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1 Introduction

Spatial autoregressive processes have enjoyed considerable recent popularity in mod-
elling cross-sectional data in economics and in several other disciplines, among which
are geography, regional science, and politics.1 In most applications, such models are
based on a fixed spatial weights matrix W whose elements reflect the modeler’s
assumptions about the pairwise interactions between the observational units. An
autoregressive parameter λ measures the strength of this cross-sectional interaction.
This paper is concerned with the exact properties of the (quasi-)maximum likeli-
hood estimator (MLE) for this parameter that is implied by assuming a Gaussian
likelihood.

The particular class of spatial autoregressive models we discuss have the form

y = λWy +Xβ + ε, (1.1)

where y is the n × 1 vector of observed random variables, and X is a fixed n × k
matrix of regressors with full column rank. Different choices for the weights matrix
W produce a class of models that can have very different characteristics. We will refer
to model (1.1) simply as the SAR (spatial autoregressive) model; it is also known as
the spatial lag model, or as the mixed regressive, spatial autoregressive model. We
refer to the model with the regression component (Xβ) missing as the pure SAR
model. Initially we make no distributional assumptions on the error vector ε, but
do assume that quasi-maximum likelihood estimation is conducted on the basis of
the likelihood that would prevail if the assumption ε ∼ N(0, σ2In) were added to
equation (1.1). Many results we obtain do not require distribution assumptions, but
we later add the Gaussianity assumption in order to obtain explicit formulae.

The parameter λ is usually of direct interest in applications. For example, in
social interactions analysis measuring the strength of network effects is important
to policy makers.2 Although considerable progress has been made recently in estab-
lishing the first-order asymptotic properties of the MLE for λ in such models, there
remain some compelling reasons for studying its exact properties - more so, perhaps,
than usual. First, exact results reveal explicitly how the properties of the estimator
depend on the characteristics of the underlying model. Second, exact results are

1For an introduction to spatial autoregressions see, e.g., Cliff and Ord (1973), Cressie (1993),
and LeSage and Pace (2009). Empirical applications of spatial autoregressions in economics can be
found in Case (1991), Besley and Case (1995), Audretsch and Feldmann (1996), Bell and Bockstael
(2000), Bertrand, Luttmer and Mullainathan (2000), Topa (2001), Pinkse, Slade, and Brett (2002),
Liu, Patacchini, Zenou, and Lee (2012), to name just a few.

2Of course, the parameter β is also of interest, but the exact properties of the MLE for β can be
deduced from those of the MLE for λ, because the model reduces to a standard linear regression if
λ is known.
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useful for checking the accuracy of the available asymptotic results. This is impor-
tant because the distribution of the estimator may (indeed, does) depend crucially
on the spatial weights matrix, and on the assumptions made on how it evolves with
the sample size. Until now, simulation studies have been virtually the only source of
such information. Third, the exact distribution may possess important features that
would be impossible to discover by asymptotic methods or Monte Carlo simulation
- for example, non-differentiability, non-analyticity, or unboundedness of the den-
sity. Finally, exact results are informative when the assumptions needed to obtain
asymptotic results are not plausible.

The first-order condition defining the MLE for λ is, in general, a polynomial
of high degree from which no closed-form solution can be obtained. Hence, even
the calculation of the MLE has been regarded as problematic in this model, let
alone study of its exact properties. Ord (1975) presents a simplified procedure for
maximum likelihood estimation of model (1.1). A rigorous (first-order) asymptotic
analysis of the estimator was given only much later, in an influential paper by Lee
(2004). Bao and Ullah (2007) provide analytical formulae for the second-order bias
and mean squared error of the MLE for λ in the Gaussian pure SAR model. Bao
(2013) and Yang (2013) extend such approximations to the case when exogenous
regressors are included and when ε is not necessarily Gaussian. Several other papers
have studied the performance of the MLE by simulation, particularly in relation to
competing estimators such as the two-stage least squares (2SLS) estimator or more
general GMM estimators.

The key observation that enables us to carry out an exact analysis of the MLE
is that, when - as it always is in practice - the likelihood is defined only for an
interval of values of λ containing the origin for which the matrix In−λW is positive
definite, the profile (or concentrated) likelihood after maximizing with respect to
(β, σ2) is, under certain assumptions, single-peaked. This fact implies that an exact
expression for the cdf of the MLE for λ can easily be written down, notwithstanding
the unavailability of the MLE in closed form. This is the main result of the paper.

Starting from this fundamental result, we then present a number of exact results
for the MLE that follow from it. In principle, knowledge of the cdf provides a starting
point for a full exact analysis of the MLE, for arbitrary choices of W and X, and for
an arbitrary distribution of ε. However, the distribution theory for the MLE is non-
standard, and, perhaps not unexpectedly, turns out to have key aspects in common
with that for serial correlation coefficients (von Neumann (1941), Koopmans (1942)).
In particular, the cdf can be non-analytic at certain points of its domain, and can
have a different functional form in the intervals between those points. For this and
other reasons, the distribution theory for the MLE that is implied by our main result
is, for general (W,X), quite complicated. We give some general results of this nature
in Section 4, including an explicit formula for the cdf in the pure Gaussian case that
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is valid for any symmetric W. But, we do not attempt a complete general analysis;
that is almost certainly best accomplished on a case-by-case basis. We illustrate the
usefulness of the main results by examining in detail some popular special cases of
model (1.1).

It is intuitive that in model (1.1) the relationship between the matrices W and
X must be important, and this will be evident at many points in the paper. The
first of these is the observation that there can be (W,X) combinations that lead
to an unbounded profile likelihood, and hence to non-existence of the MLE. These
pathological cases, of course, we rule out. The interaction between W and X will
also be seen to be fundamental in determining the properties of the MLE. A striking
example of this is that the distribution of the MLE may not be supported on the
entire parameter space. This result implies that the estimator cannot be uniformly
consistent in such circumstances.

The rest of the paper is organized as follows. Section 2 describes the assumptions
we make on the spatial weights matrix W and the parameter space for λ, and intro-
duces some examples that will be used to illustrate the theoretical results. Section
3 discusses some key properties of the profile log-likelihood for λ. Section 4 gives
the main results, along with a number of important consequences. The main results
are then applied in Section 5 to the examples introduced earlier. The analysis up to
this point is carried out under the assumption that the eigenvalues of W are real;
the case of complex eigenvalues is discussed briefly in Section 6. Section 7 concludes
by discussing generalizations and further work that our results suggest.

In many statements in the text the qualification “almost surely” (a.s.) should,
strictly speaking, appear. To avoid tedious repetition we take this qualification to
be understood and omit it, except in the formal statements of results. For an n× p
matrix A, we denote the space spanned by the columns of A by col(A), and the null
space of A by null(A). Proofs of the main results can be found in the Appendix,
others can be found in the Supplementary Material.

2 Assumptions and Examples

2.1 Assumptions on the Weights Matrix

The following assumptions on W are maintained throughout the paper: (a) W is
entrywise nonnegative; (b) W is non-nilpotent; (c) the diagonal entries of W are
zero; (d) W is normalized so that its spectral radius is one.3 Assumptions (a),
(b), and (c) are virtually always satisfied in practical applications. Assumption
(d) is automatically satisfied if W is row-stochastic; otherwise, the normalization

3Recall that the spectral radius of a matrix is the largest of the absolute values of its eigenvalues.
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can be accomplished by rescaling, provided only that the spectral radius of W is
nonzero, and this is guaranteed under Assumptions (a) and (b). We remark that
Assumption (b) captures the “spatial” character of the models we wish to discuss.
Given nonnegativity of W , assuming non-nilpotency is equivalent to requiring that
there is no permutation of the observational units that would make W triangular,
i.e., would make the autoregressive process unilateral (see Martellosio, 2011). Also,
if W is nilpotent and nonnegative it can be shown that the ML and OLS estimators
for λ coincide, in which case study of the MLE is straightforward.

The four assumptions above are not contentious, and will not be referred to in
the statements of the formal results in the paper. Additional assumptions on the
structure of W will be made from time-to-time; these will be explicitly stated in the
statement of results. In particular, the main results in Section 4 are proved under
the assumption that the eigenvalues of W are real. This assumption is very often
satisfied in applications of the model, but some consequences of its removal will be
discussed in Section 6.

Two assumptions that imply that all eigenvalues of W are real, and will be
useful to simplify the results, are that W is similar to a symmetric matrix, or, more
restrictively, that W is itself symmetric. The former assumption covers the common
case in which W is the row-standardized version of a symmetric matrix,4 and is
equivalent to the assumption that W has real eigenvalues and is diagonalizable. An
important context in which all eigenvalues of W are real is when W is the adjacency
matrix of a simple graph, possibly row-standardized (a simple graph is an unweighted
and undirected graph containing no loops or multiple edges).

2.2 The Parameter Space

In order for model (1.1) to uniquely determine the vector y (given Xβ and ε) it is
necessary and sufficient that the matrix Sλ := In − λW is nonsingular. Thus, the
values of λ at which det(Sλ) = 0 must be ruled out for the model to be complete,
so the reciprocals of the nonzero real eigenvalues of W must be excluded as possible
values for λ. This we assume throughout, but in practice the parameter space for λ
is usually restricted much further, as explained next.

The normalization of the spectral radius to unity (Assumption (d) above) implies
that the largest eigenvalue of W is 1.5 We also assume that W has at least one real
negative eigenvalue, and denote the smallest real eigenvalue of W by ωmin, the value

4If R is a diagonal matrix with the row sums of the symmetric matrix A on the diagonal, then
the row-standardised matrix W = R−1A = R−1/2(R−1/2AR−1/2)R1/2 is similar to the symmetric
matrix R−1/2AR−1/2.

5This follows by the Perron-Frobenius Theorem for nonnegative matrices (see, e.g., Horn and
Johnson, 1985).
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of which must be in [−1, 0). Letting λmin := ω−1
min, the interval Λ := (λmin, 1), or

a subset thereof, is, either implicitly or explicitly, virtually always regarded as the
relevant parameter space for λ, because it is the largest interval containing the origin
in which det(Sλ) 6= 0 (see, e.g., Lee, 2004, and Kelejian and Prucha, 2010).6 In this
paper we take the parameter space to be Λ throughout. However, see footnote 8
below.

2.3 Examples

To illustrate our results the following examples will be used, chosen for their sim-
plicity and their popularity in the literature.

Example 1 (Group Interaction Model). The relationships between a group of m
members, all of whom interact uniformly with each other, may be represented by a
matrix whose elements are all unity except for a zero diagonal. When normalized so
that its row sums are unity, such a matrix has the form

Bm :=
1

m− 1

(
ιmι
′
m − Im

)
,

where ιm is the m−vector of ones. Suppose there are r groups, of possibly different
sizes. Let u denote the number of different group sizes, and, for i = 1, ..., u, let
ri denote the number of groups of size mi, with m1 ≤ m2 ≤ .... ≤ mu. Then
r =

∑u
i=1 ri, and the sample size is n =

∑u
i=1 rimi. We refer to the SAR model with

n× n spatial weights matrix

W = diag(Iri ⊗Bmi , i = 1, ..., u) (2.1)

(a block-diagonal matrix whose diagonal blocks are the matrices Bmi , each repeated
ri times) as the Group Interaction model. This model is popular in applications,
and is often used to illustrate theoretical work by simulation (see, e.g., Baltagi,
2006, Kelejian et al., 2006, Lee, 2004, 2007). We say that the model is balanced
if the groups are all of the same size (in which case W = Ir ⊗ Bm), unbalanced
otherwise. The eigenvalues of the weights matrix (2.1) are 1, with multiplicity r,
and −1/(mi−1), with multiplicity ri (mi − 1) , for i = 1, ..., u. The parameter space
is therefore Λ = (−(m1 − 1), 1).

Example 2 (Complete Bipartite Model). In a complete bipartite graph the n obser-
vational units are partitioned into two groups of sizes p and q, say, with all individuals

6If the assumption that W has at least one negative eigenvalue were not satisfied it would be
appropriate to set λmin = −∞ . Note that if all eigenvalues of W are real the fact that W has at
least one negative eigenvalue is implied by the assumption that tr(W ) = 0.
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within a group interacting with all in the other group, but with none in their own
group (e.g., Bramoullé et al., 2009, Lee et al., 2010). For p = 1 or q = 1 this cor-
responds to the graph known as a star, a particularly important case in network
theory (see Estrada, 2011). The adjacency matrix of a complete bipartite graph is

A :=

[
0pp ιpι

′
q

ιqι
′
p 0qq

]
.

The corresponding row-standardized weights matrix is

W =

[
0pp

1
q ιpι

′
q

1
p ιqι

′
p 0qq

]
. (2.2)

This is not symmetric unless p = q. Alternatively, A can be rescaled by its spectral
radius, yielding the symmetric weights matrix

W = (pq)−
1
2 A. (2.3)

We refer to the SAR models with weights matrix (2.2) or (2.3), as, respectively, the
row-standardized Complete Bipartite model and the symmetric Complete Bipartite
model. In both cases, W has two nonzero eigenvalues (1 and −1, each with multi-
plicity 1), and n− 2 zero eigenvalues, so that the parameter space is Λ = (−1, 1).

These two examples will be used to illustrate theoretical results in Sections 3 and
4. Notice that for Group Interaction models W has full rank, while in the Complete
Bipartite class it has rank 2 (the minimum possible, since we assume tr(W ) = 0). In
Section 5 we provide brief details of the properties of the MLE for λ in each case.
More extensive treatment of the examples will be given elsewhere.

3 Properties of the Profile Log-Likelihood

Quasi-maximum likelihood of the parameters in model (1.1) is, we assume, based on
the Gaussian log-likelihood

l(β, σ2, λ) := −n
2

ln(σ2) + ln (det (Sλ))− 1

2σ2
(Sλy −Xβ)′(Sλy −Xβ), (3.1)

where (β, σ2, λ) ∈ Rk×R+×Λ and additive constants are omitted. After maximizing
l(β, σ2, λ) with respect to β and σ2 we obtain the profile, or concentrated, log-
likelihood

lp(λ) := −n
2

ln
(
y′S′λMXSλy

)
+ ln (det (Sλ)) , (3.2)
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where MX := In−X(X ′X)−1X ′. This is well defined as long as y′S′λMXSλy 6= 0 for
all λ ∈ Λ, an event with probability 1.7 The estimator we consider in this paper is

λ̂ML := arg max
λ∈Λ

lp(λ), (3.3)

provided that the maximum exists and is unique. This is the MLE in most common
use, but of course it might not be the MLE under a different specification of the
parameter space for λ.8

Remark 3.1. If MXW = 0 the first term in equation (3.2) does not involve λ, and
λ̂ML in that case is not a function of the data y, being identically zero for all y.
This happens if and only if col(W ) ⊆ col(X).9 However, the condition MXW = 0
does not imply that λ is unidentified in the conventional sense (see the discussion
of Assumptions 8′ and 9 in Lee, 2004, or Rothenberg, 1971). An example in which
MXW = 0 is a symmetric or row-standardized Complete Bipartite model when X
includes an intercept for each of the two groups.

3.1 Existence of the MLE

Before discussing the properties of λ̂ML it is prudent to check that it is well-defined,
i.e., that lp(λ) is bounded above on Λ. For the pure SAR model it is straightforward
to check that this is the case. In the general model, since lp(λ) is continuous on the
interior of Λ, it is bounded on any closed subset of Λ, but might still be unbounded at
the endpoints of Λ. The following lemma shows that there are in fact combinations
of X and W such that, for every y ∈ Rn, lp(λ)→ +∞ at the extremes of Λ.

Lemma 3.2. For any y ∈ Rn,

lim
λ→1

lp(λ) =

{
+∞, if MXS1 = 0
−∞, otherwise,

(3.4)

and

lim
λ→λmin

lp(λ) =

{
+∞, if MXSλmin

= 0
−∞, otherwise.

(3.5)

7The event that y′S′λMXSλy = 0 has zero probability because, for any λ ∈ Λ, null (S′λMXSλ)
has dimension n− rank (S′λMXSλ) = n− rank (MX) = k < n.

8The unrestricted maximizer of lp(λ) can, in general, be anywhere on the entire real line (with the
points where det(Sλ) = 0 excluded). Some authors suggest that λ should be restricted to (−1, 1) (see,
e.g., Kelejian and Prucha, 2010). When Λ 6= (−1, 1), the estimator λ̄ML := arg maxλ∈(−1,1) lp(λ) is

a censored version of λ̂ML. Since Pr(λ̄ML = −1) = Pr(λ̂ML < −1) and Pr(λ̄ML < z) = Pr(λ̂ML < z),
for any z ∈ (−1, 1), it is clear that the properties of λ̄ML follow from those of λ̂ML.

9Because MXW = 0 if and only if MXWζ = 0 for any ζ ∈ Rn, which is so if and only if
Wζ ∈ col(X) for any ζ ∈ Rn.
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According to Lemma 3.2 the estimator (3.3) does not exist for any y ∈ Rn if
MXS1 = 0 or MXSλmin

= 0. Fortunately, the exceptional cases are unlikely. A
necessary (and sufficient if W is diagonalizable) condition for MXS1 = 0 (resp.,
MXSλmin

= 0) is that all eigenvectors of W associated with eigenvalues other than
1 (resp., ωmin) are in col(X).10 An important model where λ̂ML does not exist is
the balanced Group Interaction model with group-specific fixed effects. The weights
matrixW = Ir⊗Bm in that model is symmetric and has two eigenspaces: col(Ir⊗ιm),
associated to the eigenvalue 1, and its orthogonal complement, associated to the
eigenvalue −1/(m − 1). Thus, in the balanced Group Interaction model, λ̂ML does
not exist (whatever the value of y) if and only if the model contains group fixed
effects (i.e. Ir ⊗ ιm is a submatrix of X).11

Remark 3.3. One may wonder whether the non-existence of the MLE is equivalent
to the parameter λ being unidentified in the conventional sense. But, as in the case
MXW = 0 discussed in Remark 3.1, this is not so. For example, a balanced Group
Interaction model with ε ∼ N(0, σ2In) and fixed effects is globally identified,12 even
though, as we have just pointed out, λ̂ML does not exist in that model. Arnold
(1979) considers a model similar to a balanced Group Interaction model with fixed
effects, and discusses the non-existence of the MLE.

In the rest of the paper we assume that MXS1 6= 0 and MXSλmin
6= 0, so that

lp(λ)→ −∞ at the extremes of Λ. This simply amounts to ruling out the pathological
cases in which the MLE does not exist.

3.2 The Profile Score

The profile log-likelihood lp(λ) is differentiable on Λ, with first derivative given by

l̇p(λ) = n

[
y′W ′MXSλy

y′S′λMXSλy
− 1

n
tr(Gλ)

]
, (3.6)

where Gλ := WS−1
λ . This matrix plays an important role in the sequel.

10To see this, note that MXS1 = 0 if and only if MX(I −W )v = 0 for all v ∈ Rn. For v in the
eigenspace of W associated to the eigenvalue 1 this is nugatory, but for v an eigenvector associated
to an eigenvalue ω 6= 1 (i.e., Wv = ωv), it is true if and only if v ∈ col(X). The condition v ∈ col(X)
is therefore necessary, and is sufficient if there are n linearly independent eigenvectors of W, which
is so if and only if W is diagonalizable (see Horn and Johnson (1985), Theorem 1.3.7)). The same
argument applies for MXSλmin .

11See Lee (2007) for a different perspective on the inferential problems in a balanced Group
Interaction model with fixed effects.

12This can be easily verified by solving the equations Eθ1 (y) = Eθ2 (y) and varθ1 (y) = varθ2 (y),
where θ1 and θ2 denote two values of the parameter θ =

(
λ, β′, σ2

)′
.
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Differentiability of lp(λ) and the fact that Λ is an open set imply that the MLE
must be a root of the equation l̇p(λ) = 0. The following result establishes an impor-
tant property of lp(λ).

Lemma 3.4. The first-order condition defining the MLE, l̇p(λ) = 0, is a.s. equiv-
alent to a polynomial equation of degree equal to the number of distinct eigenvalues
of W .

Thus, the equation l̇p(λ) = 0 has, for anyW , a number of complex roots (counting
multiplicities) equal to the number of distinct eigenvalues of W . Any real roots lying
in Λ are candidates for λ̂ML. Since there is no explicit algebraic solution of polynomial
equations of degree higher than four, Lemma 3.4 explains why λ̂ML cannot in general
be obtained “in closed form”. In spite of this, we shall see in the next section that
the cdf of λ̂ML can be represented explicitly. The following result is the basis of the
main theorem - Theorem 1 below.

Lemma 3.5. If all eigenvalues of W are real, the function lp(λ) a.s. has a single
critical point in Λ, and that point is a maximum.

The key to this result is the observation that, when the pathological cases referred
to in Lemma 3.2 are excluded, lp(λ) → −∞ at both endpoints of Λ. Since lp(λ) is
continuous on the interior of Λ, this implies that Λ must contain at least one real zero
of l̇p(λ). Under the assumption that all eigenvalues of W are real there is exactly one
such critical point in Λ. The assumption that all eigenvalues of W are real is stronger
than needed for the result in Lemma 3.5, but is convenient for expository purposes,
and is satisfied in many applications. We defer a discussion of the possibility of
extending the result to complex eigenvalues to Section 6.

Geometrically, Lemma 3.5 says that, when all eigenvalues of W are real, the
profile log-likelihood lp(λ) is single-peaked on Λ, with no inflection points.

Remark 3.6. It might be expected that Lemma 3.5 would also apply to the spatial
error model y = Xβ + u, u = ρWu + ε, a popular alternative to model (1.1). This
is not the case; see Ross-Parker (1975) for a counter-example.

Remark 3.7. In many applications, W is the adjacency matrix of a (unweighted
and undirected) graph. It is well known in graph theory that the number of distinct
eigenvalues of an adjacency matrix is related to the degree of symmetry of the graph
(see Biggs, 1993). On the other hand, in algebraic statistics the degree of the score
equation is regarded as an index of algebraic complexity of ML estimation (see
Drton et al., 2009). Thus Lemma 3.4 establishes a connection between the algebraic
complexity of λ̂ML and the degree of symmetry satisfied by the graph underlying W .
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3.3 Invariance Properties

Before presenting the main results we mention some general properties of the MLE
for λ that can be deduced directly from the model itself, and the profile score (3.6).
The reduced form equation for y,

y = S−1
λ Xβ + S−1

λ ε, (3.7)

implies certain invariance properties for the distribution of y that have significant
consequences for the properties of λ̂ML. First, assuming ε has a distribution free of
β and λ, and that E(ε) = 0 and Var(ε) = σ2In, it is clear that scale transformations
of y, y → κy, κ > 0, leave the family of densities for y invariant, inducing only
transformations (β, σ2, λ) → (κβ, κ2σ2, λ) on the parameters. A maximal invariant

under this group of scale changes is v := y(y′y)−
1
2 , a point on the unit sphere in n

dimensions, Sn−1. Since the profile score (3.6) is a function of y only through v, we
conclude at once that the distribution of λ̂ML depends on (β, σ2, λ) only through a
maximal invariant in the parameter space, namely (β/σ, λ).

There is a second consequence of scale invariance that is even more important
for the properties of λ̂ML, namely

Proposition 3.8. The distribution of λ̂ML induced by a particular distribution of y
is constant on the family of distributions generated by forming scale-mixtures of the
initial distribution of y.

In particular, all results obtained under Gaussian assumptions continue to hold
under scale mixtures of the Gaussian distribution for y. Thus, assuming (as we will
later) a Gaussian distribution for ε is far less restrictive on the generality of the
results obtained that it would usually be.

As stated above, the distribution of v, and therefore λ̂ML, generally depends on
β/σ as well as λ. In the class of pure SAR models (with β absent) the group of scale
changes acts transitively on the variance σ2, which implies that in pure SAR models
the distribution of λ̂ML is free of σ2, and so depends only on λ. In the model with
regressors, under certain restrictions on (X,W ), the distribution of y induced by the
model is invariant under a larger group of transformations, and in that case we can
prove the following

Proposition 3.9. If col(X) is spanned by k eigenvectors of W, the distribution of
λ̂ML depends only upon λ.

The importance of this result is that the distribution of λ̂ML is free of nuisance
parameters, making the statistic an ”ideal” basis for inference on λ. The assumption
that the column space ofX is spanned by k eigenvectors ofW is, of course, restrictive,

11



but it certainly holds in some applications. For models in which X = ιn, for example,
the condition required is simply that W is row-stochastic. We will see later (in
Theorem 4) that, under Gaussian assumptions and with W symmetric, there is an
almost complete analogy with the pure SAR model when col(X) is spanned by k
eigenvectors of W.

4 Main Results

4.1 The Main Theorem and Some Immediate Consequences

Before stating the main result we introduce some further notation (essentially a
modification of that used in Lee (2004)). Let Cλ := Gλ − (tr(Gλ)/n)In. The log-
likelihood derivative l̇p(λ) in equation (3.6) can be rewritten as

l̇p(λ) =
n

2

y′S′λQλSλy

y′S′λMXSλy
, (4.1)

where
Qλ := MXCλ + C ′λMX . (4.2)

The key to the main result is the simple observation that single-peakedness of
lp(λ) established in Lemma 3.5 implies that, for any z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr(l̇p(z) ≤ 0),

because the single peak of lp(λ) is to the left of a point z ∈ Λ if and only if the slope
at z is negative. Thus, we have the following explicit representation for the cdf of
λ̂ML.

Theorem 1. If all eigenvalues of W are real, the cdf of λ̂ML at each point z ∈ Λ is
given by

Pr(λ̂ML ≤ z) = Pr(y′S′zQzSzy ≤ 0). (4.3)

This result has both analytical and computational utility. On the computational
side, equation (4.3) provides a simple way of obtaining the cdf, and hence the pdf,
of λ̂ML numerically. Importantly, this can be accomplished without the need to
directly maximize the likelihood. Indeed, the right hand side of equation (4.3) can
be approximated very efficiently by Monte Carlo simulation, for any z ∈ Λ, for any
distribution of ε, and for any choices of (W,X). Here we shall concentrate on the
analytical consequences of Theorem 1. We begin by pointing out some simple but
important general results that can be seen immediately from (4.3).

12



It is convenient to rewrite (4.3) as

Pr(λ̂ML ≤ z) = Pr
(
ỹ′A(z, λ)ỹ ≤ 0

)
, (4.4)

where ỹ := Sλy = Xβ + ε, and

A(z, λ) := (SzS
−1
λ )′Qz(SzS

−1
λ ).

The structure of the matrix A(z, λ) is evidently crucial in determining the proper-
ties of the MLE. In particular, if ε ∼ N(0, σ2In), a spectral decomposition of A(z, λ)
shows that ỹ′A(z, λ)ỹ is distributed as a linear combination of independent (possibly
non-central) χ2 variates, with coefficients the distinct eigenvalues of A(z, λ). This
would be the “crudest” use of Theorem 1. However, by exploiting the special struc-
ture of A(z, λ), and imposing some conditions on the relationship between W and
X, it is possible to be much more precise. This will become clearer as we proceed.

The particular case z = λ, corresponding to Pr(λ̂ML ≤ λ), is especially important.
In that case A(λ, λ) = Qλ, so Pr(λ̂ML ≤ λ) = Pr(ỹ′Qλỹ ≤ 0). Apart from providing a
simple device for computing the probability of underestimating λ, it is also clear that
the asymptotic behavior of λ̂ML is governed by that of the quadratic form ỹ′Qλỹ.

Next, observe that, because only the sign of the quadratic form in (4.4) matters,
we can divide the statistic ỹ′A(z, λ)ỹ by any positive quantity, without altering the
probability. Dividing by ỹ′ỹ, we immediately obtain:

Corollary 4.1. If all eigenvalues of W are real,

Pr(λ̂ML ≤ z) = Pr
(
h′A(z, λ)h ≤ 0

)
, (4.5)

where h := ỹ/(ỹ′ỹ)1/2 is a random vector distributed on the surface of the unit sphere
in n dimensions, Sn−1.

The representation (4.5) allows one to appeal to known results for quadratic forms
on the sphere. In particular, with the added assumption that the distribution of ε is
spherically symmetric, h is uniformly distributed on Sn−1 in the pure SAR model,
but in general non-uniformly distributed on Sn−1 in the presence of regressors. An
expression for the cdf suitable for the latter case is given in Forchini (2005), while
the uniformly distributed case was dealt with in Hillier (2001). As the following
result shows, the distribution of λ̂ML is certainly non-standard. The result follows
directly from Mulholland (1965), see also Saldanha and Tomei (1996). These authors
show that the distribution of h′A(z, λ)h in (4.5) is non-analytic at the eigenvalues of
A(z;λ). The important point for us is the point 0 (on the right in (4.5)), and, since
rank(A(z, λ)) = rank(Qz) for λ ∈ Λ, we have
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Corollary 4.2. If all eigenvalues of W are real, the cdf of λ̂ML is non-analytic at
every point z ∈ Λ at which rank(Qz) < n.

As we will see, this property of the distribution of λ̂ML is not a mere curiosity: for
any (W,X) there will usually be a number of points at which the cdf is non-analytic.
Note too that this result does not depend on the distribution assumptions made
(see Forchini (2002)). It implies that the functional form of the cdf varies with z,
and we will see several examples of this later. And, in some cases these properties
of the distribution persist asymptotically, the Complete Bipartite model being one
example.

Before continuing we remark that the argument used to obtain Theorem 1 has
implications for the relationship between λ̂ML and the ordinary least squares esti-
mator, λ̂OLS.

Proposition 4.3. When all eigenvalues of W are real the distribution function of
λ̂OLS is above that of λ̂ML for λ̂OLS < 0, crosses it at λ̂OLS = λ̂ML = 0, and is below
it for λ̂OLS > 0.

The proof is immediate from the fact that, when defined, λ̂OLS is the solution
to y′W ′MXSλy = 0, so that l̇p(λ̂OLS) = −tr(Gλ̂OLS

), and the easily established fact

that, if all the eigenvalues of W are real, tr(Gλ) has the same sign as λ.13. The single-
peaked property of lp(λ) means that λ̂OLS < 0 implies l̇p(λ̂OLS) > 0, which implies

λ̂OLS < λ̂ML, λ̂OLS = 0 implies λ̂OLS = λ̂ML, and λ̂OLS > 0 implies l̇p(λ̂OLS) < 0 so

that λ̂OLS > λ̂ML. Note particularly that Proposition 4.3 holds for any X, and any
distribution of ε.14

Thus, for instance, Pr(λ̂OLS < λ) is greater than (less than) Pr(λ̂ML < λ) for any
negative (positive) value of λ, and the two coincide when λ = 0. Also, the density
of λ̂ML is necessarily above that of λ̂ML at the origin. We do not investigate the
properties of the OLS estimator further in the present paper.

Remark 4.4. The quadratic form y′S′zQzSzy can always be written as a linear
combination of the three quadratic forms y′W ′MXWy, y′MXy, and y′W ′MXy, and
it is true that the distribution of λ̂ML is determined by the joint distribution of these
three statistics. However, it is considerably simpler to combine them, as we have
done in the statement of Theorem 1, because we can then focus attention on the
properties of a single quadratic form.

13When all eigenvalues of W are real dtr(Gλ)/dλ = tr(G2
λ) > 0, so that tr(Gλ) is monotonic

increasing in λ, and tr(G0) = 0.
14The support of λ̂OLS can be larger than Λ, but this single-crossing property also applies for

λ̂OLS outside Λ, where the cdf of λ̂ML must necessarily be either 0 or 1.
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4.2 Canonical Forms

Theorem 1 permits, in principle at least, an exact analysis of the properties of λ̂ML for
any given W and X. However, as the general results mentioned so far suggest, that
research agenda would certainly be non-trivial, and it is not our major objective in
the present paper. Instead, in the remainder of the paper we first discuss some further
general results that are reasonably straightforward consequences of Theorem 1, and
then, in Section 5, explore the detailed consequences of Theorem 1 for the examples
described earlier. Before doing so we shall show that, under the assumption that
W is similar to a symmetric matrix, we can express the quadratic form in equation
(4.3) in a canonical form which helps to simplify analysis of its consequences. Recall
that the condition that W is similar to a symmetric matrix is satisfied whenever W
is a row-standardized version of a symmetric matrix.

To begin with, let us fix some notation. We denote by T be the number of distinct
eigenvalues of W. If the distinct eigenvalues of W are real we denote them by, in
ascending order, ω1, ω2, ..., ωT , the eigenvalue ωt occurring with algebraic multiplicity
nt (so that

∑T
t=1 nt = n). Thus, ω1 = ωmin and ωT = 1.

If W is similar to a symmetric matrix, its eigenvalues are real, and W is diago-
nalizable by a real nonsingular matrix. Hence, we can write W = HDH−1, with H
a nonsingular matrix (orthogonal if W is symmetric) whose columns are the eigen-
vectors of W , and D := diag (ωtInt , t = 1, ..., T ) . Using this decomposition, we have
Cz = HD1H

−1, and SzS
−1
λ = HD2H

−1, with

D1 := diag (γt(z)Int , t = 1, ..., T ) ,

where γt(λ) := ωt/(1 − λωt) − tr(Gλ)/n, t = 1, ..., T, are the distinct eigenvalues of
Cλ, and

D2 := diag

(
1− zωt
1− λωt

Int , t = 1, ..., T

)
.

We can now write the matrix of the quadratic form in (4.4) as

A(z, λ) = (H ′)−1D2 (D1M +MD1)D2H
−1, (4.6)

where
M := H ′MXH. (4.7)

The key matrix M depends on both W and X, and it is through this matrix that
the interaction between the spatial weights matrix W and the regressor matrix X
manifests itself.

Next, let M = (Mst; s, t = 1, ..., T ) be the partition of M conformable with D1

and D2, so that the blocks Mst = (Mts)
′ are of dimension ns × nt. We have

D2 (D1M +MD1)D2 = (dstMst; s, t = 1, ..., T )
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where

dst :=
(1− zωs)(1− zωt)
(1− λωs)(1− λωt)

[γs(z) + γt(z)] = dts. (4.8)

Note that the coefficients dst are functions of z, λ, and W, but do not depend on
X, and that dtt = −2tr(Gz)/n for all z ∈ Λ if ωt = 0. The diagonal terms dtt are
labelled in the same order as are the eigenvalues of W.

Writing x := H−1ỹ, and partitioning x conformably with the partition of M (so
that xt is nt × 1, for t = 1, ..., T ), we obtain the following theorem.

Theorem 2. (i) If W is similar to a symmetric matrix,

Pr(λ̂ML ≤ z) = Pr

 T∑
t=1

dtt(x
′
tMttxt) + 2

T∑
s,t=1,s>t

dst(x
′
sMstxt) ≤ 0

 . (4.9)

(ii) If W is similar to a symmetric matrix, the bilinear terms in (4.9) all vanish if
and only if the matrix MXW is symmetric. In that case,

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(x
′
tMttxt) ≤ 0

)
. (4.10)

(iii) If W and MXW are both symmetric (4.10) simplifies further to

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(x̃
′
tx̃t) ≤ 0

)
, (4.11)

where x̃t is a subvector of xt of dimension nt − nt(X), where nt(X) is the number
of columns of X in the eigenspace associated to ωt. The vector x̃t contains those
elements of xt that correspond to eigenvectors not in col(X).

Equation (4.9) provides a general canonical representation of the cdf of λ̂ML in
terms of a linear combination of quadratic and bilinear forms in the vectors xt. Under
the additional conditions in Theorem 2 (ii) and (iii) the representation contains onl
quadratic forms in the xt, and subvectors of them.

Remark 4.5. The conditions of Theorem 2 (iii) are equivalent to the condition that
col(X) is spanned by k eigenvectors of W, so Proposition 3.9 applies to that case.

Three examples where MXW is symmetric will be met in Section 5: the Group
Interaction model with constant mean, the unbalanced Group Interaction model
with X =

⊕r
i=1 ιmi (i.e., X contains an intercept for each of the r groups, and no
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other regressors),15 and the Complete Bipartite model with row-standardized W and
constant mean.

Before proceeding we mention the following properties of the coefficients dtt.
These will play an important role in some subsequent results.

Proposition 4.6. If all eigenvalues of W are real, we have:

(i) Regarded as functions of z, the eigenvalues γt(z) of Cz for t = 1, ..., T are in
increasing order for all z ∈ Λ (i.e., s > t implies γs(z) > γt(z) for all z ∈ Λ).
For all z ∈ Λ, γ1(z) < 0, γT (z) > 0, and, for t = 2, ..., T −1, each γt(z) changes
sign exactly once on Λ;

(ii) For T ≥ 2, d11 < 0 and dTT > 0 for all z ∈ Λ. If T > 2, the coefficients dtt,
t = 2, ..., T − 1, each change sign exactly once on Λ, with dtt > 0 if z < zt,
dtt < 0 if z > zt, where zt denotes the unique value of z ∈ Λ at which γt(z) = 0.

4.3 Support of the MLE

We are now in a position to discuss another important consequence of Theorem
1: the support of λ̂ML is not necessarily the entire interval Λ (by support of λ̂ML

we mean the set on which the density of λ̂ML is positive). To see this, note that
the first-order condition implies that the only possible candidates as the MLE are
the values of λ for which the matrix Qλ is indefinite (see equation (4.1)). More
decisively, Theorem 1 shows that if there are values of z ∈ Λ for which Qz is either
positive or negative definite, those will either be impossible (i.e., Pr(λ̂ML ≤ z) = 0),
or certain (i.e., Pr(λ̂ML ≤ z) = 1). In such cases the support of the MLE will be
a (proper) subset of Λ. This cannot happen for the pure SAR model, because in
that case Qz = (Gz +G′z)− n−1tr(Gz +G′z)In, which is necessarily indefinite (since
n−1tr(Gz +G′z) is the average of the eigenvalues of Gz +G′z). But, when regressors
are introduced, there can be choices for (W,X) for which the support for λ̂ML is
restricted.

It is difficult to specify general conditions on (W,X) that lead to restricted sup-
port for λ̂ML, but in the context of Theorem 2 (ii) the conditions that do so are
straightforward, and we confine ourselves here to that case. The situation arises
when some of the matrices Mtt in equation (4.10) vanish, and the coefficients dtt of
the remaining terms have a common sign for z in some subset of Λ. As in Proposition
4.6, for t = 2, ..., T − 1, zt is the unique point z ∈ Λ at which γt(z) = 0.

Proposition 4.7. Assume that W is similar to a symmetric matrix and MXW is
symmetric. The support of λ̂ML is:

15Note that here it is essential that the model is unbalanced: as we have seen in Section 3.1, the
MLE does not exist in the balanced case if X includes group fixed effects.
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(i) (λmin,zt) if col(X) contains all eigenvectors of W associated to eigenvalues ωs
for s > t, and

(ii) (zt, 1) if col(X) contains all eigenvectors of W associated to eigenvalues ωs for
s < t.

In particular, under the conditions of Proposition 4.7, λ̂ML cannot be positive
if col(X) contains all eigenvectors of W associated to positive eigenvalues (and a
similar statement applies with neagative replaced by positive in both places). This is
because, in this case, zt in Proposition 4.7 (i) must be nonpositive, by Proposition 4.6
and the fact that γt(0) = ωt. Intuitively, the eigenvectors of W associated to positive
eigenvalues capture all positive (resp. negative) spatial autocorrelation, so that the
remaining autocorrelation, measured by λ̂ML, can only be negative (resp. positive).
An example of this effect arises with the row-standardized Complete Bipartite model
when X = ιn, because in that case ιn is an eigenvector of W corresponding to the
eigenvalue 1. This has multiplicity 1, and is the only positive eigenvalue of W . In
this model Λ = (−1, 1), but the MLE cannot be positive, even if the true value of λ
is positive. This will be discussed in Section 5.3.2.

Another interesting example for which the support of λ̂ML is a subset of Λ is the
unbalanced Group Interaction model with group fixed effects and no other regressors,
i.e., X =

⊕r
i=1 ιmi . The columns of X span the eigenspace of W associated to

ωu+1 = 1. Hence, by Proposition 4.7, the support of λ̂ML is (λmin, zu) (see also
Section 5.2.4 below).

Although beyond the scope of the present paper, the restricted support phe-
nomenon certainly seems to demand further investigation. The conditions of Theo-
rem 2 (ii) do not seem to be necessary for its occurrence, but we do not explore this
further here. It is clear, however, that if the support of λ̂ML is restricted then asymp-
totic approximations to its distribution that are supported on the entire interval Λ
are unlikely to be satisfactory. It is worth remarking, too, that this phenomenon is
not confined to the MLE, but is also true of the OLS estimator, for example, under
certain circumstances.

4.4 Gaussian Pure SAR Models with Symmetric W

In this section we show that the results above simplify considerably when (i) there
are no regressors, (ii) W is symmetric, and (iii) ε is a scale mixture of the N(0, σ2In)
distribution. The resulting model provides a fairly simple context in which to discuss
the general properties of the distribution of the MLE. Bao and Ullah (2007) have
given finite sample approximations to the moments of the MLE in a Gaussian pure
SAR model. Our focus here is on the exact distribution of the MLE.

18



According to Proposition 3.8 any property of the distribution of λ̂ML that holds
under the assumption ε ∼ N(0, σ2In) continues to hold under the assumption that
ε belongs to the family of scale mixtures of this density, which we denote by ε ∼
SMN(0, σ2In). Note that these are spherically symmetric distributions for ε, which
need not be i.i.d. Letting (here and elsewhere) χ2

ν denote a (central) χ2 random
variable with ν degrees of freedom, Theorem 2 (iii) yields the following result

Theorem 3. If W is symmetric and ε ∼SMN(0, σ2In), then for any pure SAR model
the cdf of the MLE is given by

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dttχ
2
nt ≤ 0

)
, (4.12)

where the χ2
nt variates are independent.

The spectrum of an n×n matrix is defined to be the multiset of its n eigenvalues,
each eigenvalue appearing with its algebraic multiplicity. Matrices with the same
spectrum are called cospectral. According to (4.12), the distribution of λ̂ML, and
hence all of its properties, depends on W only through its spectrum.

Corollary 4.8. In a pure SAR model with ε ∼SMN(0, σ2In), the distribution of λ̂ML

is constant on the set of cospectral symmetric matrices.

One simple application of Corollary 4.8 is as follows: since the spectrum of the
weights matrix (2.3) depends on p and q only through their sum n, the distribution
of λ̂ML is the same for any pure Gaussian symmetric Complete Bipartite model on
n observational units, regardless of the partition of n into p and q. In case p or q is
1 (i.e., the graph is a star graph), we may also consider the class of all symmetric
weights matrices that are “compatible” with a star graph on n vertices (i.e., matrices
having positive (i, j)-th entry if and only if (i, j) is an edge of the star graph).16 It is
a simple exercise to show that all such weights matrices have (after normalization by
the spectral radius) eigenvalues 0, with multiplicity n− 2, and −1, 1, and hence are
cospectral with the adjacency matrix of the graph. We conclude that the distribution
of λ̂ML is the same for any Gaussian pure SAR model with symmetric weights matrix
compatible with a star graph.

Another application of Corollary 4.8 is to (non-isomorphic, to avoid trivial cases)
cospectral graphs, which are well-studied in graph theory; see, e.g., Biggs (1993).
Corollary 4.8 implies that the distribution of λ̂ML is constant on the family of pure
Gaussian SAR models with weights matrices that are the adjacency matrices of
cospectral graphs.

16That is, W is not restricted to be the (0, 1) adjacency matrix associated to the star graph, but
is allowed to be any symmetric matrix compatible with that graph.
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A second corollary to Theorem 3 can be deduced for matrices W with symmetric
spectrum. The spectrum of a matrix is said to be symmetric if, whenever ω is eigen-
value, −ω is also an eigenvalue, with the same algebraic multiplicity.17 The weights
matrix of a balanced Group Interaction model with m = 2 is an example of this
type, as is that of the Complete Bipartite model, when symmetrically normalized.18

Corollary 4.9. In a pure SAR model with ε ∼SMN(0, σ2In), W symmetric, and the
spectrum of W symmetric about the origin, the density of λ̂ML satisfies the symmetry
property pdf λ̂ML

(z;λ) = pdf λ̂ML
(−z;−λ).

That is, under the stated assumptions, the density of λ̂ML when the value of the
autoregressive parameter is λ is the reflection about the vertical axis of the density
when the value of the autoregressive parameter is −λ. Note that this implies that
(subject to its existence) the mean of λ̂ML satisfies E(λ̂ML;λ) = −E(λ̂ML;−λ).

Theorem 3 shows that in pure SAR models with symmetric W the cdf of λ̂ML

is induced by that of a linear combination of independent χ2 random variables with
coefficients dtt. Proposition 4.6 shows that, in this representation, both positive and
negative coefficients must occur, and that, as long as T > 2, the number of positive
and negative coefficients varies with z – in fact changing T − 2 times as z increases
through Λ. We may now use this fact to obtain an explicit form for the cdf of λ̂ML

in such models.19 Before doing so we note the special case of Corollary 4.2 that
applies in this context: In a pure SAR model with W symmetric and T > 2, the
cdf of λ̂ML is non-analytic at the T − 2 points zt where the γt(z) change sign, and
has a different functional form on each interval between those points. This result
follows immediately because in this context the dtt are themselves the eigenvalues of
the matrix A(z, λ).

Now, for a fixed z ∈ Λ at which none of the dtt vanishes, let T1 = T1(z) and
T2 = T2(z) denote the numbers of positive and negative terms dtt, respectively, in
(4.12), with the T1 positive terms first. Let v1 :=

∑T1
t=1 nt and v2 :=

∑T
t=T1+1 nt, with

v1 + v2 = n. The numbers T1 and T2 vary with z, as do v1 and v2. Next, partition x
into (x′1, x

′
2), with xi of dimension vi×1, for i = 1, 2, and let A1 be the v1×v1 matrix

diag(dttInt ; t = 1, .., T1), andA2 the v2×v2 matrix diag(−dttInt ; t = T1+1, .., T ). Both
matrices are diagonal with positive diagonal elements, and as z varies the dimensions
of the two square matrices A1 and A2 necessarily vary (subject to v1 + v2 = n).

17Note that if W is non-negative and normalised to have largest eigenvalue 1, then Λ = (−1, 1)
when W has a symmetric spectrum.

18In fact, for any matrix W that is the adjacency matrix of a graph G, it is known that the
spectrum is symmetric if and only if G is bipartite.

19The cdf of the OLS estimator has exactly the same form as equation (4.12), under the same
assumptions, but with the dtt replaced by ωt(1 − zωt)/(1 − λωt)2. Again, some of these must be
positive, some negative, for z ∈ Λ. The results to follow also hold for the OLS estimator with this
modification.
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Let Qi := x′iAixi, for i = 1, 2. The statistics Q1 and Q2 are independent linear
combinations of central χ2 random variables with positive coefficients. From (4.12),

Pr(λ̂ML ≤ z) = Pr(Q1 ≤ Q2) = Pr(R ≤ 1), (4.13)

where R := Q1/Q2. That is, the distribution of λ̂ML in symmetric Gaussian pure
SAR models is determined by that of a ratio of positive linear combinations of
independent χ2 random variables at the fixed point r = 1.

Before giving the general result, notice that if T = 2 (i.e., W has only two distinct
eigenvalues), then T1 = T2 = 1, v1 = n1, v2 = n2, Q1 = d11χ

2
n1
, Q2 = d22χ

2
n2
, and so

from (4.13) we obtain

Pr(λ̂ML ≤ z) = Pr

(
Fn1,n2 ≤ −

n2d22

n1d11

)
. (4.14)

where Fν1,ν2 denotes a random variable with an F-distribution on (ν1, ν2) degrees of
freedom. Thus, when T = 2 the cdf is remarkably simple; we will shortly see that
the balanced Group Interaction model has this form. However, it is clear that only
in the case T = 2 is there no point of non-analyticity.

To state the general result, let Cj(A) denote the top-order zonal polynomial of
order j in the eigenvalues of the matrix A (Muirhead (1982), Chapter 7), i.e., the
coefficient of θj in the expansion of (det(In − θA))−1/2. Then, the result for general
T is the following consequence of Theorem 3.20

Corollary 4.10. If W is symmetric and ε ∼SMN(0, σ2In), then for any pure SAR
model, for z in the interior of any one of the T − 1 intervals in Λ determined by the
points of non-analyticity, zt,

Pr(λ̂ML ≤ z) = [det (τ1A1) det (τ2A2)]−
1
2

×
∞∑

j,k=0

(
1
2

)
j

(
1
2

)
k

j!k!
Cj(Ã1)Ck(Ã2) Pr

(
Fv1+2j,v2+2k ≤

(v2 + 2k) τ1

(v1 + 2j) τ2

)
, (4.15)

where τi := tr(A−1
i ) and Ãi := Ivi − (τiAi)

−1, for i = 1, 2.

Because the matrices A1 and A2 vary as z varies over Λ, it is probably impossible
to obtain the density function of λ̂ML directly from equation (4.15), but we shall see
in Section 5 that this problem can often be avoided by a conditioning argument.21

20It is easily confirmed that the cdf (4.15) is a bivariate mixture of the distributions of random
variables that are conditionally, given the values of two independent non-negative integer-valued
random variables J and K, say, distributed as Fv1+2j,v2+2k. The probability Pr(J = j) is the
coefficient of tj in the expansion of det[(1− t)τ1A1 + tIv1 ], with a similar expression for Pr(K = k).

21The top-order zonal polynomials in (4.15) can be computed very efficiently by methods described
recently in Hillier, Kan, and Wang (2009). This is further simplified in the present case because the
distinct terms in A1 and A2 typically occur with multiplicity greater than one.
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The introduction of regressors, or the removal of the assumption that W is sym-
metric, does not change the general nature of these results, see Corollary 4.2 above.
A generalized version of equation (4.15) for the SAR model with arbitrary X can
certainly be obtained, but would require lengthy explanation. To end this section
we provide, instead, a generalization of Theorem 3 to the model with W symmetric
and regressors present, but subject to a restriction on the relationship between W
and X.

4.5 General Gaussian Models with Symmetric W

When W is symmetric the relatively simple representation of the cdf of λ̂ML in terms
of a linear combination of χ2 variates is not confined to pure SAR models. When
the assumption ε ∼SMN(0, σ2In) is added, Theorem 2 (iii) becomes:

Theorem 4. Assume that W is symmetric, ε ∼SMN(0, σ2In), and col(X) is spanned
by k eigenvectors of W. Then the cdf of λ̂ML is given by

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dttχ
2
nt−nt(X) ≤ 0

)
, (4.16)

where the χ2 variates involved are central, and independent, and χ2
0 ≡ 0.

It is clear here that the cdf of λ̂ML in equation (4.16) depends only on λ (i.e.,
is free of (β, σ2)), as anticipated in Proposition 3.9. An explicit expression for the
cdf analogous to that in Corollary 4.10 obviously holds, as do the other corollaries
of Theorem 3 discussed above, with only minor modifications.

Remark 4.11. The convention χ2
0 ≡ 0 means that any term for which nt(X) = nt

does not appear in the sum on the right in (4.16). For example, in the Complete
Bipartite model the eigenspaces associated with the eigenvalues ±1 are both one-
dimensional, so if either of these is in col(X) that term does not appear. Subject
to the other conditions of Theorem 4 holding, the cdf is then particularly simple,
involving only two independent χ2 variates.22

In fact, in some models a special case of the condition used in Theorem 4 holds,
in that col(X) is contained in a single eigenspace of W. In that case the columns of X
itself are eigenvectors of W, and the condition needed automatically holds. In that
case we have the following simpler form of equation (4.16): if col(X) is a subspace
of the eigenspace associated to the eigenvalue ωt, then

Pr(λ̂ML ≤ z) = Pr

dttχ2
nt−k +

T∑
s=1;s6=t

dssχ
2
ns ≤ 0

 . (4.17)

22If both one dimensional eigenspaces were in col(X) we would have MXW = 0 (see Remark 3.1).
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For example, in the unbalanced Group Interaction model with X =
⊕r

i=1 ιmi the
columns of X are eigenvectors associated with the unit eigenvalue. Hence, equation
(4.17) holds with k = r.

5 Applications

In this section we apply the general results to the examples introduced earlier. Our
main purpose here is to illustrate the various aspects of the distribution of λ̂ML

that are unusual, but we also provide some completely new exact results for these
examples, and some new asymptotic results for cases not covered by Lee’s (2004)
assumptions.

In Section 5.1 we consider the balanced Group Interaction Model, and then gen-
eralize the results to the possibly unbalanced case in Section 5.2. Section 5.3 is
devoted to the Complete Bipartite model. For all models we consider both the pure
case and the constant mean case. In the case of an unbalanced Group Interaction
model we also consider the case when the mean is constant across groups, and in the
case of the Complete Bipartite model we also briefly consider the case of arbitrary
regressors. In stating the results we assume ε ∼SMN(0, σ2In).23

5.1 The Balanced Group Interaction Model

In a balanced Group Interaction model there are r groups of size m. The weights ma-
trix is W = Ir ⊗Bm, which has eigenvalues 1, with multiplicity r, and −1/ (m− 1) ,
with multiplicity r (m− 1) . The parameter space is Λ = (−(m− 1), 1).

5.1.1 Zero Mean

Because the matrix (2.1) has only two distinct eigenvalues, equation (4.14) applies,
giving the following strikingly simple result.

Proposition 5.1. In the pure balanced Group Interaction model with ε ∼ SMN(0, σ2In),
the cdf of λ̂ML is, for z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr(Fr,r(m−1) ≤ c(z, λ)), (5.1)

where

c(z, λ) :=
(1− λ)2(z +m− 1)2

(1− z)2(λ+m− 1)2
.

23For the balanced Group interaction model, and the Complete Bipartite model, λ̂ML is the
unique root in Λ of either a quadratic or a cubic (by Lemma 3.4), and is therefore available in closed
form. However, obtaining the exact distribution from such a closed form seems exceedingly difficult.
Theorem 1 provides a much more convenient approach.
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Taking z = λ, equation (5.1) gives Pr(λ̂ML ≤ λ) = Pr(Fr,r(m−1) ≤ 1). Thus, in
this model the probability of underestimating λ is independent of the true value of
λ. A necessary condition for the consistency of λ̂ML is clearly that Fr,r(m−1) →p 1,
which suggests that r → ∞ will be sufficient, but m → ∞ may not.24 More on the
asymptotics for this model below.

Differentiating the cdf produces:

Proposition 5.2. In the pure balanced Group Interaction model with ε ∼SMN(0, σ2In),
the density of λ̂ML is, for z ∈ Λ,

pdf λ̂ML
(z;λ) =

2mδ
r
2

B( r2 ,
r(m−1)

2 )

(1− z)r(m−1)−1 (z +m− 1)r−1

[(1− z)2 + δ(z +m− 1)2]
rm
2

, (5.2)

where δ := (1− λ)2/[(m− 1)(λ+m− 1)2].

Figure 1 displays the density (5.2) for λ = 0.5, and for m = 10 and various
values of r (left panel), and for r = 10 and various values of m (right panel). For
convenience the densities are plotted for z ∈ (−1, 1) ⊆ Λ. It is apparent that the
density is much more sensitive to r (the number of groups) than to m (the group
size). Analogs of these plots for other values of λ exhibit similar characteristics.
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Figure 1: Density of λ̂ML for the Gaussian pure balanced Group Interaction model
with λ = 0.5, and with m = 10 (left panel), r = 10 (right panel).

In this model, if r → ∞ is assumed, Lee’s (2004) Assumptions 3 and 8’ are
satisfied, as is his condition (4.3), so λ̂ML is consistent and asymptotically normal
by Lee’s Theorems 4.1 and 4.2. On the other hand, if n → ∞ because m → ∞
Lee’s Assumption 3 is not satisfied, and his results leave open that λ̂ML may be

24E(Fr,r(m−1)) → 1 as either r or m → ∞, but var(Fr,r(m−1)) → 0 when r → ∞, but not when
m→∞.
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inconsistent in this case. This is an example of so-called infill asymptotics. In fact,
it may easily be shown (using equation (5.1) and the known result v1Fv1,v2 →d χ

2
v1

as v2 →∞) that, for fixed r,

Pr(λ̂ML ≤ z)
m→∞−→ Pr

(
χ2
r ≤ r

(
1− λ
1− z

)2
)
, −∞ < z < 1.

Thus, in fact λ̂ML is inconsistent under infill asymptotics. The associated limiting
density as m→∞ with r fixed is

pdf λ̂ML
(z;λ)

m→∞−→ r
r
2 (1− λ)r

2
r
2
−1Γ( r2)(1− z)r+1

e−
r
2( 1−λ

1−z )
2

,

so λ̂ML converges to a random variable supported on (−∞, 1). It is clear from Figure
1 that increasing m but not r provides very little extra information on λ, at least
as embodied in the MLE, and that the effective sample size under this asymptotic
regime is r, and not n = rm. However, with the exact result now available, and
simple, under mixed-Gaussian assumptions there is no need to invoke either form of
asymptotic approximation.25

The exact results given in Propositions 5.1 and 5.2 enable a complete analysis of
the exact properties of λ̂ML in this model, and the results needed for inference based
upon it. For example, exact expressions for the moments and the median of λ̂ML,
and exact confidence intervals for λ based on λ̂ML can be obtained quite directly;
these details are given in a separate paper (Hillier and Martellosio (2013)).

5.1.2 Constant Mean

The results given above for the pure balanced Group Interaction model can be ex-
tended immediately to the case of an unknown constant mean (i.e., X = ιn) by using
the result in Theorem 4 (in fact the stronger version in equation (4.17)), because ιn
is in the eigenspace associated to the unit eigenvalue.

Proposition 5.3. For the balanced Group Interaction model with X = ιn and
ε ∼SMN(0, σ2In), the cdf of λ̂ML is, for z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr

(
Fr−1,r(m−1) ≤

r

r − 1
c(z, λ)

)
.

Because this is only a trivial modification of the result in Proposition 5.1, we omit
further details for this case.

25Interestingly, notwithstanding its inconsistency under infill asymptotics, it seems clear that the
MLE is a perfectly reasonable estimator in this model as long as r is at least of moderate size.

25



5.2 The Group Interaction Model

The results obtained above for the balanced Group Interaction model can be ex-
tended to the unbalanced case. Recall that in the balanced case the number of
distinct eigenvalues is T = 2, but in the unbalanced case T > 2. For the pure model,
the cdf is as given in Corollary 4.10, and, as discussed earlier, there are points of
non-analyticity in the distribution of λ̂ML. The density in each interval between
the zt is difficult to derive from equation (4.15), but can be obtained readily by a
conditioning argument.

When there are just two group sizes (i.e., u = 2), T = 3, so there is a single
point of non-analyticity, and we discuss only this case here. It is known that, in
the general case (u arbitrary), λ̂ML is consistent if rt → ∞ for at least one t. In
the Supplementary Material we briefly discuss the asymptotic behaviour of λ̂ML

that can be deduced from the exact result. In particular, we see that when the rt
are fixed, λ̂ML converges in distribution to a random variable if some or all of the
mt →∞, generalizing the results above for the balanced case. We first illustrate the
conditioning argument for the case T = 3.

5.2.1 Conditioning Argument with Three Distinct Eigenvalues

In the case T = 3 Theorem 3 says that the cdf of λ̂ML can, under the assumptions
of the theorem, be represented in the form

Pr(λ̂ML ≤ z) = Pr(d11qn1 + d22qn2 + d33qn3 ≤ 0),

where qni , i = 1, 2, 3 are independent χ2
ni random variables. Proposition 4.6 also

says that d11 < 0 and d33 > 0 for all z ∈ Λ, while d22 changes sign at the point
z = z2. The density has a different functional form on each side of z2.

For z > z2 we may immediately write down the conditional cdf, given qn1 and
qn2 ,

Pr(λ̂ML ≤ z|qn1 , qn2) = Gn3(ψ11qn1 + ψ12qn2),

where Gv denotes the cdf of a χ2
v variate, and the coefficient functions ψ1t :=

−dtt/d33, t = 1, 2, are both positive for z2 < z < 1. Likewise, for z < z2 we have the
conditional cdf qn2 and qn3 ,

Pr(λ̂ML ≤ z|qn2 , qn3) = 1− Gn1(ψ22qn2 + ψ23qn3).

with coefficients ψ2t := −dtt/d11, t = 2, 3, that are again both positive. Differenti-
ating these expressions with respect to z gives the two conditional densities, which
can then be averaged with respect to the conditioning variates to produce the un-
conditional densities. Lemma 8.1 in the Supplementary Material provides formulae
for the density that this process produces.
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5.2.2 Two Group Sizes; Zero Mean

When u = 2 the r groups have size m1 or m2, with m1 < m2. The coefficients dtt
are as defined in equation (4.8) (with ω1 = −1/(m1− 1), ω2 = −1/(m2− 1), ω3 = 1).
The coefficient d22 changes sign (once) at the point26

z2 := − n(m1 − 1)

n+ (m2 −m1) r1m1
< 0. (5.3)

The result in Lemma 8.1 in the Supplementary Material applies, and formulae for
the density function on the two intervals −(m1− 1) < z < z2 and z2 < z < 1 can be
found in the Supplementary Material.

In Figure 2 we display the density for the case when r = 2 and one of the
two groups has fixed size m1 = 3, varying the size of the other group, and hence
n = m1 + m2. The density is plotted for three different values of λ. When m2 = 3
(so that n = 6), the model is balanced, and the density is analytic on Λ = (−2, 1)
by Corollary 4.10. For any m2 > 3, there is a point z2 of non-analyticity in Λ. This
point is −.909 for n = 10, and it approaches −0.5 from the left as n→∞.
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Figure 2: Density of λ̂ML for the Gaussian pure Group Interaction model with two
groups, one of which has size m1 = 3.

The plots show clearly that the density has a single component only when m1 =
m2. As the difference between m1 and m2 increases, the difference between that two
components becomes more apparent, and the density becomes less smooth at the
point z2. Note that this may be a consequence of imposing the same parameter λ
on the two groups.

26Note that this becomes −(m1− 1) when m1 = m2 (the balanced case), so that only the interval
−(m1 − 1) < z < 1 is relevant, and the density has a single functional form over all of Λ.
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The analogs of these figures for values of m1 6= 3 are given in the Supplementary
Material. All of these figures show that the properties of λ̂ML are, in this model with
just two groups, almost invariant to the sample size, a property related to, but not
implied by the asymptotic properties for a fixed number of groups mentioned earlier.
However, even though the estimator is not consistent under some asymptotic regimes,
there is certainly no evidence here that suggests not using maximum likelihood in
this model.

5.2.3 Constant Mean

For the Group Interaction model with constant mean (i.e., X = ιn) it is easy to
check that ιn is in the eigenspace associated to the eigenvalue 1, so that equation
4.17 applies (again, the stronger version). Thus, the cdf in this case is again only
a slightly modified version of that for the pure unbalanced Group Interaction case
discussed above, and we omit further details.

5.2.4 Fixed Effects

We have already seen in Section 4.3 that in the case of an unbalanced Group Interac-
tion model with group fixed effects and no other regressors (i.e., X =

⊕r
i=1 ιmi), the

support of λ̂ML is a subset of Λ. In this case the columns of X span the eigenspace
of W associated to ωu+1 = 1, so that, by Proposition 4.7, the support of λ̂ML is
(−(m1 − 1), zu). In the notation of Theorem 4 we have nu+1 = nu+1(X), so the
term for t = u + 1 does not appear. The remaining coefficients are all negative for
zu < z < 1, so we have:

Proposition 5.4. In the unbalanced Group Interaction model with X =
⊕r

i=1 ιmi
and ε ∼SMN(0, σ2In), the cdf of λ̂ML is given by

Pr(λ̂ML ≤ z) =

 Pr

(
u∑
t=1

dttχ
2
nt ≤ 0

)
, if− (m1 − 1) < z < zu

1, if zu ≤ z < 1,

(5.4)

where the χ2 random variables involved are independent.

The density can be obtained from (5.4), but the main point of interest here is
that λ̂ML is restricted to a subset of Λ, whatever the true value of λ. We will meet
another example of the same type shortly.27

27In the case of two group sizes (u = 2), z2 is given in (5.3), and the cdf in (5.4) reduces to
Pr (Fn2,n1 ≤ −n1d11/(n2d22)) for −(m1 − 1) < z < zu.
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5.3 The Complete Bipartite Model

We now apply the general results to the Complete Bipartite model introduced in
Section 2.3. In Section 5.3.1 we discuss the simple case of a pure symmetric Complete
Bipartite model. Then, in Section 5.3.2, we discuss the case of the row-standardized
Complete Bipartite model with unknown constant mean (i.e., X = ιn). This provides
a second important illustration of the restricted support phenomenon described in
Section 4.3.

5.3.1 Symmetric W , Zero Mean

In the symmetric Complete Bipartite model, W again has T = 3 distinct eigenvalues:
−1, 0, 1. According to Corollary 4.10, the pdf of λ̂ML in the pure Gaussian case
is analytic everywhere on Λ = (−1, 1) except at the point z2, and it is readily
verified that z2 = 0. Moreover, since the spectrum of W is symmetric, the symmetry
established in Corollary 4.9 may be used to obtain the density for z ∈ (−1, 0) from
that for z ∈ (0, 1).

Proposition 5.5. In the pure symmetric Complete Bipartite model with ε ∼SMN(0, σ2In),

Pr(λ̂ML ≤ z) = Pr(φ1χ
2
1 ≤ φ2χ

2
1 + 2zχ2

n−2), (5.5)

for −1 < z < 1, where

φ1 :=
(1− z)2 [n+ (n− 2) z]

(1− λ)2
, φ2 :=

(1 + z)2 [n− (n− 2) z]

(1 + λ)2
,

and the three χ2 random variables involved are independent.

Proposition 5.5 confirms the fact remarked upon in the discussion of Corollary
4.8, that the distribution, and hence all the properties of λ̂ML, depends on p and q
only through their sum n.28 The coefficients φ1, φ2 in (5.5) are both positive for all
z ∈ Λ = (−1, 1), but z changes sign of course. For z ∈ (0, 1) the density is obtained
as an application of Lemma 8.1. It may be verified that the condition needed for the
simpler version of the density given in Lemma 8.2 holds here when z ∈ (0, 1), so we
have:29

28Note that taking z = 0 in (5.5) gives the following very simple formula for the probability that
λ̂ML is negative:

Pr(λ̂ML ≤ 0) = Pr

(
|ξ| ≤ 1− λ

1 + λ

)
,

where ξ has a Cauchy distribution. Since this does not depend on n, this holds for all sample sizes.
29The function 2F1(·) here is the Gaussian Hypergeometric function, see Muirhead (1982), Chapter

1.
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Proposition 5.6. In the pure symmetric Complete Bipartite model with ε ∼SMN(0, σ2In)
the density of λ̂ML for z ∈ (0, 1) is

pdf λ̂ML
(z;λ) =

B
(

1
2 ,

n
2

)
c

2πa
1
2 (1 + c)

n
2

[
αȧ

a
2F1

(
n

2
,
3

2
,
n+ 1

2
; η

)
+
βċ

c
2F1

(
n

2
,
1

2
,
n+ 1

2
; η

)]
, (5.6)

where a := φ2/φ1, c := 2z/φ1, and η := φ1(φ2− 2z)/φ2(φ1 + 2z). For z ∈ (−1, 0) the
density is defined by pdf λ̂ML

(z;λ) = pdf λ̂ML
(−z;−λ).

The asymptotic distribution as n → ∞ can be obtained easily, as follows. For
every fixed z ∈ Λ, the characteristic function of the random variable Vn := (φ1χ

2
1 −

φ2χ
2
1 − 2zχ2

n−2)/(n− 2) is easily seen to converge to that of

V̄n := φ̄1χ
2
1 − φ̄2χ

2
1 − 2z,

where φ̄1 := limn→∞(φ1/(n−2)) = (1−z)2(1+z)/(1−λ)2 and φ̄2 := limn→∞(φ2/(n−
2)) = (1 + z)2(1− z)/(1 + λ)2. Therefore, Vn →d V̄n, and so (from Proposition 5.5),
Pr(λ̂ML ≤ z)→ Pr

(
χ2

1 ≤ ψ̄1χ
2
1 + ψ̄2

)
, with

ψ̄1 :=

(
1 + z

1− z

)(
1− λ
1 + λ

)2

, ψ̄2 :=
2z(1− λ)2

(1 + z)(1− z)2
,

for z ∈ (0, 1), and the two χ2
1 variates are independent. For z ∈ (0, 1), therefore, the

usual conditioning argument yields

Pr(λ̂ML ≤ z)→ Eq1
[
G1(ψ̄1q1 + ψ̄2)

]
, (5.7)

where q1 ≡ χ2
1. Thus, as in the case when m→∞ in a Balanced Group Interaction

model, λ̂ML is not consistent, but converges in distribution to a random variable as
n→∞. The limiting pdf can be obtained from (5.7), but is omitted for brevity.

The density (5.6) is plotted in Figure 3 for λ = −0.5, 0, 0.5, for n = 5, 10, and
for n → ∞. It is clear from the plots that the density is again very insensitive
to the sample size, so in this model increasing the sample size yields little extra
information about λ. As a consequence, the non-standard asymptotic density is an
excellent approximation to the actual distribution under mixed-normal assumptions.
The expected non-analyticity at z = 0 is evident, and in fact for this model the
density of λ̂ML is unbounded at z = 0.

Given the cdf and pdf, other exact properties of λ̂ML can be derived following
techniques similar to those used in Hillier and Martellosio (2013) for the balanced
Group Interaction model, but this is not pursued here.
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Figure 3: Density of λ̂ML for the Gaussian pure symmetric Complete Bipartite model.

5.3.2 Row-Standardized W , Constant Mean

As already anticipated in the discussion of Proposition ??, the support of λ̂ML in
the row-standardized Complete Bipartite model with constant mean is not the entire
interval Λ = (−1, 1), but the subset (−1, 0) (regardless of whether the true value of
λ is positive or negative).

Proposition 5.7. For the row-standardized Complete Bipartite model with X = ιn
and ε ∼SMN(0, σ2In),

Pr(λ̂ML ≤ z) =

{
Pr (F1,n−2 > −(n− 2)g(z;λ)) , if − 1 < z < 0
1, if 0 ≤ z < 1,

where

g(z;λ) :=
2z(1 + λ)2

(1 + z)2[n− (n− 2) z]
.

Differentiating the cdf we obtain the following expression for the density.

Proposition 5.8. For the row-standardised Complete Bipartite model with ε ∼SMN(0, σ2In),
and with X = ιn,

pdf λ̂ML
(z;λ) =

1

B
(

1
2 ,

n−2
2

) ġ(z;λ)

g(z;λ)
1
2 [1− g(z;λ)]

n−1
2

, (5.8)

for z ∈ (−1, 0). For z ∈ (0, 1), pdf λ̂ML
(z;λ) = 0.

The limiting cdf and pdf as n→∞ can be obtained immediately from the results
above. Letting

h(z;λ) := lim
n→∞

[−(n− 2)g(z;λ)] = − 2z(1 + λ)2

(1 + z)2(1− z)
,
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we obtain that, as n→∞, and for z ∈ (−1, 0),

Pr(λ̂ML ≤ z)→ Pr
(
χ2

1 > h(z;λ)
)
,

and

pdf λ̂ML
(z;λ)→ − ḣ(z;λ)√

2πh(z;λ)
e−

h(z;λ)
2 .

Again, λ̂ML is not consistent, but converges in distribution to a random variable
supported on the non-positive real line as n → ∞. Note that row-standardization
of W is critical here: the symmetric Complete Bipartite model with constant mean
does satisfy the assumptions for consistency and asymptotic normality in Lee (2004).

The density (5.8) is plotted in Figure 4 for λ = −0.5, 0, 0.5, for n = 5, 10, and
for n→∞. Note that the shape of the density for z < 0 is similar to the case of the
pure symmetric Complete Bipartite model (Figure 3).
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Figure 4: Density of λ̂ML for the Gaussian row-standardized Complete Bipartite
model with constant mean.

6 The Single-Peaked Property Generally

The exact expression for the cdf of λ̂ML given in Theorem 1 depends only upon the
fact that the profile log-likelihood lp(λ) is single-peaked on Λ, which was established
in Lemma 3.5 under the condition that all eigenvalues of W are real. That condition
makes the single-peaked property easy to prove, but it is certainly not necessary.
It is obviously desirable to investigate the issue of single/multi-peakedeness of the
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log-likelihood further.30 Let

δ (λ) := [tr(Gλ)]2 − ntr(G2
λ).

The proof of Lemma 3.5 shows that whenever W has the property that δ (λ) < 0
for all λ ∈ Λ, every critical point of lp(λ) is a local maximum, implying that lp(λ)
is again single-peaked on Λ. Thus, we have the following more general version of
Theorem 1.

Theorem 5. For any W such that δ (λ) < 0 for all λ ∈ Λ, the cdf of λ̂ML is as
given in Theorem 1.

Theorem 5 generalizes Theorem 1 to cases in which some eigenvalues of W may
be complex. It seems difficult to characterize the class of matrices W for which
δ(λ) < 0 for all λ ∈ Λ, but for any particular choice of W it is straightforward
to check, by simply graphing δ(λ), whether this sufficient condition holds. Note
that the condition depends only on W, not on X. The following example provides
some evidence that the condition δ(λ) < 0 for all λ ∈ Λ is much more general than
requiring real eigenvalues.

Example 3. Consider the weights matrix W obtained by row-standardizing the
band matrix

A =


0 a3 a4 0 · · ·
a1 0 a3 a4

a2 a1 0 a3

0 a2 a1 0
...

. . .

 ,
for fixed a1, a2, a3, a4. If a1 = a3 and a2 = a4, all the eigenvalues of W are real and
therefore lp(λ) is a.s. single-peaked by Lemma 3.5. Other configurations of the ai
can induce multi-peakedeness of lp(λ). To see this, fix n = 20, a1 = a2 = a3 = 1, and
consider values of a4 in [0, 1]. For any value of a4 larger than about 0.55, δ (λ) < 0
for all λ ∈ Λ, so, even though not all eigenvalues of W are real, lp(λ) is a.s. single-
peaked by Theorem 5. For smaller values of a4 δ (λ) is not negative for all λ ∈ Λ,
and there is a positive probability that lp(λ) is multi-peaked. Figure 6 displays δ (λ)
when a4 = 0.9 (left panel) and a4 = 0 (right panel). Note that Λ depends on a4.
One can check by simulation that, whatever the value of X, a4 = 0 entails a high
probability of multi-peakedeness as y ranges over Rn.

30In general, when lp(λ) is not a.s. single-peaked on Λ, there will nevertheless be a non-zero
probability that the property holds. If that probability is large, the results in this paper could
perhaps provide an approximation to the cdf of the MLE, rather than the exact cdf.
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Figure 5: δ (λ), λ ∈ Λ, for the weights matrix W in Example 3.

A complete understanding of the cases in which the single-peaked property fails
to hold is beyond the scope of this paper, but the next result is a first step in that
direction. It says multi-peakedeness must always involve peaks at negative values of
λ, for any W and X.

Proposition 6.1. lp(λ) has at most one maximum in the interval [0, 1).

7 Discussion

The main result in this paper - Theorem 1 - provides a starting point for an exam-
ination of the properties of the maximum likelihood estimator for λ. Whatever the
matrices W and X involved in model (1.1), and whatever the distribution assump-
tions entertained for ε, equation (4.3) provides a simple basis for simulation study
of the properties of λ̂ML. The result is also a useful starting point for the study of
the higher-order asymptotic properties of λ̂ML, a subject not embarked upon here.
Finally, we have seen that in reasonably simple models with a high degree of struc-
ture (when W has only a few distinct eigenvalues), it can provide both exact results
directly useful for inference, and new asymptotic results for cases not covered by the
known results in Lee (2004). The present paper is just a beginning.

The study of quadratic forms of the type involved in equation (4.5) was begun
by John von Neumann and Tjalling Koopmans in the 1940’s when studying the
distribution of serial correlation coefficients. The papers by von Neumann (1941)
and Koopmans (1942), both discuss the unusual aspects of the distribution of serial
correlation coefficients. Interestingly, Corollary 4.1 in this paper shows that the
distributional properties of the MLE in spatial autoregressive models have closely
related characteristics, at least in the Gaussian pure SAR case, a result that perhaps
might have been anticipated but was, a priori, certainly not obvious. However, two
aspects of our results for this model did not occur in that earlier work: the possibility
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that the MLE might not exist, and the possibility that the support of the estimator
might not be the entire parameter space. These are subjects that clearly demand
further work. In particular, the question of how these properties of the model relate
to the identification of λ needs careful analysis.

Finally, the results discussed in the paper highlight the key role played by the
design matrices W and X in determining the properties of the maximum likelihood
estimator, and inference generally in this class of models. The fact that different
assumptions about the asymptotic evolution of W can produce different outcomes is
well-understood (Lee (2004)), and Theorem 1 provides a convenient new framework
for further study of this issue.

Appendix A Proofs of Main Results

Proof of Lemma 3.2. We only prove (3.4); the proof of (3.5) is essentially identical.
Let us look at the two terms, lp1 := −n/2 ln (y′S′λMXSλy) and lp2 := ln(det (Sλ)),
that make up the profile log-likelihood lp(λ). Note that y′S′1MXS1y is a.s. non-
negative for any W and X, and is zero for all y ∈ Rn if and only if MXS1 = 0.
Thus, limλ→1 lp1 ∈ (−∞, 0] if MXS1 6= 0, and limλ→1 lp1 = 0 if MXS1 = 0. On the
other hand lp2 always goes to −∞ as λ → 1, since det(S1) = 0. This proves that
limλ→1 lp(λ) = −∞ when MXS1 6= 0, but a further step is required to evaluate the
limit when MXS1 = 0, because lp1 and lp2 diverge to ∞ in different directions in
that case. The further step relies on the fact that if MXS1 = 0 then MXW = MX

and hence MXSλ = (1 − λ)MX . Letting Ω denote the spectrum of W , and nω the
algebraic multiplicity of ω ∈ Ω, we obtain, under the condition MXS1 = 0,

lp(λ) = ln

(
det (Sλ)(

y′S′λMXSλy
)n

2

)

= ln

(∏
ω∈Ω/{1} (1− λω)nω

(y′MXy)
n
2

)
− (n− n1) ln(1− λ),

The first term is a.s. finite because no term in the product vanishes, but since n1 < n
(because W 6= In by the assumption that tr (W ) = 0), the second term → +∞ as
λ→ 1. Thus, if MXS1 = 0, limλ→1 lp(λ) = +∞.

Proof of Lemma 3.4. The equation l̇p(λ) = 0 appears to give rise to a polynomial
of degree T +1. However, the coefficient of the highest-order term vanishes, but that
of the term of order T does not. The full proof can be found in the Supplementary
Material.
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Proof of Lemma 3.5. Recall that we are assuming that MXS1 6= 0 and MXSλmin
6=

0, so that lp(λ) → −∞ at the extremes of Λ. Then, because it is a.s. differentiable
on Λ, lp(λ) must a.s. have at least one maximum on Λ. We now show that it has a.s.
exactly one maximum, and no other stationary points, on Λ. The second derivative
of lp(λ) can be written as

l̈p(λ) =
−n(ac− b2)

(aλ2 − 2bλ+ c)2
+

n(b− aλ)2

(aλ2 − 2bλ+ c)2
− tr(G2

λ),

where
a := y′W ′MXWy, b := y′W ′MXy, c := y′MXy.

But at any point where l̇p(λ) = 0,

n(b− aλ)2

(aλ2 − 2bλ+ c)2
=

1

n
[tr (Gλ)]2 ,

so that, at any critical point,

l̈p(λ) =

{
−n(ac− b2)

(aλ2 − 2bλ+ c)2

}
+

1

n

{
[tr(Gλ)]2 − ntr(G2

λ)
}
. (A.1)

By the Cauchy-Schwarz inequality the first term on the right hand side of (A.1) is
nonpositive. When the eigenvalues of W are real, the second term in curly brack-
ets is also nonpositive, again by the Cauchy-Schwarz inequality, and cannot be zero
because Gλ cannot be a scalar multiple of In. That is, at every point where l̇p(λ) van-
ishes, l̈p(λ) < 0. Thus, lp(λ) has exactly one maximum in Λ, and no other stationary
points.

Proof of Proposition 3.8. See the Supplementary Material.31

Proof of Proposition 3.9. If the column space of X is spanned by k linearly
independent eigenvectors of W, X = VkC, say, with Vk a subset of k eigenvectors
of W and C non-singular. Then WVk = VkD for some k × k diagonal matrix of
eigenvalues of W. It is easily checked that SλX = XA, say, with A = C−1[Ik−λD]C
a non-singular matrix for λ ∈ Λ. Now consider the transformations

y → κy +Xδ, κ > 0, δ ∈ Rk.

These leave the family of densities for y invariant, inducing only the group of trans-
formations

(β, σ2, λ)→ (κβ +Aδ, κ2σ2, λ)

31For a formal treatment of the argument used to establish Proposition 3.8 - averaging over the
group - see Eaton (1989), particularly Chapters 4 and 5. A direct proof of Proposition 3.8 can be
found in the Supplementary Material.
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on the parameter space. The distribution of any invariant statistic will depend on
(β, σ2, λ) only through the maximal invariant in the parameter space. But, the
induced group acts transitively on the parameter space for (β, σ2), and leaves λ
invariant. It follows that the distribution of the maximal invariant cannot depend
on (β, σ2), and depends only on λ.

Proof of Theorem 2. (i) Proved in the text. (ii) Under the assumption that W
is similar to a symmetric matrix, the off-diagonal blocks in M vanish if and only
if MD = DM, where D contains the eigenvalues of W and M = H ′MXH is as in
the text, because the eigenvalues in the decomposition of D are distinct. One can
then easily check that this is so if and only if MXW = W ′MX . (iii) With the added
assumption of symmetry of W , H is orthogonal, and

Mij = h′iMXhj =


0 if i 6= j
0 if i = j and hi ∈ col(X)
1 if i = j and hi /∈ col(X)

.

The first line relies on the fact that h′iMXhj = 0 if either hi or hj is in col(X), and
also that when hi /∈ col(X), MXhi = hi, and h′ihj = 0.

Proof of Theorem 3. The assumption ε ∼SMN(0, σ2In) gives ỹ ∼SMN(0, σ2In)
and x ∼SMN(0, (H ′H)−1). But H ′H = In if W is symmetric, and hence the stated
result follows from (4.11).

Proof of Proposition 4.6. (i) Obviously, ωr > ωs implies ωr/(1− zωr) > ωs/(1−
zωs) for all z ∈ Λ, which in turn implies γr(z) > γs(z). Consider the functions
γ1t(z) := ωt/(1− zωt), labelled in the same order as the ωt. If ωt = 0, γ1t(z) = 0 is
constant. For the non-zero eigenvalues, since dγ1t(z)/dz = γ2

1t(z) > 0, each of these
functions is strictly increasing on Λ. The function γ11(z) = ωmin/(1− zωmin)→ −∞
as z ↓ ω−1

min, and is finite (= ωmin/(1 − ωmin)) at z = 1. Likewise, the function
γ1T (z) = 1/(1 − z) is finite at z = ω−1

min (= ωmin/(ωmin − 1)) and γ1T (z) → +∞ as
z ↑ 1. The remaining functions γ1t(z) are all finite at both endpoints of the interval
Λ. The average of the γ1t is

1

n
tr(Gz) =

1

n

T∑
t=1

ntωt
1− zωt

=
T∑
t=1

αtγ1t(z)

(with αt := nt/n). Since this is a convex combination of the γ1t(z), it is between the
smallest and largest of them, for all z ∈ Λ, i.e.,

γ11(z) <
1

n
tr(Gz) < γ1T (z).
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Thus, for all z ∈ Λ, γ1(z) < 0, and γT (z) > 0, so these two functions do not change
sign on Λ. Next, the properties of the γ1t imply that tr(Gz)/n is monotonic increasing
on Λ, going to −∞ as z ↓ ωmin, and to +∞ as z ↑ 1. It follows that tr(Gz)/n crosses
all T − 2 of the functions γ1t(z), t 6= 1, T, at least once, somewhere in Λ. To show
that the two functions can only cross once, simply observe that, at a point z where
γt(z) = 0,

γ̇1t(z) = γ2
1t(z) =

(
T∑
t=1

αtγ1t(z)

)2

<

T∑
t=1

αtγ
2
1t(z) =

d(tr(Gz)/n)

dz
.

(the inequality is strict because the γ1t(z) cannot all be equal). That is, at every
point of intersection, tr(Gz)/n intersects γ1t(z) from below, which implies that there
can be only one such point. (ii) This follows from part (i) and the fact that the signs
of the dtt are those of the γt.

Proof of Proposition 4.7. Under the first stated condition all diagonal blocks
Mss for s > t vanish, and for s ≤ t the γs(z) are all negative for z > zt, so that, by
Theorem 2 (iii), Pr(λ̂ML ≤ z) = 1 for z ≥ zt. In the second case the γs(z) are all
positive for z < zt by Proposition 4.6, so that Pr(λ̂ML ≤ z) = 0 for z ≤ zt.

Proof of Corollary 4.9. We prove this result under Gaussian assumptions. For
notational convenience, let us rewrite expression (4.12) as

Pr(λ̂ML ≤ z;λ) = Pr

(
S∑
s=1

dωs (λ, z)χ2
ns ≤ 0

)
.

Since dωs (λ, z) = −d−ωs (−λ,−z), we have

Pr(λ̂ML ≤ z;λ) = Pr

(
S∑
s=1

−d−ωs (−λ,−z)χ2
ns ≤ 0

)
,

which is equal to Pr(λ̂ML ≥ −z;−λ) = 1 − Pr(λ̂ML ≤ −z;−λ) if the spectrum
of W is symmetric. The stated result follows on differentiating Pr(λ̂ML ≤ z;λ) =
1− Pr(λ̂ML ≤ −z;−λ) with respect to z.

Proof of Corollary 4.10. We first note the following slight modification of a result
due to James (1964) for the density of a positive definite quadratic form in standard
normal variables: If Q :=

∑S
i=1 aiχ

2
ni is a linear combination of independent χ2

ni
random variables with positive coefficients ai, the density of Q is given by

pdfQ(q;A) =
exp

(
−1

2τq
)
q
n
2
−1

2
n
2 Γ(n2 ) (det (A))

1
2

1F1

(
1

2
;
n

2
;
q

2
A∗
)

(A.2)
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where n =
∑S

i=1 ni, A := diag(aiIni , i = 1, ..., S), τ := tr(A−1), and A∗ := τIn−A−1.
The confluent hypergeometric function here is of matrix argument (see Muirhead,
1982), but, importantly, only top-order zonal polynomials are involved. Using this
result for both Q1 and Q2, transforming to (R,Q2), and integrating out the redun-
dant variable termwise gives an expression involving only r (it is straightforward to
check that the term-by-term integration involved is justified). Integrating this over
0 < r < 1 gives the result.

Proof of Proposition 5.1. For the pure balanced Group Interaction model, W
is symmetric, T = 2, n1 = r, n2 = r(m − 1), ω1 = 1, ω2 = −1/(m − 1). Also,
by direct computation, tr(Gz)/n = (rm)−1 [r/(1 − z) − r(m − 1)/ (z +m− 1)] =
z/[(1 − z)(z + m − 1)], and hence d11 = 2(m − 1)(1 − z)/[(1 − λ)2(z + m − 1)] and
d22 = −2(z +m− 1)/[(λ+m− 1)2(1− z)]. The stated result follows from equation
(4.14).

Proof of Proposition 5.5. For a symmetric Complete Bipartite model tr(WS−1
z ) =

−1/(1+z)+1/(1−z) = 2z/
(
1− z2

)
, and hence γ1(z) = −[n−(n−2)z]/[n

(
1− z2

)
],

γ2(z) = −2z/[n
(
1− z2

)
], and γ3(z) = [n+ (n− 2)z]/[n

(
1− z2

)
]. The stated result

follows by using expression (4.12).

Proof of Proposition 5.6. For z ∈ (0, 1) the cdf is given by Pr(λ̂ML ≤ z) =
Pr(χ2

1 ≤ (2z/φ1)χ2
n−2 +(φ2/φ1)χ2

1), with both coefficients 2z/φ1 and φ2/φ1 positive.
From this we can obtain the density on the interval z ∈ (0, 1) by applying the Lemma
8.1 in the Supplementary Material with γ = 1, α = n− 2, β = 1, a(z) = 2z/φ1, and
c(z) = φ2/φ1.

Proof of Proposition 5.7. For the row-standardised Complete Bipartite model
the matrix H is

H =

[
ιp/
√
n ιp/

√
n Lp,p−1 0

ιq/
√
n −ιq/

√
n 0 Lq,q−1

]
,

where Lp,p−1 (p× (p− 1)) satisfies L′p,p−1ιp = 0 and L′p,p−1Lp,p−1 = Ip−1. Thus,

M = H ′MιnH =

 0 0 0

0 4pq
n2 0

0 0 In−2

 .
This is certainly block-diagonal, as expected, and in addition the (1, 1) block also
vanishes. The mean of x = H−1ỹ is E(x) = β

√
n(n, 0, 0)′.Therefore, from equation

(4.9), we have
Pr(λ̂ML ≤ z) = Pr

(
d22χ

2
1 + d33χ

2
n−2 ≤ 0

)
,
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i.e.,
Pr
(
−2
(
φ2χ

2
1 + 2zχ2

n−2

)
≤ 0
)
.

But, if z ≥ 0, both coefficients here are non-negative, so for z ≥ 0, Pr(λ̂ML ≤ z) = 1.
This yields the result stated.

Proof of Proposition 6.1. When λ ∈ [0, 1), Gλ can be expanded as
∑∞

r=0 λ
rW r+1,

showing that nonnegativity of W implies nonnegativity of Gλ. Letting gij denote
(i, j)-th entry of Gλ, we have

ntr
(
G2
λ

)
= n

n∑
i,j=1

gijgji = n
n∑
i=1

g2
ii + n

n∑
i,j=1,i 6=j

gijgji.

By the sum of squares inequality n
∑n

i=1 g
2
ii ≥ (

∑n
i=1 gii)

2 = [tr(Gλ)]2. Also, note
that n

∑n
i,j=1,i 6=j gijgji > 0 when λ ∈ [0, 1), by the nonnegativity of Gλ. It follows

that, for any λ ∈ [0, 1), ntr
(
G2
λ

)
> [tr(Gλ)]2 or, equivalently, d (λ) < 0. As stated

in the proof of Lemma 3.5, the first term on the right hand side of expression (A.1)
is nonpositive by the Cauchy-Schwarz inequality. The second term is equal to d (λ).
Hence all stationary points of lp(λ) in [0, 1) must be maxima, which completes the
proof.
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Bramoullé, Y., Djebbari, H. and Fortin, B. (2009) Identification of peer effects through

social networks, Journal of Econometrics 150, 41-55.

Case, A. (1991) Spatial Patterns in Household Demand, Econometrica 59, 953-966.

Cliff, A.D. and Ord, J.K. (1973) Spatial autocorrelation. London, Pion

Cressie, N. (1993) Statistics for spatial data. Wiley,

Drton, M., Sturmfels, B. and Sullivant, S. (2009). Lectures on Algebraic Statistics, Birkhauser.

Eaton, M.L., (1989) Group Invariance Applications in Statistics, Institute of Mathematical

Statistics and American Statistical Association.

Estrada, E., (2011) The Structure of Complex Networks, Theory and Practice. Oxford

University Press.

Forchini, G. (2002) The exact cumulative distribution function of a ratio of quadratic forms

in normal variables, with application to the AR(1) model, Econometric Theory 18,

823-852.

Forchini, G. (2005) The distribution of a ratio of quadratic forms in noncentral normal

variables, Communications in Statistics - Theory and Methods 34, 999-1008.

Hillier, G.H. (2001) The density of a quadratic form in a vector uniformly distributed on

the n-sphere, Econometric Theory 17, 1-28.

Hillier, G.H., Kan, R., and Wang, X. (2009) Computationally efficient recursions for top-

order invariant polynomials, with applications, Econometric Theory 25, 211–242.

Hillier, G.H. and Martellosio, F. (2013). Exact Likelihood inference in the spatial group-

interaction model. Manuscript.

Horn, R. and Johnson, C.R. (1985) Matrix Analysis. Cambridge University Press, Cam-

bridge.

James, A.T. (1964) Distributions of matrix variates and latent roots derived from normal

samples. Annals of Mathematical Statistics 35, 475–501.

Kelejian, H.H., I.R. Prucha, & Y. Yuzefovich (2006) Estimation problems in models with

spatial weighting matrices which have blocks of equal elements, Journal of Regional

Science 46, 507-515.

Kelejian, H.H., Prucha, I.R. (2010) Specification and estimation of spatial autoregressive

models with autoregressive and heteroskedastic disturbances. Journal of Econometrics

157, 53-67.

Koopmans, T.C. (1942) Serial correlation and quadratic forms in normal variables. Annals

of Mathematical Statistics, 12, 14–33.

Lee, L.F. (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spa-

tial autoregressive models, Econometrica 72, 1899–1925.

41



Lee, L.F. (2007) Identification and estimation of econometric models with group interac-

tions, contextual factors and fixed effects, Journal of Econometrics 140, 333–374.

Lee, L.F., Liu, X., Lin, X. (2010) Specification and estimation of social interaction models

with network structures, The Econometrics Journal 13, 145-176.

LeSage, J.P. and Kelley Pace, R. (2009) Introduction to Spatial Econometrics, Boca Raton,

CRC Press/Taylor & Francis.

Liu, X., Patacchini, E., Zenou, Y. and Lee, L.F. (2012) Criminal networks: who is the key

player?, working paper.

Martellosio, F. (2011) Efficiency of the OLS estimator in the vicinity of a spatial unit root.

Statistics & Probability Letters 81, 1285–1291.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory, Wiley, New York.

Mulholland, H.P. (1965) On the degree of smoothness and on singularities in distributions of

statistical functions, Proceedings of the Cambridge Philosophical Society 61, 721–739.

Ord, J.K. (1975) Estimation methods for models of spatial interaction, Journal of the

American Statistical Association 70, 120–126.

Pinkse, J., Slade, M.E. and Brett, C. (2002) Spatial Price Competition: A Semiparametric

Approach, Econometrica 70, 1111-1153.

Ross-Parker, H. (1975) Inter-plant competition models and their sampling distributions,

Advances in Applied Probability 7, 453-4.

Rothenberg, T.J. (1971) Identification in Parametric Models, Econometrica 39, 577-591.

Saldanha, N.C. & C. Tomei (1996) The accumulated distribution of quadratic forms on the

sphere, Linear Algebra and Its Applications, 245, 335–351.

Topa, G. (2001) Social interactions, local spillovers and unemployment, The Review of

Economic Studies 68, 261-295.

Yang, Z. (2013) A general method for third-order bias and variance corrections on a non-

linear estimator, manuscript, Singapore Management University.

von Neumann, J. (1941) Distribution of the ratio of the mean square successive difference

to the variance, Annals of Mathematical Statistics 12, 367–395.

42


	Introduction
	Assumptions and Examples
	Assumptions on the Weights Matrix
	The Parameter Space
	Examples

	Properties of the Profile Log-Likelihood
	Existence of the MLE
	The Profile Score
	Invariance Properties

	Main Results
	The Main Theorem and Some Immediate Consequences
	Canonical Forms
	Support of the MLE
	Gaussian Pure SAR Models with Symmetric W
	General Gaussian Models with Symmetric W

	Applications
	The Balanced Group Interaction Model
	Zero Mean
	Constant Mean

	The Group Interaction Model
	Conditioning Argument with Three Distinct Eigenvalues
	Two Group Sizes; Zero Mean
	Constant Mean
	Fixed Effects

	The Complete Bipartite Model
	Symmetric W, Zero Mean
	Row-Standardized W, Constant Mean


	The Single-Peaked Property Generally
	Discussion
	 Proofs of Main Results

