Discussion Papers in Management

On Model Selection in Data Envelopment Analysis: A Multivariate Statistical Approach

C. Serrano Cinca Department of Accounting and Finance University of Zaragoza, Spain

C. Mar Molinero School of Management University of Southampton

F. Chaparro García Department of Accounting Universidad Autónoma de Bucaramanga, Colombia

> Number M02-7 ISSN 1356-3548

May 2002

ON MODEL SELECTION IN DATA ENVELOPMENT ANALYSIS: A MULTIVARIATE STATISTICAL APPROACH

By:

C. Serrano Cinca

Department of Accounting and Finance University of Zaragoza, Spain. http://ciberconta.unizar.es/charles.htm serrano@posta.unizar.es

C. Mar Molinero

Department of Management University of Southampton, UK. camm@socsci.soton.ac.uk

F. Chaparro García

Department of Accounting Universidad Autónoma de Bucaramanga, Colombia fchaparr@www.unab.edu.co

This version: May 2002

Address for correspondence: Carlos Serrano-Cinca: Department of Accounting and Finance, Fac. CC Económicas y Empresariales, Univ. Zaragoza, Gran Vía 2, Zaragoza (50.005) SPAIN

ON MODEL SELECTION IN DATA ENVELOPMENT ANALYSIS: A MULTIVARIATE STATISTICAL APPROACH

ABSTRACT

This paper addresses an important issue in DEA: the selection of inputs and outputs to be included in a model. A two-stage methodology is suggested. The first stage applies a methodology based on comparing reduced models that do not include a particular input/output with extended models that include it. The second stage uses the tools of multivariate statistical analysis to visualize important aspects of the models considered. In this way model selection combines mathematical tools, statistical analysis, and the exercise of judgment. The methodology has the advantage of explaining why some Decision Making Units (DMUs) appear to be efficient under some models and inefficient under other models. It is also possible to produce rankings of DMUs that are a consensus over all the models. The methodology is illustrated with the help of a case study: the efficiency of Spanish banks. It is found that, in this case, there are various defensible definitions of efficiency, and it is suggested that a variety of models should be estimated.

KEY WORDS

Model Selection, Efficiency, Banks, Principal Components Analysis, Data Envelopment Analysis.

ON MODEL SELECTION IN DATA ENVELOPMENT ANALYSIS: A MULTIVARIATE STATISTICAL APPROACH

1. INTRODUCTION

Data Envelopment Analysis (DEA) is becoming widely used to assess the efficiency of organizations with multiple homogeneous decision units that produce several outputs with a variety of inputs. Examples are universities, hospitals, and banks. For an extensive bibliography see Emrouznejad and Thanassoulis (1996). The advantages of DEA, as a non-parametric approach that uses multiple comparisons to identify best practice, are now clear. But there still remain many difficult problems that are not totally resolved in practice. This paper addresses one of them: how to decide which inputs and which outputs to include.

The identification of the inputs and outputs that need to be included in a particular application of DEA presents a variety of problems. Different authors that approach modeling in a given context may choose different sets of inputs and outputs. An example is the study of the efficiency of banking institutions, which will be discussed below. A way out is to include all possible inputs and outputs in the model, but this is not devoid of problems. First, the more inputs and outputs are included in the model, the more data is needed to obtain reliable results; see Pedraja et al (1999). Second, DMUs that use extreme values of inputs or outputs may become 100% efficient. By extreme values we mean the lowest value of an input and the highest value of an output. Clearly, the more inputs and outputs are included in the model, the more units will be efficient. Taking a metaphor from a different context, we would find that the "naughty boy" who puts the least effort in the class and gains low marks would be efficient under a DEA model that includes amount of effort as an input. But if many inputs and outputs are included, some of them may be highly correlated and, therefore, redundant. On the other hand, removing inputs or outputs from a model will decrease efficiency estimates, which will, at best remain constant. This decrease would affect some DMUs more than others.

The efficiency of a given DMU depends, therefore, on the inputs and outputs that have been included in the model. How can we convince a decision maker that the model recommended for implementation is appropriate if the results it generates appear to depend on the analyst's judgment as well as on the data provided? It is clear that a structured approach to input/output selection is both complex and important; see Kittelsen (1993), Parkin and Hollingsworth (1997).

Several methods have been proposed for input/output selection. A possible approach is to use Principal Components Analysis (PCA) as a data reduction tool to select a number of inputs and outputs that are representative of the data available, but the fact that a variable is uncorrelated with others does not mean that is relevant in the modeling of efficiency. The converse is also true: two variables may be correlated but they may both be needed in the modeling of efficiency. Adler and Golany (2001) go as far as working directly with the principal components. This has the advantage that there is no information loss but, apart from the problems that calculating and interpreting the components creates, is little different from using PCA to select a reduced set of outputs and inputs. Norman and Stoker (1991) propose a step-wise approach: they start with a simple model, calculate efficiencies for all DMUs, and correlate such efficiencies with the values of excluded variables; any variable that produces a sufficiently high value of Pearson's correlation coefficient is included in the specification and the model is re-estimated. This approach has the disadvantage that correlations may not be affected by changes in efficiencies; for example, if the inclusion of a variable results in a proportional increase of the efficiencies of all DMUs, the correlation coefficient does not change.

Ruiz, Pastor and Sirvent (2002), RPS from now on, proposed a methodology to select inputs and outputs that has a strong theoretical basis. They explore nested specifications using the property that the inclusion of an additional variable in the input/output data set increases the efficiencies of all DMUs. Their method requires the estimation of a reduced model, which does not include a particular input/output, and an extended model, which includes it. Efficiencies are calculated for each DMU both under the reduced form of the model, and under the extended form of the model and percentage changes are noted. The decision to include or not to include the variable is based on the average percentage impact that its inclusion has on efficiencies. This approach does not suffer from the problems that are inherent to PCA or correlation based approaches, but is very mechanistic. It is difficult, without doing a great deal of extra work, to keep track of the DMUs whose efficiency changes more than a given amount, to understand why the change takes place, and to be aware of which DMUs become 100% efficient under the new specification. Examples of the use of this methodology are Lovell and Pastor (1997), Mancebon and Mar Molinero (2000).

5

A transparent method for input/output selection in DEA was suggested by Serrano Cinca and Mar Molinero (2001), we will refer to this method as SM. This method is not sequential in the sense that efficiencies are estimated for each DMU under all possible input/output combinations. This results in a matrix of models by specification that is visualized using multivariate statistical techniques: PCA and Cluster Analysis. Visualization reveals the way in which the different specifications are related, and the reasons why they are related. Model selection can then benefit from the combination of both a strong statistical basis and the exercise of judgment, but this time exercise of judgment does not mean imposing preconceptions on the model. There are further advantages, in that the reasons why a particular DMU is, or fails to be, efficient under a given model also becomes clear. It is possible for two DMUs to achieve the same efficiency score under a given model, but for different reasons; these reasons also become apparent. Furthermore, since given any two input/output combinations, the correlation between efficiencies is clearly positive, it follows that the first principal component is a measure of size. Thus, the score of a given DMU on the first principal component can be interpreted as an overall measure of efficiency under all possible specifications, and DMU rankings can be produced. This method works well with a small number of inputs and outputs, perhaps 2 or 3 of each, but if the total number of inputs plus outputs increases, the number of possible combinations also increases and its direct application becomes problematic.

This paper attempts to combine the RPS method with the SM method in order to enjoy the benefits that they both bring without having to suffer from their disadvantages. The RPS systematic exploration of possible specifications is followed first, and the results are interpreted using the SM visualization. The procedure is applied to a classical DEA problem: the study of the efficiency of financial institutions, in particular to a data set of 55 Spanish banks. For a review of efficiency issues in financial institutions see Berger and Humphrey (1997). For a review of the Spanish banking context see Grifell-Tatje and Lovell (1997), Dietsch and Lozano-Vivas (2000).

The structure of this paper is as follows. The next section contains some ideas about efficiency of financial institutions. Section 3 contains the full case study of 55 Spanish banks and is subdivided in three parts. First, the RPS method is used to estimate a variety of models; second, the efficiencies obtained under the models estimated are analyzed by means of multivariate analysis techniques; the third part is concerned with the interpretation of results. The paper ends with a concluding section.

2. EFICIENCY IN FINANCIAL INSTITUTIONS

The issue of which inputs and which outputs should be included in a DEA models has been much debated in financial sector applications. It is clear from the review of DEA applications in this area by Berger and Humphrey (1997) that most studies start with a debate on input/output selection. Different authors, when working on the same problem, often use different input/output sets; a given input or output is sometimes included and sometimes excluded from a DEA study; and there is even the case that a variable (deposits) is included both in the input and in the output set. One ends up with the feeling that it is unclear what is meant by efficiency in financial institutions. The matter is further complicated by the fact that it is possible to make a particular financial DMU either efficient or inefficient just by adding or removing variables from the data set. This is, of course, not specific to financial efficiency modeling.

It is usual to make a distinction between the intermediation approach and the production approach in efficiency studies of financial institutions; Athanassopoulos (1997). Under the production approach, banks perform a set of tasks such as: issue loans, collect deposits, produce credit reports, and so on. These are the outputs. Typical inputs are staff and plant. Under the intermediation approach, financial institutions are intermediaries in financial flows: they collect deposits (inputs) and issue loans (inputs) in order to make a profit (output). Neither approach is totally satisfactory, as both capture partial aspects of the way in which a bank operates; see Berger and Humphrey (1997). There is a view, reported by Oral and Yolalan (1990) that no single model should be entertained, but that decision makers should be confronted with a variety of models. In their own words: "having considered different input-output combinations, the managers of The Bank felt more comfortable with the way the study was conducted and had more confidence in the results". But even in this case, there is still a model selection problem, since it has to be decided which input/output combinations should be made explicit to management.

In this study, inputs will be identified by means of a capital letter, and outputs by means of a number. An eclectic set of inputs and outputs that would include both the intermediation and the production approaches would include:

Input A: Number of employees Input B: Fixed assets Input C: Deposits Input D: Operating expenses Output 1: Operating Income Output 2: Deposits Output 3: Loans Output 4: Securities

A further modeling issue is whether the DEA model should include Constant Returns to Scale (CRS) or Variable Returns to Scale (VRS).

The particular inputs, outputs, and returns to scale combinations included in a particular model will be highlighted in an obvious way by simply referring to the model in terms of the letters associated with inputs, the numbers associated with outputs, and v or c depending on whether VRS or CRS apply. For example, A23v would refer to a model with a single input- number of employees (A)-, two outputs- deposits (2) and loans (3)-, which is estimated under variable returns to scale (v). This would correspond to a view of the world in which banks, operating under variable returns to scale, have employees whose tasks are to collect deposits and to issue loans. Note that deposits have been included both as an input and as an output, as they tend to be treated as inputs in the intermediation approach and as an output in the production approach. In order to avoid confusion, no combinations that treat deposits both as inputs and as outputs will be estimated.

3. A CASE STUDY: THE EFFICIENCY OF SPANISH BANKS

To illustrate model selection procedures we have chosen as a case study the efficiency of banks that are established in Spain. The data set refers to all 55 Spanish Banks that have more than one branch. The constraint on the number of branches has been imposed in order to exclude a few international financial institutions that have a testimonial presence in the country. Data on the four inputs and four outputs described in the previous section has been obtained from the 2001 Statistical Yearbook of the Higher Banking Council (Consejo Superior Bancario). The data set has been reproduced in Table 1.

Table 1 about here

The number of input/output combinations with four inputs and four outputs can be calculated. In general, with n inputs and m outputs the number of combinations is given by the formula:

$$? \, {}^{n}_{i?1} \mathbf{C}^{i}_{n} * ? \, {}^{m}_{i?1} \mathbf{C}^{i}_{m} \quad \text{where } \mathbf{C}^{i}_{n} ? \, {}^{?n}_{?i} ? \, \frac{n!}{2! \, 2! \, ?} ? \, \frac{n!}{i! \, 2n \, ? \, i?}$$

In the particular case where n=4 and m=4.

$$? \stackrel{4}{_{i?1}}C_{4}^{i} * ? \stackrel{4}{_{i?1}}C_{4}^{i} ? \stackrel{1}{C}_{4}^{i} ? C_{4}^{1} ? C_{4}^{2} ? C_{4}^{3} ? C_{4}^{4} \stackrel{1}{_{*}} \stackrel{1}{C}_{4}^{1} ? C_{4}^{2} ? C_{4}^{3} ? C_{4}^{4} \stackrel{1}{_{*}} = 225$$

Since each input/output combination can be estimated under VRS or CRS, the total number of possible combinations is 450. The need to limit the search is clear. It is for this reason that the specification search will start with the RPS approach. The results will then be made explicit using the SM visualization and, in the final subsection interpreted by means of Cluster Analysis and Property Fitting, a regression-based approach.

3.1 DEA EFFICIENCY CALCULATION

The RPS approach works as follows. We start with a simple model that contains a single input and a single output. Let this first model be A1v, which contains employees (A) as an input, operating income (1) as an output, and is estimated under variable returns to scale (v). This is next modified to A1c; i.e., it contains the same input and the same output but is estimated under constant returns to scale (c). Since CRS is more restrictive than VRS, the modification results in a decrease of efficiency scores. When efficiency scores for each DMU are compared under VRS and under CRS, it is found that in 28 of the 55 banks (50.9%) the decline in efficiency exceeds 10%. Table 2 summarizes the results obtained when applying

this procedure. It is concluded that, at least for the moment, models should be estimated under VRS.

Table 2 about here

This initial model is next augmented with an extra input or an extra output. Adding an input or an output means that efficiencies can increase but cannot decrease. The percentage of DMUs whose efficiency increases by more than 10% is noted. This is done in sequence with the models AB1v, AC1v, AD1v, A12v, A13v, and A14v. The largest changes are obtained with model A14v (65.5%) which becomes the model to be extended in step 2.

In step 2, the model A14v is simplified from VRS to CRS, and it is found that the efficiencies of 29.1% of the DMUs decline in more than 10%. This decline is considered to be too large, and the VRS specification is retained. Next, the model A14v is augmented with inputs and outputs, one at a time, and the changes noted. The models so considered are: A124v, A134v, AB14v, AC14v, and AD14v. When model AC14v is estimated, it is found that 50.9% of DMUs increase their efficiency by more than 10%. Therefore, this model is now kept as the basis for comparisons.

Finally, in step 3, only reductions in inputs and outputs are considered, something that results in declines in efficiency. If removing an input (output) does not affect efficiencies, it is not necessary to keep that input (output). In this step only models C14v and AC4v are contemplated. The model finally chosen is AC4v. Of course, the search could have been extended: more extensions could have been contemplated, and more simplifications entertained, but there is a moment when a decision has to be taken that the model is satisfactory enough on the basis of more than simple statistical performance. In the process of conducting this search 16 models were estimated. The process described above is summarized in Table 2.

What has exactly been going on as inputs or outputs were added and removed from the model? This question can be answered with the help of the SM approach. Table 3 shows the efficiencies obtained under the 16 models for each of the 55 banks. This data set is treated as a multivariate data set where DMUs are cases and models are variables. Models are listed in Table 3 in the same order in which they were estimated.

Table 3 about here

Simple visual inspection of the data in Table 3 is illuminating. Chase is the only bank that appears 100% efficient under all 16 models. It is more common for banks to appear as 100% efficient under some models but not to achieve full efficiency under other models. This is the case of BBVA, Bankinter, Priv, Coo, Esf, Finanzia, Mpfr, Popular, Pop-e, SCH, and Vas. Some banks obtain low efficiency scores under all models; examples are BNP, Inver, and UBS.

It is also noticeable the case of banks that achieve the same efficiency score under some models but very different scores under other models. For example, Pop-e, an on-line bank, and Coo are both 100% efficient under AC4v, AC14v, and AB14v, but achieve very different scores under other models. Pop-e is 100% efficient under AB1v, AC1v, and C14v, while Coo only achieves 47%, 34%, and 12% on the same models. Coo is 100% efficient under A12v, A14v, A124v, A134v, and AD14v, while Pop-e achieves 63%, 63%, 63%, 66%, and 63% under the same models. The cases of Pop-e and Coo will be further discussed below.

In conclusion, from the fact that a financial institution achieves different scores under different models we deduce that the way in which the model is defined matters. Furthermore, the fact that some institutions obtain the same score under some models and very different scores under other models suggests that there is no single path to efficiency, and that we ought to investigate what lies behind the efficiency score. Institutions may have strong points that are captured by some models, and stand out for the efficient use of an input or an output. It is also be possible that some institutions owe their efficiency values to extreme values of inputs or outputs, and that they are mavericks or self-comparators.

Interesting as they are the insights obtained by mere visual inspection, it is desirable to apply formal multivariate methods to the analysis of Table 3. In this paper we will show how to reveal its main features using PCA, Hierarchical Cluster Analysis (HCA), and Property Fitting (Pro-Fit).

3.2 COMBINING DEA AND PCA

Efficiency values shown in Table 3 have been treated as observations in a matrix where variables are the 16 models and cases are the 55 banks. PCA has been performed on this data set. The limit for eigenvalue extraction was set on 0.8 in line with Joliffe's (1972) recommendation that setting the limit to 1 may throw away too much information. Four components were found to be associated with eigenvalues greater than 0.8. The first principal component accounts for 68.6% of the total variability in the data, a very large proportion but not a surprisingly large amount since the correlations between the 16 variables are positive, which is a consequence of the fact that all the variables are different measures of efficiency; see Chatfield and Collins (1980). This component can clearly be interpreted as an overall measure of efficiency. The second component accounts for only 10.9% of the variability; the third accounts for 8.8%; and the fourth for 5.1%. These results are summarized in Table 4.

Table 4 about here

Component scores were calculated for each bank. Figure 1 shows the scores for the first two principal components. The position of each bank on the component space could be interpreted by visual inspection, but before so doing the figure was completed with the superimposition of the results of Hierarchical Cluster Analysis (HCA). To perform HCA Euclidean distances were calculated between pairs of banks in Table 3. These Euclidean distances were used as input in Ward's method, which maximizes compactness. The dendrogram can be seen in Figure 2.

An examination of the dendrogram shows that banks neatly divide into three clusters. The second cluster can be subdivided into five subclusters. The outlines of the clusters and subclusters have been drawn in Figure 1.

Cluster 3, which contains Chase, Bankinter, BBVA, SCH, Esf, and Popular, is situated on the right hand side of Figure 1. These banks have high factor scores on the first principal component and, as expected, achieve full efficiency under most models. BBVA and SCH are the two leading banks in Spanish banking, and are amongst the European banks with the highest market value. The Popular Bank is often described as the best managed bank in Europe by specialized magazines such as, for example, The Banker. Bankinter is a middle-sized bank that leads Internet banking in Spain, collecting 25% of on-line deposits. Chase Manhattan is one of the few international banks that has been able to penetrate the very competitive Spanish banking system. The presence of Esf amongst the group of "the great and the good" is puzzling. When Table 1 is examined it is found that Esf has the smallest number of employees in the data set, just 31 as opposed to BBVA that has 32447. One would expect models that contain employees as an input to reveal this bank as 100% efficient. This is indeed what is found: Esf achieves only 3% efficiency in model C14v, which does not include employees as an input. We could conjecture that Esf is the "naughty boy" in the class.

Cluster 1, which groups banks associated with low efficiency scores, contains, amongst others, Inver, BNP, UBS, and Uno-e. This cluster is situated on the left hand side of Figure 1, in the region associated with high negative scores in the first principal component.

The various subgroups that make up Cluster 2 are situated between Cluster 1 and Cluster 3 in Figure 1. Cluster 2d (Pop-e, Banesto, SBD) is located near the cluster that groups efficient banks, on the right hand side of Figure 1, and towards the top of this figure. To the left of Cluster 2d, but also on the top of the figure, is Cluster 2b, which includes institutions such as Citybank. On the same vertical as Cluster 2d, but towards the bottom of Figure 1, one finds Cluster 2e, which contains Priv, Coo, and Bcv. This last cluster is clearly distinct from all the others on the representation, suggesting anomalous or maverick behavior.

There is little ambiguity as to the meaning of the first principal component, and the position of a bank along this component has been clearly seen to be associated with efficiency, but no meaning has yet been attached to the remaining principal components. In particular, in order to completely interpret Figure 1 it is necessary to attach meaning to the second principal component.

The standard way of attaching meanings to principal components is to study the matrix of component loadings. This is shown in Table 5. It can be seen in Table 5 that all loadings associated with PC1 are positive. This confirms our conclusion that all models are different ways of measuring "global efficiency". It will often be the case when applying this methodology to model selection in DEA. All variables measure efficiency, and, for this

reason, they will be positively correlated, something that results in a large first principal component which measures an overall effect; see Dunteman (1989) for a discussion. The highest loadings on PC1 are associated with A134v, A14v, A124v, A12v, and A13v.

The loadings associated with PC2 sometimes take positive values and sometimes take negative values, as was to be expected. The models that contain C (deposits as an input) are associated with high positive component loadings in PC2. Deposits as an input are a characteristic of the intermediation approach to modeling efficiency. It is, therefore, to be expected that the second principal component will discriminate between intermediation and production approaches to modeling efficiency. This issue will be further explored below.

The relationships that exist between models and principal components will be next explored in a more formal way by means of Property Fitting, a regression-based approach, and by means of HCA.

Table 5 about here

3.3 RESULTS INTERPRETATION: PROFIT AND CLUSTER ANALYSIS.

Figure 1 has been obtained from the efficiencies achieved under the various models considered applying the RPS methodology. In this subsection, two techniques are used to further interpret the relationships between the different models; to see how models and components are related; and to explore in what sense the different models capture different aspects of efficiency.

To study the relationship between principal components and models we will use Property Fitting (Pro-Fit). A brief introduction to the technique will first be given. It is worth thinking in terms of the data contained in Table 3 and Figure 1. Take, for example, model A1v and consider a selection of banks. Under this model we obtain the following ordering (efficiencies are shown in brackets): Popular (94%), Sbd (64%), Med (60%), Val (25%), and Patagon (13%). If we locate these banks in Figure 1 we see that they are ordered from right to left. It appears that, under this model, efficiency increases as we move from left to right. In other words, there is an association between the position of a bank in Figure 1 and the efficiency that the bank achieves. We can go one step further and suggest that, for any model, there could be an association between the position of a bank in the space of the principal components and the levels of efficiency obtained. But the location of the bank in the space spanned by the principal components is given by its component scores. Hence, we consider the possibility of a relationship between component scores and efficiency under a given model. In formal terms we can write:

$$E_k^m$$
? f ? $PC1_k$, $PC2_k$, $PC3_k$, $PC4_k$?? e_k^m

where E_k^m is the efficiency obtained by bank k under model m; $PC1_k$ is the value of the first component score for bank k; $PC2_k$ is the value of the second component score for bank k, and so on. e_k^m is an error term.

In the absence of any other information, we assume function f to be linear.

$$E_k^m$$
?? $_0$?? $_1PC1_k$?? $_2PC2_k$?? $_3PC3_k$?? $_4PC4_k$? e_k^m

This is just a regression equation where the $?_i$ are the unknowns. It can be estimated using any regression routine and the results drawn in the form of a vector through Figure 1. This vector will point in the direction where efficiencies increase. The representation of the results obtained from model A1v can be seen in Figure 3. It is apparent that, in the direction of this vector, banks are ordered from lowest to highest efficiency under A1v. A full description of Pro-Fit can be found in Schiffman et al (1981). This same procedure has been followed with all 16 models, and all of them have been represented in Figure 3.

The advantage of using a regression-based approach is that full statistical results are generated. Of particular interest are F, R^2 , and coefficient significance levels. These are shown in Table 6. Table 6 also contains information about regression coefficients. The values shown in the table, $?_i$, are not the original regression coefficients, $?_i$, but they are proportional to them. Regression coefficients have been normalized in such a way that, for a given bank, and excluding the constant, the squares of the $?_i$ add up to unity. In the table they are referred to as directional cosines, and are the coordinates of the extreme value of the unit vector associated with the graphical representation of the efficiency under the model under consideration.

Table 6 about here

It can be seen in Table 6 that R^2 values are very high: always above 0.8. The same thing can be said about F statistics, which always exceed the critical value.

The Pro-Fit lines associated with all the models have been represented in Figure 3 on the component score space spanned by PC1 and PC2. Pro-Fit lines are the wind's rose that helps to steer through Figure 1 in the search for efficiency.

All the 16 vectors point towards the right hand side forming a fan. In the center of the fan is PC1, which is consistent with PC1 being an overall measure of efficiency under all the models. There has been much debate on how to rank DMUs; Andersen and Petersen (1993), Doyle and Green (1994), Sinuany-Stern and Friedman (1998), Raveh (2000). Here we see a natural way of creating such a ranking: the ordering in terms of the score of the first principal component under a variety of model specifications.

Had a vector coincided with the first principal component, its associated model could have been taken to be a consensus view of efficiency in banking. However, no directional vector coincides with the first principal component. PC1 appears to divide the fan in at least two sheaves of vectors, some pointing towards the top of the figure and some pointing towards the bottom of the figure. It is interesting to notice that models with C in their definition (deposits as an input), always point towards the top of the figure, confirming that there are at least two different definitions of efficiency in banking: two paradigms. But we are working with projections of a five dimensional representation on the first two coordinates, to be sure that what we observe in PC1 and PC2 represents reality, we have performed a second HCA. To perform this HCA we start from the data in Table 3. Euclidean distances have been calculated between models using banks as observations, and Ward's clustering procedure was applied. The resulting dendrogram is reproduced in Figure 4.

Figure 4 about here

Three clusters can be identified in Figure 4. The outlines of these clusters have been superimposed on Figure 3.

Cluster 1 contains 3 models: AC14v, AC4v, and C14v. The vectors associated with them point towards the top of Figure 3. All of them contain the input C; i.e., they all contain deposits as an input, a characteristic of the intermediation approach. Cluster 2 contains five models: AC1v, AB1v, A1v, AD1v, and A13v. Their associated vectors point towards the top. Finally, Cluster 3 contains the remaining eight models whose associated vectors point towards the bottom of the figure. The relevance of variable returns to scale is highlighted by the fact that vectors A14c and A1c appear to be distinct from the rest both in Figure 3 and in the dendrogram.

The way in which the RPS method proceeds in the search for the "best" model is now clear in Figure 3. The starting point was model A1v, in Cluster 2. Amongst all the models that augment this basic model (see Table 2), it selects A14v, the most distant one in Figure 3, a member of cluster 3. In the next step, it selects again the most distant model amongst all those that are contemplated, AC14v, a model that belongs to Cluster 1. Finally, in the last step, it chooses the most similar model to AC14v containing one less input or output if such a model exists. Since models that are similar to be one being considered are those whose associated vectors are close to the vector associated with AC14v in Figure 3, the selected model, AC4v, also belongs to cluster 1. The path followed by this specification search has been highlighted in bold in Figure 3.

It has already been discussed that there are at least two paradigms in what represents efficiency in banking. What the RPS methodology appears to be doing is to jump from a paradigm to a different one without stopping to think whether, on grounds other than model selection procedures, one paradigm is to be preferred to other alternatives. But, why should a paradigm be preferred to an alternative one? The decision to implement a particular paradigm should be based on a view of the world and not on a set of mathematical rules.

In view of what has been observed in Figures 1 and 3, the following considerations are in line.

i) If the vectors that represent the models had formed a closed fan, and they had not clustered into clear groups, one would have tried to select a model that is at the same time parsimonious and loads high on PC1. In such a case, the RPS approach would be appropriate to select the "best" model.

ii) If models group into several clusters, one should consider entertaining a variety of models, one from each cluster. This would acknowledge the fact that no single definition of efficiency exists. This is the situation faced in the present case study. For example, in the case of Spanish banks such models could be AC4v, A1v, and A14v. These models have been chosen taking into account that they are parsimonious and representative of the models in their clusters. Of course, dealing with a variety of definitions of efficiency means dealing with a multicriteria situation.

Knowing whether we are in case i) or in case ii) requires having a clear view of the relationship that exists between models. This is why visualization is important.

It was pointed our above that the vectors in Figure 3 are the wind's rose that could guide the analyst through Figure 1 in search of efficiency. We now make use of this wind's rose in order to gain insights into the efficiency of all 55 banks. As the wind of efficiency blows towards the East in Figure 1, the more to the right of Figure 1 a bank is situated, the more efficient it is under all definitions of efficiency, and the more satisfied should management be with its performance. But we could go beyond the mere efficiency score and assess why a bank achieves a certain level of efficiency under a given model and not under Take for example, Pop-e and Coo, two institutions that achieve similar another one. efficiency levels under some models but very different efficiency levels under other models. It has already been observed that both banks plot on the same vertical line in Figure 1, but Pop-e is situated towards the top of the figure, while Coo is situated towards the bottom of the figure. Looking Figure 3, we notice that vectors in Clusters 1 and 2 point towards the location of this bank in Figure 1. In particular, the model whose vector points towards Pop-e is C14v. This would be the model that would show Pop-e in the best light. An examination of Table 3 confirms that under this model, Pop-e achieves 100% efficiency. The vector associated with model C14v does not, by any stretch of the imagination, point towards Coo, something that would be consistent with Coo achieving a low efficient score under this model. Again, one could observe from Table 3 that the efficiency of Coo under model C14v is only 12%. Further work of the way in which these banks operate would relate the way they conduct their business to an appropriate DEA benchmark. Such work is clearly outside the scope of this paper, whose main concern is model selection procedures.

4 CONCLUSIONS

It has been argued that choosing an appropriate set of inputs and outputs to be included in a DEA model is both problematic and important. Model selection procedures based on data reduction may miss important inputs or outputs that should be included in a model. Methods that are based on comparison of efficiencies using correlation procedures may produce misleading results. Just adding extra inputs or extra outputs may throw as efficient cases that are just extreme values.

Two model selection procedures were identified as satisfactory, one due to Ruiz, Pastor, and Sirvent (2002), which is based on comparing a reduced and an augmented model, and one due to Serrano Cinca and Mar Molinero (2001), which visualizes the relationships between models. Unfortunately, the first approach suffers from being mechanistic and relatively obscure, while the second one may generate too many models for consideration. A hybrid of the two approaches has been demonstrated to be sound and to be revealing enough to throw light on the main features of the situation at hand.

A case study, banks in Spain, has been used to demonstrate how the procedure works. There has been much debate on how to measure efficiency in financial institutions. The proposed method has visualized the various definitions of efficiency, and has shown that, in this case there is no holy grail to be found. There is no such thing as "the best model". Efficiency in a bank is a multicriteria concept, and either should be studied in a variety of ways or a decision must be made on what is the appropriate benchmark for a given bank. The procedure proposed here has made the choice explicit.

The suggested methodology has further advantages. DMUs can be ranked in an unambiguous way under a variety of specifications. It is possible to explain why two DMUs achieve different efficiencies under a given model. Finally, even when two DMUs achieve the same level of efficiency, it is possible to explain in which way they differ, when they do, and, by so doing, their strong points can be identified.

REFERENCES

- Adler, N. and Golany, B. (2001): Evaluation of deregulated airline networks using data envelopment analysis combined with principal components analysis with an application to Western Europe. European Journal of Operational Research, 132, 260-273.
- Andersen P,. and Petersen N.C. (1993): A procedure for ranking efficient units in data envelopment analysis. Management Science, 39, 1261-1264.
- Athanassopoulos, A.D. (1997): Service quality and operating efficiency synergies for management control in the provision of financial services: Evidence from Greek bank branches, European Journal of Operational Research, 98 (2), 300-313
- Berger, A.N., and Humphrey, D.B., (1997): Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research, 98 (2), 175-212.
- Chatfield, C. and Collins, A.J. (1980): Introduction to Multivariate Analysis. Chapman and Hall, London.
- Dietsch, M. and Lozano-Vivas, A. (2000): How the environment determines banking efficiency: a comparison between French and Spanish industries. Journal of Banking and Finance, 24, 985-1004.
- Doyle, J., and Green, R. (1994): Efficiency and cross-efficiency in DEA: derivations, meanings and uses. Journal of the Operational Research Society, 45, 567-578.
- Dunteman G.H. (1989): Principal Component Analysis. Sage Publications Ltd. London, UK.
- Emrouznejad, A. and Thanassoulis, E. (1996): An extensive bibliography of Data Envelopment Analysis. Journal Papers. Working paper. Warwick Business School.
- Grifell-Tatje, E and Lovell, C.A.K. (1997): The sources of productivity change in Spanish banking. European Journal of Operational Research, 98, 364-380.
- Joliffe, I.T. (1972): Discarding variables in Principal Components Analysis. Applied Statistics, 21, 160-173.
- Kittelsen, S. A. C. (1993): "Stepwise DEA; Choosing Variables for Measuring Technical Efficiency in Norwegian Electricity Distribution", Memorandum No. 6/1993, Department of Economics, University of Oslo.
- Lovell, C.A.K, and Pastor, J.T (1997): Target setting: an application to a bank branch network. European Journal of Operational Research, 98, 290-299.
- Mancebon, M.J. and Mar Molinero, C. (2000): Performance in primary schools. Journal of the Operational Research Society, 51, 843-854.
- Norman, M. and Stocker, B. (1991): Data Envelopment Analysis: the assessment of performance. John Wiley and Sons. Chichester. UK.

- Parkin, D. and Hollingsworth, B. (1997): Measuring production efficiency of acute hospitals in Scotland, 1991-94: validity issues in Data Envelopment Analysis.
- Pedraja, F.; Salinas, J; Smith, P. (1999): On the quality of the Data Envelopment Analysis model. Journal of the Operational Research Society, 50, 636-645.
- Raveh, A. (2000): The Greek banking system: reanalysis of performance. European Journal of Operational Research, 120, 525-534.
- Ruiz J.L.; Pastor, J.; Sirvent, I. (2002): A statistical test for radial DEA models. Operations Research, forthcoming.
- Serrano Cinca, C. and Mar Molinero, M. (2001): Selecting DEA specifications and ranking units via PCA, Discussion Papers in Management, M01-3, University of Southampton.
- Schiffman, J.F., Reynolds, M.L. and Young, F.W. (1981): Introduction to Multidimensional Scaling: Theory, Methods and Applications. Academic Press, London.
- Sinuany-Stern Z., and Friedman L. (1998): DEA and the discriminant analysis of ratios for ranking units. European Journal of Operational Research, 111, 470-478.

		Innut A	Input B	Input C	Innut D	Output 1	Output 3	Output 4
DMU	Name	Employ	Fixed	Output 2	Evnenses	Income	Loans	Securities
		стрюу.	assets	Deposits	LAPENSES	meome	Loans	Occumies
Alt	Altae	65	3,626	58,780	11,407	9,527	10,404	139,371
And	Andalucia	1,541	75,494	2,476,217	108,148	234,555	3,039,337	8,099,919
Ara	Arabe Español	70	32,066	27,478	18,846	6,575	94,046	167,848
Ast	Asturias	293	11,838	488,912	23,773	30,439	483,823	1,485,420
Atl	Atlantico	2,413	140,473	5,367,464	220,554	274,656	4,260,459	15,215,941
Bale	Credito Balear	431	23,552	660,927	34,321	61,262	670.671	2.026.846
Banesto	Español de credito	10.919	821.815	23.511.523	887,100	1.282.984	20.297.889	68.208.035
Bankinter	Bankinter	2,583	106,129	12.017.792	342,682	449.574	13.878.124	38,256,390
Barclavs	Barclavs	1.333	91,703	2.937.222	124,576	180,719	2.867.380	8.866.400
BBVA	Bilbao Vizcava Argentaria	32,447	2.548.842	95,180,264	3.453.797	4.958.141	91,895,926	285.710.251
Bcf	Bancofar	75	3.732	134.845	6.630	6.607	201,928	478.248
Bcv	Bancoval	140	3 059	769 622	14 843	25 575	79 277	1 633 364
BNP	BNP Paribas España	466	29,037	632 947	52 284	48 477	524 125	1 842 303
Bsn	Bsn Banif	548	18 859	2 024 930	65 756	105 348	512 148	4 627 764
Cast	Castilla	861	35,386	1 632 070	59 949	122 583	1 696 038	5 020 127
Chase	Chase Manhattan	138	1 868	203 440	21 670	133,851	1 166 998	1 595 548
Citybank	Citybank	1 025	33 970	980,363	186 654	178 263	2 513 575	4 660 955
Coo	Cooperativo Español	119	1 499	679,833	9 476	15 397	259 409	1 628 551
DB	Deutsche Bank S A F	2 852	142 787	4 164 088	311 616	340 994	6 258 339	14 898 131
FS	Espirito Santo	2,002	9 209	778 413	29 898	30 384	894 609	2 481 333
Esf	Esfinde	200	2 300	28 042	2 3 3 6	3 967	58 661	117 081
Est	Etcheverria	66	2,000	149 980	5,000	5 471	85 552	390 512
Evt	Extremadura	226	4 628	140,000	15 073	17 / 38	338 453	1 100 /16
Ehk	Finanzas e inversiones	220	1/ 511	522 583	25 761	20 011	175 28/	1 2/6 211
Finanzia	Finanzia	465	1 859	11 575	11 939	54 080	1 328 76/	1 306 853
Cali	Galicia	660	25 623	1 371 071	49,505	106 256	1,520,704	1,000,000
Gall	Gallego	501	20,020	1,071,971	49,509	100,230	740 250	2 042 606
Gui	Guinuzeoano	1 160	62 506	2 007 401	129 202	49,079	2 022 600	2,342,000
Halifay	Halifax Hispania	1,109	2 026	2,997,491	7 205	2 1 / 1	2,022,090	222.265
	Horroro	1 221	2,930	2 729 126	106 447	1/2 097	211,772	9 251 207
Invor	Inversion	1,231	9 25 4	2,730,120	20 465	142,007	2,000,000	199 059
Koo	Bankoa	247	0,004	206 202	10 204	23,207	110,903	400,950
rua Luc	Dalikua Lugo Egnoñol	240	22,113	461 220	19,394	24,000	290 107	1,207,717
Lus	Luso Espanoi Marab	200	4,903	2 401,220	23,430	23,302	2 240 020	7 200 072
Mod	Naton Eurobook Mediterropee	1,100	44,010	2,423,020	99,997	132,003	2,349,920	1,299,913
Mofr		52	9,200	1 571 107	6,000	5,400	1 560 791	242,043
Mur	Muroio	329	7,244	1,371,127	22,304	22,095	1,000,701	4,700,419
Mur	Dester	2 010	1,709	407,002	23,909	32,007	679,004	1,079,107
Fd5 Dotogon	Fasion Detagon Internet Bank	3,019	140,977	0,000,000	ZZZ, 137	16 402	0,109,900	2 1 4 5 6 9 0
Palayon	Palagon Internet Bank	321	3,903	990,330	30,223	10,403	90,797	2,140,000
Pop-e	Fopular-e Depular Fopoñol	49	272 265	14 704 604	4,010	2,330	14,121	00,000
Popular	Popular Espanoi	1,011	373,300	14,721,031	01 500	1,101,095	14,100,200	44,102,506
Priv	BBVA Plivaliza	172	20,205	1,023,173	21,302	34,331	371,000	2,430,994
Pue	Pueyo banca	100	1,343	204,304	7,780	11,400	177,440	093,954
Pym	Pequena y Med Empresa	418	14,784	889,218	39,162	33,698	373,324	2,190,922
500	Sabadell	5,387	178,325	11,474,558	467,193	624,583	8,940,296	32,350,005
SCH	Santander Central Hispano	27,576	2,107,087	15,813,883	2,488,045	3,841,435	74,308,540	228,424,351
Sim	Simeon Salkarak Okal	436	18,334	951,903	28,774	32,504	848,555	2,781,135
Solbank	Soldank Sod	751	/8,/26	1,222,884	62,684	83,234	1,320,345	3,828,797
UBS	UBS Espana	112	4,855	53,192	18,868	3,983	23,813	149,065
Uno-e		129	7,907	154,127	39,322	1,353	412	347,988
Urq	Urquijo	1,004	104,057	2,682,939	112,860	133,744	2,303,302	1,182,040
val	valencia	1,213	60,275	2,8/7,276	91,553	159,237	3,216,787	9,062,892
vas	vasconia	509	2,205	889,530	39,115	/1,618	1,176,502	2,994,677
Vit		359	28,775	961,328	26,626	41,831	931,207	2,880,489
/ ~ -			n /// /////	· · · · · · · · · · · · · · · · · · ·	a 201 - 10 O			

 Table 1: The 55 banks, and the values of inputs and outputs.

	Step 1								Step	02			Step 3					
	A1v	A1c	AB1v	AC1v	AD1v	A12v	A13v	A14v	A14v	A14c	A124v	A134v	AB14v	AC14v	AD14v	AC14v	C14v	AC4v
Employees	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
Assets			Х										Х					
Deposits				Х										Х		Х	Х	Х
Expenses					Х										Х			
Income	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Deposits						Х					Х							
Loans							Х					Х						
Securities								Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
CRS		Х								Х								
VRS	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
T (%)		50.9	12.7	10.9	21.8	63.6	30.9	65.5		29.1	1.8	1.8	10.9	50.9	36.3		56.3	0.0

T = Percentage of firms whose efficiency changes by at least 10% in the new model

 Table 2: Results of the model specification search

DMU \dot{v} <th></th> <th>></th> <th>></th> <th>~</th> <th></th> <th><u> </u></th>													>	>	~		<u> </u>
N N	DMU	111	110	B1v	C1V	D1V	12V	13v	14v	14c	1241	1341	314	C141)14v	141	C4v
Alt 55 15 58 57 55 59 55 18 54 53 56 57 55 3 51 Ara 7 10 47 63 47 47 49 49 49 49 49 69 49 56 68 82 88 68 72 72 72 72 72 74 74 84 94 94 95 74 48 94 94 95 74 44 95 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 76 76 74 84 49 44 46 16 66 66 66 </th <th></th> <th>4</th> <th>×</th> <th>A</th> <th>Ā</th> <th>A</th> <th>А</th> <th>A</th> <th>A</th> <th>A</th> <th>Ai</th> <th>Ą</th> <th>AE</th> <th>AC</th> <th>AL</th> <th>S</th> <th>A</th>		4	×	A	Ā	A	А	A	A	A	Ai	Ą	AE	AC	AL	S	A
And 53 16 55 65 65 65 74 74 74 94 94 94 94 96 94 55 69 Ast 18 11 11 18 18 22 64 47 51 46 49 49 49 49 49 49 49 44 84 84 Att 45 12 46 46 32 21 35 34 45 35 35 49 61 30 49 94	Alt	55	15	58	57	55	59	55	55	18	59	55	58	57	55	3	51
Ara 47 10 47 63 47 47 49 49 49 56 39 40 39 44 44 86 44 Att 45 12 18 10 18 22 22 12 35 39 35 39 44 44 48 84 Att 45 12 12 22 12 22 23 35 35 35 35 49 51 100	And	53	16	55	65	68	54	53	53	38	54	53	56	87	83	83	85
Asti 18 11 18 18 12 64 47 53 39 40 39 44 44 8 44 Bale 18 15 12 16 64 47 25 27 27 72 72 72 72 72 72 72 72 72 72 72 72 73 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 76 76 78 82 BEVA 100 10 100 <th>Ara</th> <th>47</th> <th>10</th> <th>47</th> <th>63</th> <th>47</th> <th>47</th> <th>49</th> <th>49</th> <th>18</th> <th>49</th> <th>49</th> <th>49</th> <th>69</th> <th>49</th> <th>5</th> <th>69</th>	Ara	47	10	47	63	47	47	49	49	18	49	49	49	69	49	5	69
Atal 45 12 40 49 44 51 49 49 49 49 49 49 55 35 49 51 30 49 30 100 <th< th=""><th>Ast</th><th>18</th><th>11</th><th>18</th><th>18</th><th>26</th><th>34</th><th>25</th><th>39</th><th>35</th><th>39</th><th>40</th><th>39</th><th>44</th><th>44</th><th>8</th><th>44</th></th<>	Ast	18	11	18	18	26	34	25	39	35	39	40	39	44	44	8	44
Banesto 72 12 73 75 76 66 66 68 86 <t< th=""><th>Ati Balo</th><th>45 10</th><th>12</th><th>40 10</th><th>40</th><th>47</th><th>27</th><th>40 21</th><th>49 25</th><th>44 24</th><th>51 25</th><th>49 25</th><th>49 25</th><th>82 40</th><th>66 51</th><th>80 20</th><th>82 40</th></t<>	Ati Balo	45 10	12	40 10	40	47	27	40 21	49 25	44 24	51 25	49 25	49 25	82 40	66 51	80 20	82 40
Dating 17 18 10 12 100 <t< th=""><th>Banasto</th><th>72</th><th>12</th><th>72</th><th>75</th><th>32 75</th><th>32 72</th><th>Z1 72</th><th>72</th><th>28</th><th>33 72</th><th>33 72</th><th>33 72</th><th>49 Q/</th><th>85</th><th>30 Q/</th><th>49 Q/</th></t<>	Banasto	72	12	72	75	32 75	32 72	Z1 72	72	28	33 72	33 72	33 72	49 Q/	85	30 Q/	49 Q/
Barclays 34 14 34 35 37 150 137 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 100 <th>Bankinter</th> <th>87</th> <th>18</th> <th>100</th> <th>87</th> <th>87</th> <th>100</th>	Bankinter	87	18	100	87	87	100	100	100	100	100	100	100	100	100	100	100
BBVA 100 <th>Barclays</th> <th>34</th> <th>14</th> <th>34</th> <th>35</th> <th>37</th> <th>50</th> <th>37</th> <th>46</th> <th>46</th> <th>50</th> <th>46</th> <th>46</th> <th>82</th> <th>67</th> <th>78</th> <th>82</th>	Barclays	34	14	34	35	37	50	37	46	46	50	46	46	82	67	78	82
Bcv 35 19 42 35 37 95 35 86 80 95 86	BBVÁ	100	16	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Berv 35 19 42 35 37 95 36 86 80 95 86 8	Bcf	44	9	50	44	44	61	60	69	43	69	72	69	74	69	3	74
BSn 15 11 15 15 17 27 16 29 28 29 30 29 42 29 23 42 Bsn 15 15 15 15 15 33 43 28 41 41 43 41 42 74 79 67 74 Citybank 43 43 43 43 43 45 49 100 43 100 12 100 <th>Bcv</th> <th>35</th> <th>19</th> <th>42</th> <th>35</th> <th>37</th> <th>95</th> <th>35</th> <th>86</th> <th>80</th> <th>95</th> <th>86</th> <th>86</th> <th>86</th> <th>86</th> <th>11</th> <th>86</th>	Bcv	35	19	42	35	37	95	35	86	80	95	86	86	86	86	11	86
Bsn 21 20 21 21 27 75 21 60 59 75 60 60 62 65 48 62 Cast 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 10 100 <t< th=""><th>BNP</th><th>15</th><th>11</th><th>15</th><th>15</th><th>17</th><th>27</th><th>16</th><th>29</th><th>28</th><th>29</th><th>30</th><th>29</th><th>42</th><th>29</th><th>23</th><th>42</th></t<>	BNP	15	11	15	15	17	27	16	29	28	29	30	29	42	29	23	42
Cast 15 15 15 15 13 34 28 41 41 43 41 42 74 79 67 74 Citybank 42 18 98 84 42 42 45 43 43 45 49 100	Bsn	21	20	21	21	27	75	21	60	59	75	60	60	62	65	48	62
Cirybank 42 18 43 84 42 42 45 43 45 45 49 100 43 100 100 Coo X 13 47 34 43 100 1	Cast	15	15	15	15	33	43	28	41	41	43	41	42	74	79	67	74
Chase 100 </th <th>Citypank</th> <th>42</th> <th>18 12</th> <th>49 17</th> <th>84 24</th> <th>42 12</th> <th>42 100</th> <th>45 40</th> <th>43</th> <th>34 იე</th> <th>43</th> <th>45 100</th> <th>49</th> <th>100</th> <th>43</th> <th>100</th> <th>100</th>	Citypank	42	18 12	49 17	84 24	42 12	42 100	45 40	43	34 იე	43	45 100	49	100	43	100	100
DB 130 100	Chase	34 100	100	47	34 100	40	100	4Z 100	100	92 100	100	100	100	100	100	12	100
ES 20 12 21 51 42 66 63 66 69 67 73 66 43 73 Esf 100 13 100 12 14 14 14 14 14 14 14 14 14 14 14 14 16 12 19 100 12 12 12 11 11 11 11 15 52 26 48 52 48 48 74 45 69 77 81 Inver 19 10 12 12 12 12	DB	53	12	56	74	54	53	56	54	37	54	56	57	100	55	100	100
Esf 100 13 100	ES	20	12	21	20	21	51	42	66	63	66	69	67	73	66	43	73
Etch 49 9 61 49 51 72 51 71 40 72 71 76 74 73 2 74 Etct 19 8 24 19 29 38 26 42 36 42 43 42 47 53 2 47 Fiba 21 13 21 21 21 21 21 21 21 21 21 21 24 24 22 24 36 29 100 28 100 100 Gali 17 16 17 17 35 45 31 46 46 46 46 46 47 452 69 74 Gai 11 11 11 15 52 26 48 48 52 48 48 74 53 57 5 76 Herr 16 12 12 13 <t< th=""><th>Esf</th><th>100</th><th>13</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>28</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>3</th><th>100</th></t<>	Esf	100	13	100	100	100	100	100	100	28	100	100	100	100	100	3	100
Ett 19 8 24 19 29 38 26 42 36 42 43 42 47 53 2 47 Fbk 21 13 21 21 24 42 21 41 436 42 436 42 41 41 45 41 2 45 Finanzia 16 12 12 12 22 31 16 35 34 35 35 56 56 444 56 Gai 11 11 11 15 52 26 48 48 52 48 48 74 52 69 74 Halifax 11 11 11 15 52 26 48 48 52 48 48 74 52 69 74 Halifax 14 14 14 44 44 44 44 44 44 44 44	Etch	49	9	61	49	51	72	51	71	40	72	71	76	74	73	2	74
Fib 21 13 21 24 42 21 41 36 42 41 41 45 41 2 45 Finanzia 16 12 19 100 22 16 36 24 22 24 36 29 100 28 100 100 Gali 17 16 17 17 35 45 31 46 46 46 46 46 46 46 46 46 46 46 47 45 41 45 60 57 29 57 60 62 76 57 5 76 Herr 19 10 21 23 19 24 19 26 15 24 22 23 31 22 3 31 22 3 31 22 3 31 22 3 31 22 3 31 32 34 44 <t< th=""><th>Ext</th><th>19</th><th>8</th><th>24</th><th>19</th><th>29</th><th>38</th><th>26</th><th>42</th><th>36</th><th>42</th><th>43</th><th>42</th><th>47</th><th>53</th><th>2</th><th>47</th></t<>	Ext	19	8	24	19	29	38	26	42	36	42	43	42	47	53	2	47
Finanzia 16 12 19 100 22 16 36 24 22 24 36 29 100 28 100 100 Gali 17 16 17 17 35 45 31 46 46 46 46 46 46 46 46 46 74 81 64 74 Gali 11 11 11 11 15 52 26 48 48 52 48 48 74 52 69 74 Haiffax 41 4 51 45 41 45 60 57 29 57 60 62 76 57 5 76 Herr 16 12 16 16 12 19 22 15 24 22 23 31 22 33 31 22 23 31 22 23 31 32 31	_ Fbk	21	13	21	21	24	42	21	41	36	42	41	41	45	41	2	45
Gain 17 10 17 13 43 43 43 46 46 46 74 61 64 74 Gain 112 9 12 12 22 31 16 35 34 35 35 56 56 64 45 Gui 11 11 11 15 52 26 48 48 52 48 48 74 52 69 74 Haiffax 41 4 51 45 41 45 60 57 29 57 60 62 76 57 5 76 Herr 16 12 16 16 24 47 35 46 44 47 46 46 81 70 77 81 Koa 19 10 19 27 34 22 41 44 44 44 47 42 46 46 <	Finanzia	16	12	19 17	100	22	16 45	36	24	22	24	36	29	100	28	100	100
Gui 11 15 52 26 48 48 52 48 48 74 55 76 Herr 16 12 16 16 24 47 35 46 46 47 46 46 81 70 77 81 Inver 19 10 21 23 19 24 19 22 15 24 22 23 31 22 3 31 Koa 19 10 19 19 27 34 28 40 36 41 41 41 44 46 44 44 79 66 74 79 Med 60 7 60 60 60 73 63 7	Gall	12	10 Q	17	17	30 22	40 31	১। 16	40 35	40 37	40 35	40 35	40 35	74 56	56	04 11	74 56
Halifax H1 H2 H3 H4	Gui	11	11	11	11	15	52	26	48	48	52	48	48	74	52	69	74
Herr 16 12 16 16 24 47 35 46 46 47 46 46 81 70 77 81 Inver 19 10 21 23 19 24 19 22 15 24 22 23 31 22 3 31 Koa 19 10 19 19 27 34 28 40 36 40 42 40 46 46 3 46 Lus 18 9 23 18 22 36 25 41 36 41 41 41 44 47 46 46 47 77 77 77 81 Med 60 7 60 60 60 73 63 74 32 74 74 74 76 74 2 76 Mur 17 11 20 17 28 32 35 43 41 43 47 45 45 84 76 83	Halifax	41	4	51	45	41	45	60	57	29	57	60	62	76	57	5	76
Inver 19 10 21 23 19 24 19 22 15 24 22 23 31 22 3 31 Koa 19 10 19 19 19 27 34 28 40 36 40 42 40 46 46 3 46 Lus 18 9 23 18 22 36 25 41 36 41 41 41 46 41 2 46 Mch 12 12 12 22 45 32 44 44 44 44 79 66 74 79 Med 60 7 60 60 63 74 32 74 74 74 76 74 2 76 Mur 17 11 20 17 28 32 35 43 41 43 47 44 58 55 <th>Herr</th> <th>16</th> <th>12</th> <th>16</th> <th>16</th> <th>24</th> <th>47</th> <th>35</th> <th>46</th> <th>46</th> <th>47</th> <th>46</th> <th>46</th> <th>81</th> <th>70</th> <th>77</th> <th>81</th>	Herr	16	12	16	16	24	47	35	46	46	47	46	46	81	70	77	81
Koa 19 10 19 19 27 34 28 40 36 40 42 40 46 46 3 46 Lus 18 9 23 18 22 36 25 41 36 41 41 41 46 41 2 46 Mch 12 12 12 12 12 22 45 32 44 44 45 44 44 79 66 74 79 Med 60 7 60 60 60 73 63 74 32 74 74 74 76 74 2 76 Mpfr 14 11 16 14 19 55 40 62 61 62 63 100 76 70 64 76 Mur 17 11 20 17 28 32 55 32 58 43 <th>Inver</th> <th>19</th> <th>10</th> <th>21</th> <th>23</th> <th>19</th> <th>24</th> <th>19</th> <th>22</th> <th>15</th> <th>24</th> <th>22</th> <th>23</th> <th>31</th> <th>22</th> <th>3</th> <th>31</th>	Inver	19	10	21	23	19	24	19	22	15	24	22	23	31	22	3	31
Lus 18 9 23 18 22 36 25 41 36 41 41 41 46 41 2 46 Mch 12 12 12 12 22 45 32 44 44 45 44 44 79 66 74 79 Med 60 7 60 60 60 73 63 74 32 74 74 74 76 74 2 76 Mpfr 14 11 16 14 19 55 40 62 61 62 63 100 76 70 64 76 Mur 17 11 20 17 28 32 35 43 41 43 47 44 58 55 32 58 Patagon 13 05 18 13 13 52 13 48 45 52	Koa	19	10	19	19	27	34	28	40	36	40	42	40	46	46	3	46
Mcn 12 74 74 74 74 74 76 74 2 76 Mur 17 11 20 17 28 32 35 43 41 43 47 44 58 55 32 58 Patagon 13 05 18 13 13 52 13 <t4< th=""><th>Lus</th><th>18</th><th>9</th><th>23</th><th>18</th><th>22</th><th>36</th><th>25</th><th>41</th><th>36</th><th>41</th><th>41</th><th>41</th><th>46</th><th>41</th><th>2</th><th>46</th></t4<>	Lus	18	9	23	18	22	36	25	41	36	41	41	41	46	41	2	46
Mied 60 7 60 60 73 63 74 32 74 76 74 82 23 52 34 41 13 17 35 13 14 13 100 100	Mod	12	12	12	12	22	45 72	32	44	44	45 74	44	44	79	66	74	79
Mur 17 11 10 17 28 32 35 43 41 43 47 44 58 55 32 58 Pas 41 10 44 44 48 47 43 45 40 47 45 45 84 76 83 84 Patagon 13 05 18 13 13 52 13 48 45 52 48 60 52 48 23 52 Pop-e 63 5 100 100 63 63 66 63 12 63 66 100 10	Mnfr	14	11	16	14	00 19	73 55	03 40	74 62	52 61	62	63	100	76	74	∠ 64	76
Pas 41 10 44 44 48 47 43 45 40 47 45 45 84 76 83 84 Patagon 13 05 18 13 13 52 13 48 45 52 48 60 52 48 23 52 Pop-e 63 5 100 100 63 63 66 63 12 63 66 100 100 63 100 100 94 94 41 94 94 100 100 100 100 95 Priv 42 33 42 42 46 100 42 100 100 100 100 100 100 100 100 31 100 94 94 41 94 94 100 100 100 100 100 100 31 100 94 94 100 100 100 100 </th <th>Mur</th> <th>17</th> <th>11</th> <th>20</th> <th>17</th> <th>28</th> <th>32</th> <th>35</th> <th>43</th> <th>41</th> <th>43</th> <th>47</th> <th>44</th> <th>58</th> <th>55</th> <th>32</th> <th>58</th>	Mur	17	11	20	17	28	32	35	43	41	43	47	44	58	55	32	58
Patagon 13 05 18 13 13 52 13 48 45 52 48 60 52 48 23 52 Pop-e 63 5 100 100 63 63 66 63 12 63 66 100 100 63 100 100 Popular 94 16 100 100 94 94 94 41 94 94 100 100 100 100 95 Priv 42 33 42 42 46 100 42 100 100 100 100 100 100 100 100 100 31 100 Pue 22 7 33 22 44 38 26 39 29 39 39 58 43 69 2 43 Sbd 64 12 95 67 66 65 64 64 42 65 64 95 87 74 87 87 ScH	Pas	41	10	44	44	48	47	43	45	40	47	45	45	84	76	83	84
Pop-e 63 5 100 100 63 63 66 63 12 63 66 100 100 63 100 100 94 95 87 74 87 87 87 87 87 87 87 87 87 87 87 87 87 87	Patagon	13	05	18	13	13	52	13	48	45	52	48	60	52	48	23	52
Popular 94 16 100 100 100 94 94 94 41 94 94 100 100 100 100 95 Priv 42 33 42 42 46 100 42 100	Рор-е	63	5	100	100	63	63	66	63	12	63	66	100	100	63	100	100
Priv 42 33 42 42 46 100 42 100 <th>Popular</th> <th>94</th> <th>16</th> <th>100</th> <th>100</th> <th>100</th> <th>94</th> <th>94</th> <th>94</th> <th>41</th> <th>94</th> <th>94</th> <th>100</th> <th>100</th> <th>100</th> <th>100</th> <th>95</th>	Popular	94	16	100	100	100	94	94	94	41	94	94	100	100	100	100	95
Pue 22 7 33 22 44 36 26 39 29 39 39 56 43 69 2 43 Pym 13 08 14 13 17 36 15 37 36 37 37 38 44 40 28 44 Sbd 64 12 95 67 66 65 64 64 42 65 64 95 87 74 87 87 SCH 91 14 91 94 100 92 93 93 100 93 93 94 100<	Priv	42	33	42	42	46	100	42	100	100	100	100	100	100	100	31	100
Sbd 64 12 95 67 66 65 64 64 42 65 64 95 87 74 87 87 SCH 91 14 91 94 100 92 93 93 100 93 93 94 100	Pue	22 13	7 08	33 1/	22 13	44 17	30 36	20 15	39	29 36	39	39	38 38	43 11	40	∠ 28	43
SCH 91 14 91 94 100 92 93 93 100 93 93 94 100	Sbd	64	12	95	67	66	65	64	64	42	65	64	95	87	40 74	87	87
Sim 13 8 13 13 23 37 25 45 43 45 46 45 60 71 44 60 Solbank 13 11 13 13 23 33 22 36 36 36 36 36 69 54 60 69 54 60 69 28 4 34 28 31 28 29 10 31 29 35 39 29 2 39 Uno-e 24 1 26 24 24 37 24 34 18 37 34 34 37 34 2 37 Urq 14 14 14 19 56 36 53 53 53 53 79 62 73 79 Val 25 14 25 25 38 52 44 52 52 52 52 52 5	SCH	91	14	91	94	100	92	93	93	100	93	93	94	100	100	100	100
Solbank 13 11 13 13 23 33 22 36 36 36 36 69 54 60 69 UBS 28 4 34 34 28 31 28 29 10 31 29 35 39 29 2 39 Uno-e 24 1 26 24 24 37 24 34 18 37 34 34 37 34 2 37 Urq 14 14 14 19 56 36 53 53 53 53 79 62 73 79 Val 25 14 25 25 38 52 44 52 52 52 52 52 86 91 82 86 Val 25 14 25 25 38 52 44 52 52 52 52 52 52	Sim	13	8	13	13	23	37	25	45	43	45	46	45	60	71	44	60
UBS 28 4 34 34 28 31 28 29 10 31 29 35 39 29 2 39 Uno-e 24 1 26 24 24 37 24 34 18 37 34 34 37 34 2 37 Urq 14 14 14 19 56 36 53 53 56 53 53 79 62 73 79 Val 25 14 25 25 38 52 44 52 52 52 52 52 86 91 82 86 Val 25 14 25 25 38 52 44 52 52 52 52 52 86 91 82 86	Solbank	13	11	13	13	23	33	22	36	36	36	36	36	69	54	60	69
Uno-e 24 1 26 24 37 24 34 18 37 34 34 37 34 2 37 Urq 14 14 14 19 56 36 53 53 56 53 53 79 62 73 79 Val 25 14 25 25 38 52 44 52 52 52 52 52 86 91 82 86 Vac 47 45 52 34 37 42 43 42 43 42 37	UBS	28	4	34	34	28	31	28	29	10	31	29	35	39	29	2	39
Urq 14 14 14 19 56 36 53 53 53 79 62 73 79 Val 25 14 25 25 38 52 44 52 52 52 52 52 86 91 82 86 Val 47 45 52 34 37 42 42 400 60 67 55 60	Uno-e	24	1	26	24	24	37	24	34	18	37	34	34	37	34	2	37
Val 23 14 23 23 30 32 44 32 32 32 32 32 32 00 91 82 80	Urq	14	14 14	14 25	14 25	19	50	36	53	53	50	53	53	79 86	62	73	79 96
	vai Vas	20 17	14 15	∠0 52	∠5 17	30	5∠ 34	44 27	5∠ 42	52 42	02 42	52 43	52 100	00 69	91 67	o∠ 55	60 69
Vit 17 12 17 17 30 45 32 56 55 56 58 56 64 83 47 64	Vit	17	12	17	17	30	45	32	56	55	56	58	56	64	83	47	64
Zaz 29 10 29 37 33 35 30 32 31 35 32 32 80 52 79 80	Zaz	29	10	29	37	33	35	30	32	31	35	32	32	80	52	79	80

Table 3. The 55 banks and the efficiencies obtained under each of the 16 models (in percentages)

Component	Eigen value	% of variance	Cumulative
PC1	10.974	68.585	68.585
PC2	1.748	10.927	79.512
PC3	1.412	8.823	88.334
PC4	.823	5.142	93.476
PC5	.331	2.071	95.546
PC6	.236	1.476	97.022
PC7	.233	1.457	98.479

Table 4. PCA results

A 1 v	000			
AIV	.892	.297	285	.123
A1c	.485	173	.251	.795
AB1v	.870	.326	299	-
AC1v	.781	.547	130	-
AD1v	.894	.278	229	.117
A12v	.923	291	113	-
A13v	.918	.264	165	-
A14v	.939	299	122	-
A14c	.647	577	.332	.110
A124v	.925	328	116	-
A134v	.942	275	108	-
AB14v	.869	208	110	145
AD14v	.843	285	.150	124
AC14v	.831	.205	.421	206
C14v	.453	.427	.719	-
AC4v	.823	.196	.435	208

 Table 5. Matrix of component loadings.

Model -		Directional cosines							
moaei –	?1	?2	?3	?4	- F	Aaj K			
A1v	0.90	0.30	-0.29	0.12	593.5	0.978			
	(43.89)**	(14.65)**	(-14.02)**	(6.01)**					
A1c	0.49	-0.1 8	0.26	0.81	298.2	0.957			
	(16.98)**	(-6.10)**	(8.85)**	(28.09)**					
AB1v	0.89	0.33	-0.3 1	0.05	255.1	0.950			
	(28.43)**	(10.65)**	(-9.82)**	(1.45)					
AC1v	<u></u> 0.81	0.5 7	-0.1 3	0.08	172.2	0.927			
	(21.22)**	(14.89)**	(-3.50)**	(2.07)*					
AD1v	0.92	0.29	-0.23	0.12 [´]	207.0	0.939			
	(26.52)**	(8.23)**	(-6.74)**	(3.45)**					
A12v	0.95	- 0.30	`-0.1Ź	-0.0 5	246.6	0.948			
	(29.70)**	(-9.42)**	(-3.66)**	(-1.56)					
A13v	0.95	0.27 [´]	- 0.17	` 0.05 ´	200.2	0.937			
	(26.76)**	(7,72)**	(-4,84)**	(1.35)					
A14v	0.94	- 0.30	-0.12	-0.07	1332.7	0.990			
	(68.85)**	(-22.05)**	(-8,96)**	(-4.93)**					
A14c	0.69	-0.62	0.35	0.12	87.0	0.864			
	(12.92)**	(-11,51)**	(6.60)**	(2.20)*					
A124v	0.93	-0.33	-0.12	-0.07	668.8	0.980			
	(48.28)**	(-17.18)**	(-6.07)**	(-3.50)**					
A134v	0.95	-0.28	-0.11	-0.08	621.5	0.979			
	(47.44)**	(-13.89)**	(-5.35)**	(-3.82)**					
AB14v	0.95	-0.23	-0.12	-0.16	61.8	0.818			
	(14.99)**	(-3.58)**	(-1.91)	(-2.50)*					
AC14v	0.85	0.21	0.43	-0.21	243.9	0.947			
	(26.58)**	(6.58)**	(13.52)**	(-6.58)**					
AD14v	0.93	-0.31	0.16	-0.14	60.6	0.815			
	(14.41)**	(-4.88)**	(2.53)*	(-2.14)*		0.010			
C14v	0.48	0.45	0.76	0.01	119.1	0.897			
	(10.38)**	(9.77)**	(16.52)**	(0.20)		0.001			
AC4v	0.84	0.20	0.45	-0.21	226.9	0.944			
	(25 44)**	(6.08)**	(13 49)**	(-6.45)**	220.0	0.011			

** Significant at the 0.01 level. * Significant at the 0.05 level

 Table 6.
 Pro-Fit Analysis results.

Figure 1. Principal component analysis. Component scores in PC1 and PC2 with cluster outlines.

	5	10	15	20	25
	+	+	+	+	+
Ast	BB				
Koa	ĽĽ				
Fbk	ĽĽ				
Lus	ĽĽ				
Ext	ĽĽ				
Bnp	LL				
Pym	ĽĽ				
Patagon	ĽĽ				
Pue	ĽĽ				
Mur	ĽĽ				
Sim	ĽĽ				
Bale	りりあたいいいいいいいい	ちちちちちちちちち	ろもももももも		
Gall	ĽĽ	Ľ			
Solbank	しん	Ľ			
UBS	しん	Ľ			
Uno-e	ĽĽ	Ľ			
Inver	KK	Ľ	í		
Gui	ĽĽ	Ľ	í.		
Urq	ĽĽ	Ľ			
Herr	ĽĽ	Ľ			
Mch	ĽĽ	Ľ			
Cast	LL	Ľ			
Gali	LL	E.	さいいいんいん	SSSSSSSS	ろもももももももも
Zaz	あいいいいい		Ľ		Æ
ES	LL L	Z	5		Æ
Vit	లల ల	Z	5		Æ
Bsn	LL L	Æ	5		B
Mpfr	LL L	Æ	5		B
Vas	లద లలలలల		Ľ		Æ
Citybank	15 15 15 15 15 15 15 15 15 15 15 15 15 1		Ľ		Æ
DB	టట ట	,	Ľ		×
Atl	జరుజరు జ		Ľ		Ľ
Pas	టటట ట		Ľ		Ľ
Barclays	やんんいん い	Å	5		Æ
Val	LLL LLL	ちいいいいいいい	すりりん		Æ
And	జర్ జ				Æ
Finanzia	LLL L				Æ
Priv	KK K				Æ
Coo	بحث المتحاكم المعالمة المعادمة				Ľ
Bcv	LL L L				Æ
Banesto	LL LLLL				Ľ
Sbd	లాలలు ఇంట్				Ľ
Pop-e	టర ట				Æ
Bcf	లల లలలల				Æ
Etch	あいい				Æ
Med	あああい				Ľ
Ara	LL				Ľ
Halifax	ĽĽ				Ľ
Alt	ĽĽ				Ľ
BBVA	ĽĽ				Ŕ
Bankinter	ĽĽ				Æ
SCH	BBBBBB				ø
Esf	حائم المحالى المحالية	ちちちちちちちちちち,	さいたいいんしん	(SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	とももももももももももももも
Popular	KK K				
Chase	あいいいいい				

Figure 2. Dendrogram for banks.

Figure 3. Pro-Fit vectors representation on PC1 and PC2 with cluster outlines.

	0	5	10	15	20	25	
Model	+	+	+	+	+	+	
AC14v	BBBBB	రజ ట ట ట ట ట ట ట	రలల				
AC4v	いい	Ĺ	いいいいいいいい	(BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	さいいいいいいい	పలల	
Cl4v	LLLL	లలలు	いいい		Ľ	·	
Alv	いい				ば いい いん い	いりりりんしん	
AD1v	もいいい				Ľ	Ľ	
Al3v	やや ばい	Ľ			Ľ	Ľ	
AB1v	いいいい	げいいいいい	జాజజజజజ.	もちをももももも	いいいいいいい ひんちん ひんちん ひんちん ひんちん ひんちん ひんちん ひん	もいいいいい	Ľ
AC1v	LLLL,	లల				Ľ	
Al4v	いい					Ľ	
Al34v	いい					Ľ	
Al24v	ちちちち,	లల				Ľ	
Al2v	EE .	ぜいいいい				Ľ	
AB14v	ちちちち,	లల జాలలు	いいいい			Ľ	
AD14v	にいいい	రదరదరు	IL L L L	లదిటిటిటిటిటిటి	న టి టి		Ľ
Al4c	にいいい	రదల్లు జల్లి జ	いいいいん	Å	తారాజర్లి	もいいいいいいいい	もいいい
Alc	にいいい	రిలిలిలిలిలిలిలి	ちちちちちちちちち	ちちちちちちちちちち	いいいいい		

Figure 4. Dendrogram for models.