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Abstract. A major environmental concern related to railway traffic is vibration. A lot of re-
search has been carried out to understand vibration of straight tracks, with less attention been
paid to curved tracks. Modelling the dynamic behaviour of a curved railway track is important
to understand the physics of generation and propagation of vibration from trains at non-straight
sections of tracks. Modelling is also important to assess the current and any alternative track
designs from an environmental point of view.

In this paper a curved track is modelled and the effect of curvature is investigated. Two
models have been developed and their results have been compared. In the first, the curved track
is modelled using straight beam elements. In the second curved beam elements are used. For
both, the Euler-Bernoulli beam theory has been adopted to describe their bending behaviour.
The elements have 12 degrees of freedom accounting for displacements and rotations in the
lateral, transverse and longitudinal directions. The excitation comes from an axle traversing
the rails with subcritical velocity, accounting for the wheel-rail contact forces.

The described models are solved using the Finite Element Method. The time domain response
of the versine of the curved track due to the passage of the axle is computed. A comparison is
made on the efficiency of the two models for different curve radii and frequencies. The two
models provide very similar results showing that the piecewise straight beam approximation
represents the behaviour of the curved track accurately. Also the curved beam model used in
this study shows some limitations for the specific application and therefore the straight element
method is recommended.
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1 INTRODUCTION

Vibration from trains is an environmental concern affecting residents and buildings near
railway lines. Modelling the dynamic behaviour of tracks aids in the understanding of the
physics which is essential for the provision of solutions. In the literature there is a large number
of models reported on the dynamic behaviour of railway tracks. Most of these focus on straight
sections of tracks and less attention has been paid to curvedtracks. This is mainly attributed
to the higher complexity associated with the modelling of curved tracks compared to straight
ones. However, curved tracks are reported to have additional problems which increase the need
for further research.

In the literature, the effect of curvature of beams has been subjected to limited study. Fol-
lowing are some of the studies found in the literature. In [1], the analytical solution was derived
for the dynamic response of a horizontally curved beam subjected to vertical and horizontal
moving loads. This was solved for a simply supported beam. Ina series of papers [2–7], a
new approach to derive the displacement functions of a curved beam was presented, based on
which the shape functions and the mass and stiffness matrices for an arch element of constant
radius were derived. The method was used to study the free vibration of a curved beam due to a
moving load for both the in-plane and out-of-plane response. One may refer to the first sections
of papers [1], [2] and [3] for a background on the study of curved beams for both analytical and
numerical approaches. More recent approaches include thatof [8] who used the moving ele-
ment method to model a curved beam subjected to a moving load using straight beam elements.
In [9] the forced vibration of curved beams on a two-parameter elastic foundation subjected
to impulse loading is studied. In the work of [10] the generaldynamic response induced by a
moving load along a curved path on an elastic semi-infinite space was obtained and applied to
the case of a periodic curved track structure. None of the literature cited above analysed curved
beams under harmonic loads.

In this work a curved track is formulated as a discretely supported beam on elastic foun-
dation and is analysed using the Finite Element Method. The model is discretised using both
straight and curved beam elements which are formulated using the Euler-Bernoulli beam bend-
ing theory. Torsional effects are also taken into account. The paper presents results describing
the dynamics of a curved track with focus on the displacementof the mid-span. Calculations
are performed for vertical harmonic moving loads and the displacements are compared for the
cases of straight and curved beam elements. The effects of curvature and loads frequency are
also investigated.

2 MODEL DEVELOPMENT

For this model, the railway track has been modelled as a single rail traversed by a point load.
In the following sections, details are given on the formulation of the model and the method for
solution based on a matrix approach.

2.1 Form of the applied load

The excitation force is a moving harmonic load as shown in Figure 1 and has the following
form:

Fap = P cos (ωt+ϕ) (1)

whereP is the load amplitude (N), ω is the radial frequency of the applied load (rad/sec), V
is the speed of the moving load (m/s) andt is the time (s). ϕ is an initial phase applied to the
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load to ensure that for every frequency, it will arrive at themid-span with maximum amplitude.
The load is applied at the center-line of the rail at all times.

2.2 Track layout

The rail is modelled as a beam discretely supported on an elastic foundation. In order to
define the geometry of the curved track the parameters neededare a) the radius of curvature
R (m), b) the total length of the trackLt (m) and/or c) the total subtended angleθ (rad).
Since these variables are related by the relationshipθ = Lt/R, one only needs two of the three
parameters. Figure 1 depicts the layout of the track.

Figure 1: Curved beam on elastic foundation

In Figure 1,ϕ is the angle between the left support and the position of the load. The beam
is discretely supported through rail-pads on a two-parameter visco-elastic foundation with pad
stiffnesskp (N/m) and dampingcp (Ns/m). This is done through the use of a spring and
a dashpot in parallel, also known as the Kelvin-Voigt model.The damping is applied as a
percentage (ζ) of the critical damping(ccr) of the system,cp = ζccr. The distance between two
successive supports/rail-pads is denoted asLb. The foundation itself rests on a rigid base. In
this paper, the track origin is located directly above the global origin at a distanceR (i.e.(0, R)).

2.3 Discretisation of the model

In order to analyse and solve the above system using a matrix approach, the track will have
to be discretised into a finite number of elements,n. Each of the individual elements will have
lengthLel = Lt/n. Then the local mass (ML), stiffness (KL) and damping (CL) matrices will
be derived, converted to the global mass (MG), stiffness (KG) and damping (CG) matrices and
the system will be solved in the time domain using direct time-step integration.
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The interest of this work is to compare the use of straight andcurved beam elements, thus
two separate models were developed respectively. In the model with the piecewise straight
approximation of the curved elements, the length of the element is approximated by that of the
arc length as shown in Figure 2. For the curved elements the arc length is used.

Figure 2:Lel approximation for straight beam elements.

The points where the elements connect with each other are called nodal points. Each node
has six degrees of freedom (dof’s) accounting for displacements (u) and rotations (θ) in the
axial, vertical and horizontal (x, y, z) direction as shown in Figure 3.

Figure 3: Degrees of freedom per node.

Each element for both models, has been modelled using the Euler-Bernoulli beam theory for
bending, also accounting for torsional effects. For the straight beam elements, the elementary
stiffness and mass matrices are readily available in the literature [11, 12]. For the curved ele-
ments, the approach presented in [2–7] was used. The in-plane responses (ux,uz,θy) are derived
based on [5] while the out-of-plane responses (uy,θx,θz) based on [7]. The local matrices will
be of size12 by 12 for all the degrees of freedom of each element.

In order to assemble the global mass and stiffness matrices,the elementary matrices need
to be converted from their local co-ordinates to the global ones. This means a transformation
from the local Cartesian and curvilinear co-ordinates to the global Cartesian co-ordinates for
the straight and curved beam element matrices respectively. This process is achieved by using
the transfer matrixT as follows:

MG = TTMLT (2)

KG = TTKLT
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where the superscript ‘T’ denotes the transpose of the matrix. The transfer matrix for both the
straight and curved beam elements has the following format:

T =











Dψ1 0 0 0

0 Dψ1 0 0

0 0 Dψ2 0

0 0 0 Dψ2











(3)

whereDψ is:

Dψ =







cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ






(4)

For the straight beam elements,ψ1 is equal toψ2 and it is the angle measured between the
tangent to the track origin and the parallel to the straight beam element. For the curved beam
elements,ψ1 andψ2 denote the angles between the tangent to the track origin andthe tangents
at nodes 1© and 2© respectively.

After the global mass and stiffness matrices have been derived, a Rayleigh damping matrix
is used which is proportional to the mass and stiffness matrix in the following way:

CG = α MG + β KG (5)

Variablesα andβ depend on the mode shapes one wishes to apply the damping on, as well
as the damping ratio of each mode. For more details one may refer to [13]. The size of the
global matrices is12(n + 1) by 12(n + 1). The stiffness and damping of the rail-pads can be
added directly on the global stiffness and damping matricessince they only act on the vertical
degree of freedom.

2.4 Equation of motion and solution of the system

After the global mass, stiffness and damping matrices have been derived, the equation of
motion of the system can be written as:

MGü+ CGu̇+ KGu = Fext (6)

whereu contains the displacements and rotations of all the nodal points at each time and the dot
and double dot notation show the first and second derivative with respect to time respectively.
Fext is a vector containing all the nodal forces at each time.

The above equation is typically solved using a direct time-step integration scheme. This
procedure involves converting the forces at each time-step, to end node forces and moments
using shape functions, otherwise called the equivalent load vector [13,14]. The shape functions
used for the two models are the Hermitian shape functions forthe straight beam elements and
the implicit shape functions presented in [5, 7] for the curved beam elements. The integration
scheme used for this work is a composite implicit time integration procedure presented in [15].
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3 MODEL VALIDATION

In order to validate the two models, a comparison was made between the numerical models
and the analytical solution provided in [1]. In this comparison, the track consists of a sim-
ply supported curved track traversed by a moving load of constant amplitude. The vertical
displacement and rotation around the x-axis of the track endnodes are fully restrained. The
natural damping of the beam is neglected. The details for thecomparison are listed in Table 1
and the track layout is presented in Figure 4.

Parameter Value Parameter Value
Total length,Lt 24m Speed of load,V 40m/s

Subtended angle,φ 30◦ Load magnitude,P 1 N
Cross-section area,A 9m2 Young’s modulus,E 33.2 GPa
Moment of inertia,Ix 2.43m4 Shear modulus,G G = 13.833 GPa
Moment of inertia,Iy 18.75m4 Polar moment of inertia,J 21.18m4

Table 1: Data for the comparison between analytical solution and numerical models.

It is noted here that there is a typographical error in [1] andone needs to interchange coef-
ficientsa1 anda2 for b1 andb2 respectively in order to obtain consistent results (see forexam-
ple [16]). The details for the numerical models are shown in Table 2.

Straight elements Curved Elements
No. of element 10 No. of element 4
Element size 2.4m Element size 6m

Table 2: Element size and number for the developed models.

Figure 5 shows the results of the comparison for the displacement of the mid–span. One can
see that both models show a good agreement with the analytical solution. The time-step used in
this comparison is∆t = 0.06s.

Figure 4: Simply supported track layout.
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Figure 5: Transfer function for the comparison of the curvedtrack using curved and straight beam elements against
the analytical solution for a constant moving load with velocity V = 40m/s on a track of lengthLt = 24m over
an angleφ = 30

◦

4 RESULTS AND DISCUSSION

The parameters used for the for the following simulations are summarised in Table 3. These
parameters used for the rail are those for a 60-E1 rail specification. With the chosen foundation
properties the cut-on frequency,fco is at 118Hz. This is based on the equationfco =

√

kdist/m
wherekdist = kp/Lb.

In Figure 6 the transfer function for the vertical deflectionof the mid-span is shown for two
frequency cases. This simulation has been performed for both models using a single element
between the beam supports. The results from the two models are almost identical showing a
very good agreement for the frequency cases considered in this example. One will notice some
fluctuations occurring for the case of0Hz at the sleeper passing frequency. These are caused by
the torsional forces created between the elements and if theradius is increased these fluctuations
become smaller.

The percentage difference between using curved and straight elements for the given track are
shown in Figure 7 for when the load is passing the two elementson either side of the mid-node.
The difference between curved and straight elements fluctuates at about1.5 % with only one
peak exceeding2 % for a radius ofR = 20 m. The differences become significantly smaller,
fluctuating at0.5 %, for the case ofR = 50 m. This shows that the more straight the track
becomes, the straight element approximation is becoming more accurate. If one considers that
50 m radius is very small for a typical railway track and that the error of 0.5 % is expected
to further reduce, then it can be seen how the straight element approximation is very good
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Parameter Value Parameter Value
Total length,Lt 90m Speed of load,V 20m/s

Support distance,Lb 0.6m Load magnitude,P 1 N
Rail mass,m 60.21 kg/m Young’s modulus,E 210 GPa

Cross-section area,A 7.672e−3 m2 Shear modulus,G 79.56 GPa
Moment of inertia,Ix 3038.3e−8 m4 Polar moment of inertia,J 3550.6e−8 m4

Moment of inertia,Iy 512.3e−8 m4 Beam damping,α, β 10 & 5 %
Railpad stiffness,kp 20MN/m Damping ratio,ζ 10 %

Table 3: Data used in numerical simulations.
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Figure 6: Transfer function for the vertical displacement of the mid-node of a track of lengthLt = 90m and radius
R = 20m subjected to a load with speedV = 20m/s using —: curved and – –: straight elements.

compared to the curved element method.
The proposed theory in [2–7] seems to have a limitation as to the minimum curvature and

length that the beam elements can have. A combination of short element length with big radius
does not yield realistic results. Thus it has not been possible to test multiple curved beam
elements between beam supports or bigger radii. Based on this, a restriction is also applied by
the nature of the problem and the method of solution. In this problem a discretely supported
track is being used, where rail pads are provided everyLb meters. Because the problem is solved
using nodal points and the forces exerted on them, a node has to be provided everyLb meters
to allow the pad stiffness and damping to be incorporated to the global system matrices. This in
turn means that the length of the curved beams is limited to a maximum ofLb, not giving much
space to the values of radius used.

Based on the above results, it is concluded that for this kindof problems it is not of great
benefit to use the curved beam element approach presented in [5, 7]. Compared to the straight
element theory, it does not provide significant improvements to the results for the vertical dis-
placement of a discretely supported rail. The added complexity increases the risk of errors and
there is a limitation to the parameters that can be investigated. Although this method is not
recommended for the modelling of curved railway tracks subjected to vertical loads, it could be
proven more beneficial to problems where greater spans of beams can be modelled. It is also
necessary to investigate and compare the two methods for horizontal loads, as these are affected
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Figure 7: Percentage difference for the vertical displacement between using curved and straight elements for a
track of lengthLt = 90m subjected to a load with speedV = 20m/s.

at a higher degree from the horizontal geometry.

5 CONCLUSION AND FUTURE WORK

In this paper, the dynamic response of a curved railway trackdiscretely supported on an elas-
tic foundation has been investigated. Two methods have beencompared. The classical piece-
wise straight beam element method and the curved beam element method proposed by [5, 7].
Firstly the development of the two numerical models was described. Then a validation proce-
dure was carried out for the case of a simply supported track for which the analytical solution
is readily available in the literature [1]. In the final section, results where shown for a case of a
curved rail supported on rail pads and excited by a harmonic moving load. Both methods show
a good agreement. The curved element method has added complexity without giving substantial
improvement and it is thus not recommended for this kind of problem/formulation.

Further research is on-going to improve the current model ofthe curved track. Plans for
continuing this work comprise to:

- Investigate the effect of horizontal forces

- Investigate the effect of torsion

- Model different formulations for the curved beam element existent in the literature

- Develop the model further, to account for additional geometrical properties of the track
such as cant, track twist and irregularities
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