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1. Background 

 

Submarine canyons, steep-walled valleys that cut across virtually every continental margin 

around the world (Harris & Whiteway, 2011), are considered major sediment transport pathways 

between continental shelves and the deep sea (e.g. Shepard, 1963; Puig et al., 2014). Owing to 

their steep topography and high terrain heterogeneity, in addition to their unique current patterns 

and episodic down-canyon flushing events, which result in locally increased nutrient 

concentrations and food availability, submarine canyons are often considered as biodiversity 

hotspots (e.g. Tyler et al., 2009; De Leo et al., 2010). On the other hand, considerable differences 

have been observed between individual canyon systems, and between different faunal groups in 

terms of their response to the typical canyon environment (e.g. Cunha et al., 2011; Ingels et al., 

2011; Schlacher et al., 2007). Unfortunately, in addition to transporting sediment, submarine 

canyons also tend to funnel our human litter and pollutants into the deep sea, extending the 

anthropogenic impact on the oceans far beyond our shores (e.g. de Jesus Mendes et al., 2011; 

Mordecai et al., 2011; Schlining et al., 2013).  

 

Submarine canyons have been the subject of research for a long time. Shepard (1972) refers to a 

study from as early as the late nineteenth century, carried out by Milne (1897), which looked at 

the instability of canyon floor sediments as a possible cause for the repeated breaking of 

submarine cables that had been laid across a canyon. However, as a result of the steep terrain, 

locally enhanced currents and occasional down-canyon flushing events, the initial submarine 

canyon investigations were extremely challenging, and the number of studies was limited. 

Acoustic methods had to deal with excessive scatter and noise, in-situ instruments were regularly 

washed away and the coarse canyon thalwegs and rocky walls proved difficult to sample (e.g. 

Paull et al., 2003; Shepard, 1972. Direct observations were limited to shallow waters, within reach 

of divers or early submarines. With the increasing availability of new sampling and surveying 

technologies (deep-towed acoustic instruments, drop-down video systems, and eventually robotic 

vehicles), submarine canyon research increased dramatically (Fig. 1). Particularly the advent of 
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Remotely Operated Vehicles (ROVs) in many research institutes in the last ~10 years opened up 

a new perspective on submarine canyons, allowing a wider community of researchers to access 

parts of the deep ocean that had been hidden until then (Tyler et al., 2009). 

 

 
 

Fig. 1  Number of publication records in the Web of Knowledge database related to the search 

topic ‘submarine canyon’ as of 5 August 2013. Source: Thomson Reuters 

 

As a result of this increased research effort, our understanding of submarine canyons is gradually 

growing. A number of individual canyon systems have received considerable attention (e.g. the 

Portuguese Canyons offshore Lisbon & Nazaré (Masson & Tyler, 2011 and references therein); 

Monterey Canyon (e.g. Hall & Carter, 2011; Paull et al., 2011; Robinson et al., 2010) or the Cap 

de Creus Canyon and the other canyons in the Gulf of Lions (e.g. Canals et al., 2006; Lastras et 

al., 2007; Orejas et al., 2009; Palanques et a.l, 2008)), but most canyons around the world have 

not yet been studied, or only to a very limited extend. Furthermore, many of the studies carried 

out so far are focussing on one aspect (geology, geomorphology, sediment dynamics, 

hydrography, current patterns, mega-, macro-, meiofauna distribution, biogeochemistry…) of a 

single canyon or canyon system. The time seems right to start putting all those pieces of the 

jigsaw together, and to start looking at canyons in a more holistic way. To this end, the first 

International Symposium on Submarine Canyons was organised in Brest, France in July 2012. 

Canyon research from all over the world was presented, followed by cross-disciplinary 

discussions and networking. A good proportion of those studies are presented here, in this 

Special Issue. In addition, the meeting resulted in the formation of INCISE: the International 

Network for submarine Canyon Investigation and Scientific Exchange (www.incisenet.org). 
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Further meetings and sessions at international conferences are planned, and an active forum has 

been set up, with the aim to stimulate cross-disciplinary discussions and research activities. 

 

 

2. Integrated submarine canyon research 

 

This Special Issue presents submarine canyon research from all over the world (Fig. 2). 

Particularly  the large number of studies on the Sable Gully, off Nova Scotia, illustrates the type of 

integrated picture INCISE hopes to achieve for many individual canyons, and for submarine 

canyons as a whole. The Sable Gully was the first Canadian Marine Protected Area (MPA) to be 

designated in the Atlantic. The area is known to be an important cetacean habitat; especially 

northern bottlenose whales seem to have a great affinity for this canyon and similar canyons in 

the region (Moors-Murphy, 2013). Oceanographic/hydrographic observations by Greenan et al. 

(2013) illustrate the unique tidal environment of the canyon, which is dominated by unusual non-

linear constituents that create overtides and compound tides. In addition, there is strong evidence 

for enhanced mixing and up-canyon flow within the canyon. The surface waters, however, do not 

seem to be very much affected by the presence of the canyon: they are mainly influenced by the 

regional NE-SW current pattern. To further enhance our understanding of the 3-dimensional 

circulation throughout the canyon, Shan et al. (2013) applied a multi-nested ocean circulation 

model, investigating the influence of shelf-scale circulation, tide-topography interaction and wind 

forcing on the circulation within and above the canyon. The authors found that wind, especially 

during storm events, is a significant factor affecting the circulation above the canyon, while 

especially the tide-topography interaction is a dominant factor within the Gully. This water mass 

structure and current pattern may well affect the pelagic fauna. For example, the crustacean 

micronekton and macrozooplankton are mainly structured by depth and diel cycle (MacIsaac et 

al., 2013). The upper waters (<750 m) are dominated by species typical of the mid- to higher 

latitudes in the N. Atlantic, which spend part of their daily cycle in the surface waters brought in by 

the overall NE-SW current. Inter-annual variability in species abundance is limited, however, 

despite substantial changes in oceanographic conditions during the 3 year study by MacIsaac et 

al. (2013). In contrast, Kenchington et al. (2013) looked at the epibenthic macrofauna living in the 

tidally dominated deeper parts of the canyon, beyond 1000 m depth. They found that those fauna 

mainly consist of filter-feeders, which probably reflects the influence of the tidal currents in the 

canyon. Furthermore, apart from depth, benthic communities are also structured by food 

availability (total organic carbon and labile carbon) at a spatial scale of 10s of km, while on 

shorter distances (10s of m) substratum seems to be an important factor determining species 

associations. 
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Fig. 2  Locations of submarine canyon studies published in this Special Issue. Labels refer to the 

order of the papers in this journal. 

 

 

Of course, as indicated before: patterns emerging from a single canyon system may not 

necessarily be universal. Comparing canyons located on the active transform margin off Haida 

Gwaii, British Columbia, with the Sur Canyon system on the other well-known transform margin 

south of Monterey Bay, California, Harris et al. (2013) demonstrate that several factors are at play 

in the creation of canyon morphologies. Considerable variability has also been found between 

canyons as close as a few 10s to 100s of kilometres apart. For example, Lo Iacono et al. (2013) 

present two submarine canyons located offshore N Sicily. Although both are placed within the 

same tectonically active geological setting, the canyons have a very different morphology, and 

are governed by different sedimentary processes. Bottom-up, retrogressive slope failures have 

driven the formation of the Palermo Canyon, while top-down, erosive turbidity currents, linked to 

fluvial sedimentary input, have shaped the meandering Castellamare Canyon. Similar, although 

less extreme, differences were found by Obelcz et al. (2013) in the fine-scale morphology of four 

submarine canyons, spaced over 200 km along the US Mid-Atlantic passive margin, pointing to 

slightly different levels of canyon activity and sediment transport processes.  

 

However, in terms of recent, short-term sediment transport in shelf-incising canyons, most 

observations seem to confirm the overall two-step mechanism already hinted by Shepard (1963), 

and recently reviewed by Puig et al. (2013). For example, tidally mobilised shelf sediments are 

intercepted by the Cook Strait Canyon heads offshore New Zealand, and accumulate in 

depocentres in the upper/central part of the canyon system. They are then remobilised in more 

catastrophic events and transported towards the lower canyon and deep ocean as a result of 
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tectonic (earthquake) processes with a return period of ca. 100 years (Mountjoy et al., 2013). 

Similarly, the middle Cap-Ferret Canyon (Bay of Biscay, N Atlantic) acts as a depocentre for 

material that has been intercepted from outer shelf and upper slope transport by the canyon head 

and has bypassed the upper canyon. The lower canyon only receives sediment input in the form 

of gravity flows on timescales of decades or more (Duros et al., 2013; Schmidt et al., 2013). 

 

On even shorted timescales, observations in countless submarine canyons (including the work by 

Greenan et al. (2013) and Shan et al. (2013) in the Gully) have shown that internal tides and 

waves are some of the most important factors in the daily (re)-suspension and flux of canyon 

sediments. Hall et al. (2013) now demonstrate that the nature of this internal tidal driving force 

can change from a standing to a progressive wave as the result of a change in watercolumn 

stratification. Using a numerical model of Monterey canyon, they show that an observed change 

in depth of the main pycnocline from 200 m (below the canyon rim) to 50 m (above the canyon 

rim) decreases the supercritical reflection of the up-canyon travelling internal tidal wave, allowing 

it to become dominant over the reflected down-canyon wave. This affects the energy flux through 

the canyon, and the spatial pattern of current amplification and sediment resuspension at the 

seabed. However, in addition to natural processes, there is increasing evidence that daily 

sediment resuspension and transport may also be caused by anthropogenic activities such as 

deep-water bottom trawling. Martin et al. (2013) present a stunning dataset illustrating the daily 

occurrence of increased water column turbidity and the associated sediment gravity flows in La 

Fonera Canyon (NW Mediterranean). The phenomenon occurs exclusively during the working 

days/hours of the bottom trawling fleet that fishes on the upper canyon flanks. The process is 

gradually reshaping the canyon morphology, but also influences faunal communities in the 

deeper reaches, by creating increased disturbance and sediment turbidity compared to the 

natural state. 

 

Sediment resuspension is not the only type of anthropogenic impact reported in the submarine 

canyon studies of this Special Issue. Lost fishing gear is very common, as is litter (e.g. Fabri et 

al., 2013; Davies et al., 2013). Fabri et al. (2013) carried out a comprehensive study of 17 

canyons along the French Mediterranean margin in order to evaluate the occurrence and status 

of Vulnerable Marine Ecosystems (VMEs) in the area. They found that sea pen grounds 

(Pennatulacea) and Alcyonacea grounds were fairly rare, and presented lower faunal densities 

than expected. This could be related to trawling pressure. Cold-water corals such as Lophelia 

pertusa and Madrepora oculata were not very common, and in addition to damage by lost fishing 

gear, were also affected by the discharge of bauxite mud in Cassidaigne Canyon. A similar 

benthic megafauna biotope study was carried out by Davies et al. (2013) in the upper part of a 

submarine canyon system along the Celtic Margin, NE Atlantic. They found 12 biotopes, of which 
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4 can be classified as VMEs. Especially Kophobelemnon (sea pen) grounds were specific for the 

canyons, but biotopes harbouring L. pertusa were present as well. In addition, Stewart et al. 

(2013) report the discovery of large numbers of small mounds in the same area (up to 4 m high 

and 150 m across, located at water depths of 250-400 m) covered with cold-water coral rubble. It 

is not clear if the coral died as a result of natural causes (change in environmental conditions over 

the last 1000s of years) or of deep-water trawling, which is very intensive in the area. Given the 

struggle of scleractinian corals to survive anthropogenic impacts in the European canyons, the 

discovery of L. pertusa in canyons on the US margin of the N Atlantic is a positive finding (Brooke 

& Ross, 2013). 

 

Although studies like those by Davies et al. (2013) and Fabri et al. (2013) are invaluable for 

marine conservation, they only cover a small part of the world’s oceans and submarine canyons. 

Nearly every biological survey of a (new) submarine canyon results in the discovery of new 

species (e.g. Kenchington et al., 2013; MacIsaac et al., 2013; Schejter et al., 2013). It will be clear 

that much more information is needed, including a deeper understanding of canyon biology and 

ecology, before policy-makers will be able to design the optimal submarine canyon management 

plans and conservation measures. Integrating the range of biological studies presented in this 

Special Issue (in addition to the wider submarine canyon literature), some patterns begin to 

emerge, although a lot of uncertainty still exists about the details. It is obvious that, as reported by 

Kenchington et al. (2013) and MacIsaac et al. (2013) for the Sable Gully, depth is the main 

structuring factor in the distribution of most canyon fauna/groups (Duffy et al., 2013; De Leo et al., 

2013; Frutos & Sorbe, 2013). However, further driving factors remain difficult to ascertain. Duffy 

et al. (2013) could not find a statistically significant difference between the epibenthic megafauna 

communities of 5 canyons with different sediment transport regimes offshore California. However, 

the authors admit that the nature of their dataset (opportunistic ROV-based video rather than 

imagery transects conducted according to a rigorous sampling design) may play an important role 

in this result. This was not an issue in the work of De Leo et al. (2013), who sampled infaunal 

macrobenthos in 6 Hawaiian canyons, using a depth-stratified scheme. They found that habitat 

heterogeneity at medium and large spatial scales, in addition to Particulate Organic Carbon 

(POC) and distance from shore (both proxies for food input) seem to be good predictors of 

macrobenthic biodiversity. Food availability even seems to be the main structuring factor in 

Kaikoura Canyon, offshore New Zealand (Leduc et al., 2013). This canyon is characterised by 

unusually high food availability for benthic fauna, probably due to a combination of increased 

primary production and downwelling/topographically steered funnelling of surface-derived organic 

matter. The authors looked at free-living nemathodes in the canyon, and found an exceptionally 

high biomass, reduced diversity and specific nematode community structure. On a more local 

scale, disturbance has also been reported as an influencing factor in submarine canyons. 



7 
 

Although less than a kilometre apart, benthic foraminifera in samples from the Capbreton Canyon 

thalweg show a distinctively different assemblage than those on the lower canyon flank. They 

have a lower diversity and are dominated by pioneer species, illustrating that the community 

stays in an early stage of ecosystem colonisation as a result of the regular deposition of turbidite 

sequences (Bolliet et al., 2013). Taking an entirely different perspective, Guerreiro et al. (2013) 

present one of the first studies to characterise surface water coccolithophore assemblages in the 

context of an active submarine canyon and its associated physical oceanography. They find that 

the waters around Nazaré Canyon, offshore Portugal, are dominated in winter by two 

assemblages, distinguishing slightly more nutrient-rich coastal-neritic waters (influenced by 

surface water runoff) from the mixed oceanic waters advected onshore by the canyon. In addition, 

they report that the canyon head is often a location of high productivity between March & 

October, creating a coccolithophore diversity hotspot, mixing both the oligotrophic-oceanic and 

opportunistic coastal taxa. Such an increased productivity will have a strong influence on the 

benthic environment in the upper-middle Nazaré Canyon, where an extremely rich depocentre 

has been reported at ca. 3400 m water depth by several authors (e.g. Amaro et al. 2010; Cunha 

et al., 2011; Masson et al.. 2010). 

 

 

3. Outlook 

 

As demonstrated by the case studies of the Sable Gully (Greenan et al., 2013; Kenchington et al., 

2013; MacIsaac et al., 2013; Moors-Murphy, 2013; Shan et al., 2013), in order to obtain a better 

understanding of submarine canyon systems as a whole, more integrated research efforts are 

needed, combining insights on canyon geology, sedimentology and oceanography with 

observations of biology and ecology. Also human activities and impacts should be included in the 

picture (Martin et al., 2013). Deriving universal patterns of canyon processes and characteristics 

will require such integrated research efforts to be repeated in several canyons, for several 

tectonic and environmental settings. To achieve comparable results, the submarine canyon 

research community will have to work towards comparable and compatible methodologies, 

including the set-up of (or continuation of) long-term monitoring programmes to assess the 

temporal aspects of canyon processes (Juniper et al., 2013; Martins et al., 2010). Understanding 

the scale (both spatial and temporal) at which canyon processes shape the canyon environment 

is key to understanding the biological and ecological patterns. Only when we understand the 

frequency, extent and biological response to natural disturbance events, will we be able to assess 

the real impact of anthropogenic disturbance in this unique environment. Obtaining an insight in 

the connectivity of submarine canyons will be necessary to devise viable networks of marine 

protected areas. The International Symposium on Submarine Canyons in Brest has set in motion 
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a dynamic and ambitious community of researchers working towards these goals, aiming to 

increase the understanding of submarine canyons in a holistic way. We hope this Special Issue 

will be a first step, stimulating further cross-disciplinary discussions and investigations. 
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