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Several thousand people die as a result of a road accident each year in Great
Britain and the trend in the number of fatal accidents is monitored closely to
understand increases and reductions in the number of deaths. Results from anal-
ysis of these data directly influence Government road safety policy and ensure the
introduction of effective safety interventions across the country.

Overall accident numbers are important, but when disaggregating into various
characteristics, accident risk (defined as the number of accidents relative to an
exposure measure) is a better comparator. The exposure measure used most
commonly for accident rate analysis is traffic flow which can be disaggregated
into vehicle types, road type, and year. Here we want to assess the accident risk
across different car types and car ages, and therefore alternative exposure sources
are required. We disaggregate exposure to a further extent than possible with
currently available data in order to take the increased variability within these
new factors into account.

Exposure data sources are mainly based on sample surveys and therefore have
some associated uncertainty, however previous accident risk analysis has not, in
general, taken this into account. For an explicit way to include this uncertainty we
use a Bayesian analysis to combine three sources of exposure using a log-Normal
model with model priors representing our uncertainty in each data source.

Using further Bayesian models, we propagate this uncertainty through to
accident rates and accident severity, determining important factors and inter-
relationships between factors to identify key features affecting accident trends,
and we make the first exploration of the effect of the recent recession on road
accidents.
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Chapter 1

Introduction

1.1 Application

In recent years, around 2000 people have died each year as the result of a road
accident in Great Britain. The trends in numbers of deaths and seriously injured
casualties are monitored closely by the Department for Transport, and Govern-

ment road safety policy is guided by these trends.

In the late 1990s there appeared to be a change in a long running trend: the
trends in fatal and serious casualties, which had been similar until that point,
began to diverge, with the number of serious casualties reducing at a faster rate
than the number of fatalities. In particular the number of car occupant deaths
remained fairly constant for some years at around 1700 each year (see Figure 1.1).
As a consequence, the severity rate (proportion of fatalities in killed and seriously
injured: KSI) of car occupants rose gradually over this period to a peak of 11% by
2006. In 2007 a rapid decrease in the number of fatally injured casualties began

with numbers dropping over four consecutive years.

It was observed (Broughton and Buckle 2007) that from the mid 1990s to 2006,

1



several types of accidents showed an increase and were therefore particularly in-

fluential during the ‘stationary’ period. These accident types included:

e Single vehicle accidents: the proportion of fatally or seriously injured car
occupants involved in single vehicle accidents increased and the number of
fatally injured car occupants in single vehicle accidents increased;

e Accidents at bends: the proportion of fatally or seriously injured car occu-
pants involved in accidents at bends increased;

e Accidents where a car left the carriageway: the proportion of casualties
whose cars left the carriageway increased (a slight decrease in 2006);

e Accidents where a car overturned: the proportion of fatally or seriously
injured car occupants injured when their car overturned increased;

e Accidents involving a young driver: the number of young drivers killed in-
creased;

e Accidents involving a large car: an increase in fatality rate (relative to car
fleet) of 4x4 and people carrier occupants (and small saloons) was observed;

e Accidents involving an old car: a general increasing trend (which has sta-
bilised in the last few years) of car occupant fatalities in old cars was ob-

served.

In a comprehensive univariate analysis presented in Broughton and Buckle (2007)
all the variables (single- or multi-vehicle accident, accident occurred at bend,
type of car involved, age of driver, etc.) that describe the accident types listed
above appear to be affecting the fatality trend. These variables are known to
be correlated, for example it is likely that vehicles are more likely to overturn if
they leave the road, and younger, less experienced drivers are more likely to drive
older cars. In assessing these variables individually, important inter-relationships
between the variables are likely to be missing. These separate analyses need to
be combined in order to determine which of them are driving the trend, taking

into account correlations between the variables.
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Figure 1.1: Annual numbers of fatally (blue) and seriously (red) injured car oc-
cupants from 1990 — 2010

Since 2006 the trend in fatal accidents has changed again, dropping quickly and
consistently. The reasons for this are unclear and there has been limited research
to investigate; one suggestion is that the drop is related to the economic recession
(see section 1.3.5). More up to date analysis is required to see if these accident
types have been particularly influential in this recent downward trend in fatal
accidents. We use a combination of accident and exposure! data to assess all

these factors together.

1.2 Accident data

STATS19 is the system for recording personal injury road accident data reported
to the police in Great Britain. The database is hierarchical, comprising details
of the accident circumstances, within that, data on each vehicle involved and

then information collected at the casualty level. The data are collected by Police

IExposure is a measure of the number of times road users are exposed to a potential accident



Officers and also include the officer’s subjective view of the contributing factors,

or possible reasons why the accident occurred.

Around 70 variables make up the STATS19 record, with some repeats for multi-
vehicle and multi-casualty accidents. The research detailed in this thesis is based
on a subset of the STATS19 data containing killed or seriously injured car occu-
pant casualties involved in single vehicle accidents from 1999-2010. This subset

contains information on 45 394 accidents.
The applicable variables used in the research are detailed below.

Year: the year the accident took place. Data are from 1999 to 2010.
Severity: the highest severity of the car occupant casualties involved in the
accident. Data are killed or seriously injured.

Overturn: binary variable to denote cars that did and did not overturn
during or as a result of the accident.

Bend: binary variable to denote whether the accident occurred at a bend.
Road type: type of road on which the accident occurred. Data are Motor-
way, A road or Minor road.

Car type: the type of car involved in the accident is split into six groups
by size of vehicle. This information is retrieved from the number plate data
recorded in STATS19 which is linked to a DVLA database and is complete
in around 80% of accidents, with varying completeness per year.? Data are
minis and superminis, small saloon, medium saloon, large saloon, 4x4s and
people carriers, and sports cars.

Car age: the age of the car is derived from the registration number in the
accident data and DVLA database. The age groups used here are 0-2 years,

3-5 years, 6-10 years, 11-15 years and 16 or more years.

2Cases where the car type is not known are randomly allocated a car type in order to model
the overall accident rate rather than a restricted unbalanced dataset.



The STATS19 database is a very valuable resource and is used extensively in
research aimed at reducing the number and severity of road accidents. However
it is, and has to be treated as, only part of the story. Analysis of STATS19 in
isolation gives a clear picture of the number, severity and location of road accidents
in Great Britain. It does not provide any information on how accident numbers
relate to general (non accident involved) traffic patterns or other external factors.

Exposure data are required in order to put accident data into context.

1.3 Exposure data

Cullen and Frey (1999) describe exposure data as the combination of information
about the frequency, intensity and duration of contact with risk. In particular,
exposure to road accidents is the term used to describe a measure of the potential

that a group of subjects have to be involved in an accident.

The most common type of exposure data for road accident analysis is the number
of vehicle-kilometres travelled each year. One vehicle-kilometre is defined as one
vehicle travelling one kilometre. Data such as number of registered vehicles, length
of road network and total fuel consumption for road transport (Van den Bossche
and Wets 2003) are also used. Its main use and context is to estimate risk of being
involved in an accident, and it is risk that often helps to prioritise safety measures.
For example, the number of motor vehicle occupants/riders killed or seriously
injured (KSI) in 2010 was 16 134 (Department for Transport 2011) of which a
majority (60%) were car occupants. However, when the numbers of kilometres
driven on the different road types are taken into account (and assuming that each
vehicle type has a similar distribution of occupants), the casualty rate (relative
to the number of vehicle kilometres driven) for car occupants is considerably
smaller (25 KSI car occupant casualties per billion car km) than the casualty

rate for other vehicles (62 KSI other vehicle occupant casualties per billion other
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vehicle km). So, even though there is a higher number of car occupants killed or
seriously injured than other vehicle occupants, they travel many more kilometres
per year and therefore the risk of being seriously injured or killed in an accident
is considerably higher for occupants of other vehicles than cars. The necessity for
exposure data when assessing road accident numbers is further demonstrated in

Section 1.4.

Chapter 2 contains a further discussion on exposure data, and the combination of
different sources of exposure data to achieve a better estimate of overall exposure

is reported in Chapter 4. Various sources are described in Sections 1.3.1 to 1.3.4.

1.3.1 Traffic data

The Department for Transport collects and analyses traffic count data on a large
selection of roads in Great Britain. These counts are combined with road network
lengths in order to estimate the total vehicle kilometres travelled each year. Over-
all, there are approximately 50 000km of Motorway and A roads and 344 000km of
Minor roads (Department for Transport 2011). Traffic densities vary considerably
over different types of roads, different areas and different vehicle types, so detailed
data are collected automatically and manually at a large number of sites across
Great Britain. Traffic flow, measured in vehicle kilometres, is the product of the
average daily flow (measured in vehicles and calculated from the traffic count)
and the length of the road on which the daily flow was based. Due to the nature
of the counting mechanisms, traffic flow can be approximately disaggregated by
time, month, road type, region and vehicle type, however a disaggregation by

different car types is not available.

The data used in this research are car traffic flow from 19992010 on different

road types, shown in Table 1.1.



Table 1.1: Annual car traffic flow in Great Britain (billion vehicle kilometres) by
road type from 1999 — 2010

Year Motorway A roads Minor roads

1999 63 174 143
2000 71 165 143
2001 72 168 144
2002 70 177 145
2003 70 179 144
2004 73 181 145
2005 73 180 145
2006 74 181 142
2007 75 178 145
2008 75 177 143
2009 75 178 141
2010 74 175 137

1.3.2 Registered vehicle data
Car type

The Driver & Vehicle Licensing Agency (DVLA) holds information on each reg-
istered vehicle in the UK, including the make and model of the vehicle. The data
that have been used in this research are the number of registered vehicles by car
type and year from 1999-2010 (Table 1.2). This make and model information can
be used to categorise the UK car fleet into six subgroups by car body type: minis
and superminis, small, medium and large saloons, 4x4s and people carriers and
sports cars. Approximately 76% of all the known make and model combinations
in the registered cars dataset have been classified into a car type subgroup and

this covers 99.5% of all registered cars.
Car age

The DVLA database also holds information on the year of registration of each

vehicle, and from this we can derive the age of the cars registered. The age of a
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Table 1.2: Number of registered cars in Great Britain by type and year (millions)

Year  Minis & Small Medium Large 4x4 & Sports
superminis saloons saloons saloons people carriers  cars
1999 6.5 7.8 5.8 1.9 1.0 0.6
2000 6.7 7.8 5.8 1.8 1.1 0.6
2001 7.0 7.9 5.9 1.8 1.3 0.7
2002 7.3 8.0 5.9 1.7 1.6 0.8
2003 7.6 7.9 5.9 1.7 1.8 0.9
2004 7.9 7.9 5.8 1.7 2.1 0.9
2005 8.1 7.9 5.7 1.7 2.4 1.0
2006 8.2 7.9 5.5 1.7 2.6 1.0
2007 8.4 7.9 5.4 1.8 2.9 1.0
2008 8.6 7.9 5.2 1.8 3.0 1.0
2009 8.7 7.8 4.9 1.8 3.2 1.0
2010 8.9 7.8 4.7 1.8 3.3 1.0

vehicle often affects the severity or likelihood of an accident due to the continu-
ous development in primary and secondary safety® features installed in vehicles
(Broughton 2003). Over a period of years new technologies and designs are intro-
duced which means that new cars in 2010 generally have more safety features than
new cars in 1999. Broughton (2003) shows that the design year of a car affects
the proportion of occupants who are killed or seriously injured (KSI) in collisions,
with more modern cars having a lower proportion of KSI occupants than older
cars. We have used vehicle age as the key variable to represent safety feature
design improvements and we can derive design year from the interaction between
vehicle age and year. Figure 1.2 shows the changing distribution of registered car

ages within the different car types over the 12 year period of interest.

3Primary safety refers to (mainly recent) technologies designed to automatically avoid a crash
such as electronic stability control and automatic braking systems. Secondary safety in vehicles
includes technologies, such as seatbelts and airbags, and structural design intended to reduce
the impact of a collision once it has occurred.
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Figure 1.2: Distribution of car ages by year for each car type from 1999 — 2010




1.3.3 Induced exposure data

Classical exposure measures such as vehicle kilometres or number of registered
vehicles are generally used to calculate accident rates. These sources of data are
restrictive as only limited disaggregation is possible and they do not represent
well the variation in different driver populations in different types of vehicles on

different road types.

af Wahlburg and Dorn (2007) summarise the reasons for not using mileage as

exposure data:

e high mileage drivers have a lower crash risk per mile than low mileage drivers
as
— high mileage drivers mostly drive on safe highways
— low mileage drivers drive on busy two-way streets
— high mileage drivers possess better driving and safety skills as they are
more experienced
o disaggregating mileage as an exposure measure is difficult for most factors
as different types of drivers drive on different roads and at different times,

in different aged/types of vehicles.

Thorpe (1967) introduced induced exposure techniques to deal with some of these
problems. He defined the relative likelihood of driver involvement in accidents
as the ratio of involvement to exposure. Exposure was calculated by 2M; — 5;,
where S; is the percentage of single vehicle accidents and M; is the percentage
of multi-vehicle accidents for a specific group of drivers i. Carr (1970) adapted
the concept by classifying a driver as responsible, i.e. ‘at-fault’ or ‘not-at-fault’
in a multi-vehicle accident based on the police report. Not at fault is commonly
defined as ‘without any contributing human factors to the crash occurrence as

defined by the police investigator officer or accident investigator’ (Chandraratna
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and Stamatiadis 2009). Exposure as defined here is the percentage of not at fault
drivers in multi-vehicle accident for group ¢ and it is assumed that these drivers

are a random representation of drivers on the road at the time of the accident.

This is a powerful alternative for certain exposure measures which are not available
directly, in particular for calculating accident risk of drivers with particular char-
acteristics. However, researchers are reluctant to use induced exposure techniques
as a full comparison with conventional methods has not been carried out, and the
underlying assumptions are not always justified. A review of the assumptions is

given in Appendix A.

Several papers have used the induced exposure technique to evaluate accident

propensity.

Redondo-Calderon et al. (2001) used Carr’s (1970) classical quasi-induced expo-
sure method to compare risk among different driver categories under different
types of environmental conditions. Spanish road accident data were used from
the two-year period 1991-1992 and results show that crash risk was 1.4-2.4 times
greater in men than women, significantly higher in younger drivers and for those

under abnormal psychophysical conditions.

Difficulties arose with small numbers — some categories had to be combined and
only a few variables could be used at any one time, however, it was still deemed

an easy and economical tool for estimating accident risk.

Yannis et al. (2005) have also used this technique to provide exposure data in
order to assess the accident rates of young motorcyclists, and to assess the relative

accident risk of foreign drivers in Greece (Yannis et al. 2007).
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1.3.4 OTS data

On-The-Spot (OTS) accident research (Cuerden et al. 2008) was an in depth acci-
dent investigation and data collection project which ran from 2000 to 2010. Two
teams of trained accident investigators based in Berkshire and Nottinghamshire
attended a sample of road accidents, occurring in their local area, to collect de-
tailed data including the circumstances of the accident, the weather, light and
road conditions, vehicle damage and vehicle occupant information; this is infor-
mation which often disappears very quickly after the accident. Additional infor-
mation was collected from hospitals and coroners and through questionnaires sent

to crash participants. In total data from around 4 500 accidents were collected.

The OTS data used in this research have been provided by the Department for
Transport and are an example of induced exposure data. We assume that the
drivers deemed to be not at fault in all OTS multi-car accidents were random
representatives of the drivers and associated car types on the road at the time of
the accidents. The distribution of car type by road type is shown in Table 1.3.
As the numbers are quite small, disaggregation by year was not possible. The
study sampling procedure prioritised high speed collisions, and therefore it is not
representative sample of collisions on different road types. We use the distribution

of car types within each road type as shown in the second half of Table 1.3.

1.3.5 Economic data

It has been suggested (Broughton 2009) that the economic position of the coun-
try has an effect on the number of road accidents that occur. This could be for
a number of reasons, including drivers tending to choose to drive less or at more
economical speeds in times of recession. There is little research into the link be-
tween economy and road accidents but it does appear to explain unusual drops

in road accidents in the early 1980s, 1990s and 2008-2009 whilst the UK was in
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Table 1.3: Number of not-at-fault car drivers by car type and road type in multi-
car accidents in the OTS database

Car type Motorways A roads Minor roads
Minis & superminis 52 159 68
Small saloons 72 143 80
Medium saloons 61 116 52
Large saloons 15 43 8
4x4s & people carriers 21 51 23
Sports cars 10 18 10
Minis & superminis 23% 30% 28%
Small saloons 31% 27% 33%
Medium saloons 26% 22% 22%
Large saloons 6% 8% 3%
4x4s & people carriers 9% 10% 10%
Sports cars 4% 3% 4%

recession. We will investigate this link in Chapters 5 and 6 using Gross Domestic
Product (GDP) as an explanatory variable. GDP is a measure of the UK’s eco-
nomic activity. The data used in this research is nominal GDP per capita which is
the average value of production per person per year at current prices. These data
have been retrieved from MeasuringWorth (Officer and Williamson 2010) and are
shown in Table 1.4.

1.4 Accident and exposure data trends

Section 1.1 refers to the accident types which were particularly influential in the
stationary fatal trend from the mid 1990s to 2006 and this includes an increase
in the number of accidents involving large cars such as 4x4s and people carriers.
The obvious explanation for this is that there was an increase in the number of
4x4s and people carriers being bought and therefore driven on the roads over the
same period. How much of the increase in accidents that can be explained by the

increase in exposure is to be shown later, but this section gives a short summary of
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Table 1.4: Nominal GDP per capita by year from 1999 — 2010

Year  Nominal GDP
per capita (£k)

1999 15.8
2000 16.6
2001 17.3
2002 18.1
2003 19.1
2004 20.1
2005 20.8
2006 21.9
2007 23.1
2008 234
2009 22.6
2010 23.5

the data and develops the idea of a need for a viable exposure data to disaggregate

by car type.

Figure 1.3 shows the differing distribution of type of car involved in single vehicle
accidents where an occupant is killed or seriously injured by year. In general,
from a 1999 baseline, there is a proportional increase in accidents involving 4x4s,
minis and sports cars and a decrease in the proportion of accidents involving large,

medium and small saloons over the 12 year period under investigation.

Without including exposure data in the model it is impossible to determine if
this effect is due to accident distributions changing or just due to a change in
vehicles on the road network (i.e. exposure). The distribution of different car
types registered each year (described in Section 1.3.2) is one type of exposure
which disaggregates car types. Figure 1.4 shows that this distribution appears to
have changed in a similar way to that seen in Figure 1.3 for the accident data, i.e.
the proportion of registered cars that are minis, sports cars and 4x4s has increased
over the 12 years, and the proportion of the other cars types has decreased. In

fact, there are three times the proportion of 4x4s registered in 2010 as there were
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Figure 1.3: Distribution of single vehicle accidents by car type for each year

in 1999.

It is clear from Figures 1.3 and 1.4 that the changing patterns of accident trends
and one type of exposure data are the same. However, we need to check if these

trends are changing at a similar rate.

Combining these sources of data together, Figure 1.5 shows the ‘proportional acci-
dent rate’ per year. Each line represents the proportion of accidents in a particular
car type divided by the proportion of that car type registered in Britain. Values
higher than one represent a higher proportion of accidents than the proportion of
that car type on the road. This has consistently been the case for minis, small
saloons (until 2004) and sports cars. This rate has remained fairly constant for

small, medium and large saloon cars and 4x4s and risen for minis and sports cars.

This steady trend for 4x4 cars may suggest that the rise in the proportion of 4x4s
in the car fleet accounts for the rise in proportion of accidents involving 4x4s in

the same period. For minis and sports cars it is a different story: when comparing
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Figure 1.4: Distribution of car types registered in Great Britain each year

increases in the proportion of accidents involving minis and sports cars in Figure
1.3 with smaller relative increases in the proportion of the fleet that are minis and
sports cars in Figure 1.4, an increasing rate is observed. This implies that, based
on registered vehicle numbers as an exposure measure, each mini and sports car

is getting proportionally more likely to be involved in an accident.

These patterns are interesting, but registered vehicle data are not an ideal ex-
posure measure as a single source: different car types will tend to be exposed to
different risks, for example, particular car types may be used more often for longer
journeys. The observed patterns in Figure 1.5 do not take into account relative
use of the road network by different car drivers, and therefore the picture is not

yet complete.
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Figure 1.5: Proportional accident rate per proportion of car types registered each

year

1.5 Aim

The overall aim of this research is to evaluate the changes in the fatal and serious

road accident trends by modelling accident and exposure data simultaneously.

This will require development of a novel statistical methodology to account for

uncertainty in exposure data and combining datasets to achieve better estimates

of the effect of influential factors.

The analysis will be based on a subset of accidents seen to be affecting the trend:
that is, those involving only one car where an occupant was killed or seriously

injured. A combination of accident, exposure and explanatory data will be used

to achieve this aim.
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1.6 Thesis structure

There are three main parts to this thesis. Part 1 contains Chapters 2, 3 and 4
and discusses modelling exposure data. Chapters 2 and 3 describe the limitations
of exposure data and a review of Bayesian methods respectively. Chapter 4 uses
Bayesian methods to combine the sources of exposure data described in Sections

1.3.1 to 1.3.4 to answer some of the limitations described in Chapter 2.

Part 2 (containing Chapters 5 and 6) takes the modelled exposure data from Part
1 and builds models for accident rates and accident severity. The accident rate
model predicts the chance of having a KSI accident in different car types, on
different road types and in different years. Once an accident has occurred, the
accident severity model predicts how severely the car occupants were likely to be
injured given their car type and car age, where the accident occurred and whether
the car overturned. An assessment of the effect of the recession is also made in

these chapters.

Part 3 (Chapter 7) discusses Graphical Modelling techniques and uses these tech-

niques to draw all three models together and predict future trends.

Chapter 8 summarises the research.
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Chapter 2

Unknown and Variable Exposure

2.1 Introduction

Every time someone uses the road network (either in or on a vehicle, or as a
pedestrian when there is a vehicle in close proximity) they are exposed to the risk
of being involved in an accident. Individual accident risk is related to your own
exposure to accidents — how often, when and how you travel on the road network.
As road accidents are relatively rare events and due to the fact that measuring
each individual’s exposure is an impossible task we consider the accident risk of

groups of people.
Accident risk is defined as

accident propensity

accident risk =
exposure

where propensity is the raw number of accidents. Accident risk and propensity are
used together to understand road safety priorities and to inform government policy

for reducing road casualties. A high propensity of accidents in a particular group
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of road users may purely reflect a high number of people within that particular
road user group. A large demographic group, for example females aged under
80 in Berkshire will be involved in a larger number of accidents than a small
demographic group such as females aged over 80 in Berkshire, due, at least in
part, to the number exposed to accidents in the two groups. Therefore risk (and

consequently exposure) is an essential consideration.

Figure 2.1 demonstrates a possible categorisation of the accident risk and propen-
sity for different road user groups. Of course these quantities are measured on a

continuous scale, however this demonstrates the concept.

High risk

Low propensity

Accident risk

Accident propensity

Low risk Low risk

Low propensity High propensity

Figure 2.1: Idealistic relationship between accident rate and accident propensity

Road user groups with a high accident risk and a high propensity of accident
involvement are the first priority in road safety strategy. These are large groups
which are not only involved in a high proportion of the country’s accidents, but
also, once the size of the groups and their road use exposure is taken into account,
individuals in these groups are more likely, on average, to be involved in an ac-
cident than the average road user — they may be less risk averse, or perhaps less
experienced. Groups which fall into this category can be targeted by a mixture
of education, enforcement and engineering strategies to reduce their risk. Just re-

ducing the risk by a small amount for this group has a large effect on the number
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of accidents.

High risk and low propensity groups and high propensity and low risk groups are
considered next in government policy. Reducing the involvement in accidents of
these two categories requires different treatment. It is relatively easy to iden-
tify interventions which could reduce the risk of individuals in a high risk group
(although it may not be financially attractive), and it is also not complicated
to disseminate information or to introduce interventions to affect large groups of
people. However, affecting a small number of high risk individuals (high risk, low
propensity) or identifying interventions for a large group of low risk individuals

(low risk, high propensity) is very difficult.

Road user groups classified in the green segment (low risk and low propensity) are
often left — they contribute just a small number of accidents to the overall total,
and individuals in the group are, on average, less likely to have an accident than

the average road user, once their exposure has been taken into account.

If we cannot measure individual risk then the biggest number of different road
user groups possible must be the starting point for determining the position of
these groups within the rate propensity graph shown in Figure 2.1. As described
in Section 1.2, the limitation for disaggregating road user types is not accident
data — detailed information is collected at each accident attended by the police.

The limitation is in the exposure data.

Exposure is a difficult concept to measure. Commonly, a measure of the number of
vehicle kilometres (discussed in Section 1.3.1) is used as a proxy. This measure can
be disaggregated by road type, year and vehicle type as described in Department
for Transport (2010). In order to evaluate the hypotheses of Broughton and Buckle
(2007) discussed in Section 1.1, however, further disaggregation of this exposure

proxy is required, in particular by:
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e age of driver;
e type of car; and

e age of car.

Information on these variables can be sought in different datasets, for example
the registered vehicle dataset described in Section 1.3.2 includes information on
the number of cars of different body types and age, the OTS induced exposure
data (Section 1.3.4) suggests the distribution of different cars using different road
types and the National Travel Survey (Department for Transport 2012) contains
data on the age and sex of car drivers. Up until now accident rate modelling
research has been based on one source of exposure data, for example: Knowles
et al. (2007) use the number of registered cars by car type to evaluate whether
people carriers and 4x4s are involved in relatively more accidents than other types
of car; Broughton and Knowles (2010) use the National Traffic estimates in vehicle
kilometres to evaluate the overall progress towards the Government’s road safety
target for 2010; Sonkin et al. (2006) use estimates of the number of miles travelled
by children by mode of transport from National Travel Surveys to evaluate the
deaths amongst children walking and cycling; and Fridstrom and Ingebrigtsen
(1991) use fuel sales to evaluate the contribution to accident risk made by a series

of explanatory factors such as weather, economy, seatbelt use and law enforcement.

A combination of some of these data will be attempted in order to derive an
approximate disaggregated exposure dataset useful for evaluating the trend in the
effect on accident risk for a much bigger set of road user groups than is possible

using just one of these datasets. This is discussed further in Section 2.2.1 below.

An additional consideration is the uncertainty about these data — most of these
datasets are based on sample surveys: vehicle kilometre data are based on a mix-
ture of automatic and manual surveys across a sample of major and minor roads

and are combined to form the National Traffic estimates (Department for Trans-
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port 2010); the National Travel Survey combines information from interviews
and travel diaries for around 8 000 people each year to produce estimates for the
whole of Britain; and the OTS data are collected at a sample of accidents at-
tended by accident investigators — these data are believed to be the least robust.
The registered vehicle data is an up-to-date census of registered cars, however
some uncertainty still arises due to missing information on unregistered cars and

incomplete information on scrapped cars.

The majority of research into accident rates does nothing to account for uncer-
tainty in the exposure: in Reported Road Casualties Great Britain (Department
for Transport 2011), the British compilation of road accident statistics, the traf-
fic estimates described above are used as the exposure measure to calculate the
number of accidents per billion vehicle kilometre. Modelling of accident rates is
mostly based on the classical approach and believes the chosen measure of ex-
posure (e.g. traffic, fuel consumption, induced exposure) to be fixed and true.
Van den Bossche and Wets (2003), Starnes and Longthorne (2003), Tunaru and
Jarrett (1998) and Yannis et al. (2007) along with the references mentioned above
(Knowles et al. 2007; Broughton and Knowles 2010; Sonkin et al. 2006; Fridstrom
and Ingebrigtsen 1991) all contain examples of the use of exposure information,

based on survey data but assumed to be a fixed quantity, to model accident risk.

Some research has been conducted which does at least consider the uncertainty
(and variability) in traffic exposure. Rosas-Jaimes et al. (2011) evaluate accident
rates at a selection of sites in Toluca, in the State of Mexico, where the vehicular
flow has been measured directly and continuously, and therefore can be used, they
assert, with certainty. They assess a selection of Bayesian statistical models which
consider uncertainty in the accident numbers, caused by systematic errors, incon-
sistencies and underreporting, but keep the vehicular flows fixed. Qin et al. (2006)
use a similar method where they believe that use of a finer temporal disaggrega-

tion (exposure by hour) will advance the development of crash prediction models
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for four crash types: single-vehicle, multi-vehicle same direction, multi-vehicle
opposite direction, and multi-vehicle intersecting direction. The relationship be-
tween vehicle flow and crash occurrence appears to be different across these four
crash types and this variability in the accident—exposure relationship is dealt with
by applying separate binary regression models to each type. Once again, only a
selection of sites where this detailed exposure data exists can be used within the

accident modelling.

Research into traffic network modelling must be mentioned at this stage — this is an
area of applied research evaluating and predicting traffic flows, primarily on main
roads and major junctions, to feed in to live traffic management systems. These
models forecast a highly disaggregated set of data, often using Bayesian models
and therefore considering uncertainty in the estimates. With annual accident
rate modelling in mind though, results from these models are restrictive: Queen
and Albers (2009) discuss use of multiregression dynamic models to model real-
time traffic flow data by hour across two junctions on the M25, London’s orbital
motorway, and sheer quantity of detailed data and processing requirements show

the limitations of the techniques for our broader use.

The disaggregation of the exposure estimates requires the combination of several
types of uncertain exposure and, as discussed above, there has been no research
into combining sources of exposure data or modelling uncertainty in road accident
exposure data. Here we review other areas of risk research where combining data
and uncertainty and variability in exposure is considered, such as in the areas of

toxicology, epidemiology and nuclear power technology.

Cullen and Frey (1999), amongst others, suggest that an understanding of the
difference between variability and uncertainty, and the sources of such quantities,
results in a better appreciation of the limits of the analysis, gaps in data and areas

for future research. In order to fulfil this aim, definitions of the two quantities are
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given below.
Variability

Van Belle (2008) refers to variability (or aleatory uncertainty) as ‘natural variation
in some quantity’, and this natural variation could be differences in an input across
time, space or between individuals. In the road exposure context this relates to,

for example, time of day of driving, choice of vehicle or road type.

Variability is a concept which cannot be reduced but can be learnt about with

additional data collection.
Uncertainty

Uncertainty (also known as epistemic uncertainty or fuzziness) is defined in Hel-
ton (1996) as the ‘measure of incompleteness of one’s knowledge or information
about an unknown quantity whose true value could be established if a perfect mea-
suring device existed’. Sources of uncertainty include measurement error, model
assumptions and proxies to exposure such as vehicle kilometres which are in use

here.

Uncertainty is caused by a lack of knowledge about a particular value, due often
to data collection over too small a sample and therefore, in principle, uncertainty

can be reduced by collecting more or better data.

2.2 Modelling exposure

Commonly, exposure is assumed to be fixed and known. It is then difficult to
understand variability and uncertainty in exposure results, and, importantly, re-
sults of this form suggest over-confidence in the conclusions, and miss out on

showing explicitly any needs for further data collection. Cullen and Frey (1999)
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suggest that these may be serious limitations. An obvious choice is to consider
a Bayesian structure which can represent variability and uncertainty explicitly.
Bayesian methods are described in Chapter 3. As a brief summary, it is possible
to represent variability and uncertainty in inputs as frequency or probability dis-
tributions rather than point estimates. These distributions can then be used to
propagate uncertainty and variability through into further modelling such as for
accident rates. It is also possible to separate these quantities within a Bayesian
analysis, as described in Morgan and Henrion (1990), if it is important to be able

to distinguish between them.

Cullen and Frey (1999) provide an excellent discussion of dealing with uncertainty
and variability in exposure models, and some of the following discussion is based

on their work.

2.2.1 Variability in exposure models

Variability comes in several forms:

e Temporal variability: Quite often exposure measures can be quantified across
a series of different time scales, for example, it is possible to measure the
quantity of traffic passing a point on a stretch of road over each minute, hour,
day, month or year. There will be some temporal variability across these
times — traffic tends to be lighter at night than during the day for example.
Choosing the appropriate level at which to aggregate exposure measures in
time, and therefore the distribution and associated parameters required to
represent the variability, depends on the assessment question. In this case,
the overall aim of the modelling described in Chapter 4 is to investigate for
which groups of vehicles the annual accident rate has changed over the time
period under investigation, and it is appropriate to ignore daily variability

and aggregate over each year.
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e Spatial variability: It is important to define the spatial coverage of the
exposure information and evaluate whether variation across the space is
relevant to the assessment question. It is suggested by Cullen and Frey
(1999) that spatial variability can often be a surrogate for inter-individual
variability. Considering geographical variation in accident rates is possible
but has not been done here as the change in annual trend does not appear

to be noticeably different across the different regions (Lloyd et al. 2013).

e Inter-individual variability: As described above, each individual has their
own risk of being involved in an accident, dependent on a whole series of
variables which may include time of day of travel, choice of vehicle, distance
travelled and risk aversion level amongst many other factors all contribut-
ing to inter-individual variability. Aggregation over groups of individuals
reduces the variability to be modelled and, once again, may be appropriate
in relation to the research question. In this case, we hypothesise that the
general decrease in fatal accident trend in the most recent years may be due
to a decrease in the number of young drivers (one of the most risky groups)

and therefore to disaggregate by age may be appropriate.

In epidemiological studies Loomis and Kromhout (2004) suggest that the vari-
ability types of interest are temporal and inter-individual. In this paper and
other similar epidemiological research, these levels of variability are not dealt
with within a Bayesian framework. Loomis and Kromhout (2004) suggest that
a common simplifying assumption in this area is that homogeneous groups are
uniformly exposed, based often on criteria such as job title or work area. For ex-
ample, lab technicians in a particular department. They do recognise that there
is variability within groups too and assess this within- and between- variability
using ANOVA modelling. If the within variability is large relative to the between
variability then individuals are often assigned an exposure level which is equal

to the mean of the group, otherwise their individual exposure measure is used.
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Alternatively a weighted mean of the individual exposure value and group mean
may be used (Seixas and Sheppard 1996, gives an example of this). They suggest
that if direct measurements are sparse or unreliable then empirical models could
be used to augment the data. Preller et al. (1995), for example, uses multiple
regression modelling to achieve this from a set of readily observable factors such

as location, activity or job title.

There is a substantial amount of temporal, spatial and inter- and intra-individual
variability within the traffic exposure data — different people use different roads
at different times of day and different lengths of journey. Similarly to Loomis
and Kromhout (2004) we do not deal with this variability within a Bayesian
framework. The data have been disaggregated over a set of variables to account
for variability within car body types and car ages. We assume that this accounts
for any significant variability in exposure. Use of additional data and further
data collection to enhance the understanding of variability in the accident data
is discussed in Chapter 8 but is, for the purposes of this research, a source of

uncertainty.

2.2.2 Uncertainty in exposure models

Uncertainty has many forms:

e Input uncertainty: missing data and error in measurements lead to uncer-
tainty in the input variables. Input uncertainty can be categorised into four

areas:

Proxy data can be used as an estimate if the actual quantity of exposure
needed is undefined or unmeasurable. The relationship between the

proxy data and actual exposure is uncertain.

Random error is a general independent deviation from the population
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mean due to measurement error or test conditions.

Systematic error may be due to a calibration error or inaccuracies in

assumptions resulting in a systematic bias to the overall result.

Dependence and correlation may exist when there is more than one un-

certain event and there is a dependence between the errors in the events.

Model uncertainty: a model is often a simplification of a complex process.

Model uncertainty introduces several issues:

Structure of the model depends on technical assumptions such as the ap-
propriate statistical distribution required to represent the data. Differ-
ent assumptions can be modelled and compared to assess the robustness

of the results to differing assumptions.

Validation of the model is important for determining how well the model
represents the data. In interpreting the results we must consider whether
there are sufficient data to assume a causal relationship, or whether

quantities are more likely to be correlated.

Extrapolation of the model results to other regions of a parameter space

may not be appropriate.

Resolution of data should be considered when the purpose and desired
accuracy of the model is decided. Any aggregation of data introduces
uncertainty. This type of uncertainty can often be assessed by running

the model on a more (or less) disaggregated set of data.

Often uncertainty in a model presents a combination of the issues listed above,

and all of these should be considered when attempting to account for uncertainty.
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As the exposure data used in this thesis are almost all based on sample surveys,
input uncertainty is highly likely. There are published estimates of the uncertainty
in the National Traffic estimates (Department for Transport 2010), however other
sources of data (for example, the induced exposure data) used in this research do
not have these associated uncertainty estimates and are deemed to be substantially
more uncertain; therefore these published estimates of uncertainty do not provide
much information. Proxy uncertainty is of more concern — an ideal measure
of exposure for single vehicle accidents is the amount of time spent on the road
network, however we have a measure of traffic in vehicle kilometres. It is suggested
that these are compatible, however measures of the number of registered vehicles
and other exposure measures used for disaggregation are not. For multi-vehicle
accidents the concept is slightly different — as there must be more than one vehicle
present for there to be a multi-vehicle accident, the associated ideal measure of
exposure must be time when there is more than one vehicle present at any point
on the road. The link between this and traffic is less obvious and requires more

research in the future.

Kelly and Smith (2009) simply state that if you do not know the exposure exactly
then you should assign it a probability distribution. A Bayesian analysis is inferred
here and this is a popular approach in Probabilistic Risk Assessment (PRA), due
to the flexibility it provides in evaluating multiple exposure scenarios, common
in epidemiology studies. For example, Martz and Picard (1995) use a Bayesian
approach for expressing uncertainty in Poisson event counts and exposure time
in PRA in nuclear power stations and Sohn et al. (2004) evaluate the uncertain
exposure to trichloroethylene using a Bayesian model. Bayesian modelling, as
discussed in Chapter 3, requires the specification of a prior distribution — this often
contains knowledge from previous experiments or theoretical reasoning about the
results. Martz and Picard (1995) show that the strength of the prior is particularly

important when data are uncertain — a weak prior increases the effect of ignoring
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the uncertainties. In PRA, most commonly a Gamma or log-Normal distribution is
used for positive parameters and a Normal distribution for unrestricted parameters
(Kelly and Smith 2009) as these are good candidates for expressing uncertainty.

Specifying the prior distribution introduces model structure uncertainty.

In fact Kelly and Smith (2009), in a recent review, recommend a hierarchical Bayes
approach with multistage priors, which has, they state, only become practical with
the introduction of the MCMC software BUGs (Lunn et al. 2000). In practice,
most studies use non-hierarchical MC simulation which is simple and convenient

to use (Hart et al. 2003).

In Chapter 4 we test a series of models using a Bayesian approach and conclude
that the most appropriate model is based on a log-Normal distribution with Nor-

mal and Gamma priors.

Sohn et al. (2004), in their epidemiological study evaluating the measurement of
exposure to trichloroethylene demonstrate the difficulty in estimating exposure
from uncertain data. This research used a Bayesian model in a controlled exper-
iment where a group of men were exposed, in the same room, to a fixed level of
poison in air. Subsequent measurements of their blood showed two distinct groups
with different levels of poison in their blood stream. Sohn et al. (2004) conclude
that any risk analysis requires sufficient and reliable information, and suggest that
as uncertainty can, in theory, be reduced it is always worth considering if there

are any additional exposure data likely or practical to be obtained.

We use three different exposure datasets, in order to disaggregate the exposure
into smaller groups. These additional datasets cannot reduce the amount of uncer-
tainty in the exposure measure as they measure different concepts. More certain
traffic data on minor roads (traffic estimates for major roads are already based on
many sampling points) could, in theory, be collected however this is a huge task

and, given the scope of this research, we propose would be of very little benefit.
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2.3 Combining information

Often a single exposure data set is of insufficient quality or detail to draw robust
conclusions and it is necessary to consult and combine further sources of data to
strengthen the ability to draw conclusions. Data can be combined from similar
and compatible sources such as information from all automatic traffic counters
distributed across the British major road network which provides an overall mea-
sure of traffic across the major road network. Alternatively, common in health
studies are combinations of broad measures of exposure combined with a small

survey of detailed data collection.

Hart et al. (2003) and Molitor et al. (2006) combine a small detailed data set with
a reduced set of data over a larger sample. Hart et al. (2003) discuss uncertainty in
human food contamination and food consumption when carrying out risk analysis
of contaminants and additives in food. They recognise that previous research
using detailed exposure data from diet diaries from a small number of individuals
results in skewed results, particularly when evaluating the effect of contaminants
on disaggregated groups, such as certain age groups or across different regions.
Hart et al. (2003) derive human dietary exposure data from a combination of a
small sample of detailed diet diaries and a set of simplified data from a medium
sized sample. They discuss the use of worst case scenario estimates to take account
of the remaining uncertainty in the exposure data, but have achieved a reduced

uncertainty due to the combination of two sources of data.

Molitor et al. (2006) estimate the residential exposure to traffic pollution to evalu-
ate the effect on lung function using, similarly to Hart et al. (2003), two sources of
data with different levels of detail: continuous long term central site measurements
in multiple communities from the Children’s Health study and two seasonal short

term household level measurements. Previous research has shown that within
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community variability may affect health more than between community variabil-
ity and therefore the more in-depth measurements made within households are
important for reducing uncertainty. With the help of a multilevel model using
Bayesian MCMC and these two sources of data the authors have developed an
improved exposure model which estimates missing measurements and projects
data from the short term household level survey to long term exposure whilst

encompassing variation in results across communities.

The combination of unrelated sources, such as the three sources we use in this
research to improve the disaggregation in the data is less common — in fact we have
found little evidence of this being used as a technique to improve exposure data
in the scientific literature and the combination of unrelated exposure datasets for

detailed accident rate modelling has not been done before.

2.4 Conclusions

Uncertainty (an incomplete set of knowledge) and variability (natural variation
in a quantity) are essential concepts to include in a model if we are not to suggest
overconfidence in our results. In our exposure data we have both of these and we

deal with each differently.

Variability in traffic exposure data comes from road users’ choice of vehicle, time
of day of driving, road type and demographics. We deal with these sources of
variability by combining a series of datasets together enabling us to disaggregate
into smaller groups of road users with less variable exposures. Any remaining
variability within these groups is treated as a source of uncertainty. There is no

previous research which combines data of these types.

Each of the combined datasets present sources of uncertainty. The overall measure

of traffic that is commonly used in accident rate calculations is a proxy for acci-
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dent exposure and the inputs into this proxy are based on estimates derived from
sample surveys across the road network introducing a further level of uncertainty.
Combining the datasets together using a model introduces further uncertainty as
we assume the data fit certain statistical distributions. We use a Bayesian mod-
elling procedure to represent all of these sources of uncertainty explicitly. There is
little previous research which even considers uncertainty in traffic exposure data,
and those which exist restrict their analysis to subsets of data where exposure is

known and certain.
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Chapter 3

Bayesian inference

3.1 Introduction

Bayesian inference presents conclusions about unknown parameters or unobserved

data using probability statements, which are conditional on specified known data.

To make these probability statements, a joint probability distribution p(6,y) is
required for the observed data y, and 6, the unknown parameters. Using condi-
tional probability rules and Bayes’ theorem this joint probability distribution can

be used to present the required posterior distribution p( | y):

p(@)p(y | 0)

p(0|y) = o)

where p(y) is the normalising constant >, p(0)p(y | 0) or [, p(f)p(y | 6)de for

continuous 6.
This fundamental equation, which can be represented as

posterior o prior x likelihood,
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contains the basic components for all Bayesian inference: p(f | y) is the posterior
distribution which gives the probability distribution of the unknown parameters
given the data that have been observed; p(y | €) is the likelihood: the probability of
some observed data given some parameter values; and p() is defined as the prior
distribution, the subjective uncertainty about the unknown parameters before
any data are observed. The prior distribution of the parameters could be based
on previous experiments, theoretical reasoning or subjective assessment. As the
quantity of evidence increases, the posterior distribution becomes less dependent

on the subjective nature of the prior beliefs.

The basic structure of Bayesian inference described above is very flexible. In par-
ticular, simulation techniques discussed in Section 3.2 allow inference on complex

multivariate distributions similar to those that we have here.

3.2 Markov chain Monte Carlo

Many multivariate probability distributions are impossible or at least inefficient
to sample from. Markov chain Monte Carlo (MCMC) is a method of simulating
from such a distribution using Monte Carlo integration® to construct a Markov
chain which (given satisfied criteria) results in dependent samples from the distri-
bution. This method is particularly important in Bayesian inference because the
object of inference is typically a multivariate probability distribution specified as

a collection of conditional distributions.

In general an MCMC algorithm generates a sequence of dependent observations
6; from a normalised density f(0) = g(0)/ [ g(#)df, starting from an arbitrary 6y,
such that 6, is independent of 6, 1,0, 5 ... given the preceding value 6;. If the

!Monte Carlo integration evaluates E(f(X)) by drawing samples {X; : t = 1,...n} from
f(z) and then approximating, by the ergodic theorem (essentially a MC version of the law of
large numbers) E(f(X)) = 1 3 f(X,)
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appropriate conditions are satisfied, the generated distribution of 6; converges to
the stationary distribution and all §; can be assumed to come from the stationary

distribution once i is sufficiently high and the chain has converged.

3.2.1 History

Robert and Casella (2010) have produced a comprehensive history of MCMC

research which is summarised in this section.

Much of the MCMC research was developed in the 1990s and acceptance of the
technique developed dramatically during this time, however some earlier work also
deserves recognition. Metropolis et al. (1953) describe their first ideas which led
to the start of the MCMC revolution. They proposed a random walk modification
to the Monte Carlo method (repeated random sampling) for evaluating complex
multi-dimensional integrals with applications in molecular physics. This involved
proposing a new value from any (symmetric) probability distribution, called the
proposal distribution, and deciding whether to accept the value as a member of
the distribution of interest, based on an acceptance probability. Hastings (1970)
developed this first MCMC algorithm (later named the Metropolis algorithm) so
that the proposal distribution did not have to be symmetric and defined gen-
eral acceptance probabilities along with warnings about low acceptance rates and

difficulties in assessing errors.

In the early 1970s Hammersley and Clifford (1971) developed the concept of spec-
ifying joint distributions as a combination of conditional distributions. Geman
and Geman (1984) named this technique Gibbs sampling from the study of Gibbs
random fields and introduced it into the area of statistical application. How-
ever, it was not until Gelfand and Smith (1990) wrote their paper stating that
simulating from the joint distribution is the same as simulating from the condi-

tionals (in the limit) that the statistical community became interested in using
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MCMC methods. A raft of research on applications manifested quickly as the

new opportunities with these methods became clear.

Robert and Casella (2010) suggest that Tierney (1994) produced the most influ-
ential paper on the theory of MCMC, including the definitions of assumptions and
properties such as convergence of ergodic averages' and central limit theorems?.
Convergence (see Section 3.6) quickly became a property of interest, and in par-

ticular defining convergence and speed of convergence. Mengersen and Tweedie

(1996) started the research into how fast the algorithms converge.

The reversible jump MCMC algorithm (Green 1995) developed the area by al-
lowing chains to choose models and parameters simultaneously, defining a model

choice application of MCMC.

3.3 Gibbs sampler

The Gibbs sampler is one of the simplest MCMC samplers and can be applied
when a joint probability distribution which is difficult to sample from can be
written as a product of known conditional distributions over each variable. The
joint distribution can be simulated via the conditional distributions. For example,
if @ = (01,605,...,0,) is a set of random variables with conditional distributions
p(0; | 61y ..,0;-1,0;41,...,0,) then the joint distribution of # given data y can be

derived from

p(01,02,....0, [ y) = Hp(ei |y, 01, 0i1, 0541, 0)

2A function h : X — R of a Markov chain {X,,} which is irreducible and aperiodic and
with stationary distribution f(.) satisfies the Central Limit Theorem (1/(n)-CLT) if there exists

0? < oo such that n=Y/2 3" [h(X;) — f(h)] weakly N(0,02)
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The iterative algorithm, first introduced by Tanner and Wong (1987) in the appli-
cation of data augmentation, contains an initialisation step followed by a repeated

iteration step until convergence appears to have been reached.

1. Initialise: Choose a set of initial values 6
2. Tteration j: Sample each variable from its conditional distribution given the

current values of all other variables

(a) Sample@” from p( ]y7 ),...,97(3;1))

(b) ..

) Somple 0 rom 0 1,090,004
(d) ..

()Sampleﬁj)fromp( ]y,l,...,G )

3. Continue step 2 until convergence and beyond for stationary distribution.

3.4 Metropolis-Hastings sampler

If conditional distributions are not available or not easily sampled from, then an
arbitrary proposal distribution can be used to sample from and convergence to
the required distribution is reached using an alternative algorithm: the Metropolis

Hastings algorithm.
Metropolis et al. (1953) proposed the following method:

1. For a set of random variables, set initial values for random variable 6: () =
(9%0), 9( . 9(0)) and set iteration counter to j = 1.
2. Move 6 from previous position #U~1) according to symmetric proposal dis-
. . . 1 — ; (0—0)2 . .
tribution such as ¢(6, ¢) = woreL centred at these points to obtain
new proposal ¢ for 1.

3. Calculate the acceptance probability of the move «, as shown in equation

3.1 below.
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4. If ¢ is not accepted then define #U) = #U=1) | else define ) = ¢.

5. Repeat from step 2 until convergence and beyond for stationary distribution.

This was generalised by Hastings (1970) to remove the necessity for ¢(-,-), the
proposal distribution, to be symmetrical. The generalised version requires the
proposal distribution ¢(6, ¢) to satisfy the detailed balance equations p(6)q(0, ¢) =
p(0)q(o,0) for all (0, @), where p(-, -) is the stationary distribution. The acceptance

probability is defined as

p(6)/a(6.0)
peCe | (3.1)

There are many different choices of ¢(f,¢) which lead to different algorithms.

Three of the most common choices of algorithms are described below.
Metropolis algorithm (Metropolis et al. 1953)

For symmetric proposals, ¢(¢, ) = q(0, ¢) and the acceptance probability simpli-

al6.) = min { 211

fies to

Random walk algorithm

The random walk algorithm generates a new proposal state based on a perturba-
tion of the previous state: ¢ = 6+ € where € is independent of 0. If € is symmetric

around 0 then, as above, q(¢,0) = q(0, ¢) and

al6.) = min { 211

The random walk algorithm tends to take a long time to explore the whole space.
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Independence sampler

The independence sampler generates a new state which is independent of the

previous state: q(¢ | ) = q(¢). The acceptance probability is defined as

(6, ¢) = min{ﬂ;(—

This sampler tends to work either quite well or particularly badly. It is recom-
mended that the proposal and posterior distributions are similar in order for this
sampler to converge more quickly, and the tails of the proposal distribution should
dominate those of the posterior density in order to get sufficient extreme values

from the chain (Bolstad 2011).

3.4.1 Tuning the transition probabilities

In general, the choice of the proposal distribution ¢(f, ¢) from any of the sam-
plers above comes from a family of distributions which have scale and/or spread
parameters that need to be defined. The choice of these parameters affects the
number of times a move is accepted and the coverage of the chain over the sample
space; for example, when using a Normal distribution as the proposal for a ran-
dom walk algorithm, a smaller variance will result in higher acceptance rates but
less coverage of the parameter space. For a random walk process with Normal dis-
tributions, acceptance probabilities of around 45% for one-dimensional problems
and 23% for high dimensional problems should be used to tune the spread/scale
parameters. (Roberts et al. 1997)
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3.5 Optimization

The improvement of these MCMC samplers is sometimes necessary to ensure

efficient sampling and convergence within a reasonable run time.

3.5.1 Implementation

There are three options when sampling N items from the posterior distributions:

- sample N chains and take the r** value from each chain. These are inde-
pendent and r N iterations are required;

- use the ergodic theorem to sample N from 1 chain after burn-in . These
are not independent but only b + N iterations are required;

- sample every k' item in chain after burn-in b. These are quasi-independent

if k is big enough?3, and b + kN iterations are required.

The general consensus is that using N different chains is computationally inef-
ficient and unnecessary. If convergence is quick then only one chain should be
needed. Sufficient spacing between states should be chosen for a pseudo indepen-

dent sample (Smith and Roberts 1991).

3.5.2 Optimization of Gibbs algorithm

Scanning strategies

Different strategies for updating the values in each iteration are optimal in differ-
ent circumstances. The most commonly used updating scans are the deterministic

scan and the random scan described below.

e update each component in order at each iteration: deterministic scan

30ne way of determining a reasonable k is to observe the autocorrelation values, choosing a
k value which suitably reduces the autocorrelation (Tierney 1994)
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e visit each component in order and then in reverse order at the following
iteration

e update a randomly drawn component in each iteration

e update all components in a random order: random scan

e cach component visited every k™" iteration
Reparameterisation

An iteration moves along the co-ordinate axis of the 6;. If the components of 6 are
weakly dependent then the space is covered quickly. If some of the components
of # are highly correlated then the chain moves are small and convergence is slow.
Reparameterisation may lead to better convergence times. There are no rules
to determine suitable transformations, however, a linear transformation which

results in a diagonal covariance matrix usually works well.
Blocking

Instead of component-wise moving in each iteration, components can be combined
into blocks and general moves can be made across the space, taking into account
dependences between components. Blocks can be updated in a random order or
in a set order (this leads to a sampler which does not satisfy the detailed balance
equation). This generally leads to a more mobile sampler (Andrieu et al. 2003).
The joint full conditional for each block of parameters must be known to determine

the moves.

The general rule is to block as much as possible such that the joint full conditionals
are easy to sample from. It is possible to update components in more than one

block.
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3.6 Convergence

Convergence of the chain is based on two values: burn in ‘b’ — the number of
iterations that are required before the chain becomes independent of the starting
value 6y; and length of chain after burn in ‘m’ - the total number of iterations
required to assume the components represent the stationary distribution p(.) after

burn in.
A number of schemes for evaluating convergence fall into two groups:

e theoretically (formal): this is difficult to obtain and apply to practical prob-
lems;
e statistically (informal): this can show non-convergence, but never guaran-

tees convergence.

No known scheme guarantees convergence, so implementing as many as possible

is advised.

3.6.1 Informal convergence monitors

A series of plots and summary statistics can be used to show non convergence

informally:

1. Plot times series path (or summary stats for high dimensional space) —
when the central path is not remaining in the same area this suggests non-
convergence;

2. Plot ergodic averages of 1st ¢t values in Markov chain and compare them
to later averages — major differences in these averages will suggest non-
convergence;

3. Compare histograms of a set of ¢ points with a further set of ¢ points further
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along the chain (beware of metastable chains?) — different histograms will
highlight non-convergence;

4. For Metropolis Hastings compute the average percentage of iterations for
which moves are accepted — if the percentage is low, movement within the

space may be restricted and convergence may not have yet been reached.

3.6.2 Formal Convergence methods

Time Series

It is possible to assess whether convergence can be safely assumed to hold by

comparing the ergodic averages (#) of two sections of the chain, a and b (Geweke

1992):

0_0, - e_b
Vvar(0,) + var(6y)

where var(f,) is the variance of the values in section a of the chain.

— N(0,1)

Multiple chains

Alternatively, Gelman and Rubin (1992) suggest starting several (C') chains from
different points, and testing whether the dispersion ¢ within the chains is different
to the dispersion between the chains. This can be achieved formally by defining
B as the variance between the chains and W as the within variance. Define 67 as

the j' iteration of the ¢/ chain.

4Metastable chains are stationary for a finite period of time only
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1 ncy2
W:mz > (056

c=1 j=1+b

where m is the length of each chain after burn in (of length b).

Under convergence, oz can be consistently estimated from 632: the weighted aver-

age of B and W:

-1 1
ngm—WvL—B
m m

Define the potential scale reduction measure R as

~2
A o
R=4/2L

which tends to 1 as m — oo and Gelman and Rubin (1992) suggest accepting

convergence if R < 1.2.

Starting several chains with different initial values will also check for meta-stability

in the chains.
Conditional distributions

Finally, assume 6 can be divided into two blocks: #; and 6;. The difference

criterion tends to 0 for all 6 if the chain has converged.
Difference criterion: 1 = p(6y | 02)p(02) — p(02 | 61)p(0;)

where p is the marginal distribution. Alternatively, the ratio criteria & and &

will be close on convergence.

Ratio convergence:
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and
o p(01] 02)p(02)

p
2 (07 | 03)p(63)

where 0* = (07, 60%)" is another value from the state space.

3.7 Missing data

Missing or censored data are relatively easy to deal with within the theory of
MCMC algorithms. The idea is that the missing data are treated as unknowns
along with the model parameters. Gibbs sampling can be used to solve this

augmented data problem.

Given z = (y,y’) where y is the known data and 3y’ is the unknown data, the
unknowns for the Gibbs sampler are now 6 and 3y’ leading to the conditionals:
p@ | v,y) =p@|=z) and p(y' | 0,y) = p(y’ | ) where the former is the condi-
tional which occurs when there is no missing data and the latter is the sampling

distribution, under the model, of 3’ given 6.

For censored data, the results are similar: treat the censored observations as
unknowns and the corresponding full conditionals are the joint posterior for 6
which is the same as that which would have been observed with no censoring, and

the second is the joint distribution of the censored observations given 6 (Smith

and Roberts 1991).

3.8 Software

The Bayesian inference Using Gibbs Sampling (BUGs) software is designed to
apply MCMC techniques to complex statistical models. WinBUGs is a version of
the BUGs software written by researchers at MRC Biostatistics Unit at Cambridge

University (Lunn et al. 2000) which has a user interface which allows users to draw
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or ‘doodle’ their model in pictures. WinBUGs has been used in Chapters 5 and
6.

3.9 Bayesian Model selection

3.9.1 Introduction

Model selection is the process of finding the best fitting, least complex model
given the data. There are many different ways of selecting models, from a range of
different information criteria (usually comprising the log maximum likelihood and
a penalty for complexity) to a Bayesian probabilistic approach, which compares
models using the posterior model probabilities (from likelihoods marginalised over
the parameters). The Bayesian approach for a finite set of models is discussed in

more detail below.

We define the set of models as M = {M, ..., Mg}, the associated set of param-

eters for each model as 6, and the observed data as y.

The probability that a chosen model is the ‘correct’ model is given by the posterior

model probability:
p(y | My)p(My)

P ) = S T M p(Ady)

where

ply | My) = / Dy | O M)p(0y | My) 6,

p(My) is the model prior probability, p(y | 6k, M) is the marginal likelihood
and p(0y | My) is the prior probability of the parameters given the model. The
model and parameter prior probabilities need to be specified, using subjective
or uninformative priors. Some comments on choosing model priors have been

included below. The marginal likelihood values are generally difficult to calculate
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directly, but a number of approximate methods exist, such as Gelfand and Dey’s
estimator (Gelfand and Dey 1994), bridge sampling (Meng and Wong 1996) and
Laplace approximation (Tierney and Kadane 1986, described in Section 3.9.3)

where the likelihood can be assumed to be approximately Normal.

The model which results in the highest posterior model probability is generally
selected. Pairwise comparisons of models can be carried out using Bayes Factors,

described below.

3.9.2 Model priors

A popular prior for models is the uniform prior p(My) = 1/K: the posterior
model probability calculation above reduces to a constant times the marginal
likelihood and this prior favours all models equally. It is, as such, noninformative.
However, as Chipman et al. (2001) shows, it is often not noninformative on model
characteristics such as model size — giving higher weight to models of the most
common number of parameters. A number of alternatives for noninformative
priors have been suggested, such as the improper prior proposed by Jeffreys (1961)
for nested models which applies equal probabilities for those models with equal

dimensions p(M. ,gd)) = d+r1 where d = 0,1,... is the dimension of the model.

3.9.3 Laplace approximation

Laplace approximation (Tierney and Kadane 1986) allows asymptotic approxima-
tion of marginal posterior densities and is used in model selection for approximat-
ing the marginal likelihood. The context is the evaluation of I(3) = [€"? dg
and the overall process can be summarised as expanding the integral using Taylor

series, disregarding negligible terms and normalising (Gill 2002).

In Section 3.9.1, we are required to evaluate [ p(y | Ok, My)p(Oy | My) dbs. If we
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let p(y | Ok, My)p(0x | My) = g(B) = exp[h(5)] and B = argmax 9(B) (we assume
that the posterior density is highly peaked around B , the posterior mode), then

using a Taylor series expansion,

N

) ) 1 . .
h(B) = h(B) + W'(B)" (B — B) + 5B~ BYFR"(B)(B = B) + ...
which approximates to a normal pdf which can be evaluated using standard forms.

If 3 = argmax /3 then // (B) = 0 by definition which results in

[ a5 = [[exp (1@ + 50 - BTGNS - 5] as
= 4(9) [ exp |55 - BT 3)5 - 5] as
= g(B) ~ (B2
where d = dim(g).

If the sample size is sufficiently large® then a first order expansion provides an ad-
equate result. In fact the relative error of this first order approximation is O(n=1)
which, when the approximation is applied to the numerator and the denominator,

reduces to O(n~?) (Kass and Raftery 1995).

3.9.4 Bayes Factors

Bayes factors can be used to compare two models directly. Gill (2002) shows that
the posterior odds ratio in favour of Model 1 over Model 2 is produced from Bayes

law:

p(My | y) _ p(ML)/ply) | Py | 61)
p(Mz|y)  p(M2)/py)  ply|b62)

Posterior odds = Prior odds x Bayes factor

SKass and Raftery (1995) suggest that their ‘rough feeling’ is a sample size of 5 times the
dimension of § is ‘worrisome’ and 20 times is sufficiently large
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from which the Bayes factor is therefore defined as

Bia(y) =

which reduces to the common likelihood ratio if p(M;) = p(Ms) = . These
factors can be computed using the methods detailed in Section 3.9.1 such as

Laplace approximation described in Section 3.9.3.

There are no explicit rejection or acceptance thresholds implicit in Bayes factors
however several authors have provided advice on the interpretation of such fac-
tors, including Kass and Raftery (1995) who provide categories for the ‘weight of
evidence’ (Good 1985) against model 2 compared to model 1 as shown in Table

3.1.

Table 3.1: Kass and Raftery (1995) weight of evidence for Bayes Factor interpre-
tation

2log(Bi2) Bis Evidence against M,
0to 2 1to3 Not worth more than a bare mention
2t05 3 to 12  Positive
5to 10 12 to 150 Strong
> 10 > 150 Decisive

Bayes factors are more flexible than their classical counterparts. It is possible to
compare multiple hypotheses without correction factors and it is not necessary

for the models being compared to be nested.

3.9.5 Model averaging

A process of model selection chooses the single most likely model which represents
the data. This strategy ignores any uncertainty associated with the choice of a
model. Model averaging avoids this problem by taking a number of reasonable

models with their associated posterior probabilities and producing an average
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(weighted) result.

In general, the posterior density of a parameter § when model averaging over a
series of models {M; for jin 1: K} is given by

K
p(0 1y) = p(M; | y)p(0 | M;,y)
j=1
where p(f | y) is the weighted average of conditional posterior densities, p(6 |

In the context of MCMC model selection algorithms, model averaging is simple:
parameter inference is defined as an average of the parameter posterior distribu-

tions for all or a selection of high probability models.

3.10 Model checking

At the end of any statistical analysis it is important to check the model. Gelman
et al. (1996) and Green et al. (2009) state that classical goodness of fit tests are
not appropriate for many models, such as complex probabilistic or discrete re-
sponse models, especially if there are restrictions on the parameters, probabilistic
constraints or it is difficult to put the model into a standard statistical form, as
these tests rely on knowing a reference sampling distribution. Bayesian model
checking is more flexible and should be based on three aspects (Gelman et al.

1996):

1. sensitivity of inference to reasonable change in prior distribution and likeli-
hood;
2. plausible posterior inferences given substantive context of model; and

3. fit of the model for the data.
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Points 1 and 2 are fairly self explanatory and require a sensitivity analysis on the
chosen prior and likelihood or subjective review of inference given the context,

respectively. This section concentrates on step 3.

The substantive question is also different in a Bayesian context: we do not assess
whether the model is correct (as it almost always is not) but ask if it is reasonable
that the data have arisen by chance given the model (Gelman et al. 1996). If not,
then Gelman et al. (2004) pose a further question which allows us to consider
whether the deficiencies are sufficient to adapt the model: do the model defi-
ciencies and simplifying assumptions have a noticeable effect on the substantive

inferences?

Green et al. (2009) discuss three options for assessing model fit when standard
methods such as residual plots are not appropriate: cross validation, external
validation and posterior predictions. Cross validation partitions the data into a
number of subsets, defines the model on one of the subsets and uses the remain-
ing subsets to compare with predictions from the model. This method has been
referred to as the gold standard but is computationally intensive. External vali-
dation uses all the data to produce a model and makes predictions about future
data from the model. Future data must then be collected to assess the fit and
therefore this method is only viable in certain situations. Posterior prediction
uses posterior distributions generated from the model to compare to the observed
data in order to assess discrepancies in the model. This method appears to be the
preferred method: Lynch and Western (2004) show that it is flexible to a range
of models, explicitly accounts for parameter uncertainty as the distributions are
taken directly from the posterior distributions, and it is possible to derive p-values
for evaluating the probability that the data arose by chance; however, Green et al.
(2009) suggest that it is likely to be over optimistic in the assessment of model fit

as each data point is used to generate the model.
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The discrepancies used to assess model fit can be flexible and should measure
relevant features of the model. In a posterior predictive check, Gelman et al.
(2004) show the chosen discrepancies can be measured using a test statistic 7" from
which it is possible to directly summarise discrepancies between data generated
from the model y"” and observed data y. If T'(y) is not contained well within the
empirical distribution of T'(y"*?) then the model is found to be lacking. It is also
useful to examine graphical representations of the discrepancy measures or results
from the posterior predictive simulations to assess where the model is failing to

represent the observed data.

If the model is a good fit then data generated from the model should look similar
to the observed data and the discrepancies should be small. The location of T'(y)
within the distribution of T'(y"?) directly relates to the evaluation of a p-value:
the probability that replicated data could be more extreme than the observed data
(Gelman et al. 2004). If T'(y) is located towards the extremes of the distribution
of T'(y"?) then a small p-value indicates that the observed data is unlikely to be

replicated if the model is true.

3.11 Summary

Many of the techniques discussed in this chapter are employed in Chapters 4, 5

and 6 to evaluate accident exposure and risk in a probabilistic manner.
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Chapter 4

Exposure modelling

Traffic flow, defined as the number of vehicles kilometres travelled in Great Britain,
is used to monitor trends in road travel across the country on different road types,
at different times of day and year, and by different vehicle types. These trends
help to define areas of congestion and inform government expenditure for road

construction, improvement and structural maintenance.

In addition, traffic flows are also used as exposure data to estimate the risk of
being involved in an accident. Typically accident risk is defined as the number
of accidents by the number of vehicle kilometres travelled each year which can
be disaggregated as much as the traffic low data allows: that is, by region, road
type, time of day and year, and vehicle type. Flow information about different
types of car is not available and other data must be substituted. In general, traffic
flow data are replaced by information on the number of registered vehicles each
year in order to compute accident rates in these situations. af Wahlburg and Dorn
(2007) suggest that traffic flows cannot be directly derived from the distribution
of the different car types registered, as drivers of different car types generally

have different driving habits. Therefore a method of estimating the traffic low
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distribution of different car types is required.

A Bayesian approach to modelling flow data has been used. This approach allows
the transparent incorporation of prior information and provides not only flow
estimates but associated measures of uncertainty. In this chapter a number of
different model formulations are described, helping to develop the final model,

along with some results of each model.

4.1 Data

The sources of data used in this chapter are described in Sections 1.3.1, 1.3.2 and

1.3.4. The variable names used throughout are given below:

- Z4y: number of car kilometres travelled each year (y) on each road type (r)
(Table 1.1)

- Zzg: number of registered cars by year (y) and car type (c¢) (Table 1.2)

- e proportion of cars involved, but not at fault, in accidents by car type ¢
within road types r (Table 1.3)

- Zeyr: number of vehicle kilometres travelled each year (y) on each road type

(r) by each car type (c¢) (to be estimated)
Additional variables and parameters are described where appropriate.

The data that are available give us some idea of the relationship between year
and road type, year and car type, and distribution of car types on each road. We
do not have data that can inform us of the distribution of road use by individual
car types, or of any changing distribution of different road use by different car
types by year. We have therefore had to make a simplifying assumption. We have
assumed that the distribution of car types using each road type has not changed

over the 12 year period.
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To illustrate the models, three scenarios have been used:

e a simulated test dataset with three car types, two years and two road types
(C =3,Y =2and R = 2) where x,,,, 2., and e, are specified separately
from the true data, and the exposure variable x is derived and known, as

shown in Tables 4.7, in order to check the validity of the model;

e a subset of the true data x,,,, 2, and e, with dimensions C' = 3, Y = 2
and R = 2, shown as the margins of Table 4.1. The values of z,, and e,,
have been factored accordingly for this smaller number of car types and xy,

is unknown; and

e the complete set of real data shown in Tables 1.1, 1.2 and 1.3 with dimensions

Y =12, C=6and R = 3.

For the second and third scenarios we compute a basic unweighted combination
of 4y, 2, and e, via an approximate proportional fitting algorithm and the

results of the models have been compared with these estimates.

Table 4.1: Known inputs for small exposure datasets €., T4, and 2z,

4x4 &  Large Medium

A roads people carriers saloons  saloons .,
2005 64.6
2006 65.4

Eer 0.24 0.20 0.55

4x4 &  Large Medium
Minor roads people carriers saloons  saloons .y,

2005 52.2
2006 52.8
Eer 0.28 0.10 0.63
4x4 &  Large Medium
Zey people carriers saloons  saloons
2005 2.4 1.7 5.7
2006 2.6 1.7 5.5
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4.2 A heuristic proportional fitting algorithm

In order to test that the MCMC computer coding was producing sensible re-
sults an alternative method of combining the three data sources was derived for
comparison. The method of proportional fitting was applied where the three
data sources form the three marginal totals. In a standard iterative propor-
tional fitting algorithm (Deming and Stephan 1940) each marginal total is a sum
over a different margin of the same data source. In this thesis the margins are
based on different data sources: the three marginal totals (shown for the small
dataset in bold in Table 4.2) are €7 = {zy,, : y = 1,...,Y; r = 1,..., R},
e={e,r:c=1,...,C,r=1,...,Rland z={z2p:c=1,....C; y=1,..., Y},
where e and z are adjusted so that their totals are equivalent to 1 (shown as
italics in Table 4.2). The starting point is that all values of ., are equal and
sum to the total of z7.

Table 4.2: Known and derived inputs for proportional fit algorithm (iteration 0)
on small exposure dataset

4x4 &  Large Medium

A roads people carriers saloons  saloons — x.,
2005 19.6 19.6 19.6  64.6
2006 19.6 19.6 19.6 65.4
€ecr 0.24 0.20 0.55
Ecr 31.6 26.6 71.8 130.0

4x4 &  Large Medium
Minor roads people carriers saloons  saloons — @,

2005 19.6 19.6 19.6  52.2

2006 19.6 19.6 196 52.8

€cr 0.28 0.10 0.63

Cer 29.1 10.1 65.7 104.9
4x4 &  Large Medium

Zey people carriers saloons  saloons

2005 2.4 1.7 5.7

2006 2.6 1.7 5.5

2005 28.8 20.4 68.3

2006 31.2 20.4 65.9 234.9
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In each iteration, the individual z.,, values are proportionally adjusted to equal
the distribution of margin e (Table 4.3) followed by margin ™ (Table 4.4), and
finally margin z (Table 4.5). This process is repeated until it stabilises.

Table 4.3: Adjustment for e, in heuristic proportional fit algorithm for exposure
data (iteration 1)

4x4 &  Large Medium

A roads people carriers saloons  saloons — xy,
2005 15.8 13.3 35.9 65.0
2006 15.8 13.3 35.9 65.0

Xy 31.6 26.6 71.8  130.0

31.6 26.6 71.8

4x4 &  Large Medium
Minor roads people carriers saloons  saloons — xy,

2005 14.5 5.1 32.9 52.5
2006 14.5 5.1 32.9 52.5
Xy 29.1 10.1 65.7 104.9
29.1 10.1 65.7
4x4 &  Large Medium
P people carriers saloons  saloons
2005 30.3 18.4 68.8
2006 30.3 18.4 68.8 234.9
2005 28.8 20.4 68.3
2006 31.2 20.4 65.9 234.9
As the three margins come from different datasets the # = {x.y, :c=1,...,C;y =

1,...,Y; r=1,..., R} do not converge to satisfy each of the margins. It is either
possible to satisfy z which controls year and car type applying the road distribu-
tion from =T or to satisfy margins 1 and e which control year and road type,
and car type within road type respectively. Therefore we end up with two sets
of proportionally fitted flow estimates but these are very similar. We choose the

estimate satisfying 7 and e to use and this is shown in Table 4.6.
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Table 4.4: Adjustment for ™ in heuristic proportional fit algorithm for exposure
data (iteration 1)

4x4 &  Large Medium

A roads people carriers saloons  saloons — xy,
2005 15.7 13.2 35.7 64.6
2006 15.9 134 36.1 65.4

Xy 31.6 26.6 71.8  130.0
31.6 26.6 71.8

4x4 &  Large Medium
Minor roads people carriers saloons saloons — x,,

2005 14.5 5.0 32.7 52.2
2006 14.6 5.1 33.1 52.8
Xy 29.1 10.1 65.8 104.9
29.1 10.1 65.7
4x4 &  Large Medium
X people carriers saloons  saloons
2005 30.1 18.3 68.4
2006 30.5 18.5 69.2 234.9
2005 28.8 20.4 68.3
2006 31.2 20.4 65.9 234.9
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Table 4.5: Adjustment for z., in heuristic proportional fit algorithm for exposure
data (iteration 1)

4x4 &  Large Medium

A roads people carriers saloons  saloons — x,
2005 15.1 14.2 36.2 65.5
2006 15.9 14.2 34.9 65.0

Xy 31.0 28.5 71.0 130.5
31.6 26.6 71.8

4x4 &  Large Medium
Minor roads people carriers saloons  saloons — x,,

2005 13.9 5.4 33.1 52.4
2006 14.7 5.4 31.9 52.0
Xy 28.6 10.8 65.0 1044
29.1 10.1 65.7
4x4 &  Large Medium
X people carriers saloons  saloons
2005 28.8 20.4 68.3
2006 31.2 20.4 65.9 234.9
2005 28.8 20.4 68.3
2006 31.2 20.4 65.9 234.9

Table 4.6: Final iteration in heuristic proportional fit algorithm for exposure data

4x4 &  Large Medium

A roads people carriers saloons  saloons
2005 15.1 13.2 36.3
2006 16.5 13.4 35.5

4x4 &  Large Medium

Minor roads people carriers saloons  saloons
2005 13.9 5.0 33.3
2006 15.2 5.1 32.5
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4.3 Initial model without induced exposure
Initially, a model was developed that took information from % and z.
Model

The initial model was defined as a natural first step for introducing some variabil-
ity into the data. It comprises two regression parts — firstly the registered vehicle
data is modelled as a Normal distribution with mean defined by the unknown ex-
posure data x, summed over r multiplied by some scalar constant 3, and variance
defined by a diagonal matrix with diagonal elements defined by 72. The second
part defines the unknown exposure variable  as Normally distributed with mean
defined by p and variance defined by a diagonal matrix with diagonal elements
defined by 2. The parameters 3, u, 7 and o can be defined from the start or

given prior distributions.

z |z~ N(BAz, *1cy)

£Xr N(,LL,UzICYR)

where A is a C'Y x C'Y R sum matrix over r, z isa C' XY vector, xisaCxXY X R

vector, pis a C' X Y x R vector and 8, 7 and \ are scalars.

The method of completing the square was used to derive the posterior parameters

for the required .
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cexp (—5ras - pA)" (2~ D) — JLw— w (@ - )
X exp < {a:T [fjATA +Io 2] T
BAT 6 TA T
o[22 [0 0)e))
Therefore
x|z~ N6

where, using exp ( —

'S0+ 6"x7'9),

2
>l = 5—2ATA +Io™?
T
T
-1 BA" z 12
Xl=—1pt 3
2 -1 AT
0 — (%ATA v 102) (5 = %)
T T o

Only the known variable z is used in the posterior. The other known observed

variable T is used to constrain the resulting exposure variable x.

The constraint works as follows: x is reparameterised as (z*, )T where z* =

{eyr 1c=1,...C = L;y = 1,...,Y; r = 1,..., R} which, together with =™,

defines = by (z*,z7)T = Bx. B is a square matrix which sums over ¢ for the

final Y x R rows of .

Therefore (x*,z+ | 2) ~ N(B6, BEB”) can be manipulated using the stan-

dard Multivariate Normal theory: in general, if X ~ N(u,¥) and p and X are

partitioned as
( 1)
n=
K2
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and
Y11 212

E21 E22

>

then, the distribution of X conditional on X5 = a is Multivariate Normal (X7 |

A

X, =a) ~ N(f1, %) where
fi = py + D185 (Xo — py)

=%, - 31935 B

which leads us to

(x* | T, 2) ~ N<u$*+2$*$+z;_&x+<w+ — ), @)
EI*CE* - Ex*x+ E:L'_iz+ E$+CL’*)

where

Moo = B0 (c-1)xy xR), ]

o+ = BO[(c—1)xY xR+1):(CxY xR)]

e = BEBT [1(0—1)xy x R)1:(C-1)xY % R)]

ot = BEB (1 (Co1)xY xR),(C—1)xY x R4 1):(CxY % R)]
Yotar = BEB [(0_1)xY x R+ 1):(CxY x R) 1:(C—1)xY % R)]

Sotat = BEBT [(0-1)xY xR 1):(OxY X R).(C—1)xY x RA1(CxXY X B)]

A direct simulation from equation 4.1 is possible (if 5, pu, 7 and o are pre-specified)
using the Cholesky decomposition of 3. Figure 4.1 shows the results of this model
on the small datasets with inputs g = 11, 7 = 20 and ¢ = 2 with p equal to the
proportional fit described in Section 4.2, compared to the proportional fit of the
exposure data (Traffic flow (PF)).
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Figure 4.1: Modelled exposure (traffic flow — modelled) z.,, against proportional
fit exposure (traffic low — PF) z.,, for small data in model without induced
exposure data

The results of this model rely heavily on the deterministic inputs. In addition, as
0~? tends to infinity, 3 becomes singular and X_+,+ becomes non-invertible. An
alternative model with non-deterministic inputs for 5 and p generated from the

posteriors shown in Appendix B.1.1 removes the need to invert X, +,+.
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where D is B™', and the posterior distribution becomes

T
x* (2 1
* + _
plx* | z,x )ocexp( ($+)

2 _DTATAD + —DTD} (“" )+

272 202

A Metropolis-Hastings sampler described in Section 3.4 would be required for this

alternative.
Conclusions

This initial model formulation was defined to add variability into the data struc-
ture. Computationally it is uncomplicated — not requiring MCMC techniques
until o was large; however, it is not a natural model for causal inference. Once
MCMC techniques are required the benefits of this simple model are removed. A
more complicated model is required as this basic model assumes that the distri-
bution of traffic across different road types is the same for all car types. That is,
there is no information in the model which describes the interaction between c

and 7.

4.4 Introducing induced exposure

We found no evidence to suggest that equal distributions of different car types
across road types was a fair assumption, and in fact the opposite is proposed:
af Wahlburg and Dorn (2007) suggest that drivers of different car types generally
have different driving habits, including use of different road types. This includes
larger cars such as 4x4s and people carriers thought to be being used more reg-
ularly for long journeys on primarily main roads, and small cars generally being

used for short journeys on local routes.
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It is difficult to source data which identifies the distribution of different car types
on different road types, so induced exposure techniques, described in Section
1.3.3 have been used. This additional data source e estimates the distribution of
different car types ¢ on different road types r. These data are normalised over r

due to the data collection procedure.

In this section we consider two regression models which include induced exposure

data.

4.4.1 Truncated Normal model

The second model considers the exposure measure € = {z¢, : c=1,...,C;y =
1,...,Y;r=1,..., R} to have a truncated Multivariate Normal distribution (as
a MVN model allows negative values for &) with the mean defined by the product

I'and an unknown

of the number of registered vehicles by year and car type (2)
parameter 3 = {3, :c=1,...,C;r =1,..., R}. Its variance 72 is an additional
unknown parameter. The sum of traffic over car type ¢ () is used in limiting

the posterior for & but is not defined in the model.

x ~tN(Bz,1° Teyr > 0
( ) y (42)
e ~ N(aztB,\?)

The second part of this model (4.2) models the normalised induced exposure data
e. This is modelled as a Multivariate Normal distribution? with a mean defined by

the product of 2% = {2y : ¢ =1,...,C} where 2.y = ) 2, and two unknown

I'Throughout this chapter where vectors of unmatching lengths are shown multiplied together
these vectors have been augmented with repeated values. Here, 8z = (Ir ® Zgiaq)(8® 1y) and
aztB = (a® z*)TB where I is an identity matrix of dimension R x R, zgia, is a diagonal
matrix with values of z on the diagonal, 1y is a vector of 1s of length Y and ® is the Kronecker
product.

°In theory, this part of the model could also be modelled using a truncated Multivariate
Normal distribution. In practice this was an unnecessary complication as the derived relative
variability was sufficiently small that the posterior distribution did not approach its limits.

67



parameters, 3 and a = {, : r = 1,..., R}, and variance A\?. This error term A\
represents the inherent uncertainty around the method of induced exposure, and
the limited amount of data that are available. The first parameter a represents
information about the different amounts of use of different road types r by cars,
and the second parameter 3 is an estimate of the distribution of different car
types on different road types, taking into account relevant information from e, z

and xt.

This model is not mathematically tractable because we only observe &t not
x, so the observed data likelihood is not of standard form. Therefore we apply
MCMC simulation techniques to estimate posterior distributions from the priors
and likelihoods. The chosen prior distributions for the unknown parameters are
assumed independent and defined as the normal conjugate distributions: 3 and «
priors are Normally distributed, and the variance parameters have Inverse Gamma

(IG) prior distributions. The priors are designed to be fairly uninformative.

ﬁcrNN(ﬁo,a/%) c=1,....C,r=1,....R
o, ~ N(ag,02) r=1,...,R
N~ TG (Mg, M)

72 ~ IG (74, )

The joint posterior distribution, given the model and the prior distributions, is
given in equation 4.3. It is possible to derive the individual posterior distributions
for the unknown parameters 3, o, 72 and \?, and the unknown flow & from which

to sample, and these are shown in equations (4.4) - (4.7).

pla, B, 0,7, X | z,e) = p(x | B, 7%, 2)p(e | B, o, X*)p(B)p(a)p(r*)p(N?)  (4.3)
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As x is distributed with a truncated Normal distribution, there exists an extra
normalising constant in the joint posterior which carries through to the posteriors

for @ and 7, making them non conjugate.

1
p(ﬁ ‘ €, 7—27 )‘27 «, €, Z) X exXp { - ﬁ Z(xcyr - ﬁcrzcy)2
cyr
1
- W Z(ecr - Oérzc—&—ﬁcr)Q
« (4.4)
1
- @ (6(:7” - 60)2}
H 1
Bc'rzcy
cyr 1 - ®(_T)
where ®©(.) is the Normal distribution function.
a| B\ e,z ™ N(p,Q) (4.5)
where ¢ is a r x 1 dimensional vector and €2 is a r X r matrix such that:
(b — Zc(chrﬁcr)Q _'_ i - ZC echc+ﬁcr + %
" A2 o? A2 o?
-1
Q _ ZC(Zc-l—ﬁcr)z + i
" A2 o?
CYR
1 =z 17t 1 Th
p(7'2 | x, B, Ta, To, Z) X —271'7'2 ﬁ eXp{ — ﬁ Cyzr(xcyr - Bcrzcy)z - ﬁ}
H 1
Bcrzc'
cyr 1—- q)(_Ty)
(4.6)
CR 1
A, B, A, My, 2 ~ IG (7 + Ao 5 ;(ew — 2oy Bur)? + /\b) (4.7)
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Similarly to the constraint in the initial model without induced exposure, the
posterior distribution for the three dimensional exposure parameter @ is based on
the first part of the model together with the additional aggregated known traffic

flow information from x*.

The full parameter & can be defined as a combination of a subset of itself up to

row (C'—1) xY x R (called *) combined with the known aggregated traffic flow

m*
Bx =
== (&)

where B is a square C' X Y X R matrix such that the first C' — 1 x Y x R rows

data ™ via a matrix B:

are the identity matrix followed by Y x R rows of 1s and 0s summing over each

car type. The posterior can then be defined as
w+

("” ) ~ N(B~,*BBT")

where  is the C'Y R vector v = Bz. Using standard Multivariate Normal theory

once again, the required conditional distribution can be defined as

x| ($+7 z) ~ N(py + 21222_21(5'3Jr — W),

Y- 21222_21221)

where

p, = BpBz[l: (C—1)YR]

i, = BBz|(C —1)YR+1: CYR]
Y X

o1 Xy

> =72BB" =
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A Gibbs sampling strategy with Metropolis-Hastings steps for 3 and 7 has been

implemented below.

Simulated study

To illustrate the models we generate a test dataset with three car types, two years
and two road types (C' =3, Y =2 and R = 2). With this test data we know the
inputs and outputs and can test the model by comparing the outcomes from the

model with the known values.

In order to generate the test data. 3, 7 and A have been defined. 3 has been set

as
200

300
100
150
400
600

which has been specified independently from the defined z data. 7 and A\ have
been specified as 5 and 0.5 respectively, for the purposes of adding random noise

to these components.

Values of the induced exposure measure e, parameter a, unknown flow x and
its aggregated vector £ were computed from the model form shown in 4.2 and

perturbed with this random noise. The exposure values z.,, are shown in Table

4.7.

We take only the information from the test data that we would know in a real
data situation, that is e, z and &t. We set uninformative priors for 3 and «
with 8, and o = 1, 03 and 0, = 1000. A number of different priors for 72 and

A2 have been specified which result in similar outcomes. Two choices are shown
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Table 4.7: Derived exposure values for test study on truncated Normal exposure
model

Year Road type Carl Car2 Car3

1 1 529 184 2143
2 78 278 3686
2 1 485 158 2713
2 786 259 3932

in Table 4.8 and displayed in the results (Tight and Diffuse).

Table 4.8: Priors for 72 and A? in simulated study on truncated Normal exposure
model

Parameter Tight Diffuse

Ty 4 4
Th 40 300
Aa 4 4
b 0.004 0.03

These relate to expected variances for x and e of 13 and 0.001 for Tight (a precise

prior) and 100 and 0.01 in Diffuse (an imprecise prior).

The simulation is run 100 000 times and the first 25000 runs are removed for burn
in. Time series plots, shown in Figure 4.2 for the first component of @, appear to
show good convergence over the number of iterations. A series of different starting

points led to similar results.

The mean « predictions have been compared with the test & values shown in
Table 4.7 above in Figure 4.3, and the other known parameters are compared to
the model predictions in Table 4.9. Modelled and test results should be similar
and points on the graph should sit approximately in a straight line. Results
of the model in Figure 4.3 are similar — with the less precise priors producing
wider confidence intervals, and more precise values giving better estimates for the

parameter values in Table 4.9.
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Figure 4.2: Time series of unknown exposure for 4x4s in 1999 on Motorways
(2111 iterations 25000 to 100 000) for simulated data in truncated Normal model
for tight and diffuse priors

Table 4.9: Modelled and actual (.. and «, posterior mean parameter values for
simulated data on truncated Normal exposure model

Parameter Car Road Tight Diffuse Known test
g 1 1 167 167 200
I6; 1 2 307 318 300
15 2 1 227 270 100
6] 2 2 205 241 150
g 3 1 376 363 400
I6; 3 2 581 565 600
o - 1 16x10™* 1.6x107* 16x107*
a - 2 1.0x107* 1.0x107* 1.1x10™
T - - 7 9 50
A - - 0.06 0.09 0.50
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Figure 4.3: Modelled exposure (traffic flow — modelled) z.,, against actual expo-
sure (traffic low — known) z.,, for simulated data in truncated Normal exposure
model with tight and diffuse priors

4.4.2 Truncated Normal model without road type param-

eter «

The previous model (model 4.2) contains the parameter o = {a, : 7 =1,..., R}
which is defined as representing information about the different amounts of use of
road type r by cars, and assumed to be independent of e, the induced exposure
data. The information that we have about road and car type interaction has to be
normalised by road type and therefore v cannot be informed by data. This model
(model 4.9) removes the need for the parameter a and models g, the multivariate
logit of e. g is a vector of length R x (C'— 1) and is the log of the ratio of e,; from
t=1,...C' =1 and e, where r = 1,... R, assumed to be Normally distributed
with mean p and covariance matrix e2K. K is a diagonal matrix with off-diagonal

component defined here as 0.5 to infer some dependence between elements of .
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~ N 72
v (B=7") (4.9)
g~ N(p,eK)

where

gri = log
ErC

Brizi
Brezc
1.0 ifi=y
0.5 ifi#j

pri = log

andi,7=1,...C =1

The joint posterior (equation 4.10) has a similar form to the initial truncated
Normal model (model 4.3) with e replaced with the logit model g, a removed
and the variance term \? exchanged for €2. Changing the second part of the model
only affects the posterior distribution of 3 (shown in 4.11), and introduces the
posterior distribution for e (equation 4.12) with similar format to that of A in

equation 4.7 where the prior for €* is of the form € ~ IG (e, €p).

p(x,9.8,7° ¢ | z.e) =p(x | B,7° 2)p(g | B.€* 2, €)p(B)p(r*)p(e)  (4.10)
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_CYR 1
p(/B ‘ T27 T, z, 62797 l’l‘) :{27‘_7—2} 2 exp {_T Z (xcyr - Bcrzcy)2}

cyr

{27 B K|} 72 exp {—% > Z_: Kij ™ (gri — 1) (grj — uj)}

roij=1

CR 1 2
{2#0/%}*7 exp {—@ ; (Ber — o) }
(4.11)

C-1
R 1 _
62 | ﬁcra €a, €y, 2, € ~ I1G (5 + €q, 5 Z Z (gm - ,uz)[K 1]ij(g7"j - :U’j> + €b>

roig=1

(4.12)
A Gibbs sampling strategy with Metropolis-Hastings parts is used to sample from
the posterior distribution, with blocking over r used to generate 3. Blocking,
discussed in Section 3.5.2, is used to update homogeneous sections of the data

individually so that the sampler moves more easily through the space.
Simulated study

The test data shown in Table 4.7 with three car types, two years and two road
types (C' = 3, Y = 2 and R = 2) have been used here as in Section 4.4.1 for
demonstration purposes. Priors on 8 and 72 remain the same. Priors on €2 have
been generated from the prior information given on A? in Table 4.8 resulting in a
precise prior with a mean of 0.015 (e, = 3, €, = 0.03) and an imprecise prior with

a mean of 0.5 (e, = 4, & = 1.5) for €.

The simulation is run 100 000 times and the first 25 000 runs are removed for burn
in. Good convergence was observed over the number of iterations and a series of

different starting points led to similar results. Table 4.10 shows the results of the
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model for the 3 parameters compared to the known test data, and Figure 4.4

compares the modelled and known test & values for the tight and diffuse priors.

Table 4.10: Modelled and actual (.. parameter values for simulated data on trun-
cated Normal exposure model with «a, removed

Parameter Car Road Tight Diffuse Known test

3 1 1 222 199 200
3 1 2 291 411 300
3 2 1 103 120 100
3 2 2 159 193 150
3 3 1 378 378 400
3 3 2 601 538 600

4000

3000

Traffic flow (x_cyr) (modelled)
2000
1
Traffic flow (x_cyr) (modelled)
2000
1

1000

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Traffic flow (x_cyr) (known) Traffic flow (x_cyr) (known)
(a) Tight (b) Diffuse

Figure 4.4: Modelled exposure (traffic flow — modelled) z.,, against actual expo-
sure (traffic flow — known test data) z.,, for test data on truncated Normal model
with «, removed over tight and diffuse priors

4.4.3 Conclusions

The two models, 4.2 and 4.9, use the truncated Normal distribution to model

exposure. Two different sets of priors, an informative and a non-informative set,
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produce similar results with more accurate parameter posterior means and smaller

confidence intervals in the precise prior.

4.5 Log-Normal model

The natural next step from a truncated Normal distribution is a log-Normal model.
Some of the benefits over a truncated Normal model are that the posteriors are
restricted to positive real numbers in a more natural way than with a trunca-
tion method, errors become proportionate rather than additive, and that, in this
case, the posterior distributions are conjugate. For these reasons the log-Normal

distribution is commonly used for exposure models (Cullen and Frey 1999).

A similar regression model to the truncated Normal model, described in Section
4.4.1, is considered here. Once again, this uses the three datasets discussed in
Section 1.3, and aims to estimate the three dimensional array € = {z., : ¢ =
1,...,C;y=1,...,Y; r=1,... R} which represents traffic in vehicle kilometres
disaggregated by year y, road type r and car type c.

Model form

Our final model considers the exposure measure x, over car type ¢, year y and
road type r, to have a Multivariate log-Normal distribution, with the mean defined
by the sum of the log of the number of registered vehicles by year and car type
(z={2yy:c=1,...,C; y=1,...,Y}) and an unknown parameter 3 = {f,, :
c=1,....,C; r =1,..., R} which remains constant over time. Its variance 72
is an additional unknown parameter. What is observed is ™ = {z,,, : y =
1,...,Y; r=1,..., R}, the sum of traffic over car type ¢ and it is this which is

used in formulating the posterior for «.

The second part models the log of the normalised induced exposure data e =
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{ew :c=1,...,C, r = 1,..., R} which gives information about the types of
cars (c) travelling on different road types (r). Once again, we use a continuous
distribution to approximate a discrete sampling process. This second Multivari-
ate log-Normal distribution has a mean defined by the sum of log(z.;) and two
unknown parameters, and variance \2. This error term A\? represents the inherent
uncertainty around the method of induced exposure, and the limited amount of

data that are available.

logx ~ N(B +log z,7%)
(4.13)
loge ~ N(a +logzt + 3,)?)

Similarly to Section 4.4.1, the first parameter 3 models the log of the distribution
of different car types on different road types. The second parameter a = {«, :
r =1,..., R} is a nuisance parameter representing information about the different
amounts of use of different road types r by cars. The posterior distribution for
this parameter is heavily influenced by the relative proportions of different road

types in the two counties in which the induced exposure data were collected.

The chosen prior distributions for the unknown parameters are assumed inde-
pendent and defined as the normal conjugate distributions: 3 and « priors are
Normally distributed, and the variance parameters have Inverse Gamma (IG)
prior distributions. The priors for 3 and a are designed to be fairly uninforma-
tive. The priors on A? and 72 effectively derive weights to the different datasets

representing how confident we are about the data. More precise priors lead to
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heavier weights for data we are more certain about.

BCTNN(ﬂO,O'é) c=1,....C, r=1,...,R
ozTNNoz,ai r=1,...,R

(60, 02) (4.14)
A~ TG (Nay M)

72~ IG(14,7)

The joint posterior distribution, given the model and the prior distributions, is
given in equation 4.15. It is possible to derive the individual conditional posterior

2

distributions for the unknown parameters B, a, 72 and A2, shown in equations

4.16 — 4.19, and the unknown exposure .

p(logz,loge, B, a, 7%, \* | 2, €) = p(logz | B,7°, z)p(loge | v, B, X, 2)

(4.15)
p(a)p(B)p(7?)p(X?)

Blxz, ™ N a,ze~ N, A) (4.16)

where 0 is a vector of length C' x R and A is a matrix of dimensions CR x CR

such that:

- 1 10g €cr log et Ay 50
dcr = Acrlecr = 7__ Z (10g Leyr — lOg zcy) + \2 - 22 - ﬁ + —

a_y 11
ACT_72+)\2+0§

ecr = Acr X dep

al|B, )\ z,e~ N(¢p,Q) (4.17)
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where ¢ is a vector of length R and €2 is a matrix of dimension R x R such that:

_ 1 a
m, :ergbr = EZ (logecr —log z. —5CT) + 0_2

«

4 C 1
Q —p‘i‘o_—g
Or = Q. X My,

The conditional posterior distributions for the two variance parameters 72 and A2

are Inverse Gamma distributions.

CYR 1 2
7_2 | a),ﬁ,z,Ta,Tb ~ IG <T + Ta, 5 Z{logzcyr - (logzcy +ch)} + Tb)

cyr

(4.18)

CR 1

2
)‘2 | a,B,e,z,)\a,)\b ~ ]G <T+>\a752{10g60r - (IOch_:,_—FOéT—f—BCT)} +)‘b

" (4.19)

The posterior distribution for the three dimensional exposure measure « is simu-
lated using MCMC. Each parameter is updated in turn (3, «, 7% and \?) using
a Gibbs sampling strategy in a deterministic scan. The vector  is updated last
using Metropolis Hastings. The proposal distribution is based on a random walk
algorithm (see Section 3.4) where the perturbation is Normally distributed with
mean 0 and variance specified such that the acceptance probabilities are around
20%. At each iteration the perturbation is constrained such that the known ag-

gregated traffic flow information from x% is maintained.
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Results

To illustrate this model we use all three datasets: a simple test dataset with three
car types, two years and two road types (C' =3, Y =2 and R = 2); a small set
of real data on the same dimensions, shown in Table 4.1; and the complete set of
real data with Y = 12, C' = 6 and R = 3 discussed in Section 1.3. For each of
these real datasets the proportional fitting results described in Section 4.2 have

been compared with these estimates.
Simulated study

A small set of test data were defined as discussed in Section 4.4.1. Here we define

B as the logarithm of the s defined in equation 4.8.

5.30
5.70
4.61
Bcr = (420)
5.01
5.99

6.40

72 and A2 have been specified as 0.01, thus weighting both parts equally, for the

purposes of adding random noise to these components.
The simulated test data for & are shown in Table 4.11.

We take the simulated values of e, T and z and apply them to the model with

a range of priors. The results shown below are based on the following priors:

82



Table 4.11: Derived exposure values for test study on truncated Normal exposure
model

Year Road type Carl Car2 Car3

1 1 515 176 2450
2 772 263 3686
2 1 536 168 2375
2 811 260 3558

% ~ IG(5,0.5)
N~ IG(3,0.1)

(4.21)
B ~ N(0,1000)

a ~ N(0,1000)

The MCMUC is run for 100000 steps and the first 25000 iterations are removed

for burn in.

In Figure 4.5 we have compared the mean model predictions for & with the known
values shown in Table 4.11. Results for the other parameters are shown in Table
4.12. 1f the computation is effective then we would expect that the modelled and
actual results will be very similar and points on the graph would sit along the
diagonal as each dataset is equally influential. Error bars in Figure 4.5 are 95%

posterior intervals. A series of different starting points led to similar results.

The time series plots in Figure 4.6 of the MCMC samples (after burn-in) for a
selection of the modelled parameters appear to show good convergence over the

number of iterations.
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Table 4.12: Modelled and known test .., a,., 7 and \ parameter values for simu-
lated study in log-Normal exposure model

Parameter Car Road Modelled Known test

15} 1 1 5.33 5.30
153 1 2 5.79 5.70
15} 2 1 4.74 4.61
15} 2 2 5.00 5.01
15} 3 1 5.94 5.99
15} 3 2 6.35 6.40
o - 1 -8.72 -8.68
«o - 2 -9.13 -9.12
T - - 0.31 0.10
A - - 0.21 0.10
] [q Veh1
© Veh2
& Veh3
o = Rd1
8- | = Rd2
@ O Yr1
YR

Traffic flow (x_cyr) (modelled)
2000
l

1000
|
—

]
I

T T T T
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L]

Traffic flow (x_cyr) (known)

Figure 4.5: Modelled exposure (traffic flow — modelled) z.,, against known test
exposure (traffic low — known) z.,, for simulated data in log-Normal exposure
model
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Figure 4.6: Time series of a selection of unknown parameters (iterations 25000 to
100000) for simulated study on log-Normal exposure model
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Small road data

We have applied subsets of the known information e (induced exposure) and z
(registered vehicle data) with car types 4x4s, large saloons and medium saloons
(C' = 3), years 2005 and 2006 (Y = 2) and road types A roads and Minor roads
(R = 2), shown in Table 4.1 to the model. In addition, information from & has
been used for the years and road types stated. 36% of the vehicles in the registered
vehicles data were 4x4s, large saloons and medium saloons and therefore values

in T have been factored appropriately.

The priors 7., T, Aa, A, Bo and g are the same as above, shown in 4.21. Con-
vergence is stable after 10000 iterations, and a selection of parameter densities

(with 10000 iterations of burn in removed) are shown in Figure 4.7.

In order to assess this model with real data Figure 4.8 compares the mean re-
sults from the MCMC with results from the heuristic proportional fit algorithm

described in Section 4.2.

Under this model, the induced exposure need not be normalised at the outset as
the a values vary to control for the differences across road types. The results of
the model with unnormalised e (shown in the top half of Table 1.3) as an input

result in very similar & (shown in Figure 4.9), 3, 7 and A estimates.
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Figure 4.7: Densities of unknown parameters (iterations 10000 to 100000) for
small dataset on log-Normal exposure model. x11; represents the exposure for
4x4s in 2005 on A roads, x199 represents the exposure for 4x4s in 2006 on Minor
roads, (o1 is based on large saloons on A roads and ay is the road parameter for
Minor roads
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Figure 4.8: Modelled exposure (traffic flow — modelled) z., against estimated
exposure (traffic flow — IPF) z.,, for small dataset on log-Normal exposure model
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Figure 4.9: Modelled exposure (traffic low — modelled) z.,, against estimated
exposure (traffic flow — IPF) z.,, for small dataset with unnormalised induced
exposure data as an input on log-Normal exposure model
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Large road data

The large road dataset is made up of information from 12 years (1999-2010), six
car types and three road types.

Four different prior distributions on 72 and A? (shown in Table 4.13) have been
used to produce four separate estimates. The first prior set (Prior 0) demonstrates
the result of giving each part of the model equal weight. The specified priors
(shown in Table 4.13) give approximately equal weight to the two parts of the
model (shown in 4.13) with an a priori relative error of around 60%. That is,
we expect that the error in logx and log e to be around 60% of their respective

means.

The other three prior sets give less weight to the second part of the model, as
we are less certain about the model representing the induced exposure data (e).
Priors on 72 represent the uncertainty we feel in the model assumption that the

2 are generated with the beliefs

car and road does not vary by year. Priors on 7
that relative errors in log x of around 20%, 10% and 5% respectively (Prior 1, 2
and 3) exist and represent a 95% a priori probability on logx (7 = 0.1, 7 = 0.05,

7 =0.025), i.e. diffuse, less diffuse and precise.

Priors on A\? must be less certain as the uncertainty we feel in this model is based
on the fact that e is based on a small survey. Priors on A% are generated with the
beliefs that relative errors in e of around 40%, 20% and 10% respectively (Prior
1, 2 and 3) are appropriate and represent a 95% a priori probability on loge
(A=0.2, A =0.1, A = 0.05), i.e. diffuse, less diffuse and precise.

Results discussed below are for the diffuse, weighted prior (Prior 1) unless other-
wise specified, as mean results are very similar for each prior. Equivalent results

for less diffuse priors (Priors 2 and 3) are shown in Appendix C.

Using a series of informal convergence monitors and a series of different starting
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Table 4.13: Prior values for log-Normal exposure model on 12 year dataset

Prior 0 Prior 1 Prior 2 Prior 3

Bo 0 0 0 0
os 1000 1000 1000 1000
o 0 0 0 0
o, 1000 1000 1000 1000
T 5.0 5.0 5.0 5.0
T 05  0.06 001 0.003
A 3 3 3 3
N 0.25 0.1  0.025  0.007

values, it has been possible to see that convergence is likely to have occurred after
1000000 iterations. 9000000 further iterations have been run and every 100th

iteration stored.

Figures 4.10 and 4.11 compare the results from the MCMC to the heuristic pro-
portionally fitted estimated flows described in Section 4.2 for 4x4s. 95% errors
bars show the spread of the results in the MCMC. These show that the heuristic
IPF estimate gives equal weight to each part of model. Assuming a weighted cer-
tainty about each part of the model (as the diffuse prior does) results in different
estimates, for example for 4x4s, the modelled values are lower on A roads and

Minor roads, shown in Figure 4.11.
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Figure 4.10: Modelled exposure (traffic flow — modelled) ., against estimated
exposure (traffic flow — IPF) for 4x4s with equally weighted prior (Prior 0)
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Figure 4.11: Modelled exposure (traffic low — modelled) z.,, against estimated
exposure (traffic flow — IPF) for 4x4s with unequal weight and diffuse prior (Prior

1)
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Figures 4.12, 4.13 and 4.14 show the modelled mean values of z., that result
from the simulation with the diffuse prior, for Motorways, A roads and Minor
roads respectively. These values represent an estimate of the log of the number
of billion vehicle kilometres travelled by each car type in each year on each road

type, which we call disaggregated exposure data.

Motorways

—F— 4xd

-4~ |arge saloons
—-+-  Medium saloons
—— Minis

4 -&- Sports cars
=% Small saloons

AR R g Y T Y

S_M

O oo

In{traffic) { billion vehicle kilometres)

1999 2001 2003 2005 2007 2009

Figure 4.12: Modelled disaggregated exposure log(traffic) z.,. by year and car
type on Motorways from log-Normal exposure model with diffuse prior

Some clear patterns from the different datasets show up. Overall traffic levels on
Motorways are considerably smaller than the other road types, Minor roads follow
as 4x4s, large saloons and sports cars all contribute only a small amount of traffic

on these roads, followed by A roads where a small majority of the traffic travels.

In magnitude, the car types split into two groups: 4x4s, large saloons and sports
cars; and medium and small saloons and minis, with the amount of traffic due to

the first group being substantially lower than that from the second group. The
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Figure 4.13: Modelled disaggregated exposure log(traffic) z., by year and car
type on A roads from log-Normal exposure model with diffuse prior

separation between the groups varies by road type with the separation biggest
on Minor roads where the smaller cars (medium and small saloons and minis)
are more likely to travel more than the larger cars (and sports cars). Within
each of these groups the pattern varies depending on the road type with small
and medium saloons making the biggest traffic contribution on Motorways, minis
contributing most on A roads and small saloons (and minis by the end of the
time period) being most prominent on Minor roads, although this may just be a

function of the variability within the induced exposure data.

The traffic growth of 4x4s is considerable across all road types, such that, by the
latest year, it is closer to the larger group than the smaller one. In addition, there
are emerging patterns of traffic growth for minis and, to some extent, sports cars

and some evidence of decline in the other car types.
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Figure 4.14: Modelled disaggregated exposure log(traffic) z.,. by year and car
type on Minor roads from log-Normal exposure model with diffuse prior
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Figure 4.15 shows the distributions of some of the other modelled parameters after

1000000 iterations.
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Figure 4.15: Densities of unknown parameters (every 100 iterations from 1 to 10
million) from log-Normal exposure model with diffuse prior

In Figure 4.15 x11; represents the exposure for 4x4s in 1999 on Motorways, 350
represents the exposure for 4x4s in 2010 on A roads, (33 is based on medium

saloons on Minor roads and «s is the road parameter for A roads.
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4.6 Estimating the distribution of the results

4.6.1 Introduction

The results from the MCMC on the large dataset (10000 000 iterations collected
every 100 over 216 parameters) are intended for use in modelling accident rates as
described in Chapter 5. As we are uncertain about the exposure, the uncertainty
needs to be included in the accident rate models. The following section reviews if
the exposure data fit a known distribution, in particular if Multivariate Normality

can be assumed. Results discussed below are for the diffuse weighted prior (Prior

1).

4.6.2 Multivariate Normality

Informal checks show that pairwise histograms of log & produce distributions sim-
ilar to a bivariate Normal (e.g. see Figure 4.16), and univariate Normality is
confirmed by plotting histograms for each element of log  however this does not

confirm Multivariate Normality.

It should be noted that the covariance of all 216 parameters is singular due to
the restrictions on the model: x,, was known and placed a restriction on xy,
throughout the modelling process. The final 36 parameters represent the final car
type. The data have been transformed to take account of this singularity, for the
purposes of determining whether a standard statistical distribution can be found

to approximately represent the exposure parameters:
Xeyr = log Teyr — log xcyr

There are many tests referred to in the literature for testing Multivariate Normal-

ity and a few are implemented in R: the Shapiro-Wilks Normality test (Shapiro
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and Wilk 1965) is extended for Multivariate Normality; a joint normal test for
Multivariate Normality based on analysing Mahalanobis distances (Mahalanobis

1936); and Mardia’s Test for Multinormality (Mardia 1985).

All the tests and Figure 4.17, an output from the joint normal test, suggest that

Multivariate Normality should not be assumed.

4.6.3 Multivariate t-distribution

Figure 4.17 suggests that the distribution from the diffuse weighted prior may
have heavier tails than a Multivariate Normal distribution allows. An obvious
alternative distribution is the Multivariate t-distribution. No specific Multivariate
t-distribution goodness of fit test has been found and so the following is a derived
test for Multivariate t based on the Mahalonobis distance. This is a generalisation

of Hotelling’s T? statistic (Hotelling 1931).

Assume y ~ MV N,(0,%) where p is the number of dimensions and u ~ X7 where

k is the degrees of freedom, then
i
Y\ - =7 —p
u

x~ MVitp(p,X)

and

Therefore

x—p~ MVt (0,%)

Let ¥ = LL™ be the cholesky decomposition of ¥ then

z=L"x —p) ~ MVt(0,1)
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Figure 4.16: Bivariate distribution of log exposure for 4x4s on Motorways in 1999
with log exposure for sports cars on Minor roads in 2010
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Figure 4.17: Residual plot for X, in MVN test
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and

2lzfp= (L‘ly\/gy (L‘ly\/g) /p

kopoo
= =y LTy /p

k
=—y'S7y/p
u
_ /P
Xi/k
= F(p, k)

which implies that

}9@: — TS (o — ) ~ F(p, k)

where > ~ %E and X is the sample variance.

QQ-plots for a range of k are shown in Figures 4.18. These plots suggest that
k = 60 may be a good fit.

4.6.4 Best value of k

A range of k values appear to give different QQ-plots and so we determine the
best k where the correlation between the data and the theoretical quantiles is
highest and the sum of the distance between the data and theoretical quantiles
shown in the QQ-plots is the least. We then generate random t-distributed val-
ues to determine approximate acceptable confidence intervals and compare these

intervals to the correlation and distance values.

Correlations

For a range of k, the correlation between the exact and test quantiles (in the QQ-
plot) are calculated. Table 4.14 shows the correlations for a selection of different

k values and a 95% confidence interval generated from randomly simulated F
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Figure 4.18: QQ-plots of exposure data on log-Normal model with diffuse prior
against MVityy to MVtgy distributions
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distributed variables. The highest correlation is 0.9993 which occurs when k = 47,
and correlations throughout the pictured range are within the simulated 95%

confidence intervals.

Table 4.14: Simulated confidence intervals for correlations between exact and test
quantiles in QQ-plots for testing MVt for exposure distribution X, over range
of k

Test Lower 2.5th  Upper 2.5th

correlation  percentile percentile k
0.9640 0.9445 0.9991 10
0.9932 0.9859 0.9994 20
0.9981 0.9908 0.9995 30
0.9992 0.9934 0.9996 40
0.9993 0.9948 0.9996 50
0.9991 0.9955 0.9996 60
0.9987 0.9958 0.9996 70
0.9983 0.9963 0.9996 80
0.9978 0.9965 0.9996 90
0.9974 0.9965 0.9996 100

Figure 4.19 shows the range of correlation values from k£ = 15 to k£ = 100 with

associated confidence intervals.

Variance about the QQ-line

The correlation statistics show that values of k from 20 to 100 all give satisfactory
measures of noise about the linear relationship, however it does not show that the
linear relationship is of the expected form where the data and theoretical quan-
tiles match. To determine whether any of the k values produce satisfactory QQ
relationships, we have computed the sum of the absolute difference between the
theoretical and data quantiles. A series of Multivariate t-distributed datasets of
different k values have then been generated in order to simulate a 95% confidence

interval range of acceptability.

Table 4.15 shows the results of the comparison between the data and exact quan-
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Figure 4.19: Plot of test correlations for testing MV't;, of exposure model posterior
distribution over range of k — diffuse prior

tiles for a mixture of k values, and the associated acceptability bands. The degrees
of freedom £ with the smallest sum is & = 57, with a difference sum of 4.5. Com-
paring this to a set of randomly generated quantiles suggests that differences from

k = 45 to k = 70 are approximately within a simulated 95% acceptability range.

Figure 4.20 shows the range of absolute differences between the exact and test

quantiles for k£ = 20, ..., 200.

For the purposes of the modelling accident rates we propose a value of £ = 50 for

each prior.

4.7 Additional car age exposure information

It has been hypothesised (Broughton 2009) that the recession in 2008-2009 in
Great Britain may have resulted in a change in the distribution of car ages. A

reduction in the number of people buying new cars results in an increase in the
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Table 4.15: Simulated confidence intervals for absolute variance from QQ-plot line

for testing MVt of exposure model posterior distribution (3210 | ¢; — ¢, |) over

range of k

Test Lower 2.5th Upper 2.5th

difference  percentile percentile k
283.1 15.9 57.1 10
113.1 9.0 31.5 20
56.5 6.9 24.5 30
26.6 5.8 20.8 40

8.9 5.2 18.7 50
4.9 5.0 17.5 55
4.6 4.9 17.8 56
4.5 4.8 17.3 57
4.8 4.8 174 58
5.5 4.8 17.3 59
6.3 4.8 16.9 60
16.0 4.4 15.8 70
23.7 4.3 15.0 80
29.9 4.0 14.3 90
35.1 3.9 14.0 100

180
|

100
|

Absolute difference

Figure 4.20: Plot of absolute variance from QQ-plot for testing MVt of exposure
model posterior distribution over range of k — diffuse prior
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overall age of the car fleet. Cars designed more recently tend to be designed
to a higher safety standard and have better secondary safety features (airbags,
automatic braking, electronic stability control etc.) than those designed in the
past. Therefore an increase in the vehicle population’s age reduces the safety of
the fleet and may result in more, or more severe, accidents. In this section we
describe extending the exposure modelling results for year, car type and road type
to include car age to enable us to estimate the effect of possible changes of car

age on accident rates.

Additional data have been received from the DVLA which contain the number
of registered cars by year of first registration and car make and model by year.

These data are described in Section 1.3.2.

A simple Gibbs sampler based on a log-Normal model adds some uncertainty to
these data:
loga ~ N(0,6%)

generates a posterior distribution for log a.,,: the log of the number of registered
cars by year (y), car type (c¢) and car age (¢ = 1,...,G) given an uninformative
prior on 0y,:

0 ~ N(6o,0)

where 8y = 0 and o7 = 10, and an a priori relative error of 25%:
62 ~ IG (84, 65)

where 6, = 4 and &, = 0.05.
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The joint posterior distribution
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The results of this model have been proportionally distributed over the large

exposure distribution generated in Section 4.5 to give tyq = ZOCEgy X Teyr Which
g Y9

is used in Chapter 5.

Due to the restrictions on data we have necessarily assumed some constant inter-
actions, for example, the distribution of age groups across road types is constant:
mathematically these restrictions are on interactions teygr, tegr, tygr and tg,.. Con-
sequently the covariance matrix for ., is singular and it is not possible to test

for Multivariate Normality as we have for z.,, in Section 4.6.

4.8 Discussion

In this chapter we used a Bayesian approach to model flow data disaggregated
by car type. The Bayesian methodology allows us to gain information on the un-

certainties in the exposure data through the priors, and results in flow estimates
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with their associated uncertainty. Four models were considered which incorpo-
rated traffic flow data, registered vehicle data and induced exposure data. Ini-
tially a computationally convenient model was defined which did not use induced
exposure information. This model required the assumption that the distribution

of car types across different road types was the same.

A second model introduced induced exposure data which removes the need for
this unjustified assumption. Exposure was modelled with a truncated Normal
distribution, using two sets of priors: an imprecise and a precise set. MCMC was
used to show that the precise priors produced tighter and more accurate results,
and the imprecise priors led to very vague predictions. This suggests that the
analysis is sensitive to the prior — there are certain aspects about which little
learning is happening and we use the prior to inform these, such as the weighting
applied to each dataset, but we learn from the data about other aspects. The
need for a nuisance parameter, a, in the induced exposure part of this model was

removed in the subsequent model, but large uncertainty remained.

In our final model we used the log-Normal which is a more natural way of mod-
elling strictly positive numbers than the truncated Normal. Results based on
the simulated data and two real datasets showed good convergence and matched
expected results. The log-Normal structure is more convenient for deriving ap-
propriate priors which leads to more sensible confidence intervals. The results on
the full dataset clearly showed the emergence of a quickly increasing trend in 4x4

traffic.

Of the three datasets used in this paper, we are most sceptical about the reliability
of the induced exposure data. We therefore apply large prior variances on these
data. This leads to large variances on the final estimates. With more reliable
study information a more optimistic prior would reduce the overall confidence

intervals on the final estimates of exposure.
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Car age data is added in at a second stage once the combination of year, road
type and car type has been derived. Each two way interaction (car type and road
type from the induced exposure e, car type and year from the registered vehicle
data z., and year and road type from the known traffic data x,,) is available in
the initial combination of data and we therefore need to make few assumptions in
deriving the three way exposure data z.,,. Car age is added at a separate stage
as one of the two way interactions does not exist (car age and road type) and
we make the necessary assumption that cars of different ages are representatively

spread across different road types.

Data estimating the two way interaction car age and road type are in theory
available from the induced exposure dataset; we could determine the distribution
of the age of cars on different road types based on the age of the cars not at fault in
accidents. This however is flawed as we know that older cars involved in collisions
are more likely to result in serious injury to its occupants than newer cars. In this
case the induced exposure cannot be assumed independent of accident data and

therefore cannot be used.

Each of the four datasets tell part of the story and so in combining these data
the result is more flexible for analysis and more appropriate for modelling than
using any of the datasets individually. These new estimates of exposure by year,
road type, car type and car age can be used to monitor car traffic trends and can
be applied to any car accident analysis which requires the use of accident rates.
Any future analyses of different car sizes similar to that in Knowles et al. (2007);
Starnes and Longthorne (2003); Broughton (2007); Keall and Newstead (2007)
could use these data or the method to improve the analysis. The modelling
process can be extended for additional years and could be extended to include
rural and urban road types within the road types used here but is limited to the

six car types due to current data constraints.
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We use these results in Chapter 5 to generate accident rates.
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Chapter 5

Accident rate modelling

5.1 Introduction

The main purpose of exposure data in road accident analysis is to determine
whether accident numbers are high or low relative to a measure of how often a
particular scenario occurs. For example, the number of sports cars involved in
accidents may be small, but the total number of kilometres driven by people in
sports cars is also small relative to the number of other cars. Accident numbers
relative to the number of vehicle kilometres driven, that is an accident rate, will
be used for analysis. The more detailed the exposure data, the fewer assumptions
or limitations there are in the interpretations. Other alternatives to exposure
include number of registered vehicles, length of road and population, although all

of these options have limitations.

Up until now, exposure data in vehicle kilometres has been restricted to vehicle
type (car, LGV, HGV, motorcycle etc.), year, month and time of day, and road
type. When evaluating the relative risk of different car types, for example, being

involved in an accident, other measures of exposure have been used. In Chapter
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4 we have shown that it is possible to disaggregate vehicle kilometre data in
its given form to encompass other variables and generate estimates for vehicle
kilometres by car type and car age with associated probability distributions to
reflect uncertainty. The risk of each car type in each age group to be involved in

an accident can now be calculated relative to respective distances travelled.

5.1.1 Data

Accident data have been retrieved from the British personal injury road accident
database STATS19, described in Section 1.2. The model detailed here is based
on a subset of the STATS19 data containing killed or seriously injured (KSI) car
occupant casualties involved in single vehicle accidents over a 12 year period from
1999-2010. This subset contains information on 45394 accidents. This specific
subset was chosen in order to investigate the hypotheses given in Broughton and
Buckle (2007) and in particular to assess whether the rise in the number of 4x4

accidents occurring at bends from 1999-2006 was offset by the rise in 4x4 traffic.

5.1.2 The basic model

Accidents S are assumed to be Poisson distributed with some overdispersion (as
discussed in Mitra and Washington 2007, among many others) and are modelled
in a full factorial Poisson log-linear model with the simulated exposure data as an
offset. We model car KSI accident rate (relative to an offset of exposure t.,4.) by
variables year y (1999-2010), car type ¢ (4x4 to sports), car age g (new to old),
bend b and road class r (Motorways, A roads and Minor roads). Mathematically
this is
Seygrv ~ Po(Xeygrd)

log(chgrb) = log(tcygr) + 50 +7lel + 2y + yslg] +alr] +F b+ -+ Veygrb
= log(t) +v; Xi; +
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where t.,4, is traffic in billion vehicle km by car type, year, car age and road class
modelled from the MCMC model in the large road data part of Section 4.7 — we
make the necessary assumption that exposure at bends is the same as exposure
not at bends due to data limitations. ; is a vector of dimension C' representing
the car type coefficients, v, is a constant representing the year coefficient, 73 is
a vector of dimension G representing the car age coefficients, 7, is a vector of
dimension R representing the road type coefficients, 75 is a constant representing
the effect of bend and ... represent higher dimension interactions. 7 [1], v3[1] and
74[1] are constrained to 0, ¥ ~ N(0,07,) is the overdispersion parameter and X

is a design matrix.

Parameters are given uninformative diffuse priors:

75 ~ N(0,100)

ol ~1G(0.01,0.01)

With five variables and all associated interactions, there are too many possible
models to assess the appropriateness of each model. For the purposes of this thesis
we restrict ourselves to two-way interactions only and employ a search strategy

to search over possible models.

5.2 Model selection

5.2.1 Search strategy

Here we base the model choice on a Bayesian marginal likelihood method where
marginal likelihoods are computed using the Laplace approximation (see Section
3.9.3). In Section 4.7 we discussed that it was not possible to estimate t.,,, using

a standard distribution due to internal conditional independences. We therefore
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account for the variability in the exposure data by randomly selecting a number of
draws from the posterior distribution of ¢4, and run the model selection algorithm

on each draw rather than including it in the marginal likelihood representation.
The search strategy is a repeated 10 step process:

1. Pick a draw from the posterior distribution of ¢,

2. Compute the marginal likelihood of the main effects model.

3. Add each two-way interaction individually to the main effects model and
estimate the marginal likelihood.

4. Calculate the model probabilities for the set of models in the previous step.

5. Accept the model with the highest model probability.

6. Register any models with a model probability which is higher than 75% of
the highest model probability.

7. Add each remaining two-way interaction individually to the best model from
step 5.

8. Repeat from step 4 until a full model is reached.

9. Repeat the process for any models registered in step 6.

10. Repeat the whole process (drawing a different ¢.,,.) n times.

Model probabilities are calculated (weighted appropriately to take into account
registered models) for all the models tested and the best model or models are

chosen.

5.2.2 Marginal likelihood approximation

Estimation of the marginal likelihood uses the Laplace approximation (described
in Section 3.9.3) on the posterior distribution derived below to find the highest

marginal likelihood. Here we use i as an index representing the combined indices
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5.2.3 Results

Table 5.1 contains a subset of the results from the model selection strategy (the
complete table is shown in Appendix D as Table D.1) for one exposure run.
The added two-way interaction is shown in column 2 followed by the estimated
marginal likelihood and associated model probability in columns 3 and 4. Column
5 shows the BIC value for comparison. Results based on a selection of further
exposure runs resulted in selection of the same models with similar weights. There
was one model registered’ — model 43 had a model probability very close to model
45. We ran further models adding in interactions from model 43 which resulted

in the same choice of high probability models.

The two models which have been selected (based on the marginal likelihoods) are
models 43 (M E+cr+yg+rb+cg+gr+cb?®) and 45 (M E+cr+yg+rb+cg+gr+yb).
These models include 97% of the model probability and the results from each
model will be averaged to give an overall severity rate for each category. The BIC
would have selected the more complex model 54: M E + ¢r +rb+ cg + yg + gr +
yb+ cb+ cy + yr.

'Models are registered if they have a model probability which is higher than 75% of the
highest model probability within one step of the model selection strategy (see Section 5.2.1)
2ME is the main effects model
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Table 5.1: Subset of marginal likelihoods and model probabilities for accident rate
model selection

Marginal Model
Model likelihood choice BIC
ME + cr + rb + cg + yg

36 +cy 40738.8 0% 12353.8
37 +cb 40746.5 0% 12357.2
38  H+yr 40744.6 0% 12362.6
39 +yb 40748.2 0% 12361.3
40 +gr 40749.1 1% 11989.6
41 +gb 40743.4 0% 12378.8
ME +cr +rb 4+ cg + yg + gr

42 +cy 40747.1 0% 11978.6
43 +cb 40753.7 48% 11982.1
44 +yr 40746.6 0% 11983.1
45 +yb 40753.7 49% 11986.1
46 +gb 40744.0 0% 12015.6
ME + cr +rb 4+ cg + yg + gr + yb

47 +cy 40743.5 0% 11974.7
48  +cb 40750.5 2% 11979.5
49 +yr 40743.6 0% 11980.9
50 +gb 40740.8 0% 12011.0

5.3 Modelling accident rate with mean exposure

Initially a model is fitted with a fixed exposure variable: the mean values from the
exposure model shown in Figures 4.12, 4.13 and 4.14. Posterior distributions have
been generated in winBUGs (Lunn et al. 2000) based on 100000 iterations, with
a thinning frequency of 10 and the first 100 samples were removed for burn-in.

Informal convergence monitors suggest convergence has been reached.

As it is a large model, the parameters are shown in Table D.2 in Appendix D. A
large 035 value shows, as is common with accident data, that there is overdispersion

in the data.

Figure 5.1 shows the model averaged accident rates for each factor split into its
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categories. We replicate all accidents within each factor and so each accident is

represented five times in Figure 5.1 and the following similar graphs.
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Figure 5.1: Medians and 95% posterior intervals of model averaged accident rates
for single vehicle car accidents by main factors in fixed exposure model

The accident rate for killed or seriously injured (KSI) car occupants is considerably
higher on A roads and higher still on Minor roads relative to Motorways. This is
consistent with findings in the annual report of road casualties (Department for
Transport 2011) for all vehicles and severities, albeit more extreme than here: we
observe a relative KSI accident rate for A roads and Minor roads of around 2.5
and 3.5 times bigger than Motorways, whereas for all vehicles the relative accident
rate for A roads and Minor roads are around 6.0 and 7.5 bigger respectively
(Department for Transport 2011). KSI accident rates for car occupants are highest
for minis and superminis with a rate twice as high as 4x4s and people carriers.
This is consistent with findings in Knowles et al. (2007). Older cars have higher
accident rates, most likely due to continual improvements in protection within
cars perhaps making a fatal or serious accident in an old car into a less severe

accident in a new car.
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As this model does not take into account the uncertainty in the exposure, the

variability around the estimates is considerably underestimated.

5.4 Modelling accident rate with variable expo-

sure

5.4.1 Generating exposure and rates in simulation

In order to propagate uncertainty from the exposure model into the accident rate
model we must incorporate the exposure posterior distribution into the accident
rate MCMC using the basic model form described in Section 5.1.2. In a standard
MCMC structure with both the uncertain exposure distribution and the accident
data as inputs, the MCMC would update everything and we would learn about
the exposure data from the accident data (and vice versa). It is the different rela-
tionships of these two concepts, exposure and accidents, across the different road
user groups which is of interest here so we made the prior decision that accident

data will not be used to update uncertainty about the exposure distribution.

There are two main computational methods for incorporating uncertain exposure
into the MCMC without allowing this distribution to be updated by information
from the accident rate model. Firstly, in WinBUGs, it is possible to generate a new
draw from the exposure distribution in each iteration separately from updating
the accident rate model and therefore not allow information from the accident
data to update the exposure distribution. This requires the exposure distribution

to be represented as a functional form.

In Section 4.6 we showed that the traffic exposure measure over year, road and
car type could be represented by a Multivariate t-distribution with 50 degrees

of freedom. Due to restraints on the data, it was not possible to represent the
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larger exposure measure t.,, using a simple statistical distribution. However it is
possible to generate a MVt-distribution over z.,, followed by a Normal distribu-
tion over a.,, and calculate the combination described in Section 4.7 within each

MCMC iteration.

Alternatively and for reasons of computing time here, we select a scenario ap-
proach where each MCMC accident rate model is run over a series of different
exposure runs (t.,,,) generated in the exposure modelling process. We combine
the resulting accident rate models as described in Section 5.4.2 using a model aver-
aging process. The MCMC was run for 5000 iterations over each of 300 randomly
selected exposure runs from the posterior distribution of the exposure modelling
process. For each model over each exposure run a thinning frequency of 10 was

applied and the first 100 iterations were removed for burn-in.

5.4.2 Model results

We have used WinBUGs (Lunn et al. 2000) to run a total of 150 000 iterations over
a selection of 300 randomly selected exposure runs for each high probability model
(models 43 and 45) derived in Section 5.2.3. We give parameters uninformative

priors and model average over the two models.

Once again, we show the median and standard deviations of coefficients for the
two high probability accident rate models in Appendix D, in Table D.3. The
standard deviation values for each coefficient are considerably larger than those
in Table D.2 as these models now contain variability from the exposure measure.
Figure 5.2 shows the accident rates and respective posterior intervals for each
factor. The pattern of the means is similar to that shown in Figure 5.1 except

that the median rates for 4x4s and large saloons have swapped over.

We assess the model fit with a posterior predictive check: across the 2 160 combi-
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nations of the five factors, the observed accident numbers fall within the predicted
confidence bands in 92.8%, however these confidence bands are large. For exam-
ple, for all single vehicle car accidents occurring in 2010, the model estimates that
the accident rate (per billion car km) was 7.7 with a 95% posterior range from 1.6
to 25.5. A range this large is not that useful for future predictions, so in Section

5.4.3 we investigate reducing the variability.
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Figure 5.2: Medians and 95% posterior intervals on accident rates for single vehicle
car accidents by main factors with variability in exposure

5.4.3 Reducing variability

In Section 4.5 we estimate the exposure for the large dataset on four different sets
of priors, getting progressively more certain about the data. Up until now we have
used the results from the most diffuse prior. In order to increase the use of any
future predictions using these models, we have reduced the estimated uncertainty
in the exposure measure, thereby reducing the variability in the posterior estimates
of the accident rates. Figure 5.3 shows the equivalent graph to Figure 5.2 over this
reduced uncertainty. In general the posterior intervals have reduced by around

40%. The estimate for large saloons has increased, and it is thought that this is
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due to the small number of large saloon accidents meaning that only small changes

are required to result in big variation in the accident rate.

100

o0
80

70

60

50

40

30

Single vehicle accident rate
per billion car km

20

10

A |—

Aud |

arga
small
mini
sport
1999
2000
2001
2002
2003
2004
2005
200/
2007
2008
2009
2010
0-2 | T
3-5 | = —
6-10 | —f————
11-15
16+
I
minar
no
Vas

medium |[*=—

“1

Car size Year Carage Road |Bend

Figure 5.3: Medians and 95% posterior intervals on accident rates for single vehicle
car accidents by main factors with reduced variability in exposure measure

5.5 Introducing economic factors

It has been suggested (Broughton 2009) that the economic position of the country
affects the number of severe road accidents that occur. In particular, in times of
recession there appears to be drops in the number of fatal accidents which are
not possible to explain with other factors. Here we use a measure of economy
(GDP per capita, described in Section 1.3.5) to replace the linear factor year to
investigate whether economy is a better predictor of fatal and serious accident

rate for single vehicle accidents.

Table 5.2 contains the marginal likelihood values for each high probability model,
firstly with the factor year (from Table 5.1) and secondly from the model with

economy replacing year. These latter values are considerably lower than the year
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model and show that introducing this measure of economy does not improve the

model.

Table 5.2: Comparison of marginal likelihood values for high probability accident
rate models including factors year or economy

Model Year model Economy model
ME + cr +1b 4+ cg + yg + gr
43 +cb 40753.7 40689.4
45 +yb 40753.7 40692.7

This may be due to the pattern of road accident numbers in relation to the shape
of the economy measure over time — in general the number of road accidents de-
creases over time, with a sharper drop in fatal accidents in times of recession. The
economy measure increases in general, with drops in times of recession. Alterna-
tively the increased drop in fatal accidents may not have been big enough to have
affected the trend in the number of serious and fatal accidents. We expect that
the trend in the number of fatal accidents may be affected by the economy, and

this is investigated in Section 6.4.

5.6 Discussion

The accident rate model discussed in this chapter uses the modelled exposure
data to derive accident rates across many more categories than have been possible
previously. Due to the further disaggregation of exposure data, accident rates for
car type, car age, road type and year concurrently can now be estimated, and
include associated uncertainty propagated through from the exposure measure
derived in Chapter 4. These rates have been modelled as a Poisson model with

exposure as an offset.

The model selection process, using Laplace approximation to estimate the marginal

likelihoods, showed that two models with interactions between car type and road
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(cr), year and car age (yg), road and bend (rb), car type and car age (cg), car age
and road (gr) and either car type and bend (¢b) or year and bend (yb) were the
best fit from the set of models with two way interactions. The results of the two
models have been averaged to give overall accident rates for each combination of
the five main effect factors car type ¢, year y, car age g, road type r and bend
b. The median accident rates suggest that these particular groups have higher

accident rates than others:

e minis and superminis, and sports cars compared to other car types;
e older cars;
e accidents occurring on Minor roads relative to other road types; and

e accidents in earlier years.

Interpreting the effect of bend on accident rate is not possible at this stage as there
exists no data on the prevalence of bends, or indeed the definition of a bend, on
roads and therefore we have made the simplifying assumption that drivers spend
as many miles driving around bends on each road type — an assumption which we
know not to be true and which shows up in the interaction bend and road type

discussed below.

In Chapter 2 we discuss the relationship between accident numbers and rates,
and how it is important to consider both when evaluating results by categorising
points into high, medium and low priority as shown in Figure 2.1. High rates
and counts are high priority for interventions. Figure 5.4 presents the median
results based on the main factors car type, car age and road type. Obviously
these results have some variability associated with them, but these are large and
make it difficult to observe the main picture. Figure D.1 in Appendix D shows

these for the factor car type.

The car type data (red points) suggest that minis should be targeted — they have

both a high accident count and rate relative to the other car types. Small saloons
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Figure 5.4: Relationship between modelled posterior median accident rates and
accident propensities for factors car type, car age and road type

and sports cars fall into the medium category with high propensity, low risk
and low propensity, high risk respectively. As discussed in Section 2.1 these are
difficult to deal with effectively and economically. The remaining three categories
are relatively low risk and low propensity. For age groups (blue points) cars aged
11-15 years are relatively high risk and high propensity making these the most
obvious category to target, although older cars also fall into the high risk group.
By road type (green points), A and Minor roads appear to be equivalent in terms

of risk, but accidents occur more often on Minor roads.

There were six interactions in both models, of which five were consistent. The
model averaged accident rates for these five interactions (in the fixed exposure

model, for demonstration purposes) are shown in Figure 5.5.

The first figure contains the interaction between car type and age and shows that,
for all but sports cars, the accident rate is higher for older cars than younger cars.

For sports cars the pattern is slightly different with cars in the oldest category
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having a lower accident rate than all other ages. This category is likely to contain
‘classic’ cars and these will generally be used in different driving conditions and
with different driving styles than ‘old’ cars. We have not included this sort of

variability in the exposure data.

The graph at the top right of Figure 5.5 shows the accident rates for the interaction
between car type and road type. For all car types Motorway accident rates are
considerably lower than other roads. In general the accident rate on Minor roads is
higher than that on A roads (except for medium saloons where it is approximately
the same); for some car types (minis and large saloons in particular) the accident

rate on Minor roads is considerably higher.

In the second row of graphs, the interaction between road and bend shows that
the numbers® of accidents at bends and not at bends are much closer on Minor
roads than A roads and Motorways, and this is due to the fact that Minor roads

have more bends.

The accident rates for the interaction of car age with road type is shown in the
fourth graph in Figure 5.5. It shows that as cars get older the difference in
accident rate across the road types increases. This may be due to a limitation in
the exposure data which does not allow for different road use by older and younger
cars; due to data limitations we had to assume that the use of all aged cars was
the same across different road types. It is likely that younger cars are more likely
to be driven on larger roads (i.e. Motorways and A roads) than Minor roads, and

this may account for some of the differences seen in this graph.

The final graph shows the changing spread of accident rates by age group across
the 12 year period. In the early years the difference in accident rate between
the younger cars (up to 10 years old) and older cars (11 or more years old) was

considerably bigger than in 2010. This pattern is discussed in Section 1.3.2 and

3Exposure at bends is unknown so we have assumed equal exposure at and not at bends
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Figure 5.5: Medians and 95% posterior intervals on model averaged accident rates
on fixed exposure for model interactions car type and age, car type and road type,

road type and bend, car age and road type, and car age and year
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is thought to be due to improving secondary safety features.

We encompass three levels of variability in the exposure data in three separate
models; firstly we assume that the exposure measure is fixed and has no associated
variability, next we assume a large amount of variability based on a diffuse prior
specification for the exposure model in Section 4.5 and finally a reduced variabil-
ity based on a tight prior for the exposure model in Section 4.5. In general the
mean accident rates show the same pattern however the variability in the poste-
rior intervals vary by model. The fixed exposure model results in approximately
symmetric intervals of size around 60% of the median. The diffuse (Prior 1) expo-
sure model variability is much larger as it encompasses variability in the exposure
measure. These intervals are positively skewed and are of size around 300-400% of
the median. The precise (Prior 3) model also results in positively skewed intervals
which are in general of length around 200-300% of the median. Both the diffuse
and precise models lead to very uncertain results and this shows how difficult it is
to generate useful estimates and future predictions whilst incorporating all known

uncertainty.

We attempted to improve the model by replacing the constant factor year with a
measure of economy. Successive recessions have coincided with significant drops
in the number of fatal accidents and we investigated whether we could show a
correlation between fatal and serious accidents and a measure of economy. In this
case the model containing economy as a factor rather than year was not as good
a model and this suggests that the rapid decrease in the number of fatal accidents
over the recession is not sufficient to have affected the overall trend in fatal and
serious accidents enough to notice an effect. An investigation into severity rates

in Chapter 6 will develop this investigation.
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Chapter 6

Accident severity modelling

6.1 Introduction

The third modelling task is defined to assess the severity of an accident once it
has occurred. Here we assess whether a number of factors can be used to predict
whether the most severely injured car occupant in a single vehicle accident is
seriously or fatally injured. We use the single vehicle accident dataset (based on
STATS19) where at least one car occupant has been fatally or seriously injured. In
addition to the factors used in Chapter 5 (car type, year, car age, road and bend)
we also know whether the most severely injured occupant was fatally or seriously
injured and we introduce a variable which defines whether the car overturned:
Broughton and Buckle (2007) suggest that the number of cars overturning was an

accident type of concern in the mid to late 1990s.

The model is derived to estimate the proportion of all accidents where a car
occupant is killed or seriously injured (S) which are fatal (F'). A simple binomial

model uses the logit link to regress on each of the main effects and appropriate
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interactions X for each of I categories! . The unknown coefficients are represented
as ¢; where j = 1,...,J and are estimated using Bayesian parameter estimation

techniques.

logit(p;) = Zd)J g t=1,...1

6.2 Model selection

A model selection process, similar to that described in Section 5.2.1, is used to
assess which model is best. We assume that each main effect (car type ¢, year
y, road r, car age g, overturn o and bend b) is necessary and use the Laplace
approximation (described in Section 3.9.3) on the posterior distribution derived

below to find the highest marginal likelihood.

The joint posterior distribution is a combination of the likelihood:

exp(2_; ¢ X)) " 1 o
p(F | @) 1:[ (1 +exp(d_; ¢sz']')> (1 +exp(3; 6;Xy5) )

—Hexp{ZqﬁjXUF F1og<1+exp ZQSJ D
}
)

)
)

— (S; — F;) log (1 + exp

= Hexp {Z ;i X;jF; — S;log (1 + exp

la category is a combination of factors where there is a least one accident
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and the prior: ¢; ~ N(¢o, 035)

where Q@ =[], = 7= = (2m)” 42 d = max(j) giving

p(p| F) /Hexp{zqs]XUF Slog<1+epo¢J J>}

R Hep{ ( f“)}cw

X Q H/GXP{ (¢ XijFy — Silog (1 + exp[o; Xy5]))

$; — ¢o
2( j% ) }d¢

As described above, the integral is approximated using Laplace approximation.

With six main effects the number of interactions is large and therefore we simplify
the problem by assuming only two-way interactions are of interest and applying
a search strategy. The results of the search strategy are shown in Table 6.1 and

are referred to by model number in the following strategy:

1. Estimate the marginal likelihood for the main effects model (1).

2. Add each two-way interaction individually to the main effects model and
estimate the marginal likelihood (2-16).

3. Accept the model with the highest marginal likelihood from the previous
step (11).

4. Add each remaining two-way interaction individually to the best model from
the previous step (17-30).

5. Repeat from step 3 until a full model is reached.
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Table 6.1 contains a subset of the results from the model selection strategy (the
complete table is shown in Appendix E as Table E.1). The added two-way inter-
action is shown in column 2 followed by the estimated marginal likelihood and
associated model probability in columns 3 and 4. Column 5 shows the BIC value

for comparison.

The three models which have been selected are models 11 (M E+gr), 16 (M E+ob)
and 30 (M E + gr + ob). These models include 92% of model probability and the
results from each model will be averaged to give an overall severity rate for each
category. The results over BIC are slightly different, although the model with the
lowest BIC (model 16) is included in the model average.

6.3 Model results

Table 6.2 contains the results of the three models run in winBUGs with unin-
formative priors (the prior for each coefficient was ¢; ~ N(0,100)). Each model
was run over 100000 iterations with a thinning frequency of 10 and the first 1000
iterations were removed for burn-in. The models showed good convergence and
mixing, and did not appear to be sensitive to changes to prior specification as

long as they remained vague.

From each model a mean severity rate (fatal/fatal and serious accidents) was es-
timated for each category. These were averaged to produce an overall estimated
severity rate for each category using the model probabilities (factored up to 100%)
shown in Table 6.1. Figure 6.1 shows the modelled severity rate for one category
across each model and the model average, showing that the model average result
has smaller confidence intervals than the individual model predictions. We have
used posterior predictive checks (discussed in Section 3.10) to evaluate the model

fit. Of the 3647 categories where there was at least one accident, posterior pre-
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Table 6.1: Subset of marginal likelihoods and model probabilities for accident
severity model selection

Marginal Model
Model likelihood choice BIC

1 ME -17032.3 0% 9236.9
2 +cy -17050.4 0% 9688.3
3 +cg -17069.1 0% 9433.2
4 +cr -17051.6 0% 9358.1
5 +co -17034.9 0% 9304.5
6 +cb -17041.5 0% 9317.3
7T +yg -17046.1 0% 9612.3
8  +yr -17038.2 0% 9464.1
9 +yo -17032.6 0% 9386.8
10 +yb -17032.4 0% 9386.4
11 +gr -17025.6 16% 9331.5
12 +go -17035.7 0% 9296.9
13 +gb -17040.1 0% 9305.3
14 +ro -17033.2 0% 9276.0
15 +rb -17030.5 0% 9270.7
16 +ob -17026.0 10% 92534
ME + gr
17 +cy -17048.6 0% 9782.9
18  +cg -17067.2 0% 9529.3
19  +er -17049.8 0% 9452.8
20 +co -17033.1 0% 9362.3
21 +cb -17039.6 0% 9374.6
22 +yg -17044.3 0% 9706.8
23 +4yr -17036.3 0% 9558.7
24 +yo -17030.8 0% 9407.1
25 +yb -17030.6 0% 9406.6
26 +go -17033.9 0% 9391.2
27 +gb -17038.2 0% 9369.7
28 +ro -17031.4 0% 9352.1
29 +rb -17028.7 1% 9347.0
30 +ob -17024.2 65% 9335.6
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Table 6.2: Mean and standard deviation of coefficients for high probability acci-
dent severity models

Model 11 Model 16 Model 30

Mean SD Mean SD Mean SD

Constant -2.15 0.12 -2.06 0.09 -2.18 0.12
Vehicle 4x4 - - - - - -
Large 0.34 0.09 0.35 0.09 0.35 0.09

Medium 0.21 0.07 0.21 0.07 0.21 0.07

Minis -0.12 0.07 -0.12 0.07 -0.12 0.07

Sports 0.34 0.09 0.34 0.09 0.34 0.09

Small 0.03 0.07 0.03 0.07 0.03 0.07

Year 0.02 0.00 0.02 0.00 0.02 0.00
Car age 0-2 - - - - - -
3-5 0.02 0.15 -0.01 0.05 0.00 0.15

6-10 0.24 0.14 0.00 0.04 0.23 0.14

11-15 0.17 0.16 0.01 0.05 0.16 0.16

16+ 0.38 0.23 0.08 0.07 0.38 0.23

Road M - - - - - -
A -0.01 0.12 -0.11 0.05 -0.02 0.12

Minor -0.09 0.12 -0.27 0.06 -0.09 0.12

Overturn 0.13 0.03 0.22 0.04 0.22 0.04
Bend 0.21 0.03 0.28 0.04 0.28 0.04
Age & 02 &M - - - -
road 0-2 & A - - - -
0-2 & Min - - - -

35 &M - - - -

35 & A -0.03 0.17 -0.02 0.16

3-5 & Minor -0.02 0.17 -0.01 0.17

6-10 & M - - - -

6-10 & A -0.23 0.15 -0.22 0.15

6-10 & Minor -0.31 0.15 -0.30 0.15

11-15 & M - - - -

11-15 & A -0.07 0.17 -0.06 0.17

11-15 & Minor -0.29 0.18 -0.28 0.17

164+ & M - - - -

16+ & A -0.36  0.26 -0.37 0.26

16+ & Minor -0.32 0.25 -0.32 0.25

Overturn & Bend -0.19 0.06 -0.19 0.06
Deviance 9122.37 6.77 9119.58 5.64 9113.10 6.87
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dictive checks show 98.4% of the observed data categories fall within the expected

confidence intervals.

6.4 Introducing economic factors

The pattern of severity rates over 1990-2010 is discussed in Section 1.1 and saw a
general increase from 1990 to 2006, due to the rise in the number of fatal accidents
of certain accident types such as single vehicle accidents, accidents at bends and
accidents where the vehicle overturned. From 2007 the number of fatal accidents
declined rapidly and with it the severity rate (proportion of fatal accidents over all
fatal and serious accidents) and it is hypothesised that this change may have been
affected by the economy. Here we replace the main effect year with the nominal
GDP per capita (described in Section 1.3.5; in £k) to evaluate whether a measure

of the economy can be used as a predictor in the model.

Table 6.3 shows that the marginal likelihoods for the models with interactions be-
tween overturn and bend and age and road are slightly lower than the same model
with year replaced by economy (-17026 compared to -17019 for example). Table
E.2 contains the parameters of the model along with their associated standard
deviations — these have changed very little from Table 6.2. As above we have
used the posterior predictive method to assess the model fit. Across the 3647
categories, the observed severity rates fall within the predicted confidence bands
in 98.3% of cases. This is the first statistical suggestion that the economy has
an effect on the severity of accidents, however neither coefficient is large, for year
or economy, but these are significant and comparable in size to other significant
main effects. The relationship between economy and accident severity cannot be

confirmed as a causal relationship without considerably more work in this area.
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Figure 6.1: Means and 95% posterior intervals of modelled severity proportion for
each high probability severity model for new 4x4s on Motorways in 1999 which
did not overturn and not at a bend

Table 6.3: Comparison of marginal likelihoods and model probabilities for accident
severity models including factors year or economy

Year model Economy model
Marginal Model Marginal Model
Model likelihood  choice likelihood choice

ME -17032.3 0%  -17025.1 0%
+gr -17025.6 16%  -17018.7 16%
+ob -17026.0 10%  -17019.1 10%

+ob+gr -17024.2 65%  -17017.3 65%
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6.5 Discussion

Reported in this chapter are two sets of models which appear to accurately model
accident severities across different car types, road environment (road type and
bend), accident type (overturn) and year. The models assume all main effects
are valid and a model selection process suggests that three models with two way
interactions age and road (+gr), over and bend (4o0b) and the two interactions
combined, can be used to adequately model the severity rates. The results of
these three models have been averaged to give overall model results and these
averages suggest that particular groups result in less severe injuries when involved

in accidents. In particular, lower severity rates are predicted for:

e minis and superminis, 4x4s and people carriers, and small saloons compared
to the other car types;

e accidents occurring on Minor roads compared to the other road types;

e accidents not occurring at a bend;

e accidents where the car did not overturn;

e accidents in earlier years; and

e accidents which involved cars aged under 16 years.
Accidents of interest where the severity rate was notably higher included:

e large saloons and sports car; and

e cars older than 15 years.

Many of these results are expected, such as accidents where the car overturns are
generally more severe, and some results can be explained by other influences, for
example, young and less experienced drivers may own older cars and accidents
on Minor roads are likely on average to be at lower speeds. Several less expected

results deserve some discussion however.
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There appear to be significant differences between expected severities in a single
vehicle accident dependent on car type, with the very large and small cars resulting
in less severe injuries than others. 4x4s and people carriers tend to have stiffer
exteriors than smaller cars and should therefore protect the car occupants from
higher severities than less stiff cars. That small saloons and minis have lower
severity rates is interesting — this may be due to the types of driver and driving
styles (for example speed choice) that these cars are associated with, although
there is no significant interaction of road type and car type, so the common belief
that smaller cars are used for shorter journeys on Minor roads is not explicitly

demonstrated here.

The age of a car also affects the severity rate once involved in an accident. Sec-
ondary safety developments, as discussed in Section 1.3.2, mean that within each
accident year newer cars are generally better equipped to protect occupants than
older cars in that same year. In addition, you would expect to see that new cars in
more recent years are better at protecting their occupants than new cars earlier in
the period, and this would have been expected to show in a significant interaction
between age and year which was not seen. The distinction between severity rates
across the different car age groups is not as obvious as expected, with the average
modelled severity rates of all cars under 16 year being similar, and only those

older than 15 years having substantially higher modelled severity rates.

Similar to the concepts discussed in Section 5.6, common, high severity accidents
are of most concern. Figure 6.2 presents severity proportion (number of fatal
accidents over fatal and serious all accidents) plotted with actual number of ac-
cidents for each factor. Each colour represents a different factor, and contains all

accidents in the dataset.

For car type (red points) the highest severity occurs in large saloons and sports

cars, however these are rare accidents. Accidents occurring in 4x4s are similarly
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rare but of a much lower severity. Some further investigation is required to de-
termine why there is such a big difference in the severity rates for 4x4s and large
saloons. Medium and small saloons and minis fall in severity rate as the total
number of accidents increases, with the least severe, and most common, accidents
occurring for occupants in minis and superminis. This is likely to be influenced
by type of drivers and driving style of these small cars — perhaps mainly used for

short trips.

Car age (blue points) has been split into five groups and the choice of groups
influences the pattern in the graph. For example if we have chosen to combine cars
aged 0-2 years and 3-5 years into one group this would be one of the biggest groups
of accidents and of reasonable concern as the severity rate is not substantially lower
than any age group. The newer cars do not appear to provide their occupants

with much better protection when involved in an accident.

Overturn (yellow) and bend (purple) accidents occur very much as expected, if a
car overturns, then it is more likely to result in a fatal injury than a car which does
not overturn, and accidents at bends are more likely to result in a fatality than
those not at bends. Obviously these factors are related: an accident at a bend
is more likely to result in an overturned vehicle, and this interaction is evidenced
in the model selection process which selects models with the two-way interaction

between overturn and bend.

Different road types (green points) show that accidents occurring on Motorways
result in the highest severities but are relatively rare, accidents occurring on A
roads and Minor roads are more common and result in lower severity injuries with
Minor road accidents resulting in the lowest severity. These patterns are related
to average speeds on these different road types — accidents occurring at fast speeds
are more likely to result in more severe injuries due to kinetic energy dispersion

(European Commission 2012).
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Figure 6.2: Relationship between modelled accident severity and actual accident
numbers for factors car type, car age, overturn, bend and road type

The second interaction selected by the model selection procedure was the inter-
action between age and road type. Figure 6.3 shows this interaction in terms of
severity rate and number, similarly to Figure 6.2, except each accident is only
represented once in this graph. We see that the pattern of severity across car
ages varies dramatically by road type. Older cars (6 years or older) involved in
accidents on Motorways have a much higher severity rate than younger cars. On
other roads the severity rates are similar for most age groups, excluding 11-15
year old cars which are substantially more likely to be fatal on A roads than on
Minor roads. This suggests that the added protection that new cars have to re-
duce occupant injury starts to have a substantial effect once involved in a high

speed collision.

Perhaps of most concern, and those which should be prioritised for intervention

where possible, are the clump of data points of medium severity and medium
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Figure 6.3: Relationship between modelled accident severity and actual accident
numbers for age road interaction

— high counts in Figure 6.2: accidents occurring at bends, those where the car
overturns, those on A roads and accidents in cars aged 6-10 years. Improvements
in the severity rates of older cars should continue as old cars are replaced naturally
by newer cars with better safety features — older cars in 2010 have more safety

features than old cars in 1999 and this should continue to improve over time.

The second model in this section introduces a measure of economy as an explana-
tory factor in place of year. This model appears to be better in terms of its
marginal likelihood compared to the associated models with year and it suggests
that the economy may be affecting the severity of accidents. If this is the case,
and this is very difficult to prove definitively, then it is likely that it is an indirect
effect; for example Lloyd et al. (2013) show that there has been a reduction in

young drivers and average speeds over the period where the economy was declining

which is likely to have an effect on casualty severities.
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In general we would expect the severity rate to have decreased over time (or over
an increase in economy) due to improvements in safety on the roads, however the
models suggest the opposite. The pattern in the observed severity rates appears
to increase to a peak around 2005-2006, and is followed by a drop in severity
rates. This suggests that the linear factor year may not have been the most
appropriate measure to include and explains why the measure of economy which
is not monotonically increasing improves the model. This suggests that there are
other factors that are not used in these models that are important and would
improve future models. This may include factors relating to weather conditions
as periods of very cold weather result in fewer accidents as fewer people drive
and they drive more carefully, or an average speed measure, although it would
be difficult to capture sufficient variability in any speed measure. It is due to
this uncertainty that we cannot explicitly say that the economy is having a direct

impact on casualty severities.
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Chapter 7

Predicting forward using

Graphical Models

7.1 Motivation

One of the advantages of a Bayesian methodology is that it is possible to combine
several models together. This is useful in this situation where the exposure, ac-
cident rate and accident severity models lead on from one another. Uncertainty
in each model can be propagated through to subsequent models in a joint model
framework. Here we use a graphical model to represent the combination of the

models, and use this structure to predict future accident rates and numbers.

7.2 Introduction to Graphical Models

A graphical model is a graph which characterizes a probabilistic model. The
graph consists of nodes (variables) and a set of edges which connect the nodes and

represent dependencies between variables. These edges can be directed (arrows)
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or undirected (edges).

A Bayesian Network is a Directed Acyclic Graphical model (DAG), where directed
means that each edge is an arrow with a start node (parent) and an end node

(child) and acyclic defines a graph with no cycles!.

Nodes joined together with edges are dependent variables and nodes that are not
joined together are conditionally independent given the values of their parents.
The combination of these directed edges represent the set of conditional distribu-

tions which form the joint probability distribution.

The joint probability model can be read from the graph. The graph in Figure 7.1

represents the joint probability density function:

p(A, B,C, D) = p(A)p(B)p(C|A)p(D|A, B) (7.1)

Figure 7.1: Directed Acyclic Graph representing equation 7.1

One of the benefits of using Bayesian modelling here is that prior information,
or real-world knowledge, can identify edges which have a potential direct rela-
tionship, therefore removing any inappropriate edges and complicating the model

unnecessarily.

'A cycle occurs when nodes are joined in a closed ring by a set of arrows which are all
orientated in the same direction.
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7.3 Drawing Bayesian Networks

In this chapter we use a Bayesian Network to represent the combination of models
used throughout this thesis. Some standard conventions have been used to depict

certain relationships:

e stochastic relationships such as .. ~ N(fo, 0%) are represented with oval
nodes

. . . R .
e logical relationships such as z.. = >, z, are represented as diamond

r=1
nodes
e constant values such as data and fixed priors are represented as rectangular

nodes.

We use the Graphical Modelling structure to show how the variability propagates
through the models. It is also a convenient model to show independence and

conditional independence relationships.

7.4 Bayesian Network structure

In Chapters 4, 5 and 6 we have generated three models which encompass exposure,
accident rate and accident severity data. We incorporate uncertainty at each
step and propagate the uncertainty from the previous steps through the models.
Figure 7.2 presents the three probabilistic models as a Bayesian Network using
the structural rules described in Section 7.3. This diagram not only gives an
overview of the whole process but also allows easy identification of dependent and

conditionally independent nodes.

The top part of the diagram represents the exposure model described in Section
4.5 with known data z., (registered number of cars by car type ¢ and year y), e.,

(induced exposure by car type ¢ and road type r) and z.,, (number of car km
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by road type r and year y) and unknown parameters A\, «,, B and 7 used to
estimate the disaggregated exposure measure z.,. We observe x,,, the sum of

traffic over car type ¢, and use this to restrict the posterior for x.y,.

logx ~ N(B +log z,7%)

loge ~ N(a +logzt + 3,)\?)

To the right of this part, the exposure distribution for age of car is introduced, as
discussed in Section 4.7, with known data a.,, and some associated uncertainty

from §2.

loga ~ N(6,6?)

where log a.,, is the log of the number of registered vehicles by year (y), car type

(c) and car age (g) given an uninformative prior on 6.,,:
ecyg ~ N(90a03>

where 8y = 0 and o2 = 10, and an a priori relative error of 25%:
6% ~ IG(84,6)

where 0, = 4 and d, = 0.05

We then combine ., and 6., together to produce the overall traffic exposure
measure t.,, used in the accident rate model in Chapter 5. It is clear from the
structure of this part of the network that, due to data limitations, in the exposure
data, car age and road type are conditionally independent given year and car type.

This limitation is discussed in Section 4.7.

" _ Ocyg
o > g Ocyg
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In the accident rate model, accidents are assumed to be Poisson distributed with
some overdispersion and are modelled in a generalised linear model with the sim-

ulated exposure data t.,4 as an offset.
Scygrb ~ PO(chgTb)

10g(Xeygrd) = 10g(teygr) + 70 + Mile] + Y2y +¥3[g] + Yalr] + b+ - + Yeygrs
The parameters are given uninformative priors v; ~ N(0, 100), Ui ~ 1G(0.01,0.01)

and ¥ ~ N(0, ai) is the overdispersion parameter.

Finally, the bottom row of the diagram represents the accident severity model dis-
cussed in Chapter 6 which estimates the proportion p of all single vehicle accidents

where a car occupant is killed or seriously injured (S) which are fatal (F).

logit(p;) = Z ¢ X
J

where the unknown coefficients have uninformative priors ¢; ~ N(0, 100).

7.5 Prediction

7.5.1 Exposure model

We use the structure of the Bayesian Network to predict accident rates and severity
proportions in 2011. Initially we estimate the disaggregated exposure data from
the first two parts of the model. Figure 7.2 shows that the direct inputs into ¢y,
are 0, and z., and their posterior distributions can be derived directly from
linked nodes 72, Zey and Be, for zey,, and ag,y and 62 for Ocyg- In this case we know

Zey, Oeyg and 44, in 2011, however future years could be predicted by making

147



2
A, A Qo Oq Bo Op
ZC

? |

8o Op
A
Xiyr
€cr Xeyr ) a

8y

:
:

v

<

tevar Acyg

chgrb

Yo
0\/2 >®\
$a Wo —’@/’ @

.

do .
0¢2

Figure 7.2: Bayesian Network representing exposure, accident rate and accident

severity models

148



assumptions about these datasets. For example we could assume that there was
a proportional change equivalent to the proportional change in previous years or
no change from the previous year. We have used the known data and extracted
a sample of the previously generated posterior distribution for coefficients .., T
and 0 to generate an exposure distribution for 2011 as shown, compared to 2010

and 2009, in Figure 7.3.

This shows that the uncertainty around the 2011 results is larger than those
in 2009 and 2010 as the model is based on these earlier years. There is some
suggestion of an increase in small saloons and a decrease in medium saloons in
2011 and overall there has been a slight increase in the amount of traffic in 2011
compared to 2010 (387 billion car km compared to 386 billion car km in 2010),
but it has not returned to the peak of 394 billion car km seen in 2009.
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Figure 7.3: Modelled mean exposure and 95% posterior intervals by car type from
2009 - 2011
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7.5.2 Accident rate model

The uncertainty in the exposure data is carried forward into the accident rate
model. We take draws from the posterior distributions of coefficients v; from the
tight prior exposure model shown in Section 5.4.3 and add the log of the predicted
exposure to get an estimate for accident numbers S in 2011. The model assumes
accidents are Poisson distributed with mean x and overdispersed variance where
a; is approximately 50, as shown in Tables D.2 and D.3. Figure 7.4 shows the
medians? and posterior intervals of the simulated counts for variable exposure
values using the reduced variability. The model predicts that there was a rise
in small and large saloon accidents and accidents involving sports cars, and a
reduction in mini, medium saloon and 4x4 accidents. The overall model median
predicts a slight decrease in the total number of accidents in 2011 from 3002 in
2010 to 2996 in 2011. The actual numbers are not quite as high as predicted:
in 2010 there were 2 754 single vehicle car accidents where the car occupant was
killed or seriously injured and, in 2011, this decreased to 2591. This 2011 value
falls within the posterior interval for the year: (2327, 4771).

The equivalent modelled and predicted counts for 2009 — 2011 with no variability
in the exposure data are shown in Figure 7.5. These posterior distributions are
smaller and more symmetrical and the medians for each year are closer to the
actual counts. The model predicts a small decrease in the number of accidents

from 2908 in 2010 to 2900 in 2011.

7.5.3 Accident severity model

Using the predicted total number of fatal and serious accidents from Section 7.5.2

and the economy model derived in Chapter 6 we can predict the number of fatal

2As the prediction intervals are asymmetric we use the median value as the most appropriate
overall summary statistics.
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Figure 7.4: Modelled median and 95% posterior intervals around fatal and serious
accident counts by car type for 2009 — 2011 with variable exposure from Figure
7.3
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Figure 7.5: Modelled median and 95% posterior intervals around fatal and serious
accident counts by car type for 2009 — 2011 with fixed exposure
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accidents in 2011. The model assumes that fatal accidents are distributed with a
Binomial distribution with n equal to the number of fatal and serious accidents
and a severity proportion p derived from a logit function with coefficients ¢;
derived in Section 6.3. At the time of writing the GDP per capita (the measure of
economy used in the model) was not available for 2011. We have therefore made
an estimate of what the GDP value may be with two scenarios. Firstly that there
was no change from 2010 to 2011 and secondly that the GDP increased at the
same rate from 2010 to 2011 as it did from 2009 to 2010. The two scenarios lead
to estimated economy values of £23 455 (scenario 1) and £24 388 (scenario 2) per

capita respectively.

Figure 7.6 contains the predicted number of fatal accidents in 2011 based on the
number of accidents predicted in Section 7.5.2 under the two GDP scenarios, and
the modelled number of fatal accidents in 2009 — 2010, based on the modelled
number of accidents shown in Figure 7.4. The predicted median total number of
fatal accidents in 2011 is slightly higher than that in 2010: 495 fatal accidents
in 2010 compared to 517 (scenario 1) and 529 (scenario 2) in 2011. Most of
the increase is seen in the small saloon category with an associated decrease in
minis, matching the increase and decrease in the traffic and all accidents in small
saloons and minis shown in Figures 7.3 and 7.4. The remaining car types predict
similar medians in 2011 to those 2010 with marginally larger confidence intervals

in general.

In fact there were 307 single car accidents in 2011 where a car occupant was killed.
This is considerably fewer than predicted in the model due to the accident rate
model predicting significantly more accidents overall. The proportions of the ac-
tual accident numbers that were fatal in 2010 and 2011 were approximately 10%
and 12% respectively, and the median predicted proportions were both 16%, con-
siderably higher than the actual proportions. Once again the prediction intervals

are large and raise questions about their practical use. We discuss this in Section
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Chapter 8

Conclusions

8.1 Summary

In the last few years around 2000 people each year have died as the result of a
road accident in Great Britain. The trend in fatal casualties is closely monitored
by the Department for Transport and Government road safety policy is guided by
these trends. This pattern in fatal road accidents has fluctuated in recent years
after many years of a continual steady downwards trend. The steady decline was
replaced with a period of very little reduction from 1994 to 2006 followed by a
sharp drop in fatalities in 2007 to 2010. From the mid 1990s several types of
fatal accidents influenced the stationary trend — in particular, there was a rise
in the number and severity of single car accidents, fatal accidents involving large
cars such as 4x4s and fatal accidents involving older cars. We have investigated
these accident types by modelling the trends in single vehicle accidents where a

car occupant was killed or seriously injured.

In order to accurately reflect changes in the types, sizes and age of vehicles using

the road network over time it has been necessary to include exposure data in the
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modelling. Exposure data measures the exposure to the risk of being involved in
a road accident, the most common of which is the measure of traffic measured
in vehicle kilometres. Alternatives to this exposure measure include population,
vehicles registered and induced exposure data based on drivers involved but not
at fault in an accident. All have their limitations and each of these measures
has some associated uncertainty. For example, the traffic data (a combination
of automatic and manual surveys) can be disaggregated by road type, year and
vehicle type but cannot identify different car types or ages or different driver
characteristics; use of the registered vehicle data as an exposure measure allows
disaggregation by car type and age but assumes that the distance travelled on
the road network is the same for each vehicle; and induced exposure makes the
questionable assumptions that drivers not at fault in an accident are a random
representation of the vehicles on the road at the time of the accident, and that it

is possible to tell which driver was at fault in the accident.

The traffic data is the preferred basis for road accident exposure data as it is
the best proxy that is known for exposure to accident risk. There is, however,
limited disaggregation and too much variability within each of the disaggregated
categories of exposure for it to be satisfactory on its own: different car types are
known to be used on different road types at different times of day for example

and this is not captured in the traffic data.

There are a number of ways of reducing internal variability, be it variability across
time, space or between individuals. These have not been discussed in the road
safety literature, but are occasionally demonstrated in epidemiology research. It
is possible to include variability as an input in a Bayesian modelling framework;
alternatively some additional data can be used — an example of this is to com-
bine a sample survey of detailed information with much broader but less detailed
central site measurements. We have reduced the variability in traffic exposure by

introducing information from two other sources of exposure (the registered vehi-
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cle data and induced exposure data). With these three sources combined we can
disaggregate exposure to a greater extent than possible before and incorporate
some vital variability from the factors car type, road type, year and car age. We
recognise that other forms of variability remain, such as driving habits of young

and older drivers, and these are a source of uncertainty.

Two of the exposure data sources are based on sample surveys and therefore also
have some associated internal uncertainty. In the past accident risk analysis has
not taken into account this uncertainty, assuming that exposure values are fixed
and true. The disadvantage of this approach is that it often leads to overconfidence
in results and a lack of clear understanding from the results of where improvements
in data collection are required. We use a Bayesian analysis for an explicit way to

include these multiple sources of uncertainty:.

The final exposure model alleviates some of the problems of variability and uncer-
tainty by combining the three sources of exposure using a probabilistic log-Normal
model with model priors representing our uncertainty in each data source. This
allows further disaggregation of the measure of traffic by car type and car age
and strengthens the ability to draw robust conclusions. This is the first time that
road accident exposure measures have been combined in order to allow further

disaggregation.

This exposure model has shown that:

car traffic has in general risen over the last 12 years;

e traffic levels are highest on Minor roads, followed by A roads and Motorways;

e small cars (encompassing small and medium saloons, superminis and minis)
contribute most of the car traffic, and the gap between these cars and larger
cars is bigger on Minor roads than A and Motorways;

e cars aged 6-10 years contribute the most traffic on all road types, and the

proportional contribution of this age group has increased in recent years as
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the amount of traffic from newer cars has decreased; and
e there has been considerable growth in the amount of 4x4 and people carrier

traffic and mini and supermini traffic over the last 12 years on all road types.

The main purpose for exposure data in road accident analysis is to evaluate
whether accident numbers for a particular group of drivers are high or low rela-
tive to how often a particular scenario occurs — a large number of accidents may
suggest a large number of drivers exposed to a certain scenario, or may identify
a particularly risky situation. With the simulated exposure measure derived for
car type and age it was possible to establish the accident rate, or relative risk,
over different car types, car ages, road types and years. The number of fatal ac-
cidents is insufficient to produce reliable models so the accident rate models are
based on single car accidents where a car occupant was fatally or seriously injured.
Accidents were assumed to be Poisson distributed and have been modelled in a
generalised linear model with exposure as an offset over five main effects: year, car
type, car age, road type and the binary factor which distinguishes accident at or
not at a bend, all factors which had been identified as influential in the changing
trend in fatal accidents over the last twelve years. A Bayesian model selection
process identified two models with several two way interactions including car type
and road type, car age and road type and car age by year. The model shows the

following patterns:

e minis & superminis, and sports cars have higher accident rates than other
car types;

e older cars have higher accident rates than newer cars;

e accidents occurring on Minor roads are more likely relative to the number
of vehicle kilometres travelled on Minor roads than other road types;

e accident rates have reduced over time;

e the difference in rates between older cars and newer cars was much greater

in 1999 than 2010, most likely due to improvements in secondary safety; and
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e accident rates for minis and large saloons on Minor roads are considerably

higher than those on A roads but for medium saloons the rates are equal.

In order to assess the trend in fatal accidents, a severity model was derived to
estimate the fatality proportion of all accidents where a car occupant was killed
or seriously injured. A Binomial model uses the logit link to regress on each of
the main effects used in the accident rate model plus an additional main effect
reporting whether the car overturned. The model assumes all the main effects are
required and a model selection procedure selects three models with the interactions
age and road, and overturn and bend and the two together to adequately model

the severity rates. The results of these models have been averaged and show that:

e minis and superminis, 4x4 and people carriers, and small saloons have lower
severity rates than other car types;

e accidents occurring on Minor roads are generally less severe than other road
types;

e accidents where the car did not overturn led to less severe injuries; and

e accidents involving an old car (over 15 years old) were more likely to be fatal

accidents.

Accident severity is known to be reduced in younger and bigger cars due to sec-
ondary safety developments. Small cars may be resulting in less severe accidents

due the types of drivers using these cars.

The combination of likelihood and severity is important — highly likely and severe
accidents are high priority for governments to influence. In general the models
show that highly likely accidents have a lower severity proportion, for example
minis have a considerably higher accident rate but a low severity proportion rel-
ative to other car types. Old cars are the exception — they are relatively more
likely to be involved in a serious or fatal accident, and result in injuries which are

more severe.
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We introduced a measure of economy into the accident rate and accident severity
models in place of the factor year and showed that, for the severity model only,
economy is a better predictor than year. It is difficult to show definitively but
this suggests that the recession may have affected the number of fatal accidents
but had less or no influence on the total number of serious and fatal accidents. It
is most likely that it is an indirect effect; we have observed that there has been a
reduction in young drivers and average speeds over the period where the economy

was declining which are both likely to have an effect on severity.

The three models of exposure, accident rates and accident severity have been
combined to predict accident rates and severity proportions in 2011. Initially a
disaggregation of the exposure data was estimated from known data and a sample
of the previously generated posterior distribution for coefficients of the exposure
model. This showed a slight increase in traffic since 2011, with an increase in
small saloon traffic and a corresponding decrease in medium saloon traffic. These
predicted exposure values were combined with the previously generated posterior
distribution for coefficients in the accident rate model and predicted that there
was an increase in small and large saloons single car accidents and a decline
in the number of single car accidents involving minis and medium saloons in
2011. The model medians appear to over-predict the total number of accidents
in 2011, but the actual figure was within the 95% posterior intervals predicted.
This over-prediction is carried forward into the accident severity model where,
based on the previously generated posterior distributions for coefficients in the
severity model and predictions from the accident rate model, we predict a severity
rate between 16% and 17%, considerably higher than the actual 12% of fatal
and serious accidents which were fatal. These differences suggest that further

information is required in these models, as discussed in Section 8.2.

In summary, we have shown that it is possible to include uncertainty in measures

of exposure for road accidents, and propagate that uncertainty through to accident
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rate and severity models. It is also possible, and indeed informative, although it
has not been done before, to combine certain exposure datasets together to enable
more disaggregated accident rates to be modelled. We have established the first
statistical suggestion that the economy influences road accident severity, with a

recession resulting in a lower number of fatal accidents.

8.2 Limitations and further work

Throughout this thesis the derived models have been based on single vehicle car
accidents in which an occupant was killed or seriously injured. Whilst this is a
particular accident type of concern it only encompasses around 12% of all accidents
involving a fatal or serious injury and around 1% of all reported accidents. Results
cannot be generalised directly for other vehicle types or accident types and this
is a limitation in the results. However, if we believed, and most research in this
area does so, that the measure of traffic was a decent proxy for exposure to multi-
vehicle accidents then it is a relatively simple task to apply the simulated exposure
data from Chapter 4 to accidents involving more than one car and derive models
for accident rate and severity in multi-car accidents. As discussed in Section 2.2.2,
in theory, the concept of exposure for multi-vehicle accidents is slightly different:
there must be, by definition, more than one vehicle present for there to be a
multi-vehicle accident, and therefore the ideal measure of exposure must be time
when or distance over which there is more than one vehicle present at any point
on the road. In general when multi-vehicle accident rate modelling is reported, it
is based on large groups of accidents and it may be a reasonable assumption to
say that measures of traffic are the best proxy to ‘multiple vehicles present’. Once
accidents are disaggregated into more factors, as we have here, the link between
true exposure for multi-vehicle accidents and traffic is less obvious and requires

more research in the future.
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The technique used in Chapter 4 to derive the exposure data for cars could be
applied to other vehicle exposure data and the accident rate modelling could then
be extended to various vehicle types. Accidents involving pedestrians are more
difficult and it requires further work to derive a useful measure of exposure for
pedestrians in road accidents. Current practice is to use either vehicle traffic or
estimates of pedestrian traffic and neither assess time when a pedestrian and a

vehicle are present at a particular point.

In summary, there are limitations in using traffic as an exposure measure for
accident rate modelling, particularly for multi-vehicle and pedestrian accidents,
however it is the best proxy currently available and disaggregating these data
using further sources of exposure data makes results and conclusions more robust

by reducing the variability within the estimates.

There are additional sources of exposure data which would allow the exposure
measure to be disaggregated further, such as the age and gender of drivers and
the number of occupants in different car types. In this context the age of drivers
is of particular interest as one hypothesis questions whether the recent recession
has reduced the number of young drivers being able to afford to take their driv-
ing test or being able to afford to drive once they have passed their test, thus
reducing the number of young drivers (known to be more accident prone in gen-
eral) driving on the road network. These data are available from sources such
as the National Travel Survey and could be included in the exposure measure
using similar methods to those described above. They have not been included
in this research as we concentrate on vehicle rather than occupant exposure. In
practice these additional factors would increase the size of the model so much
that computational difficulties would most likely become the overriding issue and
any results could be even less certain that currently. It would be interesting to
disaggregate the original traffic measure z,, into driver characteristics rather than

vehicle characteristics using the aforementioned dataset to see if any particular
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factors were strong predictors in accident rate and severity models.

Predicting forward was a theme in Chapter 7, using coefficients from the models
based on 1999 — 2010 data and propagating uncertainty through each step. The
predictions of number of fatal and serious accidents were highly uncertain, in one
case for minis a range from 250 to 3500 accidents was predicted for 2011. The
maximum of this range is 30% bigger than the total number of single car accidents
in 2010 for all car types combined. Generally, year by year these numbers change
by a maximum of +/-30% and therefore the ranges are unrealistic. This implies
that specified priors have perhaps been too weak and further work is required to
hone these down to realistic values. It also brings up the question of the use of
statistical uncertainty in prediction intervals for road safety policy purposes. If
the object of interest in a prediction model is how much the accident rate is going
to change from year to year, for example, then propagating uncertainty in the
exposure measure, which is likely to be similar from year to year, will increase the
prediction range unnecessarily. The aim is often not to get an assessment of the
possible range of accident rates taking into account that the exposure measure is
not 100% accurate but to accept limitations in the exposure data and assess the
likely change in reported accident rates in future years without this added annual
uncertainty. The statistical prediction intervals that have been derived in Section
7.5 are not useful for the purposes of allocating Government budgets, defining
policies for road safety and prioritising interventions for specific user groups —
some work is needed to assess how much of the variability that has been carried

through the modelling is required for practical use.
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Appendix A

Induced exposure

Assumption 1: not at fault drivers are a random sample of the local

driving population

The major assumption made in using induced exposure methods is that not at
fault drivers are a random sample from the driving population. Several reports

assess this assumption in different ways.
Assessing assumption 1: Stringent criterion for AF/NAF

It is suggested by af Wahlburg and Dorn (2007) that this assumption is heavily
dependent on how stringent the criterion for responsibility is. Within the not at
fault driver sample there are likely to be some drivers who were partly at fault in
their accident, but not identified by the investigation. This group could include
not at fault young drivers, due to their lack of defensive driving skills and thus
they could also be considered partly AF. Including these drivers in the not at
fault group affects the estimation of exposure and violates the assumption that

the not at fault groups are a random sample of the driving population.

Analysis of bus driver statistics from the UK and Sweden suggests that using a

165



stringent criterion for culpability (i.e. in Sweden) produces not at fault exposure
data comparable to non-accident drivers, and in the UK (with a less stringent
culpability criterion) the not at fault drivers are not such a random sample of the

general bus driving population.

It is suggested that a larger study is required across further driver types to be
able to generalise to the whole driving population in part due to the fact that
culpability varies by vehicle type. These levels of culpability should then be used

to determine how stringent these criteria should be.

Chandraratna and Stamatiadis (2009) complete a similar evaluation to af Wahlburg
and Dorn (2007) of the not at fault assumption which takes two subsets of drivers
involved in crashes detailed in the Kentucky accident database from 1995-1999.
The first subset is the second driver (defined as NAF) in a multi-vehicle accident,

the second subset is any drivers after the first and second drivers.

It is hypothesised that the assumption of ‘drawn from the exposed driving popu-

lation’ is more appropriate for the second sample than the first.

The first sample will probably include some partly at fault drivers which biases
the results. A few patterns (in particular left turn crashes and rear end crashes
where investigators may find it difficult to assess at fault and NAF) show signifi-
cant differences between sample 1 and sample 2, suggesting two different driving

populations, but this could be due to misidentification of NAF.

Gender and age were also tested and showed no significant differences between
the two samples suggesting that, for most crash types, indeed for accidents where

it is ‘easy’ to determine AF/NAF, the quasi-induced exposure method is valid.

Lardelli-Claret et al. (2005) compare two quasi-induced exposure methods to in-
vestigate biases produced by the classical quasi-induced exposure method. Firstly

classical quasi-induced exposure method compared at fault and not at fault drivers
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in approximately 450000 multi-vehicle accident and single vehicle accident in
Spain from 1993-2002. Using Multinomial logistic regression, two odds ratios:
involvement ratio (IR) not at fault v. IR at fault multi-vehicle accident and IR
not at fault v. IR at fault single vehicle accident were calculated for each category
of drivers defined by several factors. Difference between the results were detected

using a x? test.

Secondly, only clean (well defined uniquely responsible driver for each accident)
two-vehicle collisions were analysed in a paired-by-collision analysis. Conditional
logistic regression compared characteristics between groups and an odds ratio

(OR) for each driver category was estimated.

For the two methods, the OR were similar for almost all driver and vehicle related
factors. However, the ORs in the paired sample analysis were more than 10%

higher for psychophysical conditions.

Theoretically of the two methods, the paired method allows for better control
of measured and unmeasured environmental factors, however the results do not
differ sufficiently to reject the classical quasi-induced exposure method and both

methods are suggested appropriate for estimating IR of two-vehicle collisions.
Assessing assumption 1: Biased representation of risky circumstances

Biases can exist for drivers travelling in more risky locations or at more risky
times. In Stamatiadis and Deacon (1996), disaggregated data appears to provide
a much better estimate of the AR driving population than highly aggregated data.

This also gives an idea of confounding factors in the exposure data.
Assessing assumption 1: Speed bias

Jiang and Lyles (2007) investigate another type of bias in the quasi-induced ex-

posure method. They propose that for vehicles that routinely travel faster, the
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involvement ratio will be underestimated and vice versa. The empirical example
shows that for faster vehicles, the IR increases with speed limit and for lower vehi-
cles, IR decreases with speed limit. It is however, not possible to tell whether this
is affected by the increasing speed differential or the change in driving population
on these different roads. The overall conclusion is that where a high population
of slow moving vehicles exist, the speed differential may bias the results from the

quasi-induced exposure method.

Bias can be assessed by examining a table of NAF/AF by speed differential and
no speed differential, and comparing marginal totals (Jiang and Lyles 2007, see

table 1 in ).

Assumption 2: the characteristics of not at fault drivers in multi-vehicle

accidents is the same as that in single vehicle accidents

Accident propensity (the ratio of the proportion of one group in the at fault
drivers distribution compared to not at fault drivers) can also be calculated for
single vehicle accidents replacing the at fault proportion with the proportion in
single vehicle accidents, if you are willing to assume that the extent of exposure
to accidents is the same for single vehicle accidents and multi-vehicle accidents,
i.e. the distribution of drivers/vehicles at fault in multi-vehicle accidents is the

same as in single vehicle accidents.

Stamatiadis and Deacon (1996) estimated exposure for driver age group and ve-
hicle types separately, for single vehicle accidents and multi-vehicle accidents.
Comparing their data (with conventional exposure data) suggests that the dis-
tribution of driving groups and vehicle types is not the same for single vehicle

accidents and multi-vehicle accidents so data should not be combined.
Conclusions

A series of conclusions, some contradictory, can be drawn from the papers re-
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viewed:

e quasi-induced exposure improves on induced exposure techniques as respon-
sible drivers in single vehicle accidents and multi-vehicle accidents are not
assumed to be from the same population (Lyles et al. 1991; Stamatiadis and
Deacon 1996);

e bias in defining driver responsibility should not affect results dramatically
(Lyles et al. 1991);

e for some crash types, where is it more difficult to determine which driver is
responsible, the not at fault group will not be representative of the exposed
driving population (Chandraratna and Stamatiadis 2009);

e inexperienced drivers are over represented in the not at fault group (Stama-
tiadis and Deacon 1996);

e not at fault drivers seem to be approximately a random sample from the
general driving population (Lyles et al. 1991);

e validation of this technique is no more challenging that other techniques and
quasi-induced exposure data are an important improvement over other less
readily available data (Lyles et al. 1991);

e disaggregated data will help to avoid bias (Stamatiadis and Deacon 1996);

e in cases where there are a high proportion of slow moving vehicles, a biased

not at fault group may exist (Jiang and Lyles 2007).

Lyles (1994) compiled a list of when the quasi-induced exposure method should

not be used:

e where the relative risks are insufficient and specific accident rates calcula-
tions are required;

e where the not at fault distribution is known to be biased;

e where a small sample size exists;

e when data are not cleaned (hit and run removed etc.).
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Appendix B

Posterior distributions for

exposure modelling

B.1 Early models

B.1.1 Model 1
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B.2 Introducing induced exposure

B.2.1 Model 2
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B.3 Detailed posterior working
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B.3.1 Model 3
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B.4 Log-normal model

B.4.1 Model 4
Joint posterior:
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B.5 Posterior models for car age exposure mod-

elling
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Appendix C

Results from large exposure

modelling - prior 2 and 3

Table C.1: Prior values for log-Normal exposure model on 12 year dataset

Prior 0 Prior 1 Prior 2 Prior 3

B 0 0 0 0
os 1000 1000 1000 1000
o 0 0 0 0
o, 1000 1000 1000 1000
T 5.0 5.0 5.0 5.0
7 05 006 001 0.003
A 3 3 3 3
Ny 025 01  0.025  0.007

C.1 Modelling results

C.1.1 Prior 2

Figures C.1, C.2 and C.3 show the modelled values of z.,, that result from the

simulation with Prior 2, for Motorways, A roads and Minor roads respectively.
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These values represent an estimate of the log of the number of billion vehicle
kilometres travelled by each car type in each year on each road type, which we

call disaggregated traffic data.

Motorways

—e— 4xd

-#£  Large saloons

~+- Medium saloons

— Minis

4 - -~ Sports cars
-5 Small saloons

e e S s 4

In(traffic) { billion vehicle kilometres)

1999 2001 2003 2005 2007 2009

Figure C.1: Modelled disaggregated exposure (traffic flow) ., by year and car
type on Motorways on log-Normal exposure model with less diffuse prior (Prior
2)
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Figure C.2: Modelled disaggregated exposure (traffic flow) z,, by year and car
type on A roads on log-Normal exposure model with less diffuse prior (Prior 2)
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Figure C.3: Modelled disaggregated exposure (traffic flow) ., by year and car
type on Minor roads on log-Normal exposure model with less diffuse prior (Prior

2)
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C.1.2 Prior 3

Figures C.4, C.5 and C.6 show the modelled values of z,, that result from the
simulation with Prior 3, for Motorways, A roads and Minor roads respectively.
These values represent an estimate of the log of the number of billion vehicle
kilometres travelled by each car type in each year on each road type, which we

call disaggregated traffic data.

Motorways
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Figure C.4: Modelled disaggregated exposure (traffic flow) z.,. by year and car
type on Motorways on log-Normal exposure model with precise prior (Prior 3)
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Figure C.5: Modelled disaggregated exposure (traffic flow) z,, by year and car
type on A roads on log-Normal exposure model with precise prior (Prior 3)
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Figure C.6: Modelled disaggregated exposure (traffic flow) z.,, by year and car
type on Minor roads on log-Normal exposure model with precise prior (Prior 3)
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C.2 Multivariate t-testing

C.2.1 Prior 2

Correlations

For a range of k, the correlation between the exact and test quantiles (in the
QQ-plot) are calculated. Figure C.7 displays the range of correlation values from
k = 15 to k = 100 along with a 95% confidence envelope generated from randomly
simulated F distributed variables. The highest correlation is 0.9994 which occurs
when k£ = 45, and correlations throughout the pictured range are within the

simulated 95% confidence intervals.

1.00
1

088
|

Correlation

088
|

0.95
|

0 20 40 50 80 100
k

Figure C.7: Plot of test correlations for testing M V't; of exposure model posterior
distribution over range of k — less diffuse prior (Prior 2)

Variance about the QQ-line

Figure C.8 shows the range of absolute differences between the exact and data

quantiles for £ = 20, ...,200 and the associated acceptability bands. The degrees

192



of freedom k with the smallest sum is £ = 60, with a difference sum of 4.2.
Comparing this to a set of randomly generated quantiles suggests that differences
from k = 45 to k = 75 are approximately within a simulated 95% acceptability

range.

150
1

100
|

Absolute difference

Figure C.8: Plot of absolute variance from QQ-plot for testing MV't; of exposure
model posterior distribution over range of k — less diffuse prior (Prior 2)

For the purposes of the modelling in Chapter 5 we have selected a value of £ = 50.

C.2.2 Prior 3

Correlations

For a range of k, the correlation between the exact and test quantiles (in the
QQ-plot) are calculated. Figure C.9 displays the range of correlation values from
k = 15 to k = 100 along with a 95% confidence envelope generated from randomly
simulated F distributed variables. The highest correlation is 0.9990 which occurs

when £ = 48, and correlations throughout the pictured range are within the
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simulated 95% confidence intervals.
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Figure C.9: Plot of test correlations for testing M V't of exposure model posterior
distribution over range of k — precise prior (Prior 3)

Variance about the QQ-line

Figure C.10 shows the range of absolute differences between the exact and data
quantiles for k = 20, ...,200 and the associated acceptability bands. The degrees
of freedom k with the smallest sum is k = 45, with a difference sum of 7.0.
Comparing this to a set of randomly generated quantiles suggests that differences
from k = 35 to k = 55 are approximately within a simulated 95% acceptability

range.

For the purposes of the modelling in Chapter 5 we have selected a value of £ = 50.
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Figure C.10: Plot of absolute variance from QQ-plot for testing M V't;. of exposure
model posterior distribution over range of k — precise prior (Prior 3)
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Appendix D

Accident rate modelling tables

Table D.1: Marginal likelihoods and model probabilities for accident rate model

Marginal Model Model choice
Model likelihood choice by group BIC

1 ME 39462.8 0% 100% 17394.9
ME

2 +cy 39453.5 0% 0% 17384.0
3 +cg 39603.9 0% 0% 17120.5
4 +cr 40090.5 0% 100% 13680.0
5 +cb 39482.3 0% 0% 17347.2
6 +vg 39481.8 0% 0% 17336.3
7 +yr 39465.2 0% 0% 17374.4
8 +vyb 22627.5 0% 0% 17390.8
9 +gr 39464.6 0% 0% 17079.2
10  +gb 39454.6 0% 0% 17408.7
11 +rb 39951.7 0% 0% 16413.1
ME + cr

12 +cy 40091.1 0% 0% 13668.5
13 +cg 40233.9 0% 0% 13405.5
14 +cb 40116.9 0% 0% 13632.3
15  +4yg 40112.8 0% 0% 13621.4
16 +yr 40090.8 0% 0% 13678.0
17 +yb 40091.7 0% 0% 13675.9
18 +gr 40097.3 0% 0% 13311.2
19  +gb 40085.7 0% 0% 13693.8
20 +rb 40584.4 0% 100% 12698.2
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Table D.1 — continued from previous page

ME + cr + rb

21 +cy 40579.3 0% 0%
22 +cg 40725.2 0% 100%
23 +4cb 40587.8 0% 0%
24 +yg 40603.3 0% 0%
25 Hyr 40579.5 0% 0%
26 +yb 40582.4 0% 0%
27 +gr 40588.5 0% 0%
28  +gb 40575.6 0% 0%
ME + cr + rb + cg

29  +cy 40719.5 0% 0%
30  +cb 40728.1 0% 0%
31 +yg 40745.7 0% 100%
32 Hyr 40720.9 0% 0%
33 +yb 40723.1 0% 0%
34 +gr 40730.1 0% 0%
35 +gb 40715.7 0% 0%
ME + cr + rb + ¢g + yg

36  +cy 40738.8 0% 0%
37 +cb 40746.5 0% 5%
38 H4yr 40744.6 0% 1%
39 +yb 40748.2 0% 26%
40  +gr 40749.1 1% 68%
41  +gb 40743.4 0% 0%
ME + cr + rb + ¢cg + yg + gr

42 +cy 40747.1 0% 0%
43 +cb 40753.7 48% 50%
44 +yr 40746.6 0% 0%
45  +4yb 40753.7 49% 50%
46  +gb 40744.0 0% 0%
ME + cr + b 4+ cg + yg + gr + yb

47 +cy 40743.5 0% 0%
48 +cb 40750.5 2% 100%
49  +yr 40743.6 0% 0%
50  +gb 40740.8 0% 0%
ME + cr +rb + c¢g + yg + gr + yb +¢b

21  +cy 40746.6 0% 75%
52  +yr 40743.0 0% 2%
53 +gb 40745.4 0% 23%
ME +cr +1b+cg+ yg+ gr+ yb +cb+ cy
54  +yr 40745.9 0% 100%
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12686.6
12423.6
12690.7
12639.5
12696.1
12694.7
12329.3
12712.5

124128
12416.1
12364.7
12421.5
12420.1
12048.3
12437.7

12353.8
12357.2
12362.6
12361.3
11989.6
12378.8

11978.6
11982.1
11983.1
11986.1
12015.6

11974.7
11979.5
11980.9
12011.0

11967.0
11974.3
12004.7

11960.2



Table D.1 — continued from previous page

55 +gb 40739.4 0% 0% 11992.1
ME + cr + b + cg + yg + gr + yb + cb 4+ ¢y + yr
56 +gb 40738.8 0% 100% 119854

Table D.2: Mean and standard deviation of coefficients for high probability acci-
dent rate models with fixed exposure

Model 43 Model 45

Mean SD Mean SD

Constant 1.61  0.08 1.57  0.08
Car size 4x4 - - - -
Large -0.42  0.11 -0.42  0.11

Medium -0.70  0.09 -0.68  0.09

Small -0.45  0.08 -0.42  0.08

Minis 0.03 0.08 0.07  0.08

Sports 0.08 0.11 0.13 0.11

Year -0.07  0.00 -0.07  0.00
Car age 0-2 - - - -
3-5 0.04 0.09 0.03  0.09

6-10 -0.16  0.09 -0.17  0.08

11-15 0.17  0.10 0.16  0.09

16+ 1.19 0.14 1.18 0.13

Road M - - - -
A -0.03  0.08 -0.07  0.08

Minor 0.28  0.08 0.22 0.08

Bend -1.52  0.06 -1.30  0.05
Car size 4x4 & 0-2 - - - -
& car age 4x4 & 3-5 - - - -
4x4 & 6-10 - - - -

4x4 & 11-15 - - - -

4x4 & 16+ - - - -

large & 0-2 - - - -

large & 3-5 0.04 0.11 0.05 0.11

large & 6-10 0.14 0.10 0.14 0.10

large & 11-15 0.08 0.11 0.08 0.11

large & 16+ -0.81 0.14 -0.81 0.14

medium & 0-2 - - - -

medium & 3-5 0.07  0.08 0.07  0.08

medium & 6-10 0.18  0.08 0.18 0.07

medium & 11-15 0.26  0.09 0.27  0.09
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Car size
& road

Car size

& bend

Year &
car age

medium & 16+
small & 0-2
small & 3-5
small & 6-10
small & 11-15
small & 16+
mini & 0-2
mini & 3-5
mini & 6-10
mini & 11-15
mini & 16+
sport & 0-2
sport & 3-5
sport & 6-10
sport & 11-15
sport & 16+
4x4 & M

4x4 & A

4x4 & min
large & M
large & A
large & min
medium & M
medium & A
medium & min
small & M
small & A
small & min
mini & M
mini & A
mini & min
sport & M
sport & A
sport & min
4x4 & bend
large & bend
medium & bend
small & bend
mini & bend
sport & bend
0-2

3-5
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-0.39
-0.05
0.12
0.22
-0.44

-0.12
-0.08
-0.08
-0.88

-0.10
-0.11
-0.18
-1.74

-0.39
0.18

0.06
-0.57

0.50
0.07

0.59
0.63

0.64
0.17

0.06
0.16
0.18
0.24
0.25

0.01

0.12
0.08
0.07
0.08
0.11

0.07
0.07
0.08
0.11

0.09
0.09
0.10
0.13

0.10
0.11

0.09
0.09

0.08
0.08

0.08
0.08

0.11
0.11

0.07
0.06
0.05
0.05
0.07

0.01

-0.38
-0.05
0.12
0.22
-0.44

-0.11
-0.08
-0.08
-0.88

-0.09
-0.11
-0.18
-1.73

-0.37
0.20

0.09
-0.53

0.54
0.12

0.65
0.70

0.70
0.24

0.01

0.12

0.07
0.07
0.08
0.11

0.07
0.07
0.08
0.11

0.09
0.09
0.10
0.13

0.11
0.11

0.09
0.09

0.08
0.08

0.08
0.08

0.11
0.11

0.01
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6-10 0.03 0.01 0.03 0.01
11-15 0.00 0.01 0.00 0.01
16+ 0.01  0.01 0.01 0.01
Year & bend -0.01  0.00

Car age 0-2 & M - . - ,
& road 0-2& A - - - -

0-2 & min - - - -
3-5 &M - - - -
3-5& A 0.15  0.06 0.16  0.06
3-5 & min 0.21  0.06 0.22 0.06
6-10 & M - - - -
6-10 & A 0.51  0.06 0.51 0.06
6-10 & min 0.62 0.06 0.62 0.06
11-15 & M - - - -
11-15 & A 0.69 0.07 0.69 0.07
11-15 & min 0.98  0.07 0.99 0.07
164+ & M - - - -
16+ & A 0.24 0.10 0.25 0.10
16+ & min 0.67 0.10 0.67 0.10
M & bend - - - -
A & bend 0.93 0.05 0.94 0.05
min & bend 1.23  0.05 1.24  0.05
035 59.90 7.48 57.66  6.77
Deviance 10855.82 51.24 10855.89 50.51

Table D.3: Mean and standard deviation of coefficients for high probability acci-
dent rate models with variable exposure

Model 43 Model 45
Mean SD Mean SD

Constant 1.64 0.40 1.60 0.39
Car size 4x4 - - - -
Large -0.30 0.67 -0.29 0.67
Medium -0.73 0.39 -0.71 0.39
Small -0.46 0.54 -0.43 0.54
Minis 0.05 0.64 0.09 0.64
Sports 0.15 0.64 0.20 0.64
Year -0.07 0.01 -0.07 0.01
Car age 0-2 - - - -
3-5 0.07 0.13 0.07 0.13
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6-10 -0.13 0.13 -0.13 0.13
11-15 0.21 0.15 0.21 0.15
164 1.21 0.16 1.21 0.16
Road M - - - -
A 0.01 0.50 -0.02 0.50
Minor 0.27 0.51 0.23 0.52
Bend -1.49 0.13 -1.29 0.09

Car size  4x4 & 0-2 - - - -
& car age 4x4 & 3-5 - - - -
4x4 & 6-10 - - - -
4x4 & 11-15 - - - -
4x4 & 16+ - - - -
large & 0-2 - - - -
large & 3-5 0.03 0.13 0.03 0.13
large & 6-10 0.12 0.13 0.13 0.12
large & 11-15 0.06 0.13 0.07 0.12
large & 16+ -0.82 0.16 -0.81 0.16
medium & 0-2 - - - -
medium & 3-5 0.06 0.11 0.06 0.11
medium & 6-10 0.17 0.10 0.18 0.10
medium & 11-15 0.25 0.11 0.26 0.10
medium & 16+ -0.39 0.14 -0.39 0.13

small & 0-2 - - - -
small & 3-5 -0.07 0.10 -0.06 0.09
small & 6-10 0.11 0.09 0.11 0.09
small & 11-15 0.20 0.10 0.20 0.10
small & 16+ -0.45 0.13 -0.45 0.12
mini & 0-2 - - - -
mini & 3-5 -0.13 0.10 -0.13 0.10
mini & 6-10 -0.10 0.10 -0.09 0.09
mini & 11-15 -0.11 0.10 -0.10 0.10
mini & 16+ -0.89 0.13 -0.89 0.13
sport & 0-2 - - - -
sport & 3-5 -0.11 0.12 -0.10 0.11
sport & 6-10 -0.12 0.11  -0.12 0.11
sport & 11-15 -0.20 0.12 -0.19 0.12
sport & 16+ -1.74 0.15 -1.74 0.15

Car size 4x4 & M - - - -
& road 4x4 & A - - - -
4x4 & min - - - -
large & M -
large & A -0.47 0.87 -0.46 0.87
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large & min 0.25 0.86 0.26 0.86
medium & M - - - -
medium & A 0.06 0.56 0.09 0.56
medium & min -0.49 0.58 -0.46 0.58
small & M - - - -
small & A 0.51 0.81 0.55 0.80
small & min 0.07 0.80 0.11 0.80
mini & M - - - -
mini & A 0.54 0.79 0.58 0.78
mini & min 0.68 0.80 0.73 0.80
sport & M - - - -
sport & A 0.59 087 0.64 0.87
sport & min 0.18 0.84 024 0.84
Car size 4x4 & bend - -
& bend large & bend 0.05 0.09
medium & bend 0.15 0.08
mini & bend 0.23 0.08
sport & bend 0.24 0.08
small & bend 0.17 0.07
Year & 0-2 - - - -
car age 3-5 0.01 0.01 0.01 0.01
6-10 0.03 0.01 0.03 0.01
11-15 0.00 0.01  0.00 0.01
16+ 0.01 0.01 0.01 0.01
Year & bend - -0.01 0.00

Car age 0-2 & M - - - -
& road 0-2 & A - - - -

0-2 & min - - - -
3-5 &M - - - -
3-5& A 0.13 0.09 0.14 0.10
3-5 & min 0.19 0.09 0.19 0.09
6-10 & M - - - -
6-10 & A 0.49 0.10 0.49 0.10
6-10 & min 0.59 0.09 0.59 0.10
11-15 & M - - - -
11-15 & A 0.66 0.11 0.67 0.11
11-15 & min 0.95 0.11 0.95 0.11
164+ & M - - - -
16+ & A 0.22 0.12 0.22 0.12
16+ & min 0.65 0.12 0.65 0.12
M & bend - - - -
A & bend 0.91 0.09 0.92 0.09
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min & bend 1.21 0.09 1.22 0.08
ai 4192 7.44 40.86 6.98
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Figure D.1: Relationship between modelled accident rate and accident propensity
for car type with associated posterior intervals
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Appendix E

Accident severity modelling

tables

Table E.1: Marginal likelihoods and model probabilities for accident severity
model

Marginal Model Model choice

Model likelihood choice by group BIC
1 ME -17032.3 0% 0% 9236.9
ME
2 +cy -17050.4 0% 0% 9688.3
3 +cg -17069.1 0% 0% 9433.2
4 ~+cr -17051.6 0% 0% 9358.1
) +co -17034.9 0% 0% 9304.5
6 +cb -17041.5 0% 0% 9317.3
7 +yg -17046.1 0% 0% 9612.3
8 +yr -17038.2 0% 0% 9464.1
9 +yo -17032.6 0% 0% 9386.8
10 +yb -17032.4 0% 0% 9386.4
11 +gr -17025.6 16% 61% 9331.5
12 +go -17035.7 0% 0% 9296.9
13 +gb -17040.1 0% 0% 9305.3
14 4ro -17033.2 0% 0% 9276.0
15 +rb -17030.5 0% 0% 9270.7
16  +ob -17026.0 10% 39% 9253.4
ME + gr
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17 Hcy -17048.6 0% 0% 9782.9
18 +cg -17067.2 0% 0% 9529.3
19  +cr -17049.8 0% 0% 9452.8
20 +co -17033.1 0% 0% 9362.3
21 +<cb -17039.6 0% 0% 9374.6
22 +4yg -17044.3 0% 0% 9706.8
23 H4yr -17036.3 0% 0% 9558.7
24 +yo -17030.8 0% 0% 9407.1
25 +yb -17030.6 0% 0% 9406.6
26 +go -17033.9 0% 0% 9391.2
27 +gb -17038.2 0% 0% 9369.7
28 410 -17031.4 0% 0% 9352.1
29  +r1b -17028.7 1% 1% 9347.0
30  4ob -17024.2 65% 99% 9335.6
ME + gr + ob

31 +cy -17047.1 0% 0% 9786.9
32 +cg -17065.8 0% 0% 9533.4
33 +cr -17048 .4 0% 0% 9456.9
34 +co -17031.9 0% 0% 9404.1
35  +cb -17038.4 0% 0% 9416.3
36 +yg -17042.8 0% 0% 9710.8
37 H4yr -17034.9 0% 0% 9562.9
38  +yo -17029.4 0% 5% 9485.8
39  +yb -17029.0 1% 8% 9484.7
40  +go -17032.5 0% 0% 9395.5
41 +gb -17036.6 0% 0% 9404.7
42 4ro -17030.2 0% 2% 9375.4
43 +rb -17026.6 6% 85% 9349.7
ME + gr + ob + b

44 Hcy -17049.5 0% 0% 9801.0
45  +cg -17068.3 0% 0% 9547.6
46  +cr -17051.0 0% 0% 9471.4
A7 +co -17034.5 0% 2% 9418.6
48  +cb -17040.9 0% 0% 9430.7
49  +yg -17045.2 0% 0% 9725.0
50  +yr -17037.3 0% 0% 9576.9
51  +yo -17031.8 0% 30% 9499.9
52  +yb -17031.3 0% 50% 9498.7
53  +go -17035.0 0% 1% 9409.6
54  +gb -17039.2 0% 0% 9387.9
55 410 -17032.5 0% 16% 9389.2

ME + gr + ob + rb 4+ yb
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56  +cy -17054.3 0% 0% 9875.6
57 +cg -17073.1 0% 0% 9622.2
58 Hcr -17055.8 0% 0% 9546.1
59  +co -17039.3 0% 4% 9493.3
60  +cb -17045.6 0% 0% 9467.8
61  +yg -17049.9 0% 0% 9799.4
62  +yr -17042.0 0% 0% 9651.5
63  +yo -17036.6 0% 60% 9574.5
64  +go -17039.7 0% 3% 9484.1
65  +gb -17044.0 0% 0% 9462.5
66  +ro -17037.2 0% 33% 9463.8
ME + gr + ob + rb + yb + yo

67  +cy -17059.4 0% 0% 10025.6
68  +cg -17078.4 0% 0% 9772.5
69  +cr -17061.1 0% 0% 9696.3
70  +4co -17044.2 0% 15% 9642.8
71 +cb -17050.9 0% 0% 9655.2
72 H4yg -17055.3 0% 0% 9949.7
73 4yr -17047.3 0% 1% 9801.8
74 +go -17045.1 0% 6% 9634.6
7 +gb -17049.3 0% 0% 9643.7
76 410 -17042.6 0% 79% 9614.1
ME + gr 4+ ob + rb 4+ yb 4+ yo + ro

77 Hcy -17065.4 0% 0% 10065.1
78 +cg -17084.4 0% 0% 9812.1
79 4cr -17067.0 0% 0% 9735.9
80  +co -17050.1 0% 2% 9682.3
81  +cb -17056.8 0% 0% 9694.7
82  +yg -17061.2 0% 0% 9989.3
83  +yr -17053.3 0% 3% 9841.3
84  +go -17051.2 0% 25% 9674.4
8  +gb -17055.2 0% 0% 9683.3
ME + gr + ob + rb + yb 4+ yo 4+ ro + co

8  +cy -17073.2 0% 0% 10133.9
87  +cg -17091.3 0% 0% 9879.3
88  +cr -17074.7 0% 0% 9804.3
89  +cb -17064.3 0% 0% 9725.7
90  +yg -17068.8 0% 0% 10057.6
91  +yr -17060.8 0% 9% 9009.5
92  +go -17058.5 0% 89% 9742.1
93  +gb -17062.8 0% 1% 9751.5

ME + gr + ob + rb + yb 4+ yo 4+ ro 4+ co + go
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94  +cy -17081.6 0% 0% 10193.8
95  +cg -17099.8 0% 0% 9939.2
96 “+cr -17083.2 0% 0% 9864.0
97  +4cb -17072.7 0% 3% 9785.5
98  +vyg -17077.2 0% 0% 10117.5
99  Hyr -17069.2 0% 86% 9969.3
100 +gb -17071.3 0% 11% 9780.5
ME + gr + ob + rb + yb + yo 4+ ro + co + go + yr

101 +cy -17092.3 0% 0% 10421.0
102 +cg -17110.5 0% 0% 10166.4
103 +cr -17093.9 0% 0% 10091.3
104 +cb -17083.4 0% 19% 10012.7
105 +yg -17087.9 0% 0% 10344.6
106  +gb -17081.9 0% 80% 10007.7
ME + gr + ob + rb + yb 4+ yo 4+ ro 4+ co + go + yr + gb

107 4cy -17105.1 0% 0% 10459.3
108  +cg -17123.3 0% 0% 10204.8
109  +cr -17106.6 0% 0% 10129.6
110 +cb -17096.0 0% 99% 10050.9
111 +yg -17100.6 0% 1% 10383.0
ME + gr + ob + rb + yb + yo 4+ ro + co + go + yr + gb + cb

112 4cy -17119.1 0% 1% 10502.5
113 +cg -17137.2 0% 0% 10247.8
114 +er -17120.8 0% 0% 10173.2
115 +yg -17114.6 0% 99% 10426.2
ME + gr + ob + rb + yb 4+ yo + ro 4+ co + go + yr + gb + ¢b + yg

116 +cy -17137.5 0% 86% 10877.5
117 +cg -17156.1 0% 0% 10623.7
118  +er -17139.3 0% 14% 10548.4
ME + gr + ob + rb + yb + yo 4+ ro + co + go + yr + gb + cb 4+ yg + cy

119 +cg -17178.6 0% 0% 11074.2
120 +cr -17162.2 0% 100% 10999.8

ME + gr + ob + rb + yb + yo 4+ ro + co + go + yr + gb + ¢cb + yg + cy + cr

121

+cg

-17203.3

0%

100%

11196.3
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Table E.2: Mean and standard deviation of coefficients for high probability acci-
dent severity models with factor year replaced by economy

Model 11 Model 16 Model 30

Mean SD Mean SD Mean SD

Constant -2.69 0.17 -2.60 0.14 -2.72 0.17
Vehicle 4x4 - - - - - -
Large 0.35 0.09 0.36  0.09 0.36 0.09

Medium 0.22 0.07 0.22 0.07 0.22 0.07

Minis -0.12 0.07 -0.11  0.07 -0.11  0.07

Sports 0.34 0.09 0.35 0.09 0.35 0.09

Small 0.04 0.07 0.04 0.07 0.04 0.07

Economy 0.03 0.01 0.03 0.01 0.03 0.01
Car age 02 - - - - - -
3-5 0.02 0.15 -0.01 0.05 0.01 0.15

6-10 0.24 0.14 0.00 0.04 0.23 0.14

11-15 0.17 0.16 0.01 0.05 0.16 0.16

16+ 0.37 0.23 0.08 0.07 0.38 0.23

Road M - - - - - -
A -0.01 0.12 -0.11 0.05 -0.01 0.12

Minor -0.09 0.12 -0.27 0.06 -0.09 0.12

Overturn 0.13 0.03 0.22 0.04 0.22 0.04
Bend 0.21 0.03 0.28 0.04 0.28 0.04
Age & 02 &M - - - -
road 0-2& A - - - -
0-2 & Min - - - -

35 &M - - - -

35 & A -0.03 0.17 -0.03 0.17

3-5 & Minor -0.03 0.17 -0.02 0.17

6-10 & M - - - -

6-10 & A -0.23 0.15 -0.23 0.15

6-10 & Minor -0.31 0.15 -0.30 0.15

11-15 & M - - - -

11-15 & A -0.07 0.17 -0.07 0.17

11-15 & Minor -0.29 0.18 -0.28 0.17

164+ & M - - - -

16+ & A -0.36  0.25 -0.37 0.26

16+ & Minor -0.31 0.25 -0.32 0.25

Overturn &Bend -0.19 0.06 -0.19 0.06
Deviance 9109.05 6.74 9106.05 5.63 9099.72 6.90
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