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a b s t r a c t

Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic
uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acid-
ification associated with a failure of sub-seabed carbon storage infrastructure have received less atten-
tion. This study investigates the effects of severe short-term (8 days) exposure to acidified seawater on
infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and func-
tioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited
emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited
changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within
the sediment and the variability in occupancy depth reduced considerably. This study indicated that
rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural
changes that could have longer-term implications for species survival, ecosystem structure and
functioning.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The potential and realised impacts of anthropogenic carbon
dioxide (CO2) emissions on the global environment are now well
established (Hoegh-Guldberg and Bruno, 2010), leading to politi-
cal, social and environmental pressure on governments to reduce
carbon emissions. Consequently, many countries have opted to re-
duce carbon emissions within a limited timeframe (e.g. UK, 60% of
1990 levels by 2050; EU member states, 20% of 1990 levels by
2020; Russia, 15–25% of 1990 levels by 2020; USA, 17% of 2005 lev-
els by 2050; Gough et al., 2010; Stern and Taylor, 2010). A principal
method adopted by governments is to partially achieve such
reductions through the use of Carbon Capture and Storage (CCS)
technologies, a process whereby CO2 is captured from a point emis-
sion source and stored in deep geological formations in order to
prevent it from entering the atmosphere. This methodology has
been endorsed as a key climate change mitigation option by the
Intergovernmental Panel on Climate Change (IPCC, 2005), acceler-
ating the development and implementation of the necessary infra-
structure (Gibbins and Chalmers, 2008). Whilst CCS technology has
the potential to reduce CO2 emissions from fossil fuel power
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stations by 80–90% (Holloway, 2007), the delivery and storage of
large volumes of CO2 has raised concerns about the potential for
stochastic leakage and associated environmental consequences
(Blackford et al., 2008). Although probably very small, the risk of
leakage remains largely unknown and unquantified (Koornneef
et al., 2010), however, it is generally accepted that leakage will oc-
cur over time (Hawkins, 2004) and that it could have negative con-
sequences for benthic organisms and communities (Harrison et al.,
1995; Thistle et al., 2005, 2007).

The spatial extent of an acidification event will depend on the
location of the CCS infrastructure and the nature of the release,
making it difficult to form generic opinion and advisory conclu-
sions on the likely impact. Nevertheless, seepage from sub-seabed
storage is likely to lead to localised effects (Blackford et al., 2009),
and, even where such effects are spatially constrained, there is evi-
dence that significant point-source leaks will also simultaneously
affect neighbouring ecosystems (including, for example, aquatic
releases affecting terrestrial environments; Baxter et al., 1989).
Evidence from naturally occurring CO2 seeps suggest that associ-
ated changes in ocean chemistry (pH, HCO3, etc.) can lead to pro-
nounced biodiversity shifts, most notably the loss of calcifying
organisms (Hall-Spencer et al., 2008; Hendriks et al., 2010). In
addition, metabolic activity, fertility, growth and survival have all
been shown to be negatively impacted by exposure to acidified
seawater across a range of taxa (Fabry et al., 2008; Kroeker et al.,
2010; Pörtner and Farrell, 2008). The magnitude and rate of effects
vary greatly between species, but all calcifying species studied to
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date have been shown to be negatively affected (Hendriks et al.,
2010). Although acidification may not necessarily be lethal, ele-
vated levels of CO2 will affect many physiological processes and
has the potential to lead to trade-offs between maintenance activ-
ities, such as respiration, growth or reproduction (Widdicombe and
Spicer, 2008). In addition to physiological impacts, exposure to
acidified seawater can also influence the activity and behaviour
of marine invertebrates (e.g. de la Haye et al., 2011; Simpson
et al., 2011), which may have significant consequences for ecosys-
tem functioning.

In marine sediment systems, infaunal macro-invertebrates are
particularly important in influencing generative and regenerative
microbial-mediated processes, such as nutrient transformation
and decomposition, vital to maintaining ecosystem condition
(e.g. Emmerson et al., 2001; Godbold et al., 2009; Ieno et al.,
2006; Laverock et al., 2011; Marinelli and Williams, 2003; Mermil-
lod-Blondin et al., 2004; Norling et al., 2007). In UK and European
shelf sea sediments, the brittlestar Amphiura filiformis is highly
abundant and, where it is present, can be responsible for up to
80% of particle redistribution below the sediment–water interface
(Solan and Kennedy, 2002; Vopel et al., 2003). Reduction in seawa-
ter pH has been shown to induce muscle wastage in A. filiformis and
increase rates of metabolism (Wood et al., 2008), potentially lead-
ing to changes in activity levels and burrowing capacity. Given the
intimate link between infaunal behaviour and nutrient cycling, any
widespread effect on the efficiency of bioturbation activity by A. fil-
iformis is likely to have ecological consequences for ecosystem
function in shelf sea sediment systems (Solan et al., 2004a,
2012). This study experimentally generated a short-term acidifi-
cation (to pH 6.5) event to investigate the immediate effects of ra-
pid acidification on benthic processes (bioturbation and
bioirrigation) and, in turn, ecosystem functioning (nutrient con-
centration). Visual observations of burrowing behaviour will also
indicate whether there are aspects of behavioural response that,
following further investigation, may provide a means to identify
the presence and spatial extent of CO2 leakage in areas dominated
by this species.
2. Materials and methods

2.1. Sediment and fauna collection

Individuals of Amphiura filiformis were collected from Plymouth
Sound (�15 m water depth, 50�21.050N, 04�07.80W and 50�20.70N,
04�07.780W) using an anchor grab. Sediment was collected from
Cawsand, Plymouth Sound (�15 m water depth, 50�19.80N,
04�11.50W) using an anchor grab. Sediment was sieved (500 lm
mesh) in a seawater bath to remove macrofauna, allowed to settle
to retain the fine fraction and homogenised by stirring, before
being added to individual cores (capped PVC cores, 100 mm diam-
eter, 200 mm tall) to a depth of 150 mm and overlain by 50 mm
seawater. All cores were held in a recirculating seawater system
until they were used in the exposure trials.
Fig. 1. Timeline diagram of experimental procedure.
2.2. Seawater acidification and exposure

CO2 gas was bubbled through natural seawater (salinity �35)
enabling the gas to dissolve rapidly into solution. Release of CO2

gas, to maintain the pH, was controlled via a solenoid valve con-
nected to the gas cylinder and monitored using a pH controller
(Aqua Digital pH-201, accuracy ±0.1% + 0.02) which was cross
checked weekly against values given by a regularly calibrated pH
metre (InLab� 413SG, Mettler-Toledo). The reservoir electrodes
did not require calibration over the course of the study. Two 1m3

tanks, one containing the acidified sea water and one containing
ambient seawater were used to acclimatise both the A. filiformis
and the sediment (including meiofauna and microorganisms) prior
to the experiment. Cores containing individuals of A. filiformis
(n = 5 mesocosm�1, density equivalent to 640 individuals m�2) or
sediment with no macrofauna were positioned randomly in the
acclimatisation tanks for 96 h prior to the start of the experiment
(Fig. 1). Salinity, temperature and alkalinity in both tanks were
monitored three times per week (Monday, Wednesday and Friday)
throughout the duration of the experiment. Unmeasured carbonate
parameters were calculated from these data using constants sup-
plied by Lueker et al. (2000) and Millero (2010) with CO2 calc.,
an application developed by the U.S. Geological Survey Florida
Shelf Ecosystems Response to Climate Change Project (Robbins
et al., 2010).

2.3. Observation of species activity and behaviour

Following the acclimatisation period, sediment and fauna were
transferred into rectangular thin-walled (5 mm) Perspex aquaria
(33 � 10 � 10 cm, density equivalent to 500 individuals m�2). Each
aquarium was maintained in a temperature controlled room
(10 �C) and supplied with seawater (on a flow through system from
the acclimatisation tanks) at the appropriate pH level and at a rate
of �10 ml min�1 using a peristaltic pump (Watson–Marlow 323).
The faunal redistribution of sediment particles was measured
non-invasively using a time lapse sediment profile imaging system
(f-SPI, following Solan et al., 2004b), optically modified to preferen-
tially visualise fluorescent dyed sediment particles (luminophores,
see Maire et al., 2008) housed in a UV illuminated imaging box
(32 � 87 � 62 cm with Phillips blacklight, 8 W, Schiffers et al.,
2011). The camera (Canon 400D, 3900 � 2600 pixels, i.e. 10 mega-
pixels, effective resolution = 64 � 64 lm per pixel) was set for an



Table 1
Chemical and physical properties of seawater tanks (mean ± 1 SD) during the
experimental period. pH, salinity, temperature and alkalinity were measured. All
other values (pCO2; DIC: dissolved inorganic carbon; Xaragonite: aragonite saturation
state; Xcalcite: calcite saturation state) were calculated using CO2calc (Robbins et al.,
2010) from pH and alkalinity.

Ambient Acidified

pH 8.05 ± 0.07 6.51 ± 0.06
Temperature (�C) 11.29 ± 0.46 11.52 ± 0.55
Salinity (psu) 35.61 ± 0.23 35.29 ± 0.34
Alkalinity (mmol l�1) 2.63 ± 0.13 2.43 ± 0.03
pCO2 (latm) 418.36 ± 114.24 18325.05 ± 2421.70
DIC (lmol kg�1) 2048.92 ± 72.28 2615.51 ± 129.11
Xaragonite 2.33 ± 0.26 0.09 ± 0.01
Xcalcite 3.64 ± 0.41 0.13 ± 0.02
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exposure of 4s, f = 5.6, film speed equivalent to ISO 400 and was
controlled using third party timelapse software (GB Time lapse,
v.2.0.20.0, http://www.granitebaysoftware.com). After an acclima-
tisation period of 24 h to allow macrofaunal establishment
within the aquaria, luminophores (Partrac Tracer 2290 pink, size
125–355 lm, 20 g aquaria�1) were evenly distributed across the
sediment surface immediately prior to the start of each time lapse
sequence (1 image 15 min�1 for 96 h, i.e. 384 images sequence�1).
Images were saved with colour JPEG (Joint Photographic Experts
Group) compression.

Bioirrigation activity was estimated from changes in water col-
umn concentrations of an inert tracer, (Sodium bromide, NaBr, dis-
solved in seawater [Br�] = 800 ppm, 5 mM, stirred into the
overlying seawater) for 8 h on day 8 of each experimental run, dur-
ing which time the aquaria were isolated from the seawater sup-
ply. Water samples (5 ml) were taken at 0, 1, 2, 4, and 8 h
(following Forster et al., 1999; Mermillod-Blondin et al., 2004)
and immediately filtered (47 mm £ GF/F filter) and frozen
(�18 �C). [Br�] was analysed using colorimetric analysis using a
FIAstar 5000 flow injection analyzer (FOSS Tecator, Höganäs, Swe-
den). Additional water samples (50 ml, 47 mm £ GF/F filter) were
taken at 0 and 8 h to determine any changes in nutrient concentra-
tions (NH4–N, NOx–N, PO4–P and SiO2–Si) of the overlying water
column and analysed using a nutrient autoanalyser (Branne and
Luebbe, AAIII).

2.4. Image analysis

The distribution of luminophore particles within the sediment
profile was quantified, following Solan et al. (2004b), using a
custom made semi-automated macro in ImageJ (v. 1.44), a public
domain Java based programme (http://rsbweb.nih.gov/ij/down-
load.html). The macro sequentially opens each image and splits it
into three separate colour (RGB) channels. The user traces the
sediment–water interface (=upper region of interest) using the
segmented line tool in the green channel. Identification of lumino-
phores below the sediment–water interface is achieved in the red
channel using an appropriate threshold level that distinguishes the
luminophore particles from the background sediment. The thresh-
old image is converted to a bitmap (0 = background sediment,
1 = luminophore pixels), allowing the total number of luminophore
pixels in each row to be summed for each depth row. In addition,
the mean (lummean), median (lummed) and coefficient of variation
(lumCV = standard deviation/mean) of the vertical distribution of
luminophores recovered from the final image in each sequence
were calculated.

2.5. Bioturbation model

A process-based, spatially explicit simulation model (Schiffers
et al., 2011) was applied to the timelapse sequence data (1 image
30 min�1 for 72 h, i.e. 145 images sequence�1). Three parameters
were estimated; ‘activity’, the probability that each particle will
be displaced at each time step; ‘distance’, the mean distance a par-
ticle is displaced between each time step; and ‘tracerdif’, a weight-
ing factor that accounts for any differences in the redistribution
probability between tracer (luminophore) and sediment particles.
The parameter values are identified by iteratively comparing sim-
ulation results to experimental data using summed squares of dif-
ferences, and a subset of these comparisons across parameter
space are compared to check for correlation. The optimal
combination is then found by implementing a two-step
optimisation process (simulated annealing, followed by Broyden–
Fletcher–Goldfarb–Shanno minimisation algorithms (Behzadi
et al., 2005; Belisle, 1992; Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970) within the ‘optim’ function in the core
package of the R (v2.13.1) statistical and programming environ-
ment (R Development Core Team, 2011).

2.6. Statistical analysis

Following preliminary statistical analysis on the change in bro-
mide concentration across all time points, the change in concentra-
tion between 0 and 4 h was analysed, as subsequent time periods
showed evidence of tracer equilibration as found elsewhere (e.g.
Forster et al., 1999; Mermillod-Blondin et al., 2004). Linear regres-
sion models were developed for each of the dependent variables
distance, maximum luminophore depth (lummax), lummed, lummean,
lumCV, D[Br�], [NH4–N], [NOx–N], [PO4–P] and [SiO2–Si], with lev-
els of pH (6.5 or 8.1) and the presence/absence of A. filiformis as
independent fixed factors. As a first step a linear regression model
was fitted for each dependant variable. Where model validation
showed evidence of unequal variance a generalised least squares
(GLS; Pinheiro and Bates, 2000; Zuur et al., 2009) mixed modelling
approach was used to model the heterogeneity of variance.

All analyses were carried out using the ‘nlme’ package (v3.1-
101; Pinheiro et al., 2011) in the R (v2.13.1) statistical and pro-
gramming environment (R Development Core Team, 2011).

3. Results

Seawater carbonate parameters (Table 1) within the recirculat-
ing seawater tanks were stable throughout the duration of the
experiment. A. filiformis survival was 100% throughout the acclima-
tisation period and over the course of the experiment. Under acid-
ified conditions individuals displayed emergent behaviour within
minutes of exposure (Fig. S1, Time lapse video sequence S1) typical
of a stress response to hypoxia (Nilsson, 1999). Oxygen levels in
individual aquaria were not measured, however visual examina-
tion of the sediment profile did not reveal any evidence (e.g.
changes in sediment colour, elevation of redox boundary; Lyle,
1983) of enhanced reduction. This is coherent with previous stud-
ies in which oxygen levels were monitored and echinoderms dis-
played emergent behaviour in response to hypercapnia (e.g.
Widdicombe et al., 2009).

3.1. Infaunal-mediated particle redistribution and irrigation

Images from the f-SPI sequences showed active particle rework-
ing in both ambient and acidified treatments, however, behav-
ioural differences observed led to subtle changes in the vertical
distribution of luminophores between ambient and acidified con-
ditions (Fig. 2, S2 and 3). A strong correlation was found between
the bioturbation parameters activity and distance (Fig. S3), indicat-
ing that there was not a unique global minimum in parameter
space. However, as this preliminary optimisation indicated that
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Fig. 2. Representative profiles of luminophore redistribution over 72 h for Amphiura filiformis in (a) ambient seawater conditions and (b) seawater acidified with CO2.
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the optimal value for the parameter activity was 0.05, activity was
fixed at this value to aid the appropriate optimization of the values
for tracerdif and distance. The mean distance (±1 standard devia-
tion) a particle was displaced (distance) was 0.08 ± 0.13 cm for
acidified conditions and 0.03 ± 0.01 cm for ambient conditions,
although there was no statistical significance between treatments
(linear regression: distance, F = 0.7602, d.f. = 6, p = 0.41, Fig. S4).
There was, however, a significant but weak effect of acidification
on lummax (linear regression with GLS extension for pH: L-ra-
tio = 3.8210, d.f. = 1, p = 0.05; Model S1, Fig. 3), with deeper mixing
occurring in ambient (mean lummax ± 1 standard devia-
tion = 1.48 ± 0.25 cm) relative to acidified (mean lummax ± 1 stan-
dard deviation = 0.41 ± 1.11 cm) conditions. No significant
difference was detected in either lummean (linear regression with
GLS extension for pH: L-ratio = 2.0457, d.f. = 1, p = 0.15) or lummed

after 72 h (linear regression with GLS extension for pH: L-
ratio = 1.1561, d.f. = 1, p = 0.28). However, analysis of lumCV

revealed much greater variability in ambient relative to
acidified conditions (linear regression with GLS extension for pH:
L-ratio = 7.2658, d.f. = 1, p = <0.05, Model S2, Fig. S4).
Fig. 3. Effects of seawater acidification on the maximum depth of luminophore
redistribution by Amphiura filiformis. In each plot the median is indicated by the
midpoint, the upper and lower quartiles are indicated by the box, the spread of the
data is indicated by the lines and any outliers are represented open circles. Model
predictions (linear regression with GLS extension, Model S1) are represented by
black triangles.
Analysis of [Br�] revealed no significant bioirrigation activity by
A. filiformis (mean decrease in [Br�] ± 1 standard deviation of
1.26 ± 1.94 mM and 0.40 ± 0.70 mM for A. filiformis in acidified ver-
sus ambient conditions and 0.49 ± 0.67 mM and 1.81 ± 1.52 mM for
aquaria with no macrofauna under acidified versus ambient condi-
tions respectively: Linear regression, F = 1.288, d.f. = 13, p = 0.3125,
Fig. S5).

3.2. Nutrient concentrations

Nutrient concentrations at the start of the experiment did not
differ between acidified and non-acidified treatments or between
the presence versus absence of A. filiformis, indicating that any
treatment effects cannot be related to initial conditions (linear
regressions, [NH4–N], p = 0.6379, [NOx–N], p = 0.7561, [PO4–P],
p = 0.2742, [SiO2–Si], p = 0.4327). Analyses carried out on final
water column concentrations for each nutrient indicated that the
sediment acted as a source for [NH4–N] (Fig. 4). The concentration
of [NH4–N] was positively affected by acidification (linear regres-
sion with GLS extension for pH, L-ratio = 4.6514, d.f. = 1,
p = <0.05, Model S3, Fig. 4), with increased levels of [NH4–N] re-
leased from the sediment under acidified conditions (mean
[NH4–N] ± 1 standard deviation = 4.09 ± 2.15 lM, n = 10) relative
to ambient (mean [NH4–N] ± 1 standard deviation = 2.37 ±
1.33 lM, n = 10) conditions. However the presence of A. filiformis
had no discernable additional effect (presence, 3.68 ± 2.02 lM,
n = 10; absence, 2.77 ± 1.88 lM, n = 10; L-ratio = 1.47, d.f. = 1,
p = 0.22). There was also no significant interaction between A. fil-
formis and the level of acidification (L-ratio = 0.82, d.f. = 1, p = 0.36).

[NOx–N] and [PO4–P] did not vary greatly within treatments
([NOx–N]: ambient mean ± 1 standard deviation = 3.63 ± 1.64 lM,
n = 10; acidified mean ± 1 standard deviation = 3.46 ± 0.51 lM,
n = 10; [PO4–P]: ambient mean ± 1 standard deviation = 0.34 ±
0.09 lM, n = 10; acidified mean ± 1 standard deviation = 0.31 ±
0.08 lM, n = 10) and were not affected by the level of acidification
or by the presence of A. filiformis (linear regressions, [NOx–N],
F = 0.1159, d.f. = 13, p = 0.9495, Fig. S6; [PO4–P], F = 1.055,
d.f. = 13, p = 0.3955, Fig. S7).

Both the pH treatment and the presence/absence of A. filiformis
were found to have an independent effect on [SiO2–Si] (linear
regression with GLS extensions for pH and presence of A. filiformis,
L-ratio = 7.5517, d.f. = 2, p = <0.05, Model S4, Fig. 5). [SiO2–Si] levels
were increased under acidified conditions (mean [SiO2–Si] ± 1



Fig. 4. Effects of seawater acidification on NH4–N concentrations by A. filiformis. In each plot the median is indicated by the midpoint, the upper and lower quartiles are
indicated by the box, the spread of the data is indicated by the lines and any outliers are represented open circles. Plot 3a shows all data separated by pH level with aquaria
containing A. filiformis in black and no macrofauna in grey. Plot 3b represents all data at each pH level with model predictions (linear regression with GLS extension, Model S3)
for A. filiformis represented by black triangles.
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standard deviation = 4.43 ± 1.38 lM, n = 10) relative to ambient
conditions (mean [SiO2–Si] ± 1 standard deviation = 3.46 ± 1.14
lM, n = 10) and, in the presence of A. filiformis, more [SiO2–Si]
was released into the water column (mean [SiO2–Si] ± 1 standard
deviation = 4.50 ± 1.40 lM, n = 10) relative to when there were
no macrofauna present (mean [SiO2–Si] ± 1 standard devia-
tion = 3.39 ± 1.04 lM, n = 10). The presence of A. filiformis was the
most influential variable (L-ratio = 4.7150, d.f. = 1, p = <0.05),
followed by seawater acidification (L-ratio = 3.5575, d.f. = 1,
p = 0.0593), although both of these effects were weak. No interac-
tion was detected between the variables.

4. Discussion

This study demonstrated that A. filiformis is capable of surviving
short-term exposure to acidification, although individuals did ex-
hibit emergent behaviour analogous to stress responses observed
elsewhere (e.g. hypoxia, Nilsson, 1999). This is consistent with
other studies which have indicated that a number of marine spe-
cies are capable of surviving acute exposures to acidification (Don-
ohue et al., 2012; Pörtner et al., 2004; Small et al., 2010;
Widdicombe and Needham, 2007). However, previous work has
demonstrated that a variety of changes in the abiotic environment
affect species behaviour and, subsequently, nutrient turnover and
primary production in marine sediment systems (Biles et al.,
2003; Dyson et al., 2007; Godbold et al., 2011; Bulling et al.,
2008, 2010; Langenheder et al., 2010; Hicks et al., 2011). It is also
known that context-dependent changes to organism physiology
Fig. 5. Effects of seawater acidification on SiO2–Si concentrations by A. filiformis. In eac
indicated by the box, the spread of the data is indicated by the lines and any outliers are
containing A. filiformis in black and no macrofauna in grey. Plot 4b represents all data at ea
for A. filiformis represented by black triangles.
pre-empt measureable changes in a species functional capacity
within an ecosystem (Widdicombe and Spicer, 2008; Hughes
et al., 2010; Fehsenfeld et al., 2011); indeed, echinoderms lack an
ability to fully compensate for acidification through increasing
the bicarbonate level of extracellular fluid (Miles et al., 2007; Spic-
er et al., 2011) and exposure to acidified seawater has been shown
to affect the protein, lipid and carbohydrate levels in the pyloric
caeca of the sea star Luidia clathrata (Schram et al., 2011). Reduced
protein synthesis (Langenbuch et al., 2006), inferred muscle wast-
age (Wood et al., 2008), reduced growth rates (Berge et al., 2006)
and immunosuppression (Hernroth et al., 2011) have all been doc-
umented as responses to seawater acidification for marine inverte-
brates. Hypercapnia is known to suppress metabolism in several
species (e.g. Widdicombe and Spicer, 2008) and causes lethargy
in the ophiuroid Ophinoereis schayeri at pH 7.8 (Christensen et al.,
2011), which may lead to reductions in activity levels and impair
the performance of routine behaviour. At lower pH levels (pH
7.6–7.4), however, compensatory mechanisms appear to be acti-
vated in O. schayeri as oxygen uptake increases coinciding with
copious secretion of mucous, a known stress response. Oxygen
consumption is also up-regulated under acidified conditions in A.
filiformis (Wood et al., 2008) and in the arctic ophiuroid Ophiocten
sericeum (Wood et al., 2011), suggesting that individuals attempt
to maintain normal levels of activity.

Whilst the observed onset of emergent behaviour most likely
reflects a response to hypercapnic conditions rather than other
known causes of stress, such as hypoxia (Rosenberg et al., 1991),
behavioural changes in response to the onset of acidification do
h plot the median is indicated by the midpoint, the upper and lower quartiles are
represented open circles. Plot 4a shows all data separated by pH level with aquaria
ch pH level with model predictions (linear regression with GLS extension, Model S4)
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occur rapidly and evidence is emerging that altered behaviour may
modify organism-sediment and community interactions (Briffa
et al., 2012). In the present study, it is clear that individuals of A.
filiformis moved to shallower depths within the sediment profile
under acidified conditions and that the variability in the depth of
occupancy reduced relative to ambient conditions, yet these
changes in behaviour were insufficient to cause demonstrable ef-
fects on functioning. Whilst it is possible that we may not have de-
tected a strong affect because the response behaviour of A. filiformis
forms an extension of normal behaviour (Solan and Kennedy,
2002; O’Reilly et al., 2006), we interpret our findings to be a reflec-
tion of the short duration of our experiment. If this is the case, the
observed changes to species behaviour could be extremely impor-
tant over longer timescales because they are likely to lead to sec-
ondary effects, such as increased (Bibby et al., 2007) or decreased
(Dixson et al., 2010) predator evasion, reduced responses to olfac-
tory cues (Cripps et al., 2011) and decreased locomotion (de la
Haye et al., 2011), all of which affect post-acidification survival
and/or the contribution that individual species make to ecosystem
functioning over the longer term (Bulling et al., 2010). Where sub-
lethal predation of A. filiformis arms by demersal fish species is
extensive (Bowmer and Keegan, 1983), for example, the emergent
behaviour reported here will render the population more vulnera-
ble to predation, strengthening the trophic interconnection be-
tween benthic and pelagic food webs. Furthermore, changes in
sediment turnover, resulting from decreased or altered bioturba-
tion activity, will affect microbial activity and, in turn, has the po-
tential to affect major pathways of biogeochemical cycling
(Gilbertson et al., 2012).

It is important to consider changes in bioirrigation activity, as
well as changes in behaviour that affect particle redistribution.
The observed increases in ammonia and silicate concentrations
cannot be attributed to increased bioirrigation activity, but it is
likely that observed changes in nutrient concentrations, albeit
small, indicate the start of changes in microbial activity and compo-
sition, particularly in terms of the realised ratio of archaea to bacte-
ria (Wyatt et al., 2010; Gilbertson et al., 2012). Indeed, microbial
nitrification rates have been demonstrated to decrease under
experimentally reduced pH conditions (Beman et al., 2010). In par-
ticular ammonia oxidation rates are strongly inversely correlated
with pH and have been found to be reduced by up to 90% at
pH 6.5 and completely inhibited at pH 6 (Huesemann et al., 2002;
Kitidis et al., 2011) in the water column, although rates of ammonia
oxidation within the sediment profile are not necessarily affected
(Kitidis et al., 2011, Laverock et al., unpub.). It should be noted,
however, that not all changes in biogeochemical cycles are attribut-
able to the direct effects of acidification on the microbial commu-
nity. In the case of silicate, for example, acidification of seawater
may accelerate the chemical breakdown of diatom tests, leading
to an increased rate of silicate release. The bioturbation activity of
burrowing macrofauna has been previously shown to have a signif-
icant effect on sediment silicate fluxes (Olsgard et al., 2008) through
increased mixing across the sediment water interface.

Within the context of acidification events associated with CO2

leakage from a subsea carbon storage site, even short-term local-
ised events have the potential to lead to secondary effects that
have functional consequences at larger scales and over longer
timescales. Here, we have shown that a functionally important bio-
turbator (Solan and Kennedy, 2002; Wood et al., 2009) switches
behaviour in response to acidification. Changes in species behav-
iour could also lead to shifts in the benthic community composi-
tion. Polychaetes, for example, have been shown to be less
sensitive to seawater acidification (Widdicombe and Needham,
2007), and may become more competitive under hypercapnic con-
ditions. It is also possible that species, such as A. filiformis, that ex-
hibit emergent behaviour, may become more susceptible to
predation or displacement, especially if an acidification event coin-
cides with high current flow (Loo et al., 1996; Solan and Kennedy,
2002) or times of high predator abundance (Pape-Lindstrom et al.,
1997), affecting energy flow through the food web (O’Connor et al.,
1986; Lawrence, 2010).

Whilst there are demonstrable physiological and ecological
consequences of an acidification event, the likelihood of occurrence
and regional community responses of benthic assemblages have
not been estimated. Identifying and then monitoring any release
of CO2 from sub-seabed carbon storage sites will be critical in
assessing their success as a long-term option for reducing CO2

atmospheric emissions (Lenzen, 2011). CCS sites are obliged to
maintain a leakage rate of 0.01% or less per year to ensure that
any associated rise in global temperature is negligible (Lenzen,
2011), yet even at these low levels the local impact of gas release
could be considerable. Accurately measuring subtle changes in car-
bonate chemistry remains difficult in the field and is not yet trac-
table to monitor remotely. Notwithstanding the need for
appropriate monitoring tools (e.g. biomarkers, Hardege et al.,
2011), there is scope to monitor behavioural responses of species
that show particular behaviours in response to acidification. This
approach could prove to be a cost effective method to monitor
large areas of seabed, although understanding how benthic species
respond to such events is still in its infancy and will need contin-
ued investment.

Acknowledgements

The authors would like to thank the crew of the MBA Sepia for
assistance in animal, sediment and seawater collection, Amanda
Beesley and Malcolm Woodward for analysing water samples
and the technical support staff at PML. This study was funded by
NERC studentship (NE/H524481/1) awarded to FM. This paper is
also a contribution to ‘‘Sub-seabed carbon storage and the marine
environment’’ (ECO2) a Collaborative Project funded under the
European Commission’s Framework Seven Programme Topic
OCEAN.2010.3.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.marpolbul.2012.
11.023.

References

Baxter, P.J., Kapila, M., Mfonfu, D., 1989. Lake Nyos disaster, Cameroon, 1986: the
medical effects of large scale emission of carbon dioxide? BMJ (Clin. Res. Ed.)
298, 1437–1441.

Behzadi, B., Ghotbi, C., Galindo, A., 2005. Application of the simplex simulated
annealing technique to nonlinear parameter optimization for the SAFT-VR
equation of state. Chem. Eng. Sci. 60 (23), 6607–6621.

Belisle, C.J.P., 1992. Convergence theorems for a class of simulated annealing
algorithms on Rd. J. Appl. Probab. 29, 885–895.

Beman, J.M., Chow, C., King, A.L., Feng, Y., Fuhrman, J.A., 2010. Global declines in
oceanic nitrification rates as a consequence of ocean acidification. PNAS 108 (1),
208–213.

Berge, J.A., Bjerkeng, B., Pettersen, O., Schaanning, M.T., Øxnevad, S., 2006. Effects of
increased sea water concentrations of CO2 on growth of the bivalve Mytilus
edulis L. Chemosphere 62 (4), 681–687.

Bibby, R., Cleall-Harding, P., Rundle, S., Widdicombe, S., Spicer, J., 2007. Ocean
acidification disrupts induced defences in the intertidal gastropod Littorina
littorea. Biol. Lett. 3 (6), 699–701.

Biles, C.L., Solan, M., Isaksson, I., Paterson, D.M., Emes, C., Raffaelli, D.G., 2003. Flow
modifies the effect of biodiversity on ecosystem functioning: an in situ study of
estuarine sediments. J. Exp. Mar. Biol. Ecol. 284 (285), 165–177.

Blackford, J.C., Jones, N., Proctor, R., Holt, J., 2008. Regional scale impacts of distinct
CO2 additions in the North Sea. Mar. Pollut. Bull. 56 (8), 1461–1468.

Blackford, J., Jones, N., Proctor, R., Holt, J., Widdicombe, S., Lowe, D., Rees, A., 2009.
An initial assessment of the potential environmental impact of CO2 escape from
marine carbon capture and storage systems. Proc. Inst. Mech. Eng. A – J. Power
223 (3), 269–280.

http://dx.doi.org/10.1016/j.marpolbul.2012.11.023
http://dx.doi.org/10.1016/j.marpolbul.2012.11.023


F. Murray et al. / Marine Pollution Bulletin 73 (2013) 435–442 441
Bowmer, T., Keegan, B.F., 1983. Field survey of the occurrence and significance of
regeneration in Amphiura filiformis (Echinodermata: Ophiuroidea) from Galway
Bay, west coast of Ireland. Mar. Biol. 71, 65–71.

Briffa, M., de la Haye, K., Munday, P.L., 2012. High CO2 and marine animal
behaviour: potential mechanisms and ecological consequences. Mar. Pollut.
Bull. 64, 1519–1528.

Broyden, C.G., 1970. The convergence of a class of double rank minimization
algorithms. 2. The new algorithm. J. Inst. Math. Appl. 6, 222–231.

Bulling, M.T., Solan, M., Dyson, K.E., Hernandez-Millian, G., Lastra, P., Pierce, G.J.,
Raffaelli, D.G., Paterson, D.M., White, P.C.L., 2008. Species effects on ecosystem
processes are modified by faunal responses to habitat quality. Oecologia 158,
511–520.

Bulling, M.T., Hicks, N., Murray, L., Paterson, D.M., Raffaelli, D., White, P.C.L., Solan,
M., 2010. Marine biodiversity-ecosystem functions under uncertain
environmental futures. Phil. Trans. Roy. Soc. B. 365, 2107–2116.

Christensen, A.B., Nguyen, H.D., Byrne, M., 2011. Thermotolerance and the effects of
hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri:
inferences for survivorship in a changing ocean. J. Exp. Mar. Biol. Ecol. 403 (1–2),
31–38.

Cripps, I.L., Munday, P.L., McCormick, M.I., 2011. Ocean acidification affects
prey detection by a predatory reef fish Ed. Attila Szolnoki. PLoS ONE 6 (7),
e22736.

de la Haye, K.L., Spicer, J.I., Widdicombe, S., Briffa, M., 2011. Reduced sea water pH
disrupts resource assessment and decision making in the hermit crab Pagurus
bernhardus. Anim. Behav. 82 (3), 495–501.

Donohue, P., Calosi, P., Bates, A.H., Laverock, B., Mark, F., Strobel, A., Widdicombe, S.,
2012. Impact of exposure to elevated levels of CO2 on the physiology and
behaviour of an important ecosystem engineer; the burrowing thalassinidean
shrimp Upogebia deltaura. Aquat. Biol. 15 (1), 73–86.

Dixson, D.L., Munday, P.L., Jones, G.P., 2010. Ocean acidification disrupts the innate
ability of fish to detect predator olfactory cues. Ecol. Lett. 13 (1), 68–75.

Dyson, K.E., Bulling, M.T., Solan, M., Hernandez, G., Raffaelli, D., White, P.C.L.,
Paterson, D.M., 2007. Influence of macrofaunal assemblages and environmental
heterogeneity on microphytobenthic production in experimental systems. P.
Roy. Soc. B – Biol. Sci. 274, 2547–2554.

Emmerson, M.C., Solan, M., Emes, C., Paterson, D.M., Raffaelli, D., 2001. Consistent
patterns and the idiosyncratic effects of biodiversity in marine ecosystems.
Nature 411 (6833), 73–77.

Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J.C., 2008. Impacts of ocean acidification on
marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432.

Fehsenfeld, S., Kiko, R., Appelhans, Y., Towle, D.W., Zimmer, M., Melzner, F., 2011.
Effects of elevated seawater pCO2 on gene expression patterns in the gills of the
green crab Carcinus maenas. BMC Genomics 12, 488.

Fletcher, R., 1970. A new approach to variable metric algorithms. Comput. J. 13,
317–322.

Forster, S., Glud, R.N., Gundersen, J.K., Huettel, M., 1999. In situ study of bromide
tracer and oxygen flux in coastal sediments. Esuar. Coast. Shelf Sci. 49 (6), 813–
827.

Gibbins, J., Chalmers, H., 2008. Carbon capture and storage. Energy Policy 36, 4317–
4322.

Gilbertson, W.W., Solan, M., Prosser, J.I., 2012. Differential effects of microbe-
invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol. Ecol. 82,
11–22.

Godbold, J.A., Solan, M., Killham, K., 2009. Consumer and resource diversity effects
on marine macroalgal decomposition. Oikos 118 (1), 77–86.

Godbold, J.A., Bulling, M.T., Solan, M., 2011. Habitat structure mediates biodiversity
effects on ecosystem properties. P. Roy. Soc. B – Biol. Sci. 278, 2510–2518.

Goldfarb, D., 1970. A family of variable metric methods derived by variational
means. Math. Comput. 24, 23–26.

Gough, C., Mander, S., Haszeldine, S., 2010. A roadmap for carbon capture and
storage in the UK. Int. J. Green. Gas Control 4 (1), 1–12.

Hall-Spencer, J.M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner,
S.M., Rowley, S.J., Tedesco, D., Buia, M., 2008. Volcanic carbon dioxide vents
show ecosystem effects of ocean acidification. Nature 454, 96–99.

Hardege, J.D., Rotchell, J.M., Terschak, J., Greenway, G.M., 2011. Analytical
challenges and the development of biomarkers to measure and to monitor
the effects of ocean acidification. Trends Anal. Chem. 30 (8), 1320–1326.

Harrison, W.J., Wendlandt, R.F., Sloan, E.D., 1995. Geochemical interactions
resulting from carbon dioxide disposal on the seafloor. Science 10, 461–475.

Hawkins, D.G., 2004. No exit: thinking about leakage from geologic carbon storage
sites. Energy 29 (9–10), 1571–1578.

Hendriks, I.E., Duarte, C.M., Álvarez, M., 2010. Vulnerability of marine biodiversity
to ocean acidification: a meta-analysis. Esuar. Coast. Shelf Sci. 86 (2), 157–164.

Hernroth, B., Baden, S., Thorndyke, M., Dupont, S., 2011. Immune suppression of the
echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquat.
Toxicol. 103, 222–224.

Hicks, N., Bulling, M.T., Solan, M., Raffaelli, D., White, P.C.L., Paterson, D.M., 2011.
Impact of biodiversity-climate futures on primary production and metabolism
in a model benthic estuarine system. BMC Ecol. 11, 7.

Hoegh-Guldberg, O., Bruno, J.F., 2010. The impact of climate change on the world’s
marine ecosystems. Science 328, 1523–1528.

Holloway, S., 2007. Carbon dioxide capture and geological storage. Philos. Trans.
Roy. Soc. A. 365, 1095–1107.

Huesemann, M.H., Skillman, A.D., Crecelius, E.A., 2002. The inhibition of marine
nitrification by ocean disposal of carbon dioxide. Mar. Pollut. Bull. 44 (2), 142–
148.
Hughes, S.J.M., Jones, D.O.B., Hauton, C., Gates, A.R., Hawkins, L.E., 2010. An
assessment of drilling disturbance on Echinus acutus var. norvegicus based on in-
situ observations and experiments using a remotely operated vehicle (ROV). J.
Exp. Mar. Biol. Ecol. 395, 37–47.

Ieno, E.N., Solan, M., Batty, P., Pierce, G.J., 2006. How biodiversity affects ecosystem
functioning: roles of infaunal species richness, identity and density in the
marine benthos. Mar. Ecol. – Prog. Ser. 311, 263–271.

IPCC. 2005. Special Report on Carbon Capture and Storage.
Kitidis, V., Laverock, B., McNeill, L.C., Beesley, A., Cummings, D., Tait, K., Osborn,

M.A., Widdicombe, S., 2011. Impact of ocean acidification on benthic and water
column ammonia oxidation. Geophys. Res. Lett. 38 (21), 2–6.

Koornneef, J., Spruijt, M., Molag, M., Ramírez, A., Turkenburg, W., Faaij, A., 2010.
Quantitative risk assessment of CO2 transport by pipelines – a review of
uncertainties and their impacts. J. Hazard. Mater. 177 (1–3), 12–27.

Kroeker, K.J., Kordas, R.L., Crim, R.N., Singh, G.G., 2010. Meta-analysis reveals
negative yet variable effects of ocean acidification on marine organisms. Ecol.
Lett. 13 (11), 1419–1434.

Langenbuch, M., Bock, C., Leibfritz, D., Pörtner, H.O., 2006. Effects of environmental
hypercapnia on animal physiology: a 13C NMR study of protein synthesis rates
in the marine invertebrate Sipunculus nudus. Comp. Biochem. Physiol. A. 144 (4),
479–484.

Langenheder, S., Bulling, M.T., Solan, M., Prosser, J.I., 2010. Bacterial biodiversity-
ecosystem functioning relations are modified by environmental complexity.
PLoS ONE 5 (5), e10834.

Laverock, B., Gilbert, J.A., Tait, K., Osborn, M.A., Widdicombe, S., 2011. Bioturbation:
impact on the marine nitrogen cycle. Biochem. Soc. Trans. 39 (1), 315–320.

Lawrence, J.M., 2010. Energetic costs of loss and regeneration of arms in stellate
echinoderms. Integr. Comp. Biol. 50, 506–514.

Lenzen, M., 2011. Global warming effect of leakage from CO2 storage. Crit. Rev. Env.
Sci. Technol. 41 (24), 2169–2185.

Loo, L., Jonsson, P.R., Sköld, M., Karlsson, O., 1996. Passive suspension feeding in
Amphiura filiformis (Echinodermata: Ophiuroidea): feeding behaviour in flume
flow and potential feeding rate of field populations. Mar. Ecol. – Prog. Ser. 139,
143–155.

Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000. Ocean pCO2 calculated from dissolved
inorganic carbon, alkalinity, and equations for K1 and K2: validation based on
laboratory measurements of CO2 in gas and seawater at equilibrium. Mar.
Chem. 70, 105–119.

Lyle, M., 1983. The brown green color transition in marine sediments – a marker of
the Fe(III)–Fe(II) redox boundary. Limnol. Oceanogr. 28, 1026–1033.

Maire, O., Leocroatt, P., Meysman, F., Rosenberg, R., Duchêne, J.-C., Grémare, A.,
2008. Quantification of sediment reworking rates in bioturbation research: a
review. Aquat. Biol. 2, 219–238.

Marinelli, R., Williams, T.J., 2003. Evidence for density-dependent effects of infauna
on sediment biogeochemistry and benthic–pelagic coupling in nearshore
systems. Estuar. Coast. Shelf Sci. 57 (1–2), 179–192.

Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K., Mauclaire,
L., 2004. Influence of bioturbation by three benthic infaunal species on
microbial communities and biogeochemical processes in marine sediment.
Aquat. Microb. Ecol. 36, 271–284.

Miles, H., Widdicombe, S., Spicer, J.I., Hall-Spencer, J., 2007. Effects of anthropogenic
seawater acidification on acid-based balance in the sea urchin Psammechinus
miliaris. Mar. Poll. Bull. 54, 89–96.

Millero, F.J., 2010. Carbonate constants for estuarine waters. Mar. Freshwater Res.
61, 139–142.

Nilsson, H.C., 1999. Effects of hypoxia and organic enrichment on growth of the
brittle stars Amphiura filiforms (O.F. Müller) and Amphiura chiajei Forbes. J. Exp.
Mar. Biol. Ecol. 237, 11–30.

Norling, K., Rosenberg, R., Hulth, S., Grémare, A., Bonsdorff, E., 2007.
Importance of functional biodiversity and species-specific traits of benthic
fauna for ecosystem functions in marine sediment. Mar. Ecol. – Prog. Ser.
332, 11–23.

O’Connor, B., Bowmer, T., McGrath, D., Raine, R., 1986. Energy flow through an
Amphiura filiformis (Ophiuroidea: Echinodermata) population in Galway Bay,
West coast of Ireland: a preliminary investigation. Ophelia 26, 351–357.

Olsgard, F., Schanning, M.T., Widdicombe, S., Kendall, M.A., Austin, M.C., 2008.
Effects of bottom trawing on ecosystem functioning. J. Exp. Mar. Biol. Ecol. 366,
123–133.

O’Reilly, R., Kennedy, R., Patterson, A., 2006. Destruction of conspecific bioturbation
structures by Amphiura filiformis (Ophiuroida): evidence from luminophore
tracers and in situ time-lapse sediment-profile imagery. Mar. Ecol. – Prog. Ser.
315, 99–111.

Pape-Lindstrom, P.A., Feller, R.J., Stancyk, S.E., Woodin, S.A., 1997. Sublethal
predation: field measurements of arm tissue loss from the ophiuroid
Microphiopholis gracillima and immunochemical identification of its predators
in North Inlet, South Carolina, USA. Mar. Ecol. – Prog. Ser. 156, 131–140.

Pinheiro, J.C., Bates, D.M., 2000. Mixed-effects models in S and S-plus. Springer.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Development Core Team. 2011. nlme:

Linear and Nonlinear Mixed Effects Models. R package version 3.1-101
Pörtner, H.O., Farrell, A.P., 2008. Physiology and climate change. Science 322, 690–

692.
Pörtner, H.O., Langenbuch, M., Reipschläger, A., 2004. Biological impact of elevated

ocean CO2 concentrations: lessons from animal physiology and earth history. J.
Oceanogr. 60, 705–718.

Robbins, L.L., Hansen, M.E., Kleypas, J.A., Meylan, S.C. 2010. CO2calc – A user-friendly
seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US



442 F. Murray et al. / Marine Pollution Bulletin 73 (2013) 435–442
Geological Survey Open-File Report 2010–1280, 17 pp. <http://cdiac.ornl.gov/
oceans/CO2SYS_calc_MAC_WIN.html>.

Rosenberg, R., Hellman, B., Johansson, B., 1991. Hypoxic tolerance of marine benthic
fauna. Mar. Ecol. Prog. Ser. 79, 127–131.

R Development Core Team, 2011. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL <http://www.R-project.org>.

Schiffers, K., Teal, L.R., Travis, J.M.J., Solan, M., 2011. An open source simulation
model for soil and sediment bioturbation. PLoS ONE 6, e28028.

Schram, J.B., McClintock, J.B., Angus, R.A., Lawrence, J.M., 2011. Regenerative
capacity and biochemical composition of the sea star Luidia clathrata (Say)
(Echinodermata: Asteroidea) under conditions of near-future ocean
acidification. J. Exp. Mar. Biol. Ecol. 407 (2), 266–274.

Shanno, D.F., 1970. Conditioning of quasi-Newton methods for function
minimizations. Math. Comput. 24, 641–656.

Simpson, S.D., Munday, P.L., Wittenrich, M.L., Manassa, R., Dixson, D.L., Gagliano, M.,
Yan, H.Y., 2011. Ocean acidification erodes crucial auditory behaviour in a
marine fish. Biol. Lett. 7, 917–920.

Small, D., Calosi, P., White, D., Spicer, J.I., Widdicombe, S., 2010. Impact of medium-
term exposure to CO2 enriched seawater on the physiological functions of the
velvet swimming crab Necora puber. Aquat. Biol. 10, 11–21.

Solan, M., Kennedy, R., 2002. Observation and quantification of in situ animal-
sediment relations using time-lapse sediment profile imagery (t-SPI). Mar. Ecol.
– Prog. Ser. 228, 179–191.

Solan, M., Cardinale, B.J., Downing, A.L., Engelhardt, K.A.M., Ruesink, J.L., Srivastava,
D.S., 2004a. Extinction and ecosystem function in the marine benthos. Science
306, 1177–1180.

Solan, M., Wigham, B.D., Hudson, I.R., Kennedy, R., Coulon, C.H., Norling, K., Nilsson,
H.C., Rosenberg, R., 2004b. In situ quantification of bioturbation using time-
lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and
model simulation. Mar. Ecol. – Prog Ser. 271, 1–12.

Solan, M., Scott, F., Dulvy, N., Godbold, J.A., Parker, R., 2012. Incorporating extinction
risk and realistic biodiversity futures: implementation of trait based extinction
scenarios. In: Solan, M., Aspden, R.J., Paterson, D.M. (Eds.), Marine Biodiversity
and Ecosystem Functioning. Frameworks, Methodologies and Integration.
Oxford University Press.

Spicer, J.I., Widdicombe, S., Needham, H.R., Berge, J.A., 2011. Impact of CO2-acidified
seawater on the extracellular acid – base balance of the northern sea urchin
Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407 (1), 19–25.
Stern, N., Taylor, C., 2010. What do the Appendices to the Copenhagen Accord tell us
about global greenhouse gas emission and the prospects for avoiding a rise in
global average temperature of more than 2 �C? Centre for Climate Change
Economics and Policy and Grantham Research Institute on Climate Change and
the Environment in collaboration with UNEP.

Thistle, D., Carman, K.R., Sedlacek, L., Brewer, P.G., Fleeger, J.W., Barry, J.P., 2005.
Deep-ocean, sediment-dwelling animals are sensitive to sequestered carbon
dioxide. Mar. Ecol. – Prog. Ser. 289, 1–4.

Thistle, D., Sedlacek, L., Carman, K.R., Fleeger, J.W., Brewer, P.G., Barry, J.P., 2007.
Exposure to carbon dioxide-rich seawater is stressful for some deep-sea
species: an in situ, behavioral study. Mar. Ecol. – Prog. Ser. 340, 9–16.

Vopel, K., Thistle, D., Rosenberg, R., 2003. Effect of the brittle star Amphiura filiformis
(Amphiuridae, Echinodermata) on oxygen flux into the sediment. Limnol.
Oceanogr. 48, 2034–2045.

Widdicombe, S., Dashfield, S.L., McNeill, C.L., Needham, H.R., Beesley, A., McEvoy, A.,
Øxnevad, S., Clarke, K.R., Berge, J.A., 2009. Effects of CO2 induced seawater
acidification on infaunal diversity and sediment nutrient fluxes. Mar. Ecol. –
Prog. Ser. 379, 59–75.

Widdicombe, S., Needham, H.R., 2007. Impact of CO2 -induced seawater
acidification on the burrowing activity of Nereis virens and sediment nutrient
flux. Mar. Ecol. – Prog. Ser. 341, 111–122.

Widdicombe, S., Spicer, J.I., 2008. Predicting the impact of ocean acidification on
benthic biodiversity: what can animal physiology tell us? J. Exp. Mar. Biol. Ecol.
366 (1–2), 187–197.

Wood, H.L., Spicer, J.I., Widdicombe, S., 2008. Ocean acidification may increase
calcification rates, but at a cost. Philos. Roy. Soc. B – Biol. Sci. 275, 1767–
1773.

Wood, H.L., Widdicombe, S., Spicer, J.I., 2009. The influence of hypercapnia
and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux –
will ocean acidification affect nutrient exchange? Biogeosciences 6, 2015–
2024.

Wood, H.L., Spicer, J.I., Kendall, M.A., Lowe, D.M., Widdicombe, S., 2011. Ocean
warming and acidification; implications for the Arctic brittlestar Ophiocten
sericeum. Polar Biol. 34 (7), 1033–1044.

Wyatt, N.J., Kitidis, V., Woodward, M., Rees, A., Widdicombe, S., Lohan, M., 2010.
Effects of high CO2 on the fixed nitrogen inventory of the Western English
Channel. J. Plankton Res. 32, 631–641.

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects
Models and Extensions in Ecology with R. Springer.

http://cdiac.ornl.gov/oceans/CO2SYS_calc_MAC_WIN.html
http://cdiac.ornl.gov/oceans/CO2SYS_calc_MAC_WIN.html
http://www.R-project.org

	Consequences of a simulated rapid ocean acidification event for benthic  ecosystem processes and functions
	1 Introduction
	2 Materials and methods
	2.1 Sediment and fauna collection
	2.2 Seawater acidification and exposure
	2.3 Observation of species activity and behaviour
	2.4 Image analysis
	2.5 Bioturbation model
	2.6 Statistical analysis

	3 Results
	3.1 Infaunal-mediated particle redistribution and irrigation
	3.2 Nutrient concentrations

	4 Discussion
	Acknowledgements
	Appendix A Supplementary material
	References


