 g m
-3

. The maximum rate of oxygen transfer through the surface of the pond 

for an initial maximum DO concentration 9 g m
-3

 is, therefore, 1.8 g O
2

 m
-2 

day
- 1 

(0.2*9-0).  

 

The Streeter Phelps equation (Chin, 2006) was modified, replacing the BOD 

removal constant by the algal respiration rate, to estimate de-oxygenation flux. 

 

Equation 17 was used to calculate re-aeration coefficient k
gt

 for a range of 

raceway depths and velocities 

 Results and discussion 5.3.2.2

 

In an unmixed micro-algal pond, 1 m deep pond, the maximum de-

oxygenation flux was estimated at 20.6 g m
-3 

day
-1

 and the oxygen in the 

system could be completely consumed in 10 hours. Night-time crashes in deep 

unmixed algal ponds, therefore, could be the result of de-oxygenation by 

micro-algal respiration. Supersaturation of oxygen from micro-algal 

photosynthesis during daylight, however, may considerably extend the time 

required for de-oxygenation. 

 

A plot of re-aeration coefficient k
gt

 for depths of 0.1 to 1 m and fluid velocities 

0.1 to 1 m s
-1 

is using Equation 17 is shown in Figure 22.  
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Figure 22 Influence of depth and velocity on re-aeration coefficient 

 

Although re-aeration coefficient increases with increasing velocity the change 

is much less than the dramatic increase in re-aeration coefficient for depths 

below 0.5m. Increasing the re-aeration rate by reducing depth and keeping the 

fluid moving eliminates the problem of night-time de-oxygenation. There are 

no reports of night-time crashes in typical algal raceways with a depth of 

<0.3 m and a fluid velocity 0.15 to 0.3 m s
-1

 and this work confirms that night-

time de-oxygenation will not be a major problem in a shallow flowing raceway. 

Night time aeration of open algal raceways to prevent oxygen depletion, that 

could double the energy cost of gas pumping, is not required for raceways. 

The assumption that gas pumping was only required for 12 hours used in 

Section 7.1.3 on micro-algal biodiesel and in the energy balance model 

developed in this work for micro-algal biogas production (Section 5.1.3) 

appears correct. 
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 Bacterial CO
2

 production and nitrogen utilisation 5.3.3

 

The growth of bacteria, particularly in wastewater, could have a significant 

influence on the requirement to supply both CO
2

 and nutrients such as 

nitrogen. Could bacteria growing in wastewater supply significant CO
2

 for algal 

growth or could their more rapid growth lead to nutrient depletion?  

 Method of estimation 5.3.3.1

 

Using an empirical formula of C
5

H
7

O
2

N for municipal sludge and bacteria grown 

on sludge, (Henze et al., 2008), together with an estimated empirical formula 

for 20 % lipid content algae C
4.37

H
8.02

O
1.99

N
0.54

 it was possible to calculate, using 

stoichiometric analysis, the CO
2

 released and nitrogen available for micro-algal 

growth (not incorporated in bacterial biomass) for a range of bacterial 

respiration rates. Carbon dioxide released from wastewater nutrients by 

bacterial respiration and nitrogen not incorporated in bacterial biomass was 

assumed to available for micro-algal growth. An Excel spreadsheet, titled 

"bacteria n and CO
2

 .xlsx", is in the CD of accompanying materials.  

 Results and discussion 5.3.3.2

 

As can be seen in Figure 23, for typical bacterial respiration rates of 30 to 50%, 

growth is restricted more by CO
2

 released by respiration rather than nitrogen 

not incorporated in bacterial biomass. As bacteria respire over a 24-hour 

period and autotrophic micro-algae only grow in light the restriction of micro-

algal growth due to supply of CO
2

 will be even greater than this simple 

estimate. 
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Figure 23 Potential micro-algal growth on typical municipal wastewater relative 

to bacterial respiration 

 

Although CO
2

 for micro-algal growth is provided by bacteria in facultative 

wastewater treatment ponds (Section 2.1.1.1), additional CO
2

 is required to 

utilise all the nitrogen for micro-algal biomass. Bacteria also utilise some 

nitrogen and make it unavailable for micro-algal biomass growth. This may be 

problematic if micro-algae are the only required target product. However 

overall biomass yield, for biogas production by anaerobic digestion, may be 

very similar for the same quantity of available nitrogen as the typical 

composition of micro-algae and bacteria is similar (McKinney, 2004). 
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 Modelling of scenarios 6.

In this part of the work, the model developed in the previous sections was used 

to investigate the viability of a number of options and scenarios for micro-algal 

biofuel production in terms of energy output, and to identify the most critical 

parameters affecting net energy production. The model was first used to 

examine the effect of raceway dimensions on head losses, to establish whether 

a raceway of 1 hectare was feasible; and then to study energy input relative to 

biomass energy production and outgassing in a raceway system. A number of 

options were then examined involving operation at different digester 

temperatures, CO
2

 concentration in the gas supply and hydraulic retention 

times in both the digester and raceway, in order to establish the relative 

importance of these parameters and to develop an overall ‘pragmatic' case. 

The pragmatic case was then used to examine scenarios based on a 

combination of different harvesting options and multiple raceway 

arrangements to establish net energy balances and assess the energetic 

viability of micro-algal biogas. 

 

 Head loss in raceways 6.1

The model was first used to look at the effect of channel width and length on 

the head losses in raceways with areas ranging from 103 m
2

, typical of pilot 

scale, to 1 hectare, representing a likely size for a commercial scale plant 

(Section 2.2.6). 

 

Output head loss results from the model are shown in Table 12. The head loss 

for a 1 hectare raceway of 0.052 m is agreement with that previously estimated 

in Table 9. The maximum head difference recommended by a paddlewheel 

manufacturer for commercial algal raceways is 0.076 m (Section 2.2.6) and 

thus a 1 hectare lined raceway appears to be possible. 

 

Halving the width of a 219 m long raceway has little effect on head loss, but 

halving the length of a 20 m wide raceway has a significant effect, with head 

losses reduced from 0.052 to 0.041 m. A 20 m metre wide raceway 109 m 

long has a head loss similar to a raceway 50 m long and only 1 m wide, thus 
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raceways should be as wide as possible. The effect of raceway width is further 

analysed in Section 6.3.1. 

 

Table 12 Head loss in raceways of different dimensions 

Raceway channel length m 50 219 219 109 

Raceway channel width m 1 20 10 20 

Area m
2

 103 10017 4694 5617 

Head m 0.040 0.052 0.052 0.041 

 

 Energy input relative to biomass energy production 6.2

and outgassing in a raceway 

The model was used to study the energy inputs and potential energy output, in 

the form of micro-algal biomass, or EROOI, for a raceway consisting of two 

50 m long and 1 m wide channels, similar to the dimensions of the University 

of Southampton’s experimental raceway in Spain (Mendoza et al., 2013a). A 

photosynthetic yield of 1.5 % was assumed, equivalent to a biomass yield of 

13 g m
2

 day
-1

. 

 Effect of depth and velocity on energy ratio 6.2.1

 

The model was used to look at the effect of average fluid velocities from 0.15 

to 0.45 m s
-1

 and raceway depths from 0.15 to 0.45 m on the ratio of energy 

input to potential biomass energy output. The results are shown in Figure 24. 

The biomass energy output of the raceway was estimated at 8.48 kWh day
-1

. 

The energy input increases with increasing depth and fluid velocity: a 0.45 m 

deep raceway flowing at 0.45 m s
-1

 was estimated to use 4 kWh day
-1

, or 48 % 

of the energy potentially available in the micro-algal biomass. Depth and fluid 

velocities should therefore be minimised. At depths below 0.15 m, however, it 

is difficult to achieve sufficiently even grading of the raceway bottom to ensure 

consistent flow around the entire raceway (Weissman et al., 1989); mixing 

problems and temperature variation may also occur at depths below 0.25 m 

(Lundquist et al., 2010). There appears to be no energy balance advantages to 
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raceways being deeper than 0.3 m or flowing faster than 0.3 m s
-1

.The typical 

raceway depths of 0.2 - 0.3 m (Aquafuels, 2011, Jimenez et al., 2003, Johnson 

et al., 1988, Lundquist et al., 2010) and velocities 0.15 -0.3 m s
-1

 (Borowitzka, 

2005, Chiaramonti et al., 2013) therefore appear to be appropriate.  

 

 

Figure 24 Effect of fluid velocity and raceway depth on the ratio of energy input 

to potential biomass energy output in a raceway  

 

The ratio of blower to paddlewheel input energy is shown in Figure 25. Blower 

energy of 0.1 kWh day
-1

 is the main energy input into raceway at a depth of 

0.15 m flowing at 0.15 m s
-1

. The ratio of blower to paddlewheel input energy 

increases with reducing depth and fluid velocity. This change is the result of 

reducing paddlewheel energy rather than increases in blower energy.  

 

 

Figure 25 Effect of fluid velocity and raceway depth on the ratio of blower to 

paddlewheel energy 
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 Effect of depth and velocity on outgassing of CO
2

 in raceways 6.2.2

 

The model was used to look at the effect on the outgassing of CO
2

 for average 

fluid velocities from 0.15 to 0.45 m s
-1

 and raceway depths from 0.15 to 

0.45 m.  

 

The results in Table 13 show that increasing fluid velocity from 0.15 to 

0.45 m s
-1

 at the same depth (0.3 m) reduces relative outgassing, despite the 

increased energy input. This appears to be due to the shorter residence time in 

the raceway channels before returning to the gaseous exchange sump.  

 

Reducing the depth from 0.45 m to 0.15 m at the same fluid velocity (0.3 m s
-1

) 

increases the amount of CO
2

 outgassed relative to the amount required for 

algal growth from 4 % to 34 %, confirming the suggestion of Lundquist et al. 

(2010) that high rates of carbon dioxide outgassing may also occur at depths 

below 0.25 m. The ratio of energy input to output is lower in the shallower 

raceway, however, and thus if the CO
2

 is from a waste emission source, with 

little embodied energy or cost, raceways shallower than 0.25 m could be 

energetically and economically advantageous.  

 

Table 13 Effect of velocity and depth on outgassing and energy ratio in 

raceways 

Depth m 0.3 0.3 0.3 0.15 0.45 

Velocity m s
-1

 0.15 0.3 0.45 0.3 0.3 

              

Ratio Input energy to output % 2.4 11.1 34.5 7.1 15.2 

Ratio CO
2

 outgassed to growth requirement % 11 8 7 34 4 

 

 Effect of width and length on outgassing and energy ratio 6.2.3

 

The model was used to look at the effect of channel width (1, 5 or 10 m) and 

length (50 or 100 m) on outgassing and energy ratio in raceways. The results 
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are shown in Table 14. The energy return improves with both increasing 

raceway width and length. Table 14 also shows that the outgassing of CO
2

 

relative to the amount of CO
2

 required for algal growth increases with 

increasing channel width and length: this is due to the longer residence time in 

the raceway channels before the flow returns to the gaseous exchange sump. 

 

Table 14 Effect of width and length on outgassing and energy ratio in raceways  

Width m 1 5 10 1 5 10 

Length m 50 50 50 100 100 100 

                

Ratio input energy to output % 11.1 9.3 8.3 7.3 6.2 5.8 

Ratio CO
2

 outgassed to growth requirement % 8 9 10 17 18 19 

 

The outgassing of CO
2

 will be more significant in large raceways. In a raceway 

of ~1 hectare (219 m by 20 m), the model predicts that flue gas losses due to 

outgassing are equivalent to 45 % of the amount required to meet algal growth 

needs.  

 

Figure 26 shows the effect of raceway width on the ratio of blower energy to 

mixing energy, and on the ratio of raceway energy inputs to biomass energy 

output. The ratio of blower energy to mixing energy in the raceway increases 

with increasing width, but the ratio of input to output energy decreases with 

increasing width. It would thus appear that raceways should be as wide as 

practicable. The results therefore support the recommendation from the US 

Energy Department study of a length to width ratio of 11 to 1 (Weissman et al., 

1989) for a raceway of 1 hectare (219 m by 20 m). 
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Figure 26 Effect of width on energy inputs in raceways 

 

 Effect of micro-algal photosynthetic efficiency on outgassing and 6.2.4

energy ratio in raceways 

 

The effects of variations in micro-algal photosynthetic efficiency on outgassing 

and energy ratio in a raceway are shown in Table 15. Photosynthetic efficiency 

has negligible effect on the amount of CO
2

 outgassed relative to the amount of 

CO
2

 required for algal growth. 

 

Table 15 Effect of micro-algal photosynthetic efficiency on outgassing and 

energy ratio in raceways 

Photosynthetic Efficiency % 1.5 3 4.5 

          

Ratio input energy to output % 11.1 6.1 4.5 

Ratio CO
2

 outgassed to growth requirement % 8 8 8 
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 Effect of selected process parameters on the 6.3

concentration factor required to achieve an EROOI of 

1 

The model was used to estimate the concentration factor required to achieve 

an energy return on operational energy invested of 1 for a variety of process 

options. For this purpose, equipment efficiencies and carbon conversion were 

taken as 100 % and the energy input for harvesting was assumed to be zero. In 

general the higher the harvesting concentration factor, the greater the energy 

input needed to achieve it (Axelsson, 2000, Bolhouse, 2010, Purchas, 1981), 

and process options with the lowest concentration factors will thus have the 

highest probability of achieving a positive energy balance. The concentration 

factor to achieve an EROOI of 1 was, therefore used as a measure of the 

potential energy efficiency for a range of process options.  

 Effect of raceway dimensions 6.3.1

 

The model was used to look at the effect of raceway width and depth on the 

concentration factor required to achieve an EROOI of 1, with the same range of 

dimensions as previously used in Section 6.1. 

 

Table 16 shows the concentration factor to achieve an EROOI equal to 1 for 

various raceway dimensions. The small raceway (103 m
2

) required a higher 

concentration factor to achieve a positive energy balance than the larger 

raceways. Halving the length or width of the largest raceway had little effect on 

the concentration factor needed to achieve a positive energy balance. Variation 

of raceway dimensions to give areas of 0.5 to 1 ha with widths of 10 -20 m 

made a negligible differences to the concentration factor, and this implies that 

dimensions of raceways of this size can be varied to suit land and operational 

constraints with minimal effect on the overall energy balance ratio. A raceway 

area of ~1 hectare (20 m channels 219 m long) was assumed in all subsequent 

scenarios used in this work. 
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Table 16 Concentration factor to achieve an EROORI equal to 1 for various 

raceway dimensions 

Raceway channel length  m 50 219 219 109 

Raceway channel width m 1 20 10 20 

Estimated Area m
2

 103 10017 4694 5617 

      

Concentration Factor  30 22 22 22 

 

 Concentration factor to achieve an EROORI equal to 1 for various 6.3.2

process options  

 

The model was used to determine the concentration factor associated with an 

EROOI of 1 for a 'benchmark' case (scenario H) and a range of alternative 

process conditions. The parameters for the benchmark case (scenario H) are 

shown in Table 17 and are discussed in the subsequent Section 6.3.2.1. The 

various alternative scenarios, with a brief description of their variation from the 

benchmark (scenario H) and their results are shown in Table 18, with the 

results ranked by order of concentration factor with the lowest at the top. The 

specific assumptions are further detailed in the appropriate results and 

discussions sections below. The lower the concentration factor the lower the 

potential harvesting energy and overall energy input, and the higher the 

potential energy return. 
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Table 17 Assumptions for 3% PE, 25 g m
-2 

day
-1

 ‘benchmark’ 

Data inputs     

Environmental     

Solar insolation kWh m
-2

 year
-1

 2000 

Photosynthetic efficiency (PE) % 3 

Ambient temperature °C 20 

     

Raceway     

Area m
2

 10017 

Depth m 0.3 

Average fluid velocity ms
-1

 0.3 

Hydraulic retention time (HRT) days 2 

      

Gaseous exchange     

CO
2

 concentration in supply % 12 

      

Harvesting     

Algal harvesting recovery % 100 

Concentration factor   22 

      

Anaerobic Digestion     

% of "Buswell" estimated CH
4

 yield % 100 

Hydraulic retention time (HRT) days 20 

Mesophilic digester temperature  °C 35 

      

Equipment efficiencies     

Paddlewheel efficiency % 100 

Gas transfer efficiency % 80 

Blower efficiency % 100 

Pump efficiency % 100 

Percentage heat recovery % 0 

Heater efficiency % 100 

Mixer efficiency % 100 
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Table 18 Concentration factor to achieve an EROORI equal to 1 for various 

process scenarios 

 

Scenario  Input Assumptions Concentration 

Factor 

 

  A Maximum theoretical PE (11%) 6 

B 4 day raceway HRT 3% PE  11 

C Reduced depth 0.15 m 11 

D 10 day HRT in anaerobic digester 20 

E Pure CO
2

 used for carbonation sump gas supply 21 

F Reduced raceway velocity 0.15 ms
-1

 21 

G Reduced raceway mixing time 12 hours 21 

H ‘BENCHMARK’  3% PE 25 g m
-2

day
-1

  22 

I 6% CO
2

 used for carbonation sump gas supply 22 

J 4 Day Raceway HRT 1.5% PE  22 

K 60% harvest efficiency 23 

L 30 day HRT in anaerobic digester 23 

M Typical Equipment efficiencies (Table 20) 27 

N Reduced Insulation 2W m
-2

 K
-1 

28 

O 60%  of predicted maximum CH
4

 yield by Buswell equation 38 

P Lower Yield PE 1.5% 45 

Q Thermophilic anaerobic digestion 55° C 48 

R Raceway located in Southampton with 3% PE Yield  73 

S Raceway located in Southampton with 1.5% PE Yield  158 

T Air used for carbonation sump gas supply (0.038% CO
2

) 905> 

  

 ‘Benchmark’ case 6.3.2.1

 

Scenario H (underlined) with a 3% PE with solar insolation of 2000 kWh m
-2

 day
-1

 

and average temperature of 20°C was used as the ‘benchmark’. The 

parameters of the ‘benchmark’ are shown in Table 17 while the key outputs 

are shown in Table 19. 
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Table 19 Model output for ‘benchmark’ 

Outputs     

Concentration factor   22 

Biomass yield g m
-2

 day
-1

 25 

Algal concentration in raceway   0.017% 

Biomass calorific yield kWh day
-1

 1646.57 

% Algae DW concentration in feed to AD   0.36% 

Calorific value of CH
4

 production kWh day
-1

 1559.27 

Energy Inputs     

Paddlewheel mixing of raceway kWh day
-1

 21.83 

Supply pump energy kWh day
-1

 3.04 

Harvest supply pump energy kWh day
-1

 10.15 

AD supply pump energy kWh day
-1

 2.36 

Harvest ‘return’ pump energy kWh day
-1

 5.54 

Digestate ‘return’ pump energy kWh day
-1

 0.39 

Total pumping energy kWh day
-1

 21.48 

Blower energy  kWh day
-1

 22.79 

AD reactor volume m
3

 1420.7 

AD heating energy kWh day
-1

 1322.76 

AD mixing kWh day
-1

 170.44 

Total AD input energy kWh day
-1

 1493.20 

Total operational energy input  kWh day
-1

 1559.30 

Energy return on operational energy invested   1.0 

 

The energy inputs in the ‘benchmark’ case for paddlewheel mixing, pumping 

and the blower to supply CO
2

 in flue gas are of a similar order at 21.83, 21.48 

and 22.79 kWh day
-1

 respectively. Each is equivalent to 1.4 to 1.5 % of the 

potential energy available in the methane produced. The major energy inputs 

are in the heating and mixing in AD digester, using 84.8 % and 10.9 % of the 
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energy of methane produced. The benchmark case assumes no heat recovery, 

which would significantly reduce the required heating energy. The feed 

concentration of micro-algal VS to the digester is 0.36 % is lower than typically 

found in CSTR reactors. Increasing the VS feed concentration to 1 % reduces 

the mixing and heating energy by 64 % and 63 %, or a total energy reduction in 

AD of 551 kWh day
-1

. This is equivalent to 0.13 kWh m
-3

 of harvesting energy, 

and if the additional energy input to the harvesting system to achieve the 

higher output concentration were less than this there would be an 

improvement in the net energy output. At low concentration micro-algal 

suspension (<5 %) the viscosity is similar to water with no significant increase 

with increased concentration up to 5 % (Section 2.3.6). 

 CO
2

 Concentration 6.3.2.2

 

The highest concentration factor required and the biggest deviation from the 

‘benchmark’ case was with the use of air (scenario T) rather than flue gas 

containing 12 % CO
2

 as a source of carbon. At the required concentration factor 

of 900 the suspension would be 15 % DW micro-algae and may no longer be 

fluid. The energy to provide air to the medium was far greater than the energy 

in the algal biomass, and the net energy return was massively negative with an 

EROOI of 0.002. It is clearly not energetically viable to bubble air into a 

raceway as a source of CO
2

.  

 

Halving the CO
2

 concentration of flue gas to 6 % (scenario I) had little effect on 

the required concentration factor compared to that for the ‘benchmark’ value 

of 12% CO
2

. Flue gas typically has a CO
2

 content of
  

6 to 13 %, and variation in 

CO
2

 between these values has little effect on the concentration factor.  

 

Using pure CO
2

 (scenario E) marginally improved the required concentration 

factor from 22 to 21. The energy to produce and transport pure CO
2

, however, 

is likely to be greater than the reduction in pumping cost of pure CO
2

 

compared to flue gas. As previously discussed (Section 2.2.7.2) the use of pure 

CO
2

 is unlikely to be energetically and economically viable. 

 Effect of factors increasing micro-algal concentration 6.3.2.3
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Scenarios A to C considered the effect of factors that could increase the 

concentration of the micro-algal culture, by increasing the maximum 

theoretical PE yield to 11% (scenario A), implementing a 4 day HRT in the 

raceway (scenario B), or reducing the depth to 0.15m (scenario C) 

All these factors increased the concentration of the algal suspension leaving 

the raceway and entering the harvester, thus reducing the concentration factor 

required to achieve an EROOI of 1. Increasing yield reduces the required 

concentration factor, but as previously discussed (Section 4.1.4.4) yields above 

3 % PE may not be achievable in practice. 

 

Increasing the raceway HRT to 4 days may also not be practicable. Raceways 

appear to produce stable cultures at 2 to 3 days HRT (Weissman et al., 1989), 

but ‘crashes’ regularly occur at 4 days (Benemann et al., 1980). Zamalloa et al. 

(2011) recommended a raceway HRT of 2 days. 

 

Reducing the depth to 0.15 m may also not be practicable due to problems in 

grading the raceway bed (Section 2.2.2.4). In this scenario, the head loss 

around the raceway was estimated at 0.082 m, greater than the maximum 

differential head recommended by a paddlewheel manufacturer and half the 

mean depth suggested as a maximum by Oswald (1988).  

 Effect of paddlewheel operation factors 6.3.2.4

 

In scenario F the fluid velocity in the raceway was reduced to 0.15 m s
-1

 and in 

scenario G paddlewheel operation was reduced to 12 hours per day during 

daylight. Both scenarios had a similar effect on the required concentration 

factor with both causing a reduction from 22 to 21. 

 

The suspension of paddlewheel mixing at night (scenario G) may not be 

practicable as without mixing the micro-algae will settle to the bottom of the 

raceway. Reducing the fluid velocity in the raceway (scenario F) to 0.15 m s
-1

 

reduced the paddlewheel input energy from 21.83 to 2.73 kWh day
-1

, but 

increased the required blower energy from 22.79 to 23.37 kWh day
-1

 due to the 

greater CO
2

 outgassing as a result of the longer circuit time. This ~10-fold 

reduction in paddlewheel energy was previously shown in Section 4.2, but was 

only 1% of the total micro-algal biogas process operation energy. The reduction 
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of fluid velocity from 0.3 to 0.15 m s
-1

, therefore may be less significant than it 

was considered to be in Section 4.2; however as previously concluded the fluid 

velocity should be the minimum to prevent micro-algal sedimentation and 

provide regular exposure of the cells to light.  

 Anaerobic digestion factors 6.3.2.5

 

Scenarios D, L, N, O and Q involved changes to AD parameters. Thermophilic 

anaerobic digestion processes can offer accelerated biochemical reactions and 

micro-algal growth rates with more rapid methane production and lower 

hydraulic retention times (Gavala et al., 2003). Operation of the digester at 

55 
o

C (scenario Q) gave a required concentration factor of 48, reflecting the 

increased heat input. There was little difference, however, between required 

concentration factors for HRTs of 10 (scenario D), 20 (scenario H) and 30 days 

(scenario L) at 20, 22 and 23 respectively. It thus appears probable that the 

increased energy input of thermophilic temperatures will not be offset by 

shorter HRTs and that mesophilic operation is the preferred option 

energetically. In all scenarios considered the main energy input for AD, was 

heat. In thermophilic conditions 95 % of the energy requirement was for heat, 

in good agreement with 94 % found in a practical study of a thermophilic pilot 

digester (Espinosa-Solares et al., 2006). 

 

Reducing digester insulation (scenario N) by increasing the heat transfer 

coefficient from 0.35 to 2 W m
-2 

K
-1

 increased the concentration factor from 22 

to 28, a greater effect than found for changes in HRT. A heat transfer 

coefficient of 2 W m
-2 

K
-1

 is typical of 25 mm of insulation on a steel vessel 

(Spirax Sarco, 2012) and of many commercial AD plants (Basrawi et al., 2010, 

Wang et al., 2009). The heat loss from the AD reactor, with a heat transfer 

coefficient of 2 W m
-2 

K
-1

, was estimated at 0.35 °C, well below the maximum 

loss of 1 °C day
-1

 recommended for the design and operation of agricultural 

digesters (Persson et al., 1979). Lower heat transfer coefficients have been 

reported for typical digesters (Banks, 2012, Banks et al., 2011b), however, and 

the heat loss from a well-insulated digester (0.35 W m
-2

 K
-1

) is estimated at 

0.05 °C day
-1

 with a corresponding reduction in the energy requirement for 

heating of over 23 %. Using the model, the reduction in heat loss for a digester 

with a volume of 1000 m
3

 for a change in heat transfer coefficient from 2 to 
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0.35 W m
-2 

K
-1 

was calculated at 30.1 kWh day
-1

. This reduction in heat transfer 

coefficient could be achieved by increasing the depth of fibreglass insulation 

from 0.025 to 0.1m (Banks, 2012, Spirax Sarco, 2012). This was calculated to 

require an additional 3.8 m
3

 of insulation for a 1000 m
3 

vertical-cylinder 

digester. An embodied energy for fibreglass 269 Kwh m
-3

 was assumed and it 

was calculated that the additional embodied energy in the fibreglass could be 

recovered in reduced heat loss in less than 34 days. These calculations 

strongly confirm the importance of controlling heat loss for an energy-efficient 

process. 

 

Practical yields of methane from the anaerobic digestion of micro-algae are 

considerably below the theoretical. If the methane yield is reduced to 60 % 

(scenario O) of the theoretical maximum the concentration factor to achieve an 

EROOI increases from 22 to 38. This is a smaller effect than that associated 

with increasing the temperature from 35 to 55 °C, but greater than increasing 

the HRT or reducing the insulation. Maximizing methane yield from algae will 

be vital for an energy efficient process, and slower growing strains with a 

higher operational methane yield may have an energy balance advantage in 

terms of energy output over faster growing strains which are more recalcitrant.  

 Climate conditions 6.3.2.6

 

Scenarios R and S looked at the effect of siting the system in a location with an 

average temperature of 10 °C and insolation 1000 kWh m
-2

, similar to 

Southampton, UK. At 3% PE (scenario R) the required concentration factor was 

increased to 73 compared to the 22 for the benchmark case (equivalent to the 

climatic conditions of typical target areas such as the south-west USA and 

south-west Africa). Micro-algal growth rates are often reduced in lower 

temperatures (Mata et al., 2010, Moheimani and Borowitzka, 2006, Olguín, 

2003, Verma et al., 2010). A lower PE efficiency of 1.5 % (scenario S) was 

therefore assumed in addition to the average temperature of 10 
o

C and the 

estimated required concentration factor increased to 158.  

 Harvesting and equipment efficiencies 6.3.2.7
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Actual equipment energy efficiencies and harvesting recovery rates for micro-

algal biomass are less than 100%. Scenarios K and M therefore looked at the 

effects of introducing more realistic typical values for process efficiency. 

 Harvesting efficiency  6.3.2.7.1

 

For harvesting by sedimentation, typical micro-algal biomass recovery rates are 

60% (Shen et al., 2009). Adopting a reduced harvesting recovery rate of 60 % 

(scenario K) marginally increased the required concentration factor, from 22 to 

23. The presence of micro-algal biomass in the dilute stream exiting the 

harvesting system may not be a problem if it can be recycled to the growth 

system, but could represent an additional expense, a loss of resources and a 

potential waste management problem. 

 Other equipment efficiencies 6.3.2.7.2

 

In scenario M the typical paddlewheel (Section 2.2.3), pump, mixer, heater and 

blower efficiencies (Couper et al., 2005) were all assumed to be as shown in 

Table 20. The efficiencies assumed are at the upper end of typical values 

(Couper et al., 2005). 

 

In this scenario the concentration factor increased from 22 to 27. This effect 

was less than that caused by reducing digester insulation in scenario N, but as 

in the case of improving insulation the increased cost and embodied energy of 

providing more energy efficient systems may be recovered in reduced 

operational energy.  

 

Table 20 Typical equipment efficiencies 

Paddlewheel efficiency % 50 

Blower efficiency % 80 

Pump efficiency % 80 

Heater efficiency % 80 

Mixer efficiency % 80 
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 Summary of scenario results 6.3.2.8

 

Table 18 shows the concentration factors for all of the scenarios considered 

ranked in order with the lowest at the top. The lower the concentration factor 

the lower the potential harvesting energy and overall energy input and higher 

potential energy return. 

 

The highest concentration factor required and the biggest deviation from the 

‘benchmark’ case was with the use of air (scenario T) rather than flue gas 

containing 12 % CO
2

 as a source of carbon. The lowest concentration factors 

required were for the maximum theoretical PE yield 11% (scenario A), a 4 day 

raceway HRT (scenario B) or reducing the depth to 0.15m (scenario C). 

In the scenarios involving changes to AD parameters (scenarios D, L,N, O and 

Q) the highest concentration factor was associated with using a thermophilic 

(55 °C) (scenario Q) rather than a mesophilic operating temperature (35 °C) 

(scenario H). The scenarios involving climatic conditions gave the second and 

third highest required concentration factors and thus confirmed the production 

of micro-algal biofuel in UK would be energetically challenging at best.  

 

The model clearly provides a useful tool for evaluating the effect of different 

parameters. 

 Pragmatic case 6.4

The choice in Section 6.3 of equipment, harvesting and methane yield 

efficiencies of 100 %, although useful for assessing the effect of selected 

process variables on concentration factor, leads to an underestimate of the 

energy inputs of ‘real systems’. In this part of the work, a pragmatic case was 

therefore defined to allow a more realistic and detailed analysis of energy 

balances of the entire micro-algal biogas production process. The equipment 

efficiencies used for this purpose were taken from Table 20. The pragmatic 

case assumed a methane yield of 60 % of the theoretical, equivalent to an 

estimated methane yield of 0.33 g CH
4

 g
-1 

VS for 20 % lipid content algae 

corresponding with the highest quoted yields (Section 2.4.9). Recent studies 

found a 60 % yield for Dunaliella salina (Roberts private communication, 2012) 

and 59 -79 % yield for 5 commercially exploited micro algae (Zhao et al., 2012). 
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All other assumptions were as the benchmark case (Scenario H) 

 Heat Recovery  6.4.1

 

In scenario U it was assumed that there was no heat recovery and in scenario V 

heat recovery was assumed to be 50 %. Heat recovery in AD systems has been 

reported at 33 – 66 % (FEC Services, 2003) and 40 % (Puchajda and 

Oleszkiewicz, 2008). Boissevain (2012) found that year round operation of 

mesophilic AD system with average external temp of 10 °C was possible with a 

waste heat recovery of 40 %. As can be seen in Table 21 the use of heat 

recovery reduced the estimated concentration factor required from 52 to 30. 

Heat recovery of 50 % was thus assumed in all further analysis in this work. 

 

Table 21 Effect of heat recovery and raceway evaporation on the concentration 

factor for the pragmatic case 

Scenario Input Assumptions Conc’ 

Factor 

U Pragmatic case - No heat recovery 52 

V Pragmatic case + Heat recovery (New Pragmatic Case) 30 

W Pragmatic case + Heat recovery + evaporation (10mm day
-1

)  30 

 Evaporation  6.4.2

 

Evaporation from open raceways can be considerable. The NREL study found 

average evaporation rates in the south-west USA of 5.7 to 6.2 mm day
-1

 

(Sazdanoff, 2006). However rates of 10 mm day
-1

 or greater can occur 

(Ferguson, 1952, Ministry of Environment and Tourism Namibia, 2002) and 

evaporation could thus be 400 kg for each kg of dry algal biomass produced. 

Assuming an evaporation rate of 0 (scenario V) or 10 mm day
-1

 (scenario W) 

had little effect on the required concentration factor, which was 30 in both 

cases. The total pumping energy increased by 2 % due to the additional fluid 

flow to replace water lost by evaporation. The total operational energy 

increased by < 0.05%. Evaporation could be a significant factor in the process 

operation and cost of micro-algal biofuel, but had little effect on concentration 

factor, input energy and EROOI, and thus was assumed to be zero for the 

further use of the new pragmatic case in this work.  
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The new pragmatic case with zero evaporation and 50 % heat recovery 

(Scenario V) was then used as the baseline condition to study the effect of a 

number of combinations of processes for producing micro-algal biogas on the 

resulting energy balance. Options studied were centrifugation, settlement, 

flocculation and combinations of these harvesting methods, together with 

multiple pond and pumping and harvesting sequences. The specific 

assumptions are further detailed in the appropriate results and discussions 

sections below.  

 

Based on the new pragmatic case (Scenario V) the model was also used to 

estimate the maximum dissolved oxygen concentration in the raceway. 

 Dissolved oxygen 6.5

The maximum dissolved oxygen concentration for the new pragmatic case 

(Scenario V)  was calculated to be 22 g m
-3

, in good agreement with reported 

DO concentrations of 20–25 mg l
-1

 reached at around noon in an experimental 

reactor using flue gas for carbon supplementation (Mendoza et al., 2013b). 

Although this is over twice the saturation level of O
2

 in air, it is below the limit 

of 3 times considered to inhibit micro-algal growth (Camacho Rubio et al., 

1999, Fernandez et al., 2001). 

 

 Micro-algal biogas production with centrifugal 6.6

harvesting 

In this scenario the model was used to estimate EROOI for the production of 

micro-algal biomass with harvesting by disc-stack centrifuge assuming the new 

pragmatic case (Scenario V). The harvesting recovery efficiency and 

concentration factor for disc-stack centrifuges, based on literature values, were 

assumed to be 90 % (Porteous, 1983, Shen et al., 2009) and 120 (Molina-Grima 

et al., 2003). Two values for energy input per unit volume were assumed of 1.4 

(Goh, 1984) and 1.0 kWh m
-3

 (Molina-Grima et al., 2003). Both EROOIs were 

substantially below 1 (Table 22), with twice to three times more energy 

required for operation than is produced as biogas. 
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As discussed in Section 2.3, disc-stack centrifuges, can achieve micro-algal 

concentrations of more than 2 % DW. Even at a concentration of 10 %, however, 

the EROOI remained ≤ 0.5 with more energy being used than is produced 

(Table 22). 

 

Table 22 EROOI for micro-algal biogas production with centrifugal harvesting  

  Typical Concentration 

Factor 

10% Algal 

Output 

Harvesting  % 90 90 90 90 

Concentration factor  120 120 604 604 

Algae DW concentration in feed to AD % 2 2 10 10 

Harvesting equipment energy input kWh m
-3

 1.4 1 1.4 1 

      

Energy Return on Operational Energy 

Invested EROOI 

 0.3 0.5 0.4 0.5 

 

The use of a disc-stack centrifuge as the sole harvesting method in the 

production of micro-algal biogas, as previously demonstrated for micro-algal 

biodiesel in Section 2.3.5.1.1, is not energetically viable. 

 

Based on the model it was estimated that an energy input of less than 

0.37 kWh m
-3

 for harvesting would be required to achieve an EROOI of ≥1. 

 Effect of viscosity 6.6.1

 

In all the previous scenarios the viscosity of the fluids in all sections of the 

model had been set to that of fresh water, as the viscosity of low concentration 

algal suspensions is similar to water (Section 2.3.6). High concentration algal 

suspension (>5 %) with a higher viscosity might occur after harvesting. The 

condition were assumed to be as above with a harvesting recovery rate of 90 %, 

a concentration factor of 120, and a harvesting energy input of 1 kWh m
-3

. Two 

levels of post-harvest viscosity were used,  0.001 and 0.035 Pa-s, representing 

fresh water and an 8 % algal suspension (Bolhouse, 2010), in order to see the 

effect on process energy input. The results are shown in Table 23. 
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Table 23 Effect of postharvest viscosity on energy inputs 

  Fluid viscosity postharvest 

 Pa-s 0.001 0.035 

Energy inputs    

Raceway mixing kWh day
-1

 43.67 43.67 

Pumping energies    

Supply pump energy kWh day
-1

 3.80 3.80 

Harvest supply pump energy kWh day
-1

 12.68 12.68 

AD supply pump energy kWh day
-1

 0.2604 0.262 

Harvest "return" pump energy kWh day
-1

 7.37 7.37 

Digestate "return" pump energy kWh day
-1

  0.08 0.08 

Total pumping energy kWh day
-1

 24.20 24.20 

Blower energy for raceway kWh day
-1

 28.48 28.48 

Harvesting energy kWh day
-1

  1536.50 1536.50 

AD energy    

Heating kWh day
-1

 
1

 146.19 146.19 

Mixing kWh day
-1

  34.57 34.57 

Total AD input energy kWh day
-1

  180.76 180.76 

Total operational energy input  kWh day
-1

  1813.60 1813.60 

 

There is only one small change in energy inputs due to the increase in post-

harvest viscosity, for the post-harvest AD supply pump which increases 0.05% 

from 0.260 to 0.262 kWh day
-1

. The overall change in total energy input was 

negligible, and therefore the assumption that the post-harvest viscosity was 

equivalent to that of fresh water was maintained for all further scenarios. 
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 Maximum harvesting energy to achieve a net energy 6.7

return 

Assuming the new pragmatic case the model was used to estimate the 

maximum harvesting energy input to achieve an EROOI = 1 for a range of 

concentration factors. A 90 % harvesting recovery rate was assumed. Two 

values of raceway HRTs were used, 2 and 4 days. Results are displayed in 

Figure 27. 

 

The harvesting energy input to achieve a net energy output is small at low 

concentration factors, and increases rapidly with increasing concentration 

factor. Harvesting energy reaches a maximum value of around 0.4 kWh m
-3 

for 

a 2-day HRT. At a 4-day HRT the concentration of micro-algal biomass leaving 

the raceway was estimated to be about 0.033 %, and unless higher 

concentrations can be achieved the maximum harvesting energy for a net 

energy return will be ~0.9 kWh m
-3

. 

 

 

Figure 27 Maximum harvesting energy to achieve an EROOI = 1 

 Micro-algal biogas production with sedimentation 6.8

harvesting 

As previously discussed in Section 2.3.1, sedimentation or settlement is a low 

cost and low energy method of harvesting, but recovery rates and 
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concentration factors are low. A recovery rate of 60 % with a concentration 

factor of 20 was assumed for three harvesting energy inputs: 

a. 0.1 kWh m
-3

. This value was chosen as it is typical of lamella settlers, 

a well-known and widely used technology for liquid-solid separation 

with limited space requirements (Uduman et al., 2010, Van den 

Hende et al., 2011).. 

b. 0.05 kWh m
-3

. This value was based on data from various 

manufacturers of lamella settlers which suggested that the energy 

requirement may be less than 0.1 kWh m
-3 

(various private 

communications with equipment manufacturers, 2012). 

c. 0.05 kWh m
-3

. This value is typical of scraped conical settlement 

tanks (Irish Environmental Protection Agency, 1997). For this case 

the head loss in the harvest supply pump was increased to 3 m to 

achieve an up-flow in the settlement tank ≤ 1.5 m hour
-1

 (Forster, 

2003). 

 

Results from these three scenarios are displayed in Table 24. For all three 

harvesting energy inputs the EROOIs are below 1 indicating no net energy 

production. Concentration factors would need to be increased to 46, 36 and 31 

and harvester output algal concentrations to 0.76, 0.60 and 0.51 % to achieve 

an EROOI of 1 for the harvesting energy inputs of 0.1, 0.05 and 0.005 kWh m
-3

 

respectively.  

 

Table 24 EROOI for micro-algal biogas production with sedimentation 

harvesting  

  Typical recovery rate & 

concentration factor 

EROOI of 1 Maximum DW 

concentration of 1.5 % 

Harvesting energy input kWh m
-3

 0.1 0.05 0.005 0.1 0.05 0.005 0.1 0.05 0.005 

Algal harvesting  % 60 60 60 60 60 60 60 60 60 

Concentration factor  20 20 20 46 36 31 91 91 91 

Algae DW concentration 

exiting settler 

% 0.33 0.33 0.33 0.76 0.60 0.51 1.50 1.50 1.50 

           

EROOI  0.6 0.6 0.7 1.0 1.0 1.0 1.4 1.7 2.1 
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Micro-algal concentrations of up to 1.5 % have been achieved by sedimentation, 

and assuming this value EROOIs of 1.4 - 2.1 are achieved. A micro-algal biogas 

process with sedimentation harvesting can give a positive net energy balance; 

unfortunately, however the majority of micro-algae do not settle readily 

(Section 2.3.1.). Sedimentation could be a viable technique for harvesting of 

some micro-algae, or could potentially be combined with other harvesting 

techniques to increase the concentration of VS entering the digester. 

 Micro-algal biogas production with flocculation 6.9

harvesting 

The addition of flocculant can improve the rate of sedimentation, and has been 

suggested as a superior method to separate algae as it is suitable for large 

volumes and a wide range of micro-algae (Section 2.3.2).  

 

Where flocculants are used to improve sedimentation harvesting, the embodied 

energy of the flocculant needs to be included in the harvesting and operational 

energy inputs. The embodied energy of a typical organic flocculant is 

5.56 kWh kg
-1

 (Beal et al., 2012b). Alum (aluminium chloride), commonly used 

in water and wastewater treatment to remove algae, and perhaps the most 

effective inorganic flocculant for micro-algae, (Section 2.3.2.1), has an 

embodied energy of 4.04 kWh kg
-1

 (Maas, 2009). A major drawback of using 

mineral salts is that higher flocculant doses are required compared with 

organic flocculants, ranging from 120 - 1000 g m
-3

 compared to 1 - 10 g m
-3

 

(Section 2.3.2). The harvesting recovery efficiency of flocculation-assisted 

sedimentation ranges from 50 to 90 % (Granados et al., 2012, Pushparaj et al., 

1993, Shen et al., 2009) and the concentration factor from 35 to 800, although 

concentration factors of 800 are not typical for micro-algae (Knuckey et al., 

2006, Molina Grima et al., 2003). 

 

Flocculants need to be mixed into the micro-algal suspension prior to 

settlement. A Root Mean Square Velocity Gradient (G) for mixing of 300 s
-1

 was 

assumed, a value recommended by the Environmental Protection Agency and 

IWA for flocculation of municipal wastewater (Chen et al., 1998, International 

Water Association, 2010). This produced a flocculant mixing energy input of 

90 W m
-3

, in reasonable agreement with the ‘engineering rule of thumb’ to mix 
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flocculants of 100 W m
-3

 (Couper et al., 2005, Sinnott, 2005, Stephenson, 

2009). 

 

The EROOI was estimated for alum at a dosage of 120 g m
-3

, at concentration 

factors of 35 and 800 and an algal recovery rate of 90%; and for an organic 

flocculant at a dosage of 1 and 10 g m
-3

 and harvesting recovery efficiencies of 

70 and 90 %. The results are shown in Table 25. 

 

Table 25 EROOI for micro-algal biogas production with flocculation 

  Alum  Organic Flocculant 

  0.005 kWh m
-3

 Settlement input 3m harvest pump head 

Algal harvesting  % 90 90  90 90 70 70 

Concentration factor  35 800  35 35 35 35 

Flocculant dose mg l
-1

 120 120  10 1 10 1 

Algae DW concentration exiting settler  0.58% 13.26%  0.58% 0.58% 0.58% 0.58% 

         

EROOI  0.6 1.0  1.1 1.2 1.0 1.1 

         

Embodied energy as % of energy produced  65 65  10 1 13 1 

 

Alum at a dosage of 120 g m
-3

, the lowest found in the literature, achieves an 

EROOI of 1 only at the highest concentration factor for flocculation found in 

the literature of 800. The embodied energy in the alum was 65 % of the total 

energy produced. Flocculation by alum is therefore not a viable option for the 

production of micro-algal biogas. 

 

The lower dosages of organic flocculant, despite their higher embodied energy 

per unit of mass, resulted in a lower input energy for flocculation than alum, 

with the embodied energy in the flocculant being 1 to 13 % of the energy 

output. The EROOI for organic flocculants were estimated at between 1.0 and 

1.2 for the lowest suggested concentration factor of 35, and thus organic 

flocculants may be a viable harvesting method, especially if higher 

concentration factors are achieved. EROOI could be improved by combining 

flocculation with other harvesting techniques.  
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 Micro-algal biogas production with a combination of 6.10

harvesting methods 

The next scenarios considered a combination of sedimentation with 

centrifugation and flocculation with centrifugation to achieve an estimated 

output concentration of 10 % DW micro-algae from the harvesting operation. 

The feedstock concentration of 10 % was selected as being at the upper end of 

that reported as typically encountered with CSTR digesters (Rittmann and 

McCarty, 2001, Wilkie, 2005); micro-algal suspensions above 10 %  will also 

behave as non-Newtonian fluids with a high viscosity and may be problematic 

to pump (Section 2.3.6.).  

 

The parameters were as the new pragmatic case (scenario V) with the 

harvesting concentration factors, recovery rates and harvesting energy inputs 

as previously used in Sections 6.6, 6.8 and 6.9. 

 

The results are displayed in Table 26. All the combinations of harvesting 

assessed produced a positive net energy output with EROOIs ranging from 2.5 

to 3.8. Settlement and flocculation greatly reduces the flow rate of material 

entering the centrifuge, and thus the energy input for centrifugation.  
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Table 26 EROOI for micro-algal biogas production with a combination of 

harvesting methods 

  Sedimentation  Flocculation 

  Centrifugation  Centrifugation 

Harvesting      Organic 1 mg l
-1

  Organic 10 mg l
-1

 

Recovery rate sedimentation/floc' % 60 60 60  70 90  70 90 

Concentration factor sediment’/floc'  20 20 20  30 30  30 30 

Recovery rate centrifugation % 90 90 90  90 90  90 90 

Concentration factor centrifugation  30 30 30  20 20  20 20 

Harvesting equipment sedimentation kWh d
-1

 0.005 0.005 0.005  0.005 0.005  0.005 0.005 

Harvesting equipment centrifugation kWh m
-3

 1.4 1 0.35  1 1  1 1 

Energy output           

Calorific Value of CH
4

 production kWh d
-1

 505.2 505.2 505.2  589.4 757.8  589.4 757.8 

Energy inputs           

Raceway mixing kWh d
-1

 43.7 43.7 43.7  43.7 43.7  43.7 43.7 

Total pumping energy kWh d
-1

 29.5 29.5 29.5  29.4 29.5  29.4 29.5 

Raceway blower energy  kWh d
-1

 28.5 28.5 28.5  28.5 28.5  28.5 28.5 

Harvesting energy kWh d
-1

 72.2 53.8 23.8  52.4 62.6  129.2 139.4 

Total AD input energy kWh d
-1

 24.3 24.3 24.3  28.0 35.5  28.0 35.5 

Total operational energy input  kWh d
-1

 198.1 179.7 149.7  182.0 199.7  258.8 276.5 

           

Net energy  kWh d
-1

 307.1 325.5 355.5  407.5 558.1  330.6 481.3 

           

EROOI  2.5 2.8 3.4  3.2 3.8  2.3 2.7 

 

The concentration factor required for centrifugation following sedimentation is 

only 30, 25 % of the typical centrifugation factor of 120 (Molina-Grima et al., 

2003). The concentration factor achieved by a disc-stack centrifuge is 

proportional to the flow rate (Axelsson, 2000, Porteous, 1983, Purchas, 1981), 

and this lower concentration factor could therefore allow a higher flow rate 

through the centrifuge. The energy per unit of flow for each unit of 

concentration factor, known as Dewatering energy D
w

, can be expressed as 

(Bolhouse, 2010, Mohn, 1988): 
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Equation 27 

D   
 

  
 

 

Where E is the energy of centrifugation per unit volume and C
f

 is the 

concentration factor. For a centrifugal energy consumption of 1.4 kWh m
-3

 and 

a concentration factor of 120, D is 11.7 W m
-3

, and for a concentration factor of 

30 the centrifugal energy consumption would be reduced to 0.35 kWh m
-3

. 

Assuming a value of 0.35 kWh m
-3

 in the estimate of energy inputs improves 

the EROOI to 3.4 for sedimentation with centrifugation. This reduced energy 

input for disc-stack centrifugation needs to be verified experimentally for 

large-scale equipment as it not possible to ‘precisely predict’ the energy 

requirement (Porteous, 1983), and the linearity of the relationship between 

concentration factor and flow rate drops off dramatically above a critical flow 

rate specific to each centrifuge (Axelsson, 2000). The reduction in required 

concentration factor following initial concentration by sedimentation or 

flocculation may, however, reduce the centrifuge energy input compared to 

typical literature values of 1 to 1.4 kWh m
-3

.  

 

Flocculation by an organic flocculant may be a more reliable and widely 

applicable means of pre-concentration than sedimentation, but the 

concentration of flocculant is critical to the energy balance. At a flocculant 

dosage of 1 mg l
-1

, for harvesting recovery rates of 70 and 90 %, the EROOI is 

3.2 and 3.8 i.e. higher than that for sedimentation and centrifugation at the 

same centrifuge energy input (Table 26). At a flocculant dose of 10 mg l
-1

, 

however, the EROOI is lower than for settlement. Flocculation at low doses 

followed by centrifugation for typical concentration factors and harvest 

recovery rates can produce EROOI greater than 3 for the production of micro-

algal biogas. An EROI of 3 has been suggested as the minimum that is viable to 

‘support continued economic activity’ (Clarens et al., 2011a, Hall et al., 2009). 

Micro-algal biogas production using flocculation and sedimentation could 

therefore be viable, but a low-cost low-dose (~1.0 mg l
-1

) organic flocculant that 

is broken down in the digester is required, together with low or no cost and 

embodied energy nutrients and CO
2

. 
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 Multiple raceways 6.11

The model assumed a single raceway supplying biomass to a single digester, 

but commercial digesters can have a considerably greater volume (Basrawi et 

al., 2010) than that estimated in previous scenarios. The required reactor 

volume assuming a single raceway in the sedimentation centrifugation case 

was estimated at 28 m
3

. As the reactor volume increases its surface area 

relative to volume decreases and thus the heat loss per unit volume will also 

decrease. 

 

The digester volume in the model was therefore set to 3000 m
3

, typical of 

large-scale commercial digesters. It was estimated that the digester would 

need 108 x 1 hectare growth ponds. The assumptions used were as those in 

the sedimentation centrifugation scenario, but with 108 raceways supplying a 

single digester. An average minimum pumping distance from the pond to the 

digester of 425 m was estimated based on geometrical considerations. The 

EROOI was calculated for no additional pumping distance (not possible, but 

used for initial comparison with the single raceway system) and with a 425 m 

pumping distance, for 3 scenarios: 

a. Pumping (distance 425 m) from each raceway to a single central 

harvesting ‘zone’ (sedimentation centrifugation) adjacent to the digester. 

b. Sedimentation adjacent to each raceway and then pumped (distance 

425 m) to a single central centrifugation harvesting ‘zone’ adjacent to 

the digester. 

c. Harvesting (sedimentation centrifugation) adjacent to the raceway and 

then pumped (distance 425 m) to the digester. 

 

A further scenario of 4 raceways supplying a single digester was also 

considered. The pumping distance from the raceway through the harvesting 

system was assumed to be the same for each raceway in the 4 raceway 

scenario as in the single raceway sedimentation centrifugation scenario.  

 

The outputs for the various process configurations described above are shown 

in Table 27. 
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Table 27 Effect of number of raceways on EROOI 

  Single 

raceway 

& AD 

Multiple hectare raceway supplying 

 1 AD unit (~3000 m
3

) 

4 

raceways 

& 1 AD 

   No 

additional 

piping 

425 m 

pipe 

run 

Settle 

locally 

Harvest 

locally 

 

Number of hectare raceways  1 108 108 108 108 4 

AD volume m
3

 28 2,987 2,987 2,987 2,987 111 

        

EROOI  2.8 2.9 1.4 2.9 2.9 2.8 

        

Total pumping energy 

per hectare raceway 

kWh day
-1 

ha
-1

 

29.5 29.6 214.9 29.7 29.6 29.5 

Total AD heat energy per 

hectare raceway 

kWh day
-1 

ha
-1

 

20.1 16.1 16.1 16.1 16.1 18.2 

 

With no additional piping, compared to a single raceway, the EROOI improves 

from 2.8 to 2.9. This is due to the reduction in the heat energy requirement of 

the digester from 20.1to 16.1 kWh day
-1 

ha
-1

, as a result of the lower surface 

area per unit volume. However, it is not possible to have 108 raceways 

supplying a single digester without additional pipework. When the additional 

average pipe run of 425 m to transport the micro-algal suspension to the 

harvesting operation adjacent to the digester is included, the EROOI reduces to 

1.4 as a result of a more than 7-fold increase in the total pumping energy.  

 

Local sedimentation reduced the amount of liquid to be pumped 20-fold, and 

increased the EROOI to 2.9, but local harvesting with settlement and 

centrifugation brings no additional improvement. Although concentration 

during local harvesting reduces pumping energy it does not produce a 

reduction in the number of items of harvesting equipment with the consequent 

economies of scale and reductions in capital cost. 

 

Groups of 4 raceways could be arranged around a central harvesting and 

digester unit with little or no additional piping. Although there was no 
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improvement in EROOI this may allow lower equipment costs due to economies 

of scale. 

 

Pumping energy should be minimised and must be taken into account when 

considering multiple raceway layouts. 

 Energy supply 6.12

The EROOI does not take into account the generation and transmission costs of 

input energy. These, as shown in Section 5.2.1.2, can more than double the 

energy requirement. The energy transmission costs can be reduced by 

producing power locally and ‘parasitically’ from the biogas produced. 

Combined heat and power (CHP) is the simultaneous production of electricity 

and heat from a fuel, and is more efficient than conventional separate electrical 

and heat generation, as shown in Figure 28. CHP units have been widely used 

to exploit biogas from AD. Biogas burned in a CHP unit requires minimal or no 

gas scrubbing to remove hydrogen sulphide (H
2

S) and other impurities (Salter 

and Banks, 2008, Wellinger and Lindberg, 2001). However upgrading of the 

biogas is normally required if the gas is used as a vehicle fuel or added to the 

natural gas grid. The upgrading of biogas typically uses ~11 % of the energy 

content in the biogas (Berglund and Borjesson, 2006).  
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Figure 28 CHP (US Environmental Protection Agency, 2013) 

 

If the biogas produced from micro-algae can be exploited directly in a CHP unit, 

can the heat and power produced be used efficiently for the process electrical 

and heating energy in micro-algal biogas production? The ratio of electrical to 

heat energy produced from a CHP unit is ~0.67.  

 

Using the scenarios for sedimentation centrifugation and flocculation 

centrifugation (Section 6.10) the ratio of electrical to heat energy required by 

the micro-algal production process was estimated using the model.  

 

Table 28 displays the ratio of electrical to heating energy needs in micro-algal 

biogas production. The ratio is very different to that generated by CHP, with 

more electrical than heat energy required. If heat from the CHP unit is not fully 

exploited or if separate electrical and heat generators are used the energy 

input into the micro-algal biogas process more than doubles and EROOI is 

reduced. The sedimentation centrifugation scenario requires 178 and 20.1 kWh 

day
-1

 of electrical and heat energy inputs, and produces 505 kWh day
-1

 as 

methane (HHV) from the micro-algal biogas. If all the biogas is burnt in a CHP 

unit, at the output ratio in Figure 28, then a 151 kWh day
-1

 of electricity and 

227 kWh day
-1

 of heat are produced with 126 kWh day
-1

 of operational energy 
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losses in the CHP unit. If only the 20 kWh day
-1

 of heat required by the process 

is used the total loss of energy from CHP unit in operational losses and ‘waste 

heat’ totals 333 kWh day
-1

. The total input and waste energy is thus 531 kWh 

day
-1 

giving an EROOI of less than 1. 

 

In order for the micro-algal biogas to be energy efficient a local source for 

exploitation of the excess heat generated needs to be found. Finding local 

uses for excess heat is one of the major operational problems in the current 

exploitation of CHP, and not just for micro-algal fuel production. 

 

Table 28 Ratio of electrical to heating energy in micro-algal AD 

  Settlement  Flocculation 

  Centrifugation  Centrifugation 

Harvesting      Organic  

1 mg l
-1

 

 Organic  

10 mg l
-1

 

Harvesting settlement/floc' % 60 60 60  70 90  70 90 

Concentration factor settlement/floc'  20 20 20  30 30  30 30 

Harvesting centrifugation % 90 90 90  90 90  90 90 

Concentration factor centrifugation  30 30 30  20 20  20 20 

Harvesting equipment settlement kWh day
-1

 0.005 0.005 0.005  0.005 0.005  0.005 0.005 

Harvesting equipment centrifugation kWh day
-1

 1.4 1 0.35  1 1  1 1 

           

Electrical energy kWh day
-1

 178.0 159.6 129.6  150.2 161.9  150.2 161.9 

Heating energy kWh day
-1

 20.1 20.1 20.1  23.2 29.2  23.2 29.2 

Ratio Electrical to Heat Energy  8.8 7.9 6.4  6.5 5.5  6.5 5.5 

 

 Conclusions from modelling 6.13

The production of micro-algal biogas is energetically possible with potential 

EROOIs over 3 using the technologies proposed, but requires: 

a. Favourable climatic conditions. The production of micro-algal biofuel in 

UK would be energetically challenging at best. 

b. Achievement of ‘reasonable yields’ equivalent to ~3 % photosynthetic 

efficiency (25 g m
-2

 day
-1

) 
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c. Low or no cost and embodied energy sources of CO
2

 and nutrients from 

flue gas and wastewater 

d. Mesophilic rather than thermophilic digestion 

e. Adequate conversion of the organic carbon to biogas (≥ 60 %) 

f. A low dose and low embodied energy organic flocculant that is readily 

digested, or micro-algal communities that settle readily 

g. Additional concentration after flocculation or sedimentation 

h. Exploitation of the heat produced from parasitic combustion of micro-

algal biogas in CHP units 

i. Minimisation of pumping of dilute micro-algal suspension  

 

The model provides a powerful assessment tool both for comparison of 

alternative options and potentially for benchmarking real schemes. 
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 Case studies 7.

In order to test the approaches and methods previously discussed and to 

determine their usefulness in assessment of an algal biomass cultivation 

scheme, a case study was carried out in which values calculated in accordance 

with the above were then used in conjunction with equipment manufacturers’ 

data for outline sizing of a potential plant and to establish an initial energy 

balance. It was originally intended to use the model on the FP7 All-Gas project, 

which is based on raceways cultivation plus anaerobic digestion for biogas 

production; but this project was insufficiently advanced to allow the acquisition 

of good cost data for the economic part of the assessment. It was therefore 

decided to look at a scheme initially intended for biodiesel production in 

conjunction with Pure Energy Fuels Ltd. 

 

Pure Energy Fuels Ltd was a UK-based biodiesel supplier interested in 

producing biodiesel from micro-algae. No commercial systems are available for 

this purpose, and an outline micro-algal biodiesel production process design 

and initial energy input assessment was therefore developed. The extraction of 

oil from biomass and the production of the biodiesel were to be achieved by 

extraction systems used for terrestrial plant oils and trans-esterification with 

methanol in the presence of an alkaline catalyst. Both processes were familiar 

to the company and the previous cost data were available. 

 

Information for the Pure Energy Fuels Ltd case study was initially gathered 

during 2008 and 2009, with a follow-up visit for further data collection in 

2013.The technical scheme considered was applicable to a range of locations 

with similar climatic conditions, but site-specific data was gathered for 

Namibia. 

 

Pure Energy Fuels Ltd did the economic assessment of the biodiesel scheme, 

but as part of the current research another economic assessment was prepared 

for co-production of Dunaliella and salt, using data obtained directly from 

manufacturers of relevant equipment on the performance and costs of their 

equipment.   
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 Micro-algal biodiesel production  7.1

 System design 7.1.1

 

An open raceway system was selected as the most cost effective system for 

growing large quantities of algal biomass for biofuel (Section 2.1). Growth of a 

single micro-algal species for biodiesel feedstock in an open raceway was 

considered not to be feasible, and it was anticipated that a mixed culture could 

be established that was adapted to the local environment, stable and produced 

reasonable yields. The culture might differ between locations and perhaps also 

vary over the year as climatic conditions varied. This approach has recently 

been endorsed by Kazamia et al. (2012), who suggested the development of a 

'synthetic ecology' where a robust community of multiple algal species growing 

in a consortium offers the potential both of increased yields, and the ‘crop 

protection’ necessary for wide-scale commercialisation. ‘Crop protection’ from 

invasion by contaminants, predators and competitors is likely to be particularly 

difficult in open culture. "A synthetic community, by its nature of having many 

of the available niches already occupied, can serve as a mechanism for crop-

protection" (Kazamia et al., 2012). A yield based on 3 % photosynthetic 

efficiency was selected as a realistic and achievable target, equivalent to 

approximately 25 g m
-2 

day
-1 

(Section 4.1.). A target of 20 % useable oil content 

for biodiesel was also considered as achievable. 

 

Nutrient costs have been shown to be an important factor in the cost and 

energy requirement of micro-algae production (Section 2.2.7.1). It was 

assumed that nutrients could be provided by wastewater, reducing fertiliser 

costs and embodied energy inputs. Carbon dioxide is another important 

requirement and a potential cost for micro-algal growth, and it was anticipated 

that the plant could be sited adjacent to a large producer of carbon dioxide, 

such as a power station or cement works. The carbon dioxide cost and 

embodied energy would, therefore, be negligible (Sections 2.2.4 & 2.2.7.2).  

 

As noted earlier, the most common method of mixing and circulation in open 

raceways is by means of a paddlewheel (Section 2.2.3); while for gaseous 

transfer of carbon dioxide a sump is the most common method. Putt (2007) at 

Auburn University, Alabama proposes a design combining a gaseous transfer 
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sump with a new low-cost cantilever sludge pump (Figure 29). This design was 

initially considered worthy of further attention because it held the possibility of 

additional refinement through combining separation by flotation with mixing 

and gaseous transfer. Discussions with Auburn University and with gas blower 

manufacturers suggested, however, that a modified cantilever pump gaseous 

sump designed to achieve flotation separation of micro-algae would require 

excessive amounts of operating energy to obtain the small bubble size 

required. The cantilever pump was found to be substantially more expensive 

than a paddlewheel, with the cost of pumps to power a one hectare raceway 

being 2 - 3 times higher than a paddlewheel at an installed power 2.5 - 3 times 

higher (various private communications with equipment manufacturers, 2008). 

It was therefore decided to base the proposed system on a paddlewheel and a 

separate gaseous exchange sump, as in the model developed for the current 

work (Section 5). 

 

 

Figure 29 Gaseous transfer sump with cantilever pump (Putt, 2007) 

 

A raceway area of one hectare (Sections 2.2.6 ) was used for all costing and 

energy calculations, with a channel width of 25 m and length 200 m (Sections 

6.1 & 6.2.3). It was considered preferable to use a lined system (Section 2.2.1). 

It has been suggested that lined ponds are twice the cost of unlined ponds 
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(Lundquist et al., 2010), but discussions with UK excavation and liner suppliers 

suggested that the cost of a liner could be 2.7 times the cost of raceway pond 

excavation and over 5 times the cost if reinforced liners were required (various 

private communications with equipment manufacturers, 2008). 

 Paddlewheel power 7.1.2

 

The head loss and hydraulic power required for mixing was calculated at 

0.05 m and 1.1 kW for a flow velocity of 0.3 m s
-1

 for a smooth lined raceway 

having a Manning Friction Factor of 0.01 (see Sections 2.1.1.3 & 4.2 for 

relevant equations). The power requirement for a 40 % efficient paddlewheel 

was calculated as 2.8 kW, but a paddlewheel manufacturer recommended a 

total installed power of 3.4 kW (Waterwheel Factory Inc. private communication, 

2008). 

 Gaseous transfer power 7.1.3

 

Discussions were held with a number of blower manufactures to establish type, 

size, cost and power requirements for blowers to deliver flue gas to a gaseous 

sump in the raceway. The sizing of the blower was based on a flue gas 

concentration of 12 % v/v CO
2

. The CO
2

 concentration in the surrounding 

atmosphere should be the minimum possible for the health and safety of those 

in the area of the raceways and to comply with regulations concerning flue gas 

emissions at ground level (EC 80, 2001). In the current case a depth of 3m was 

selected for the gaseous transfer sump to ensure 90% removal of CO
2

 from flue 

gas, based on the more conservative calculation of Putt (2007) and Stephenson 

et al. (2010) (Section 2.2.5).  

 

A single-stage side channel blower was recommended by a number of UK 

suppliers for a total required pressure below 0.6 bar. If the pressure required 

is greater than 0.6 bar, a more expensive blower with higher energy 

consumption would be required. The static pressure in a 3 m deep sump would 

be 0.3 bar, allowing for a pressure drop in the remainder of the gas flow 

system of 0.3 bar. Using a shallower sump would mean that sufficient pressure 

was available for longer transfer distances and/or smaller bubbles. To meet 

algal growth needs, assuming a CO
2

 requirement of 1.8 g g
-1

 of micro-algae, a 

yield of 25 g m
-1 

day
-1

 and a 90 % CO
2

 transfer rate, the demand for flue gas at 
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12 % v/v CO
2

 is 3410 m
3

 ha
-1

 day
-1

. It was assumed that CO
2

 would only be 

supplied for an average of 12 hours per day during daylight hours. Based on a 

flow of up to 300 m
-3

 hour
-1

, a single-side channel blower with an installed 

power of 5.5 kW was therefore selected (Northey private communications, 

2009 and 2012). 

 Harvesting power 7.1.4

 

The wastewater treatment industry processes large quantities of water to 

remove organic material and, although treated water is the target product 

rather than organic matter, it was believed that existing technology in the 

wastewater treatment industry could offer a potentially viable harvesting 

system. Activated sludge treatment of wastewater and harvesting was 

considered to be analogously the closest process to the potential process of 

growth and harvesting of micro-algae for biofuel. The Thames Water activated 

sludge treatment plant at Longreach, Dartford, UK was visited and the 

harvesting of sludge observed. The harvesting process consisted of a 

settlement tank followed by a belt thickener with flocculant addition, and 

finally a belt filter press. Volatile solids concentrations in the sludge at various 

parts of the wastewater treatment were approximately 0.5 % from the settler, 

5 % from the belt thickener and 25 % from the belt press (Thames Water and 

Ashbrook Simon-Hartley private communications, 2008 and 2012). Although 

the process of settlement, thickening and belt filtration does not appear to 

have been used for the large-scale commercial harvesting of micro-algae it has 

been successful in removing microorganisms from wastewater and was 

therefore selected as a part of the proposed design. 

 Process energy demand and EROOI 7.1.5

 

The installed motor power for the major items of equipment is given in Table 

29, together with estimates, based on discussions with equipment 

manufacturers, of the percentage usage of this installed power for the growth 

and harvesting of micro-algae to produce a wet micro-algal sludge suitable for 

further processing into biodiesel. 
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Table 29 Energy requirements of growth and harvesting equipment 

 Motor 

Rating 

Raceway 

area 

covered 

Power 

per unit 

area
 

Running 

time 

Utilisation  Energy 

use 

 kW ha  kW ha
-1

 hours % kW ha
-1 

day
-1

 

Raceway       

Paddlewheel 3.4 1 3.4 24 80% 65.3 

Blower& sparger 5.5 1 5.5 12 80% 52.8 

Total raceway   8.9   118.1 

Settlement & 

harvesting 

      

Transfer pumps 2 per 

raceway @ 3kw 

6 1 6.0 24 60% 86.4 

Settlement tank 2 28 0.1 24 80% 1.4 

Flocculation equipment 

& belt press 

29 48 0.6 24 60% 8.7 

Total harvesting   6.7   96.5 

Total per hectare   15.6   214.6 

 

The yield of micro-algae was assumed to be 250 kg ha
-1

 day
-1

 with a 20 % lipid 

content (Section 4.1.4.4), equivalent to a total calorific value yield of 

1512 kWh day
-1

 in the total biomass, of which 547 kWh day
-1

 is in the lipid 

fraction. The operational EROOI for the growth and harvesting of wet total 

biomass is 7.0, and 2.5 for lipid only, but the biomass must be processed 

further before a usable fuel can be produced. The majority of the energy in the 

micro-algal biomass is not in the lipid fraction, but in the non-lipid residue, 

and the exploitation of the entire micro-algal biomass to produce biogas 

(Sections 2.4.9 & 6.13) could potentially give a significant improvement in the 

energy balance of a micro-algal biofuel system.  

 

The operational energy required for the raceway cultivation system expressed 

as a percentage of the calorific value in the micro-algal biomass is 7.8 %, with a 
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further 6.8 % for harvesting, fluid transfer and recycling. The energy used by 

the blower for gaseous exchange is 0.2 kWh kg
-1

 of dried micro-algal biomass, 

in good agreement with a previous model (Brune et al., 2009). Kadam (2002) 

estimated an energy usage of 22 kWh tonne
-1

 of flue gas sparged into a micro-

algal pond in a study of co-firing of micro-algae and coal, in reasonable 

agreement with this study’s estimate of 19 kWh tonne
-1

 of flue gas. The 

harvesting energy (excluding fluid transfer) of 0.13 kWh m
-3

 of dilute micro-

algal suspension compares very favourably to that for centrifugation at 1.4 

kWh m
-3

 (Milledge and Heaven, 2011), but is dependent on settlement and the 

use of flocculants, and the whole process needs to be demonstrated for micro-

algae on a large scale. The energy inputs do not include any embodied energy 

for flocculant use.  

 Potential production sites  7.2

Selection of sites that have the appropriate climate together with a source of 

flue gas, wastewater and additional supplies of water is challenging. Namibia is 

a relatively politically stable country with a warm, sunny and dry climate, and 

was identified in conjunction with Pure Energy Fuels as possible location of 

sites for potential micro-algal biomass production. Maps of Namibia displaying 

average solar radiation and rainfall together with major towns and cities are 

shown in Figure 30.  
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Figure 30 Average solar radiation and rainfall in Namibia (Ministry of 

Environment and Tourism Namibia, 2002) 

 Van Eck power station, Windhoek 7.2.1

 

Much of Namibia’s electricity needs are met from power produced outside the 

country, but NamPower, the main electricity generating company within 

Namibia, has four major generating facilities: Ruacana hydro-electric on the 

Kunene River on the Angolan border in the north, producing up to 240 MW; 

Van Eck coal-powered station in northern Windhoek, producing up to 120 MW; 

Paratus diesel-powered standby station at Walvis Bay, producing up to 18 MW; 

and ANIXAS, opened in July 2011,situated adjacent to the Paratus Power Station 

at Walvis Bay, providing an emergency standby diesel-generated electrical 

capacity of 22.5 MW. 

 

A capacity of 100,000 tonnes biomass year
-1

 was considered the preferred size 

for a commercial scale micro-algal biodiesel plant by Pure Energy Fuels, and 

the only plant capable of producing sufficient CO
2

 was Van Eck in Windhoek 

(Figure 31). This station was constructed between 1972 and 1979 and operates 

on imported coal. Calculations suggested that at full output the plant could 

produce over 700,000 tonnes of CO
2

 for 12 hours day
-1

 to supply algal growth 

during daylight. The estimated area required for micro-algal raceways and 

ancillary plant was 1400 ha and initial investigations suggested that sufficient 
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land was available at the site. There was also a source of brackish water and a 

wastewater treatment plant in the area for the supply of water and nutrients. 

 

 

 

Figure 31 Van Eck power station viewed from the North  

 

The  an  ck power station’s emission figures for CO
2

 and NO
x

 production, 

showed an increase for both gases from 2003 to 2007 with output in 2007 

being 181,992 and 919 tonnes respectively (Langenhoven, NamPower private 

communication, 2008). The information provided by NamPower on the rising 

emissions and production from Van Eck, together with the availability of a 

water source and excellent climatic conditions for micro-algal growth, led to 

the conclusion that a visit to NamPower in Windhoek was justified to further 

investigate the potential for micro-algal growth. 

 

Discussions with NamPower in late  008 indicated that the ‘life’ of  an  ck was 

well below the minimum 10-year span considered as the basis for any 

proposed investment by Pure Energy Fuels. An email from Rinus Castens of 

NamPower (Castens, NamPower private communication, 2008) stated, "You 

need a reliable supply of CO
2

 which none of our existing power stations can 
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offer. The new trend in NamPower according to our "Integrated Resource Plan" 

is to develop our Hydro potential." Investigation of biodiesel production from 

micro-algae at Van Eck power station therefore ceased at that time.  

 

The Van Eck power station continues to operate, and with Namibia facing a 

power shortage NamPower has implemented several short-term measures 

including ‘ramping up’ the station (Duddy, 2012). NamPower has recently 

announced a potential project for a new coal fired power station in the Erongo 

district of Namibia (Duddy, 2012) and there have been announcements for the 

past ten years about a potential gas-powered station in the southwest of 

Namibia using gas from the Kudu gas field (Anon, 2013, Maletsky, 2004). 

Power stations at Erongo and Kudu could have reasonable access to sea water 

and large area of land, but neither has a large centre of population, and the 

supply of wastewater nutrients is thus likely to be lower than at Van Eck. The 

climatic conditions at both Erongo and Kudu are dry and sunny, and if power 

plants are established, they would be worthy of further investigation for micro-

algal fuel production. 

 

The proposed process of micro-algal biomass cultivation followed by solar 

drying then extraction of the lipid and trans-esterification for biodiesel 

production with residual biomass sold for fertiliser was subjected to financial 

analysis by Pure Energy Fuels, and found to be uneconomic. The focus of this 

part of the research therefore shifted to alternative approaches to improve the 

economic aspects of the scheme. 

 Alternative options  7.3

Although none of NamPower’s existing power stations currently offer a reliable 

supply of CO
2

, the original reasons for selection of Namibia could, however, 

make it a potential area for commercialisation of micro-algae for non-fuel 

products or the production of biofuel as co-product in a biorefinery. 

 

Fact finding studies were undertaken in November 2008 and April 2013 to the 

Namibian coastal towns of Walvis Bay and Swakopmund to assess their 

suitability for other forms of commercial-scale micro-algal production. 
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Discussions with national and local government organisations and other 

interested parties indicated that:  

 

a. wastewater could be available to provide nutrients. Figure 32 shows the 

new activated sludge wastewater treatment plant at Swakopmund. The 

management at the Swakopmund wastewater plant were particularly 

interested in the development of micro-algal raceways integrated with 

the existing plant to remove nutrients and produce biomass for biogas 

production 

b. sea water could be extracted for the growth of marine algae 

c. there are large areas of level ground that could be suitable for raceways  

 

Walvis Bay and Swakopmund were, therefore, both considered to be potential 

sites for the cultivation of Dunaliella salina for the production of β-carotene or 

as feedstock for a biorefinery, as this type of culture is suited to areas where 

land costs are low, there is supply of salt water and that have favourable 

climatic conditions with low rain fall and high solar insolation. Biomass 

residues from the production of β-carotene, such as glycerol and post-

extraction biomass, could then be a potential source of biofuel. 

 

Dunaliella is often found in open pan salt production ponds. Evidence of the 

presence of Dunaliella can be seen in orange colouration of water in the salt 

pans at Walvis Bay (Figure 33) and in the intense orange colour of the foam in 

the channel containing the water from the washing of salt crystals at 

Swakopmund (Figure 34), due to the release of β-carotene from fractured cells. 

Could the growth of Dunaliella for β-carotene be combined with natural 

evaporative salt production?  

 



 

 196 

 

Figure 32 Aeration of wastewater at Swakopmund wastewater treatment plant 

 

 

Figure 33 Open salt evaporation pans at Walvis Bay 
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Figure 34 Salt wash water channel at Swakopmund salt works 

 Techno-economic assessment of co-production of Dunaliella and 7.3.1

salt 

 

The costs of growing Dunaliella could be reduced by combining growth of the 

algae with natural evaporative salt production. An economic assessment using 

commercial equipment suppliers’ data ( 009) was carried out for production of 

300 tonnes year
-1

 of spray-dried Dunaliella salina as a β-carotene supplement 

(based on discussions with equipment manufacturers and Pure Energy Fuels) 

produced from unmixed ponds, mixed raceways with gaseous transfer and co-

production in unmixed evaporative salt ponds.  

 Basis of assessment 7.3.2

 

Productivities for Dunaliella grown in conjunction with salt production are 

unknown, and were therefore assumed to be the same as those found in 

commercial unmixed ponds. 

 

The cost of a one hectare lined raceway with paddlewheel mixing was 

estimated at ~US$ 100,000, whilst a less productive unmixed and unlined 

pond could be excavated for US$ 25,000 (private communications with 

equipment manufacturers, 2008). Dunaliella is commonly harvested using disc-

stack centrifuges. Although energy intensive these are effective in harvesting 
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micro-algae (Section 2.3.5.1). A total yield of dried algae of 300 tonnes year
-1

 

would require processing of 80 m
-3

 hour
-1

 of 0.05 % algal suspension, requiring 

two Westfalia-type separators costing US$ 929,529. These separators produce 

slurry that can be processed by a spray dryer with a budget cost of 

US$ 3,310,651 giving a total capital cost for harvesting and drying of 

US$ 4,240,180. In addition transfer pumps, process control, packing and 

handling equipment and buildings to house the plant will be required, giving 

an estimated total of US$ 5,250,000 of capital costs downstream of the growth 

ponds (private communications with equipment manufacturers, 2009). Energy 

costs for centrifugation and drying are high, at an annual estimated cost of 

US$ 400,000.  

 

The assumed sale price was US$ 20 kg
-1

, approximately one third of the price 

for wholesale product obtained from China (private communications with 

suppliers, 2009). Labour costs were taken as 12 % of capital expenditure 

excluding land costs, but no labour or capital costs were included for the 

ponds used in salt production as these are assumed to be covered by the 

original investment for the production of salt.  

 Results and discussion  7.3.3

 

Table 30 shows the estimated capital, income and expenditure for the three 

types of plant to produce 300 tonnes year
-1

 of spray-dried Dunaliella salina for 

sale as a β-carotene supplement. All three pond types show a profit and a 

return on investment, with the best return from co-production of Dunaliella 

salina with salt, if this is practicable. The results indicate that the growth of 

Dunaliella salina in the currently unexploited route of co-production in salt 

ponds is worthy of further investigation; however no practical studies appear 

to have been published on this to date. The estimates of productivity used 

need to be verified in a practical trial, together with tests on extraction and 

drying, before the viability of a co-production process could be fully 

established.  
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Table 30 Potential capital expenditure, income & profit from production of 

Dunaliella salina  

 Mixed 

Raceway 

Ponds 

Unmixed Ponds Salt Ponds Calculation 

notes 

Pond costs construction & energy     

Target production, tonnes 300 300 300  

Yield, tonnes ha
-1

 year
-1 

6 1.5 1.5  

Yield, g m
-2

 per day 1.6 0.4 0.4  

Total pond area, ha 50 200 200  

Pond construction cost, US$ ha
-1 

100,000 25,000 0  

Total pond construction cost 5,000,000 5,000,000 0  

Power for mixing and aeration, kW 5.5 0 0  

Energy cost 300 t algal ponds, 

US$ year
-1 

410,494 0 0 US$ 0.19 kWh 

Harvesting & dryer costs     

Capital cost, US$ 5,250,000 5,250,000 5,250,000  

Cost of energy for harvesting & 

drying, US$ year
-1 

400,000 400,000 400,000  

Total capital cost excluding land 10,250,000 10,250,000 5,250,000  

Land Cost 300 t Algal Ponds, US$ 500,000 2,000,000 0 US$10000 ha
-1 

Land Cost Access etc., US$ 100,000 100,000 0 10 ha 

Land for plant, US$ 20,000 20,000 20,000 2 ha 

Total land cost, US$ 620,000 2,120,000 20,000  

Total capital cost, US$ 10,870,000 12,370,000 5,270,000  

Projected Income and Expenditure     

Target production, tonnes 300 300 300  

Sale price, US$ kg
-1 

20 20 20  

Total income, US$ 6,000,000 6,000,000 6,000,000  

Depreciation (excluding land), US$ 1,025,000 1,025,000 525,000 10 years 

Interest, US$ 543,500 618,500 263,500 5% Total Cap  

Energy, US$ 810,494 400,000 400,000  

Labour, US$ 1,230,000 1,230,000 630,000 12 % capital 

excluding land 

Sundry (Maintenance etc.), US$ 410,000 410,000 210,000 4 % Cap 

excluding land 

Total expenditure, US$ 4,018,994 3,683,500 2,028,500  

     

Net profit, US$ 1,981,006 2,316,500 3,971,500  

% Annual Return on Investment  

including land 

18% 19% 75%  
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Preliminary work based on the concept put forward in this research is now 

being undertaken by Swakopmund Salt and the University of Greenwich, and if 

found to be viable a more detailed process design could be completed and a 

discounted cash flow analysis carried out. 

 

The addition of mixing and gaseous transfer produced no improvement in 

profitability, and the negative effect would be even greater if lower land costs 

are used. More complex mixed open growth systems have been used for 

Dunaliella in both Israel and the USA where land and site preparation costs are 

high (Borowitzka, 1999), although the latter are no longer in operation. The 

lower productivity of simple unmixed systems has caused them to be largely 

supplanted by open systems with some form of circulation (Terry and Raymond, 

1985); however the growth of Dunaliella is an exception.  

 

This analysis has shown the economic viability of production of spray-dried 

Dunaliella salina as a β-carotene supplement. None of the proposed processes 

would appear viable for fuel production, however, as the potential value of 

Dunaliella for fuel is considerably less than for food supplements. A price for 

Dunaliella salina dry biomass for combustion of £ 0.21 kg
-1

 (~US$ 0.34 kg
-1

) 

can be estimated from its calorific value of 18.47 kJ g
-1

 (5.1 kWh kg
-1

) (Yang et 

al., 2011a), and the cost of dry wood pellet biomass fuel for combustion at 

£ 0.042 kWh (Biomass Energy Centre, 2012).This analysis is based on the sale 

of the entire biomass as food supplement, but purified β-carotene is currently 

worth considerably more at US$ 520 kg
-1

 (Harvey et al., 2012). With Dunaliella 

containing up to 14 % β-carotene, income from the refined product would 

increase to US$ 21,840,000, but the energy and solvent costs are potentially 

considerable. The additional refining energy cost could potentially be offset by 

the use of biomass for energy. Dunaliella salina can contain between 33 and 

85 % glycerol when grown in high salinity environments (Ben-Amotz, 2013, 

Harvey et al., 2012) . Glycerol has a HHV ~18.0 MJ kg
-1

 (Weast, 1985) and a 

value of ~US$ 325 (Harvey et al., 2012), equivalent to US$ 0.065 kWh
-1

 (£ 0.042 

kWh
-1

). It can be burned in CHP units, and therefore could supply 1782 to 

4590 GJ of energy as glycerol biomass or 32175 to US$ 82875 of additional 

income.  
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 Horizontal biorefinery 7.3.4

 

Salt production could also support the growth of other micro-algae, as the 

seawater is concentrated by evaporation in a series of open pans and each step 

of increased salinity will naturally select for a different micro-algal strain. This 

variety of micro-algae could be capable of producing a wider range of useful 

chemicals and products than from the single feedstock of Dunaliella. This 

novel concept could be termed a ‘horizontal biorefinery’, and is shown 

schematically in Figure 35. The growth of a variety of micro-algae may also 

allow the commercial exploitation of salt pans in winter months. 

 

 

Figure 35 Horizontal Biorefinery  

 

The use of any algal biomass residues for energy production via the anaerobic 

digestion would also contribute to meeting process energy requirements, in an 

integrated biorefinery concept. Salt is a known inhibitor of anaerobic digestion, 

however, and consideration will need to be given to the concentrations likely to 

occur at different points in the process. 

 Conclusions 7.4

The study of the proposed process for Pure Energy Fuels has indicated that the 

production of only biodiesel from micro-algae is not economically or 

energetically viable using current commercial technology. Biodiesel production 

from micro-algae may be more energetically favourable if new methods of oil 

extraction and trans-esterification are developed, but it appears essential that 
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the full commercial and energetic value of the non-lipid micro-algae biomass is 

fully exploited. The economic and energetic balance of the system can be 

improved by the use of a process such as anaerobic digestion which is 

potentially capable of using the majority of the organic material in the biomass 

to produce biogas as a biofuel, and a comprehensive energy balance of the 

combined micro-algal biogas production process can be produced using the 

methods in Chapters 5 & 6. 

 

The use of energy data from equipment manufacturers, although helpful for 

establishing a simple energy balance, requires the estimation of utilisation 

factors. Manufacturers are often unable to provide accurate values, and if 

process conditions such as flow rates change, further information on the effect 

of these variations needs to be obtained. The modelling approaches adopted in 

Sections 5 and 6 provide a more fundamental means of establishing the energy 

required for paddlewheel mixing and fluid and gas pumping.  

 

Harvesting by settlement followed by a belt thickener, with addition of 

flocculant, and a belt filter press has a low operational energy requirement 

compared to other potential methods of harvesting such as centrifugation. 

This method is widely used in wastewater treatment, but does not appear to 

have been applied on a commercial scale to micro-algae. Practical studies are 

needed to confirm its applicability to micro-algae, but these were outside the 

scope of this research.  

 

Namibia is climatically suited to the production of micro-algae, but there is 

currently a lack of a reliable low cost supply of CO
2

 from flue gases for micro-

algal fuel production. Namibia could, however, be a future site for growth of 

micro-algae non-fuel products and for biorefineries. The co-production of salt 

appears economically attractive and the novel idea of a horizontal biorefinery 

also appears to have some merit, but both need further research to establish if 

they are feasible and practicable. The production of halotrophic micro-algae, 

although potentially economically attractive for non-fuel products, does not 

currently appear to be economically or energetically viable for biomass or 

glycerol production solely for fuel. The energy recovered from glycerol or 

through AD of residual biomass, however could be used in the running of 

micro-algal processes to produce non-fuel products. The current research is 
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focused on the production of energy from micro-algae, but the study of the 

commercialisation of micro-algae for non-fuel products in Namibia, in salt co-

production, biorefineries and horizontal biorefineries could form the basis of 

further research projects.  
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 Conclusions and further work 8.

There are a wide range of combinations of growth, harvesting and energy 

extraction unit operations that can form a micro-algal biofuel production 

system, but as yet there is no successful economically viable system producing 

biofuel.  

 

Currently the commercial exploitation of micro-algae is for non-fuel products, 

and there appears to be increasing research interest in the production of non-

fuel products rather than fuel from micro-algae. In the short term, and possibly 

in the medium term, higher value products appear to be needed for economic 

exploitation of micro-algae. Biorefineries could allow the exploitation of the 

micro-algal biomass for a range of products, and produce fuel either for 

‘export’ or for parasitic use to improve sustainability. The lessons learned from 

non-fuel products, together with their potential for co-production with fuel, 

may lead to the more rapid commercial realisation of micro-algal biofuel. 

Although high value algal products may allow the commercialisation of algae in 

the short term, the immense scale that is required to replace fossil fuels will 

result in the creation of such large quantities of algal non-fuel materials that 

the market price is likely to be dramatically reduced. Methods that allow 

exploitation of the entire organic biomass for energy production and that can 

produce energy profitably independent of co-product pricing are therefore 

needed. 

 

A methodology has been developed that allows calculation of maximum 

theoretical dry algal biomass and oil yields, and this can be used to counter 

some of the extreme yield values suggested in the ‘grey literature’. It can also 

produce realistic, practical or pragmatic yields, and can be adapted for a wide 

range of locations. There was no ready-made platform to rapidly produce an 

energy balance model for micro-algal biofuel. An Excel spreadsheet model was 

successfully developed which allowed the production of energy balances for a 

number of process options and scenarios. 

 

The majority of the literature indicated that the open systems are the most 

energetically viable method of producing micro-algae for biofuel. This study 

has shown that open raceway system can be part of an energetically viable 
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micro-algal biogas production process. It was also estimated that the build-up 

of oxygen in the raceway should remain below the level predicted to inhibit 

growth, and night time ‘crashes’, due de-oxygenation by micro-algal 

respiration, are unlikely to occur in raceways of typical depths. 

 

Effective and energy efficient harvesting are vital for viable micro-algal biofuel. 

Disc-stack centrifuges, although suited to the separation of the particle sizes 

and concentrations found in micro-algal suspensions, have too high an energy 

consumption to be the sole means of harvesting micro-algae for the production 

of algal biofuel. Flocculation and/or sedimentation may not produce 

sufficiently high micro-algal concentrations. The combination of flocculation 

and/or sedimentation with centrifugation was shown to be energetically viable 

as part of micro-algal biogas production process, but a low dose and low 

embodied energy organic flocculant that is readily digested or micro-algal 

communities that settle readily is required. 

 

The challenge for achieving energy-positive micro-algal biofuel is converting 

low energy density materials to energy-dense fuels; a process that requires 

energy input. The production of only biodiesel from micro-algae is not 

economically or energetically viable using current commercial technology. The 

energy balance assessment, however, has shown that the production of micro-

algal biogas is energetically viable, but will be dependent on the exploitation of 

the heat generated by CHP. 

 

Although this research has shown the production of micro-algal biogas being 

energetically viable, the production of biofuel from micro-algae is still in its 

embryonic stage, and thus considerable future research is required.  

 

The specific contributions of this work are: 

 

a. Development of a calculation method to estimate the maximum, realistic 

or achievable theoretical dry algal biomass and oil yields, which can be 

adapted for a wide range of locations by varying the value for solar 

insolation. 

b. Appraisal and evaluation of current process integration software which 

showed that much of the data and many of the unit operations required 
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for micro-algal biofuel production are not available within the current 

commercially available software packages. 

c. Development of a spreadsheet-based calculation tool to estimate the 

mixing energy requirement and biomass calorific yields for raceways, 

and the use of this to show that the required energy inputs relative to 

the biomass calorific value decrease with the addition of a liner, 

reduction in fluid velocity and increase in raceway size. 

d. Development of a mechanistic energy balance model for the production 

of biogas from the anaerobic digestion of micro-algal biomass grown in 

raceways. 

e. Demonstration that night-time crashes are unlikely to occur in raceway 

ponds due to oxygen depletion by micro-algal respiration. 

f. Although CO
2

 for micro-algal growth is provided by bacteria in 

facultative wastewater treatment ponds, the work showed additional CO
2

 

is required to utilise all the nitrogen in wastewater for micro-algal 

biomass production. 

g. Demonstration that 1 hectare lined raceways appear to be possible and 

that raceways should be as wide as practicable. These results support 

the recommendation from the US Energy Department of a length to 

width ratio of 11 to 1. 

h. Results from the model showing that increasing fluid velocity from 0.15 

to 0.45 m s
-1

 at the same depth (0.3 m) reduces relative CO
2

 outgassing, 

but increases energy input. 

i. Results showing that there appears to no energy balance advantage to 

raceways being deeper than 0.3 m or flowing faster than 0.3 m s
-1

. 

j. A clear demonstration that it is not energetically viable to bubble air into 

a raceway as a source of CO
2

. 

k. Results from the model showing thermophilic digestion of micro-algal 

biomass is unlikely to be energetically viable, 

l. A clear demonstration that flocculation by alum is not a viable option for 

the production of micro-algal biogas. 

m. Results confirming that production of micro-algal biogas in the UK 

would be energetically challenging at best. 

n. A clear demonstration that the use of a disc-stack centrifuge as the sole 

means of harvesting micro-algae for biodiesel and biogas production is 

too energy intensive to be energetically viable. 
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o. Proposal of the use of disc stack centrifugation for joint cell separation 

and disruption, and identification of required performance for process 

viability. 

p. Quantitative evidence that the production of micro-algal biogas was 

energetically viable, but is dependent on the exploitation of the heat 

generated by the combustion of biogas in combined heat and power 

units to show a positive balance. 

q. Proposal and evaluation of the co-production of Dunaliella and salt, and 

demonstration that it is potentially economically viable. 

r. Proposal of a novel concept for a novel horizontal biorefinery. 

 

Specific further research following on from this work: 

 

a. Further development, refinement and extension of the methods 

reported in this dissertation to make them more user-friendly and 

capable of assessing more process combinations and variables. 

b. Comparison of the output of the energy model with data from micro-

algal pilot and demonstration plants, such as those of the FP7 All-Gas 

project, as they are developed. This will allow the accuracy of the model 

to be assessed and adjustments to be made. 

c. The further examination of the co-production of micro-algae with salt. 

d. The assessment of the feasibility of the novel concept of a horizontal 

biorefinery. 
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