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Abstract

Introducing the concept of replication strategies this paper
studies the evolution of cooperation in populations of agents
whose offspring follow a social strategy that is determined by
a parent’s replication strategy. Importantly, social and repli-
cation strategies may differ, thus allowing parents to con-
struct their own social niche, defined by the behaviour of
their offspring. We analyse the co-evolution of social and
replication strategies in well-mixed and spatial populations.
In well-mixed populations, cooperation-supporting equilibria
can only exist if the transmission processes of social strate-
gies and replication strategies are completely separate. In
space, cooperation can evolve without complete separation
of the timescales at which both strategy traits are propagated.
Cooperation then evolves through the presence of offspring-
exploiting defectors whose presence and spatial arrangement
can shield clusters of pure cooperators.

Introduction
Actions that are in the interest of the group but not necessar-
ily to the immediate benefit of the individual are widely ob-
served in the social and biological sciences. Understanding
the emergence and sustainability of such altruism or cooper-
ation still poses major challenges to evolutionary game the-
ory and the recent decades have seen very active research in
this field. For instance, a recent review article classified five
different mechanisms that support altruism (Nowak, 2006).
Here, we are mainly interested in one of them: network reci-
procity, cf. (Szabó and Fath, 2007; Perc and Szolnoki, 2010)
for recent reviews.

Network reciprocity summarizes effects that result from
constrained interactions in structured populations in which
agents interact with fixed and typically rather small sets of
permanent neighbours. In this way interactions between par-
ents and offspring are favoured, i.e. cooperation is sup-
ported through positive assortment of strategies. The lit-
erature about evolutionary games in structured populations
goes back to the seminal paper of Nowak (Nowak and M.,
1992) in which spatial games were introduced, observing
and describing chaotic patterns of strategies in space. The
work was extended in several ways to, e.g., include effects

of noise (Szabó and Toke, 1998) and asynchronicity (Huber-
man and Glance, 1993) in strategy propagation. Recent re-
search has mainly focused on the evolution of cooperation in
population structures modelled by complex networks, find-
ing, e.g. that heterogeneous networks give a strong boost to
cooperation (Santos et al., 2006). The latter findings have
been extended to evolutionary models on regular graphs in
which there is some heterogeneity in agent’s abilities to
generate payoff. Examples of studies in this direction are
(Szolnoki and Szabó, 2007; Perc and Szolnoki, 2008; Brede,
2011a), but also the recent work on teaching and learning
(Szolnoki and Perc, 2008; Tanimoto and Yamauchi, 2012).
In the latter line of research agents are classified into two
groups: (i) teacher agents with an enhanced ability to pass
on strategies and (ii) learner agents with reduced abilities
to pass on strategies. The co-evolutionary dynamics of fast
and slow strategy spread can then generate phases in which
cooperation can survive much beyond parameter regimes in
which cooperation is supported by network reciprocity alone
(Brede, 2013a).

Common to this large bulk of work on cooperation and
network reciprocity is the assumption that offspring (in a
biological context) or followers (in a social context) adopt
exactly the same strategy as parents (or leaders). In fact, one
might surmise that this assumption is crucial to allow for
positive assortment which enables support for cooperation
through network reciprocity. In this paper we introduce a
more general framework that aims to challenge this hypoth-
esis and explore its boundaries. We distinguish two traits
that describe agent behaviour. The first is the typical so-
cial strategy that describes an agent’s behaviour in the social
dilemma game under consideration. The second is a repli-
cation strategy, i.e. a strategy that an agent will pass on as
a social strategy to its offspring. In this way every agent
is characterised by a tuple (s, e): a social strategy s and a
replication strategy e through which it can determine its off-
springs’ social behaviour. Notably, the social strategy and
the replication strategy of an agent can be different: It might
be in the interest of an agent to surround itself with offspring
(or followers) that are of a different type than itself. Hence,
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agents may surround themselves by un-like types, question-
ing the role of positive assortment by network reciprocity.

One might also interpret our framework as a very simple
model of social niche construction (Powers et al., 2011). The
term social niche construction was recently introduced to
describe a situation in which agents can evolve preferences
for the social group they interact with. Using the example
of preferences for group size it was then demonstrated that
co-evolution of such preferences and social strategies can
naturally support cooperation. In our context here, by their
replication strategy, agents can influence the environment in
which they live and thus improve their chances to generate
payoff in competitive games. Using the often-studied frame-
work of the prisoner’s dilemma game, we will explore under
which circumstances such a simple co-evolutionary model
can allow for additional support for cooperative strategies.

Real-world inspiration for the above assumption of differ-
ences between social and replication strategies is not hard to
come by. For instance, in models of teaching and learning
the above framework allows for situations in which teachers
can teach strategies different from their own. Arguably, this
is a more realistic and general framework than the one con-
sidered in previous work. In a biological context one might
interpret the model as a simple model of cell differentiation.

The present work thus follows in a line of recent advances
in the understanding of the co-evolution of individual-level
traits and cooperation (Szolnoki et al., 2009; Powers et al.,
2011; Perc and Wang, 2010; Brede, 2011b, 2013b).

The organization of the paper will be as follows. We start
with a detailed description of the model framework and then
describe and explain results in the section thereafter. The
paper concludes by a summary and discussion section that
puts our main results into context and discusses implications
and future work.

Model
In more detail, we consider the following model of an evo-
lutionary one-off prisoner’s dilemma in space. A set of N
agents are associated with the sites of a graph whose links
define interactions and directions of strategy propagation. In
case of experiments in well-mixed populations this social
networks is a complete graph, otherwise we perform experi-
ments on an L× L square lattice with von Neumann neigh-
bourhoods. Agents are characterized by two strategy traits,
a social strategy trait s ∈ {0, 1} and a replication strategy
trait e ∈ {0, 1}. We use the convention that state “0” corre-
sponds to a strategy of pure defect and state “1” corresponds
to pure cooperate. Agents play a prisoner’s dilemma with
payoff matrix parametrized in the conventional form

(
R S
T P

)
=

(
1 −r

1 + r 0

)
, (1)

such that the parameter r characterizes the toughness of the
game setting. In Eq. (1) R stands for the reward for mutual

cooperation, S for the ”sucker’s” payoff, T for the temp-
tation to defect, and P for the punishment for mutual de-
fection. A small r � 1 corresponds to very mild dilemma
settings, whereas r → 1 characterizes very tough dilemmas.
Hence, we distinguish four strategies: (i) cooperators who
want their offspring to cooperate (s = 1, e = 1), (ii) coop-
erators who want their offspring to defect (s = 1, e = 0),
(iii) defectors who want their offspring to cooperate (s = 0,
e = 1) and (iv) defectors who pass on defection to their
neighbours (s = 0, e = 0). This model may easily be ex-
tended by including context-dependent inheritance, i.e. the
offspring determining trait would then depend on the social
strategy currently played, but we reserve a thourough inves-
tigation of this case for future work and concentrate on the
simplest setup in this paper.

In the following we will also consider the impact of var-
ious timescales in the evolution of social and replication
strategies. The spread of both strategies might occur on
seperate or similar timescales. In the case of joint strategy
pass, an agent will adopt the desired social strategy of a par-
ent as well as its replication strategy. In case of disparate
pass, an agent might either adopt the parents’ desired social
strategy or its replication strategy. To distinguish these cases
and to investigate the effects of disjoint strategy pass we in-
troduce a probabilistic framework for the spread of strate-
gies: With probability ps only the social strategy is imposed,
otherwise, with probabilty pa only the replication strategy is
passed on, and in the remaining cases (i.e. with probability
pp = 1 − ps − (1 − ps)pa) the social strategy is imposed
and the replication strategy passed on. The timescales of the
spread of social and replication strategies are then given by
Ts = 1/(ps + pp) and Ta = 1/(pa + pp).

Hence, our evolutionary simulations consist of an asyn-
chronous process iterating the following steps:

• Seed all agents with randomly chosen initial social and
replication strategies.

• Randomly pick a focus agent, say i, and choose a refer-
ence agent j from one of its four von Neumann neigh-
bours at random.

• Evaluate game interactions of the focus agent with its
neighbours to determine its accumulated payoff π

(game)
i

and follow the same procedure to calculate the accumu-
lated payoff π(game)

j of the reference agent from interac-
tions with its neighbours.

• After evaluating game payoffs, a cost c is deducted from
payoffs of agents who attempt to spread a strategy differ-
ent from their social strategy, i.e.

πi = π(game)
i − c(1− δsiei), (2)

where δij = 1 if i = j and 0 otherwise. A cost c > 0 ac-
counts for the fact that imposing social strategies different
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from your own might involve a costly effort to ‘convince’
the opponent. Unless otherwise stated experiments are
carried out with c = 0 and the influence of a non-zero
cost is only evaluated at the end of the paper.

• In a next step, a focus i agent will adopt the strategy of
the reference agent j with a likelihood that depends on
the difference in payoffs, i.e.

P (j → i) =
exp(πj/κ)

exp(πj/κ) + exp(πi/κ)
. (3)

In the above equation the parameter κ introduces noise
in the replication process, the larger κ, the larger the
chance for inferior strategies to spread. In all following
simulations we set the noise level to a relatively large
value of κ = 1. This choice is motivated by reasons
of computational feasibility, because the evolutionary dy-
namics becomes very slow for low levels of noise when
the timescales of cluster expansion are dominated by the
timescales of change of local configurations of s = 0, e =
1 defectors surrounded by cooperators at the boundaries
of clusters of pure cooperators/defectors which can be-
come entrenched for a very long time (see also the results
section).

• Strategy spread (with the probability P (j → i) defined
above) occurs in the following way. With probability pp
the reference agent will impose his desired social strat-
egy and will also transfer his replication strategy (si = ej
and ei = ej). Otherwise, with probability ps only the
social strategy is imposed (si = ej) and in the remain-
der of cases, i.e. with probability pa =

1−pp−ps

1−ps
only the

replication strategy is passed on from j to i (ei = ej).
The timescales for joint or disjoint spread of the traits
(parametrized via pp) and distinction of timescales for the
spread of social and replication strategies (parametrized
via ps) prove crucial parameters to understand the dynam-
ics of social evolution in this context.

• The payoff evaluation and strategy updating steps are then
repeated for a sufficiently large number of steps until a
quasistationary state has been reached. Then, average
concentrations of all strategy concentrations are sampled
from another TN iterations (note that in this paper time
is always measured in units of full lattice sweeps).

In the following we employ computer simulations of sys-
tems composed of in between 104 and 1.6 × 105 agents to
construct phase diagrams of parameter regions in which the
evolutionary dynamics can allow cooperation to survive.

Results
Well mixed populations
Before discussing spatial simulations it is worthwhile
analysing the case without network reciprocity, i.e. a well-
mixed population in which individuals meet at random and
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Figure 1: Dependence of the concentrations of defect and
cooperate strategies on dilemma toughness for a well-mixed
population of size N = 40000 and noise level κ = 0.01.
For pp = 1 cooperation can always survive, but for pp < 1
defection wins out for r > 0 (and since they all overlap
circles at n = 0 are omitted for r > 0.01).

strategies spread according to Eq. (3) on the basis of pay-
off gathered from interactions with the entire population.
For simplicity, we will not distinguish timescales given by
ps and pa and assume ps/pa = 1 in the following. It is
then straightforward to describe the evolutionary dynamics
of strategy concentrationsni by a set of rate equations in the
form:

ṅi =
∑

k,l

nknla
(i)
kl , (4)

where the indices label the four possible strategies
00, 10, 01, and 11 and the matrices a(i) contain informa-
tion about conversions between strategies according to the
rules set out in the previous section. It is worth noting that
n00+n10+n01+n11 = 1, i.e. there are only three relevant
degrees of freedom.

For the transition matrices one finds:

a(00) =




0 0 −1/2 −p
βP β/2 0 0
β/2 0 βp 0
αP α/2 0 0


 , (5)

where we introduces the shortcuts β = 1−pp/2, α = 1−pp,
P = 1/(1+ exp(−∆π/κ)), and p = 1/(1+ exp(∆π/κ) to
simplify notation with payoff difference between defectors
and cooperators

∆π = nC(1 + r)− (−(1− nC)r + (1 − nC)) (6)

= r, (7)

where nC = n11 + n10 is the concentrations of agents with
social strategy cooperate.
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For instance, if an agent with strategy 00 meets an agent
with strategy 01, the agent following 00 will adapt its strat-
egy with likelihood 1/2 (since both strategies achieved the
same payoff). If strategy 00 learns from 01, there are three
cases that need to be distinguished. (i) with probability
1 − pp 00 learns the social strategy that 01 wishes to im-
pose (i.e. 1) and 01’s replication strategy (i.e. 1) and hence
converts to strategy 11. (ii) with probability pp/2 00 only
learns the social strategy 01 wishes to impose, i.e. 00 con-
verts to 10 and (iii) 00 may only learn 01’s replication strat-
egy, i.e. 00 converts to 01. In all three cases 00 converts to
a strategy different from 00, hence the entry a

(00)
13 = −1/2.

Similarly, if 10 encounters 00 the chance that 10 will learn
from 00 is given by P . Either learning only the social strat-
egy 00 wishes to impose (probability pp/2) or learning both
the social strategy 00 wishes to impose and 00’s replication
strategy (probability 1 − pp) will convert 10 to 00. Hence

the entry a
(00)
21 = β/2.

Analogous equations for the remaining three matrices
a(10), a(01), and a(11) can be derived, i.e.

a(10) =




0 0 pp/4 ppp/2
−βP −β/2 −βP −β/2
0 0 0 0

Ppp/2 pp/4 0 0


 , (8)

a(01) =




0 0 pp/4 ppp/2
0 0 0 0

−β/2 −βp −β/2 −βp
Ppp/2 pp/4 0 0


 , (9)

a(11) =




0 0 α/2 pα
0 0 pβ β/2
0 0 β/2 βp

−P −1/2 0 0


 . (10)

The systems of equations (4) is a system of three non-
linear equations. Even though an analytical analysis of sta-
tionary states might be possible, numerical integration of (4)
provides enough insight for the present purposes. Figure 1
gives the dependence of stationary strategy concentrations
obtained by numerical integration of (4) on the dilemma
strength for two scenarios of strategy pass for κ = 0.01
(note that noise levels should be measured per interaction,
i.e. a very small value in the well-mixed case with all-to-
all interactions corresponds to larger noise values on sparse
grids).

The first, illustrated by square symbols in Fig. 1 corre-
sponds to completely asynchronous strategy pass, i.e. pp =
1. In this case for all r > 0 the population is split into
roughly two thirds defectors (equal halves of which carry
both replication strategies) and one third cooperators (with
again equal halfs carrying both replication strategies). In

contrast, for any pp �= 1 (round symbols) the social strat-
egy cooperate is found to die out, i.e. n10 + n11 = 0, and
the two social defect strategies share the population in equal
proportions.

It is easy to understand why this is the case. Strategy
s = 0 and e = 1 can earn the same payoff as pure defectors
with s = 0 and e = 0. However, in a well-mixed population
it cannot profit from generating offspring who cooperate, be-
cause cooperation can be exploited by the entire population
of defectors. Hence, agents with s = 0, e = 1 can gen-
erate the same number of ’offspring’ as s = 0, e = 0; but
their descendants die out without conferring an advantage on
the parents. The situation is different if the spread of social
strategy and replication strategy are completely separated:
In this case the population of social cooperators is always
reinforced by an inflow from the pool of social defectors
with replication strategy defect (who earn equal payoff as
pure defectors) and can also not be suppressed through in-
teractions with pure defectors, because there is always a one-
half chance that the cooperative trait survives due to separate
strategy pass.

Spatially distributed populations
As we have seen in the previous section on well-mixed pop-
ulations, replication strategies that differ from social strate-
gies can only support cooperation if the spread of social and
replication strategies is completely separated. The reason
for this is that social niche construction cannot operate in
well-mixed populations: offspring that plays the social strat-
egy cooperate can be exploited by the entire population and
does not bestow any specific benefit to the parent who gave
birth to it. Rather, the effect for strategies with replication
strategy e = 1 is negative: Their offspring will replicate less
well than the parent because it can be exploited by the entire
population of defectors. One would anticipate that this sit-
uation can be different in viscous populations. In the latter
case, parents can accrue specific individual fitness benefits
by surrounding themselves by cooperators. It appears rea-
sonable to surmise that the consequential increase in repro-
ductive fitness for parents might compensate for the loss in
fitness of offspring, thus enabling cooperative strategy traits
to survive. We will explore this scenario for spatial games
in some detail below.

Figure 2 illustrates simulation results for the evolution of
the four strategies in two typical settings in which replication
of the two components of a strategy, social strategy s and
replication strategy e, are to some extent disjoint (pp = 0.6).
The figures also give the frequency fc of mutually cooper-
ative interactions. In the first setting with lower dilemma
toughness (top panel), cooperation can grow to dominance.
In the second with somewhat larger dilemma toughness (bot-
tom panel), an equilibrium state in which all four strategies
coexist is reached. Spatial arrangements of the strategies
that correspond to such a mixed state are illustrated in Fig.
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Figure 2: (Average) evolution of social and reproduction
strategies for a prisoner’s dilemma and average fraction of
mutually cooperative interactions fc. (a) With r = 0.18 and
pp = 0.6 when cooperation grows to dominance and (b)
with r = 0.22 when an equilibrium between the strategies is
reached (on a 200× 200 torus with κ = 1).

3.
These first experiments which we show in Fig. 2 il-

lustrate two important points: (i) As hypothesised above,
when including opportunities for social niche construction
via replication strategies, cooperation can survive in spa-
tial arrangements, even if strategy pass is not completely
disjoint. (ii) Disjoint transmission of social and replica-
tion strategies can allow for the dominance of cooperation
in regimes of dilemma games far beyond regimes normally
supported by network reciprocity (i.e. for a typical spatial
game with von Neumann neighbourhoods with κ = 0.1 the
extinction threshold for cooperation is around rc = 0.021
(Hauert and Szabo, 2004) and even somewhat smaller with
rc ≈ 0.017 for κ = 1).

The typical spatial arrangements in Fig. 3 also provide an
intuitive understanding why replication strategies can sup-
port cooperation in spatial settings. The figure shows the

Figure 3: Example configuration of an equilibrium arrange-
ment of the four strategies (for r = 0.22, pp = 0.6, κ = 1).
Colors are (s, e): red (D,D), light red (D,C), green (C,C) and
blue (C,D). (70*70) C,D and D,C only occur at the bound-
aries of larger C,C and D,D clusters.

presence of large homogeneous clusters of pure defectors
(s = 0, e = 0, dark red) and pure cooperators (s = 1, e = 1,
green). Strategies with s �= e only occur at the boundaries
of these clusters. A cursory glance at Fig. 3 which is con-
firmed by the results shown in the bottom panel of Fig. 2
also suggests that the strategy s = 0, e = 1 (blue) is far
more prominent than strategy s = 1, e = 0. The reason is
that a social defect strategy can earn larger payoffs than a
social cooperate strategy.

Let us now consider the effect of s = 1, e = 0 and
s = 0, e = 1 on the clusters of pure cooperators and defec-
tors. When replicating in the direction of pure cooperators
s = 1, e = 0 either reproduces itself or (assuming disjoint
strategy pass) it produces a defector with s = 0, e = 1.
However, since s = 1, e = 0 earns the same payoff as pure
cooperation s = 1, e = 1 can only invade clusters of cooper-
ators via neutral drift. By the same token it only rarely gets
a chance to replicate when competing against defection, and
if so, it cannot reproduce itself (since any pure defector n
would either only be influenced in its social strategy via the
replication strategy, i.e. sn = e = 0 or would additionally
imitate the replication strategy en = e = 0 which corre-
spond to its own strategy anyway). Hence, s = 1, e = 0
impedes the spread of pure cooperation into clusters of pure
defectors, but also, by transitioning into s = 0, e = 1, delays
invasions of defection into clusters of pure cooperators.

What about the spread of the strategy s = 0, e = 1? The
propagation of s = 0, e = 1 is more relevant at the bound-
ary of clusters, since, following social defect, it will typi-
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Figure 4: (a) Dependence of the frequency of mutually cooperative interactions fc on the dilemma strength for various values
of pp on a 200× 200 torus. It becomes apparent that cooperation finds more and more support, the more frequent uncorrelated
replication events become.(b) Dependence of the concentrations of the various strategies on the dilemma strength for pp = 0.4.
There are two phases dominated by pure cooperators or pure defectors (small and large r and an in-between phase in which all
strategies can coexist. (c) In contrast, for pp = 0 only pure cooperators and pure defectors survive and the phase diagram from
the standard PD without replication strategies is reproduced.
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Figure 5: Dependence of critical thresholds for the extinc-
tion of strategies on the probability for disjoint trait propa-
gation pp.

cally harvest a larger payoff than s = 1, e = 0. On the
one hand, when interacting with pure cooperation, it will al-
ways surround itself by pure cooperation. On the other hand,
when interacting with a pure defector, it will either generate
a s = 1, e = 0 defector or cause a transition of the neigh-
bour to pure cooperation. Hence, even though s = 0, e = 1
exploits cooperators, it also shields clusters of cooperators
from the invasion of defection and promotes the spread of
the pure cooperate strategy.

When considering the role of all four strategies at the
boundaries of compact clusters of pure cooperators and pure
defectors it is also important to recognize that the strategy
s = 0, e = 1 will typically generate the largest payoff
(because being on average surrounded by more cooperators
than pure defect) and thus replicate most often. Even though

being thus most successful in terms of replication, it can only
recreate itself indirectly – its offspring will never follow the
same strategy.

The mechanism which supports cooperation in the
simulations shown above principally works as follows.
Offspring-exploiting defectors s = 0, e = 1 are the most
successful strategy, but cannot recreate directly, and, as a re-
sult, serve as support for cooperation. It is evident that in
case of joint strategy propagation a ’checkerboard pattern’
of s = 0, e = 1 interspersed with s = 1, e = 1 would be
evolutionarily stable. However, since s = 0, e = 1 cannot
recreate itself and is only generated at boundaries of defec-
tors and cooperators when disjoint strategy pass is allowed,
without the presence of random strategy invasions or muta-
tions such a pattern cannot evolve from random initial con-
ditions (cf. Fig. 4 right panel). Moreover, this checkerboard
pattern is not stable in the face of even small degrees of dis-
joint strategy spread (measured by pp). If pp is sufficiently
large, offspring-exploiting defectors support pure coopera-
tion in two ways: (i) by shielding clusters of pure coopera-
tors from the invasion of defection, and by (ii) serving as a
source of pure cooperators, as a consequence of their own
success in replication.

Figure 5 extends our earlier simulation experiments by
giving the dependence of the frequency of cooperative inter-
actions and strategy concentrations on the dilemma tough-
ness. A clear dependence of the support for cooperation on
the frequency of joint strategy pass pp is evident and is fur-
ther supported by the full phase diagram that illustrates the
dependence of coexistence regimes and regimes in which
single strategies dominate on pp. As already indicated by the
dependencies in Fig. 4 the coexistence regimes are typically
rather small and regimes in which either pure cooperation
or pure defection take over the entire population dominate
the diagram of Fig. 5. Coexistence is only found in a small
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Figure 6: Dependence of critical thresholds for the extinc-
tion of strategies on timescales for the spread of the social
strategy (ps) and for the replication strategy (pa) for fixed
pp = 0.6. For r > r0 only pure defection survives, for
r < r1 only pure cooperation survives and for r0 > r > r1
all four strategies can coexist. The faster social strategies
spread relative to replication strategies, the more support for
cooperation. Also the coexistence region becomes larger the
slower the spread of the social strategy.

borderline region between the regimes of pure strategy dom-
inance.

It is also of interest to investigate the dependence of the
support for cooperation on the relative timescales for strat-
egy propagation. To explore this question, we set up exper-
iments with a fixed frequency of disjoint strategy pass and
vary the relative frequencies with which reference agents
only impose their replication strategy as the desired social
strategy of neighbours (i.e. with probability ps) and the
frequency with which neighbours only learn the replication
strategy of a reference (i.e. with probability pa). A typical
phase diagram that summarizes our simulation experiments
is given in Fig. 6.

Two observations stand out. First, the support for coop-
eration grows the more prominent the imposition of social
strategies relative to the learning of replication strategies.
This observation is consistent with our argument about the
role of offspring-exploiting defectors. The more frequent
the spread of social strategies, the more often they will gen-
erate pure cooperators. Second, the regime in which all four
strategies can coexist becomes the larger the more frequently
agents pick up the replication strategies of their references.
This second finding is also intuitively clear from the same
argument. The more often replication strategies are learnt,
the more often s = 0, e = 1 transitions into s = 1, e = 0,
thus boosting the concentrations of other strategies.

A last point worth investigating is the role of a cost for
strategy imposition. To investigate this point we presume
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Figure 7: Dependence of critical thresholds for the extinc-
tion of strategies on costs for the propagation of unequal
strategy traits s �= e for pp = 0.5.

that the behaviour in the standard game, i.e. imposing
agents’ own social strategy on neighbours, is free. In con-
trast, imposing a strategy different from an agent’s social
strategy needs “convincing”, i.e. it comes at some cost c,
cf. Eq. (2). The experiments carried out in this way al-
low us to test the stability of the standard framework and
answer the question “Would differences between social and
replication strategies evolve if teaching is costy?”. To ex-
plore this question we fix the frequency pp of disjoint trait
transmission and assume that both traits spread at equal rates
(i.e. ps = pa). Figure 7 summarizes these experiments by
presenting a phase diagram for the dependence of extinction
thresholds on cost assumptions. Clearly, imposing a cost
for producing offspring with social strategies different from
an agent’s social strategy reduces support for cooperation.
Such behaviour would naturally be expected, since impos-
ing costs penalizes the “mixed” strategies s = 0, e = 1 and
s = 1, e = 0 and our previous argument relied on the pres-
ence of the first of those to support cooperation via the ex-
ploitation of offspring. Nevertheless, even imposing costs
that are very substantial compared to game payoffs, cooper-
ation can exist in regimes far beyond the support it would
find from the network reciprocity of the spatial grid (with an
extinction threshold of rc ≈ 0.017, see Fig. 4).

From the data presented in Fig. 7 it is also noteworthy
that costs reduce support for the coexistence regime. Costs
penalize strategies with s �= e and hence mixed phases in
which all four strategies can co-exist are increasingly sup-
pressed the larger the costs imposed.

Conclusions
In this paper we have introduced a simple way to explore so-
cial niche construction (Powers et al., 2011) on spatial net-
works. In our framework, on top of a social strategy every
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agent is endowed with a second trait, a replication strategy,
which allows the agent to determine the social strategy of its
offspring. We then explored the co-evolution of social and
replication strategies, subject to various assumptions about
the timescales of spread of both strategy components.

Analyzing the dynamics of the co-evolution in the pris-
oner’s dilemma, we have established that cooperation can
only be supported in well-mixed populations if social and
replication strategies are never both passed on from parent to
offspring. In a social context this corresponds to the rather
unrealistic assumption that the timescales of learning the re-
spective traits are completely separated. In a biological con-
text, this assumption translates into assumptions about the
traits being located on uncoupled separate genes. As demon-
strated by our exploration of the spatial prisoner’s dilemma,
the presence of a structured population can mitigate this
strict condition. We have shown that in spatial settings coop-
eration can find very strong support, even if the simultaneous
passing on of social and replication strategies is rather likely.
The main driver of the support for cooperation is the preva-
lence of offspring-exploiting defectors which can generate
the largest payoffs in the game. Offspring-exploiting defec-
tors are found to be in a similar role as payoff-distinguished
agents in (Perc and Szolnoki, 2008; Brede, 2011a): by virtue
of their enhanced ability to pass on strategies they assume a
”leadership” role (Zimmermann and Eguı́luz, 2005). Differ-
ent from previous models like (Zimmermann and Eguı́luz,
2005; Perc and Szolnoki, 2008; Brede, 2011a), however,
such agents with s �= e never replicate identically and thus
offspring-exploiting cooperators facilitate the spread of co-
operation by surrounding themselves with cooperators.

We have also presented a number of further experiments
that corroborate the robustness of the above finding. Sup-
port for cooperation is robust to changes of the timescales
of strategy spread over several orders of magnitude and also
the inclusion of substantial costs for imposing social strate-
gies different from an agent’s own social strategy do not alter
outcomes in a qualitative way.

One may wonder if the framework in which we intro-
duced replication strategies in this paper is too restrictive. In
other words: Would our main findings be robust if replica-
tion strategies were context dependent, i.e. influenced by the
social strategy of agents which replicate such that an agent
in the role of a social cooperator may wish to impose a dif-
ferent strategy on its neighbours than when being in the role
of a social defector? We reserve a more comprehensive anal-
ysis of this more general setting for future work.
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