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Abstract

We use a genetic algorithm to simulate the evolution of error-prone finite automata in the

repeated Prisoner’s Dilemma game. In particular, the automata are subjected to implementation

and perception errors. The computational experiments examine whether and how the distribution

of outcomes and genotypes of the coevolved automata change with different levels of errors. We

find that the complexity of the automata is decreasing in the probability of errors. Furthermore,

the prevailing structures tend to exhibit low reciprocal cooperation and low tolerance to defections

as the probability of errors increases. In addition, by varying the error level, the study identifies a

threshold. Below the threshold, the prevailing structures are closed-loop (history-dependent) and

diverse, which impedes any inferential projections on the superiority of a particular automaton.

However, at and above the threshold, the prevailing structures converge to the open-loop (history-

independent) automaton Always-Defect (ALLD). Finally, we find that perception errors are more

detrimental than implementation errors to the fitness of the automata. These results show that

the evolution of cooperative automata is considerably weaker than expected.

JEL Classification: C72, C80, C90

Keywords: Automata, Repeated Games, Prisoner’s Dilemma, Bounded Rationality, Algorithms

∗I am indebted to Aldo Rustichini and Ket Richter for their continuous support and invaluable discussions. I would also like

to thank John H. Miller, Scott E. Page, Larry Blume, David Rahman, Itai Sher, Ichiro Obara, Snigdhansu Chatterjee, Ioannis

Nompelis, Shi Qi, Miltos Makris, Maria Kyriacou, Kostas Biliouris, and Panayotis Mertikopoulos as well as the seminar participants

at the University of Vienna, Santa Fe Institute, University of Minnesota, and Washington University for their suggestions. Finally, I

am grateful to the editor, Uwe Cantner, and two anonymous referees for their thoughtful and detailed comments, which significantly

improved the paper. Errors are mine.
†Mailing Address: Department of Economics, University of Southampton, Southampton, SO17 1BJ, United Kingdom. Email:

c.ioannou@soton.ac.uk



1 Introduction

The repeated Prisoner’s Dilemma (PD) stage game has become the theoretical gold standard

for investigating social interactions. Its importance stems from defying commonsense reasoning

and highlighting the omnipresent conflict of interests among unrelated agents. While Robert

Axelrod (1984) has argued that reciprocal cooperation is likely to evolve when individuals inter-

act repeatedly, in real life, there is a plethora of situations in which non-cooperative outcomes

evolve − some in the presence of frequent encounters. Consider, for example, the world of

sports. In wrestling, the prevalent practice is for wrestlers intentionally to lose unnaturally

large amounts of weight so as to compete against lighter opponents (Steen and Brownell 1990).

In doing so, wrestlers are, clearly, not at their top level of physical and athletic fitness; yet they

often end up competing repeatedly against the same opponents who follow the same practice

(Franchini, Brito and Artioli 2012).

In this paper, we argue that the evolution of cooperation in the PD game is not a stable and

robust result, but a product of the assumption that agents are immune from committing errors.

In real life, agents are not hyper-rational, but engage in actions that are constrained by the

limitations of human nature and the surrounding environment. Thus, oftentimes, they suffer

from a measure of uncertainty about both their colleagues’ and their own actions. In large and

complex firms, for example, divisional managers are often physically removed from each other

and, consequently, are unable to observe each other’s behavior directly. Uncertainty in this

context takes the form of errors in the transmission of information. Moreover, decision makers

are prone to errors in the implementation of their own actions. Due to these disturbances, they

may occasionally draw incorrect inferences about their peers’ actions.

In this work, our objective is to use a genetic algorithm to simulate an evolving, error-prone

population that plays the repeated PD game. We then assess, with computational experiments

that incorporate different levels of errors, whether and how the distribution of outcomes and

structures (genotypes) in the population changes. According to the thought experiment, a

group of agents is set to play the PD game. Each agent is required to submit a strategy

that is implemented by a type of finite automaton called a Moore machine (Moore 1956).

The automaton specifies actions contingent upon the opponent’s reported actions. The agents

play the PD game against each other and against their twin in a round-robin structure. The
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automata are subjected to implementation and perception errors (defined in Section 3). With

the completion of all round-matches, the actual scores and genotypes of the automata become

common knowledge. Based on this information, agents update their automata for the next

generation.

Under the proposed framework, the incorporation of implementation and perception errors

is sufficient to reduce cooperative outcomes. In addition, the analysis identifies some broad

characteristics of the genotypes in the presence of errors. First, the complexity of the automata,

defined as the number of accessible states, is decreasing in the probability of errors. Second,

the prevailing structures tend to exhibit low reciprocal cooperation and low tolerance to the

opponents’ defections as the probability of errors increases. Furthermore, by varying the error

level, the study identifies a threshold. At and above the threshold, the prevailing structures

converge to the open-loop (history-independent) automaton Always-Defect (ALLD).1 However,

below the threshold, the prevailing structures are closed-loop (history-dependent) and diverse,

which impedes any inferential projections on the superiority of a particular automaton. Finally,

we find that perception errors are more detrimental than implementation errors to the fitness

of the prevailing automata, which signifies the importance of limiting perception errors first, to

avoid suboptimal outcomes in our strategic interactions.

Our study aims to elicit an understanding of the patterns of reasoning of agent-based be-

haviors in the presence of errors. Conventional game theory rests on the foundation of hyper-

rational agents with full ability to select the most-preferred action. Yet the latter is rarely

justified as an empirically realistic assumption. Rather, it is usually defended on methodolog-

ical grounds as the appropriate theoretical framework to analyze behavior. On the contrary,

the incorporation of errors in the proposed context is a viable alternative and, consequently,

one that merits further investigation.

1Oscar Volij (2002) provides a theoretical framework which confirms that the only evolutionary stable strategy

is ALLD when agents’ preferences are lexicographic (first, according to the limit of the means criterion, and

second, according to the complexity of the automaton).
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2 Related Literature

This work builds primarily on the computational simulation literature. Robert Axelrod pio-

neered this area with the computational tournaments in which game-playing algorithms were

submitted to determine the best strategy in the repeated PD game (Axelrod 1987). Tit-For-Tat

(TFT) was the champion in Axelrod’s celebrated computer tournaments. TFT is a strategy

that starts off by cooperating and then imitates the opponent’s most recent action. TFT is

not an infallible strategy. On the contrary, it has some weaknesses and, at times, has been

defeated by other strategies. (See also Nowak and Sigmund 1992 & 1993.) For example, TFT

placed eight out of thirteen strategies in the computer tournament of Bendor, Kramer and

Stout (1991). In their study, the authors re-evaluated the performance of reciprocating strate-

gies, such as TFT, and identified alternative strategies that could sustain cooperation in an

environment with random shocks. They constructed their computer tournament in a manner

similar to that of Axelrod. The winning strategy was Nice-And-Forgiving (NAF), which differs

in many ways from TFT. First, NAF is nice in the sense that it cooperates as long as the

frequency of cooperation of the opponent is above some threshold. Second, NAF is forgiving in

the sense that, although NAF retaliates if the opponent’s cooperation falls below the threshold

level, it reverts to full cooperation before its opponent does, as long as the opponent meets

certain minimal levels of cooperation.

The study also relates to the large literature on optimization routines. The genetic algorithm

(Holland 1975) is one of many search techniques developed for solving hard combinatorial

optimization problems in large search spaces. Other optimization techniques include: Simulated

Annealing (Kirkpatrick, Gelatt and Vecche 1983); Tabu Search (Glover and Laguna 1993); and

Stochastic Hill Climbing. Axelrod (1987) was the first to model the evolutionary process of

the repeated PD game with a genetic algorithm. Nevertheless, his study was restricted by his

use of strategies contingent on the action profiles of only the last three periods, and by his

use of a fixed environment composed of only eight strategies. Marks (1992) and Miller (1996)

circumvented these restrictions by using a variable environment in which strategies co-evolved

as the strategic population changed. In addition, both authors used automata to enable the

definition of many theoretically important strategies (for example, strategies relying on counting

or triggers) that could not be defined under Axelrod’s framework. This approach is used in
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our formulation as well. Aumann (1981) was the first to suggest using finite automata as the

carriers of agents’ strategies for the study of decision-making with bounded rationality. The first

application originated in the work of Neyman (1985), who investigated a finitely-repeated game

model in which the pure strategies available to the agents were those that could be generated

by automata utilizing no more than a certain number of states.

Additionally, several researchers have studied the effect of complexity on the set of equilibria

in repeated games with finite automata. Abreu and Rubinstein (1988), for example, showed that

if agents’ preferences are increasing in repeated-game payoffs and decreasing in the complexity of

the strategies employed, then the set of Nash-equilibrium payoffs that can occur is dramatically

reduced from the folk-theorem result (Fudenberg and Maskin 1986).2 Yet the authors indicated

that a wide variety of payoffs remained consistent with equilibrium behavior in the presence of

complexity costs, including the ALLD strategy. In their seminal work, Binmore and Samuelson

(1992), motivated by the non-existence of an evolutionary stable strategy in the PD game

(see Boyd and Lorberbaum 1987), proposed a modified evolutionary stable strategies’ solution

concept. Under this solution concept, the ALLD strategy ceases to persist in equilibrium.

Foster and Young (1990), on the other hand, developed the concept of stochastic stability,

which requires a population to be immune to persistent random mutations. Stochastic stability

has been successfully applied by Kandori, Mailath and Rob (1993) in the analysis of symmetric

2× 2 games; by Vega-Redondo (1997) in the analysis of competition among firms; and by Ben-

Shoham, Serrano and Volij (2004) in the analysis of a housing problem. Bergin and Lipman

(1996), however, pointed out a weakness of the concept of stochastic stability: the actions

selected out of the recurrent classes depend on the rate of mutation.

The rest of the paper is organized as follows. In Section 3, we derive theoretical predictions

using Markov chains. Section 4 presents the concept of a finite automaton as the carrier of an

adaptive agent’s strategy. In Section 5, we explain the methodology, and in Section 6, we focus

2Abreu and Rubinstein (1988) defined the complexity of a strategy as the size of the minimal automaton

implementing it, while Banks and Sundaram (1990) argued that the traditional number-of-states measure of

complexity of an automaton neglects some essential features, such as informational requirements at a state.

They proposed, instead, a criterion of complexity that takes into account both the size (number of states) and

transitional structure of a machine. Under this proposition, they proved that the resulting Nash equilibria of the

machine-game are now trivial: the machines recommend actions in every period that are invariably stage-game

Nash equilibria.

4



on the results of the evolutionary process while elaborating on characteristics of the automata.

In Section 7, we discuss the properties of the prevailing automata, which we then compare to

those of previous studies. Section 8 concludes and offers direction for future research.

3 Theoretical Preliminaries

We first provide a theoretical approach to derive predictions. For the analysis that follows,

we restrict attention to the two most fundamental strategies: Always-Defect (ALLD) and Tit-

For-Tat (TFT). Needless to say, there are many other possible strategies, and some play an

important role. Nevertheless, we believe that the interplay of these two particular strategies

captures an essential aspect of the evolutionary dynamics. Thus, we propose to investigate

the logic of reciprocation and non-cooperation by analyzing the relationship of the most basic

conditional strategy (do whatever the other player did) with an extreme unconditional strategy

that always defects.3

3.1 Markov Chains

We consider a finite but infinitely-evolving population inhabited by agents using either TFT

or ALLD to play the PD game. (We defer to Section 2.3 our discussion of the proportions of

each strategy within the population.) Each period of play leads to an outcome j (j = 1, 2, 3, 4):

(C,C), (C,D), (D,C), and (D,D), where j = 1 corresponds to (C,C) and so forth. Note that

the first position denotes the action taken by agent i and the second position that of agent −i.
The transition rules are labeled by quadruples (s1, s2, s3, s4) of zeros and ones. In this context,

sj is 1 if the strategy plays Cooperate and 0 if the strategy plays Defect, after outcome j is

realized. For instance, (1, 0, 1, 0) is the transition rule of TFT and (0, 0, 0, 0) is the transition

rule of ALLD. For convenience, these rules are labeled STFT and SALLD, respectively. Suppose

that the strategies are subjected to implementation and perception errors. Let ε denote the

3We conjecture that similar results hold for other reciprocal strategies, such as Win-Stay, Lose-Shift. Win-

Stay, Lose-Shift, also known as Pavlov, repeats the previous action if the resulting payoff has met the aspiration

level, and changes otherwise.
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probability of committing an implementation error, and δ denote the probability of committing

a perception error.

Let a stochastic strategy have transition rules p = (p1, p2, p3, p4), where pj is any number

between 0 and 1 denoting the probability of cooperating after the corresponding outcome of

the previous period. The space of all such rules is the four-dimensional unit cube; the corners

are just the degenerate transition rules. A rule p = (p1, p2, p3, p4) that is matched against a

rule q = (q1, q2, q3, q4) yields a Markov process where the transitions between the four possible

states4 are given by the Markov transition matrix5
p1 · q1 p1 · (1− q1) (1− p1) · q1 (1− p1) · (1− q1)

p2 · q3 p2 · (1− q3) (1− p2) · q3 (1− p2) · (1− q3)

p3 · q2 p3 · (1− q2) (1− p3) · q2 (1− p3) · (1− q2)

p4 · q4 p4 · (1− q4) (1− p4) · q4 (1− p4) · (1− q4)

 .

If p and q are in the interior of the strategy cube, then all entries of this Markov transi-

tion matrix are strictly positive; hence, there exists a unique stationary distribution πp/q =

(π1, π2, π3, π4) such that p
(n)
j is the probability of being in state i in the nth period, and it

converges to

πj = lim
n→∞

p
(n)
j for j = 1, 2, 3, 4.

It follows that the payoff for agent i using p against agent −i using q is given by

A(p,q) = R · π1 + S · π2 + T · π3 + P · π4, (1)

where the coefficients arise from the generic PD payoff matrix in Table 1. The letter R stands

for Reward, S for Sucker’s payoff, T for Temptation, and P for Punishment. The payoffs are

ordered such that T > R > P > S and satisfy R > T+S
2

. Notice that both the πj and the

payoffs are independent of the initial condition (in other words, of the actions of the agents

4To be consistent with the conventional notation in Markov chains, the word “outcome” is replaced with the

word “state.”
5A Markov transition matrix is a matrix used to describe the transitions of a Markov chain. Each of its

entries is a nonnegative real number representing a probability. This is not to be confused with a transition

function in the context of finite automata, which maps every two-tuple of state and opponent’s action to a state.

(The concept of a finite automaton will be formally defined in Section 4.)
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Table 1: Generic Prisoner’s Dilemma Payoff Matrix

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

Notes: The letter R stands for Reward, S for Sucker’s payoff, T for Temptation, and P for Punishment.

in the first period). For any error level ε, δ > 0, the payoff obtained by a strategy using a

transition rule Si against a strategy with transition rule S−i can be computed via (1).6 The

transition rules of TFT and ALLD in the presence of errors are shown in Table 2.

Consider, first, an ALLD strategist paired with another ALLD strategist. The Markov

transition matrix is 
ε2 ε · (1− ε) ε · (1− ε) (1− ε)2

ε2 ε · (1− ε) ε · (1− ε) (1− ε)2

ε2 ε · (1− ε) ε · (1− ε) (1− ε)2

ε2 ε · (1− ε) ε · (1− ε) (1− ε)2

 .

The invariant distribution of such a pair is πALLD/ALLD = (ε2, ε · (1 − ε), ε · (1 − ε), (1 −
ε)2). The payoff for agent i using ALLD against agent −i also using ALLD is given by

A(ALLD,ALLD) = R · ε2 + S · ε · (1 − ε) + T · ε · (1 − ε) + P · (1 − ε)2. Note that the

payoff is increasing in ε and does not depend on perception errors. Therefore, increasing the

probability of implementation errors increases the payoff of an ALLD pair.

Consider, next, a TFT strategist paired with another TFT strategist. The Markov transition

matrix in this case is
(1− ε)2 ε · (1− ε) ε · (1− ε) ε2

ε · (1− ε) ε2 (1− ε)2 ε · (1− ε)
ε · (1− ε) (1− ε)2 ε2 ε · (1− ε)

ε2 ε · (1− ε) ε · (1− ε) (1− ε)2

 .

The invariant distribution of such a pair is πTFT/TFT = (1
4
, 1

4
, 1

4
, 1

4
). Thus, the distribution

depends neither on implementation errors nor on perception errors. Consequently, the payoff

6The limit value of the payoff for ε→ 0 and δ → 0 cannot be computed, as the transition matrix is no longer

irreducible. Therefore, the stationary distribution π is no longer uniquely defined.
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Table 2: Transition Rules With Errors

Tit-For-Tat (TFT) STFT : (1− δ − ε(1− 2δ), δ + ε(1− 2δ), 1− δ − ε(1− 2δ), δ + ε(1− 2δ))

The first entry corresponds to the probability of cooperating after a

period in which both agents cooperated. Agent i will cooperate

if he commits neither an implementation error (which occurs with

probability 1− ε) nor a perception error (which occurs with

probability 1− δ) or if he commits both a perception and an

implementation error. Therefore, the probability of cooperating

after a period in which both agents cooperated is 1− δ − ε(1− 2δ).

Analogous arguments hold for the other entries.

Always-Defect (ALLD) SALLD: (ε, ε, ε, ε)

The fourth entry corresponds to the probability of cooperating after a

period in which both agents defected. Agent i will defect unless

he commits an implementation error (which occurs with probability

ε). Notice that errors in perception have no effect here, as the strategy

Always-Defect does not depend on agent −i’s actions. Therefore,

the probability of cooperating after a period in which both agents

defected is ε. Analogous arguments hold for the other entries.
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also does not depend on implementation and perception errors as long as the errors are strictly

positive. In fact, the payoff for agent i using TFT against agent −i also using TFT is fixed at

A(TFT, TFT ) = R · 1
4

+ S · 1
4

+ T · 1
4

+ P · 1
4

= 1
4
(R + S + T + P ).

Finally, consider what happens when a TFT is paired with an ALLD (and vice versa). Let

the TFT strategist be the row player and the ALLD strategist be the column player. The

Markov transition matrix is
ε · (1− δ − ε+ 2εδ) 1− δ + ε · (ε+ 3δ − 2εδ − 2) ε · (δ − 2εδ + ε) δ − ε · (3δ − 2εδ + ε− 1)

ε · (δ − 2εδ + ε) δ − ε · (3δ − 2εδ + ε− 1) ε · (1− δ − ε+ 2εδ) 1− δ + ε · (ε+ 3δ − 2εδ − 2)

ε · (1− δ − ε+ 2εδ) 1− δ + ε · (ε+ 3δ − 2εδ − 2) ε · (δ − 2εδ + ε) δ − ε · (3δ − 2εδ + ε− 1)

ε · (δ − 2εδ + ε) δ − ε · (3δ − 2εδ + ε− 1) ε · (1− δ − ε+ 2εδ) 1− δ + ε · (ε+ 3δ − 2εδ − 2)

 .

The invariant distribution when a TFT is matched with an ALLD is messy and not intuitive at

all. More specifically, the eigenvector is (−
δε
4
−δε2+δε3+ ε2

2
− ε

3

2
δ
4

+ 3ε
4
− 5δε

4
+2δε2−δε3−ε2+ ε3

2
− 1

4

,−
δ
4

+ ε
2
−δε+δε2− ε

2

2
δ
4

+ ε
2
−δε+δε2− ε2

2
− 1

4

, −ε
ε−1

, 1).

Note that this daunting eigenvector has been derived with an eigenvalue of 1 but does not

reflect probabilities, as the entries are greater than 1 for ε, δ > 0. A simple trick to obtain the

probabilities of the invariant distribution is to divide each entry by the sum of the entries. Note

that, to obtain the stationary distribution of an ALLD matched with a TFT, we interchange

the second and third entries of the invariant distribution of a TFT paired with an ALLD.

In summary, an ALLD versus an ALLD earns a payoff that is increasing in implementation

errors, whereas a TFT versus another TFT earns a fixed payoff regardless of the level of

implementation and perception errors as long as these are strictly positive. A natural next

step is to determine how the levels of implementation and perception errors affect the payoff of

an agent using TFT when paired with an agent using ALLD − and, likewise, the payoff of an

agent using ALLD when paired with an agent using TFT.

3.2 ALLD vs TFT

The objective here is to determine how the levels of errors affect the payoffs of a pair of agents

using ALLD and TFT. The idea is to first calculate the invariant distribution at each error

level. Second, we plug the distribution into the payoff function (1), with the numerical values

of the PD payoff matrix in Table 3, in order to derive the corresponding payoffs of an ALLD
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Table 3: Prisoner’s Dilemma Payoff Matrix

Cooperate Defect

Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

strategist and a TFT strategist. This way, one can determine the error levels for which one

strategist type prevails over the other type, as well as any monotonicity properties if those

exist. This information is demonstrated graphically in Figure 1.

In Figure 1(a), we assume the same level for both implementation and perception errors.

Both strategies start off at a payoff of 1 when the error levels are zero, but then monotonically

increase at different rates. In particular, the rate of increase of ALLD is much faster relative

to the rate of increase of TFT. The gap between the payoffs of the two strategies reaches a

peak at an error level of 21%, and then the rate of increase of ALLD slows down, while the

rate of increase of TFT takes off. At around 32%, the payoff of ALLD reverses direction and

moves downward, while the payoff of TFT continues moving uphill. At 50%, the payoffs of the

two strategies cross at 2.25, after which the payoff of TFT overtakes the payoff of ALLD. At

79%, the gap between the payoffs of TFT and ALLD reaches its peak. ALLD reverses direction

again at around the 80% error level, while TFT attains the highest payoff at 88%, with 3.17.

The corresponding payoff for ALLD is 2.36. Then, the payoff of TFT decreases.

In Figure 1(b), we fix perception errors at 0 and vary the level of implementation errors.

Similar to 1(a), both payoffs increase in the beginning, with ALLD exhibiting a much faster

rate of increase than that of TFT. The distance between the payoffs of the two strategies is

maximized at the 25% level. The payoff of ALLD reaches its peak at an implementation error

level of 40% with a payoff of 2.33. Right afterwards, the payoff of ALLD reverses direction,

reaching a payoff close to zero as the probability of implementation errors approaches 1. The

payoff of TFT, however, continues the upward trend, reaching the highest point as the proba-

bility of implementation errors approaches 1. At this level, TFT acts as an ALLD, and ALLD

as an Always-Cooperate (ALLC).

In Figure 1(c), we fix implementation errors at 0 and vary the level of perception errors.

Recall that ALLD is not affected by perception errors. Thus, only two states attain strictly
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(c) Average Payoff of TFT and ALLD with Perception Errors

    (b) Average Payoff of TFT and ALLD with Implementation Errors   (a) Average Payoff of TFT and ALLD with Implementation & Perception Errors

0

0.5

1

1.5

2

2.5

3

3.5

0.00 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Probability of Implementation and Perception Errors

A
v
e
ra

g
e
 P

a
y
o
ff

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.995

Probability of Implementation Errors

A
v
e
ra

g
e
 P

a
y
o
ff

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.995

Probability of Perception Errors

A
v
e
ra

g
e
 P

a
y
o
ff

TFT ALLD

Figure 1: Average Payoff of TFT & ALLD

Notes: Graph 1(a) indicates the payoff of TFT and ALLD when the level of errors is the same. Graph 1(b)

indicates the payoff of TFT and ALLD when the probability of implementation errors is varied, while perception

errors are kept at 0. Graph 1(c) indicates the payoff of TFT and ALLD when the probability of perception

errors is varied and implementation errors are kept at 0.

positive probability in the invariant distribution of TFT versus ALLD: (C,D), (D,D) − alter-

natively, (D,C) and (D,D) in the invariant distribution of ALLD versus TFT. Note that the

payoffs of the two strategies move in opposite directions. As expected, the distance between the

payoff of ALLD and TFT is maximized as the probability of perception errors approaches 1.

At this level, ALLD always defects, while TFT continuously misperceives the action of ALLD

as cooperation, instead of defection; consequently, TFT cooperates, thus earning the “sucker’s”

payoff.
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3.3 Numerical Examples

Next, we provide numerical examples to facilitate a better understanding of the theoretical

underpinnings. In these examples, we fix the population size at 30 agents. We strategically

chose 30 to match the size of the population in the computational simulations conducted. (See

Section 4.) The agents can use either TFT or ALLD and are paired in a round-robin structure;

that is, all agents will be paired with one another in every possible combination. In addition,

we assume that a strategy does play itself. Furthermore, to calculate the average payoff of each

pair, we use the values of the payoff matrix in Table 3. Given this payoff structure, a pair of

TFTs will earn 2.25 regardless of the error level as long as it is strictly positive. Finally, assume

that x agents use TFT, and 30− x agents use ALLD, where x ∈ N (N = {1, 2, ..., 29}).

Example 1 (ε = δ = 2%)

Assuming that implementation and perception errors are kept constant at 2%, first, we derive

the payoff matrix of a population of ALLDs and TFTs. As indicated above, a TFT matched

with a TFT will earn 2.25, while an ALLD matched with an ALLD will earn 1.06. A TFT paired

with an ALLD will earn 1.02, while an ALLD paired with a TFT will earn 1.21. The payoffs

are indicated in Table 4. The dynamics change once we assume different proportions within

the population. In particular, given that x agents within the population use TFT, the average

payoffs for an ALLD strategist and a TFT strategist are: P(ALLD) = ((30−x)×1.06)+(x×1.21)
30

,

and P(TFT ) = ((x)×2.25)+((30−x)×1.02)
30

, respectively.7 The calculations indicate that as long as

no more than one TFT enters the population, the ALLD strategists will earn a higher payoff

than TFTs will. If two TFTs enter the population, then TFTs earn 1.10, and ALLDs earn

1.07. Furthermore, as the number of TFTs within the population increases, the gap in the

payoffs widens; for example, if there are 15 TFTs in the population (and 15 ALLDs), then the

ALLDs earn 1.13, and the TFTs earn 1.64, whereas if there are 29 TFTs (and 1 ALLD), then

the TFTs earn 2.21 and the ALLD earns 1.20.

7The payoffs for TFT and ALLD for each possible value of x are provided in the Appendix.
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Table 4: Payoff Matrix With ε = δ = 2%

TFT ALLD

TFT 2.25, 2.25 1.02, 1.21

ALLD 1.21, 1.02 1.06, 1.06

Notes: The payoff matrix indicates the payoffs of a bi-morphic population consisting of ALLDs and TFTs. The

payoffs reflect the invariant distributions for an error level fixed at 2% in both error types.

Example 2 (ε = δ = 20%)

The payoff matrix corresponding to an implementation and perception error level of 20% is

indicated in Table 5. A TFT that is paired with another TFT earns 2.25. An ALLD that is

matched with another ALLD earns 1.56. A TFT paired with an ALLD earns 1.33, while an

ALLD paired with a TFT earns 2.29. Analogous to the previous example, given that x agents

within the population use TFT , the payoffs for an ALLD strategist and a TFT strategist are:

P(ALLD) = ((30−x)×1.56)+(x×2.29)
30

, and P(TFT ) = ((x)×2.25)+((30−x)×1.33)
30

, respectively. In this

example, as long as there is at least one ALLD in the population, TFTs cannot bootstrap

themselves. In other words, a deterministic selection process will enable ALLD to proliferate

to the point where the entire population converges to a pure one implementing that strategy;

consequently, TFTs will go extinct. If there are 29 ALLDs and one TFT, then, the payoffs are

1.58 and 1.36, respectively. If there are 29 TFTs and one ALLD, then, the payoffs are 2.22 and

2.27, respectively.

One may think that Example 2 indicates a threshold effect above which TFTs cannot boot-

strap themselves; that is, ALLD prevails. However, this is illusory.8 Recall that, in Figure

1(a), the gap between the payoff of an ALLD and a TFT reaches its peak at an error level of

21%. When the gap between the payoffs of the two strategies is wide, it becomes very hard

for the low earner to bootstrap himself; at some error levels when the gap is quite wide (such

as the 20% error level in Example 2), it becomes impossible for the low earner to bootstrap

himself given the population size of 30 agents. However, when the gap between the payoffs of

the two strategies is small, then the low earner can, in fact, bootstrap himself as long as there

is sufficient waiting time. (Recall Example 1.)

8We are grateful to an anonymous referee, who laid down the foundations to this analysis, and for pointing

out the illusory nature of the process.
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Table 5: Payoff Matrix With ε = δ = 20%

TFT ALLD

TFT 2.25, 2.25 1.33, 2.29

ALLD 2.29, 1.33 1.56, 1.56

Notes: The payoff matrix indicates the payoffs of a bi-morphic population consisting of ALLDs and TFTs. The

payoffs reflect the invariant distributions for an error level fixed at 20% in both error types.

4 Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The

system can be in any one of a finite number of internal configurations or “states.” The state of

the system summarizes the information concerning past inputs that is needed to determine the

behavior of the system on subsequent inputs. The specific type of finite automaton used here is

a Moore machine (Moore 1956). Let I denote the set of agents, Ai denote the set of i’s actions,

A denote the cartesian product of the action spaces written as A ≡
I
×
i=1
Ai, and gi : A → <

denote the real-valued utility function of i. Thus, a finite automaton for an adaptive agent i in

a repeated game of G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, qi0, f i, τ i), where

• Qi is a finite set of internal states;

• qi0 is specified to be the initial state;

• f i : Qi → Ai is an output function that assigns an action to every state; and

• τ i : Qi × A−i → Qi is the transition function that assigns a state to every two-tuple of

state and the other agent’s action.9

9The transition function depends only on the present state and the other agent’s action. This formalization

fits the natural description of a strategy as agent i’s plan of action in all possible circumstances that are consistent

with agent i’s plans. However, the notion of a game-theoretic strategy for agent i requires the specification of an

action for every possible history, including those that are inconsistent with agent i’s plan of action. To formulate

the game-theoretic strategy, one would have to construct the transition function such that τ i : Qi × A → Qi

instead of τ i : Qi ×A−i → Qi.
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In the first period, the state is qi0 and the automaton chooses the action f i(qi0). If a−i is

the action chosen by the other agent in the first period, then the state of agent i’s automaton

changes to τ i(qi0, a
−i), and in the second period, agent i chooses the action dictated by f i

in that state. Then, the state changes again according to the transition function, given the

other agent’s action. Thus, whenever the automaton is in some state q, it chooses the action

f i(q), while the transition function τ i specifies the automaton’s transition from q (to a state)

in response to the action taken by the other agent.

C C,D

D
start C D

Figure 2: Grim-Trigger Automaton

Notes: The vertices denote the internal states of the automaton, and the arcs labeled with the action of the

other agent indicate the transition to the states. The letter C stands for Cooperate and the letter D for Defect.

Qi = {qC , qD}
qi0 = qC

f i(qC) = C and f i(qD) = D

τ i(q, a−i) = {qC (q,a−i)=(qC ,C)
qD otherwise

For example, automaton (Qi, qi0, f i, τ i) in Figure 2, carries out the Grim-Trigger strategy

in the context of the PD game. The letter C stands for Cooperate and the letter D for Defect.

The strategy chooses C, so long as both agents have chosen C in every period in the past, and

chooses D otherwise. In the transition diagram, the vertices denote the states of the automaton,

and the arcs labeled with the other agent’s action indicate the transition to the states.

The study considers errors in the implementation of actions and errors in the perception of

actions. It is, therefore, important to define formally implementation and perception errors.

Definition 1 The automaton of agent i in the PD game commits an implementation error with

probability ε, when, for any given state q, the automaton’s output function returns the action

f i(q) with probability 1−ε and draws another action “f i(q)” where f i(q) 6= “f i(q)”otherwise.10

10A more general definition would postulate that the automaton of agent i commits an implementation error

with probability ε, when, for any given state q, the automaton’s output function returns the action f i(q) with
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That is, an implementation error level of ε indicates that with probability ε, the course of action

dictated by the particular state of the automaton will be altered. For example, a cooperation

dictated by the particular state will be implemented erroneously as a defection with probability

ε. On the other hand, perception errors are defined as follows.

Definition 2 The automaton of agent i in the PD game commits a perception error with proba-

bility δ, when, for any given opponent’s action a−i, the automaton inputs the opponent’s action

a−i into the transition function with probability 1 − δ and inputs the opponent’s action “a−i”

into the transition function where a−i 6=“a−i” otherwise.

Thus, a perception error level of δ indicates that, with probability δ, an opponent’s action is

reported incorrectly, while with probability 1− δ, the opponent’s action is perfectly transmitted.

Furthermore, the study considers automata that hold no more than eight internal states.

The choice to keep the upper bound on the number of internal states at eight is a considered

decision. First, such a bound is reasonable given complexity considerations. As Rubinstein

(1986) indicates, agents seek to devise behavioral patterns that do not need to be constantly

reassessed and that economize on the number of states needed to operate effectively in a given

strategic environment. A more-complex plan of action is more likely to break down, is more

difficult to learn, and may require more time to be executed. In fact, a number of studies

(some with subjects in the laboratory) have pointed to the effectiveness of simple strategies

over more-complex ones in a wide range of environments. (See Axelrod 1984; Rust, Miller

and Palmer 1994; Selten, Mitzkewitz and Uhlich 1997.) Second, the choice of eight internal

states allows for a sufficient variety of automata to emerge that incorporate a diverse array of

characteristics.11

probability 1 − ε and draws another action ai ∈ Ai \ f i(q) randomly and uniformly otherwise. However, since

the action space in the PD game consists of only two actions, the former definition suffices.
11To test the robustness of the results with respect to the size selection, computational experiments with

automata that held 16 states were also conducted. The computations performed confirm that the results are

robust.
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5 Methodology

The search for an appropriate way to model agents’ strategic choices has been a central topic

in the study of game theory. The genetic algorithm is an attractive choice because it combines

survival of the fittest with a structured information exchange that emulates some of the in-

novative flair of human search. Initially, the algorithm requires the natural parameter set of

the optimization problem to be coded as a finite-length string over some finite alphabet. As a

result, the algorithm is largely unconstrained by the limitations of other optimization methods

that require continuity, the existence of derivatives, and uni-modality. More specifically, in

order to perform an effective search for better structures, a genetic algorithm requires pay-

off values associated with the individual strings, in sharp contrast to calculus-based methods

that require derivatives (calculated analytically or numerically). This characteristic makes the

genetic algorithm a more canonical method than many other search schemes. As Goldberg

(1989) indicates, a genetic algorithm searches from a rich database of points simultaneously,

thus avoiding, to a large extent, suboptimal peaks in multi-modal search spaces. Finally, the

genetic algorithm uses stochastic transition rules to guide the search. While randomized, the

algorithm is no simple random walk. Instead, the genetic algorithm uses random choice as a

tool to guide a search toward regions of the search space with expected improved performance.12

Darwinian mechanics are a continuation of the approach in which agents are neither fully

rational nor knowledgeable enough to anticipate correctly the other agents’ strategies. As

Kandori, Mailath and Rob (1993) note, the process describes how agents adjust their plans

of action over time as they learn from experience about the other agents’ strategies. Yet the

dynamics also reflect the limited ability of the agents to receive, decode and act upon the

information they get in the course of the evolution. With the completion of all round-matches,

not all agents change their strategies. The idea is that the agents’ observations are imperfect;

thus, changing one’s strategy can potentially be costly. The existence of such uncertainties and

adjustment costs, then, suggest the presence of inertia. In addition, agents are part of a system

− they learn what constitutes a good strategy by observing what has worked well for other

12For a more-detailed discussion of genetic algorithms, see An Introduction to Genetic Algorithms (Mitchell

1998). No previous knowledge of genetic algorithms is required to understand the description of this genetic

algorithm.

17



people. Hence, agents tend to emulate or imitate others’ successful strategies. In turn, to the

extent that there is substantial inertia present, only a small fraction of agents are changing

their strategies simultaneously. In this case, those who do change their strategies are justified

in making moderate changes. After all, they know that only a small segment of the population

changes its behavior at any given point in time; hence, strategies that remain effective today

are likely to remain effective for some time in the future.

C D

D

C

start C D

Figure 3: Tit-For-Tat Automaton

0︸︷︷︸
initial state

1 0 1︸ ︷︷ ︸
state 0

0 0 1︸ ︷︷ ︸
state 1

0 0 0︸ ︷︷ ︸
state 2

0 0 0︸ ︷︷ ︸
state 3

0 0 0︸ ︷︷ ︸
state 4

0 0 0︸ ︷︷ ︸
state 5

0 0 0︸ ︷︷ ︸
state 6

0 0 0︸ ︷︷ ︸
state 7

Initially, the natural parameter set of the optimization problem needs to be coded as a

finite-length string. Each finite automaton here is, thus, represented by a string of 25 elements.

The first element provides the starting state of the automaton. Eight three-element packets

are then arrayed on the string, each packet representing an internal state of the automaton.

The first bit within an internal state describes the action dictated by the particular state

(1 := cooperate, 0 := defect). The next element gives the transition state if the opponent

is observed to cooperate, and the final element gives the transition state if the opponent is

observed to defect. Given that each string can utilize up to eight states, the scheme allows the

definition of any automaton of eight or fewer states. For example, take the automaton that

implements the Tit-For-Tat strategy in Figure 3. The automaton needs to remember only the

opponent’s last action and, thus, utilizes only two states; the last six states are redundant, as

illustrated in the coding.13

13Given this layout, there are 259 possible structures. Yet, the total number of unique structures is much

less since some of the automata are isomorphic. For example, every two-state automaton, such as TFT, can be

renamed in any of (P 8
2 )(242) ways.
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Specify error-level 
Fix max-periods = 200 
 
Create initial population: 30 agents (seed randomly) 
Initiate round-robin tournament 
 
For t = 1 to 500 do 
 
 For all agent-pairs do 
  For p = 1 to max-periods do 
   Award utils to each agent based on the PD matrix 
  End loop 
 
  Output performance score 
 End loop 
 
 Apply subroutine for the offspring-population-creation 
 Store agent results 
 
End loop 

Figure 4: Pseudocode of the Main Program

The mechanics of the genetic algorithm involve copying strings and altering states through

the operators of selection and mutation. Each generation starts with a given population called

the parent population. A new population of the same size, called the offspring population, is

then constructed. In our formulation, the algorithm operates with a population of automata.

Initially, a population of thirty automata is chosen at random. Then, each automaton is tested

against the environment. Thus, each automaton aggregates a raw score based on the payoffs

illustrated in Table 3. The pseudocode of the main program is summarized in Figure 4.

The offspring population is constructed from the parent population by selecting the au-

tomata that aggregated the top twenty scores. In addition, ten new structures are created via

a process of selection and mutation. The process requires the draw of ten pairs of automata

from the parent population (with the probabilities biased by their scores) and the selection of

the better performer from each pair. Then, these ten automata undergo a process of muta-

tion.14 Mutation occurs when an element at a random location on the selected string changes

14Bergin and Lipman (1996) indicate that mutation rates represent either experimentation or computational

errors. In our context, mutation rates represent experimentation. In addition, we assume that the mutation
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value. Each element on the string is subjected to a 4% independent chance of mutation, which

implies an expectation of one element-mutation per string.15 The population is iterated for

500 generations. The subroutine of the creation of the offspring population is summarized in

Figure 5.

Sort agents based on performance score 
 
Copy top 20 agents to offspring-population 
 
Select 10 agent-pairs via probabilities biased by performance scores 
 
For each of 10 pairs do 
 Create new agent as a copy of the winner of the pair’s match 
 Mutate new agent by switching one element at random 
 
End loop 
 
 
 Figure 5: Subroutine of the Offspring-Population-Creation

6 Results

We conducted five main computational experiments, in order to assess how the distribution of

outcomes and genotypes in the population changes with different levels of errors. In partic-

ular, the automata were subjected to a constant independent chance of implementation and

perception errors of 4%, 3%, 2%, 1% and 0%, respectively. The results were averaged over

30 simulations conducted for each computational treatment. In addition, in the absence of a

theoretical background on the functional form of the model, we used non-parametric methods

to carry out the estimation. More specifically, we used local polynomial regression to fit the

rate is constant across strings, across agents and over time.
15A higher mutation rate increases the variation in the population; as a result, in such an environment, the

automaton ALLD is hugely favored. The computational simulations performed with higher rates of mutation

(8% and 12% independent chance of mutation per element, which implies an expectation of 2 and 3 elements-

mutation per string, respectively) confirm this claim. On the other hand, the choice of a 4% independent chance

of mutation is a conservative one that allows forms of innovation to appear in the structure of the automata

while controlling for the variation in the population.
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dependent variables over the course of the evolution. The dependent variables were found to

exhibit non-stationary behavior that is attributed to the selection dynamics of the genetic algo-

rithm. All the smoothed curves presented in Figure 6 utilize first-order polynomial functions,

which are found in the literature to be quite effective in balancing the bias-variance trade-off.

In addition, we used the Epanechnikov-Kernel weighting function. The bandwidth was chosen

via the (data-based) rule-of-thumb bandwidth. The latter was preferred in the absence of any

periodical patterns of the way agents behave across generations.

Figure 6: First-Order Polynomial Regressions

Notes: The simulations assess how the characteristics of genotypes change with different levels of errors. The

smoothed curves utilize first-order polynomial functions with the Epanechnikov-Kernel weighting function.
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6.1 Average Payoffs

In Figure 6(a), we use local polynomial regression to fit the average payoffs16 (fitness) over

the course of the evolution. The payoffs are found to exhibit non-stationarity that can be

attributed to the dependence of the generational selection. In the early generations, the agents

tend to use automata that defect continuously. The reason is that, at the start of the evolution,

the automata are generated at random. In such an environment, the best strategy is always

to defect. As a few generations elapse, though, automata in the less-error-prone treatments

achieve consistent cooperation, which allows the payoffs to move higher. The paired differences

tests establish that the means of the treatments are statistically different at a 1% level of

significance. Thus, the incorporation of implementation and perception errors is sufficient to

alter the evolution of cooperative outcomes.

6.2 Automaton Characteristics

We also ascertain broad characteristics of the structures that work “reasonably well” under

different treatments. A characteristic is a property of the automata whose presence can be

objectively determined by an examination of the corresponding graph. Note that the charac-

teristics listed are also indicators of strategic ideas underlying the automata. The first summary

measure is the size of the automaton, which is measured by its number of accessible states. A

state is accessible if, given the automaton’s starting state, there is some possible combination

of actions that will result in a transition in that state.17 In Figure 6(b), we fit the aver-

age number of accessible states per generation of the five treatments. Over the course of the

evolution, the average number of accessible states is consistently less in the more-error-prone

16The average payoff of a given generation t is calculated as the sample average of the payoffs of the thirty

members of the population and over the thirty simulations conducted for each treatment.
17This definition does not mandate that the opponent is part of the current population. Thus, we circumvent

the problem that some states may not be reached, given the set of opponents. We clarify further our definition

with an example. Suppose that, in some generation, t, the population consists of one-state automata that

Always-Cooperate (ALLC) and one automaton that cooperates unless the opponent defects for seven consecutive

periods, after which the automaton defects forever. Given our definition, such an automaton has eight accessible

states. The ALLCs have one accessible state. We thank an anonymous referee for bringing to our attention the

necessity of this clarification.
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environments. This suggests that, under more-error-prone treatments, the average number of

accessible states drops. Thus, if we assume that the average number of accessible states is

a good measure of automaton-complexity, then a possible conclusion is that strategic simpli-

fication is advantageous in the presence of errors. The first descriptive characteristic of the

automata is summarized below.

CHARACTERISTIC 1: The average number of accessible states of the automata is decreas-

ing in the probability of errors.

Other summary measures that shed light on automaton composition are cooperation reci-

procity and defection reciprocity. On the one hand, cooperation reciprocity is the proportion

of accessible states that respond to an opponent’s cooperation with cooperation. On the other

hand, defection reciprocity is the proportion of accessible states that respond to an opponent’s

defection with defection. The average cooperation reciprocity of the five treatments is fit into a

local polynomial regression in Figure 6(c). As the likelihood of errors increases, the automata

tend to reduce their cooperation reciprocity. This observation also accounts for the low payoffs

in Figure 6(a). An alternative perspective to consider is the proportion of accessible states that

respond to an opponent’s cooperation with defection; this proportion is given by the expression

1 − cooperation reciprocity. The latter expression can be used as a proxy for the degree of

“sneakiness” of the automata. Thus, automata with relatively low cooperation reciprocity are

also relatively more sneaky, in the sense that these automata incorporate states that shoot for

the “temptation” payoff more often.18 Such exploitation can be camouflaged in the presence of

errors, but not in their absence. The second descriptive characteristic is summarized next.

CHARACTERISTIC 2: Cooperation reciprocity of the automata is decreasing in the prob-

ability of errors, or, alternatively, the degree of “sneakiness” is increasing in the probability of

errors.

Defection reciprocity of the five treatments is fit into a local polynomial regression in Figure

6(d). The pattern deduced is that defection is not tolerated in the error-prone environments.

It is noteworthy that automata, in general, are more likely to reciprocate an opponent’s de-

fection with defection than to cooperate after the opponent cooperates. On the other hand,

the proportion of accessible states that respond to an opponent’s defection with cooperation is

18The “temptation” payoff is the payoff upon unilaterally defecting in the PD game.
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1− defection reciprocity. This expression signifies the degree of forgiveness of the automata.

For example, a sizable 1 − defection reciprocity indicates that the automata, on average, in-

corporate quite a few states that respond to an opponent’s defection with cooperation. Yet the

computational experiments of Figure 6(d) indicate otherwise. The third descriptive character-

istic is summarized below.

CHARACTERISTIC 3: Defection reciprocity of the automata is increasing in the probability

of errors, or, alternatively, the degree of forgiveness is decreasing in the probability of errors.

6.3 Prevailing Automata

In this section, we examine the automata that prevailed in the computational treatments.

Thus far, our analysis has described traits of the structures that survived over the course of

the evolution. The results that have been highlighted rest on reasonable levels of error. Here,

we carry out the analysis with abnormally high levels of error to get a spherical view of the

impact of errors on the coevolved automata. ALLD and ALLC have been the clear winners of

the simulations, but for substantially different levels of error. ALLD and ALLC are open-loop

automata; that is, the actions taken at any time do not depend on the actions of the opponent.

ALLD has been the winner in the treatments with reasonable error levels and ALLC in the

treatments with very high error levels. This is not paradoxical. It is important to recognize

that, at the high levels of error, ALLC essentially acts as if it were an ALLD in an environment

with low levels of error.

In Figure 7,19 we provide the proportion of wins of ALLD, ALLC, and Other automata

for different error levels. This way, we can determine the automaton that dominates, if such

exists, in each computational treatment. Recall that, for each computational treatment, we

conducted 30 simulations. Thus, the proportion reflects the number of wins out of the 30

simulations. The structures that prevail in the 1% and 0% treatments are diverse. This result

thwarts any possible attempt to discern a particular behavioral pattern that fares well in these

specific treatments. Yet it is noteworthy that the diverse array of automata that prevail in

the 1% and 0% treatments are all closed-loop (history-dependent). On the contrary, at the

19Table 7 in the Appendix provides the frequency of wins of ALLD, ALLC, and Other automata for each

computational treatment.
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Figure 7: Prevailing Automata

Notes: On the vertical axis, we indicate the proportion of wins for ALLD, ALLC, and Other automata out of

the 30 simulations conducted. The horizontal axis indicates the error levels.

2% error level, the prevailing structure is the open-loop ALLD. This error level needs to be

highlighted given that, at this mark, ALLD prevails in 15 of the 30 simulations conducted; that

is, ALLD attains a proportion of wins of 0.5. As the error level increases, the proportion of

wins of ALLD increases and approaches 1 at the 20% error level. ALLD continues to dominate

after the 20% error level, but the proportion steadily decreases until the error level of 50%. At

the 50% error level, ALLC prevails in some simulations and ALLD in others. It might seem

paradoxical that, at this mark, the prevailing automata cover both extremes of the spectrum.

However, this is only an illusion, as at the 50% error level, both automata share the same

behavior. From then on, ALLC is dominant. Yet, in practice, ALLC acts as an ALLD in low

error levels. In summary, the effect of different error levels on the structure of the automata

points towards the existence of a threshold error level at 2%; at and above the threshold, the

prevailing structures converge to the open-loop automaton ALLD, whereas below the threshold,

the prevailing structures are closed-loop and diverse.
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6.4 Separation of Errors

Do both types of errors affect the payoffs of the prevailing automata in the same way? More-

over, is the threshold maintained under each type of error? These are the questions that we

seek to answer here. Thus, we separate the two types of errors and conduct the analysis for each

type independently at 4%, 3%, 2%, and 1%. Similar to the previous computational treatments,

our analysis focuses on the same error levels as before. We do so for reasons of comparabil-

ity and because we place greater emphasis on reasonable levels of errors. The computational

experiments are shown in Figure 8. In particular, in Figure 8(a) we use first-order local poly-

nomial regressions to fit the average payoffs over the course of the evolution for a constant and

independent chance of perception errors. In Figure 8(b), we run first-order local polynomial

regression to fit the average payoffs for a constant and independent chance of implementation

errors.

Figure 8: Separation of Errors

Notes: The simulations assess how the payoffs (fitness) of the automata change with (a) perception errors or (b)

implementation errors. The smoothed curves utilize first-order polynomial functions with the Epanechnikov-

Kernel weighting function.

As the likelihood of perception errors increases, the average payoffs of the prevailing au-

tomata decrease. The same result holds in the case of implementation errors. It is noteworthy

that, in general, the average payoffs are higher in the presence of implementation errors than

they are in the presence of perception errors. Thus, perception errors are more harmful than
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implementation errors to the fitness of the prevailing automata. This is made starkly evident

if we compare the payoffs of each perception-error level (Figure 8(a)) with the payoffs for the

corresponding error level when both types of errors exist (Figure 6(a)). Indeed, the average

payoffs in Figure 8(a) are lower than those when both types of errors persist for the same error

level. By contrast, the average payoffs in Figure 8(b) are higher than those when both types of

errors persist for the same error level. (This interesting finding is discussed in the next section.)
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Figure 9: Prevailing Automata with Perception Errors

Notes: On the vertical axis, we indicate the proportion of wins for ALLD and Other automata out of the 30

simulations conducted. The horizontal axis indicates the perception-error levels.

Next, we provide the proportion of wins for ALLD, ALLC and Other automata for different

levels of perception errors and implementation errors.20 The proportion reflects the number of

wins out of the 30 simulations conducted. In Figure 9, we provide the proportion of wins of

ALLD and Other automata for different levels of perception errors. At the 1% and 2% error

levels, no strategy is the clear winner. At 3%, the ALLD automaton begins to dominate. At

3.8%, the proportion of wins for ALLD is 0.43 and at 3.9% jumps to 0.6. At this level, ALLD

wins 18 of the 30 simulations. We can safely assume that the proportion of 0.5 is attained

somewhere between 3.8% and 3.9%. Note that the analogous proportion is attained at the 2%

error level when both types of errors are allowed. The proportion of wins for ALLD increases as

the likelihood of committing perception errors increases. At the 30% error level, ALLD reaches

20Table 8 in the Appendix provides the frequencies for each computational treatment for the perception errors,

and Table 9 provides the frequencies for each computational treatment for the implementation errors.
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a proportion of 1 (30 wins in 30 simulations), which is retained throughout the higher error

levels. The reason that ALLD dominates in the presence of only perception errors is that the

ALLD exploits errors committed by cooperating automata that misperceive its defections for

cooperative behavior and, thus, attempt to cooperate with ALLD. Consequently, ALLD earns

the “temptation” payoff, while the cooperative automata earn the “sucker’s” payoff. This way,

ALLDs proliferate and end up playing against each other.
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Figure 10: Prevailing Automata with Implementation Errors

Notes: On the vertical axis, we indicate the proportion of wins for ALLD, ALLC and Other automata out of

the 30 simulations conducted. The horizontal axis indicates the implementation-error levels.

In Figure 10, we show the proportion of wins for ALLD, ALLC and Other automata for

different levels of implementation errors. In sharp contrast to perception errors, implementation

errors affect all automata, including ALLD. Thus, our results here are somewhat different from

the results with only perception errors. At the 1% and 2% error levels, no strategy has an

edge. At 3%, ALLD has a proportion of wins of 0.17, which jumps to 0.5 at 5.3%. At this

point, the dominance of ALLD is clear. ALLD continues to increase its proportion of wins as

the likelihood of committing implementation errors increases, until the 50% mark. Beyond this

point, ALLC dominates. It is important to realize that, beyond this high error level, ALLC

behaves as an ALLD in an environment with low error levels. This result is analogous to the

one discussed in the previous section.

To facilitate comparison across the different environments, let us reiterate that the propor-

tion of wins of 0.5 is attained at the 2% level when both types of errors are allowed, around
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the 3.9% level when only perception errors are allowed, and at the 5.3% level when only im-

plementation errors are allowed. We conjecture that the lower error level when both types of

errors coexist can be attributed to the additional randomness that two sources of uncertainty

bring to the model, as opposed to when the perception and implementation errors act in isola-

tion. Furthermore, it is not surprising that the model with only perception errors reaches the

0.5 proportion at a lower error level than the model with only implementation errors; ALLD

is hugely favored with perception errors as it is immune to them, which is not the case with

implementation errors.

7 Discussion

TFT was the winner in the in silico (with programmed automata) tournaments of Robert

Axelrod (1984). The performance of TFT led Axelrod to identify some basic attributes that

were necessary for the emergence and survival of cooperation. These were: (i) an avoidance of

unnecessary conflict by cooperating as long as the other agent does; (ii) provocation in the face

of an uncalled-for defection by the other; (iii) forgiveness after responding to a provocation;

and (iv) clarity of behavior so that the other agent can adapt to your pattern of action. Unlike

Axelrod, the study by Bendor, Kramer and Stout (1991) incorporated random shocks into

a computer tournament. The winning strategy in that tournament was Nice-And-Forgiving

(NAF), which differs in many ways from TFT. First, NAF is nice in the sense that it cooperates

as long as the frequency of the opponent’s cooperation is above some threshold. Second,

NAF is forgiving (generous) in the sense that, although NAF will retaliate if the opponent’s

cooperation falls below the threshold level of cooperation, it will revert to full cooperation

before its opponent does, as long as the opponent meets certain minimal levels of cooperation.

Yet, the success of NAF is not a robust result but is limited to the particular environment.

As Bendor, Kramer and Stout (1991) note, the generosity of NAF creates a risk: other strategies

may exploit NAF’s willingness to give more than it receives. In other words, NAF can be suck-

ered by a nasty strategy that is disinterested in joint gains.21 As Axelrod and Dion (1988) aptly

21Due to its generosity, NAF lost in its pairwise play with every one of its opponents. In contrast to NAF’s

pattern, VIGILANT, the strategy that placed dead last in the tournament, beat every one of its partners in
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note, in the presence of large amounts of errors, there is a trade-off: unnecessary conflict can be

avoided by generosity, but generosity invites exploitation. Thus, strategies that are unilaterally

generous will not fare well in every environment. Another objection to NAF’s generosity is the

lack of generalizability of this finding. With the exception of social-welfare models, in which

agents are willing to exhibit generosity to increase social surplus, other models do not establish

the presence of ad hoc generosity in the agents’ decisions. In the difference-aversion models,

for example, agents may be particularly sensitive and reactive to any indication that the other

party is doing better or coming out ahead. Furthermore, in the reciprocity models, an agent’s

generosity is likely to be influenced by the other party’s behavior. Many recent in vivo (with

human subjects) experimental studies have demonstrated that the willingness to be generous

in games is sensitive not only to the choice set available to the agent contemplating an action,

but also to the behavior of the other agent that generated that choice set. (See, for example,

Ioannou, Qi and Rustichini 2012.) Consequently, when an unfavorable outcome is attributed

to the other party’s greed, individuals will abandon cooperation. Finally, in the competitive

(self-interest) models, agents approach the game with a preference for outcomes that maximize

the difference between the parties. Thus, agents with a competitive motive may be particularly

unlikely to regard generosity as an attractive or viable strategy in a PD game.

In addition, laboratory research has identified several psychological factors that might di-

minish generosity among human strategists. First, the fear of exploitation or desire to avoid

the “sucker’s” payoff22 may make it difficult for individuals to risk generosity. Human exper-

imental studies of the PD game, in particular, have found that agents will often cooperate

until they have evidence or even the mere suspicion that the other party is taking advantage

of them. (See discussions in Dawes and Thaler 1988.) The fear of exploitation may induce

individuals to engage in a kind of defensive “stinginess,” even though they recognize the merits

of generosity. Furthermore, Pedro Dal Bó and Guillaume Fréchette (2011) provide compelling

experimental evidence with human data to suggest that even in treatments where cooperation

can be supported in equilibrium, the level of cooperation may remain at low levels even after

bilateral play. VIGILANT was a highly provocable and unforgiving strategy that retaliated sharply if it inferred

that its partner was playing anything less than maximal cooperation.
22Recall that the “sucker’s” payoff is the payoff upon unilaterally cooperating in the PD game and the

“temptation” payoff is the payoff upon unilaterally defecting.
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significant experience is obtained. The authors conclude that “these results cast doubt on the

common assumption that agents will make the most of the opportunity to cooperate whenever

it is possible to do so in equilibrium” (page 412).

The summary measures of the present study point to a very different direction from that in

Bendor, Kramer and Stout (1991). In the computational experiments, cooperation reciprocity

of the automata is relatively low, reflecting their readiness to exploit (to sneak on the opponent).

Recall that 1−cooperation reciprocity is a proxy for the degree of “sneakiness” of the automata.

Therefore, automata with relatively low cooperation reciprocity are also relatively more sneaky.

The reason is that an attempt to acquire the “temptation” payoff can be camouflaged in

the presence of errors but not in their absence. Furthermore, in sharp contrast to NAF, the

automata that evolve here are relentless punishers of defections. In fact, defection reciprocity

of the automata climbs to a proportion close to one in the environments with high error levels,

indicating their lack of forgiveness to defections.

Also of importance is the finding that the size of the automaton is decreasing in the prob-

ability of errors. Thus, we conjecture that in the presence of errors, strategic simplification is

advantageous (if the number of accessible states is assumed to be a good measure of complex-

ity). In the absence of errors, the behavior of well-informed agents responding with flexibility

to every perturbation in the environment does not produce easily recognizable patterns, but,

rather, is extremely difficult to predict. However, in the presence of errors, behavior is governed

by mechanisms that restrict the flexibility to choose potential actions. These mechanisms sim-

plify behavior to less-complex patterns, which are easier for an observer to recognize and to

predict.

In real life, there exist a number of examples in which an agent’s choice of a simple strategy

in the presence of errors has proved quite successful. The historical series of publications on

strategies to win at blackjack provide an interesting example. Edward Thorpe’s book Beat

the Dealer emphasized sophisticated card-counting and bet-variation methods. However, while

no one has challenged the mathematical validity of these earlier more-complex methods, their

actual use resulted in worse performance by most persons attempting to use them (which

generated sizable unexpected profits for the casinos!). As a result, later books have steadily

evolved towards more-rigidly-constructed methods (Heiner 1983).

On other occasions, agents apply simple heuristics when they find it too cumbersome to
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have complex decision rules to accommodate for the different contingencies that might arise.

As Gigerenzer and Gaissmaier (2011) note,

[i]n a number of large worlds [defined as environments where the conditions for

rational decision theory are not met], simple heuristics are more accurate than

standard statistical methods that have the same or more information (page 453).

For example, consider commercial retailers who need to distinguish those customers who are

likely to purchase again in a given time frame (active customers) from those who are not (in-

active customers). Academics often opt for the state-of-the-art Negative Binomial Distribution

(NBD) model.23 Yet most managers around the globe rely on the hiatus heuristic, which states

that if a customer has not purchased within a certain number of months (the hiatus), the

customer is classified as inactive; otherwise, the customer is classified as active. Wubben and

Wangenheim (2008) compared the accuracy of the hiatus heuristic with that of the NBD model.

For the heuristic, they used a hiatus of 9 months, which is common in the retailing industry,

while for the NBD model, they estimated the parameters from 40 weeks of data and tested

it over the following 40 weeks. The hiatus heuristic correctly classified 83% of the customers,

whereas the NBD model classified only 75% correctly. Similar results have been found in the

airline industry as well. These studies demonstrate the so-called “less-is-more” effect: an agent’s

overall performance may actually be improved by restricting flexibility to use information or to

choose particular actions.

Finally, another interesting finding of the study is that perception errors are more detri-

mental than implementation errors to the fitness of the prevailing automata. Furthermore,

the average payoffs of the automata are lower with perception errors than when both types of

errors persist for the same error level. By contrast, the average payoffs of the automata are

higher with implementation errors than when both types of errors persist for the same error

level. Clearly, this observation is directly linked to the type of automata that survive and, in

particular, the automaton ALLD. Perception errors do not affect ALLD. In fact, perception er-

rors do not affect absorbing24 (terminal) states. With perception errors, cooperative automata

23The Negative Binomial Distribution model assumes that purchases follow a Poisson process with a purchase

parameter λ, that customers’ lifetimes follow an exponential distribution with a dropout rate parameter µ, and

that, across customers, purchase and dropout rates are distributed according to a gamma distribution.
24Once the automaton enters an absorbing state, it remains there for the duration of the game-play. Trigger
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do not survive, as they are exploited by automata with defecting absorbing states. Thus, au-

tomata such as ALLD prevail and proliferate. Yet such automata lock themselves into endless

vendettas (strings of defections) that decrease their payoffs considerably, which explains why,

in the presence of only perception errors, the payoffs are lower than when both types of errors

persist. However, implementation errors affect all automata, albeit in different ways. Note that

implementation errors allow a mixture of cooperative and non-cooperative automata (such as

ALLD) to survive, as the benefit of exploitation by the non-cooperative automata is lower.

Consequently, the survival of cooperating and non-cooperating automata is instrumental in

elevating the payoffs of the automata. These observations signify the importance of separating

between the two types of errors.25

8 Conclusion

The study indicates, via an explicit evolutionary process simulated by a genetic algorithm, that

the incorporation of implementation and perception errors is sufficient to alter the evolution

of cooperative automata. In particular, we find that the prevailing structures tend to exhibit

low reciprocal cooperation and low tolerance to defections as the probability of errors increases.

Furthermore, the complexity of the automata is decreasing in the probability of errors, which

suggests that strategic simplification is advantageous in the presence of errors. In addition,

the study identifies a threshold error level. Below the threshold, the prevailing structures

are closed-loop and diverse, which impedes any inferential projections on the superiority of a

particular automaton. At and above the threshold, though, the prevailing structures converge

to the open-loop automaton Always-Defect (ALLD). Finally, we find that perception errors are

more detrimental than implementation errors to the payoffs of the automata. The latter finding

makes it necessary to prioritize seeking ways to limit the level of perception errors first, so as

to avoid suboptimal outcomes in our strategic interactions. Possible routes to limit perception

errors could be through better training and transparent communication channels.

The dominance of one state automaton ALLD at or above the threshold error level is

automata have absorbing states as well as open-loop automata.
25We thank an anonymous referee for suggesting this vital direction.
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undeniable. In fact, such dominance renders unnecessary any discussion about incorporating

complexity costs based on the number of states accessed into the model. Such a venue would

only expedite the dominance of ALLD. However, an interesting direction for future research

would be to use the methodology prescribed to analyze the evolution of strategies in other 2×2

games. Ultimately, one would like to gather the prevailing strategies across each of these games

and determine the single best strategy in a tournament consisting of a vast array of games.

Having said this, we do hope, more than our specific findings and interpretations, that this

work will help move computational research away from the study of misleading, hyper-rational

agents and towards the study of agents with human-like characteristics and qualities. The

results highlight that incorporation of implementation and perception errors in the modeling

framework is an important and essential aspect of the evolutionary dynamics.
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Appendix

Numerical Examples

We provide the tables for the payoffs of ALLD and TFT for the numerical examples in Section

2.3. Recall that the examples pertain to a population size of 30 agents. The agents can use

either TFT or ALLD and are paired in a round-robin structure. Additionally, we assume that

a strategy does play itself. Furthermore, to calculate the average payoff of each pair, we use

the values of the payoff matrix in Table 3. Finally, assume that x agents use TFT, and 30− x
agents use ALLD, where x ∈ N (N = {1, 2, ..., 29}).

Table 6: Average Payoffs of ALLD & TFT

x P(ALLD) P(TFT) x P(ALLD) P(TFT)

1 1.06 1.06 1 1.58 1.36

2 1.07 1.10 2 1.61 1.39

3 1.07 1.14 3 1.63 1.42

4 1.08 1.18 4 1.66 1.45

5 1.08 1.23 5 1.68 1.48

6 1.09 1.27 6 1.71 1.51

7 1.09 1.31 7 1.73 1.54

8 1.10 1.35 8 1.75 1.58

9 1.10 1.39 9 1.78 1.61

10 1.11 1.43 10 1.80 1.64

11 1.11 1.47 11 1.83 1.67

12 1.12 1.51 12 1.85 1.70

13 1.12 1.55 13 1.88 1.73

14 1.13 1.59 14 1.90 1.76

15 1.13 1.64 15 1.93 1.79

16 1.14 1.68 16 1.95 1.82

17 1.14 1.72 17 1.97 1.85

18 1.15 1.76 18 2.00 1.88

19 1.15 1.80 19 2.02 1.91

20 1.16 1.84 20 2.05 1.94

21 1.16 1.88 21 2.07 1.97

22 1.17 1.92 22 2.10 2.00

23 1.17 1.96 23 2.12 2.04

24 1.18 2.00 24 2.14 2.07

25 1.18 2.05 25 2.17 2.10

26 1.19 2.09 26 2.19 2.13

27 1.19 2.13 27 2.22 2.16

28 1.20 2.17 28 2.24 2.19

29 1.20 2.21 29 2.27 2.22

= =2% = =20%

Notes: On the left, we indicate the average payoffs of TFT and ALLD, as we vary the proportion of agents

using TFT (and ALLD) for implementation and perception errors kept fixed at 2%. On the right, we indicate

the average payoffs of TFT and ALLD, as we vary the proportion of agents using TFT (and ALLD) for

implementation and perception errors kept fixed at 20%.
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Prevailing Automata

In Section 5.3, we provide the proportion of wins for ALLD, ALLC and Other automata for the

computational treatments conducted. In Table 7, we provide the frequency of wins for ALLD,

ALLC and Other automata, out of a total of 30 simulations, for each computational treatment.

Table 7: Frequency of Wins

Error Level ALLD ALLC Other

1.5% 2 - 28

1.6% 4 - 26

1.7% 5 - 25

1.8% 6 - 24

1.9% 9 - 21

2% 15 - 15

3% 22 - 8

4% 25 - 5

10% 27 - 3

20% 29 - 1

30% 28 - 2

40% 21 - 9

50% 5 4 21

60% - 25 5

70% - 27 3

80% - 28 2

90% - 28 2

Notes: The Table indicates the frequency of wins for ALLD, ALLC and Other automata out of 30 simulations

conducted.

Separation of Errors

In Section 5.4, we provide the proportion of wins for ALLD, ALLC and Other automata for

different levels of perception errors and implementation errors. In Table 8, we provide the

frequency of wins for ALLD, ALLC and Other automata out of a total of 30 simulations for

each computational treatment. Panel A indicates the frequency of wins when only the likelihood

of committing perception errors is varied. Panel B indicates the frequency of wins when only

the likelihood of committing implementation errors is varied.
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Table 8: Frequency of Wins with Errors Separated

Panel A Panel B

Error Level ALLD ALLC Other Error Level ALLD ALLC Other

1% 0 - 30 1% 0 - 30

2% 3 - 27 2% 0 - 30

3.0% 11 - 19 3% 5 - 25

3.5% 12 - 18 4% 9 - 21

3.8% 13 - 17 5.0% 12 - 18

3.9% 18 - 12 5.1% 14 - 16

4% 19 - 11 5.2% 14 - 16

5% 24 - 6 5.3% 15 - 15

10% 26 - 4 10% 25 - 5

20% 27 - 3 20% 26 - 4

30% 30 - 0 30% 29 - 1

40% 30 - 0 40% 24 - 6

50% 30 - 0 50% 2 0 28

60% 30 - 0 60% - 22 8

70% 30 - 0 70% - 27 3

80% 30 - 0 80% - 30 0

90% 30 - 0 90% - 30 0

Notes: The Table indicates the frequency of wins for ALLD, ALLC and Other automata out of 30 simulations

conducted. Panel A indicates the frequency of wins when only the likelihood of committing perception errors is

varied. Panel B indicates the frequency of wins when only the likelihood of committing implementation errors

is varied.
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