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Abstract

In this paper we propose a new method for producing semiparametric density
forecasts for daily financial returns from high-frequency intraday data. The daily
return density is estimated directly from intraday observations that have been appro-
priately rescaled using results from the theory of unifractal processes. The method
preserves information concerning both the magnitude and sign of the intraday re-
turns and allows them to influence all properties of the daily return density via the
use of nonparametric specifications for the daily return distribution. The out-of-
sample density forecasting performance of the method is shown to be competitive
with existing methods based on intraday data for exchange rate and equity index
data.

JEL: C58, C22, G17
KEYWORDS: density forecasting, unifractal, high-frequency data, semiparametric

Over the past decade there has been a dramatic increase in the availability of intra-
day financial data, resulting in an extensive literature on the use of high-frequency
data in financial econometrics. These data obviously allow for the study of financial
market behaviour at intraday timescales, but they also contain potentially valu-
able information for longer timescales, which are arguably of more interest for most
market participants. As a result, there have been efforts to incorporate intraday
data into the modelling and forecasting of financial variables at daily or even lower
frequencies.

The most notable example is provided by the large literature on realised volatil-
ity, a concept that was first properly formalised by Andersen et al. (2001). Realised
volatility and related measures allow the unobservable daily volatility to be esti-
mated from intraday returns and it has been found (see for example Andersen et al.,
2003) that such measures can provide significant improvements in the modelling and
forecasting of daily return volatility compared to models using only daily data.

Whilst return volatility is undoubtedly a variable of substantial interest, there
are situations in finance in which information concerning just the first two mo-
ments of the distribution of returns is not sufficient. Perhaps most obviously, risk
management problems, such as the calculation of Value-at-Risk, require knowledge
of particular quantiles of the return distribution. In addition, it has been shown
that higher moments, such as skewness and kurtosis, are time varying and relevant
for problems of portfolio allocation and asset pricing (see for example Harvey and
Siddique, 2000, or Dittmar, 2002).

However, as noted by Žikeš (2009), the use of intraday data to model and forecast
characteristics of daily returns beyond the first two moments has not yet received
much attention. Notable exceptions include Andersen et al. (2003), Giot and Lau-
rent (2004), Clements, Galvão, and Kim (2008) and Maheu and McCurdy (2010),
all of which extend the use of realised volatility measures to either the quantiles or
the density function of daily returns. The methods used by these previous studies
consist of two components. The first is a parametric time series model for volatil-
ity incorporating one or more realised volatility measures, which is used to model
and produce point forecasts for daily volatility. The second component is a typi-
cally a parametric distributional assumption about daily returns, allowing density
or quantile forecasts for daily returns to be produced from the point forecasts of
daily realised volatility.
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There are two potential weaknesses with this approach; firstly, the high-frequency
data enter only through the realised volatility measures and so any information pro-
vided by the sign of the intraday returns is lost when they are squared. Furthermore,
the intraday data can only directly influence the second moment of the daily return
distribution. Secondly, with the exception of Clements, Galvão, and Kim (2008)
who also consider an empirical distribution for returns, these previous studies re-
quire a specific parametric form to be chosen for the distribution of daily returns;
choosing the most appropriate parametric distribution for financial returns is dif-
ficult, particularly in a dynamic context, and the density forecasts produced by
misspecified parametric models will generally be misleading. The semiparametric
quantile regression approach of Žikeš (2009) avoids the last of these problems, but
only produces estimates for specific quantiles rather than the complete distribution
or density.

In the current paper, a new approach is proposed for the estimation and forecast-
ing of daily return densities from intraday data, based on the theory of unifractal
processes. Under the assumption that the return process is unifractal, the distribu-
tion of returns at any pair of timescales is identical after rescaling by an appropriate
factor; this factor can be estimated for a particular time series and used to rescale
the intraday data for a given time period, such that they are equal in distribution
to daily returns. The density of daily returns can then be estimated from these
rescaled intraday observations.

The proposed method has two theoretical advantages compared to existing meth-
ods based on realised volatility. Firstly, the daily return density is estimated directly
from these rescaled intraday observations (rather than squared or absolute values),
thus preserving information contained in both the magnitude and sign of the intra-
day returns. Secondly, because a large sample of rescaled intraday observations are
obtained for each trading day, it is possible to apply a range of estimators to these
rescaled intraday returns to estimate the daily return density for a given trading
day.

In particular, a nonparametric density estimation approach is proposed using a
standard kernel density estimator, which allows the intraday data to influence all
aspects of the daily return density without being complex to implement or compu-
tationally demanding. However, the use of nonparametric density estimators pre-
cludes the use of standard dynamic structures for forecasting and so a new method
is proposed and developed that imposes a parametric dynamic structure directly on
the time series of densities themselves, with the relevant parameters selected using
concepts from the literature on density forecast combination.

The structure of the paper is as follows: Section 1 presents the relevant theory
on unifractal processes and describes how these results can be employed to estimate
the density of daily returns from intraday return data. Section 2 details the chosen
estimation methods for both the scaling factor used to rescale the intraday data
and the density function of the rescaled intraday data. Section 3 explores the issue
of producing density forecasts for daily returns from a time series of estimated
return densities. Section 4 presents an empirical application comparing the density
forecasting performance to existing methods using intraday data on equity indexes
and exchange rates and finally Section 5 concludes.
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1 Unifractal & Multifractal Processes

In order to estimate the density of daily returns from intraday data a method is
required for formally linking the characteristics of return distributions across dif-
ferent sampling frequencies. Instead of the realised volatility measures previously
employed in the literature, the proposed method relies on results from the theory of
self-affine or unifractal processes.

On an intuitive level, such stochastic processes exhibit some form of scale invari-
ance, such that the behaviour of the process at one timescale is, after an appropriate
transformation, identical in a statistical sense to that observed at another time scale.
A large number of empirical studies have confirmed the existence of this type of dis-
tributional scaling behaviour in a wide range of financial time series1 and this has
led to the development of several asset pricing models that explicitly reproduce this
distributional scaling behaviour2.

The current section begins with a brief summary of the theoretical properties
of these processes (with more detailed treatments found in Calvet and Fisher, 2002
or Kantelhardt, 2009), before exploring how these properties can be employed to
estimate the density of daily returns from intraday return data.

1.1 A Review of Unifractal and Multifractal Processes

The distributional scaling behaviour of a unifractal or self-affine process can be de-
fined by a simple expression that links the distribution of the process at different
sampling intervals. Formally, unifractal or self-affine processes can be defined in the
following way:

Definition 1.1. A process is said to be self-affine or unifractal if for some H > 0,
all c ≥ 0 and all t1, t2, . . . , tk ≥ 0 it obeys the distributional scaling relationship

{X(ct1), X(ct2), . . . , X(ctk)}
d
= {cHX(t1), c

HX(t2), . . . , c
HX(tk)} (1.1)

which can be expressed more compactly as:

X(ct)
d
= cH [X(t)] (1.2)

If the increments of the process are stationary, then the distributional scaling law
of (1.2) also holds for the increments of the process at any given sampling interval:

X(t+ c∆t)−X(t)
d
= cH [X(t+∆t)−X(t)] (1.3)

The parameter H is known as the self-affinity index and describes the relationship
between the distributions of the return process at different timescales. Common
examples of unifractal processes in finance include the standard Brownian motion,
for which H = 1/2, and also the more general fractional Brownian motion, for
which H ̸= 1/2. In the current context, under the assumption of unifractality these
scaling laws imply that the distribution of returns at different timescales or sampling
intervals is identical after rescaling by a factor that depends on the characteristics of
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the particular return process (via H) and the difference between the two sampling
intervals (via c).

One can also consider the more general class of multifractal processes, which
allow for a more flexible relationship between distributions across different sampling
frequencies. In the case of a multifractal process, equation (1.2) is generalised to:

X(ct)
d
= cH(c)[X(t)] (1.4)

where the scaling factor cH has been replaced by the more general function of c, cH(c).
An alternative characterisation of scaling behaviour is often used in the multifrac-
tal case, where it can be shown (see for example Mandelbrot et al., 1997) that a
stochastic process X(t) with increments X(t + ∆t) − X(t) is multifractal if these
increments are stationary and satisfy:

E[| X(t+∆t)−X(t) |q] = c(q)(∆t)τ(q)+1 (1.5)

where c(q) and τ(q) are deterministic functions of q. The function τ(q) in (1.5) is
referred to as the scaling function and describes how different moments of the abso-
lute increments of the process X(t) scale with the sampling interval, ∆t. The scaling
function is strictly concave for a multifractal process but linear for a unifractal pro-
cess and as with the self-affinity index above, can be estimated for a particular time
series using various methods (see the survey by Kantelhardt, 2009).

1.2 Estimating Daily Return Densities from Intraday Data

To proceed we require the following assumption:

A.1. The stochastic logarithmic price process, X(t), is unifractal (or self-affine)
and has stationary increments Y ∆(t), where Y ∆(t) = X(t+∆)−X(t) is the return
process over the interval ∆ 3.

Whilst there are numerous empirical studies confirming the existence of distribu-
tional scaling behaviour in a wide range of financial assets (see footnote 2 for exam-
ples), these studies are typically concerned with the more general multifractal case,
which includes the unifractal scaling of assumption A.1 as a special case. Whether
a given sample of data is consistent with assumption A.1 is primarily an empirical
issue and will be discussed further in the context of the current dataset during the
empirical exercise.

For ease of exposition, the current subsection focuses on the specific example
of estimating daily return densities from 5-minute intraday data. However, under
assumption A.1 the distributional scaling laws of (1.2) and (1.3) hold for any pair
of timescales and so the method could be used to estimate the density of returns
for any given sampling interval from those at some higher frequency. However, if
attention is restricted to a specific pair of sampling intervals then a weaker condition
than A.1 would be sufficient; it would then only be strictly necessary for (1.2) to
hold for the sampling intervals of interest and not for all possible sampling intervals
as is the case for a true unifractal process4.

5



Assume that a series of 5-minute returns are observed for a financial asset over a
given period and denote this set of intraday returns and the corresponding probabil-
ity density function by YI,t and f(yI) respectively, where the I subscript is used to
indicate returns at the intraday frequency. Under assumption A.1 the correspond-
ing return process must satisfy the distributional scaling laws of equation (1.3). If
we denote the density of daily returns over the same period by f(yD), then in the
context of the current example these scaling laws imply that:

f(yD) = f(cHyI) (1.6)

From (1.6), the density of daily returns is equal to the density of the 5-minute
intraday returns, when these intraday returns have been appropriately rescaled by
the factor cH . The self-affinity index, H, can be estimated from the intraday data
using various methods and from (1.1) the value of c is determined solely by the
relative lengths of the two sampling intervals; for a market with 24-hour trading,
as is typical for exchange rates, the appropriate value of c in the current example
would be 288, since there are 288 5-minute returns observed over a 24-hour period.
For a market with shorter trading hours c will take a smaller value.

Therefore, under the assumption that the return process is unifractal, an estimate
of the relevant rescaling factor, cH , can be obtained from the intraday data and the
density of daily returns for a given period can be estimated from the intraday returns
observed over the same period via the distributional scaling laws of the previous
section.

2 Estimating the Density of Daily Returns from
Intraday Data

Estimation of the daily return density from the intraday data occurs in two stages: in
the first stage, the self-affinity index is estimated from the intraday returns observed
over a given time period and the resulting estimate is then used to rescale the
intraday returns as discussed in Section 1. In the second stage, the probability
density function of these rescaled returns is estimated using the chosen density
function estimator, providing an estimate of the daily return density for the same
time period. Sections 2.1 and 2.2 will discuss in turn the methods employed for the
first and second stages of estimation, respectively.

2.1 Estimation of the Self-Affinity Index

Numerous estimators are available for the self-affinity index of a unifractal pro-
cess and several studies5 have demonstrated that the relative performance of these
estimators can vary substantially in small samples. Due to their typically strong per-
formance relative to other estimators and their suitability for the current dynamic
estimation environment, attention was restricted to the popular Detrended Fluctua-
tion Analysis (DFA) and Detrended Moving Average (DMA) estimators. The DMA
estimator is detailed below, since it was generally found to produce superior density
forecasting performance to DFA for the current dataset. Further details of these
and other estimators can be found in the survey by Kantelhardt (2009).

6



For a given time series of observations, y(t), observed at discrete times t = 1, . . . T ,
the DMA estimator is implemented in the following way. Initially, multiple filtered
versions of the original series are produced using a standard moving average (MA)
filter with a range of different MA window sizes, n, from n = nmin to n = nmax

6.
The filtered series produced from each window size, n, is given by:

yMA
n (t) =

1

n

n−1∑
k=0

y(t− k)

For each moving average filtered series, {yMA
n (t) : nmin ≤ n ≤ nmax}, the value of

σ2
n (sometimes referred to as the generalised variance) is calculated, where:

σ2
n =

1

T − n

T∑
i=n

[y(i)− yMA
n (i)]2 (2.1)

For a unifractal process, σn ∝ nH and so an estimate of the self-affinity index, H,
can be obtained from the estimated slope coefficient in a linear regression of the
logarithm of σn obtained from equation (2.1) on the logarithm of n, for a range of
values of n.

A brief note is required at this point regarding the issue of intraday seasonality. It
is well known that intraday financial data can exhibit strong deterministic seasonal
patterns that pose a problem for certain estimation methods. Because of this, the
DMA estimator was applied both to the raw 5-minute returns and to intraday data
seasonally adjusted using the method of Andersen et al. (2003). The resulting
estimates of the self-affinity index from both cases were similar, as was the predictive
ability of the resulting density forecasts with neither approach having a consistent
advantage over the other. This is perhaps due to the fact that the chosen DMA
estimator automatically performs local detrending across various window sizes in
the process of estimating the self-affinity index, thus eliminating some or all of the
seasonal patterns. Following this finding, it was decided to use the simple unadjusted
intraday data for estimation of the self-affinity index, rather than the seasonally
adjusted data.

2.2 Estimation of Daily Return Densities

Given that a large number of rescaled intraday returns can be obtained even for a
single trading day, it is possible to apply a variety of estimators for the probability
density function, including both parametric and nonparametric methods. Whilst the
possibility of using nonparametric estimation methods is perhaps most interesting,
one example of each class of estimator will be employed for the empirical analysis
in order to investigate the potential gains from such a nonparametric approach.
The current density function estimators are both intentionally simple, but could
be replaced with more complex estimators without substantial modifications to the
method.

For the parametric case, a standard 3-parameter location-scale t-distribution is
fitted to the rescaled intraday returns using maximum likelihood. The mathematical
details of this approach will not be discussed here, since the techniques involved are
standard and have been discussed in detail elsewhere.
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In the nonparametric case, the standard kernel estimator for a univariate density
function is employed (originally due to Parzen, 1962). Consistent with previous

notation, the observed series of T intraday returns are denoted by {YI,t}Tt=1 and the

rescaled intraday returns are denoted by {YR,t}Tt=1, where YR,t = cĤYI,t and Ĥ is
an estimate of the self-affinity index. The kernel density estimator for the density
of the rescaled intraday returns f(yR) is then given by:

f̂(yR) =
1

hT

T∑
t=1

k

(
YR,t − yR

h

)
(2.2)

where k(.) is a nonnegative and bounded kernel function and the parameter h is a
bandwidth or smoothing parameter.

Standard regularity conditions on the kernel function and bandwidth parameter
h (see for example Li and Racine, 2006) guarantee uniform consistency of the kernel
estimator in (2.2) in the case of independent data. However, it is well known that
financial returns at the daily and intraday frequencies considered here typically ex-
hibit some form of serial dependence. However, the same uniform almost sure rate
of convergence for the standard kernel estimator is preserved in the case of weakly
dependent data, provided that the structure and strength of serial dependence satis-
fies certain conditions7. In the current context, we require the following assumption:

A.2 The intraday return process YI,t observed over each individual trading day
is strictly stationary and either ρ-mixing with ρ-mixing coefficients satisfying ρ(j) =
O(j−(1+ϵ)), or α-mixing with α-mixing coefficients satisfying α(j) = O(j−(1+ϵ)), for
some ϵ > 0.

It should be noted that A.2 only requires the conditions on serial dependence to
hold for each individual trading day of intraday data in isolation and not for the
whole intraday return process over the complete sample period. This is because,
as discussed during the following section, the daily return density for each trading
day is estimated just from the rescaled intraday returns observed over that trading
day and not from multiple days. Intuitively it seems plausible that dependence be-
tween the intraday returns in each period and those at the start of trading becomes
increasingly small as we move towards the end of the trading day. This argument
could fail if multiple days of intraday data were used for estimation, since the pat-
terns of intraday seasonality present in intraday returns may introduce long-range
dependence in the intraday return process, which is not permitted by assumption
A.2. In addition, estimates of the long-range dependence parameter from the com-
plete sample of intraday data and the autocorrelation functions for longer lag lengths
provide no strong evidence for the presence of long-range dependence in the level
of the intraday return series at longer horizons. Assumptions A.1 and A.2 lead to
the following proposition, the proof of which follows from standard consistency ar-
guments for nonparametric methods (see for example Li and Racine, 2006):

Proposition 1 Under assumptions A.1 and A.2, the kernel estimator for the prob-
ability density function of rescaled intraday returns given in equation (2.2) is a
consistent estimator of the probability density function of daily returns.
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3 Forecasting the Density of Daily Returns

In order to produce one-step-ahead out-of-sample density forecasts for daily returns
from the estimated daily return densities obtained using the previously presented
methods, we must impose a dynamic structure to describe the evolution of the daily
return density over time. For both the parametric and nonparametric approaches
of the previous section a simple autoregressive structure is employed, however the
implementation necessarily differs depending on which class of estimator is used for
the density function.

Section 3.1 provides a formal description of the forecasting environment and
Sections 3.2 and 3.3 present the dynamic structures used for density forecasting
in the parametric and nonparametric cases. Finally, Section 3.4 discusses how the
form of these dynamic structures can be estimated in practice in order to produce
forecasts for the daily return density.

3.1 The Forecasting Environment

It is assumed that a series of intraday returns are observed over a period of T days,
together with a corresponding series of daily returns. A standard rolling window
scheme is employed to produce one-step-ahead density forecasts for daily returns
from this intraday data; specifically, at day m, an estimate of the self-affinity index,
H, is produced using the intraday data from day 1 up to day m. This estimate is
denoted by Ĥm and is then used to rescale the intraday data for the same m-day
period.

The density of the rescaled intraday data for each of the m days is then estimated
using the methods presented in Section 2.2 to produce a time series of m estimated
daily return densities, denoted by {f̂t(y) : 1 ≤ t ≤ m}, with the estimated density for
each trading day produced using only the rescaled returns observed during that day.
These m estimated daily return densities are used to produce in-sample estimates
of the relevant parameters of the chosen dynamic structure and these estimated
values are then used to produce an out-of-sample one-step-ahead forecast for the
density of daily returns at time m + 1. This density forecast is denoted by f̃m(y),
with the subscript indicating that the forecast is conditional on the information
available at time m. The estimation window is then rolled forward by one day and
the procedure is repeated to produce a one-step-ahead density forecast for use on
day m+ 2, denoted f̃m+1(y), using the intraday data from day 2 up to day m+ 1.

This procedure can be repeated over the rest of the sample to produce a sequence
of N out-of-sample one-step-ahead density forecasts for daily returns, where N =
T − m. Finally it should be noted that each time the m-day estimation window
is rolled forward, an updated estimate of the self-affinity index is produced. This
permits the scaling properties of the return process to change over time, allowing
for more flexible scaling behaviour compared to assuming a constant global value of
the self-affinity index.

3.2 Dynamic Structure for Density Forecasting: Parametric
Case

As previously stated, a simple autoregressive dynamic structure is employed in or-
der to produce one-step-ahead density forecasts from the time series of estimated
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densities obtained using the methods outlined in the previous section. In the case of
parametric specifications for the daily return density this is relatively simple, since
the dynamic structure describing the evolution of the return density over time can be
imposed via the parameters of the chosen distribution; this allows point forecasts for
the distributional parameters to be produced that in turn provide a density forecast
for daily returns.

For the chosen location-scale t-distribution each of the three distributional pa-
rameters (location, scale and degrees of freedom) can be modelled separately using a
standard univariate AR(p) model; in-sample estimates of the relevant autoregressive
parameters can be obtained from the m estimated daily return densities over the
in-sample period and these estimates can then be used to produce one-step-ahead
out-of-sample forecasts for the distributional parameters. The only complication is
that some additional constraints must be imposed to ensure the forecasted parame-
ter values from an autoregressive structure are within the permitted parameter space
for the distribution. An alternative approach was also tested in which the autore-
gressive dynamic structure was imposed on the moments of the rescaled intraday
returns instead of the distributional parameters; from one-step-ahead forecasts for
the mean, variance and kurtosis of the rescaled returns, forecasts for the parameters
of the location-scale t-distribution can be uniquely determined. Performance of this
alternative was similar overall, but typically slightly inferior to that obtained by
directly modelling the distributional parameters.

3.3 Dynamic Structure for Density Forecasting: Nonpara-
metric Case

When the daily return densities are estimated using nonparametric methods such
as the kernel estimator of Section 2.2, the approach outlined above is clearly in-
applicable. Instead, an alternative method is now developed based on imposing
a parametric dynamic structure on the evolution of the complete probability den-
sity. It is assumed that the entire density at time t + 1 depends on several past
densities, with this temporal dependence again assumed to follow an autoregressive
structure. Whilst this choice is perhaps slightly ad-hoc, autoregressive structures
have been shown to work well in the context of quantiles (see for example Engle and
Manganelli, 2004).

The simplest case would be to assume that each of the lagged densities have
a constant coefficient, making the density of daily returns at time t + 1 a simple
weighted sum of the return densities from t to t− p+1, which can be expressed as:

ft+1(y) = β1ft(y) + β2ft−1(y)+, . . . ,+βpft−p+1(y) + ut+1(y) (3.1)

The D subscripts indicating daily return densities have been suppressed for nota-
tional simplicity and the error terms ut+1(y) are a martingale difference sequence
for all values of y in the domain of ft+1(y). The true daily return density in each
period, fs(y), is unknown, but replacing with the corresponding density estimate

obtained using the method of Section 3, f̂s(y), gives:

f̂t+1(y) = γ1f̂t(y) + γ2f̂t−1(y)+, . . . ,+γpf̂t−p+1(y) + vt+1(y) (3.2)
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where again, the error terms vt+1(y) are martingale difference sequences for all
values of y. In-sample estimates of the autoregressive parameters {γi : 1 ≤ i ≤ p}
can be produced from the time series of estimated daily return densities, with the
resulting estimates denoted by {γ̂i : 1 ≤ i ≤ p}. When combined with the estimated
daily return densities for periods t to t − p − 1, these in-sample estimates of the
autoregressive parameters can then be used to produce a one-step-ahead out-of-
sample density forecast for the density of daily returns for day t+ 1 from:

f̃t(y) = γ̂1f̂t(y) + γ̂2f̂t−1(y)+, . . . ,+γ̂pf̂t−p+1(y) (3.3)

Note that f̃t(y) is used to denote the forecast of the daily return density made
conditional on the information available at time t (but for use at time t+1) and the
tilde is used to distinguish it from the in-sample density estimate at time t. Clearly
constraints need to be imposed on the values of the estimated parameters to ensure
that the density forecast produced by (3.3) is always a valid probability density, but
for the autoregressive structure above this is guaranteed simply by constraining the
estimated parameters sum to unity and are all non-negative.

Although the dynamic structure of equation (3.1) is simple to interpret and im-
plement, one potential limitation is that it does not allow the dependence between
the density at time t and that at time t − s to vary across different regions of the
density8. It could be generalised by replacing the constant coefficients, β1, . . . , βp,
with functions of y, but ensuring that the resulting density forecast is a valid prob-
ability density function is no longer straightforward and so this is left as a possible
area for future research.

3.4 Estimating Autoregressive Parameter Values

For the case of parametrically estimated densities the parameter values for the
univariate autoregressive models required to produce forecasts can be estimated
straightforwardly using standard techniques. For the case of nonparametrically es-
timated densities the situation is again more complex and alternative techniques
must be developed.

The simplest option is to impose some fixed vector of values for the autoregres-
sive parameters {γq : 1 ≤ q ≤ p} in (3.2) over all time periods. Although this
approach may seem overly simplistic, it has been shown in the literature on forecast
combination that a simple average of forecasts can perform better than a combi-
nation chosen to minimise some statistical loss function (see Timmermann, 2006).
Although the current problem is not identical to that of forecast combination, a
simple specification with γq = 1/p for q = 1 . . . p is included in the empirical exer-
cise to test whether the same ad-hoc dynamic structure can also perform well in the
current context.

Assuming instead that for a given period we wish to identify the autoregressive
parameter vector that produces the most accurate one-step-ahead out-of-sample
density forecast, then an appropriate loss function needs to be selected to formally
define what constitutes the ‘best’ forecast. Given that a probability density is defined
across a range of values, conventional point-based measures of accuracy cannot be
applied and an alternative loss function appropriate for probability densities must
be employed.
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As a loss function the current method employs the well-known logarithmic score,
which is closely related to the Kullback-Liebler information criterion (KLIC). The
logarithmic score has been employed in the literature on both density forecast com-
parison and the optimal combination of density forecasts; the second of these ap-
plications (see Hall & Mitchell, 2007) is particularly relevant, since the problem of
choosing the parameter values for the simple autoregressive structure of equation
(3.2) is mathematically equivalent to that of identifying the optimal weights for the
commonly studied linear combination of density forecasts.

Denoting the one-step-ahead density forecast for daily returns produced at time
t− 1 for use in period t as before by f̃t−1(yt) and the actual daily return observed
at time t by y∗t , the average logarithmic score over the periods t = 1, . . . , S is given
by:

1

S

S−1∑
t=0

lnf̃t−1(y
∗
t ) (3.4)

Given that better forecasting models should on average assign higher probabilities to
the outcome that actually occurred, higher values of the average logarithmic score
provide evidence of superior predictive ability. The autoregressive coefficients in
(3.2) can therefore be chosen in order to maximise the average logarithmic score.
More formally, the vector of estimated autoregressive parameters γ̂, is obtained as
the solution to:

γ̂ = argmax
γ

1

S

S−1∑
t=0

lnf̃t(yt+1; γ) s.t.

p∑
i=1

γi = 1 and γi ≥ 0 for i = 1, . . . , p

The constraints ensure that the resulting density forecast is a valid probability
density function and the maximisation problem is solved using a numerical optimi-
sation procedure.

For each of the rolling m-day in-sample estimation windows, an estimate of
the autoregressive parameter vector, γ, is obtained as the solution to the above
optimisation problem for the m−p in-sample forecasts in the current m-day window.
The resulting in-sample estimate of the parameter vector, γ̂, is then used to produce
an out-of-sample one-step-ahead density forecast for daily returns, for use in the
following period.

The method for density forecast comparison employed in the empirical section
uses an alternative scoring rule known as the continuous ranked probability score
(CRPS). An equivalent numerical optimisation procedure could be employed to se-
lect the values of the autoregressive parameter values based on the CRPS instead
of the logarithmic score, however this alternative is much more computationally de-
manding and does not appear to provide substantial gains in predictive ability for
the current dataset.

4 Empirical Application

The current section applies the new semiparametric density forecasting framework
to both foreign exchange and equity data in order to compare the performance of the
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resulting density forecasts with those of existing methods. Section 4.1 describes the
dataset employed for the empirical analysis and Section 4.2 details the benchmark
density forecasting model used for comparison. Section 4.3 discusses the statistical
test employed to compare the relative density forecasting performance of the models
and finally Section 4.4 presents the empirical results.

4.1 Data

The data used were obtained from Olsen Associates and consist of intraday 5-minute
observations from 3rd January 2007 until 31st December 2010 on the Euro (EUR)
and Japanese Yen (JPY) exchange rates against the US Dollar (USD) and the levels
of the S&P500 and NASDAQ-100 equity indexes. The choice of 5-minute data was
guided by the desire to exploit as much of the potentially valuable intraday infor-
mation as possible, whilst avoiding the distortions caused by market microstructure
effects typically encountered at very short sampling intervals9.

All weekends and other non-trading days were removed from the raw 5-minute
price or level data. For the equity indexes this was straightforward, since these
markets have well-defined opening hours. The list of non-weekend closures was
constructed from the historical list of holidays on the NYSE website, however there
were also 9 days for which the market was open, but for reduced hours; the analysis
was performed with these partial trading days both removed and included, but the
choice had no significant effect on the results.

For the exchange rate series trading is typically continuous, but slows substan-
tially over weekends and certain holidays. Following Andersen et al. (2001), the end
of each 24-hour trading day was taken to be 21:00 GMT and the 48-hour weekend
periods between Friday 21:05 and Sunday 21:00 GMT were removed from the 5-
minute price series. Apart from weekends, only for Christmas Day and New Year’s
Day was trading noticeably slower for the EUR/USD and JPY/USD markets and
so only these holidays were omitted from the exchange rate series. The analysis
was also performed with a larger list of holidays removed from the EUR/USD and
JPY/USD series, but again this did not significantly influence the results.

This process leaves a sample size of 1008 and 1037 trading days for the equity
index and exchange rate series respectively. Continuous 5-minute returns were then
constructed from the first difference of the log-price series for each asset, with the
first 5-minute return for each day calculated between the closing price in the previous
trading day and the opening price in the current day (thus including any overnight
or weekend effects). Daily return series were also constructed from the last 5-minute
price observed in each trading day for use in forecast comparison.

As previously discussed in Section 1, the proposed density forecasting method
is only strictly valid when the distributional scaling behaviour of the return process
is consistent with that of a unifractal process, rather than the more general class
of multifractal processes. In practice the method should still be applicable even
if this assumption is not satisfied exactly, provided that the distributional scaling
behaviour of a unifractal process still provides a good approximation of the true
scaling behaviour of the process. Nonetheless, larger deviations from unifractal
scaling are still likely to invalidate the approach and so is important to check the
validity of this assumption for the particular return series of interest.

Although there is no formal statistical method for testing whether the scaling
behaviour of a given sample is consistent with that of a unifractal or a multifractal
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process, an informal graphical assessment can be based on the scaling function, τ(q)
from equation (1.5). As previously discussed in Section 1.1, this function is strictly
concave for a multifractal process and linear for a unifractal process with equation
τ(q) = Hq − 1, where H is the self-affinity index.

The solid lines in Figure 1 are the estimated scaling functions obtained from the
5-minute data for each of the series under the assumption of multifractality, using
the standard partition or structure function approach (see Kantelhardt, 2009 for
details). The dashed lines in each sub-plot are the linear scaling functions obtained
under the assumption of unifractality, with the self-affinity index (and therefore the
slope of τ(q)) estimated using the DMA estimator of Section 2.1. These functions
are plotted over the domain 0 ≤ q ≤ 5, which is a common choice in empirical
studies of scaling behaviour in asset returns.

From Figure 1 it can be seen that although the estimated scaling functions are
strictly concave for all series, suggesting multifractal rather than unifractal distribu-
tional scaling, the degree of nonlinearity varies for the different series; it appears to
be lowest for the EUR/USD data and highest for the JPY/USD data, with the two
equity index series lying somewhere in between. The differences observed between
the estimated scaling functions for the pair of exchange rates and the pair of eq-
uity indexes suggest that the type of financial asset under consideration may not in
isolation provide any strong a priori information regarding the likely distributional
scaling properties of the return process. Whether these observed deviations from
unifractal scaling behaviour are sufficiently small for the proposed method to per-
form well is an empirical issue, which will be considered later in the current section
during the density forecasting exercise.

4.2 Benchmark Density Forecasting Model

For the empirical exercise it is necessary to have one or more existing density fore-
casting methods to compare the performance of the new unifractal method against.
Whilst there are many possibilities, attention has been restricted to a single estab-
lished benchmark model using intraday data. This takes the form of the autore-
gressive realised volatility (AR-RV) model of Andersen et al. (2003), which fits a
univariate autoregressive model to the time series of (logarithmic, demeaned) daily
realised volatility measures. Density forecasts for daily returns can then be produced
by combining these point forecasts of volatility with the empirical observation that
daily returns are approximately normally distributed if standardised by their corre-
sponding (time-varying) realised volatilities for each day and their constant sample
mean. Following Andersen et al. (2003), a 5th order AR-RV(5) model was used ini-
tially and this choice was also found to produce the best average density forecasting
performance for the dataset employed here. Finally, the same m-day rolling window
estimation and forecasting scheme was used for both benchmark density forecasting
methods as described in Section 3 for the unifractal method.

4.3 Method for Density Forecast Comparison

The method used for out-of-sample density forecast comparison is the test of equal
predictive ability proposed by Gneiting and Ranjan (2011). The test assumes that
two competing forecasting models are used to produce one-step-ahead out-of-sample
density forecasts for the variable of interest, y. Consistent with the previous nota-
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Figure 1: Estimated unifractal and multifractal scaling functions. Solid lines correspond
to estimated scaling functions for the multifractal case (obtained using the partition
function estimator) and dashed lines correspond to the unifractal estimates (obtained
using the DMA estimator).
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tion, it is assumed that N density forecasts are produced by each forecasting method
and the forecasts produced by the two models at time t (for use at time t + 1) are
denoted by f̃t(y) and g̃t(y), respectively.

The loss function employed by the test is the continuous ranked probability
score10 (CRPS), generalised to allow more importance to be placed on forecast
accuracy in particular regions of the density via the use of a weighting function.
The value of the weighted CRPS for the forecast produced by the first model for
use in period t+ 1, denoted by S(f̃t, yt+1), is given by:

S(f̃t, yt+1) = 2

∫ 1

0

(
I{yt+1 ≤ F̃−1

t (α)} − α
)(

F̃−1
t (α)− yt+1

)
w(α) dα (4.1)

where F̃t(y) is the CDF forecast produced at time t obtained from the PDF forecast
for the same period f̃t(y), I{.} is an indicator function and w(α) is a weighting
function; the authors suggest several possible forms for w(α), which allow more
weight to be placed on forecast accuracy different regions of the density, such as the
centre or tails.

Whenever a closed form expression for (4.1) is unavailable, it can be approxi-
mated easily to any degree of accuracy using the method outlined by Gneiting and
Ranjan (2011). The average value of the weighted CRPS in (4.1) can be calculated
for each of the two density forecasting models over the N out-of-sample periods (for
period m+ 1 until period T ) as:

S
f
=

1

N

T−1∑
t=m

S(f̃t, yt+1) and S
g
=

1

N

T−1∑
t=m

S(g̃t, yt+1) (4.2)

A formal test can then be based on the following test statistic:

t =
S
f − S

g

σ̂n/
√
N

(4.3)

where σ̂2
n is a standard heteroskedasticity and autocorrelation consistent estimator

for the asymptotic variance of
√
N(S

f − S
g
).

Under the null hypothesis that the two density forecasting models have equal
predictive ability, the test statistic in (4.3) is asymptotically normally distributed,
with the null rejected at the α% significance level if |t| > zα/2, where zα/2 is the (1−
α/2) quantile of the standard normal distribution. Given that lower values of the
CRPS correspond to better forecasts, in the case of rejection, the forecasting model
f should be chosen when the sample value of the test statistic is positive and model
g when it is negative.

4.4 Empirical Results

For the empirical density forecasting exercise two different lengths of rolling in-
sample window (values of m in the previous notation) were used for parameter
estimation: the first is a relatively typical choice of 250 working days and the second
is a much shorter period of 50 working days. In principle, models based on intraday
data may be able to produce better forecasts for shorter estimation windows than
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methods using daily data if they can effectively exploit the additional information
contained in the large number of intraday returns available. The shorter 50-day
in-sample window length has been included to explore whether this is the case for
the proposed unifractal method and the AR-RV benchmark model.

Throughout the following the new unifractal density forecasting approach is re-
ferred to as the autoregressive unifractal (AR-UF) model, with the parametric and
nonparametric density variants denoted by AR-UFP(p) and AR-UFNP(p) respec-
tively. As with the benchmark AR-RV model, the optimal order of the autoregressive
structures for the AR-UF methods was also typically found to be 5. For the AR-
UFNP variant employing the nonparametric kernel density estimator, the standard
normal kernel was chosen for the kernel function k(.) in equation (2.2) and the simple
normal reference rule-of-thumb was used to select the bandwidth parameter h11.

Finally, the values for the minimum and maximum window sizes for the DMA
estimator of the self-affinity index that were found to be approximately optimal in
this context were nmin = 5 for all series and nmax = 100 and 300 for the equity and
exchange rate series respectively. These values of nmax coincide approximately with
the number of 5-minute intraday returns observed during a trading day for each
series, suggesting that it is optimal to estimate the scaling behaviour of the process
just over the range of sampling intervals that are of direct interest for the current
application.

Table 1 contains sample values of the CRPS-based test statistic for equal pre-
dictive ability between the new unifractal semiparametric method and the AR-RV
benchmark density forecasting model. In addition to the simple unweighted version
of the test, several of the weighting functions suggested by Gneiting and Ranjan
(2011) have been employed here to place more weight on accuracy in the centre, left
and right tails respectively.

From Table 1 it can be seen that in the majority of cases the null of equal pre-
dictive ability cannot be rejected, implying that the new AR-UF approach matches
the performance of the existing AR-RV method. Comparing the results across the
columns of Table 1, there do not appear to be any universal patterns in relative
forecasting performance across the regions of the density, although arguably the per-
formance of the AR-UF models is somewhat stronger in the left tail of the density.
This suggests that the method should perform well in risk management applications,
such as the calculation of Value at Risk or expected shortfall.

The relative performance of the AR-UF models appears to be stronger for the
EUR/USD and S&P500 data, as indicated by the larger proportion of negative
sample values for the test statistic and larger number of significant values for these
two series. The situation is however reversed for the JPY/USD data where the
majority of the sample values are positive, though almost always too small to be
statistically significant.

Given that the deviation from true unifractal distributional scaling previously
noted during Section 4.1 appears to be smallest for the EUR/USD data and largest
for the JPY/USD data, this observed variation in forecasting performance across
the assets could be attributable to differences in their scaling properties. The large
difference in the number of observations available may also be an additional factor,
with the intraday exchange rate series containing over three times more observations
than the equity index series. Even if the distributional scaling properties of two
return series were identical, a greater number of observations should allow more
accurate estimation and ultimately result in better density forecasts. Given the
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Table 1: Density Forecast Comparison Against AR-RV(5) Benchmark
None Centre Left Tail Right Tail

EUR/USD: 250-day in-sample period
AR-NPUF(5) - estimated AR parameters -1.291 -1.531 -1.221 -1.020
AR-NPUF(5) - fixed AR parameters -1.753* -1.816* -1.485 -1.474
AR-UFP(5) -1.337 -1.107 -1.051 -1.487

EUR/USD: 50-day in-sample period
AR-UFNP(5) - estimated AR parameters -0.452 -0.650 -0.897 0.061
AR-UFNP(5) - fixed AR parameters -1.058 -0.987 -1.473 -0.498
AR-UFP(5) -0.738 -0.587 -1.185 -0.165

JPY/USD: 250-day in-sample period
AR-UFNP(5) - estimated AR parameters 1.690* 1.673* 1.009 1.987**
AR-UFNP(5) - fixed AR parameters 1.208 1.021 0.167 1.891*
AR-UFP(5) 0.175 0.311 0.156 0.155

JPY/USD: 50-day in-sample period
AR-UFNP(5) - estimated AR parameters 0.971 1.016 0.522 1.181
AR-UFNP(5) - fixed AR parameters 0.540 0.530 0.506 0.422
AR-UFP(5) -0.068 0.051 -0.080 -0.037

NASDAQ100: 250-day in-sample period
AR-UFNP(5) - estimated AR parameters -0.833 0.446 -0.523 -0.817
AR-UFNP(5) - fixed AR parameters -1.996** -0.693 -2.111** -1.166
AR-UFP(5) 1.580 1.557 1.473 1.356

NASDAQ100: 50-day in-sample period
AR-UFNP(5) - estimated AR parameters 0.012 0.100 0.191 -0.171
AR-UFNP(5) - fixed AR parameters -1.562 -1.486 -1.381 -1.190
AR-UFP(5) -0.111 0.091 0.527 -0.740

S&P500: 250-day in-sample period
AR-UFNP(5) - estimated AR parameters -0.752 0.295 -1.327 0.206
AR-UFNP(5) - fixed AR parameters -1.937* -1.056 -2.295** -0.576
AR-UFP(5) 1.338 1.521 1.452 0.808

S&P500: 50-day in-sample period
AR-UFNP(5) - estimated AR parameters -1.000 -0.948 -1.358 -0.472
AR-UFNP(5) - fixed AR parameters -1.646* -1.718* -2.295** -0.413
AR-UFP(5) -0.318 0.099 0.483 -1.197

The test statistic is normally distributed under the null of equal predictive ability and the test statistic is
constructed such that significant negative (positive) values imply the new unifractal (AR-RV benchmark)
method provides superior density forecasting performance. Significance at the 10%, 5% and 1% levels is
indicated by one, two or three asterisks, respectively.
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weaker performance of the method for the JPY/USD data, the issue of sample
size does appear to be of lesser importance than the scaling properties of the return
process, however the density forecasting performance for the S&P500 and NASDAQ-
100 series might be closer to that for the EUR/USD data if a larger number of
intraday observations were available for estimation.

Finally, comparing the performance of the different variants of the AR-UF method
it is clear that the simpler fixed parameter variant of the AR-UFNP model performs
better than that in which the parameters are estimated via the KLIC; although the
differences are sometimes small, this result is consistent across the results in Table 1.
It may seem surprising that the more restrictive variant of the AR-UFNP model can
consistently outperform the more flexible specification, but several points should be
noted.

Firstly, as previously noted, empirical studies in the literature on density forecast
combination often find that a simple average of forecasts performs better than a com-
bination chosen to minimise some statistical loss function. A possible explanation
put forward for this finding (see Timmermann, 2006) is the problem of estimation
error; in principle a time-varying parameter vector may be able to provide better
performance than a simple fixed parameter vector, but if in practice it is not pos-
sible to accurately estimate the optimal parameter values then the simple equally
weighted version may perform better on average. The problem of density forecast
combination is closely related to that of autoregressive parameter estimation in the
current context and so similar results may also hold here.

The strong performance of a fixed parameter vector placing equal weight on
each lagged density is however harder to justify in the current time series context,
where it might be expected that the more recent densities would have larger weights,
as is typically the case when fitting standard autoregressive models in a time series
context. However, in the current application the dynamic structure is being imposed
on complete densities and not single observations, so it is not necessarily true that
the same patterns should hold here.

Finally, the loss function used to estimate the autoregressive parameter values
is based on the logarithmic score rather than the CRPS employed for forecast com-
parison and there is no a priori reason to expect the optimal forecasts in a log-score
sense to coincide with those in a CRPS sense. It is possible in principle to estimate
the autoregressive parameters using the same CRPS loss function, however the sub-
stantially greater computational requirements of this approach make it impractical
in the current rolling forecasting environment. Faster and less precise discrete ap-
proximations to the true CRPS were tested, but the resulting forecasts performed
worse than the current method, whilst still being substantially slower to compute.

The forecasting performance of the final AR-UFP specification that employs a
parametric specification for the daily return density is more variable. For the shorter
50-day in-sample period the differences in predictive ability between the AR-UFP
and AR-UFNP specifications are typically small, but for the longer 250-day in-
sample period the differences are often more significant; for the JPY/USD data the
AR-UFP model provides a large increase in predictive ability over the two AR-UFNP
specifications, but for the two equity index series the situation is reversed.

Compared to the AR-UFNP specification, the AR-UFP model imposes a more
restrictive form for the daily return density for each trading day, but at the same
time permits a more flexible dynamic structure by allowing each of the distribu-
tional parameters to evolve independently over time, rather than imposing a single
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autoregressive structure on the complete density function. The differences in rela-
tive forecasting performance between these two specifications across different assets
suggest that for some return series allowing for flexibility in the distributional form
is more important than that in dynamic structure and for others the converse is
true.

The results in Table 1 provide a comparison of average predictive ability over
the complete out-of-sample period. However, it is also possible to calculate the
CRPS differential for each of the days in the out-of-sample period individually to
examine whether the relative forecasting performance of the two methods varies
systematically over time. This period-by-period CRPS differential for the AR-RV
benchmark is plotted in Figure 2 over the complete 750-day out-of-sample period
for the EUR/USD and S&P500 data, together with the daily realised volatility as a
proxy for the latent daily return variance. The period-by-period CRPS differentials
of Figure 2 are constructed using the unweighted version of the CRPS and the longer
250-day rolling estimation window. As with the values of the test statistics reported
in Table 1 above, a negative value of the period-by-period CRPS differential for a
given day implies that the unifractal method had superior predictive ability for that
day, with larger negative values (in absolute terms) implying a larger improvement
over the benchmark AR-RV method.

From Figures 2a and 2c, it is clear that the predictive ability of the new unifrac-
tal forecasting method relative to the AR-RV benchmark varies over the length of
the out-of-sample period. Perhaps most notably, for the S&P500 data the rela-
tive performance of the unifractal method appears to be stronger during the more
volatile period in late 2008 and early 2009, corresponding to the most severe part of
the recent financial crisis. This graphical observation is also supported numerically,
with the average value of the CRPS differential for the 12 month period from the
start of Q3 2008 until the start of Q3 2009 being -0.0137, compared to an average
of -0.0033 for the 750 day out-of-sample period as a whole.

5 Conclusion

This paper has presented a new method for producing semiparametric density fore-
casts for daily financial returns using high-frequency intraday data. Through a new
application of results from the theory of unifractal processes the intraday returns
are appropriately rescaled and the density of daily returns for each trading day is
estimated directly from these rescaled high-frequency observations, allowing for the
use of both parametric and non-parametric estimators for the daily return density.

In contrast to previous methods using realised volatility measures to estimate
and forecast daily return densities, the approach presented here utilises information
about both the sign and magnitude of the intraday returns and allows this intraday
information to influence aspects of the daily return density beyond the second mo-
ment. In addition, the ability to use nonparametric density estimation techniques
avoids the potential difficulties encountered in selecting a suitable parametric model
for asset returns.

The density forecasting performance of the unifractal method was compared
against an autoregressive realised volatility model in an empirical application with
5-minute intraday data on exchange rate and equity index data. The empirical re-
sults show that the unifractal method is competitive with the AR-RV benchmark
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Figure 2: Period-by-period CRPS differential and daily realised volatility.
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and is able to provide statistically significant improvements in density forecasting
performance in several situations. In addition, the gains in predictive ability pro-
vided by the new unifractal method seem to increase during periods of high return
volatility, such as the most severe part of the financial crisis in late 2008 and early
2009.

Directions for future research are numerous, but could include the use of ad-
ditional criteria for density forecast comparison or evaluation; in particular, the
performance of the new semiparametric method in real-world applications such as
risk management and asset pricing could be investigated. Alternatively, it could be
explored whether the density of daily returns for a given period, conditional on the
return observed in the previous period, could be estimated directly from the intra-
day data in an analogous way by exploiting similar distributional scaling results.
Density forecasts for daily returns could then be produced simply by updating the
relevant conditioning information in the estimated conditional density function for
each day, thus avoiding the need to impose a parametric dynamic specification in
order to produce forecasts.
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Notes

1Examples include Calvet and Fisher (2002), Matia, Ashkenazy, and Stanley (2003), Di

Matteo, Aste, and Dacorogna (2005), Selçuk and Gençay (2006), Di Matteo (2007) and

Onali and Goddard (2009).

2These include the multifractal model of asset returns of Mandelbrot, Fisher, and Calvet

(1997), the Markov switching multifractal model of Calvet and Fisher (2004) and the

multifractal random walk of Muzy et al. (2000) .

3Whilst not directly relevant in the current context, as noted by an anonymous ref-

eree this assumption may introduce the possibility of arbitrage opportunities due to the

properties of some unifractal processes (see for example Bender et al., 2007).

4This weaker condition would allow for the distributional scaling relationship to change

or break down at very short or long sampling intervals that are outside the range of interest.

5See for example Delignieres et al. (2006), Mielniczuk and Wojdyllo (2007) and Bashan

et al. (2008).

6The issue of optimally selecting the values of nmin and nmax will be discussed further

during the empirical exercise of Section 5.

7Further details of kernel estimation for dependent data, together with a brief summary

of relevant mixing conditions, can be found in Li and Racine (2006).

8This limitation was not encountered when a similar autoregressive structure was ap-

plied by Engle and Manganelli (2004) in the literature on conditional quantiles, because the

autoregressive coefficients were estimated separately for each of the individual quantiles,

allowing them to vary across the distribution.

9In the realised volatility literature a 5-minute sampling interval has typically been

found to be a good compromise between these two factors (see for example Andersen et al.,

2001).

10The earlier weighted likelihood ratio (WLR) test of Amisano and Giacomini (2007) is

similar in spirit, but uses the logarithmic score of Section 3.3. However, it has subsequently

been demonstrated that the WLR test is not guaranteed to produce valid inference when

a weighting function is used.

11More complex plug-in and cross-validation approaches were also tested, but the for-

mer did not produce significant improvements in density forecasting performance and the

high computational requirements of the latter made it impractical in the current rolling

estimation context.
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