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Abstract. Assurance of high integrity systems based on closed systems
is a challenge that becomes difficult to overcome when a classical testing
approach is used; in particular the evidence generated from a classi-
cal testing approach may not meet the objectives of rigorous standards.
This paper presents a new approach for the formal verification of closed
systems, in particular commercial off the shelf (COTS) products. The
approach brings together the formal language Event-B, mathematical
proof theory and the Rodin toolset and provides the mechanism for cre-
ating abstract models of closed systems and to then verify these system
properties against operational requirements. From an industrial perspec-
tive this approach represents a step change in the use and successful
integration of closed systems; using formal methods to guarantee their
integration and functionality. The outcome of the proof of concept will
provide a solution that will increase the level of confidence on complex
system of system solutions containing closed systems. Moreover, it will
support the production of safety-cases by providing formal proofs of a
system’s correctness.
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1 Context

Closed Systems (CS) are becoming more common in the safety critical domain
and in particular within the military domain. As the name connotes a closed
system is a solution which is available as a black box where access to internal
modules and design artifacts is not possible. In the context of this paper we will
refer to a closed system as a software based system and of which can refer to
either of the following contexts:

1. Systems developed by a third party that are commercially available to the
public domain as readymade solutions; also known as COTS



2. Systems developed by a third party that are not commercially available but
due to legal, export controls or other commercial reasons are not open to
the system integrator

The justifications provided by system integrators for adopting a CS product
as opposed to a bespoke solution are typically:

— Adoption of state of the art technology : The supplier of a CS has the
budget to invest in R&D and innovative methods to provide state of the art
technology. Furthermore these suppliers tend to invest in and continuously
develop the product to stay competitive for longer

— Cost reduction : It is debatable whether a CS product offers a significant cost
reduction or not, because the CS product may not be integrated seamlessly
with the complete end system. If instead there are no significant issues with
the integration of the CS, the end cost will be less than if the same solution
was developed from scratch. Another key factor is that having the product
on an open market pushes suppliers to offer competitive prices

— Reliability : In principle CS products have been tested thoroughly by the
supplier, in that the solution is deemed reliable in particular contexts. The
caveat is that the customer may have conditions that the solution has not
been tested under and this becomes an issue, in particular when the CS is
used in a safety critical system

The rollout of a CS product in a safety critical domain is not a straight-
forward activity as the assumptions made about the CS product may not hold
when the product is integrated and tested with the rest of the system. It often
happens that the CS product does not operate as expected in the specific envi-
ronment or that some of the system requirements are not satisfied by the closed
system. Furthermore the Verification and Validation (V&V) of Closed Systems
is particularly difficult to perform because in most cases there is no design or re-
quirements documentation available in the public domain, nor has the evidence
of V&V activities performed by the supplier been made public. Determining the
conditions and environment under which the CS product was validated is not
simple. The non-existence of this data makes it more difficult to build a case for
the reliability and safety of the end product.

Where all this might not be vital in a non-safety critical domain, it is par-
ticularly relevant in a safety critical domain where, for instance, the DO-178
standard requires evidence of V&V activities to meet specific objectives.

2 Existing Approaches

2.1 Integration Testing and Prototyping

The validation of CS based solutions typically starts as soon as the CS product is
made available to the system integrator. First the product is taken through a pro-
totyping stage with parts of the system being integrated with the CS products.



This stage validates some functional integration aspects; it does not necessarily
address safety or reliability properties of the system as the focus is instead on
validating the functional integration with the end system. The prototyping stage
may lead to the identification of issues with the CS that require customizations,
of which in some cases the supplier of the CS product can be open to fixing.
This stage can also identify limitations which could lead to either rejecting the
CS product or the system integrator having to identify workarounds.

Once the various elements of the solution are amenable to integration the
system is formally built and only then can it go through integration testing. The
approach used for testing is driven by the set of requirements including safety
requirements, use cases, the test environment and last but not least the time
available to perform the testing.

There are several risks associated with this approach:

— The identification of issues and the need for workarounds might come late in
the lifecycle when there is no other option but to develop bespoke solutions.
This impacts on the cost and schedule of the end system

— A limited test coverage as a result of the limited time available for testing
and a limited test environment which does not allow for simulating the real
in-service environment. This impacts on the confidence in the end solution
and could result in a system deployed with untested states and an impact
on the ability to generate a sound safety case

— As safety can be seen as an emergent property of the integrated system
[menon2009interim]|, the safety analysis, which could result in the need for
significant re-design, occurs too late in the verification process

2.2 Fault Injection Testing

Fault injection testing is another approach that aims to address scenarios where
there is insufficient evidence to demonstrate that the CS will not fail unac-
ceptably or where the CS does not satisfy safety requirements. The primary
objective of fault injection testing is to understand whether additional fault de-
tection, isolation and recovery (FDIR) mechanisms are required or if the existing
FDIR mechanisms are satisfactory. An example of a successful application of the
method is described in [MSM102].
The key risks associated with this method are:

— The APIs may not be sufficiently well documented resulting in additional
effort to effectively customise the test environment and integrate it with the
target system

— The results produced are constrained by the number of fault scenarios gen-
erated and as a consequence the evidence generated may be inadequate to
demonstrate the robustness of the target system

— The fault injection tool may not provide all of the interfaces required to
integrate with the equipment under test and as a consequence it may not be
possible to inject faults in the target system



— Potential failures caused by unexpected component interactions in the inte-
grated system are not addressed by this approach

There are a number of other approaches that can be used to facilitate the ver-
ification and validation of CS based solutions, such as using pre-existing evidence
or reverse engineering. For further details see [MHMO09].

3 Solution Description

This paper outlines an approach that we have been applying to a real industrial
project using the Event-B formal method. The system being analysed uses a
number of complex static configurations and we were able to specify general re-
quirements on these configurations in Event-B, and verify specific configurations
using model checking and mathematical proofs. We also use refinement to map
a high level model of the requirements to a lower level model that represents an
abstraction of the CS product. Our experience to date suggests this approach
encourages a deeper analysis of the system requirements and how these relate to
the characteristics of the CS product than a less formal approach. The formal
models and verification results also contribute to the safety case for the system.

The work on the case study is still in an intermediate stage, yet enough work
has been completed to draw preliminary conclusions on the method and issues
faced.

3.1 Tools Description

The case study uses the Event-B language, which is a formal language built upon
set theory and mathematical proof, and is an evolution of the industrial-strength
B method. This is in combination with the Rodin toolset, which is an Eclipse-
based open source development environment for Event-B models [ABH™10].
Rodin includes proof obligation generation and automated proof tools along
with a range of model-checking plug-ins. To date, Rodin has mostly been used
in a research environment, yet using real industrial case studies.

The extensions to Rodin which are utilised in this case study are UML-
B [SBO08] - a UML-like graphical front end for Event-B which provides strong
support for model refinement - and ProB [LBO0S], a plug-in which supports sim-
ulation and model-checking of both Event-B and UML-B models.

3.2 Case Study Overview

The system to be verified through the case study is a shared computer environ-
ment (SCE) which consists of hardware, virtualization middleware and applica-
tions. The hardware is composed of multiple servers, and the virtualization is
provided by VMWare - a closed system - which enables multiple applications to
be running on the same server and provides dynamic load-balancing and resource
reallocation across the system.
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Fig. 1. An example of a UML-B model used in the case study

The abstract design for the system is broken down into logical servers, which
represent groupings of applications that should be running on the same server.
The hierarchy of the applications is introduced by the classification of each ap-
plication to a function or sub-function; this allows for functions to span multiple
logical servers if they have sub-functions running on each. In relation to VMWare,
each function and sub-function corresponds to a Virtual Appliance (VApp) and
can have multiple Virtual Machines (VMs). Each SCE operates according to a
fixed number of static configurations mapping functions and sub-functions to
logical servers. In this way it is possible to define configurations for multiple
SCEs, a single SCE (should one or more of the SCEs fail), or minimum safe con-
figurations (so that the critical applications can continue running in the event
of multiple server failures in the same SCE)

The properties of the system that can be verified formally are broken down
into two phases; the static verification of each configuration, and the dynamic
verification of the design requirements with the behavior of VM Ware. The static
phase of the verification involves proving that the configuration adheres to the
requirements within the design - for instance, that a function assigned to a single
logical server should not have any sub-functions - but also that the memory,
processing and network resources assigned to the sum of the functions and sub-
functions running on each logical server do not exceed the limits on a single
server. VMWare can control the memory and processing resources; however, if
the overall limits for the server are exceeded then it cannot guarantee that all
of the applications will run correctly. Perhaps more critically, VMWare has no
control over the network usage; so it is imperative that the network resource use
is checked before each configuration is run.

In each of the static cases the formal verification is achieved by modelling the
requirements as axioms in the model and then inserting the mappings specific
to the configuration into the model. To verify the static design requirements
we used ProB to check that the axioms are consistent, i.e. that ProB can find
sets and constants that satisfy the axioms. By using ProBs constraint solving
abilities, we discovered several modelling errors when ProB could not find a
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Fig. 2. Comparison of VMWare and design views

solution that satisfied the axioms. We then verified that an example configura-
tion (also defined using axioms) was consistent in ProB and therefore satisfied
the axiomatic constraints on configurations such as affinity rules and function
allocations.

The advantage of using a model checker in this case is clear; if new config-
urations are designed, or existing configurations are changed slightly by adding
new functions, then a static check can be simply and quickly performed on the
configuration in an automated fashion without having to manually recalculate
any of the resource limits or check that the mappings are valid.

To verify that an example configuration obeys the resource requirements we
used the Rodin provers. The resource rules were expressed as a theorem which, if
the configuration is valid, should follow from the axioms describing the resourcing
required by the configuration. This involved time consuming interactive proof,
even for a simple configuration. As a result we have proposed a new proof rule
which will be added to the Rodin provers, thereby decreasing the time needed
to prove future configurations.

The dynamic verification involves demonstrating that the combination of the
system and VM Ware behaves in such a way that the system design requirements
are not invalidated, as these requirements are not inherent within VM Ware. More
specifically, there are certain affinity rules within the design, such as groupings of
applications which have to be running on the same server, which could easily be
invalidated by VM Ware if it decides to reallocate applications due to an increased
load on one or more of the servers. The potential issues are even more apparent
when server failures are considered; in this case entire logical servers have to
be reallocated or the configuration has to be changed, all by VMWare whilst
retaining the design requirements and operational capacity of the system. The
formal approach here, although not yet complete, will be to model the dynamic
behavior of VMWare in Event-B, and verify this using the Rodin provers against
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Fig. 3. Further example of a UML-B refinement step in the case study

the existing axioms in the static verification representing the design and resource
requirements.
The key limitations to the approach are:

— The complete CS has to be modelled and thus assumptions have to be made
about its behaviour. This is in fact what determines the scope of the mod-
elling; for instance, it is assumed for the dynamic behaviour that the memory
reallocation and low-level processes work reliably. However it is important
to keep in mind that these are the type of issues that, as mentioned earlier,
are often verified during the development of the CS.

— Another known limitation to this approach is inherent to the Event-B lan-
guage and is due to the restricted set of requirements that are amenable to
the language. Only a subset of the requirements could be modelled; it is not
possible to model requirements concerning the performance of the system,
for instance. This is not to say that this is not possible with other formal
languages, however.

— A further limitation which has become apparent through the work is that the
requirements presented are often in an unsuitable form for formal modeling,
and consist of a mix of high and low levels. During the case study another,
intermediate, requirements document had to be produced to fill the gap
between the initial requirements and the formal model.

The modelling process is reliant on the participation of the customer; at each
step in the process models were produced, which raised questions, and after more
information was gained the models were developed further. A benefit of using a
formal method such as Event-B is that it encourages deep requirements analysis
due to the completeness of requirements necessary for formal modeling; before



and during the modelling missing and inconsistent requirements were found,
most of which were corrected or included in the intermediate requirements doc-
ument. A further benefit of the Event-B approach described is that it encourages
the investigation, discovery and modelling of safety constraints much earlier in
the verification process than traditional methods.

4 Preliminary Conclusions

The work on the case study is still in an intermediate stage, yet the following
preliminary conclusions can be drawn:

— Static properties of VMs running in VMWare can be formalised using the
Event-B method and verified using the Rodin toolset

— Event-B is a suitable method to verify properties which are not managed by
VMWare but which are critical and have to be validated before running the
virtualised applications

— The Event-B method offers the mechanisms to abstract specific details per-
tinent to the CS and focus on a sub-set of properties which are complex to
verify using a classical testing approach

— Event-B models of VMWare can be reused and expanded with more detail
if required

— We found UML-B’s class diagram notation very suitable for modelling this
system. UML-B allowed us to construct a model very quickly and to explore
different modelling choices, along with providing a mechanism to visualise
the model and communicate it to others

Further work is going to be performed to formally verify the design require-
ments with the behavior of VM Ware.
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