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A Lagrangian Dual Approach to the

Single-Source Localization Problem
Hou-Duo Qi, Naihua Xiu, and Xiaoming Yuan

Abstract

The single-source localization problem (SSLP), which is nonconvex by its nature, appears in several important

multidisciplinary fields such as signal processing and the global positioning system. In this paper, we cast SSLP as a

Euclidean distance embedding problem and study a Lagrangian dual approach. It is proved that the Lagrangian dual

problem must have an optimal solution under the generalized Slater condition. We provide a sufficient condition for the

zero-duality gap and establish the equivalence between the Lagrangian dual approach and the existing Generalized

Trust-Region Subproblem (GTRS) approach studied by Beck et al. [3]. We also reveal new implications of the

assumptions made by the GTRS approach. Moreover, the Lagrangian dual approach has a straightforward extension

to the multiple-source localization problem. Numerical simulations demonstrate that the Lagrangian dual approach

can produce localization of similar quality as the GTRS and can significantly outperform the well-known semidefinite

programming solver SNLSDP for the multiple source localization problem on the tested cases.

Index Terms

Euclidean distance matrix, Lagrangian duality, orthogonal projection, low-rank approximation.

I. INTRODUCTION

The single-source localization problem (SSLP) appears in many important applications including the mobile

phones localization [26], [7], [25], localization of the wireless E911 calls [4], and the GPS localization [2] (to name

just a few applications). The most often studied criteria for mathematically formulating SSLP are the maximum

likelihood (ML) criterion and the least-squares (LS) in the squared domain [4, Sect. 1.2]. Both ML and LS

formulations are nonconvex. While the ML criterion has the property of a statistical inference, the LS has the

unrivaled property that it can be solved to its global optimality. This is a rare property for nonconvex problems and
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was first revealed by Beck et al. [3]. Moreover, the subsequent papers [4], [2] show that this property of the LS

formulation plays a key role in designing efficient iterative algorithms for the ML formulation. In this paper, we

will focus on the LS formulation.

An important approach that emerged from [3] is to reformulate the LS problem as a Generalized Trust-Region

Subproblem (GTRS), which has just one constraint of quadratic equation. It is known that the GTRS possesses a

necessary and sufficient condition that characterizes its optimal solutions [21], [11]. Beck et al. [3] studied in detail

when the GTRS can be effectively and practically solved to its global optimality.

Another group of important contributions to source localization problems come from the Euclidean distance

embedding for sensor network localization, which can be cast as a multiple-source localization problem (see the

nice surveys [18], [20] and the references therein). An outstanding feature in this group of papers is that the

embedding problem can be related to the celebrated semi-definite programming (SDP), see [1], [5], [28]. The

embedding problem can also be relaxed to the nearest Euclidean distance matrix problem [17], [12], [14], [23] and

it can also be tackled directly through a Lagrangian dual approach with a majorized penalty technique [24].

However, there is lack of study whether the research from the Euclidean distance embedding has any en-

hanced/favourable properties for SSLP. This paper tries to initiate such a study by exploring the relationship between

the Lagrangian dual approach and the GTRS approach. The major contributions of this paper are summarized as

follows.

(i) We initiate the study of the Lagrangian dual approach to the SSLP. We develop a new set of mathematical

tools showing that the Lagrangian dual approach is well defined (e.g., the dual problem must admit an

optimal solution) under the generalized Slater condition. Those tools also allow us to characterize a sufficient

condition for the zero-duality gap to hold. We further establish the equivalence of these two approaches, which

are seemingly unrelated while having surprising connections because of our results. Also revealed is a new

geometrical interpretation of the assumptions used in the GTRS.

(ii) The Lagrangian dual approach leads to an unconstrained convex optimization, which can be efficiently solved

by the well-known HANSO package [22], [19]. Moreover, the Lagrangian dual approach can handle more

constraints such as the fixed-distance constraint (45), which would enforce one more quadratic constraint to

the GTRS. In contrast, the global theory and the corresponding numerical methods of GTRS remain to be

investigated for such cases.

(iii) The application of the Lagrangian dual approach to the multiple-source localization problem is investigated.

The advantage of the approach is numerically demonstrated by comparison with the well-known semidefinite

programming solver SNLSDP developed by Biswas et al. [5]. On some standard test problems from [5], [29],

the Lagrangian dual approach requires only a small fraction of the cpu time of SNLSDP solver and yet

provides the localizations of similar quality.

In the following, we describe the basic model of the SSLP. Suppose we have a network of m known sensors

(often known as anchors in the literature of sensor network localization), whose coordinates are ai = xi ∈ �r,

i = 1, . . . ,m. Suppose there is single unknown source, whose coordinate in �r is denoted as x ∈ �r. From the
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unknown source, each anchor ai receives a signal, which can be converted to Euclidean distance ri between ai and

x, possibly with contaminated noise εi:

ri = ‖ai − x‖+ εi, i = 1, . . . ,m.

The SSLP is to find x that solves

min
x∈�r

m∑
i=1

(‖x− ai‖2 − r2i
)2

. (1)

We note that problem (1) is the formulation of the squared-range-based least squares considered in [3, Sect. B] and

is further called the least squares problem in the squared domain [4, Eq. (1.3)]. We will study a Lagrangian dual

approach for (1) and establish its links to the GTRS.

The paper is organized as follows. In the next section, we provide a brief background on Euclidean distance

embedding. In Sect. III, we study the Lagrangian dual approach. We first reformulate the SSLP as a Euclidean

embedding problem, followed by deriving the Lagrangian dual problem. We then prove that the dual problem has

an optimal solution under the generalized Slater condition (Prop. 3.4). A sufficient condition is provided for the

zero-duality gap result in Thm. 3.6. In Sect. IV, we establish the equivalence between the Lagrangian dual approach

and the GTRS. Numerical results in Sect. V show that the Lagrangian dual approach yields localization of similar

quality as that by the GTRS. Moreover, we demonstrate its application to the multiple-source localization problem

and show its efficiency by comparison with the popular semidefinite programming solver SNLSDP of [5]. We

conclude in Sect. VI.

II. BACKGROUND ON EUCLIDEAN DISTANCE EMBEDDING

There are three elements that have become basics in the research of Euclidean distance embedding. The first

one is the definition of the squared Euclidean distance matrix (EDM). The second are various characterizations of

EDMs. And the third one is the Procrustes analysis that produces the actual embedding in a Euclidean space. We

briefly describe them one by one. Standard references are [9], [6], [10].

(a) Squared EDM. Let Sn denote the space of n × n symmetric matrices equipped with the standard inner

product 〈A,B〉 = trace(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced Frobenius norm. Let Sn
+ denote the cone

of positive semidefinite matrices in Sn (often abbreviated as X � 0 for X ∈ Sn
+). The so-called hollow subspace

Sn
h is defined by (“:=” means define)

Sn
h := {A ∈ Sn : diag(A) = 0} ,

where diag(A) is the vector formed by the diagonal elements of A. A matrix D is a (squared) EDM if D ∈ Sn
h

and there exist points p1, . . . ,pn in �r such that Dij = ‖pi − pj‖2 for i, j = 1, . . . , n. �r is often referred to as

the embedding space and r is the embedding dimension when it is the smallest such r. All vectors are treated as

column vectors. xT means the transpose of the vector x, hence it is a row vector.

We note that D must belong to Sn
h if it is an EDM. We let En be the set of all EDMs in Sn, and En(r) be the

set of all EDMs in Sn with embedding dimensions not greater than r.
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(b) Characterizations of EDM. It is well-known that a matrix D ∈ Sn is an EDM if and only if

D ∈ Sn
h and J(−D)J � 0, with J := I − eeT/n, (2)

where I (or In when the indication of dimension is needed) is the identity matrix in Sn and e is the vector of

all ones in �n. The origin of this result can be traced back to Schoenberg [27] and an independent work [30] by

Young and Householder. See also Gower [16] for a nice derivation of (2). Moreover, the corresponding embedding

dimension is r = rank(JDJ). Consequently, we have

En = {A : A ∈ Sn
h and − JAJ � 0}

and

En(r) = En ∩ {A ∈ Sn : rank(JAJ) ≤ r} .

We note that En is a closed convex cone and En(r) is closed, but not convex.

It is noted that the matrix J , when treated as an operator, is the orthogonal projection onto the subspace e⊥ :=

{x ∈ �n : eTx = 0}. The characterization (2) simply means that D is an EDM if and only if D ∈ Sn
h and D is

negative semidefinite on the subspace e⊥:

−D ∈ Kn
+ :=

{
A ∈ Sn : xTAx ≥ 0, x ∈ e⊥

}
. (3)

It follows that Kn
+ is a closed convex cone.

We therefore have another characterization of En:

En = Sn
h ∩ (−Kn

+). (4)

For En(r), we have

En(r) = Sn
h ∩ (−Kn

+(r)), (5)

where

Kn
+(r) := Kn

+ ∩ {A ∈ Sn : rank(JAJ) ≤ r} .

(c) Euclidean Embedding. If D is an EDM with embedding dimension r, then −JDJ � 0. Let

−JDJ/2 = PPT

where P ∈ �n×r. Let pi denote the ith column of PT . It is known [9] that {p1, . . . ,pn} are the embedding points

of D in �r, i.e., Dij = ‖pi − pj‖2. We also note that any rotation and shifting of {p1, . . . ,pn} would give the

same D. In other words, there are infinitely many sets of embedding points. To find a desired set of embedding

points that match positions of the existing anchors, one needs to conduct the Procrustes analysis, which is a simple

computational scheme, see [9, Chp. 5]. We omit the details.
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III. LAGRANGIAN DUAL APPROACH

In this section, we first cast problem (1) as a Euclidean distance embedding problem. We then derive its Lagrangian

dual problem. Finally, we study when the dual problem admits an optimal solution and provides a sufficient condition

for the zero-duality gap.

A. SSLP as Euclidean Distance Embedding

For SSLP (1), we have m known anchors {a1, . . . , am} and an unknown source x ∈ �r. Define the EDM

Y ∗ ∈ Sn (with n := m+ 1) by (only define the upper triangular part of Y ∗)

Y ∗
ij :=

⎧⎨⎩ ‖ai − aj‖2 if i ≤ j = 2, . . . ,m

‖ai − x‖2 if j = m+ 1.

It follows from (2) that −JY ∗J � 0 and one set of embedding points {p1, . . . ,pn} in �r would be the columns

of PT , where P ∈ �n×r satisfies

−JY ∗J/2 = PPT . (6)

Moreover, {a1, . . . , am,x} would be obtained from {p1, . . . ,pn} through the Procrustes analysis.

However, the only issue with the above procedure is that the distances in the last columns of Y ∗ (the distances

between ai and x) are not completely known so that the decomposition of (6) is not possible. We only know

the contaminated distance measurement ri between ai and x. We need to recover the true distances from those

measured distances {ri}.

Define D ∈ Sn by

Dij :=

⎧⎨⎩ ‖ai − aj‖2 if i ≤ j = 2, . . . ,m

r2i if j = m+ 1.

Our purpose is to recover Y ∗ from D. We know that Y ∗ has to satisfy the following conditions:

Y ∗
ij = Dij for i < j = 2, . . . ,m, Y ∗ ∈ En,

and Y ∗ has to have the embedding dimension r. We are therefore to recover Y ∗ through the following optimization

problem:
Y ∗ = argmin ‖Y −D‖2/2

s.t. Yij = Dij , i < j = 2, . . . ,m, Y ∈ En(r).
(7)

If ri = ‖ai − x‖ (true distances), then Y ∗ = D is the original EDM. Otherwise, this problem is to calculate

the nearest EDM from D subject to the requirements that the solution must obey the pairwise distances among the

known anchors {ai} and that it has to have an embedding dimension not greater than r.

Once the optimal solution Y ∗ of (7) is obtained, we can use (6) and the Procrustes analysis to obtain the

actual embedding {a1, . . . , am,x}. The solution method that we propose in this paper for (7) is the Lagrange dual

approach. We will show that this approach has some nice and important properties as mentioned in Introduction.

In particular, it has a close relationship with the GTRS. We describe this approach below.
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B. The Lagrangian Dual Problem

The purpose of this part is to solve (7) through its Lagrangian dual problem. Let us first define a few more

notations. Define two linear mappings A1 : Sn �→ �n and A2 : Sn �→ �m(m−1)/2 by (we identify a vector

v ∈ �m(m−1)/2 by ordering its components as vij , i < j = 2, . . . ,m)

A1(Y ) := diag(Y ) and (A2(Y ))ij := Yij .

Correspondingly, define bd ∈ �n and bo ∈ �m(m−1)/2 by

bd := 0 and boij := Dij ∀ i < j = 2, . . . ,m.

Let

A :=

⎛⎝ A1

A2

⎞⎠ and b := −
⎛⎝ bd

bo

⎞⎠ . (8)

We let A∗ : �n ×�m×(m−1)/2 �→ Sn be the adjoint of A.

Because of (5), problem (7) is equivalent to

min
1

2
‖Y −D‖2 s.t. A(Y ) = −b and − Y ∈ Kn

+(r),

or equivalently by replacing Y with −Y

vp := min
1

2
‖Y +D‖2 s.t. A(Y ) = b and Y ∈ Kn

+(r). (9)

The Lagrangian dual function for (9) is

L(Y, y) :=
1

2
‖Y +D‖2 + 〈b −A(Y ), y〉,

where Y ∈ Sn and y ∈ �n ×�m×(m−1)/2. The Lagrangian dual problem is then given by

vd := max
y∈�n×�m×(m−1)/2

θ(y), (10)

where

θ(y) := min
Y ∈Kn

+
(r)

L(Y, y).

It always holds that vp ≥ vd. The quantity vp − vd is called the duality gap. When this quantity vanishes, we say

there is no duality gap (i.e., zero-duality gap). We now derive an explicit expression for θ(y).

Given a closed set C ⊂ Sn and X ∈ Sn, let ΠC(X) denote an optimal solution of the following metric projection

problem:

min ‖Z −X‖2 s.t. Z ∈ C.

When C is convex, ΠC(X) is unique. When C is not convex, there may be multiple solutions and we let ΠB
C (X)

denote the set of all projections of X onto C. Let Sn
+(r) be the set of all positive semidefinite matrices whose ranks

are not greater than r. Both Sn
+(r) and Kn

+(r) are not convex.

Let X have the spectral decomposition

X = PΛ(X)PT ,
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where Λ(X) := Diag(λ(X)), λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X being arranged in the non-increasing

order and P ∈ On with On being the set of all n× n orthogonal real matrices. Define

α := {i | λi(X) > λr(X)} and β := {i | λi(X) = λr(X)} .

For an index set I ⊆ {1, . . . , n}, XI denotes the submatrix consisting of the columns in X indexed by I and |I|
denotes the cardinality of I.

Lemma 3.1: [13, Lemma 2.4] The set ΠB
Sn
+
(r)(X) can be characterized as follows.

ΠB
Sn
+
(r)(X) =

{
[Pα, PβVβ ]Diag(v)[Pα, PβVβ ]

T
∣∣ Vβ ∈ O|β|

}
where v := ((λ1(X))+, . . . , (λr(X))+, 0, . . . , 0)

T ∈ �|α|+|β|.

Lemma 3.2: [24, Prop. 3.3] The set ΠB
Kn

+
(r)(X) can be characterized as follows.

ΠB
Kn

+
(r)(X) = ΠB

Sn
+
(r)(JXJ) + (X − JXJ). (11)

Moreover, for any pair (ΠKn
+
(r)(X), ΠSn

+
(r)(JXJ)) satisfying

ΠKn
+
(r)(X) = ΠSn

+
(r)(JXJ) + (X − JXJ),

we have

‖ΠKn
+
(r)(X)‖2 = ‖ΠSn

+
(r)(JXJ)‖2 + ‖X − JXJ‖2, (12)

JΠKn
+
(r)(X)J = ΠSn

+
(r)(JXJ), (13)

and

〈ΠKn
+
(r)(X), X −ΠKn

+
(r)(X)〉 = 0. (14)

We now derive an explicit formula for θ(y).

θ(y) = min
Y ∈Kn

+
(r)

L(Y, y)

= min
Y ∈Kn

+
(r)

1

2
‖Y +D‖2 − 〈Y, A∗(y)〉+ 〈b, y〉

= min
Y ∈Kn

+
(r)

1

2
‖Y − (−D +A∗(y))‖2

−1

2
‖ −D +A∗(y)‖2 + 1

2
‖D‖2 + 〈b, y〉

=
1

2
‖ΠKn

+
(r)(−D +A∗(y))− (−D +A∗(y))‖2

−1

2
‖ −D +A∗(y)‖2 + 1

2
‖D‖2 + 〈b, y〉

= −1

2
‖ΠKn

+
(r)(−D +A∗(y))‖2 + 1

2
‖D‖2 + 〈b, y〉.

The last equality used (14). Hence, the dual problem (10) becomes (in the form of minimization)

−vd = min Θ(y), (15)
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where

Θ(y) = −θ(y) =
1

2
‖ΠKn

+
(r)(−D +A∗(y))‖2 − 〈b, y〉 − 1

2
‖D‖2.

We note that Θ(·) is convex. In the next section, we study when the problem (15) has an optimal solution and

when the duality gap vanishes (i.e., vp = vd).

C. Existence of Optimal Dual Solutions and Zero Duality Gap

Let us consider the linear system

A(Y ) = b and Y ∈ Kn
+, (16)

with A and b defined in (8). It is obvious that the linear mappings A1 and A2 are linearly independent. We say

that the (generalized) Slater condition for (16) holds if there exists Y 0 ∈ Kn
+ such that

Y 0 ∈ int(Kn
+) and A(Y 0) = b, (17)

where int(Kn
+) is the interior of Kn

+.

The Slater condition is closely related to the polar cone (Kn
+)

∗ of Kn
+:

(Kn
+)

∗ :=
{
X ∈ Sn : 〈X, A〉 ≤ 0 ∀ A ∈ Kn

+

}
=

⎧⎨⎩Q
⎡⎣ Z 0

0 0

⎤⎦Q : Z ∈ −Sn−1
+

⎫⎬⎭ , (18)

where the last equality used [23, Eq. (16)] and Q is the Householder matrix defined by

Q := I − 2

vT v
vvT with v := [1, . . . , 1,

√
n+ 1]T ∈ �n.

The following result is a direct consequence of a result of Gao [13] when applied to (16).

Proposition 3.3: [13, Prop. 2.20] If the Slater condition holds for (16), then 〈b, y〉 < 0 for any 0 �= y ∈
�n ×�m×(m−1)/2 satisfying A∗(y) ∈ (Kn

+)
∗.

The following result shows that the Slater condition guarantees the existence of an optimal solution for the dual

problem (15). The proof of the following result is motivated by [13, Prop. 4.16].

Proposition 3.4: Assume that the Slater condition holds for (16). Then the level set Lc := {y ∈ �n×�m(m−1)/2 :

Θ(y) ≤ c} is bounded for any constant c ∈ �. Consequently, the Lagrangian dual problem (15) must have an optimal

solution.

Proof: We prove the conclusion of this result by contradiction. Suppose that there exists a constant c such that

Lc is unbounded. There must be a sequence {yk} satisfying ‖yk‖ → ∞ and Θ(yk) ≤ c for all yk. Without loss of

generality, we assume that yk/‖yk‖ → ȳ. Denote Bk := (−D + A∗(yk))/‖yk‖. We have limk→∞ Bk = A∗(ȳ).

We consider two separate cases. Case 1: A∗(ȳ) �∈ (Kn
+)

∗ and Case 2: A∗(ȳ) ∈ (Kn
+)

∗.

Case 1. Denote

Q(A∗(ȳ))Q =:

⎡⎣ B̂1 b̂

b̂T b̂0

⎤⎦ with B̂1 ∈ Sn−1. (19)
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The Householder matrix Q and the projection matrix J have the nice relationship.

J = Q

⎡⎣ In−1 0

0 0

⎤⎦Q. (20)

It follows that

J(A∗(ȳ))J = Q

⎡⎣ B̂1 0

0 0

⎤⎦Q. (21)

Because Q2 = I , we have from (21) that

‖ΠSn
+
(r)(J(A∗(ȳ))J)‖2 = ‖ΠSn−1

+
(r)(B̂1)‖2 (22)

and

‖A∗(ȳ)− J(A∗(ȳ))J‖2 = 2‖b̂‖2 + b̂20.

In this case, A∗(ȳ) �∈ (Kn
+)

∗. That is (because of (18)),

Q(A∗(ȳ))Q �∈
⎧⎨⎩
⎡⎣ Z 0

0 0

⎤⎦ : Z ∈ −Sn−1
+

⎫⎬⎭ .

It follows from (19) that there are two possibilities. Subcase 1.1: B̂1 �∈ −Sn−1
+ and Subcase 1.2: [b̂T , b̂0] �= [0, 0].

For Subcase 1.1, B̂1 must have at least one positive eigenvalue. Then it follows from (22) that there exists δ1 > 0

such that

‖ΠSn
+
(r)(JA∗(ȳ)J)‖2 = ‖ΠSn−1

+
(r)(B̂1)‖2 ≥ δ1.

For Subcase 1.2, there exists δ2 > 0 such that

‖A∗(ȳ)− JA∗(ȳ)J‖2 = 2‖b̂‖2 + b̂20 ≥ δ2.

By the continuity of ‖ΠKn
+
(r)(·)‖2 (due to it being convex, see Lemma 3.5 below), we have

lim
k→∞

‖ΠKn
+
(r)(B

k)‖2

= lim
k→∞

(
‖ΠSn−1

+
(r)(JB

kJ)‖2 + ‖Bk − JBkJ‖2
)

= ‖ΠSn
+
(r)(JA∗(ȳ)J)‖2 + ‖A∗(ȳ)− JA∗(ȳ)J‖2

≥ min{δ1, δ2} > 0,

where the first equation used (12). Hence, we have

lim
k→∞

Θ(yk)

= lim
k→∞

(
1

2
‖ΠKn

+
(r)(−D +A∗(yk))‖2 − 〈b, yk〉

)
≥ lim

k→∞
‖yk‖

(
1

2
‖yk‖‖ΠKn

+
(r)(B

k)‖2 − ‖b‖)
)
= +∞.
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Case 2. We note that ȳ �= 0. It follows from Prop. 3.3 that 〈b, ȳ〉 < 0. Therefore,

lim
k→∞

Θ(yk) ≥ lim
k→∞

‖yk‖(−〈b, yk/‖yk‖〉)

≥ −〈b, ȳ〉
2

lim
k→∞

‖yk‖ = +∞.

Either of the cases contradicts our assumption that {Θ(yk)} is bounded. This contradiction establishes the bound-

edness of the level set.

The generalized Slater condition is a standard assumption in optimization. It is worth noting that the condition

(17) is equivalent to the following Euclidean distance matrix completion problem: There exists Euclidean distance

matrix Y such that Yij = Dij for i < j = 2, . . . ,m and the embedding dimension of Y is (n−1). We omit its proof.

However, it is also worth mentioning that there may exist other EDM Y such that Y ij = Dij for i < j = 2, . . . ,m

with its embedding dimension strictly less than (n− 1). We do not know whether the generalized Slater condition

is also necessary for Prop. 3.4. Next we present our zero duality gap result, which needs the following result.

Lemma 3.5: [24, Prop. 3.4] Let

Ξe
r(Z) :=

1

2
‖ΠKn

+
(r)(Z)‖2, ∀ Z ∈ Sn.

Then Ξe
r(·) is convex and its subdifferential is the convex hull of ΠB

Kn
+
(r)(Z):

∂Ξe
r(Z) = conv

{
ΠB

Kn
+
(r)(Z)

}
.

Theorem 3.6: Suppose that ȳ is an optimal solution of the dual problem (15). Let λ1 ≥ λ2 ≥ . . . ≥ λn be the

eigenvalues of J(−D+A∗(ȳ))J . If λr+1 ≤ 0 or in the case of λr+1 > 0, λr > λr+1, then ΠB
Kn

+
(r)(−D+A∗(ȳ))

contains just one element, denoted by Y := ΠKn
+
(r)(−D +A∗(ȳ)). Moreover, Y globally solves the problem (9)

and the zero duality holds.

Proof: Since Θ(·) is convex, ȳ is an optimal solution of (15) if and only if 0 ∈ ∂Θ(ȳ). We note that Θ(·) is

composition of Ξe
r(·) and A∗, i.e.,

Θ(y) = Ξe
r(−D +A∗(y))− 〈b, y〉 − 1

2
‖D‖2.

By the chain rule of the subdifferential, we have

∂Θ(y) = A (∂Ξe
r(−D +A∗(y)))− b (23)

= A
(

conv
{
ΠB

Kn
+
(r)(−D +A∗(y))

})
− b

= A
(

conv
{
ΠB

Sn
+
(r)(J(−D +A∗(y))J)

}
−(−D +A∗(y)− J(−D +A∗(y))J)

)
− b.

The second equality used Lemma 3.5 and the last equality used Lemma 3.2.

Under the condition in the theorem, it is easy to verify from Lemma 3.1 that ΠB
Sn
+
(r)(J(−D + A∗(ȳ))J) is

singleton. This implies that ∂Θ(ȳ) is singleton. The optimality condition 0 ∈ ∂Θ(ȳ) means

b = A(Y )

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2013.2264814

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

and Y = ΠKn
+
(r)(−D +A∗(y)) ∈ Kn

+(r). Therefore, Y is a feasible point of (9). Moreover, we have

vd ≥ Θ(ȳ) = L(Y , ȳ) =
1

2
‖Y +D‖2 + 〈b−A(Y ), ȳ〉

=
1

2
‖Y +D‖2 ≥ vp.

This proves vd = vp because we always have vp ≥ vd. In other words, Y globally solves the problem (9) and the

zero duality gap holds.

The dual problem is convex and the subdifferential of Θ(·) can be calculated through (23) and the characterization

of ΠB
Sn
+
(r)(X) in Lemma 3.1. The famous HANSO package [22], [19] can be used to solve (15). As mentioned in

the introduction, another global method is the GTRS contributed by Beck et al. [3]. It is surprising that these two

approaches are actually equivalent under reasonable conditions. It is proved in the next section.

IV. EQUIVALENCE TO GTRS

In this section, we first state the GTRS reformulation by Beck et al. [3], its global optimality condition, and

the assumptions that ensure an efficient solution method of the GTRS. We also study some implications of those

assumptions. We then establish the equivalence between these two approaches.

A. GTRS and Its Global Optimality Condition

Beck et al. [3, Sect. B] reformulated this problem as the Generalized Trust-Region Subproblem (GTRS):

min
z∈�r+1

‖Az− c‖2 s.t. z
TCz + 2gT

z = 0, (24)

where z
T := (xT , ρ0) and

A :=

⎡⎢⎢⎢⎣
−2aT1 1

...
...

−2aTm 1

⎤⎥⎥⎥⎦ , c :=

⎡⎢⎢⎢⎣
r21 − ‖a1‖2

...

r2m − ‖am‖2

⎤⎥⎥⎥⎦ , (25)

C :=

⎡⎣ Ir 0r×1

01×r 0

⎤⎦ , g :=

⎡⎣ 01×r

−0.5

⎤⎦ .
It follows from [21, Thm. 3.2] that z ∈ �r+1 is an optimal solution of (24) if and only if there exists ρ ∈ � such

that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
A

T
A+ ρC

)
z = A

T
c− ρg,

z
TCz+ 2gT

z = 0,

A
T
A+ ρC � 0.

(26)

There are two assumptions that ensure an efficient solution algorithm of (24).

(H1) The matrix A defined in (25) has full column rank.

(H2) The matrix (A
T
A+ ρC) is positive definite, where ρ satisfies (26).

Under the two assumptions, ρ is the unique solution of

ϕ(ρ) = 0 and A
T
A+ ρC � 0, (27)
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where

ϕ(ρ) := ẑ(ρ)TCẑ(ρ) + 2gT
ẑ(ρ)

and

ẑ(ρ) := (A
T
A+ ρC)−1(A

T
c− ρg).

Furthermore, there exists an efficient solution method to find the root of (27) (see [3] for details). It is emphasized

in [3, P.1773] that the “hard case” (i.e., (AT
A+ ρC) is just positive semidefinite) never occurred in their extensive

numerical simulations.

We now state a result of implications from those two assumptions. Without loss of generality and for simplicity,

we assume that the anchors {a1, . . . , am} are centered at the origin. That is,
∑m

i=1 ai = 0. Otherwise, we can

always consider the points {ā1, . . . , ām} instead of {a1, . . . , am}, where āi := ai − ā and ā :=
∑m

i=1 ai/m.

Proposition 4.1: Suppose that there is another set of m sensors in �r, denoted by {z̄1, . . . , z̄m}, satisfying⎧⎨⎩
∑m

i=1 ai =
∑m

i=1 z̄i = 0, ‖ai‖ = ‖zi‖
‖z̄i − z̄j‖2 = ‖ai − aj‖2, ∀ i, j = 1, . . . ,m.

(28)

Define

ZT
1 := [z̄1, . . . , z̄m], AT := [a1, . . . , am] and P := UV T ,

where U and V come from the singular value decomposition

ZT
1 A = UΣV T ,

with Σ being the diagonal matrix of the singular values of ZT
1 A and U, V ∈ Or. We have the following results.

(i) Assumption (H1) implies

A = Z1P.

(ii) Let x denote an optimal solution of (1) and z̄n denote an optimal solution of (1) when the set of locations

{z̄1, . . . , z̄m} are used instead of {a1, . . . , am}. Under Assumption (H2), we must have

z̄n = Px.

Proof: (i) Define the linear operator L : Sm �→ Sm by

L(X) := diag(X)eT + ediag(X)T − 2X, ∀ X ∈ Sn.

It follows that (L(Z1Z
T
1 )
)
ij

= ‖z̄i‖2 + ‖z̄j‖2 − 2z̄Ti z̄j

= ‖z̄i − z̄j‖2

= ‖ai − aj‖2

=
(L(AAT )

)
ij
.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2013.2264814

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



13

The identity L(Z1Z
T
1 ) = L(AAT ) implies

Z1Z
T
1 = AAT . (29)

The full column rank of A implies that m ≥ r + 1 and the affine hull of {a1, . . . , am} spans �r. It follows from

[18, Thms. 5.1 and 5.2] that there exists an orthogonal matrix P ∈ Or such that

Z1P = A and P = UV T , (30)

where U and V come from the singular value decomposition ZT
1 A = UΣV T and Σ is the diagonal matrix with

the singular values of ZT
1 A being its diagonal.

(ii) The optimal location of x is given by

ẑ(ρ) =

⎡⎣ x

ρ0

⎤⎦ = (A
T
A+ ρC)−1(A

T
c− ρg) for some ρ.

Define

Z1 :=
[
−2Z1 e

]
and P :=

⎡⎣ P 01×r

0r×1 1

⎤⎦ .
Then P is orthogonal and

A =
[
−2A e

]
=
[
−2Z1P e

]
= Z1P . (31)

It is easy to calculate that

P
T
(
Z

T

1 Z1 + ρC
)
P = A

T
A+ ρC � 0.

Therefore, ZT

1 Z1 + ρC � 0. Replacing A by Z1 in (26) will give rise to another set of necessary and sufficient

conditions in terms of Z1. Define

z̄(ρ) := (Z
T

1 Z1 + ρC)−1(Z
T

1 c− ρg).

It follows from (Z
T

1 Z1 + ρC)−1 = P (A
T
A+ ρC)−1P

T that

z̄(ρ) = P (A
T
A+ ρC)−1P

T
(Z

T

1 c− ρg)

= P (A
T
A+ ρC)−1(A

T
c− ρg)

= P ẑ(ρ). (32)

The second equality above used (31) and P
T
g = g. Furthermore, the function

ϕ̄(ρ) := z̄(ρ)TCz̄(ρ) + 2gT
z̄(ρ)

= ẑ(ρ)TP
T
CP ẑ(ρ) + 2gTP ẑ(ρ)

= ẑ(ρ)TCẑ(ρ) + 2gT
ẑ(ρ)

= ϕ(ρ) = 0.
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The penultimate equality used P
T
CP = C and P

T
g = g. Therefore, z̄(ρ) must be an optimal solution and its last

element must be ρ0. Denote the first m elements of z̄(ρ) by the vector z̄n. It follows (32) that

z̄(ρ) =

⎡⎣ z̄n

ρ0

⎤⎦ =

⎡⎣ Px

ρ0

⎤⎦ ,
which gives z̄n = Px.

We have two remarks regrading this result.

(R1) Prop. 4.1 has a very nice geometrical interpretation. Let the m known anchors be placed at two sets of

locations, denoted by {a1, . . . , am} and {z̄1, . . . , z̄m} respectively. Suppose they are centred and obey the

pairwise distances in the sense of (28). Assumption (H1) means that one set of locations can be obtained from

the other through an orthogonal rotation. As in the result, let x and z̄n denote the respective optimal solution

of (1) when the two sets of m anchors were used. Assumption (H2) implies that the recovered location x of

the unknown source can be obtained through the same orthogonal rotation of z̄n.

(R2) Without Assumption (H2) (i.e., AT
A+ρC is only positive semidefinite, which is referred to as the “hard case”

in the literature of trust region methods), it is not known whether we would still have the same interpretation

in (R1). The difficulty lies with the facts that there might be multiple solutions x of (1) and that it is very

hard to characterize them (see [21, Sect. 5]).

B. Equivalence to GTRS

Let the optimal solution of (15) be denoted by ȳ := (ū, v̄) ∈ �n × �m(m−1)/2 (recall n = m+ 1). We assume

that

Y = ΠKn
+
(r)(−D +A∗(ȳ)) (33)

solves (9) (such Y exists, for example, under the conditions in Thm. 3.6).

The Schoenberg-Young-Householder theorem [27], [30] says (note that (−Y ) is a Euclidean distance matrix as

we negated Y in leading to (9)) that the rows of Z ∈ �n×r, which satisfies

1

2
JY J = ZZT , (34)

are localizations of (m+1) points that satisfy the constraints in (9). Let zi denote the coordinates (column vector)

of the ith point and

ZT = [z1, . . . , zm+1].

Then we have

−Y ij = ‖zi − zj‖2, ∀ i, j = 1, . . . ,m+ 1 (35)

and

‖zi − zj‖2 = Dij = ‖ai − aj‖2, ∀ i, j = 1, . . . ,m. (36)
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Define

z0 :=

m∑
i=1

zi/m and z̄i := zi − z0, ∀ i = 1, . . . ,m+ 1. (37)

Then the set of locations of the first m points {z̄1, . . . , z̄m} are centered at the origin and they obviously satisfy

‖z̄i − z̄j‖ = ‖ai − aj‖ for i, j = 1, . . . ,m. According to Prop. 4.1, there exists an orthogonal matrix P ∈ Or such

that

z̄i = Pai, ∀ i = 1, . . . ,m and z̄m+1 = Px, (38)

where x is the optimal solution of (1). In other words, the locations of (z1, . . . , zn) can be translated to (a1, . . . , am,x)

after the shifting (37) and rotation (38). We note that those localizations are also centered:

ZT e =

m+1∑
i=1

zi = 0. (39)

This can be easily verified through (34) as Je = 0. We have the following technical lemma.

Lemma 4.2: Recall ȳ := (ū, v̄) ∈ �m+1 ×�m(m−1)/2 is the optimal solution of (15). We have

ūm+1 = −
m∑
i=1

(‖ai − x‖2 − r2i
)
.

Proof: Throughout this proof, we use the fact n = m+ 1. Denote⎡⎣ Ŷ1 ŷ

ŷT ŷ0

⎤⎦ := Q(−D +A∗(ȳ))Q,

where Ŷ1 ∈ Sm. It follows from (11) that

Y = ΠSn
+
(r)(J(−D +A∗(ȳ))J)

+(−D +A∗(ȳ))− (J(−D +A∗(ȳ))J)

= JY J + (−D +A∗(ȳ))− (J(−D +A∗(ȳ))J)

= 2ZZT + (−D +A∗(ȳ))−Q

⎡⎣ Ŷ1 0

0 0

⎤⎦Q. (40)

The second equality above used (13) and the last equality used (34) and (20). Because (−Y ) is the EDM generated

by {z1, . . . , zn}, the last column of Y is

Y (:, n) = −[‖z1 − zn‖2, . . . , ‖zm − zn‖2, 0]T .

We compare the last column of Y with the last column of the right-hand-side matrix in (40).

−

⎡⎢⎢⎢⎢⎢⎢⎣
‖z1 − zn‖2

...

‖zm − zn‖2
0

⎤⎥⎥⎥⎥⎥⎥⎦ = 2

⎡⎢⎢⎢⎢⎢⎢⎣
〈z1, zn〉

...

〈zm, zn〉
〈zn, zn〉

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
−r21

...

−r2m

ūm+1

⎤⎥⎥⎥⎥⎥⎥⎦
−Q

⎡⎣ Ŷ1 0

0 0

⎤⎦Qen.
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Here, we use the structure of A∗(ȳ), whose last column is [0, · · · , 0, ūm+1]
T . And en is the nth coordinate vector

in �n. By the definition of Q, we have Qen = −e/
√
n and

Q

⎡⎣ Ŷ1 0

0 0

⎤⎦Qen = − 1√
n
Q

⎡⎣ Ŷ1e

0

⎤⎦
=

⎡⎣ − 1√
n
Ŷ1e+

eT Ŷ1e√
n(n+

√
n)
e

0

⎤⎦+

⎡⎣ 0

eT Ŷ1e/n

⎤⎦ .
Therefore, we have

−

⎡⎢⎢⎢⎢⎢⎢⎣
‖z1 − zn‖2

...

‖zm − zn‖2
0

⎤⎥⎥⎥⎥⎥⎥⎦ = 2

⎡⎢⎢⎢⎢⎢⎢⎣
〈z1, zn〉

...

〈zm, zn〉
〈zn, zn〉

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
−r21

...

−r2m

ūm+1

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎣
− 1√

n
Ŷ1e+

eT Ŷ1e√
n(n+

√
n)
e

eT Ŷ1e/n

⎤⎥⎥⎦ (41)

The last equation in (41) gives

ūm+1 = eT Ŷ1e/n− 2‖zn‖2. (42)

Summing the first m equations in (41) yields

−
m∑
i=1

‖zi − zn‖2 = 2

m∑
i=1

〈zi, zn〉 −
n∑

i=1

r2i +
1√
n
eT Ŷ1e− n− 1√

n(n+
√
n)

eT Ŷ1e

= 2
m∑
i=1

〈zi, zn〉 −
n∑

i=1

r2i + eT Ŷ1e/n. (43)

Subtracting (43) from (42) and re-arranging the like-terms leads to

ūm+1 = −
m∑
i=1

(‖zi − zn‖2 − r2i
)− 2〈

m∑
i=1

zi + zn, zn〉

= −
m∑
i=1

(‖zi − zn‖2 − r2i
)

(by (39))

= −
m∑
i=1

(‖P (ai − x)‖2 − r2i
)

(by (38))

= −
m∑
i=1

(‖ai − x‖2 − r2i
)
.

This proves our result.

Now we are ready to present our characterization of the solution of optimality condition (26). In the characteriza-

tion, we list all the assumptions that have been made so far to clarify the situation when such characterization holds.
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The first two assumptions, as assumed in [3], remove the possibility of “hard case” of the trust region subproblem

from happening and the third condition assumes that the problem (9) can be solved globally. The result is that there

is a close relationship between the obtained solutions, as characterized below.

Theorem 4.3: Consider the SSLP problem (1). Let the matrices A and C be defined as in (25). Let ȳ := (ū, v̄) ∈
�m+1×�m(m−1)/2 solve the dual problem (15). Assume that Assumptions (H1) and (H2) hold and that the matrix

Y defined in (33) is an optimal solution of (9). Then, we must have

ρ = −2ūm+1,

where ρ is the (unique) optimal solution of (26). Moreover, the two problems (1) and (9) return the same optimal

objective value.

Proof: Consider the optimality condition (26). The second equation in (26) simply requires ρ0 = ‖x‖2. It is

easy to see that

Az = −2

⎡⎢⎢⎢⎣
〈a1,x〉

...

〈am,x〉

⎤⎥⎥⎥⎦+ ρ0e, Cz =

⎡⎣ x

0

⎤⎦
and

c =

⎡⎢⎢⎢⎣
r21
...

r2m

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
‖a1‖2

...

‖am‖2

⎤⎥⎥⎥⎦ =: p1 − p2.

The first equation in (26) can be written as

A
T
(Az+ p2) + ρ

⎡⎣ x

0

⎤⎦ = A
T
p1 − ρg. (44)

We note that the ith component of (Az + p2) is ‖ai − x‖2. After re-arranging terms in (44), we obtain

A
T

⎡⎢⎢⎢⎣
‖a1 − x‖2 − r21

...

‖am − x‖2 − r2m

⎤⎥⎥⎥⎦ = −ρ

⎡⎣ 0

−0.5

⎤⎦− ρ

⎡⎣ x

0

⎤⎦ ,
which by the definition of A yields

ρ = 2

m∑
i=1

(‖ai − x‖2 − r2i
)
= −2ūm+1. (by Lemma 4.2)
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Now let {zi} be defined by (37). The optimal objective value of (9) is

1

2
‖Y +D‖2

=
1

2

m∑
i,j=1

(Y ij +Dij)
2 +

m∑
i=1

(Y i(m+1) +Di(m+1))
2

=
1

2

m∑
i,j=1

(‖zi − zj‖2 −Dij)
2 +

m∑
i=1

(‖zi − zm+1‖2 −Di(m+1))
2 (by (35))

=

m∑
i=1

(‖zi − zm+1‖2 −Di(m+1))
2 (by (36))

=

m∑
i=1

(‖z̄i − z̄m+1‖2 − r2i )
2 (by (37))

=
m∑
i=1

(‖Pai − Px‖2 − r2i )
2 (by (38))

=

m∑
i=1

(‖ai − x‖2 − r2i )
2.

Hence, the two problems (1) and (9) return the same optimal objective value.

This result characterizes the nice situation defined by the assumptions (H1) and (H2). The unpleasant situation

happens when (H1) and (H2) fail to hold. As already remarked in (R2) after Prop. 4.1, it would be hard to characterize

the optimal solution of the GTRS. The good thing is that the failure of (H1) or (H2) does not contradict the zero-

duality gap result in Thm. 3.6. In other words, the Lagrangian dual approach would still have chance to find the

global solution of the SSLP under this situation.

V. NUMERICAL EXAMPLES

This numerical part includes three subsections. Subsect. V-A uses the existing SSLP test problems to show

that the Lagrangian Dual (denoted as LagD) method provides localization of similar quality as that by the GTRS.

Subsect. V-B further explores the possibility of including more constraints in the SSLP model. For example, if two

more fixed constraints of the type (45) are added to the model, LagD can accurately recover the unknown source

x = (−2, 3) in Example 5.1. In theory, the Lagrangian dual approach can be straightforwardly extended to the

problem of multiple source localizations. Subsect. V-C demonstrates its efficiency on three standard test problems

(e.g., the number of unknown sources are up to 300) by comparison with the popular SDP solver SNLSDP [5]1.

All of our results can be reproduced by using the Matlab code LagD2. All tests were carried out using the 64-bit

version of MATLAB 2012a on a Windows 7 desktop with a 64-bit operating system having Intel Core 2 Duo CPU

of 3.16 GHz and 4.0GB of RAM.

1Available from http://www.math.nus.edu.sg/∼mattohkc/SNLSDP.html.
2Available from http://www.personal.soton.ac.uk/hdqi.
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A. The Case of Single Source

The single source localization problem, treated as a Least-Square (LS) problem in [3], [4], can be solved by

reformulating it as a generalized trust-region subproblem (GTRS). The Lagrangian dual approach, as proved in

Thm. 4.3 for this case, also solves the GTRS under the conditions assumed in [3]. We use the two examples tested

in [3], [4] to verify this theoretical result. We used HANSO package to solve the Lagrangian dual problem (15).

Example 5.1: [3, Example 1] There are 5 known sensors (anchors) {ai} in the plane (r = 2) whose coordinates

are {
(6, 4)T , (0,−10)T , (5,−3)T , (1,−4)T , (3,−3)T

}
.

The unknown source’s coordinates are x = (−2, 3)T . The exact distances (‖x − ai‖) and the observed noisy

distances (ri = ‖x− ai‖+ εi) are given by

exact 8.0622 13.1529 9.2195 7.6157 7.8102

noisy 8.0051 13.0112 9.1138 7.7924 8.0210.

Each noise component εi is a realization of a Gaussian distributed random variable with mean zero and standard

deviation 0.1. The GTRS solution is (−2.018, 2.9585), which is a relatively good approximation of the true source

location. The solution obtained by the Lagrangian dual approach is (−2.0189, 2.9585), same as obtained by GTRS.

The Lagrange multiplier ūm+1 = 1.1122. Therefore, ρ = −2ūm+1 should be a good approximation to the optimal

solution of GTRS by Thm. 4.3.

Example 5.2: [4, Example 4.3] In this example, 100 instances are randomly generated. In each instance, there

are 5 sensors whose locations aj and the source location x are randomly generated from a uniform distribution over

the square [−10, 10]× [−10, 10]. The observed distances dj are given by ‖aj −x‖+ εj with εj being independently

generated from a normal distribution with mean zero and standard deviation σ.

We tested GTRS and the Lagrangian dual method LagD on Example 5.2. GTRS aims at finding the root of

ϕ(ρ) = 0 in (27). It is known that the root is contained in the interval (ρ,∞) and ϕ(ρ) is strictly decreasing over

this interval, where

ρ = −1/λ1(C,A
T
A)

and λ1(C,A
T
A) is the largest eigenvalue of the matrix (A

T
A)−1/2C(A

T
A)−1/2 (see [3, Sect. II(B)]).

In our implementation of GTRS, we first narrow the half-line interval (ρ,∞) to (ρ, ρ), where ρ = ρ+ 10i0 and

i0 is the first positive integer i such that ϕ(ρ+10i) < 0. By the strictly decreasing property of ϕ, the root must lie

in the interval (ρ, ρ). We then use the bisection method (as suggested in [3]) to find the root. The tolerance used to

terminate GTRS is |ϕ(ρ)| ≤ 10−3 (smaller tolerance such as 10−5 would not achieve significantly more accuracy

in localization). For GTRS, Iter is the number of function evaluations of ϕ till the termination. For LagD, Iter

is the number of iterations used by HANSO package. We also report the squared position error ‖x̄−x‖2, where x̄ is

the solution by the corresponding method. All results are based on the average over 100 random realizations. It can

be seen that LagD and GTRS return localizations with highly similar squared position errors, which are consistent

with our theoretical finding in Theorem 4.3.
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TABLE I

MEAN SQUARED POSITION ERROR OF GTRS AND LAGD METHODS

Example 5.2 GTRS LagD

σ Iter ‖x̄− x‖2 Iter ‖x̄− x‖2

1.00E-03 11 1.20E-06 36 1.21E-06

1.00E-02 11 1.38E-04 41 1.38E-04

1.00E-01 12 1.73E-02 39 1.73E-02

1.00E+00 42 1.46 37 1.45

B. Including More Constraints

One advantage of the Lagrangian dual approach is its capability of incorporating more information about the

unknown source. For example, we may have a good chance to know in advance the distance to the anchor ai from

the source x, i.e.,

‖x− ai‖ = ri for some i.

Such constraints are common in the literature of Euclidean distance matrix completion problems in the form of

that the distance Dij is known for some pair (i, j). For example, such constraints appear in the Euclidean distance

matrix completion formulation of the famous Kissing number problem of sphere packing (see [10, Problem 504]).

Each of such prior information would introduce one more quadratic constraint to the GTRS approach, which would

need one more Lagrangian multiplier ρ in order to state the corresponding conditions of (26). The existing global

optimality theory as well as the GTRS algorithm (i.e., bisection method) for the one quadratic equation case would

run into difficulties in extension. In contrast, the Lagrangian dual approach would just take such a constraint as a

linear equation because we always have (from Part II(c))

r2i = ‖x− ai‖2 = Yin = 0.5〈Ein, Y 〉, (45)

where Eij is the zero matrix except its having the value 1 at the positions (i, j) and (j, i).

In this case, the problem (9) then becomes

min
1

2
‖Y +D‖2 s.t.

⎧⎨⎩ A(Y ) = b, Y ∈ Kn
+(r)

〈Ein, Y 〉 = 2r2i

We can derive its corresponding Lagrangian dual problem, which is also unconstrained. Consequently, it would

be straightforward to generalize the Lagrangian dual approach to including this case. In order to appreciate this

capability of the Lagrangian dual approach, let us have another look at Example 5.1.

Example 5.3: Assume that the distance between x and a2 is known. That is, ‖x− a2‖ =
√
173 (note that it is

the largest distance among all measured distances). The Lagrangian dual approach found x = (−1.9982, 3.0003),

a much accurate localization with the error ‖x − (−2, 3)‖ = 1.8 × 10−3. If the distances to the first two anchors
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a1 and a2 are also respectively known to be
√
65 and

√
173, the Lagrangian dual approach would recover the true

x with the error 2.5× 10−8. The latter case would enforce two more quadratic constraints to the GTRS approach.

C. The Case of Multiple Sources

Another advantage of the Lagrangian dual approach is that the Euclidean distance embedding reformulation (7)

of the SSLP does not depend on the number of the unknown source as long as we can define the initial matrix D.

Therefore, it can handle multiple unknown sources. Below, we demonstrate its efficiency by comparison with the

well known SDP relaxation method studied in [5] (denoted by SNLSDP) on several standard test problems.

Example 5.4: This is the test problem in [5, III(C)]. The true positions of the n unknown sensors x1, . . . ,xn are

independently generated by the uniform distribution on the unit square [−0.5, 0.5]2. The edge set N is generated

by considering only pairs of points that have distances less than R = 0.3:

N = {(i, j) : ‖xi − xj‖ ≤ R, 1 ≤ i < j ≤ n} .

There are four (m = 4) anchors either taking to be (a) outer anchors [±0.45,±0.45] or (b) inner anchors

[±0.2,±0.2]. The edge set M is defined by

M = {(i, k) : ‖xi − ak‖ ≤ R, 1 ≤ i ≤ n, 1 ≤ k ≤ m} .

It is assumed that the distances dij and dik are perturbed by random noises εij and εik as follows:

dij = ‖xi − xj‖|1 + nf ∗ εij | (i, j) ∈ N

dik = ‖xi − ak‖|1 + nf ∗ εij | (i, k) ∈ M,

where εij , εik are independent standard normal random variables and nf is the noisy factor taken to be nf = 0.2.

Example 5.5: This is the test problem in [29] and is a modification of Example 5.4 in the following way. A

total of N sensors are generated as in Example 5.4. Set m = 0.1N (i.e., 10% of the sensors are anchors) and

n = N −m are unknown sensors. The remaining calculations are the same as in Example 5.4.

To follow the SNLSDP solver [5] and also for the comparison purpose, we calculate the Root Mean Square

Distance (RMSD) to measure the accuracy of the estimated positions x̂i, i = 1, . . . , n:

RMSD =
1√
n

(
n∑

i=1

‖x̂i − xi‖2
)1/2

.

One of the very useful techniques that have been developed in [5] to improve the localization quality of the SNLSDP

solver is the Refinement step, which is a gradient descent method applied to the objective distance function defined

in [5, Eq.(18)] (for details, see [5, Part V]). We found that this Refinement step also improves the localization

quality of our LagD solver. Figure 1 shows the improvement of the localization of LagD before and after the

Refinement step. Hence, we will report the resulting RMSD by LagD with this refinement step.

In Tables II and III, cpu time are in seconds. Iter denotes the number of iterations used. For LagD, it is the

number of iterations used by HANSO. The initial point for HANSO is provided by the Newton method [23] on the
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Fig. 1. Comparison of localizations of LagD before and after the Refinement step on Example 5.4: n = 100, 4 outer anchors, R = 0.3,

nf = 0.2, random state 0. The symbol + represents the true positions of the sensors and � represents the localization by LagD.

convex relaxation problem of (7) with Kn
+(r) being replaced by its convex counterpart Kn

+. All other parameters

of HANSO are taken to be their default values.

We include here a brief discussion on the computational complexity of the algorithms involved. The complexity

of LagD comes from two parts. One is computing the initial point by solving the convex relaxation problem of

(7), which is done by the quadratically convergent Newton’s method of [23]. The other part is from the HANSO

package. We refer to [19] for its computational analysis (we report the number of iterations used by HANSO in

Tables II and III). As for the GTRS, it is also an iterative algorithm and its complexity relies on how the function

ϕ(ρ) is computed or approximated. We refer to [3] for details. The SNLSDP solver solves a convex SDP and hence

has polynomial time complexity, which does not necessarily imply it is faster (see Tables II and III).

We report the average results on 50 randomly generated instances for each of the examples. The rmsd columns

in Tables II and III show that both LagD and SNLSDP yielded the localizations of similar quality in terms of rmsd

(i.e., all in the order of 10−2). However, the cpu used by LagD is only a small fraction of that used by SNLSDP,

especially when n is of a few hundreds. Those results clearly demonstrate the potential of the Lagrangian dual

approach for various localization problems. The research serves a good starting point for further investigations to

be discussed in the next section.

Finally, we would like to point out that LagD used longer time for Example 5.4(a) (n = 60) than that for

n = 80, 100 (see Table II). This was due to the mechanism of HANSO package in evaluating the ‘smallest” vector

in the convex hull of the used gradients. Over the 50 random runs, there occurred a few cases that LagD used

more iterations and hence longer time to terminate for n = 60 compared to that for n = 80 and n = 100. This is

reflected in the number of iterations used. In the table, Iter = 35 for n = 60 and Iter=17 and 20 for n = 80, 100

respectively.

VI. CONCLUSION

There exist a few methods for source localization problems, especially for sensor network localization. For the

single source localization problem, two methods stand out because of their global optimality properties. One is the

generalized trust-region subproblem approach studied by Beck et al. [3]. Another is the Lagrangian dual approach

studied by Qi [23] and Qi and Yuan [24] for Euclidean distance embedding problems. When specialized to the
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TABLE II

COMPARISON OF LAGD AND SNLSDP ON EXAMPLE 5.4(a): OUTER ANCHORS AND EXAMPLE 5.4(b): INNER ANCHORS.

Examples LagD SNLSDP

Name n cpu Iter rmsd cpu Iter rmsd

60 0.6 35 5.12E-2 1.6 21 8.28E-2

80 0.4 17 3.45E-2 2 22 3.82E-2

100 0.5 20 2.95E-2 4 23 2.93E-2

5.4(a) 150 1 22 2.22E-2 18 24 2.24E-2

180 2 23 1.89E-2 39 24 1.91E-2

200 3 24 1.84E-2 61 23 1.87E-2

250 5 26 1.65E-2 182 23 1.67E-2

300 10 29 1.44E-2 494 23 1.46E-2

60 0.3 16 4.49E-2 1 21 9.86E-2

80 0.3 16 3.25E-2 2 22 3.45E-2

100 0.5 15 2.86E-2 4 22 2.78E-2

5.4(b) 150 1 15 1.98E-2 20 24 1.98E-2

180 1 16 1.83E-2 43 23 1.83E-2

200 3 16 1.68E-2 68 23 1.66E-2

250 5 16 1.49E-2 196 23 1.48E-2

300 10 17 1.37E-2 563 23 1.36E-2

TABLE III

COMPARISON OF LAGD AND SNLSDP ON EXAMPLE 5.5: 10% OF RANDOMLY GENERATED SENSORS ARE ANCHORS.

Examples LagD SNLSDP

Name N cpu Iter rmsd cpu Iter rmsd

60 0.3 22 4.64E-2 1 20 1.34E-1

80 0.3 18 3.18E-2 2 22 4.09E-2

100 0.5 19 2.50E-2 4 22 2.49E-2

5.5 150 1 26 1.87E-2 18 23 1.83E-2

180 2 30 1.61E-2 41 23 1.61E-2

200 3 32 1.50E-2 65 23 1.50E-2

250 5 38 1.32E-2 199 23 1.31E-2

300 8 44 1.16E-2 475 23 1.16E-2
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SSLP, the Lagrangian dual approach is proved to be equivalent to the GTRS approach. Moreover, a nice geometrical

interpretation of the assumptions used by the GTRS approach is revealed. We also study when the Lagrangian dual

problem has an optimal solution and characterized when the zero duality gap holds for the SSLP.

The reported numerical results on SSLP are consistent with our theory in the sense that the resulting algorithm

LagD provides localizations of similar quality as that of GTRS. Moreover, the numerical results on multiple source

localization problems clearly shows the great potential of the Lagrangian dual approach when compared to the

popular SNLSDP solver [5]. We also show that the Lagrangian dual approach can handle the fixed distance constraint

of the type (45). A more general type of the distance constraint takes the form:

�ij ≤ ‖xi − xj‖ ≤ uij for some (i, j),

where �ij and uij are the lower and upper bounds of the distance between xi and xj . Such constraints arise from

many real applications, see e.g., [15]. However, the current form of the Lagrangian dual approach cannot be directly

used to deal with such constraints. We leave this as a future research topic.

Another future topic, as suggested by one referee, is to design efficient algorithms for the maximum likelihood

(ML) formulation of the localization problem based on the efficient methods such as the Lagrangian dual approach

for the least-squares (LS) formulation. A pioneering work has been done in [4], [2] which makes use of the GTRS to

solve the ML formulation of the SSLP. We may follow a similar framework of [4] to design a sequential algorithm

that uses the Lagrangian dual approach in each step.
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