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SELECTING DEA SPECIFICATIONS AND RANKING UNITS VIA PCA

ABSTRACT

DEA model selection is problematic.  The estimated efficiency for any DMU depends on the

inputs and outputs included in the model.  It also depends on the number of outputs plus inputs.  It is

clearly important to select parsimonious specifications and to avoid as far as possible models that

assign full high efficiency ratings to DMUs that operate in unusual ways (mavericks).  A new

method for model selection is proposed in this paper.  Efficiencies are calculated for all possible

DEA model specifications.  The results are analysed using Principal Components Analysis.  It is

shown that model equivalence or dissimilarity can be easily assessed using this approach.  The

reasons why particular DMUs achieve a certain level of efficiency with a given model specification

become clear.  The methodology has the additional advantage of producing DMU rankings.

KEY WORDS

DEA model selection, Data envelopment analysis, efficiency, principal component analysis,

cluster analysis.
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SELECTING DEA SPECIFICATIONS AND RANKING UNITS VIA PCA

1. INTRODUCTION

Various model selection methods have been suggested in DEA. Most researchers decide “a

priori” what the specification of the model should be, without considering any alternatives.  But it is

possible that a variable included in the model in this way may contribute little or nothing to the

calculation of efficiency values.  The converse is also true, it is possible that a variable for which

data is available, and has not been included in the model on a priori considerations, may be

important in the determination of efficiencies.  A methodology aimed at guiding model selection in

DEA is clearly desirable. Two interesting model selection approaches are due to Norman and

Stocker (1991) and to Ruiz et al (2001). Norman and Stocker (1991) assess the need to include a

variable by correlating the values of the variable under consideration with efficiency values

obtained from the model that excludes it. Ruiz et al (2001) prove that the contribution of a variable

to efficiency can be assessed by estimating efficiencies twice, once with the reduced model -which

does not include the variable-, and once with the total model -which includes the variable.

However, as any empirical study demonstrates, models that appear to be similar are not exactly

equivalent.  As variables enter or leave the specification, some DMUs become 100% efficient or

loose this characteristic.  Both methodologies rely, to a certain extent, on judgement for final model

selection.  This judgement is made with little reference to the original data set, which becomes

obscured in a mass of mathematical details.  DEA provides, for each DMU, just a score.  It is not

very informative as to the way in which inputs and outputs contribute to the efficiency calculation.

There are many ways of achieving similar levels of efficiency when various inputs and outputs are

involved.  It is necessary to look beyond DEA, study the reasons why DMUs achieve a certain

degree of efficiency, and the reasons why the various models are, or are not, equivalent.  Here we

propose a methodology based on multivariate statistical analysis.

DEA and multivariate statistical techniques have been used in combination in various

studies.  Since the number of efficient DMUs depends on the number of inputs and outputs in the

model, it is important to control for the number of inputs plus outputs; Pedraja et al (1999).  Adler

and Golany (2001) use principal components as inputs and outputs, and thus reduce the data that is

fed into the DEA model.  A very similar approach is followed by Vargas and Bricker (2000).

Multivariate statistical methods and DEA are also used in sequence, to obtain a more complete
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understanding of the data; examples are Mancebon and Mar Molinero (2000), Bradley et al (2001),

and Nath (2001). Zhu (1998) uses PCA as an alternative to the DEA model, although he is aware of

the limitations of the procedure.  Premachandra (2001) demonstrates the soundness of Zhu’s

approach and extends it.

 Zhu’s (1998) approach is based on the realisation that a ratio of a single output to a single

input can be a feasible solution in the efficiency frontier and that, by studying such ratios, and their

linear combinations, it is possible to rank efficient units.  This is certainly a new perspective on the

ranking of efficient DMUs which has recently been based on the concept of superefficiency

introduced by Andersen and Petersen (1993), although other ranking methods have also been

proposed; for example, Doyle and Green (1994) proposed a method based on the cross-efficiency

matrix; Sinuany-Stern and Friedman (1998) proposed the use of discriminant analysis; and the same

authors also put forward a methodology based on canonical correlation analysis; Friedman and

Sinuany-Stern (1997).  Raveh (2000a) uses the co-plot, a simplified version of Multidimensional

Scaling (MDS) methods to rank Greek banks.  A description of the co-plot methodology can be

found in Raveh (2000b).

Multivariate statistical techniques and DEA can also be used simultaneously as was done by

Serrano Cinca et al. (2001).  These authors combined MDS and DEA in the context of efficiency in

dot.com companies.  Data on a set of ratios that combined web metrics –output- and financial

information –input- was represented in the form of MDS configurations, on which efficiency ratings

were superimposed and used to explore the various strategic objectives of the dot.com companies.

Various strategic groups of companies were identified.  It was shown that the various strategic

groups had different objectives, and that different DEA models were appropriate for each group.

 This paper proposes a new approach to guide model selection in DEA and to the ranking of

units.  The method has the advantage that the ranking extends to inefficient units, something that the

method based on superefficiency does not permit.  The DEA modelling procedure is embedded in a

multivariate statistical framework.  The methodology shares with Zhu (1998) the idea that much can

be learned from exploring simplifications of the full DEA model within a multivariate statistical

framework, although the similarities end here.  The procedure proposed attempts to visualise

differences and similarities between the efficiencies generated by the various models, by treating

efficiencies as variables in a statistical framework.

The model is developed within the context of the data set on Chinese cities published by Zhu

(1998) and Premachandra (2000).
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The paper is organised as follows.  Section 2 describes the data, introduces the notation, and

gives the efficiency matrix that will be the object of the modelling procedure.  Modelling is

described in section 3, which is divided into several subsections to account for the various steps to

be followed.  The last section contains the conclusions.

2. CASE STUDY: CHINESE CITIES AND DEA.

Table 1 shows the data set on 18 Chinese cities analysed and published by Zhu (1998) and

Premachandra (2000).   There are two inputs and three outputs defined as follows:

Input 1, (X1): Investment in fixed assets by state-owned enterprises.

Input 2, (X2): Foreign funds actually used

Output 1, (Y1): Total industrial output value

Output 2, (Y2): Total value of retail sales

Output 3, (Y3): Handling capacity of coastal ports

 
 Table 1 about here 

The first step in the procedure requires the listing of all possible DEA models that can be

derived from possible inputs and outputs.  In the Chinese cities example there are two inputs and

three outputs, resulting in 21 possible DEA models, each model containing a combination of one or

more inputs with one or more outputs.  These are shown in Table 2.  To make it easy for

identification purposes, notation is written in such a way that the inputs and outputs that enter it can

be easily identified.  For this purposes, the first input, X1, is associated with the letter A in the

name; the second input, X2, is associated with the letter B; outputs are associated with numbers in

an obvious way.  Thus, model A1 in Table 2 contains one input, X1, and one output, Y1.  Model

A12 contains input X1 and outputs Y1 and Y2.  The complete model, the only one selected by

Premachandra (2000) is AB123.  In fact, both Zhu (1998) and Premachandra (2000) only estimate a

DEA model, which is our AB123.
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 Table 2 about here 

Efficiencies from each model were obtained using the constant returns to scale, input

oriented version of the algorithm.  Table 3 shows the efficiencies obtained.

 
 Table 3 about here 

The influence of the model on efficiency can be clearly observed in Table 3.  For example,

DMU 2 is 100% efficient in twelve models that include output Y3 in their specification (A123, A13,

A23, A3, B123, B13, B23, B3, AB123, AB13, AB23 and AB3).  But if Y3 is removed from the

specification, the efficiency of DMU 2 drops to very low values ranging from 0.11 to 0.33.  This

was observed by Zhu (1998), who commented: “DMU2 only had a good performance with respect

to the ratios that measure the input utilization by the third output”.

Something similar could be said about DMU 6 and DMU 10.  Sometimes they are 100%

efficient and other times they appear to be inefficient.  In this case, as in every other, it is possible to

scan through Table 3 in search of clues that may explain which inputs or outputs are responsible for

the changes.  It is, however, desirable to analyse Table 3 in a multivariate analysis context.  Models

can be treated as variables and efficiencies as observations.  The aim is to explore the structure of

the data and to visualise its most important features.

It is clear that DMUs 2, 6, 10 are very different even if they all appear to be 100% efficient

under the complete model, AB123.  Another interesting example is provided by DMUs 1 and 16.  A

cursory examination of Table 3 suggests that they are not very different, and  under the complete

model AB123 they both achieve 47% efficiency.  Are they similar?  If they are not, where are the

differences?  The method suggested here makes it possible to answer these questions.

It is clear that Table 3 contains much information, but that it also contains redundancy, since

some DEA models may be equivalent, and some may contain independent information.

Multivariate techniques aimed at data reduction and representation such as PCA and Hierarchical

Cluster Analysis (HCA) may be used in this context.  This is done in the next section.
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3. DEA AND PCA. EFFICIENCIES AS VARIABLES IN A MULTIVARIATE
STATISTICAL ANALYSIS.

This section will be concerned with the analysis of Table 3 within a multivariate statistical

context.  First, PCA will be used as a data reduction technique. Component scores are represented in

a graphical form, highlighting the similarities and differences between the DMUs.  The second

subsection highlights the relationship between DMUs and models, and between models, by means

of Property Fitting, a regression-based technique.  The third subsection completes the graphical

representation by superimposing the results of a hierarchical cluster analysis.

3. 1  PCA

Models in Table 3 have been treated as variables and efficiency ratings as observations, and

a PCA exercise has been performed.  The minimum value for eigenvalue extraction has been set to

0.8, in line with Joliffe’s (1972) recommendation.  Three eigenvalues exceeded the 0.8 limit,

indicating that three components are sufficient to describe the structure of the data.  The first

component was by far the most important, accounting for 71.9% of the variability in the data.  The

addition of the second component increases this percentage to 91.9%, and the addition of the third

one takes it to 96.5%.   This dominance of the first component is typical of highly correlated

variables; Dunteman (1989).  For the purposes of this study, the first two components provide an

adequate representation of the data.  The results are given in Table 4.  The relevance of the third

component was also studied, but found to add little to the present argument, and is not presented

here.

 

 
 Table 4 about here 

Models have been ranked according to their loading in the first principal component.  The

results are shown in Table 5.  All the models have positive loadings in this component.  It is to be

noticed that the model with the highest loading in the first component is AB123, the complete

model that includes two inputs and three outputs.  In this kind of situation the first principal

component is often taken to be an overall measure of strength of the relationship.  It is clear that this

component can be interpreted as an overall measure of efficiency.  Ranking of DMUs on this
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component will produce a ranking of all DMUs in terms of efficiency; this ranking includes both

efficient and inefficient DMUs.

 
 Table 5 about here 

Turning to the second component, it is to be noticed that the only models that load highly on

it are B3, AB3 and A3.  All these models contain a single output in their specification, Y3.  It is

interesting to notice that all the models that contain output Y3 have positive loadings in the second

component, while those models that exclude Y3 have negative loadings.  The second component is

clearly associated with the ability that DMUs have of generating output Y3.

Using similar reasoning, it can be argued that the third principal component is related to  the

efficient use of inputs.   Models A2, A23, AB23, AB2, A123, AB123, A12, AB12, A3, and AB3

have positive loadings in the third components.  All these models contain input X1 or both inputs.

Models B1, B13, AB1, B12, B123, A1, AB13, B23, B2, B3, and A13 have negative loadings in the

third component.  All but two models contain input X2 or both inputs.

 In summary, the first principal component gives an overall measure of efficiency; the

second principal component is related to output Y3; and the third principal component is a contrast

between input X1 and input X2.   For the purposes of this paper, it is sufficient to concentrate on the

first two components, and this is what will be done.

For each DMU, component scores for the first and second principal component have been

calculated and plotted in a graph.  This graph can be seen in Figure 1.  The DMUs that achieve

efficiency scores of 100% are to be found at the extreme right hand side of the first principal

component, as expected.  DMU 2 shows its reliance on output Y2 by finding its way to the top of

the second principal component.  The fact that DMU 2 achieves efficiency by concentrating on

output Y3 is now clear.  The isolated position of DMU 2 in the figure suggests that we are dealing

with a “maverick”.   In general, once meaning has been attached to the various components, extreme

points can be analysed, particularly efficient extreme points, as this may indicate that the relevant

DMUs use an unusual mix of inputs and outputs to achieve efficiency, and this may reveal maverick

behaviour. At the other extreme of the first principal component we find DMUs 14, 15, and 18.

These DMUs achieve low efficiencies under most models.
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 Figure 1 about here  

3. 2 Property Fitting

The relationship between components and models can be displayed graphically by using the

regression-based technique of Property Fitting, or Pro-Fit for short; Schiffman et al (1981).  In this

technique, vectors are drawn in such a way that, for a particular DEA model, the value of the

efficiency derived from the model increases in the direction of the vector.  The direction of the

vector is calculated as a result of a regression analysis in which the efficiencies derived from the

particular model are the dependent variables and the component scores are the independent

variables.  This technique has the advantage of highlighting up to what point two models are similar,

since the angle between any two vectors is related to the correlation between the efficiencies

generated by the two models concerned.  All the vectors are represented through the centre of

coordinates in Figure 1.  This is the compass that we use as a guide to interpret the configuration.

Vectors are only drawn if the coefficient of determination, R2, in the relevant regression exceeds a

particular value.  In this case all models achieved very high values of R2, the lowest value achieved

being 0.81, and all models were represented.  All vectors pointed towards the positive side of the

first component, forming an open fan, something that indicates that the various ways of achieving

efficiency are positively correlated. Table 6 shows the results of all Pro-Fit regressions, and gives

directional cosines, γ1 γ2 γ3 ,with their level of significance.  The vectors can be seen in Figure 2.

 
 Table 6 about here 

 
 Figure 2 about here  

The vectors in Figure 2 confirm the conclusions obtained when component loadings were

discussed.  Vectors group neatly into three groups.  One group is formed by models AB3, B3, and

A3.  All these models achieve their highest value in DMU 2 and contain only output 3, indicating

that DMU 2 achieves 100% efficiency by attaching high weights to output 3.   The remaining

vectors split into two groups, both of them pointing in the positive direction of component 1.  One

group points towards the positive side of component 2 and the other group points towards the
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negative side of component 2.  The difference between the two groups concerns the presence or

absence or output 3 in the specification.  The models that do not contain output 3 point downwards,

and those that contain output 3 point upwards.  Thus, output 3 is crucial in the modelling procedure.

The average vector -labelled Mean- has also been calculated and represented, and almost coincides

with the axis associated with the first component.  In other practical situations one would also look

at the projection on other principal components, and this may reveal the different reasons why

DMUs achieve a given level of efficiency.

 The procedure to select a model is now clear.  If the directional vectors form a closed fan,

model selection is very simple, as this is an indication that all models are equivalent.  In this case

one would select the most parsimonious model.  If the fan is wide open, we need to explore any

groups that may exist and base our model selection on economic considerations as well as on

statistical principles.  Thus, the fan is the wind rose that guides the DEA sailor through the sea of

models.  In the present case it is to be first decided whether output 3 should or should not be

included in the specification.  This is a crucial decision.  Models AB3, B3, and A3 do not appear to

be reasonable since they favour a maverick DMU, DMU 2, and show the remaining DMUs in bad

light, a fact that can be confirmed by inspecting Table 3.  If it is decided to leave output 3, in the

specification, then any model amongst B23, A13, B13, AB23, B123, A23, B123, A123, AB123

could be chosen.  Parsimony would probably favour A23, as it plots in the middle of the fan and,

contains only one input and two outputs.

We can now see in which way DMU 1 is different from DMU 16.  They both achieve the

same efficiency score under the complete model AB123, and have almost identical projections on

the first principal component.  But DMU 1 plots on the positive side of the second component,

indicating that it values output Y3, while DMU 16 plots towards the negative side of the second

principal component, indicating that models that ignore output Y3 will favour this DMU.  If output

Y3 was to be considered important by decision makers, DMU 1 would be preferred to DMU 16.

As far as DMU ranking is concerned, it could be argued that no single model should

contribute to the position of a DMU in the list, and that the ranking should take into account all

possible specifications.  Thus, the ranking along the first principal component would be appropriate.

We think that only the first principal component should be involved in the ranking, and not all of

them weighted according to the variance they explain, as done by Zhu (1998). The ranking based on

the first principal component would produce the following ordering of DMUs: 10, 6, 2, 5, 9, 13, 12,



11

4, 8, 1, 16, 7, 11, 17, 3, 15, 18, 14.  It is to be noticed that this procedure allows for the ranking of all

DMUs and not only the efficient ones.

3. 3 Clustering DMUs

A complementary way of analysing the data in Table 3 is to use Cluster Analysis.  It is good

practice to supplement the results obtained from graphical representations of multivariate data with

the superimposition of cluster countours; Arabie et al. (1987).  Clusters were obtained using Ward’s

method, that maximises within group homogeneity and between group heterogeneity.  The

dendogram is shown in Figure 3.  Cluster Analysis shows the presence of five main clusters, one of

them containing only DMU 2, which appears yet again as a case on its own.  At a higher level of

clustering the DMUs divide neatly into two groups, one of them containing DMUs that reach 100%

efficiency and the other one containing the DMUs that never do.  The clusters are shown in Figure

1.

 
 Figure 3 about here  

The extreme position of DMUs 14, 15, and 18 is to be noted.  Zhu (1998) comments on these

three cities as follows: “these three DMUs were declared by Chinese government as model for

economic reforms and developments”.  Considering the low efficiency levels achieved by these

three cities, any directed economic effort has great opportunities for success.

4 CONCLUSIONS

This paper has presented a new method for model selection in DEA based on multivariate

statistical analysis.  The methodology requires evaluating efficiencies for all possible input/output

combinations.  It is clear that such methodology produces much redundancy, but also generates

valuable information.  The matrix of efficiencies by models is then analysed by means of data

reduction techniques, such as Principal Components Analysis.  Further understanding of the data

can be gained by applying Hierarchical Cluster Analysis in this data set.
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It has been shown that there are advantages with calculating efficiencies under all possible

specifications of the DEA model, and then performing multivariate analysis on the results obtained.

Principal Components Analysis has been the chosen technical approach, although Multidimensional

Scaling would have been equally appropriate.  This methodology permits the joint graphical

representation of models and DMUs, and thus it makes it possible to explain up to what point two

models are equivalent, and if they are not equivalent, why they are not equivalent.  The relationship

between models and DMUs becomes clarified.  By supplementing the representations with the

results of Property Fitting techniques, it is possible to assess why a particular DMU achieves high

efficiency scores under some models and low efficiency scores under other models.  Maverick

DMUs are easily identified.  Finally, the method permits the ranking of DMUs.  Such ranking

includes both efficient and inefficient DMUs.
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DMU x1 x2 y1 y2 y3
1 2874.8 16738 160.89 80800 5092
2 946.3 691 21.14 18172 6563
3 6854 43024 375.25 144530 2437
4 2305.1 10815 176.68 70318 3145
5 1010.3 2099 102.12 55419 1225
6 282.3 757 59.17 27422 246
7 17478.6 116900 1029.09 351390 14604
8 661.8 2024 30.07 23550 1126
9 1544.2 3218 160.58 59406 2230
10 428.4 574 53.69 47504 430
11 6228.1 29842 258.09 151356 4649
12 697.7 3394 38.02 45336 1555
13 106.4 367 7.07 8236 121
14 4539.3 45809 116.46 56135 956
15 957.8 16947 29.2 17554 231
16 1209.2 15741 65.36 62341 618
17 972.4 23822 54.52 25203 513
18 2192 10943 25.24 40267 895

Table 1: Values taken by two inputs and three outputs on 18 Chinese cities.  Source: Zhu

(1998) and Premachandra (2001).
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DMU INPUT OUTPUT
A1 X1 Y1
A12 X1 Y1 Y2

A123 X1 Y1 Y2 Y3
A13 X1 Y1 Y3
A23 X1 Y2 Y3
A2 X1 Y2
A3 X1 Y3
B1 X2 Y1
B12 X2 Y1 Y2

B123 X2 Y1 Y2 Y3
B13 X2 Y1 Y3
B23 X2 Y2 Y3
B2 X2 Y2
B3 X2 Y3

AB1 X1 X2 Y1
AB12 X1 X2 Y1 Y2
AB123 X1 X2 Y1 Y2 Y3
AB13 X1 X2 Y1 Y3
AB23 X1 X2 Y2 Y3
AB2 X1 X2 Y2
AB3 X1 X2 Y3

Table 2. The 21 DEA models used in the study



DMU A1 A12 A123 A13 A23 A2 A3 B1 B12 B123 B13 B23 B2 B3 AB1 AB12 AB123 AB13 AB23 AB2 AB3

1 27 28 47 47 44 25 26 10 10 12 12 8 6 3 27 28 47 47 44 25 26
2 11 17 100 100 100 17 100 33 33 100 100 100 32 100 33 33 100 100 100 32 100
3 26 26 28 28 21 19 5 9 9 9 9 4 4 1 26 26 28 28 21 19 5
4 37 37 50 50 41 28 20 17 17 19 19 10 8 3 37 37 50 50 41 28 20
5 48 54 63 59 58 49 17 52 52 53 53 34 32 6 59 59 63 63 58 49 17
6 100 100 100 100 88 88 13 84 84 84 84 44 44 3 100 100 100 100 88 88 13
7 28 28 36 36 26 18 12 9 9 10 10 4 4 1 28 28 36 36 26 18 12
8 22 33 50 41 49 32 25 16 16 19 19 17 14 6 22 33 50 41 49 32 25
9 50 50 63 63 48 35 21 53 53 55 55 26 22 7 60 60 66 66 48 35 21
10 60 100 100 66 100 100 14 100 100 100 100 100 100 8 100 100 100 100 100 100 14
11 20 24 30 27 28 22 11 9 9 10 10 7 6 2 20 24 30 27 28 22 11
12 26 59 79 52 79 59 32 12 16 19 15 19 16 5 26 59 79 52 79 59 32
13 32 70 75 43 75 70 16 21 27 28 22 28 27 3 32 70 75 43 75 70 16
14 12 13 14 14 12 11 3 3 3 3 3 2 1 0 12 13 14 14 12 11 3
15 15 18 19 16 17 17 3 2 2 2 2 1 1 0 15 18 19 16 17 17 3
16 26 46 47 30 47 46 7 4 5 5 4 5 5 0 26 46 47 30 47 46 7
17 27 27 31 31 27 23 8 2 2 2 2 1 1 0 27 27 31 31 27 23 8
18 5 17 20 10 20 17 6 2 4 5 3 5 4 1 5 17 20 10 20 17 6

Table 3: DEA efficiencies for DMU under the 21 DEA models.  Efficiencies vary between 0 and 100.
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Table 4. PCA results.

Component Eigenvalue % of  variance  Cumulative%
PC1 15.10 71.88 71.88
PC2 4.21 20.05 91.93

PC3 .95 4.51 96.45
PC4 .61 2.91 99.37
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Component

PC1 PC2 PC3
AB123 .964 .141 .197

A123 .963 .143 .205
AB13 .962 .173 -.122
B123 .942 .204 -.246
AB23 .937 .187 .290

A23 .937 .187 .290
B13 .932 .207 -.284
B12 .923 -.263 -.256
B1 .913 -.256 -.303
B2 .894 -.170 -.100

AB12 .893 -.411 .146
A13 .891 .281 -
AB1 .882 -.366 -.266
B23 .874 .345 -.116
AB2 .872 -.374 .288
A12 .827 -.525 .195
A2 .815 -.487 .293
A1 .730 -.530 -.187
B3 .397 .896 -

AB3 .438 .890 -
A3 .438 .890 -

Table 5. Component loadings.  Models are ordered on the first component.
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Directional cosines F Adj R2
γγ1 γγ 2 γγ 3

A1 0.79 -0.58 -0.20 26.3 0.817
 (7.04)** (-5.11)** (-1.80)

A12 0.83 -0.53 0.20 1745.0 0.997
 (59.91)** (-38.03)** (14.14)**

A123 0.97 0.14 0.21 484.0 0.988
 (36.88)** (5.47)** (7.86)**

A13 0.95 0.30 -0.08 33.8 0.853
 (9.57)** (3.02)** (-0.82)

A23 0.94 0.19 0.29 2504.6 0.998
 (81.34)** (16.22)** (25.20)**

A2 0.82 -0.49 0.30 393.8 0.986
 (28.19)** (-16.85)** (10.15)**

A3 0.44 0.89 0.09 492.2 0.989
 (16.90)** (34.36)** (3.30)**

B1 0.92 -0.26 -0.30 501.6 0.989
 (35.58)** (-9.98)** (-11.80)**

B12 0.93 -0.26 -0.26 364.8 0.985
 (30.74)** (-8.75)** (-8.52)**

B123 0.95 0.21 -0.25 419.2 0.987
 (33.57)** (7.29)** (-8.79)**

B13 0.94 0.21 -0.29 571.4 0.990
 (38.74)** (8.60)** (-11.82)**

B23 0.92 0.36 -0.12 40.2 0.874
 (10.14)** (4.00)** (-1.35)

B2 0.98 -0.19 -0.11 (24.2 0.803
 (8.31)** (-1.58) (-0.93)

B3 0.40 0.91 -0.08 139.6 0.961
 (8.27)** (18.65)** (-1.65)

AB1 0.89 -0.37 -0.27 268.9 0.979
 (25.27)** (-10.49)** (-7.63)**

AB12 0.90 -0.41 0.15 362.3 0.985
 (29.62)** (-13.64)** (4.84)**

AB123 0.97 0.14 0.20 381.1 0.99
 (32.79)** (4.81)** (6.69)**

AB13 0.98 0.18 -0.12 155.5 0.96
 (21.09)** (3.80)** (-2.68)*

AB23 0.94 0.19 0.29 2504.6 1.00
 (81.34)** (16.22)** (25.20)**

AB2 0.88 -0.38 0.29 277.4 0.98
 (25.36)** (-10.89)** (8.38)**

AB3 0.44 0.89 0.09 492.2 0.99
(16.90)** (34.36)** (3.30)**

** Significant at the 0.01 level

  * Significant at the 0.05 level

Table 6.  Pro-Fit Analysis. Linear regression results
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Figure 1. Component scores for the first and second principal component 
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Figure 2: ProFit Analysis. Vectors for each DEA model. PC1 and PC2. 
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  C A S E 0         5        10        15        20        25
Label Num +---------+---------+---------+---------+---------+

       14   òø
       15   òú
       18   òú
        3   òôòòòø
       17   òú   ó
       11   òú   ó
        7   ò÷   ùòòòòòòòòòòòø
        1   òø   ó           ó
        8   òú   ó           ó
        4   òôòòò÷           ùòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòø
       16   ò÷               ó                               ó
        5   òûòø             ó                               ó
        9   ò÷ ùòòòòòòòòòòòòò÷                               ó
       12   òûò÷                                             ó
       13   ò÷                                               ó
        6   òòòûòòòòòòòòòòòòòòòø                             ó
       10   òòò÷               ùòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷
        2   òòòòòòòòòòòòòòòòòòò÷

Figure 3. Dendrogram using Ward Method


