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Itô’s formula for finite variation Lévy processes: the
case of non-smooth functions

Ramin Okhrati∗ , Uwe Schmock†

Abstract

Extending Itô’s formula to non-smooth functions is important both in theory and appli-
cations. One of the fairly general extensions of the formula, known as Meyer-Itô, applies
to one dimensional semimartingales and convex functions. There are also satisfactory gen-
eralizations of Itô’s formula for diffusion processes where the Meyer-Itô assumptions are
weakened even further. We study a version of Itô’s formula for multi-dimensional finite
variation Lévy processes assuming that the underlying function is continuous and admits
weak derivatives. We also discuss some applications of this extension, particularly in fi-
nance.
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1 Introduction

In order to motivate our study, we consider the following Partial Integro-Differential Equation

(PIDE):

∂P

∂t
(t, x) + rx

∂P

∂x
(t, x) +

σ2x2

2
∂2P

∂x2 (t, x) − rP(t, x)

+

ˆ
v(dy)

(
P(t, xey) − P(t, x) − x(ey − 1)

∂P

∂x
(t, x)

)
= 0,

P(T, x) = (x − K)+, for all x ∈ (0,D),

P(t, x) = 0, for all x ≥ D, and all t ∈ [0,T ], (1)

where D > K > 0, r > 0, T > 0, are constants, and v is the Lévy measure of a Lévy process

X with characteristic triplet (σ2, v, γ). Furthermore, it is assumed that
(
eXt

)
0≤t≤T

is a martingale

with respect to the natural filtration generated by X and a risk-neutral probability measure.

Finding the solution of this PIDE (or similar ones) is of particular interest in different ap-

plied fields. For instance, under some circumstances the solution of PIDE (1) can be identified

as the price of a financial security. As it follows, Itô’s formula is a key element in this proce-

dure.

More precisely, assume that the risk-neutral evolution of an asset is modeled by S t =

S 0ert+Xt , where r and X are the same as above such that
(
e−rtS t

)
0≤t≤T is a martingale under

the risk-neutral probability measure. Suppose that we are interested in pricing a barrier option

with maturity T , strike price K, barrier D > K, and the payoff max(S T − K, 0)1{max0≤t≤T S t<D}. If

σ > 0, then using Itô’s formula one can show that there is a C1,2 solution of PIDE (1) which is

in fact the price of this barrier option given by

P(t, x) = e−r(T−t)
E[H(S T∧τD

)|S t = x], (2)

where E is the expectation under the risk-neutral measure, H(x) := (x − K)+1{x<D}, and τD :=

inf{s ≥ t; Xs ≥ D}, see Proposition 12.2 of Cont and Tankov (2004).

Equation (2) is in fact the Feynman-Kac representation of the solution of PIDE (1) which

can be numerically calculated through simulation techniques. Note that the condition σ > 0

is crucial for this argument to work which guarantees that the purposed solution (2) is smooth

and hence Itô’s formula is applicable. However, in the case of pure jump Lévy processes, i.e.

when σ = 0, the smoothness is not obvious and it can fail. The situation is more complicated

for American options where the smoothness of the purposed solution is not known even in the

presence of a non-zero volatility, see Chapter 12 of Cont and Tankov (2004) for more detail. For

example, Theorem 7.2 of Boyarchenko and Levendorskiı̆ (2002) shows that the smoothness of
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the purposed solution in the case of American option fails for tempered stable Lévy processes

with finite variation.

One purpose of this work is to fix this kind of problems for models using finite variation

Lévy processes. For this class of processes, under some conditions, we obtain an Itô formula

that works well with non-smooth continuous functions. In particular, this can provide a solution

to PIDE (1) when σ = 0 and X is a finite variation Lévy process. This problem is investigated

at the end of this paper. We continue with some literature review.

A version of Itô’s formula is obtained in Aebi (1992) where the underlying process is a

continuous semimartingale with a special structure. In this paper, the first and second order

derivatives of the function are defined in the sense of distributions and they satisfy some local

integrability conditions. Föllmer et al. (1995) discuss an extension of the formula to a one-

dimensional standard Brownian motion and an absolutely continuous function with a locally

square integrable derivative. This result was further extended by Föllmer and Protter (2000) to

a multi-dimensional Brownian motion.

Following the idea of Föllmer et al. (1995), an extension of Itô’s formula is proved in

Bardina and Jolis (1997) for a one-dimensional diffusion process such that its law has a density

satisfying certain integrability conditions. In their work, it is assumed that the underlying

function f = f (t, x) is absolutely continuous in x with a locally square integrable derivative

satisfying a mild form of continuity in time t.

In all of the above works, the sample paths of the underlying processes are continuous.

Concerning discontinuous processes, Theorem 70, Chapter IV of Protter (2004) (known as

Meyer-Itô’s formula) provides a fairly general extension of Itô’s formula to semimartingales

and one dimensional convex functions.

Comparing to Theorem 70, Chapter IV of Protter (2004), our extension applies to finite

variation Lévy processes and continuous functions that admit weak derivatives. Therefore this

generalizes Meyer-Itô’s formula for finite variation Lévy processes. In addition, it is assumed

that the function is multi-dimensional and time-dependent. Beside the motivation provided at

the beginning and theoretical interests to extend Itô’s formula for these processes, it is also

argued in Geman (2002) that the evolution of asset prices are better modeled by finite variation

processes with infinite activity1. The structure of the paper is as follows:

The theoretical backgrounds, in particular some fundamental results in real and functional

analysis are reviewed in Section 2. Section 3 concentrates on hypotheses and key tools. The

main result is proved in Section 4. Finally, the paper ends with some examples and conclusions.

1A Lévy process X in Rd is of infinite activity, if there are infinite number of jumps on any finite time interval,
i.e. v(Rd) = ∞, where v is the Lévy measure of X.
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2 Preliminaries and Definitions

In this section, we recall a few results from real and functional analysis (basically Distribution

theory) that will be used later. We begin with some definitions. In what follows, R is the

set of real numbers; U ⊂ Rd is a nonempty open set, d ≥ 1; |.| and ||.||d are respectively the

one-dimensional and d-dimensional Euclidean norms; and m is the Lebesgue measure. For

simplicity, regardless of the dimension of the space, the Lebesgue measure is always denoted

by m.

Definition 2.1. A point x ∈ U ⊂ Rd is a Lebesgue point of a function f : U 	−→ R if

lim
r→0+

1
m(Br(x))

ˆ
Br(x)
| f (y) − f (x)| dy = 0,

where Br(x) = {y ∈ Rd : |y − x| < r} and the limit is taken for those r small enough to guarantee

that Br(x) is a subset of U.

Definition 2.2. The set of all Lebesgue points of f : U 	−→ R is denoted by Lf and it is called

the Lebesgue set.

Definition 2.3. A family {Er}r>O of Borel subsets of U is said to shrink nicely to x ∈ U if the

following two conditions hold

• Er ⊂ Br(x) ⊂ U for each r,

• there is a constant α > 0, independent of r, such that m(Er) > αm(Br(x)).

Theorem 2.1. The Lebesgue Differentiation Theorem. Suppose that f ∈ L1
loc(U) and supp( f ) ⊂

U. Then we have

• m(U − Lf ) = 0,

• For every x in the Lebesgue set of f ; in particular for almost every x in U, we have

lim
r→0+

1
m(Er)

ˆ
Er

| f (y) − f (x)| dy = 0,

where {Er}r>0 is a family of Borel subsets of U ⊂ Rd that shrinks nicely to x.

For a proof of this theorem in the case of U = Rd, see Theorem 3.21 of Folland (1999).

The generalization to an open set U ⊂ Rd is straightforward. Note that following the Lebesgue

Differentiation Theorem we have limr→0+
1

m(Er)

´
Er

f (y) dy = f (x), where f and Er are the same

as the above theorem. Therefore, this can be thought of as a generalization of the fundamental
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theorem of calculus. In general, determining the Lebesgue points of a function is not an easy

task. The next lemma gives a partial answer to this challenge; the proof is simple and hence

omitted.

Lemma 2.1. If f ∈ L1
loc(U), U ⊂ Rd, and f is continuous at x ∈ U, then x ∈ Lf .

Definition 2.4. If g : Rd 	−→ R and f : Rd 	−→ R, are measurable functions, then the convolu-

tion g ∗ f : Rd 	−→ R is defined by (g ∗ f )(x) :=
´
Rd g(x − y) f (y) dy, provided that for every x

in Rd, the integral is well defined.

Some basic properties of convolution can be found in standard text books such as Folland

(1999) or Brezis (2011). The next lemma provides a simple and sufficient condition for the

existence of convolution.

Lemma 2.2. Let f ∈ L
p

loc
(U), p ≥ 1, and supp( f ) ⊂ U. Suppose that g : Rd 	−→ R is bounded

and compactly supported. Then g ∗ f 1U, f 1U(x) =
{

f (x), x ∈ U;
0, x � U,

is well defined on Rd, i.e.

the integral
´

U
g(x − y) f (y) dy is finite for all x in Rd.

Let η be any function in C∞c (Rd) such that it satisfies the following conditions

η ≥ 0,
ˆ
Rd

η(x) dx = 1, supp(η) = B1(0).

For any ε > 0, define ηε(x) = 1
εd
η( x
ε
) then clearly we have

ηε ∈ C∞c (Rd),
ˆ
Rd

ηε(x) dx = 1, supp(ηε) = Bε(0).

The next definition provides an example of such a function.

Definition 2.5. Let

η(x) =

⎧⎪⎪⎨⎪⎪⎩ ce
−1

1−||x||2
d , ||x||d < 1;

0, ||x||d ≥ 1,

and take c such that
´
Rd η(x) dx = 1. Then ηε is called the standard mollifier.

Our discussion does not depend on a specific choice of ηε . However, if necessary, the

reader can always consider the standard mollifier. Suppose that f ∈ L
p

loc
(U), p ≥ 1, and for

every ε > 0, let f ε : Rd 	−→ R be defined by

f ε(x) := (ηε ∗ f 1U)(x) =
ˆ

U

ηε(x − y) f (y) dy.
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For a fixed x and ε small enough (that depends on x), Bε(x) ⊂ U and so f ε(x) exists. However,

if supp( f ) ⊂ U and since f ∈ L
p

loc
(U), p ≥ 1, by Lemma 2.2, f ε is well defined on Rd for all

ε > 0. The following theorem is a classical well-known result in the theory of distributions.

Parts (1) and (2) can be found in Section 4.4 of Brezis (2011), and Part (3) is a conclusion of

Theorem 2.1.

Theorem 2.2. Assume that f ∈ L
p

loc
(U), p ≥ 1, supp( f ) ⊂ U, and ε > 0. Then

1. f ε ∈ C∞(Rd) and ∂α f ε = ∂αηε ∗ f 1U,

2. f ε −→ f 1U in L
p

loc
(Rd) as ε → 0+,

3. f ε −→ f 1U pointwise on Lf 1U
as ε → 0+, hence f ε −→ f pointwise on Lf as ε → 0+.

Note that part (3) of Theorem 2.2 implies that f ε −→ f , Lebesgue almost every where on U.

LetN0 be the set of non-negative integers andNd
0 = {(α1, α2, ..., αd) : αi ∈ N0, i = 1, 2, ..., d}.An

element of the set Nd
0 is called a multi-index. In our extended version of Itô’s formula instead

of classical strong differentiability, we apply weak differentiability which is defined below.

Definition 2.6. Suppose that α ∈ Nd
0 is a multi-index. We say that a function f ∈ L1

loc(U),

U ⊂ Rd, is weakly differentiable; and also its αth- weak derivative denoted by ∂α f ∈ L1
loc(U), if

ˆ
U

(∂α f (x))φ(x) dx = (−1)|α|
ˆ

U

f (x)(∂αφ(x)) dx, for all φ ∈ C∞c (U),

where |α| = ∑d
i=1 αi, and the functions φ ∈ C∞c (U) are called test functions.

By applying Theorem 2.2 and simple properties of weak derivatives, we can get the follow-

ing theorem.

Theorem 2.3. Let f ∈ L1
loc(U) and supp( f ) ⊂ U. We further assume that f admits the weak

derivative ∂α f ∈ L1
loc(U), then:

1. f ε ∈ C∞(Rd), and ∂α( f ε) = ηε ∗ (∂α f ) on U,

2. ∂α( f ε) −→ ∂α f in L1
loc(U) as ε → 0+,

3. ∂α( f ε) −→ ∂α f pointwise on L∂α f as ε → 0+.

Remark 2.1. Note that part(1) of Theorems 2.2 and 2.3 still holds if we replace ηε by a test

function.

Though it is very simple, the next lemma is a key point in our discussion.
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Lemma 2.3. Assume that f ∈ L1
loc(U) has the weak derivative ∂α f ∈ L1

loc(U). Suppose that

φ ∈ C∞c (Rd) is a test function with support of K such that φ(x) ≥ 0, for all x ∈ Rd and´
Rd φ(x) dx = 1. Then for every x ∈ Rd we have

|∂α( f ∗ φ)(x)| ≤ sup
z∈U∩Λ(x)

|∂α f (z)|,

where Λ(x) = {y ∈ Rd : x − y ∈ K}.

Proof. By using Remark 2.1 we get

∂α( f ∗ φ)(x) = (φ ∗ 1U∂
α f )(x) =

ˆ
U

φ(x − y)∂α f (y) dy =

ˆ
U∩Λ(x)

φ(x − y)∂α f (y) dy.

Using this equation and the following inequalities, we get the result

|∂α( f ∗ φ)(x)| ≤ sup
z∈U∩Λ(x)

|∂α f (z)|
ˆ

U∩Λ(x)
φ(x − y) dy

≤ sup
z∈U∩Λ(x)

|∂α f (z)|
ˆ
Rd

φ(x) dx = sup
z∈U∩Λ(x)

|∂α f (z)|.

�

Remark 2.2. Note that the value of the right-hand side of the inequality in Lemma 2.3 can be

infinity.

3 Discussion of Assumptions and Key Tools

In applying classical Itô’s formula on smooth functions f : [0,∞) × U 	−→ R, U ⊂ Rd, the

differentiability at t = 0 is understood by being the right-hand side derivative. Note that since

the Lebesgue measure of {0} × U is zero, the weak derivatives of f can be defined similar to

Definition 2.6.

Assume that f : [0,∞) × U 	−→ R is a Lebesgue measurable function. In accordance with

Definition2.6, we say that f ∈ L1
loc([0,∞) × U) has weak derivatives ∂α f ∈ L1

loc([0,∞) × U) if
ˆ

[0,∞)×U

(∂α f (x))φ(x) dx = (−1)|α|
ˆ

[0,∞)×U

f (x)(∂αφ(x)) dx, for all φ ∈ C∞c ([0,∞) × U). (3)

Note that since a test function φ is smooth, its derivatives at the origin is understood as the right-

hand side ones. The results of Section 2 are stated for open subsets of Rd. However, [0,∞)×U

is not an open set. So in our first step we fix this problem by introducing an extended version

of f .
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Suppose that the function f : [0,∞) × U 	−→ R is continuous on [0,∞) × U. This function

can be continuously extended to a new function f̃ : R × U 	−→ R:

f̃ (t, x) =
{

f (t, x), (t, x) ∈ [0,∞) × U;
f (−t, x), (t, x) ∈ (−∞, 0) × U.

(4)

Now in addition assume that f ∈ L1
loc([0,∞) × U) and it is weakly differentiable in the sense

of equation (3). Then one can easily show that f̃ ∈ L1
loc(R × U) and it is weakly differentiable

on the open set R × U in the sense of Definition 2.6. The weak derivatives of f̃ can be stated

explicitly based on weak derivatives of f . For instance in the case of d = 1, one can easily

check that
∂ f̃

∂t
(t, x) =

{ ∂ f

∂t
(t, x), (t, x) ∈ [0,∞) × U;
−∂ f

∂t
(−t, x), (t, x) ∈ (−∞, 0) × U,

and
∂ f̃

∂x
(t, x) =

{ ∂ f

∂x
(t, x), (t, x) ∈ [0,∞) × U;

∂ f

∂x
(−t, x), (t, x) ∈ (−∞, 0) × U,

where ∂ f

∂t
(t, x) and ∂ f

∂x
(t, x) are weak derivatives of f in the sense of equation (3).

Assume that (Ω,F, P) is a complete probability space. Let X = (Xt)t≥0, Xt : Ω 	−→ U,

U ⊂ Rd, be a càdlàg stochastic process that is defined on this space. In any extension of Itô’s

formula, it is important to somehow measure the amount of time that the process spends in

some certain regions of the domain. In particular, this is crucial for those points for which

the function is not smooth. For instance, in the case of Meyer-Itô formula (see Theorem 70,

Chapter IV of Protter (2004)), this is done through local times. In the next proposition, we

discuss a similar tool which is a key result in our extension. The proposition is provided for a

certain class of processes explained below.

Assumption 3.1. Suppose that X : [0,∞) × Ω 	−→ U is a càdlàg stochastic process defined

on the complete probability space (Ω,F, P), that satisfies the following condition: If A ⊂ U

is a Borel measurable set such that m(A) = 0, where m is the Lebesgue measure, then for all

s ∈ R+, P(Xs ∈ A) = 0. In other words, for all s ∈ R+, the measure μs on U defined by

μs(A) = P(Xs ∈ A), is absolutely continuous with respect to the Lebesgue measure.

Proposition 3.1. Assume that the process X satisfies Assumption 3.1. Let A ⊂ [0,∞) × U be

any Lebesgue measurable set such that m(A) = 0, then for all t ≥ 0 we have

P{ω ∈ Ω : m({s ∈ [0, t] : (s, Xs(ω)) ∈ A}) = 0} = 1.

In particular, this implicitly implies that for almost allω ∈ Ω, the set {s ∈ [0, t] : (s, Xs(ω)) ∈ A}
is Lebesgue measurable for all t ≥ 0.
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Proof. First assume that A is a Borel measurable set. Define the process Y : [0,∞) × Ω 	−→
[0,∞) × U by Y(s, ω) = (s, Xs(ω)). The process Y is càdlàg and by Proposition 1.21 of Jacod

and Shiryaev (1987), Y is B[0,∞) ×F measurable, where B[0,∞) is the Borel σ-algebra on [0,∞)

and F is the σ-algebra on Ω. Hence Y−1(A) belongs to B[0,∞) × F and so �0, t� ∩ Y−1(A) is in

B[0,∞)×F ⊂ L×F, where �0, t� = [0, t]×Ω, and L is Lebesgue σ-algebra on [0,∞). Therefore

the function f : [0,∞) ×Ω 	−→ R defined by f := 1�0,t�∩Y−1(A) belongs to L1(m × P).
From Fubini-Tonelli Theorem, see Theorem 2.37 of Folland (1999), it follows that fω de-

fined by fω := (., ω) is in L1(m) for almost all ω. So for a fixed ω, �0, t� ∩ Y−1(A) is Lebesgue

measurable, and m{s ∈ [0, t] : (s, Xs(ω)) ∈ A} is well defined for almost all ω ∈ Ω.

Moreover, let Z(ω) :=
´

fω dm = m{s ∈ [0, t] : (s, Xs(ω)) ∈ A}, then again by Fubini-

Tonelli Theorem Z is a random variable and Z ∈ L1(P), furthermore, we can calculate its

expectation

E [Z] =
ˆ ˆ

fω dm dP =

ˆ t

0

ˆ
fs dP ds

=

ˆ t

0
E

[
1{(s,Xs)∈A}

]
ds.

Note that for a fixed s, 1{(s,Xs)∈A} = 1{Xs∈As}, where As = {y ∈ Rd : (s, y) ∈ A} is Borel measurable,

hence we obtain

E [Z] =
ˆ t

0
P(Xs ∈ As) ds. (5)

The set A is Borel measurable and hence Lebesgue measurable as well. By theorem 2.36 of

Folland (1999) the function s 	−→ m(As) is Lebesgue measurable and m(A) =
´

[0,∞) m(As) ds.

By the proposition’s assumption m(A) = 0 which concludes that m(As) = 0 for Lebesgue

almost all s ≥ 0, i.e. there exists a set N ⊂ [0,∞) such that m(N) = 0 and if s � N then

m(As) = 0. From equation (5) and Assumption 3.1, we get

E [Z] =
ˆ

[0,t]∩Nc

P(Xs ∈ As) ds =

ˆ
[0,t]∩{s: m(As)=0}

P(Xs ∈ As) ds = 0.

The random variable Z is non-negative and E [Z] = 0, hence Z = 0, P-almost surely which

means that for almost all ω ∈ Ω, m({s ∈ [0, t] : (s, Xs(ω)) ∈ A}) = 0. This completes the proof

when A is Borel measurable.

Next, suppose that A is a Lebesgue measurable set, then A = A
′ ∪ A

′′
, A

′′ ⊂ B, where A
′

and B are Borel measurable and m(B) = 0. Now the result follows from the previous part, and

the facts that m(A) = 0 and the probability space is complete. �

Note that if A = [0, t] × B, where B ⊂ Rd a Borel set, then {s ∈ [0, t] : (s, Xs) ∈ A} is the

amount of time that the process X spends in Borel set B. So under Assumption 3.1, Proposition

8



3.1 concludes that almost surely the Lebesgue measure of this amount of time is zero for any

zero Borel measurable set.

We would like to point out that this measure can be quite different than local times. For

instance, let X be a standard Brownian motion, then by Proposition 3.1, m{s ∈ [0, t] : Xs = a} =
0, P- almost surely for all real numbers a whereas the local time of a Brownian motion at the

level a is not zero. This is also because of the fact that as a measure the local time of a Brownian

motion is singular with respect to the Lebesgue measure.

4 The Main Result

In this section, we state and prove our main result. First, we mention that the result holds for a

finite variation Lévy process that satisfies Assumption 3.1. This assumption is not valid for a

compound Poisson process X as P[Xt = 0] > 0, for t > 0, and therefore, the measure μt defined

in Assumption 3.1 is not absolutely continuous with respect to the Lebesgue measure, see

Remark 27.3 of Sato (1999). However, based on Theorem 27.7 of Sato (1999), Assumption 3.1

is always satisfied for a finite variation Lévy process with infinite activity, if its Lévy measure

is absolutely continuous with respect to the Lebesgue measure.

For simplicity we present the theorem for the case of d = 1, however there is no restriction

on extending the result to a general d.

Theorem 4.1. Assume that f : [0,∞) × U 	−→ R is a continuous function on [0,∞) × U such

that f ∈ L1
loc([0,∞) × U), supp( f ) ⊂ [0,∞) × U, and U is an open set of R. Let the weak

derivatives
∂ f

∂s
, ∂ f

∂x
∈ L1

loc([0,∞) × U) be locally bounded and defined by equation (3). Suppose

that X is a finite variation Lévy process satisfying Assumption 3.1 such that for all t ≥ 0, Xt

and Xt− are in U. Then

f (t, Xt) = f (0, X0) +
ˆ t

0

∂ f

∂s
(s, Xs) ds + γ

ˆ t

0

∂ f

∂x
(s, Xs) ds

+

¨

[0,t]×R
( f (s, Xs− + x) − f (s, Xs−)) JX(ds × dx),

where JX and γ are respectively the Poisson random measure and the drift coefficient of the

process X admitting the following representation: Xt = γt +
´

[0,t]×R x JX(ds × dx).

Proof. Assume that f̃ is an extension of the function f to R × U given by equation (4), note

that supp( f̃ ) ⊂ R × U. Let φn = η
1
n and fn(t, x) := (φn ∗ f̃ 1R×U)(t, x), where (t, x) ∈ R2, n ≥ 1,

and η
1
n is defined in Section 2. Since f̃ ∈ L1

loc(R × U), by Theorem 2.3, fn ∈ C∞(R × R) for all

9



n ≥ 1. Hence from Itô’s formula, see Theorem 4.2 of Kyprianou (2006), we have

fn(t, Xt) = fn(0, X0) +
ˆ t

0

∂ fn

∂s
(s, Xs) ds + γ

ˆ t

0

∂ fn

∂x
ds

+

¨

[0,t]×R
( fn(s, Xs− + x) − fn(s, Xs−)) JX(ds × dx).

The rest of the proof is divided into five steps:

Step 1. Since f̃ is a continuous function, by Lemma 2.1 L f̃ = R × U. On the other hand

for all t ≥ 0, Xt is in U and so by Theorem 2.2, fn(t, Xt) −→ f̃ (t, Xt), for all ω ∈ Ω and t ∈ R.

Especially fn(0, X0) −→ f̃ (0, X0). Also note that for t ≥ 0, f̃ (t, Xt) = f (t, Xt) by the definition

of f̃ .

Step 2. From Theorem 2.3, if (s, Xs) ∈ L ∂ f̃
∂s

, then we have

∂ fn

∂s
(s, Xs) −→ ∂ f̃

∂s
(s, Xs).

Let L1 = R × U − L ∂ f̃
∂s

, then

ˆ t

0

∂ fn

∂s
(s, Xs) ds =

ˆ t

0

∂ fn

∂s
(s, Xs)1{(s,Xs)�L1} ds +

ˆ t

0

∂ fn

∂s
(s, Xs)1{(s,Xs)∈L1} ds.

By Theorem 2.1, m(L1) = 0, therefore by Proposition 3.1, m{s ∈ [0, t] : (s, Xs) ∈ L1} = 0, P-

almost surely. Hence because of the properties of Lebesgue integral, for each fixed t, the

integral ˆ t

0

∂ fn

∂s
(s, Xs)1{(s,Xs)∈L1} ds =

ˆ
[0,t]∩{s: (s,Xs)∈L1}

∂ fn

∂s
(s, Xs) ds,

is zero P- almost surely. Therefore for a fixed t,
ˆ t

0

∂ fn

∂s
(s, Xs) ds =

ˆ t

0

∂ fn

∂s
(s, Xs)1{(s,Xs)�L1} ds, P − almost surely.

By Lemma 2.3, for all (s, x) ∈ R2, |∂ fn
∂s

(s, x)| ≤ supz∈(R×U)∩Λ(s,x) |∂ f̃

∂s
(z)| ≤ supz∈Λ(s,x) |∂ f̃

∂s
(z)|, where

Λ(s, x) = {y ∈ R2 : (s, x) − y ∈ K}, and K = sup φn = B 1
n
(0) ⊂ B1(0) which results

|∂ fn

∂s
(s, Xs)| ≤ sup

z∈Λ(s,Xs)
|∂ f̃

∂s
(z)|, 0 ≤ s ≤ t.

For a fixed ω ∈ Ω, Λ(s, Xs) is bounded, because X is bounded on [0, t] (due to being a

càdlàg process). Therefore for a fixed ω ∈ Ω and s ∈ [0, t], one can find an upper bound for

|∂ fn
∂s

(s, Xs)| that depends only on ω, t, and the minimum, maximum of ∂ f̃

∂s
(s, Xs) on [0, t]. This

upper bound is finite because the weak derivatives of f are locally bounded by the assumption

10



of the theorem and so the weak derivatives of f̃ must be locally bounded too. Therefore, one

can apply Lebesgue Dominated Convergence theorem and we obtain:

lim
n→∞

ˆ t

0

∂ fn

∂s
(s, Xs) ds =

ˆ t

0
lim
n→∞
∂ fn

∂s
(s, Xs)1{(s,Xs)�L1} ds, P − almost surely.

By Theorem 2.3, this is P- almost surely equal to
´ t

0
∂ f̃

∂s
(s, Xs)1{(s,Xs)�L1} ds. Since P- almost

surely, m{s ∈ [0, t] : (s, Xs) ∈ L1} = 0, and for each s ∈ [0, t], ∂ f̃

∂s
(s, Xs) =

∂ f

∂s
(s, Xs), we have

lim
n→∞

ˆ t

0

∂ fn

∂s
(s, Xs) ds =

ˆ t

0

∂ f

∂s
(s, Xs) ds, P − almost surely.

Step 3. Similar to Step 2, one can prove that

lim
n→∞

ˆ t

0

∂ fn

∂x
(s, Xs) ds =

ˆ t

0

∂ f

∂x
(s, Xs) ds, P − almost surely.

Step 4. Let In =
˜

[0,t]×R
( fn(s, Xs− + x) − fn(s, Xs−)) JX(ds × dx), by using mean-value the-

orem we have | fn(s, Xs− + x) − fn(s, Xs−)| = |∂ fn
∂x

(s,C)| |x|, where C is a random variable be-

tween Xs− and Xs− + x. By applying Lemma 2.3 and the same procedure as Step 2, we

can show that | fn(s, Xs− + x) − fn(s, Xs−)| ≤ C
′ |x|, where C

′
is a finite random variable, free

from s, x, n. On the other hand, since X is a finite variation Lévy process, we also have that´
[0,t]×R |x| JX(ds × dx) < ∞, P- almost surely.

Therefore by applying Lebesgue Dominated Convergence theorem, one can interchange

the limit and the integral in expression In as n goes to infinity. Since L f̃ = R × U ⊇ [0, t] × U,

and for all s ≥ 0, Xs and Xs− are in U, by part three of Theorem 2.2, we get

lim
n→∞ In =

¨

[0,t]×R

(
f̃ (s, Xs− + x) − f̃ (s, Xs−)

)
JX(ds × dx)

=

¨

[0,t]×R
( f (s, Xs− + x) − f (s, Xs−)) JX(ds × dx).

Step 5. From Steps 1,2,3,4, for a fixed t ≥ 0, we have P- almost surely the following

identity

f (t, Xt) = f (0, X0) +
ˆ t

0

∂ f

∂s
(s, Xs) ds + γ

ˆ t

0

∂ f

∂x
ds

+

¨

[0,t]×R
( f (s, Xs− + x) − f (s, Xs−)) JX(ds × dx). (6)

The process X is càdlàg, so the left-hand side and the right-hand side of the above equality

are well defined processes. Therefore so far we have shown that the two sides of the above

equation (when considered as processes) are in fact modifications of each other. Now we prove

that as processes the left-hand side and the right-hand side are indeed indistinguishable.
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1. First note that since f is continuous on [0,∞) × U, then ( f (t, Xt))t≥0 is càdlàg.

2. The function ∂ f

∂s
is Borel measurable and for a fixed ω ∈ Ω, (Xs)0≤s≤t is also Borel mea-

surable. Hence for a fixed ω, ∂ f

∂s
(s, Xs) is Borel measurable. So it is also Lebesgue mea-

surable and by Fundamental theorem of Lebesgue integral calculus t 	−→ ´ t

0
∂ f

∂s
(s, Xs) ds

is uniformly continuous in t. Note that in Step 2, we actually showed that ∂ f̃

∂s
(s, Xs) is

Lebesgue integrable and on [0, t], ∂ f̃

∂s
(s, Xs) =

∂ f

∂s
(s, Xs).

3. Similarly to the previous case, t 	−→ ´ t

0
∂ f

∂x
(s, Xs) ds is also continuous in t.

4. Let Zt :=
˜

[0,t]×R
( f (s, Xs− + x) − f (s, Xs−)) JX(ds× dx). For all s ≥ 0, Xs and Xs− are in U,

therefore Zt =
∑

0≤s≤t ( f (s, Xs) − f (s, Xs−)). If the function f is C1,1, then obviously the

process Z = (Zt)t≥0 is right continuous. However, since here f is not necessarily smooth,

to show the right continuity of Z, we do as follows:

lim
h→0+
|Zt+h − Zt| = lim

h→0+
|

∑
t<s≤t+h

( f (s, Xs) − f (s, Xs−)) |

≤ lim
h→0+

∑
t<s≤t+h

| f (s, Xs) − f (s, Xs−)|

= lim
h→0+

∑
t<s≤t+h

| lim
n→∞

( fn(s, Xs) − fn(s, Xs−)) |

≤ lim
h→0+

∑
t<s≤t+h

C
′′ |ΔXs|,

where similar to Step 4, one can show that C
′′

is a finite random variable free from s, h,

n, so we obtain

lim
h→0+
|Zt+h − Zt| ≤ C

′′
lim

h→0+

∑
t<s≤t+h

ΔXs = 0, P − almost surely.

This shows that the process Z is right continuous.

Thus the left-hand side and the right-hand side of equation (6), when considered as pro-

cesses, are right continuous, and we already know that they are also modification of each

other. By Theorem 4, Chapter I of Protter (2004), we conclude that the left-hand side

and the right-hand side of this equation define two processes that are indistinguishable.

This proves our Theorem.

�

The next example shows that even in one dimensional cases, there are simple functions for

which Meyer-Itô formula is not applicable but Theorem 4.1 can be used.
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Example 4.1. Assume that X : [0,∞)×Ω 	−→ R is a finite variation Lévy process that satisfies

Assumption 3.1. Let the function f : R 	−→ R be defined by

f (x) =
{

x2 sin(1
x
), x � 0;

0, x = 0.

This function is continuous, but its derivative is not continuous at origin. So the classical Itô’s

formula cannot be applied. Moreover, one can show that f cannot be written as the difference

of two convex functions, and hence Meyer-Itô’s formula (Theorem 70, Chapter IV of Protter

(2004)) is not applicable as well. However, f is weakly differentiable, its weak derivative is

locally bounded, and therefore Theorem 4.1 is in force.

Example 4.2. Let the function f and the process X be the same as Theorem 4.1. In addition, we

equip the probability space (Ω,F, P) with the natural filtration FX = {Ft; t ≥ 0} generated by

the history of X, i.e. for each t ≥ 0, Ft is the sigma algebra generated by {Xs; s ≤ t} and all the

null sets of F. Since X is a finite variation Lévy process, similar to Step 4 of Theorem 4.1, one

can show that for every t ≥ 0,
˜

[0,t]×R
| f (s, Xs− + x) − f (s, Xs−)| ds × v(dx) < C

´
R

x v(dx) < ∞,
P- almost surely, where C is a random variable free from s and x. Then we have the following

decomposition: f (t, Xt) = f (0, X0) + Mt +
´ t

0 A f (s, Xs) ds, where M is a local martingale

with respect to FX given by Mt =
˜

[0,t]×R
( f (s, Xs− + x) − f (s, Xs−)) J̃X(ds × dx), J̃X(ds × dx) =

JX(ds × dx) − ds × v(dx), and

A f (s, Xs) =
∂ f

∂s
(s, Xs) + γ

∂ f

∂x
(s, Xs) +

ˆ
R

( f (s, Xs− + x) − f (s, Xs−)) v(dx).

In other words, this shows that the process ( f (t, Xt))t≥0 is a special semimartingale.

In the next lemma, we get back to the motivation provided in the introduction. This lemma

also highlights applications of Theorem 4.1 in Feynman-Kac representations. Comparing to

similar results, for instance Rong (1997), this representation is valid in the absence of diffusions

terms. In addition, there are less restrictive assumptions on the underlying function.

Lemma 4.1. Suppose that X is a finite variation Lévy process that satisfies Assumption 3.1

for U = R. Let the function P = P(t, x), defined by equation (2), admits L1
loc([0,T ] × (0,∞))-

weak derivatives which are locally bounded. Then using Theorem 4.1 and following the same

procedure as Proposition 12.2 of Cont and Tankov (2004) (or Rong (1997)), one can show that

P = P(t, x) is the solution of PIDE (1).
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5 Conclusions

A version of Itô’s formula is studied under multi-dimensional finite variation Lévy processes

that is time-dependent and requires weak differentiability. The formula can be particularly use-

ful for functions that are continuous and piecewise smooth. The possible formula’s applications

were motivated by a financial example.

The two main assumptions are that the process is finite variation and the weak derivatives of

the functions are locally bounded. The extension of the formula to pure jump semimartingales,

using the theory of distributions (in functional analysis), is interesting for future work.
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