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OPTIMAL AND EFFICIENT EXPERIMENTAL DESIGN FOR NONPARAMETRIC
REGRESSION WITH APPLICATION TO FUNCTIONAL DATA

Verity Alexandra Fisher

Functional data is ubiquitous in modern science, technology and medicine. An example,
which motivates the work in this thesis, is an experiment in tribology to investigate wear
in automotive transmission.

The research in this thesis provides methods for the design of experiments when
the response is assumed to be a realisation of a smooth function. In the course of the
research, two areas were investigated: designs for local linear smoothers and designs for
discriminating between two functional linear models.

Designs that are optimal for minimising the prediction variance of a smooth function
were found across an interval using two kernel smoothing methods: local linear regression
and Gasser and Müller estimation. The values of the locality parameter and run size were
shown to affect the optimal design. Optimal designs for best prediction using local linear
regression were applied to the tribology experiment. A compound optimality criterion
is proposed which is a weighted average of the integrated prediction variance and the
inverse of the trace of the smoothing matrix using the Gasser and Müller estimator. The
complexity of the model to be fitted was shown to influence the selection of optimal design
points. The robustness of these optimal designs to misspecification of the kernel function
for the compound criterion was also critically assessed.

A criterion and method for finding T-optimal designs was developed for discriminating
between two competing functional linear models. It was proved that the choice of optimal
design is independent of the parameter values when discriminating between two nested
functional linear models that differ by only one term. The performance of T-optimal
designs was evaluated in simulation studies which calculated the power of the test for
assessing the fit of one model using data generated from the competing model.
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and (d) MSE for ĝ(x) for the whole dataset. . . . . . . . . . . . . . . . . . 56

3.10 Run 2: Standardised difference (3.29) in mean square error between ĝ(x) us-
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3.16 Run 19: Standardised difference (3.29) in mean square error between ĝ(x)
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whole dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.20 Run 2: Standardised difference (3.29) in mean square error between ĝ(x)
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design points for h = 0.3 and ĝ(x) from the whole dataset with true band-
width h = 0.2. Values of the average standardised MSE difference (ASD)
over x are given in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.21 Run 19: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
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using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30
(light blue) design points for h = 0.2 and ĝ(x) from the whole dataset with
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Chapter 1

Introduction

Increasingly, data from experiments in science and technology are used to investigate

complex systems where the response function cannot be adequately approximated by a

simple regression function such as a low-order polynomial. Then, nonparametric regression

is preferred where no assumption is required on the form of the regression function. The

research in this thesis provides methods for the design of experiments when the response

is assumed to be a realisation of a smooth function.

In the course of the research, the following two issues are addressed:

(i) Little research is available on how to design an experiment to obtain as much infor-

mation as possible from available resource. The first broad aim of the research is to give

methods of finding highly efficient or optimal designs for nonparametric regression.

(ii) In many experiments, functional data are collected where the response from each run

is a realisation of a smooth function of a continuous variable, such as time, as opposed to a

scalar value. Then, each function may require estimation using nonparametric regression.

An example of such an experiment is given in Section 1.3. In practical applications, we

may need to make a decision about which of two models provides the better description

of a response. The second broad aim of this research is to provide methods of designing

experiments that enable discrimination between two competing functional linear models.

1



1.1 Models and linear smoothers

1.1.1 Modelling and estimation for nonparametric smoothing

We consider the nonparametric regression model which describes a response variable by

yj = g(xj) + εj, for j = 1, . . . , n, (1.1)

where g is the unknown regression function, xj is the value of the single explanatory vari-

able, and the εj are independent error random variables which are identically distributed

with constant variance σ2. This model is often called the ‘fixed design model’, see for

example Wand and Jones (1995, ch. 5). It is different from the ‘random design model’

in which the observations are regarded as a random sample from a bivariate distribution.

The work in this thesis considers only fixed design models.

Estimation of g(x) in (1.1) is through a linear smoother, ĝ(x), which is a weighted linear

combination of the observations yj expressed as

ĝ(x) =
n∑
j=1

Sj(x)yj, (1.2)

where Sj(x) are the smoothing weights (see, for example, Ramsay and Silverman, 2005,

ch. 4). A simple example of a linear smoother is linear regression. Further examples can

be found in Buja, Hastie and Tibshirani (1989), Wand and Jones (1995, ch. 5), Simonoff

(1996, ch. 5) and Ramsay and Silverman (2005, ch. 4).

1.2 Functional linear models

If an experiment produces functional data, then a functional linear model may be used to

describe the response functions. This model is written in matrix form as

Y (t) = Xβ(t) + ε(t), (1.3)

where Y (t) is an n × 1 vector of response functions, X is the n × p model matrix, β(t)
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is an n × 1 vector of parameters and ε(t) is an n × 1 vector holding realisations from a

stochastic process with mean zero and covariance function γ(s, t); for a ≤ s ≤ t ≤ b and

[a, b] ⊂ R.

1.3 Example from tribology

To motivate the theory and results in this thesis, we consider a common type of experiment

from the EPSRC National Centre for Advanced Tribology (nCATS) at the University of

Southampton. The experiment is a pilot study to assess how six factors affect the wear of

a pin and disc assembly when a given lubricant is used to lubricate the surface of the disc.

The experiment involved 16 runs, each having a different combination of values of six

factors. Each of the factors is listed below, together with the two factor levels used in the

experiment.

• disc material: silicone or steel

• pin material: silicone or steel

• addition of soot: 0% or 10%

• level of oxidation: 0 or 10 hours

• addition of H2S04: 0 or 25mM (millimolar)

• level of moisture: 0% or 2.5%

In addition, the tribologists ran four model checking runs. In this thesis, where we label

runs from the experiment we use the labels from the randomised order of the 20 runs.

Figure 1.1 shows a schematic of the pin and disc equipment. The gimbal arm suspends

the pin over the disc. The disc spins and the combined wear on the pin and the disc is

measured by a Linear Variable Displacement Transformer at a large number of equally

spaced discrete time points (referred to as the time index). The first 500 observations are

typically discarded as ‘burn in’. In our particular motivating experiment, all observations

after the 2400th were disregarded as, for some runs, the equipment was erroneously left

on after the experiment had finished, producing spurious results. Figure 1.2 shows wear

data produced by this experiment.
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Figure 1.1: Schematic of the pin and disc equipment.

The aim of the experiment is to predict the value of the response, that is, the profile over

the interval [500, 2400] of the combined wear on the pin and disc for a given combination

of values of the six factors. This is to be achieved by using an optimal design consisting

of the ‘best’ subset of points {x1, . . . , xn} selected from the interval [500, 2400].

1.4 Design preliminaries

The following section describes terms and ideas from the field of design of experiments

which will be used later in the thesis. A detailed account of the optimal design of ex-

periments, including various optimality criteria, with application to linear and non-linear

models can be found in Atkinson, Donev and Tobias (2007, ch. 10).

There are two approaches to design specification:

(a) A continuous, or approximate, design which is represented by a measure ξ on a design

region χ and written as

ξ =

{
x1 x2 ... xs

w1 w2 ... ws

}
, (1.4)

where, without loss of generality, xi (i = 1, . . . , s) are the s distinct design points and

wi (i = 1, . . . , s) are the associated design weights. Each distinct design point is called

a support point and its weight specifies the proportion of total experimental effort to be

expended at that point. Since ξ is a measure,
∫
χ
ξ dx = 1 and the design weights are

restricted to 0 < wi ≤ 1, i = 1, . . . , s, with
∑s

i=1 wi = 1.
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Figure 1.2: Plot of data from one run of the wear experiment with an example locally
linear smooth fit.

For example, for the continuous design

ξ =

{
0 1 2

0.3 0.3 0.4

}
,

in n = 10 runs, the design used for an experiment would have three runs at each of x = 0

and 1, and four runs at x = 2. When nwi is non-integer, for some i = 1, . . . , s, then the

value must be rounded to provide a realisable design with an integer number of occurrences

of each xi in the design; see Fedorov and Hackl (1997, ch. 1).

(b) An exact design which has s support points and n design points and may be written

ξn =

{
x1 x2 ... xs

r1 r2 ... rs

}
, (1.5)

where ri is the integer number of observations taken at the ith distinct design point, xi,

and
∑s

i=1 ri = n.

For simplicity, we usually write an exact design as {x1, x2, . . . , xn} where the xi are not

necessarily distinct.
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For both approaches, we define an optimal design as one which optimises an objective

function Ψ(ξ) or Ψ(ξn), for a continuous or exact design, respectively.

1.5 Objectives and overview of thesis

This thesis has two specific objectives. The first is to develop methods for the efficient de-

sign of experiments for local linear smoothing and for Gasser and Müller kernel smoothing.

The second objective is to develop a T-optimality criterion and derive analytical results to

enable the design of experiments for efficient discrimination between two functional linear

models.

In Chapter 2, we introduce common linear smoothers and discuss the existing literature on

experimental design. We then give, in Chapter 3, methods of finding designs for prediction

using the local linear estimator for two cases:

(i) prediction at a finite number of points in the design region, and

(ii) prediction across the whole of an interval within the design region.

In Chapter 4, we find optimal and efficient designs for the Gasser and Müller estimator

when the purpose of the experiment is prediction across an interval. We compare the

performance of designs found using the uniform and the Gaussian kernels (defined in

Section 2.1).

Chapter 5 develops, for the first time, optimal designs for ‘best’ discrimination between

two functional linear models using a T-optimality criterion developed for this class of

models. Chapter 6 evaluates the work and methods in this thesis and highlights avenues

for future work.
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Chapter 2

Background to linear smoothing and

design of experiments literature

This chapter provides an introduction to local linear smoothing and a review of the liter-

ature on the design of experiments for these smoothing methods.

In Section 2.1, we give a brief description and background for nonparametric methods of

local linear smoothing, in particular kernel smoothing, which can be used to estimate the

function, g(x), in model (1.1). The estimate ĝ(x) is calculated using (1.2), where different

forms of smoothing weights, Sj(x), are used for different types of local smoothing. In

Section 2.2, we discuss the limited literature on optimal design for local fitting using the

local linear estimator.

2.1 Local fitting

Generally, local fitting describes methods of estimating g(x) such that observations at

points closer (or more local) to x have larger influence on ĝ(x). Popular local smoothing

methods use kernel regression, spline functions and wavelets. In this section we consider

two approaches using kernel regression estimators: local polynomial estimators and the

Gasser and Müller estimator.

Kernel regression methods, a form of local linear smoothing, were first considered by

Nadaraya (1964) and Watson (1964) and later modified by Priestly and Chao (1972) and

Gasser and Müller (1979, 1984).
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This type of local linear smoother is defined through the choice of smoothing weights,

Sj(x), see equation (1.2), which determine the distribution of the weights assigned to each

observation yj in ĝ(x). The form of Sj(x) depends on a pre-specified constant h, known

as the bandwidth.

A choice of smoothing weight distribution which incorporates the bandwidth may be

obtained from using a kernel function, K(·). Such functions are symmetric and have the

property that
∫
K(u) du = 1. Some widely used kernel functions are given below and

shown in Figure 2.1:

Uniform: K(u) =

0.5 if |u| ≤ 1,

0 otherwise.

Epanechnikov: K(u) =

0.75(1− u2) if |u| ≤ 1,

0 otherwise.

Gaussian: K(u) =
1√
2π

exp

{
−u

2

2

}
−∞ < u <∞,

The jth smoothing weight is defined as K(uj) where uj = x− xj. Hence both the kernel

and bandwidth affect the degree of locality in ĝ(x) in the following sense:

• If |x − xj| ≤ h, then observation yj has a substantial weight Sj(x), which is a

monotonically decreasing function of |x− xj|.

• If |x− xj| > h, then Sj(x) = 0 or decreases monotonically with |x− xj|.

The Epanechnikov kernel function, has desirable asymptotic properties and so is a popular

kernel function choice (Simonoff, 1996, ch. 5). However, in this thesis, we use the uniform

and Gaussian kernel functions. The Gaussian kernel, which is widely used, is not truncated

and so Sj(x) 6= 0 for all j. We use the uniform kernel, together with the Gaussian kernel,

in a study (Sections 3.5.3 and 4.6) of the robustness of designs to the choice of kernel

function. We consider the uniform kernel as its kernel function has a significantly different

form from that of the Gaussian kernel.
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Figure 2.1: Plot of (–) uniform, (· · · ) Epanechnikov and (- -) Gaussian kernel functions

2.1.1 Choice of bandwidth size

An important choice in the estimation of a function g(x) is the size of the bandwidth, h,

which is related to the complexity of the function. (In contrast, in a parametric model

the complexity is controlled by increasing or decreasing the number of parameters in the

model). The estimation of a function with many features (e.g. turning points) requires

a smaller bandwidth, so that features are not lost or weakened by observations made at

points at some distance from x having undue influence on ĝ(x). However, even though

a small bandwidth provides a less biased estimate of g(x), in that E(ĝ(x)) is very close

to g(x), this is attained at the cost of a high variance (Ramsay and Silverman, 2005, p.

78). Conversely, larger bandwidths include more data points in the prediction at x, which

provides a prediction with low variability but potentially high bias.

Various methods have been developed to choose the optimal bandwidth for use in pre-

diction. For example, Fan and Gijbels (1995) discussed data-driven bandwidth selection

based on a residual squares criterion which is relatively simple to compute and can be

‘plugged in’ to K(·). In some cases there may be a need for a varying bandwidth (Si-

monoff, 1996, ch. 5). For example, suppose a function is relatively simple, for small x,

and then, for larger x, has a sharp peak. Estimation of the function would benefit from

a larger bandwidth initially to avoid oversmoothing, leading to a prediction which is too

‘wiggly’, followed by a smaller bandwidth to avoid undersmoothing, leading to a prediction

which is ‘too smooth’, see Section 6.2.1.1 for further discussion.
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2.1.2 Local polynomial estimators

The use of local polynomial estimators, local weighted regression (loess) or moving local

regression was introduced by Pelto, Elkins and Boyd (1968) and Cleveland (1979). Müller

(1996) provided a clear explanation of local fitting. A smooth function can often be

approximated by a simpler function over a small region of the design space. The method

of local weighted regression fits a pth degree polynomial to data locally using weighted least

squares. Each observation, yj (j = 1, . . . , n), is assigned a particular weight calculated

using the kernel function K, where more weight is given to an observation at a design

point closer to the prediction point x. Again, the locality of the smoothing is controlled

by the bandwidth, h.

The local linear estimator with p = 1 is widely used, and given by

ĝ(x) =
1

nh

∑n
j=1 {ŝ2(x;h)− ŝ1(x;h)uj}K(

uj
h

)yj

ŝ2(x;h)ŝ0(x;h)− ŝ1(x;h)2
, (2.1)

where, for r = 0, 1, 2, ŝr(x;h) = 1
nh

∑n
k=1 u

r
kK(uk

h
) and

Sj(x) =
1

nh

{ŝ2(x;h)− ŝ1(x;h)uj}K(
uj
h

)

ŝ2(x;h)ŝ0(x;h)− ŝ1(x;h)2
.

Note that if we set K(
uj
h

) = h for all uj in (2.1) then we find ĝ(x) reduces to

ĝ(x) =

∑n
j=1 u

2
j

∑n
j=1 yj −

∑n
j=1 uj

∑n
j=1 ujyj

n
∑n

j=1 u
2
j − (

∑n
j=1 uj)

2
,

the ordinary least squares estimator of β0(x), the intercept parameter in linear regression.

A further special case is the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964),

where p = 0,

ĝ(x) =

∑n
j=1 K(

uj
h

)yj∑n
j=1 K(

uj
h

)
, (2.2)

with
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Sj(x) =
K(

uj
h

)∑n
j=1K(

uj
h

)
, (2.3)

In a foundation paper, Fan (1992) established, through both theory and simulation meth-

ods, advantages of the local linear estimator (p = 1) over the alternative Nadaraya-Watson

(2.2) and the Gasser and Müller (Section 2.1.3) smoothers. The author proved, under cer-

tain conditions, that this estimator was the ‘best’ among all linear smoothers when using

the optimal bandwidth chosen by minimising the mean expected squared error. Here ‘best’

means having the lowest maximum expected squared error over a class of true regression

functions. Fan (1992) showed this best case was achieved by the local linear estimator

with the Epanechnikov kernel function. He argued against the use of the Nadaraya-Watson

estimator because it had infinite expected squared error for all kernels, as a result of it

potentially having infinite bias.

In general, choosing an odd value for p, the degree of the local polynomial fitted, results in

the order of the bias being the same for boundary and interior points. Therefore, p = 1 or

p = 3 were suggested by Wand and Jones (1995, ch. 5). In the work presented in Chapters

3 and 4 we use p = 1 because the resulting estimator is much quicker to compute and has

often adequate bias and boundary properties for small enough h.

For a truncated kernel such as the uniform or Epanechnikov, it is important that there

are always sufficient points in the interval [x−h, x+h] to fit a polynomial of the required

degree. For example, we require at least two points within the bandwidth of our prediction

point to fit a straight line, otherwise it is impossible to estimate the slope. Also the greater

the number of design points lying within a distance of h of x, the lower the variance of

the prediction.

2.1.3 The Gasser and Müller estimator

The Gasser and Müller estimator, see Gasser and Müller (1979, 1984), is given by

ĝ(x) =
n∑
j=1

[
1

h

∫ x̄j

x̄j−1

K

(
v − x
h

)
dv

]
yj, (2.4)

where x̄j = (xj+1 + xj)/2 for 1 ≤ j < n, x̄0 = x1 and x̄n = xn and
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Sj(x) =
1

h

∫ x̄j

x̄j−1

K

(
v − x
h

)
dv. (2.5)

The simplest weights are given by the uniform kernel.

Ramsay and Silverman (2005, p. 75) comment that the Gasser and Müller weights are

fast to compute, deal better with unequally spaced data points and have good asymptotic

properties in comparison to the Nadaraya-Watson estimator. Unlike the local linear esti-

mator, the Gasser and Müller estimator has boundary bias problems in a manner similar

to the Nadaraya-Watson estimator (Fan, 1992) which are not addressed in this thesis. The

Gasser and Müller estimator is used in this thesis as we make predictions with unequally

spaced points and, in some cases, it is possible to get analytic results using the uniform

kernel.

2.2 Experimental design for local fitting

The literature provides three main approaches to experimental design for local fitting.

Cheng, Hall and Titterington (1998) developed a sequential approach using the local linear

estimator to find optimal ‘design densities’, from which the required number of design

points for an experiment is drawn at random. At each step, both the optimal design

density and asymptotic optimal bandwidths are calculated, by minimising the integrated

mean squared error. This approach has the advantage of mathematical tractability: at

each step, the optimal design density for the next step has a closed form solution. They

obtained numerical results on approximate efficiencies to illustrate the gains of the optimal

design densities over the uniform design density.

For experiments when sequential designs cannot be applied, Biedermann and Dette (2001)

proposed a minimax approach to find optimal design densities using the Gasser and Müller

estimator. For a specified class of ‘true’ functions, g(x), and certain error distributions,

they found design densities that minimised the maximum of the asymptotic integrated

mean squared error in conjunction with using the optimal bandwidth. They numerically

investigated the performance of these optimal design densities via asymptotic relative

efficiency when either the form of g(x) of the variance function (or both) were misspecified.

The disadvantage of the design density methods is that for small to moderate sized designs,

there is large variability in the realised designs and hence in the achieved efficiencies. Hence

we have not pursued these methods.
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The work in this thesis builds upon optimal design strategies introduced by Müller (1992,

1996) who found continuous designs that enable ‘best’ prediction at q distinct points in

the design region. Specifically, designs were found that minimised a weighted sum of

the variances of the estimator β̂0(xi), for prediction at points xi, i = 1, ..., q, see Section

3.3.3.1. This is a special case of the linear optimality criterion which selects support points

to minimise the objective function

Ψ(ξ) = tr

q∑
i=1

AiMi(ξn)−1, (2.6)

where Ai = aiA with ai a scalar, and A a p × p matrix with every element zero except

for the (1, 1) element which is 1. The p× p matrix, Mi, is the information matrix for the

linear model at point xi for i = 1, ..., q, given by

Mi = XT
i WiXi, (2.7)

where Xi is the design matrix and Wi is the matrix of kernel weights. Note that a different

Xi is required for each of local quadratic and local linear regression; the value wi changes

according to the kernel function used. See Chapter 3 for more details.

This criterion was applied by Müller (1992) to a number of simple examples of finding

optimal designs for predicting a response at nine equally spaced points in the interval

[−1, 1] when the design region consisted of the same nine points:

(a) Using the Nadaraya-Watson estimator and the uniform kernel with bandwidth h = 0.1.

This is a very simple example. Since one design point is required to be within h = 0.1 of

each of the prediction points, there is only one point to choose: the prediction point itself.

Hence the optimal design is given by the set of nine prediction points.

(b) Using the local linear estimator with two nearest neighbour weight functions (see

Cleveland (1979) and McLain (1971)). The weight functions were calibrated to ensure an

equivalent degree of smoothing was enforced throughout, by fixing the equivalent degrees

of freedom in the model.

Fedorov et al. (1999) also found designs which minimised a type of linear optimality

criterion in which the objective function was a function of the ‘mean cross product error’

matrix, R, instead of a function of the information matrix, where R is proportional to

E [(ĝ(xi)− g(xi))(ĝ(xk)− g(xk))]. The methods of Fedorov et al. (1999) differ from those

of Müller (1992) because the error term is split into approximation error and random error
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in order to analyse model misspecification through the bias of the fit. In order to find

designs under this criterion, information about the the true model is required to calculate

the bias. Both local linear and local quadratic true models were considered for three levels

of local bias. Such designs are specific to the particular true model assumed.

Designs were found for making predictions at q = 1, 11 and 21 equally spaced points in

the interval [−1, 1] using the 101-point design region: {−1,−0.98,−0.96, · · · , 0.98, 1}.

Designs were found numerically using the local linear and quadratic estimators and two

types of weight function: a constant weight function over [−1, 1] and the Gaussian kernel

with standard deviation of 1/6. The authors did not explicitly define the bandwidth and

enforced the locality of the fit through the choice of the standard deviation in the Gaussian

kernel.

The authors found that an optimal design for any of q = 1, 11 and 21 prediction points

when there was zero bias, constant weight function and for the local linear estimator

had only two support points at -1 and 1 with w1 = w2 = 0.5. Optimal designs had more

support points when the Gaussian weight function was used instead of the constant weight

function. The optimal designs were not given explicitly, but plots presented indicated that

they were roughly the equally weighted points:

• {−0.45, 0.45} for predicting at a single point

• {−1.00,−0.55,−0.20, 0.20, 0.55, 1.00} for prediction at 11 points

• {−1.00,−0.55,−0.20, 0.20, 0.55, 1.00} for prediction at 21 points.

The support points for 11 and 21 points were almost equally weighted with slightly more

weight at -0.55 and 0.55. In Chapter 3, we show how designs such as these can be obtained

by a more general approach.

Throughout this thesis we concentrate on models where the variance outweighs the bias

due to the assumed complexity of the model. Hence we follow the strategy of Müller (1992,

1996) where only ‘stochastic disturbance’ is defined. This approach is more appropriate

than that of Fedorov et al. (1999) when we have little or no information about the function

we wish to estimate.
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Chapter 3

Optimal designs for local linear

estimation

This chapter focuses on optimal design for ‘best’ prediction of a function g using the local

linear estimator, a type of kernel smoother. We find designs ξn = {x1, ..., xn}, composed

of ordered points, that maximise the average of the reciprocal prediction variances at

q prediction points x∗1, ..., x
∗
q ∈ R. A similar problem was considered by Müller (1992),

Müller (1996) and Fedorov et al. (1999) for local linear smoothing. In Section 3.4 we

obtain more general results for prediction across a continuous interval in R.

In Section 3.5 we demonstrate our methodology on a Tribology experiment (Section 1.3),

and find optimal designs for the local linear estimator to enable accurate prediction of

the functional response from each treatment. We assess the performance for prediction

of these optimal designs using the average mean squared error. We also investigate the

robustness of the optimal designs to choice of bandwidth.

3.1 The local linear estimator

Recall, from Section 1.1.1, that a linear smoother, ĝ(x), estimates the value of g(x) through

a linear combination of yj as

ĝ(x) =
n∑
j=1

Sj(x)yj,
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where Sj(x) is the smoothing weight for observation yj for predicting at x.

The method of local weighted regression, introduced in Section 2.1.2, fits a pth degree poly-

nomial to data locally using weighted least squares. Each observation, yj (j = 1, . . . , n),

is assigned a particular weight calculated using the kernel function K, where more weight

is given to an observation at a design point xj closer to the prediction point x∗.

Suppose that the (p + 1)th derivative of g(x) exists in a small neighbourhood about a

point x∗. Then, from the Taylor series expansion of g(x) about x∗

g(x) ≈ g(x∗) + g(1)(x∗)(x− x∗) +
g(2)(x∗)

2
(x− x∗)2 + ...+

g(p)(x∗)

p!
(x− x∗)p

= β0(x∗) + β1(x∗)(x− x∗) + ...+ βp(x
∗)(x− x∗)p, (3.1)

where g(p)(x) denotes the pth derivative. If we set u = x− x∗ we obtain

g(x) = β0(x∗) + β1(x∗)u+, . . . ,+βp(x
∗)up.

On, setting x = x∗, we see that the problem of estimating g(x∗) is equivalent to that of

estimating β0(x∗).

It follows directly from (3.1) that, regardless of the degree of the local polynomial, ĝ(x∗) =

β̂0(x∗) and β̂(x∗) = (β̂0(x∗), ..., β̂p(x
∗))T minimises

n∑
j=1

(yj − β0(x∗)− β1(x∗)uj − ...− βp(x∗)upj)2K(uj),

where uj = xj − x∗ for j = 1, . . . , n.

The form of the local polynomial estimator for p = 0 and the local linear estimator (p = 1)

used in this chapter are given by (2.2) and (2.1) respectively.

3.1.1 Local linear regression and weighted least squares

We now formulate the prediction variance for the local linear estimator, (p = 1) using

weighted least squares.
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From Wand and Jones (1995, p. 114) the local linear estimator estimates the regression

function at a specific point x∗ by locally fitting a first degree polynomial to the data, i.e.

the observations at xj, j = 1, . . . , n. Weighted least squares regression is used to correct

for unequal error variance. For prediction at x∗, we assume the model

Y = Xβ(x∗) + ε(x∗), (3.2)

where Y is an n× 1 vector, X is the model matrix, in terms of ui,

X =


1 u1

1 u2

...
...

1 un

 ,

with uj = xj−x∗, β(x∗) is a (p+1)×1 vector and ε(x∗) ∼ N(0,W−1σ2). Here the matrix

of smoothing weights, W , is given by

W =
1

h


K
(
u1
h

)
. . . . . . 0

... K
(
u2
h

) ...
...

. . .
...

0 . . . . . . K
(
un
h

)

 .

Then the estimator β̂(x∗) = (β̂0(x∗), β̂1(x∗))T is given by

β̂(x∗) = (XTWX)−1XTWY . (3.3)

The estimator of the response at point x can be found, using u = x− x∗, as

ŷ = β̂0(x∗) + β̂1(x∗)u.

Hence, if x = x∗ then u = 0 and ŷ = β̂0(x∗).

From equations (3.2) and (3.3), the variances of the estimated parameters are
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Var(β̂(x∗)) = σ2(XTWX)−1XTWW−1WX(XTWX)−1

= σ2(XTWX)−1, (3.4)

using ε ∼ N(0,W−1σ2). The information matrix, i.e. the inverse of the variance-covariance

matrix of β̂(x∗), is given by M(ξn) = XTWX.

3.2 Ds-optimality for prediction at a single point

In this section, we find designs which maximise the reciprocal variance of ĝ(x∗) = β̂0(x∗).

This leads us to consider Ds-optimality (Atkinson et al., 2007), which finds designs that

minimise the variance of a subset of model parameter estimators whilst regarding the

remaining parameters as nuisance parameters.

For our problem, β0(x∗) is the parameter of interest and β1(x∗) is the nuisance parameter.

The information matrix can be expressed, in the notation of Atkinson et al. (2007), as

M(ξn) = XTWX

=

[
M11(ξn) M12(ξn)

M21(ξn) M22(ξn)

]
(3.5)

=
1

h

[ ∑n
j=1K

(uj
h

) ∑n
j=1 ujK

(uj
h

)∑n
j=1 ujK

(uj
h

) ∑n
j=1 u

2
jK
(uj
h

) ]
. (3.6)

The Ds-optimality criterion for β0 seeks a design to maximise the determinant

|M11(ξn)−M12(ξn)M−1
22 M

T
12(ξn)| = |M(ξn)|

|M22(ξn)|
.

For our problem,

|M | = |XTWX| =

[
1

h

n∑
j=1

K
(uj
h

)][1

h

n∑
j=1

u2
jK
(uj
h

)]
−

[
1

h

n∑
j=1

ujK
(uj
h

)]2

,
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and

|M22| =
1

h

n∑
j=1

u2
jK
(uj
h

)
.

We can now formulate a specific Ds-criterion for our problem.

Criterion 3.1. Design ξ∗n is Ds-optimal for predicting at a single point using the local

linear estimator if it maximises the objective function

Ψ(ξn) =

∑n
j=1 K

(uj
h

)∑n
j=1 u

2
jK
(uj
h

)
− [
∑n

j=1 ujK
(uj
h

)
]2

h
∑n

j=1 u
2
jK
(uj
h

) , (3.7)

where uj = xj − x∗.

We give (in Theorem 3.1) sufficient conditions for a design to be optimal under Criterion

3.1. To do this, we first prove two results.

Lemma 3.1. For any kernel function and design that is symmetric about x∗ and has at

least two design points, the objective function (3.7) is

Ψ(ξn) =
n∑
i=1

1

h
K
(uj
h

)
. (3.8)

Proof. It is possible to write (3.7) as

Ψ(ξn) =
1

h

(
n∑
j=1

K
(uj
h

)
−

[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)

)
.

For a symmetric design, since the kernel function is symmetric about 0,
∑n

i=1 ujK
(uj
h

)
= 0

and hence
[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)
= 0. (3.9)

Therefore
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Ψ(ξn) =
1

h

n∑
i=1

K
(uj
h

)
.

Note that a symmetric design is not necessarily optimal. There may exist non-symmetric

designs for which
[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)
> 0

and
n∑
i=1

1

h
K
(uj
h

)
< Ψ(ξn).

For prediction at a single point, it is possible to find an upper bound for the objective

function analytically. This upper bound then provides a sufficient condition for a design

to be optimal under Criterion 3.1.

Lemma 3.2. An upper bound, U , for objective function (3.7) is given by

U =
n

h
K(0) ≥ max

ξn
(Ψ(ξn)).

Proof. By definition, K(0) is the maximum value of K. Hence, we can re-write the kernel

K
(uj
h

)
as [K(0)− f(uj)] with the function f satisfying f(x) ≥ 0 for all x and f(0) = 0 .

Hence from Lemma 3.1, equation (3.7) can be written as

Ψ(ξn) =
1

h

(
n∑
j=1

[K(0)− f(uj)]−
[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)

)
.

Now,

[
∑n

j=1 ujK
(uj
h

)
]2∑n

j=1 u
2
jK
(uj
h

) ≥ 0, (3.10)

because K
(uj
h

)
≥ 0 for all uj, j = 1, ..., n. Therefore
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Ψ(ξ) =
1

h

(
n∑
j=1

[K(0)− f(uj)]−
[
∑n

j=1 ujK
(uj
h

)
]2∑n

j=1 u
2
jK
(uj
h

) ) (3.11)

≤ 1

h

n∑
j=1

[K(0)− f(uj)]

=
1

h

n∑
j=1

K(0)− 1

h

n∑
j=1

f(uj)

≤ n

h
K(0), (3.12)

where n is the number of design points.

Theorem 3.1. A sufficient condition for design ξ∗n to be Ds-optimal under Criterion 3.1

for prediction at a single point is Ψ(ξ∗n) = nK(0)/h.

Proof. Proof follows directly from Lemma 3.2

3.2.1 Results

We now find Ds-optimal designs using Criterion 3.1 for the uniform and Gaussian ker-

nels. Here and throughout this chapter, where designs are found numerically, we use the

‘fminsearch’ routine in MATLAB to minimise −Ψ(ξn). This routine uses the Nelder-Mead

simplex algorithm (Nelder and Mead, 1965) as described by Lagarias et al. (1998), a direct

search method which does not use numerical or analytic gradients in the optimisation.

3.2.1.1 Optimal designs using the uniform kernel

Recall from Section 2.1 that the uniform kernel is

K(v) =

0.5 if |v| ≤ h,

0 otherwise.
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When this kernel is used, the objective function (3.7) becomes

Ψ(ξn) =
1

2h

[
n∑
j=1

1A(uj)−
[
∑n

j=1 uj1A(uj)]
2∑n

j=1 u
2
j1A(uj)

]
, (3.13)

where

1A(uj) =

1 if uj ∈ A,

0 otherwise,

with

A = {uj; |uj| ≤ h} . (3.14)

We can see that (3.13) is maximised when |uj| ≤ h, so that 1A(uj) = 1, for all j = 1, . . . , n,

by minimising

[
∑n

j=1 uj1A(uj)]
2∑n

j=1 u
2
j1A(uj)

. (3.15)

As (3.15) is greater than or equal to zero, it is minimised by any design ξn satisfying

(i)

n∑
j=1

uj =
n∑
j=1

(xj − x∗) = 0

⇔
n∑
j=1

xj = nx∗

⇔ x̄ = x∗, (3.16)

where x̄ = 1
n

∑n
j=1 xj, and

(ii)
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n∑
j=1

u2
j > 0

⇔
n∑
j=1

(xj − x∗)2 > 0 (3.17)

for all j = 1, . . . , n.

Substituting (3.16) into (3.17) gives

n∑
j=1

(xj − x̄)2 > 0. (3.18)

These arguments show that the average of the design points must equal x∗ and all design

points cannot be equal. This leads to the following corollary

Corollary 3.1. For the uniform kernel and prediction at x∗ a design ξn = {x1, . . . , xn}
with n ≥ 2 that satisfies

(i) |xj − x∗| ≤ h

(ii) x̄ = x∗

(iii)
∑n

j=1(xj − x̄)2 > 0

has Ψ(ξn) = n
2h
, is Ds-optimal under Criterion 3.1.

Proof. Conditions (i)-(iii) imply that

Ψ(ξ∗n) =
nK(0)

h
=

n

2h
. (3.19)

and the result follows from Theorem 3.1.

To confirm these results, optimal designs were also found numerically. We minimised

−Ψ(ξn) for a selection of values for h, x∗ and n and found in every case that Ψ(ξn) had a

maximum value of n/2h. All the optimal designs found, as expected, satisfied x̄ = x∗ and

(3.18)with all n design points within h of x∗.
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Note that for truncated kernels, such as the uniform, it is necessary to have at least two

design points within h of x∗, otherwise it is impossible to make a prediction. If there

are more than two design points, an optimal design under Criterion 3.1 has all its points

within h of x∗; then all observations contribute to the prediction. This results in greater

accuracy than if only observations at two design points are used.

The case of predicting at x∗ = 0 with the uniform kernel and h = 1, ensuring a constant

weight function for xj ∈ [−1, 1], is very similar to a problem considered by Fedorov et al.

(1999). These authors used the mean cross product error, assuming there was no bias

term (see Section 2.2 for details) with the constant weight function over [−1, 1]. They

found the approximate optimal design with equally weighted support points, at x± 1, for

the discrete design region {−1,−0.98,−0.96, · · · , 0.98, 1}. From Corollary 3.1, this design

is also Ds-optimal under Criterion 3.1 for n even. This is one of many designs that satisfy

Corollary 3.1.

3.2.1.2 Optimal designs for the Gaussian kernel

The Gaussian kernel is not truncated and hence K(v) > 0 for all v. The Gaussian kernel

is defined as

K(v) =
1√
2π

exp

{
−v

2

2

}
−∞ < v <∞,

When using the Gaussian kernel the upper bound on the objective function, nK(0)/h

from Lemma 3.2, cannot be attained. To see this, recall from (3.11), that

Ψ(ξn) =
1

h

(
n∑
j=1

[K(0)− f(uj)]−
[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)

)
.

A design for the Gaussian kernel cannot achieve the bound U of Lemma 3.2. This is

because f(uj) = 0 implies uj = 0, as K(v) < K(0) for v 6= 0, and hence [
∑n

j=1 ujK(
uj
h

)]2 =

0 and
∑n

j=1 u
2
jK(

uj
h

) = 0, leading to the ratio

[
∑n

j=1 ujK(
uj
h

)]2∑n
j=1 u

2
jK(

uj
h

)

being indeterminate.

Numerical search found optimal designs that were symmetric about x∗, and therefore by
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Lemma 3.1 satisfy (3.8). However, these designs have the property that f(uj) 6= 0. The

design points are positive such that uj is very close to zero, but not exactly zero, for all j.

In other words, all the design points are of the form, xj = x∗ ± δ, where δ > 0 is small.

Our results differ from those of Fedorov et al. (1999) for predicting at zero with the

Gaussian kernel function, again using the mean cross product error. These authors used

the normal kernel with standard deviation 1/6 with the bias term set to be zero. Ds-

optimal designs from Criterion 3.1 have points placed very close to zero, the point of

prediction. The optimal designs from Fedorov et al. (1999) have two support points

{−0.45, 0.45}. Hence, unlike with the uniform kernel, the Ds-optimal design differs from

the design from Fedorov et al. (1999) due to their different objective functions.

3.3 Ds-optimality for prediction at a finite number of

points

In this section, building on Section 3.2, we define a design criterion for when we wish to

predict the response at more than one point. We then find, for the uniform and Gaussian

kernels, the minimum number of design points needed. We also find designs for different

values of n and h for each kernel.

An optimal design for predicting at several distinct points x∗1, . . . , x
∗
q simultaneously is not

necessarily the union of q designs, each optimal for predicting at one of the points. This

is due to the fact that some design points may influence the prediction at several different

prediction points.

To find designs to predict at several points, we use a compound criterion. Atkinson

et al. (2007, p. 266), explained that minimising the sum of the variances could give a

large variance too much prominence. A better alternative is to maximise the product of

the reciprocal variances of β̂0(x∗i ) for i = 1, . . . , q. This is equivalent to maximising the

compound objective function

Ψ(ξn) =

q∑
i=1

log
|Mi(ξn)|
|M22i(ξn)|

, (3.20)

where Mi is the information matrix for the local linear estimator for predicting at one point

x = xi (see Section 3.2), and M22i is the partition of information matrix, Mi, for nuisance

parameter β1(x∗i ) corresponding to M22 in (3.5). Therefore, analogous to Criterion 3.1, we
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find designs using the following criterion.

Criterion 3.2. Design ξ∗n is compound Ds-optimal for prediction at x∗1, . . . , x
∗
q using the

local linear estimator if it maximises

Ψ(ξn) =

q∑
i=1

log

(∑n
j=1K(

uij
h

)
∑n

j=1 u
2
ijK(

uij
h

)− [
∑n

j=1 uijK(
uij
h

)]2

h
∑n

j=1 u
2
ijK(

uij
h

)

)
, (3.21)

where uij = xj − x∗i .

We consider designs for the uniform and Gaussian kernels separately.

3.3.1 Uniform kernel: minimum number of design points and

the corresponding optimal design

In this section we consider the minimum number, nmin, of design points required to make

a prediction at q ordered points, x∗1 < . . . < x∗q, and identify a Ds-optimal design. Recall

that when q = 1, we only required two design points to make a prediction using the local

linear estimator. When predicting at q > 1 points with the uniform kernel, we require two

design points within h of each prediction point x∗i (i = 1, ..., q).

When using the uniform kernel, only design points xj satisfying |xj − x∗| ≤ h influence

the prediction at x∗. Define [x∗i − h, x∗i + h] as the prediction interval for x∗i . For two

neighbouring prediction points, x∗i and x∗i+1, there are two different scenarios: the in-

tervals [x∗i − h, x∗i + h] and
[
x∗i+1 − h, x∗i+1 + h

]
either intersect, or they do not. These

two scenarios can be defined, respectively, as ‘overlapping’ interval and ‘disjoint’ interval

prediction.

In the latter case, the design points that influence the prediction at x∗i do not influence the

prediction at x∗i+1. Hence, four design points are required, a pair on each interval, and the

pairs can be chosen independently. When the prediction intervals intersect, the position

of the design points used for predicting at x∗i will affect the position of design points used

for predicting at x∗i+1. Then we require fewer than four design points. This is discussed in

Section 3.3.1.2.
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3.3.1.1 Disjoint prediction intervals

It is clear that in order to predict at q points which have non-intersecting prediction

intervals, we require at least two design points for each of the q points. Therefore, the

minimum number of design points required is nmin = 2q. A Ds-optimal design, under

Criterion 3.2, with this minimum number of points and the uniform kernel is one which

has two distinct design points for each x∗i , and satisfies (3.16) and (3.17) for each interval.

If there are n > 2q design points available, we must first ensure that two distinct design

points are allocated in the interval corresponding to each x∗i . We then must decide how

to allocate the remaining points. An optimal design must satisfy (3.16) and (3.17) for

each prediction point. Then if ni ≥ 2 design points are within h of x∗i , from (3.19), the

objective function (3.20) takes the value

Ψ(ξn) =

q∑
i=1

log
( ni

2h

)
. (3.22)

Designs found numerically with n > 2q design points demonstrated that if q divides n

exactly, then n1 = ... = nq = n/q. If q does not divide n exactly but divides n− r where

r < q, then (n− r)/q points were used for q− r intervals and (n− r+ q)/q points used for

r intervals. It does not matter which of the r intervals have an extra point, each possible

allocation gives an optimal design. Once again the n/q, (n− r)/q or (n− r + q)/q design

points in each interval must satisfy (3.16) and (3.17).

Example 1

Suppose that q = 2 with x∗1 = 0, x∗2 = 1, h = 0.2 and n = 6. The optimal design found

numerically for n1 = 3 and n2 = 3 had an objective function value of 4.03; setting n1 = 2

and n2 = 4 gave a corresponding value of 3.91. Therefore we can see that equally dividing

points is preferred under Criterion 3.2. For both choices of n1, n2, any design satisfying

(3.16) and (3.17) on both [−0.2, 0.2] and [0.8, 1.2] is optimal for predicting at x∗1 and x∗2.

Example 2

Consider q = 2 with x∗1 = 0, x∗2 = 1, h = 0.2 and n = 7. Numerical results show that

setting n1 = 3 and n2 = 4 or n1 = 4 and n2 = 3 gives an objective function value of 4.32,

whereas setting n1 = 2 and n2 = 5 gives the value of 4.14. Again, in all three cases optimal

designs have points x1, . . . , x7 satisfying (3.16) and (3.17) in each interval for predicting

at x∗1 and x∗2.
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3.3.1.2 Overlapping prediction intervals

If the prediction intervals around any two prediction points intersect, then nmin < 2q.

There are two different cases which must be considered:

1. The intersection of two prediction intervals is itself an interval.

2. The intersection of two prediction intervals is a single point.

In this section, designs denoted ‘optimal’ have not been proven to be optimal. However

we give firm intuitive reasoning on why these designs may be optimal. Numerical results

from Section 3.3.3 confirm our conjecture.

Two simple examples for each of cases 1 and 2 above are as follows.

Example 3

Take the simplest case where we have to predict at two points, x∗1 and x∗2, and

[x∗1 − h, x∗1 + h] ∩ [x∗2 − h, x∗2 + h] = [x∗2 − h, x∗1 + h] 6= ∅.

Then it is possible to predict at both x∗1 and x∗2 with any two design points x1 and x2 such

that x1, x2 ∈ [x∗2 − h, x∗1 + h].

Example 4

The degenerate case of two overlapping intervals is when x∗2−h = x∗1 +h. Here we require

three design points, x1, x2 and x3, with the unique three point Ds-optimal design having

x1 = x∗1 − h, x2 = x∗1 + h and x3 = x∗2 + h. This design is the only design to satisfy (3.16)

and (3.17) on each interval.

We now investigate four cases for predicting at q points, carefully defining when more than

two prediction intervals are dependent.

Case (i): prediction intervals with intersection of the form [a, b], a < b

We know that there must be at least two design points within h of each prediction point.

Therefore two points are required within each disjoint intersection of prediction intervals.

We only need to consider the disjoint intersections, as any overlapping intersections can

be treated as a single interval.
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Example 5

Suppose that predictions are required at five points x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5 where the prediction

intervals for x∗1, x
∗
2, x
∗
3 have intersection [x∗3 − h, x∗1 + h], and the prediction intervals for

x∗4, x
∗
5 have intersection [x∗5 − h, x∗4 + h].

The intersections of these two prediction intervals are disjoint when [x∗3−h, x∗1 +h]∩ [x∗5−
h, x∗4 +h] = ∅, that is, when x∗5−h > x∗1 +h. If these prediction intervals were not disjoint

then their intersection would result in a single prediction interval [x∗3 − h, x∗1 + h] ∩ [x∗5 −
h, x∗4 + h] = [x∗5 − h, x∗1 + h].

The union of all disjoint intersections is given by

l−1⋃
k=0

[
x∗ak+1

− h, x∗ak+1 + h
]
,

where l is the total number of disjoint intersections. We define a0 = 0, al = q and ak+1 as

the largest integer such that

ak+1⋂
i=ak+1

[x∗i − h, x∗i + h] 6= ∅.

Note that ak+1 > ak. Our definition of the union of disjoint intersections ensures that no

two disjoint intersections may involve the same prediction interval. This avoids a design

having more design points than necessary. The minimum number of design points required

is 2l, since we require two design points per disjoint intersection.

Example 6

Here we consider an example when q = 5 prediction points: x∗1 = 0, x∗2 = 0.2, x∗3 = 0.35,

x∗4 = 0.8 and x∗5 = 0.9, and h = 0.2. Then there are two disjoint intersections of prediction

intervals [0.15, 0.2] and [0.7, 1]. Prediction intervals for x∗1, x∗2 and x∗3 form one intersection;

the other intersection is formed by the intersection of prediction intervals for x∗4 and x∗5.

We have that a0 = 0, a1 = 3 and a2 = 5. Since there are two disjoint intersections, we

require at least four points for predicting at x∗1, ..., x
∗
5: two points in [0.15, 0.2] and two

points in [0.7, 1].

The locations of optimal design points with these intersections need to be determined

numerically. For all examples of case (i), including Example 6, we found that design points

29



were placed at each end of the intersection intervals. That is, the compound Ds-optimal

design under Criterion 3.2 is given by

{
x∗ak+1

− h, x∗ak+1 + h : k = 0, ..., l − 1
}
.

In Example 6, the optimal design had points at x1 = 0.15, x2 = 0.2, x3 = 0.7 and x4 = 1.

Case (ii): intersecting prediction intervals in the form of q − 1 distinct points

Now we consider the situation where q prediction points are equidistant and the distance

between consecutive points is exactly h. Then the set of q − 1 points which occur on the

boundaries of the intervals can be defined as

{x∗1 + (2k − 1)h : k = 1, ..., q − 1} =

q−1⋃
k=0

(
[x∗1 + (2k − 1)h, x∗1 + (2k + 1)h]

∩ [x∗1 + (2k + 1)h, x∗1 + (2k + 3)h]

)
. (3.23)

The minimum number of design points required to predict at x∗1, . . . , x
∗
q is q+ 1 and these

design points are given by the set (3.23) augmented by the two points at the end of the

first and last prediction interval. i.e. the set of design points is

{x∗1 + (2k − 1)h : k = 0, ..., q} .

This design is uniquely optimal since it is the only design satisfying (3.16) and (3.17) for

each prediction interval.

Example 7

Consider q = 3 prediction points: x∗1 = 0.2, x∗2 = 0.6 and x∗3 = 1 and h = 0.2. The

prediction intervals intersect at 0.4 and 0.8. Therefore the optimal design is given by

x1 = 0, x2 = 0.4, x3 = 0.8 and x4 = 1.2.
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Case (iii): intersecting prediction intervals in the form of distinct points and

one interval [a, b], a < b

Here we combine cases (i) and (ii). The first q−1 consecutive prediction intervals intersect

at q − 2 distinct points and the intersection between the (q − 1)th and qth prediction

intervals is an interval. We would expect to require q design points to predict the response

at the q − 2 points from the first q − 1 intersections. However, the intersection of the

(q − 1)th and qth prediction intervals must also be taken into account.

The union of the intersections of these q intervals is

q−1⋃
k=1

k+1⋂
i=k

[x∗i − h, x∗i + h] =

q−1⋃
k=1

[
x∗k + h, x∗k+1 − h

]
,

which is equal to

{x∗1 + (2k − 1)h : k = 1, ..., q − 2} ∪
[
x∗q − h, x∗q−1 + h

]
,

where

[
x∗q − h, x∗q−1 + h

]
=
[
x∗q−1 − h, x∗q−1 + h

]
∩
[
x∗q − h, x∗q + h

]
.

The minimum number of design points required is nmin = q+ 1. If x∗q−1 + h 6= x∗q the first

q design points are given by

{x∗1 + (2k − 1)h : k = 0, ..., q − 1} .

Then the two design points in the optimal design for predicting at x∗q will be x∗q−1 + h

(from the prediction of x∗q−1) and x∗q +[x∗q− (x∗q−1 +h)] = 2x∗q−xq−1−h. These two design

points are equidistant from x∗q. This design is optimal since (3.16) and (3.17) are satisfied

for all q prediction points.

However, if x∗q−1 + h = x∗q the first q − 1 design points are given by
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{x∗1 + (2k − 1)h : k = 0, ..., q − 2} .

Using the above argument for x∗q−1 + h 6= x∗q, the two remaining design points would be

placed at x∗q−1 +h, included in (3.3.1.2), for predicting at x∗q. However, using this design it

would be impossible to make a prediction at x∗q as we only have one distinct design point

in [x∗q − h, x∗q + h]. The best we can do is put two points very close, but not equal, to

x∗q−1 + h, so that (3.16) and (3.17) are almost satisfied for all q (see Section 3.2.1.2 for a

similar argument). Therefore the two remaining design points are placed at x∗q−1 + h− δ
and x∗q−1 + h+ δ for small δ > 0.

Example 8

For making predictions at q = 3 points: x∗1 = 0.2, x∗2 = 0.6 and x∗3 = 0.85, and h = 0.2, the

prediction intervals for x∗1 and x∗2 intersect at 0.4 and the prediction intervals for x∗2 and

x∗3 intersect on [0.65, 0.8]. Therefore the Ds-optimal design is given by x1 = 0, x2 = 0.4,

x3 = 0.8 and x4 = 0.9.

Example 9

If we change Example 8 so that x∗1 = 0.2, x∗2 = 0.6 and x∗3 = 0.8, again with h = 0.2, the

problem is slightly different. Then x∗2 +h = x∗3 = 2x∗3−x∗2−h. Naively, this suggests that

two design point are placed at 0.8, giving design points x1 = 0, x2 = 0.4, x3 = 0.8− δ and

x4 = 0.8 + δ for small δ > 0.

Case (iv): Internal prediction intervals intersect at points, and the intersec-

tion of the prediction intervals for the first two and last two points are both

intervals

In this case q − 2 consecutive prediction intervals for prediction at x∗2, . . . , x
∗
q−1 intersect

at q − 3 distinct points. There are interval intersections between the prediction intervals

for x∗1 and x∗2, and between the (q − 1)th and qth prediction intervals.

The union of intersection of these q intervals is given by (3.24) and can be simplified as

{x∗1 + (2k − 1)h : k = 2, ..., q − 2} ∪ [x∗2 − h, x∗1 + h] ∪
[
x∗q − h, x∗q−1 + h

]
,

where

[x∗2 − h, x∗1 + h] = [x∗1 − h, x∗1 + h] ∩ [x∗2 − h, x∗2 + h] (3.24)
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and [
x∗q − h, x∗q−1 + h

]
=
[
x∗q−1 − h, x∗q−1 + h

]
∩
[
x∗q − h, x∗q + h

]
.

The minimum number of design points required is nmin = q + 1. If x∗q−1 + h 6= x∗q and

x∗1 + h 6= x∗2 design points x2, . . . , xq−1 are given by

{x∗1 + (2k − 1)h : k = 1, ..., q − 1} . (3.25)

The two design points for predicting at x∗q will be x∗q−1 + h, included in (3.25), and 2x∗q −
xq−1−h as in case (iii). The two design points for predicting at x∗1 are x∗1− (x∗2−h−x∗1) =

2x∗1− x∗2 + h and x∗2− h, included in (3.25). This design is optimal since (3.16) and (3.17)

are satisfied for all q prediction points.

However, as in case (iii), if x∗q−1+h = x∗q and x∗1+h = x∗2 then the design points x3, . . . , xq−2

are given by

{x∗1 + (2k − 1)h : k = 1, ..., q − 1} .

Under the above argument, for x∗q−1 + h 6= x∗q and x∗1 + h 6= x∗2 there would be two design

points placed at each of x∗2 − h and x∗q−1 + h. This prevents us from making a prediction

at x∗1 and x∗q since we only have one distinct design point for each prediction. The best we

can do is put two points very close to x∗2 − h and x∗q−1 + h, but not equal, so (3.16) and

(3.17) are almost satisfied for all q. Therefore the remaining design points are placed at

x∗2− h− δ, x∗2− h− δ, x∗q−1 + h− δ and x∗q−1 + h+ δ for small δ > 0. This design does not

satisfy the sufficient conditions in Corollary 3.1 for predicting at either x∗1 and x∗q.

Example 10

Consider making predictions at q = 4 points: x∗1 = 0.2, x∗2 = 0.5, x∗3 = 0.9 and x∗4 = 1.2 ,

with h = 0.2. The optimal design is given by x1 = 0.1, x2 = 0.3, x3 = 0.7, x4 = 1.1 and

x5 = 1.3.

Example 11

To make predictions at x∗1 = 0.3, x∗2 = 0.5, x∗3 = 0.9 and x∗4 = 1.2, with h = 0.2, the

problem is slightly different. Now x∗1 + h = x∗2 = 2x∗2 − x∗1 − h suggesting that two design

points are put at 0.3. Therefore we have design points x1 = 0.3− δ, x2 = 0.3+ δ, x3 = 0.7,

x4 = 1.1 and x5 = 1.3, for small δ > 0.
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In general, it is possible to predict at q points which have overlapping prediction intervals

in a number of different ways. A combination of results from cases (i)-(iv) can be applied

to find the minimum number of design points and to give a compound Ds-optimal design;

either established analytically or through numerical search.

3.3.2 Minimum number of design points required to predict at

q points using the Gaussian kernel

The minimum number of design points required for predicting at q points with the Gaus-

sian kernel is two. This is because K(uij) > 0 for all ∞ < uij <∞ and hence each design

point influences the prediction at all q points. However, these predictions may not be very

accurate when a large number of predictions is required and n = 2.

3.3.3 Prediction at q points for different n and h

In this section, we find designs for predicting at q points when more than the minimum

number of design points is available, i.e. n > nmin. Optimal designs are found under

Criterion 3.2, again using the Nelder-Mead simplex algorithm. We present two sets of

optimal designs for each of the uniform and Gaussian kernels: designs for predicting at

x∗1 = 0, x∗2 = 0.5 and designs for predicting at x∗1 = 0, x∗2 = 0.6, x∗3 = 0.8, x∗4 = 1.1.

Tables 3.1 and 3.2 give designs for prediction with the uniform kernel, and Tables 3.3

and 3.4 for prediction with the Gaussian kernel. All tables present optimal designs for

h = 0.2, 0.5, 0.75, 1 and n = 2, 3, 4, 5, 6, 7, 8, where possible.

In this section, the designs found numerically have not been proven to be optimal. How-

ever, they will be at least highly efficient under Criterion 3.2, and for brevity we denote

them as optimal.

3.3.3.1 Optimal designs for the uniform kernel.

In this section, designs are found for n > nmin for predicting at q points where a design may

have disjoint or overlapping prediction intervals, depending on the value of the bandwidth,

h.

When h = 0.2, the prediction intervals for predicting at {0, 0.5} are disjoint. Therefore a

design is optimal if it satisfies (3.16) and (3.17) for each interval and |uij| ≤ h for every
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prediction point, x∗i . Table 3.1 gives one optimal design for each n when h = 0.2; however

there are infinitely many optimal designs. Since the prediction intervals for 0 and 0.5 are

disjoint, four points are required to make a prediction. For this reason, there is no optimal

design given for n = 2, 3.

For h = 0.5, 0.75, 1, the prediction intervals for predicting at x∗1 = 0, x∗2 = 0.5 intersect.

For several values of n and h = 0.5, 0.75, two optimal designs were found for predicting at

x∗1 = 0, x∗2 = 0.5 , both of which are given in Table 3.1. These designs, ξ∗n and −ξ∗n, have

the property that −ξn is the design composed of the reflections of the points from ξ∗n in

the line x = 0.25.

Unlike when predicting at x∗1 = 0, x∗2 = 0.5 , there was only one optimal design found for

predicting at x∗1 = 0, x∗2 = 0.6, x∗3 = 0.8, x∗4 = 1.1; see Table 3.2. This is perhaps because

the prediction points are not equally spaced, so we cannot find two optimal designs which

are reflections of each other. For prediction at x∗1 = 0, x∗2 = 0.6, x∗3 = 0.8, x∗4 = 1.1 with

h = 0.2, at least six design points are required as there are three disjoint intersections of

overlapping prediction intervals. Hence no optimal designs were found for n = 4, 5.

It was difficult to find optimal designs for h = 0.5 when predicting at x∗1 = 0, x∗2 = 0.6, x∗3 =

0.8 and x∗4 = 1.1 for large values of n, see Tables 3.2. Of the values for h investigated,

h = 0.5 is the smallest value of h which gives overlapping prediction intervals when

predicting at the above four points. However, the pattern of overlap was complicated for

this value of h. This led to a complicated objective function and the optimisation routine

did not always converge.

In general, for both sets of prediction points, as h is reduced an optimal design has more

support points. This is explained by the fact that only points very close to x∗i influence

the prediction. Hence we require more distinct design points to account for the increased

complexity when making a prediction with smaller h.

Comparison to the optimal designs of Müller (1992)

We now compare our results to those of Müller (1992) for the Nadaraya-Watson estimator.

Recall that this estimator is the local polynomial estimator with p = 0 and the prediction

is given by (2.2). Using this estimator, only one point is required to lie within h of x∗ for

a prediction to be possible.

Müller (1992) found approximate designs for making predictions at nine points, equally

spaced on the interval [−1, 1], where the design region consisted of the same nine points.

The Nadaraya-Watson estimator and the uniform kernel were used with h = 0.1. We

found designs using the same set up as Müller (1992), except that the design region was
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n h = 0.2 h = 0.5
2 - 0.00 0.50
3 - -0.05 0.05 0.95
4 -0.02 0.02 0.43 0.57 -0.50 0.21 0.29 1.00
5 -0.20 0.01 0.19 0.31 0.69 -0.50 0.00 0.25 0.50 1.00
6 -0.20 0.01 0.19 0.35 0.56 0.59 -0.50 0.00(2) 0.50(2) 1.00
7 -0.20 0.01 0.19 0.40 (a) -0.50 0.00(2) 0.13 0.50 1.00(2)

0.45 0.46 0.70 (b) -0.50(2) 0.00 0.37 0.50(2) 1.00
8 -0.20 -0.07 0.10 0.17 (a) -0.50 0.00(3) 0.30 0.50 1.00(2)

0.36 0.42 0.53 0.70 (b) -0.50(2) 0.00 0.20 0.50(3) 1.00
12 -0.20 -0.06 0.05(2) 0.07 0.10 -0.50 -0.49 0.00(3) 0.06

0.31(2) 0.50 0.51 0.67 0.70 0.39 0.44 0.45 1.00(3)
15 -0.20 -0.07 0.03(2) 0.04 -0.50(3) 0.02 0.05

0.05 0.12 0.30 0.41(2) 0.10(2) 0.22 0.40(2)
0.43 0.52 0.61 0.62 0.70 0.43 0.49 1.00(3)

h = 0.75 h = 1
2 -0.25 0.75 -0.50 1.00
3 (a) -0.25 0.27 1.25 -0.50 0.25 1

(b) -0.75 0.23 0.75
4 (a) -0.75 -0.21 0.75(2) -0.50(2) 1.00(2)

(b) -0.25(2) 0.71 1.25
5 (a) -0.75 -0.25 0.53 0.75(2) -0.50(2) 0.25 1.00(2)

(b)-0.25(2) -0.03 0.75 1.25
6 (a) -0.75 -0.25(2) 0.75(3) -0.50(3) 1.00(3)

(b) -0.25(3) 0.75(2) 1.25
7 (a) -0.75 -0.25(2) 0.75(4) (a) -0.50(3) 0.18 1.00(2) 1.50

(b) -0.25(4) 0.75(2) 1.25 (b) -1.00 -0.50(2) 0.33 1.00(3)
8 -0.75 -0.25(3) 0.75(3) 1.25 -0.50(4) 1.00(4)

Table 3.1: Ds-optimal designs under Criterion 3.2 for predicting at x∗1 = 0 and x∗2 = 0.5,
using the uniform kernel and differing numbers of design points and values for h. Number of
repetitions of a design point in parentheses; (a) and (b) indicate designs that are reflections.
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n h = 0.2 h = 0.5
4 - ±0.30 0.90 1.29
5 - -0.50 0.30 0.39 1.10(2)
6 ±0.19 0.58 0.62 0.98 1.22 -0.50 0.30(2) 0.89 1.10 1.30
7 ±0.98 0.40 0.61 0.79 1.00 1.20 -0.50 0.30(3) 0.93 1.10 1.30
8 ±0.11 0.60(3) 0.10(2) 1.30 -0.50 0.30(3) 0.89 1.10(2) 1.30

h = 0.75 h = 1
2 0.35 0.75 0.10 1.10
3 -0.15 0.35 1.35 -0.20 0.27 1.60
4 -0.15 0.05 0.75 1.35 -0.20 0.20 1.41 1.60
5 -0.15 0.05 0.35 1.35(2) -0.20 0.10 0.12 1.60(2)
6 -0.75 0.05 0.35 0.75 1.35(2) -0.20 0.10(2) 1.60(3)
7 -0.75 0.05(2) 0.75(2) 1.35(2) -0.20 0.10(3) 1.60(3)
8 -0.75 0.05(2) 0.35 0.63 1.35(3) -0.20(2) 0.10(2) 0.25 1.60(3)

Table 3.2: Ds-optimal designs under Criterion 3.2 for predicting at x∗1 = 0, x∗2 = 0.6, x∗3 =
0.8 and x∗4 = 1.1, using the uniform kernel and differing numbers of design points and
values for h. Number of repetitions of a design point in parentheses.

the whole interval [−1, 1]. We found exact designs instead of approximate designs.

We compared our designs with those of Müller (1992) for h = 0.1. The optimal design

from Müller (1992) consisted of support points at each of the nine prediction points, all

equally weighted. This is due to the fact that one point is required to be within h = 0.1 of

each of the prediction points and there is only one such point in the discrete design space:

the prediction point itself.

The design found by Müller (1992) was optimal under our criterion and set-up. In contrast,

we set the prediction region to be the interval [−1, 1]. Therefore an optimal design was

any set of points with one point lying within 0.1 of each prediction point, again equally

weighted.

3.3.3.2 Optimal designs for the Gaussian kernel.

The Gaussian kernel is different from the uniform kernel in that it is not truncated. The

minimum number of design points required to make a prediction is two, as these are

sufficient to fit a straight line on the whole design region (see Section 3.3.1.2).

We consider predicting at the sets of points x∗1 = 0, x∗2 = 0.5 and x∗1 = 0, x∗2 = 0.6, x∗3 =

0.8, x∗4 = 1.1 for n = 2, 3, 4, 5, 6, 7, 8, 12, 15 and h = 0.2, 0.5, 0.75, 1.

Table 3.3 shows the results for predicting at {0, 0.5}. We see that, for each value of
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n, the distinct design points become further apart as h increases. This is in line with

our expectation, as increasing the bandwidth gives a design point further away from a

prediction point more influence on the prediction at that point. We also notice that for

even values of n each optimal design has only two distinct design points, with n/2 points

at 0 − a and n/2 points at 0.5 + a. Note that for a given h, the value of a is constant.

When n is odd, there are two optimal designs, both with only two distinct design points:

(n− 1)/2 points at 0− c and (n+ 1)/2 points at 0.5 + b or (n+ 1)/2 points at 0− b and

(n− 1)/2 points at 0.5 + c (b ≤ a ≤ c).

For example, for h = 0.5 we see a = 0.15. If n = 5, then c = 0.09 and b = 0.23. However,

if n = 15 then c = 0.13 and b = 0.18. As n increases, b increases towards a and c decreases

towards a. There is an exception when n = 3 for h = 0.5, 0.75, 1. In these cases, a design

point is put at 0.25, half-way between the prediction points and then two points are placed

equidistant from 0 and 0.5.

We see similar patterns when predicting at the four points x∗1 = 0, x∗2 = 0.6, x∗3 = 0.8, x∗4 =

1.1, see Table 3.4. Once again the distinct design points become more spread out as h

increases. It is also noticeable that for smaller h we have more support points than for

larger h. This is explained by the fact that the prediction is more local for small h. Only

points very close to x∗i have a large amount of influence. Hence we require more support

points to account for the increase in complexity driven by h.

Comparison of optimal designs with those of Fedorov et al. (1999)

We compare the designs found by the two approaches on an example for predicting at

eleven equally spaced points in the interval [−1, 1]. Fedorov et al. (1999) set the design

region to be the discrete set:

{−1,−0.98,−0.96, · · · , 0.98, 1} ,

whereas again, our design region was the interval [−1, 1]. We compared the design from

Criterion 3.2 for h = 0.25, with the corresponding design of Fedorov et al. (1999) when

the standard deviation is 1/6.

For n = 15, our design has points

{±0.98(2),±0.53(3),±0.16(2), 0.00} ,

with 7 distinct or support points, where (2) indicates 2 repetitions of the design point. The

optimal design in Fedorov et al. (1999) had support points {−1,−0.55,−0.2, 0.2, 0.55, 1},
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with roughly 50% more weight at -0.55 and 0.55 than at the other support points. The

designs from the two methods are at least qualitatively similar.

Note, that it was computationally easier to find optimal designs using the Gaussian kernel

than for the uniform kernel as fewer iterations of the optimisation routine were required.

n h = 0.2 h = 0.5
2 -0.02 0.52 -0.15 0.65
3 (a) -0.01(2) 0.53 -0.26 0.25 0.76

(b) -0.03(2) 0.50
4 -0.02(2) 0.52(2) -0.15(2) 0.65(2)
5 (a) -0.01(3) 0.52(2) (a) -0.09(3) 0.73(2)

(b) -0.02(2) 0.51(3) (b) -0.23(2) 0.59(3)
6 -0.02(3) 0.52(3) -0.15(3) 0.65(3)
7 (a) -0.01(4) 0.52(3) (a) -0.10(4) 0.71(3)

(b) -0.02(3) 0.51(4) (b) -0.21(3) 0.60(4)
8 -0.02(4) 0.52(4) -0.15(4) 0.65(4)
12 -0.02(6) 0.52(6) -0.15(6) 0.65(6)
15 -0.01(8) 0.52(7) -0.13(8) 0.68(7)

-0.02(7) 0.51(8) -0.18(7) 0.63(8)

h = 0.75 h = 1
2 -0.25 0.75 -0.33 0.83
3 -0.37 0.25 0.87 -0.47 0.25 0.97
4 -0.25(2) 0.75(2) -0.33(2) 0.83(2)
5 (a) -0.15(3) 0.87(2) (a) -0.20(3) 0.98(2)

(b) -0.37(2) 0.65(3) (b) -0.48(2) 0.70(3)
6 -0.25(3) 0.75(3) -0.33(3) 0.83(3)
7 (a) -0.17(4) 0.83(3) (a) -0.24(4) 0.93(3)

(b) -0.33(3) 0.67(4) (b) -0.43(3) 0.74(4)
8 -0.25(4) 0.75(4) -0.33(4) 0.83(4)
12 -0.25(6) 0.75(6) -0.33(6) 0.83(6)
15 (a) -0.21(8) 0.78(7) (a) -0.28(8) 0.88(7)

(b) -0.28(7) 0.71(8) (b) -0.37(7) 0.79(8)

Table 3.3: Ds-optimal designs under Criterion 3.2 for predicting at x∗1 = 0 and x∗2 =
0.5, using the Gaussian kernel and differing numbers of design points and values for h.
Number of repetitions of a design point in parentheses; (a) and (b) indicate designs that
are reflections.
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n h = 0.2 h = 0.5
2 0.00 1.10 0.00 1.09
3 0.00 0.61 1.10 -0.09 0.72 1.23
4 -0.01 0.54 0.80 1.15 -0.05 0.07 1.09(2)
5 -0.01 0.60(2) 1.10(2) -0.03(2) 0.78 1.16(2)
6 0.00(2) 0.61(2) 1.10(2) -0.09(2) 0.39 1.11(3)
7 -0.01(2) 0.57(2) 0.79 1.13(2) -0.01(3) 0.86 1.13(3)
8 -0.01(2) 0.60(3) 1.10(3) -0.05(3) 0.49 1.11(4)
12 -0.01(3) 0.58(4) 0.76 1.11(4) -0.02(5) 0.63 1.11(6)
15 0.00(5) 0.61(5) 1.10(5) 0.00(7) 1.08(8)

h = 0.75 h = 1
2 -0.05 1.21 -0.11 1.32
3 -0.22 0.82 1.27 -0.38 0.91 1.29
4 -0.05(2) 1.21(2) -0.11(2) 1.32(2)
5 -0.15(2) 1.12(3) -0.27(2) 1.18(3)
6 -0.18(2) 0.31 1.20(3) -0.11(3) 1.32(3)
7 -0.12(3) 1.14(4) -0.22(3) 1.22(4)
8 -0.17(3) 0.69 1.18(4) -0.31(3) 1.15(5)
12 -0.13(5) 1.13(7) -0.24(5) 1.21(7)
15 -0.15(6) 1.12(9) -0.27(6) 1.18(9)

Table 3.4: Ds-optimal designs under Criterion 3.2 for predicting at x∗1 = 0, x∗2 = 0.6, x∗3 =
0.8 and x∗4 = 1.1, using the Gaussian kernel and differing numbers of design points and
values for h. Number of repetitions of a design point in parentheses.

40



3.4 Prediction across an interval

We now investigate designs for predicting across an entire continuous interval [−1, 1] rather

than at a discrete set of points. We define a new objective function which is the continuous

version of (3.21), and will be used in a compound Ds-optimality criterion to find designs.

Ψ(ξn) =
1

h

∫ 1

−1

log

 n∑
j=1

K

(
xj − x∗

h

)
−

[
∑n

j=1

(
xj−x∗
h

)
K
(
xj−x∗
h

)
]2∑n

j=1

(
xj−x∗
h

)2

K
(
xj−x∗
h

)
 dx∗

=

∫ 1

−1

log [L(x∗)] dx∗, (3.26)

where

L(x∗) =
1

h

 n∑
j=1

K

(
xj − x∗

h

)
−

[∑n
j=1

(
xj−x∗
h

)
K
(
xj−x∗
h

)]2

∑n
j=1

(
xj−x∗
h

)2

K
(
xj−x∗
h

)
 .

Note that, although we do not restrict the design region to [−1, 1], we will see that most

points in the resulting designs are in, or close to, the interval [−1, 1].

We again find designs for prediction using both the uniform and Gaussian kernels. The

integral in (3.26) is analytically intractable for each of these kernels. Therefore we imple-

ment a numerical quadrature scheme to approximate this integral for each kernel. We have

used Legendre-Gauss quadrature to calculate the optimal weights and abscissae to approx-

imate (3.26), with the abscissae given by the roots of the Legendre polynomials. Details

of Gauss quadrature methods in general can be found in Golub and Welsch (1969). The

approximation to (3.26) involves a weighted sum of the objective function at pa abscissa

values over the integration region and is given by

Ψ(ξn) ≈
pa∑
i=1

κi log [L(x∗i )] , (3.27)

where x∗i are chosen as solutions to the Legendre polynomials and κi are Legendre-Gauss

weights.
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Criterion 3.3. An optimal design ξ∗n for prediction across the interval [−1, 1] for the local

linear estimator maximises

Ψ(ξn) ≈
pa∑
i=1

κi log [L(x∗i )] .

Initially pa = 500 was chosen to give a very accurate approximation to (3.26). However, for

some larger values of n we found that it was impossible to run the optimisation algorithm

for enough iterations to converge to an optimal design. We therefore decided to choose pa

large enough to produce an accurate approximation but also small enough to enable the

optimisation to be performed in a reasonable time.

In order to choose an appropriate value of pa, we generated 500 random designs by random

selections of n points from [−1, 1]. We then evaluated (3.27) for various values of pa for

each design and compared the results (see Figure 3.1 for pa = 25, 500). A high correlation

between the values of the objective functions for designs under (3.27) for different pa

suggests we can use the smaller value of pa for design selection.

For some small values of n and h, for example, Figures 3.1(a) and 3.1(b), we see that

pa = 25 does not produce sufficiently accurate results as there is not a strong correlation

between the objective function values for low −Ψ(ξn) when calculated using pa = 25 and

pa = 500. In these cases, we would not get the same optimal design. Hence, optimal

designs for these values of h and n were calculated using pa = 500. When h = 0.1, it

seems pa = 25 is sufficient for n ≥ 7, see Figure 3.2.

In general, for other values of h, we use an approximation with 25 abscissa points

Ψ(ξn) ≈
25∑
i=1

κi log [L(x∗i )] . (3.28)

3.4.1 Optimal designs for predicting on [−1, 1] using the uniform

kernel

Table 3.5 gives optimal designs for Criterion 3.3 for predicting on the interval [−1, 1] using

the uniform kernel. It is important to note that for each value of h it was only possible to

find optimal designs for certain values of n. For example, when h = 0.2 we require at least

eleven points to predict over the whole interval of length 2. These eleven points are equally

spaced and ensure that there are at least two design points within h of any point in the
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Figure 3.1: Comparison of objective function values (−Ψ(ξn)) for 500 random designs with
pa = 25 and pa = 500. (a) n = 3 and h = 0.1, (b) n = 3 and h = 0.2, (c) n = 3 and
h = 0.5 and (d) n = 3 and h = 0.75.

Figure 3.2: Comparison of objective function values (−Ψ(ξn)) for 500 random designs with
pa = 25 and pa = 500 for n = 7, h = 0.1.
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interval [−1, 1]. Otherwise, there are not two design points available for prediction over

every part of the interval. Therefore n = 12 is the first optimal design given in Table 3.5.

In general the designs are symmetric, or close to symmetric, with points spread across the

interval. For smaller n and larger h, the numerical optimisation was more straightforward

and faster.

For some values of n and h the designs were not quite symmetric. This may be because

the optimum has not been identified exactly. However, this is not necessarily the case.

In Table 3.5, for example, when n = 7 and h = 0.5 the optimal design found is ξ∗n =

{−1.01,−0.57,−0.25, 0.11, 0.30, 0.64, 1.01} with Ψ(ξ∗n) = 3.26. The value of the objective

function was calculated for a number of symmetric designs to see if there was an obvious

improvement to be made. However, the best symmetric design found was

ξn = {−1.01,−0.60, 0.28, 0.00, 0.28, 0.60, 1.01}

with Ψ(ξn) = 3.23.

3.4.2 Optimal designs for prediction on an interval with the

Gaussian kernel

Table 3.6 gives compound Optimal designs under Criterion 3.3 for predicting over the

interval [−1, 1] using the Gaussian kernel. Firstly, we notice that the optimal designs are

symmetric about zero. This is not unexpected, as both the interval we are predicting on

and the kernel function are symmetric about zero. In a similar manner to predicting at

q = 4 points in Section 3.3.3, fewer support points are required as h increases for fixed

n. Secondly, it is noticeable that as h increases, more design points are placed near the

ends of the interval. These points are more influential in predicting at points closer to the

centre of the interval for larger h.

A uniform kernel design from Section 3.4.1 can be quantitavely compared to a design

using the Gaussian kernel by calculating the efficiency of the ‘uniform kernel’ design for

prediction with the Gaussian kernel. Two examples are considered; (i) h = 0.5 and n = 5,

and (ii) h = 0.5 and n = 15. The efficiency is calculated as

Eff = exp
{

ΨG(ξu)−ΨG(ξG)
}
,

where ΨG(ξu) and ΨG(ξG) are the values of the objective function, calculated with the

Gaussian kernel, using (i) ξu, the optimal design under Criterion 3.3 with the uniform
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n h = 0.2
12 -1.13 -0.85 -0.64 ±0.43 -0.27 -0.04 0.07

0.28 0.65 0.86 1.12
15 -1.11 -0.93 -0.75 -0.54 -0.39 -0.28 -0.15

0.00 0.19 0.33 0.40 0.56 0.76 0.95 1.12

h = 0.5
5 ±1.00 ±0.50 0.00
6 ±0.99 ±0.55 ±0.20
7 ±1.01 -0.57 -0.25 0.11 0.30 0.64
8 ±1.04 ±0.71 ±0.40 ±0.16
12 -1.12 -0.85 -0.62 -0.44 -0.26 -0.05

0.06 0.28 0.46 0.65 0.87 1.13
15 -1.12 -0.96 -0.78 -0.57 -0.41 -0.32 -0.19

-0.03 0.16 0.28 0.38 0.51 0.76 0.93 1.11

h = 0.75
4 -0.94(2) -0.25(2)
5 ±1.09 ±0.53 0.00
6 ±1.10 0.64 ± 0.13 0.63
7 ±1.10 -0.82 -0.23 -0.01 0.22 0.81
8 ±1.17 ±0.83 -0.46 -0.10 0.09 0.47
12 ±1.36 -1.20 -0.82 -0.49 -0.34 -0.07

0.02 0.31 0.51 0.93 1.08
15 -1.40 ±1.20 -1.03 -0.74 -0.47 -0.27 -0.05

0.01 0.08 0.24 0.51 0.71 1.05 1.39

h = 1
3 ±1.00 0.00
4 ±1.1221 ±0.32
5 ±1.16 ±0.52 0.01
6 -1.19 ±-0.65 ±-0.29 1.18
7 ±-1.30 -0.84 ±0.36 0.01 0.85
8 ±1.29 -0.89 ±0.48 -0.20 0.23 0.91
12 -1.36 -1.18 -0.80 -0.49 -0.36 -0.12

0.07 0.33 0.52 0.93 1.09 1.34
15 -1.31 -1.19 -1.05 -0.75 -0.52 -0.38 -0.28

0.11 0.15 0.37 0.50 0.64 1.02 1.16 1.35

Table 3.5: Ds-optimal designs under Criterion 3.3 for predicting over the interval [−1, 1]
using a uniform kernel and differing numbers of design points and values for h. Number
of repetitions of a design point in parentheses.
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n h = 0.2 h = 0.5
2 ±0.16 ±0.65
3 ±0.72 0.00 ±0.88 0.00
4 ±0.88 ±0.31 ±0.96 ±0.31
5 ±0.92 ±0.46 0.00 ±1.00 ±0.53 0.00
6 ±0.93 ±0.54 ±0.18 ±0.88(2) 0.00(2)
7 ±0.95 ±0.59 ±0.30 0.00 ±0.92(2) ±0.27 0.00
8 ± 0.96 ± 0.64 ± 0.39 ± 0.12 ±0.95(2) ±0.50 0.00(2)
12 ±0.98 ±0.85 ±0.52(2) ±0.17(2) ±0.88(4) 0.00(4)
15 ±0.95(2) ±0.61(2) ±0.43 ±0.20(2) 0.00 ±0.88(5) 0.00(5)

h = 0.75 h = 1
2 ±0.77 ±0.87
3 ±0.98 0.00 ±1.09 0.00
4 ±0.86 ±0.68 ±0.87(2)
5 ±0.88(2) 0.00 ±0.99 0.00
6 ±0.85(2) ±0.60 ±0.87(3)
7 ±0.85(3) 0.00 ±0.95(3) 0.00
8 ±0.85(3) ±0.52 ±0.87(4)
12 ±0.84(5) ±0.33 ±0.87(6)
15 ±0.81(7) 0.00 -0.83(8) 0.91(7)

Table 3.6: Ds-optimal designs under Criterion 3.3 for predicting over the interval [−1, 1]
using a Gaussian kernel and differing numbers of design points and values for h. Number
of repetitions of a design point in parentheses.

kernel and (ii) ξG, the optimal design under Criterion 3.3 using the Gaussian kernel.

In case (i), the uniform optimal design is ξu = {−1.00,−0.50, 0.00, 0.50, 1}, the Gaussian

optimal design is ξG = {−1.00,−0.53, 0.00, 0.53, 1} and the efficiency is 0.998. In case (ii),

the uniform optimal design is

ξ∗u = [− 1.12,−0.96,−0.78,−0.57,−0.41,−0.32,−0.19,

− 0.03, 0.16, 0.28, 0.38, 0.51, 0.76, 0.93, 1.11],

the Gaussian optimal design is ξ∗G = {±0.88(5), 0.00(5)} and the efficiency is 0.932, where

(5) indicates 5 repetitions of the design point. In these two examples the uniform kernel

designs perform well.
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3.5 Application to the tribology experiment

The designs found in Section 3.4 can be applied to experiments such as the tribology

example introduced in Section 1.3. Recall that the tribology experiment consisted of 16

runs, each of which resulted from the application of a different treatment. The response of

interest is the combined wear of the disc and pin, see Figure 1.1. The aim was to predict

this wear over the time interval [501, 2400], where a time point will be denoted by x. We

can predict the wear over this interval using the whole dataset, i.e. 1900 observations.

However, in this section, we demonstrate the application of the design methods in this

chapter by choosing a small subset of the observations with which to predict the wear.

We chose the Gaussian kernel for prediction, as it was possible to find designs with large

n for this kernel. We assess the performance of the designs from Section 3.4, for Criterion

3.3 for n = 15, 20, 25, 30 design points. To do this, a comparison is made of the smooth fit

produced by the optimal design with the smooth fit produced using the whole dataset. We

also compare the optimal designs to uniform designs composed of equally spaced points

over the interval [−1, 1]. Comparisons are made in terms of mean squared error.

Optimal designs were found for bandwidths h = 0.2, 0.5 and n = 15, 20, 25, and for

h = 0.1, 0.3 and n = 15, 20, 25, 30 (as the optimisation was faster for h = 0.1). The

bandwidths and designs were transformed from the interval [−1, 1] to [501, 2400]. For

instance, h = 0.1, 0.2, 0.3 and h = 0.5 on the transformed interval [501, 2400] correspond

to smoothing parameters of 95, 190, 285 and 475. For each run, predictions were made

using designs with all combinations of n and h. Immediately we saw that h = 0.5 was

too large for all datasets since many features of the data were oversmoothed. Therefore

we chose to investigate designs for h = 0.1, 0.2 and 0.3 where the selection of h was done

‘by eye’. Designs for each of these bandwidths can be found in Table 3.7. Note that these

designs were calculated specifically for this application and cannot be found in Table 3.6.

The results are illustrated using two runs, run 2 and run 19, which exhibit very different

features. Figures 3.3 and 3.4 show the smoothed fits for these runs using bandwidths 0.2

and 0.1 respectively, for both the whole dataset and data from the corresponding optimal

designs. These bandwidths were chosen to allow enough locality to describe features of the

data. The difference in form of each run can be attributed to the different levels of factor

settings for each run (see Chapter 5). Figure 3.3 shows that the smooth fit calculated

from the whole dataset and from the data corresponding to the design points for run 2

are very similar for n = 20 and n = 25 (plots (b) and (c)). However, plot (a) shows that

15 design points were not sufficient.

For run 19, Figure 3.4 shows that the smooth fit calculated from the whole data and that
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n h = 0.1
15 ±0.98 ±0.81 ±0.67 ±0.53 ±0.40 ±0.27 ±0.13 0.00
20 ±0.99 ±0.87 ±0.75 ±0.66 ±0.55 ±0.45 ±0.35 ±0.25 ±0.15 ±0.05
25 ±0.99 ±0.94 ±0.77(2) ±0.63 -0.57 -0.49 -0.39

-0.34 -0.22 -0.19 -0.06 -0.02 0.10 0.15 0.25 0.32 0.41 0.48 0.58
30 0.99 ±0.98 -0.81 ±0.80 ±0.71 ±0.60(2) ±0.49 -0.44 -0.36

-0.31 -0.21 -0.19 -0.07 -0.06 0.05 0.08 0.17 0.23 0.29 0.38 0.43 0.80 0.98

h = 0.2
15 ±0.95(2) ±0.61(2) -0.43 ±0.20(2) 0.00 0.42
20 ±0.95 ±0.94 -0.94 ±0.57(3) ±0.38 ±0.18 ±0.16 ±0.13 0.93
25 ±0.96(3) ±0.79 ±0.55 -0.55 ±0.54 -0.53 ±0.23

±0.22 -0.19 -0.16 0.00 0.15 0.20 0.54 0.54

h = 0.3
15 ±0.93(3) ±0.41(3) ±0.14 0.00
20 ±0.93(4) ±0.41(4) -0.16 ±0.01 0.17
25 ±0.93(5) -0.42 ±0.41(3) -0.41 -0.18 -0.02 ±0.01 0.20 0.40 0.43
30 ±0.93(6) ±0.42(2) ±0.41(2) ±0.40 -0.39 -0.24 ±0.00 0.01 0.03 0.19 0.42

Table 3.7: Further Ds-optimal designs under Criterion 3.3 for predicting over the interval
[−1, 1] using a Gaussian kernel and differing numbers of design points and values for h.
Number of repetitions of a design point in parentheses.

from the design points are quite different, even for large values of n. Although small h can

cause the fit to be more ‘wiggly’, thus undersmoothing the data, the value of h = 0.1 was

chosen as no other value of h produced a fit which could predict the steep incline around

x = 1300. However, for each of n = 15, 20, 25, 30 the data were undersmoothed elsewhere

on the interval. This is due to the fact that, with this bandwidth, only a small number of

design points have a significant influence on the prediction at each point.

Another issue is the variability, in terms of the signal to noise ratio of the data, see Figure

3.5. This leads to the performance of the designs being very unstable. Placing a design

point at observation xt+1 rather than at xt has the potential to make a big difference

in the prediction over the interval. Figure 3.6 shows the autocorrelation in the errors

from a smooth fit with h = 0.1 for run 19. For n given observations y1, . . . , yn, the lag k

autocorrelation is given by

rk =
(n− 1)

∑n−k
t=1 (yt − ȳ)(yt+k − ȳ)

(n− k)
∑n

t=1(yt − ȳ)2
,

where
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Figure 3.3: Run 2: data (small dot) and design points (large dot), with the smooth fit
using whole data (-) and smooth fit using design points (-.) (a) n = 15, (b) n = 20 and
(c) n = 25.
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Figure 3.4: Run 19: data (small dot) and design points (large dot), with the smooth fit
using whole data (-) and smooth fit using design points (-.)(a) n = 15, (b) n = 20, (c)
n = 25 and (d) n = 30.
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Figure 3.5: Run 19: Data on interval [1250, 1420].

ȳ =
1

n

n∑
t=1

yt,

see Chatfield (2004). The data exhibit a large degree of seasonality, which does not have a

clearly identifiable frequency. This suggests that the errors may not be independent. The

optimal designs calculated in Table 3.6 are not directly applicable to experiments where

these types of errors may be present because they were found under the assumption of

independent errors. Finding appropriate designs for correlated error variables remains an

area for future research (Chapter 6).

3.5.1 Application to simulated data

In this section, we demonstrate the design methods and assess the performance of optimal

designs from this chapter using a simulated dataset obtained from the tribology data. The

simulated data are formed by adding independent errors, from a Normal distribution with

zero mean, to the smooth fit ĝ from the whole dataset using bandwidths h = 0.2 and

h = 0.1 for run 2 and run 19, respectively. Initially several choices of variance σ2 were

tried and a value of 2.25 × 10−8 was chosen as it was neither too small to eliminate all

variability in the fit nor too large to prevent a reasonably accurate prediction.

Figures 3.7 and 3.8 present for run 2 and 19 respectively, two simulated datasets for each

run, obtained from optimal designs under Criterion 3.3 with n = 25 (run 2) and n = 30
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Figure 3.6: Run 19: Residual autocorrelation from fitting ĝ(x) as a local linear estimator
with h = 0.1.

(run 19) and smooth fits to the whole datasets and to data from the optimal designs.

The datasets were obtained by adding two different sets of random errors drawn from a

N(0, 2.25 × 10−8) distribution. Figure 3.7 shows that for run 2, even with less variable

data, the prediction for ĝ(x) using n = 25 design points over-predicts on x ∈ [800, 1200].

This is because h = 0.2 leads to oversmoothing of the data. It may be that a smaller

value of h is more appropriate on [800, 1200]. On the other hand, a smaller bandwidth

could give a ‘wiggly’ prediction with n = 25 design points for x ∈ [1200, 2400], where the

response appears more linear. Figure 3.8 shows that for run 19 the prediction using n = 30

design points is more accurate when the data is less variable. However the positioning of

a single design point is still having a noticeable effect on prediction, which can be seen by

observing the effect of the first design point on the prediction, near the beginning of the

interval in the two plots in Figure 3.8.

To assess quantitatively the performance of the optimal designs, we calculated the mean

squared error for the fitted model from each design and compared against the mean squared

error for the fitted model using the whole dataset. This comparison was made using the

standardised difference of the two mean squared errors obtained as follows. We calculated

a ‘moving window’ mean squared error at each point x∗i , i = 601, ..., 2300, as

MSE(x∗i ) =
k=i+100∑
k=i−100

[ĝ(x∗k)− yk]
2 ,
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Figure 3.7: Run 2: Simulated data with different errors simulated from N(0, 2.25× 10−8)
for each plot (small dot), n = 25 design points (large dot), smooth fit using whole data
(red), smooth fit using data from design points (black).
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Figure 3.8: Run 19: Simulated data with different errors simulated from N(0, 2.25×10−8)
for each plot (small dot), n = 30 design points (large dot), smooth fit using whole data
(red), smooth fit using data from design points (black).
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where ĝ(x∗k) is the kth predicted value. This moving window captures the prediction

accuracy in different sub-intervals of the design region. It is used in the standardised

difference in the mean squared error for a given design

SMSE(x∗i ) =
MSEd(x

∗
i )−MSEw(x∗i )

MSEd(x∗i )
, (3.29)

where MSEd and MSEw are the mean squared errors for the fit using data corresponding

to the optimal design and the fit using the whole dataset, respectively. If the standardised

difference is δ > 0 then there is a δ×100% reduction in mean squared error when the whole

dataset is used (rather than the observations from the design points) to make a prediction.

If the difference is less than zero, i.e. −δ, then there is a δ×100% increase in mean squared

error from using the whole dataset. We therefore expect to see a positive standardised

difference as the prediction from the whole dataset should always be as good as, if not

better than, the prediction from a subset of the data. When comparing and assessing the

smooth fits over the whole interval, we use the average standardised difference

ASD =
1

1700

2300∑
i=601

SMSE(x∗i ).

Throughout these comparisons it should be taken into account that the Ds-optimal design

was found to minimise the variance and not the mean squared error.

For run 2, Figure 3.9 shows that the mean squared error is much larger for predictions

obtained from either set of data on the sub-interval [800, 1200] than on the rest of the

interval, with the exception of n = 15 when x > 1600 where n is too small for adequate

prediction. This supports the suggestion that the bandwidth is too large on [800, 1200]

to capture features of the data. As we would expect, the mean squared error for the

prediction using the whole dataset is less than when using data from any of the optimal

designs. The standardised plot, see Figure 3.10, shows that designs with 15 or 25 points

have lower mean squared error values on the interval [800, 1200] than the design with 20

points. Note that this is only for one simulated dataset and, as such, this difference could

be due to the particular set of realised data used.

Figure 3.11 has the same plots for run 19, as were presented for run 2 in Figure 3.9. The

largest mean squared error occurs around the time the steep change in the data occurs in

both Figures 3.11 (a) and (b). We require a smaller bandwidth and more design points in

these regions to capture these features accurately.
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Figure 3.9: Run 2: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points, (b) ĝ(x) for the
whole dataset, (c) MSE for ĝ(x) for 15, 20 and 25 design points and (d) MSE for ĝ(x) for
the whole dataset.

The average standardised difference (ASD) is smallest for run 2 (0.189 to 3 d.p.) when

n = 15 and smallest for run 19 (0.166 to 3 d.p.) when n = 25. However we would expect

the ASD to be smallest when there are 25 or 30 points, for runs 2 and 19 respectively.

Again, this could be due to the single set of data.

3.5.2 Comparison with the uniform design

We now compare the optimal designs to a uniform design of equally spaced points on [501,

2400]. We again calculate the mean squared error to compare the fits obtained from using

the uniform designs with n = 15, 20, 25 for h = 0.2 and n = 15, 20, 25, 30 for h = 0.1 and

the whole dataset. We use the same simulated dataset as in the previous section.

We see similar results to those from use of the optimal designs, see Figures 3.13-3.16. For

run 2, the mean squared error is, once again, larger on the interval [800, 1200]. In order
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Figure 3.10: Run 2: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points and
ĝ(x) from the whole dataset. Values of the average standardised MSE difference (ASD)
over x are given in the legend.
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Figure 3.11: Run 19: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points, (b)
ĝ(x) from the whole dataset, (c) MSE for ĝ(x) for 15, 20, 25 and 30 design points, and
(d) MSE for ĝ(x) for the whole dataset.
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Figure 3.12: Run 19: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points and ĝ(x) from the whole dataset. Values of the average standardised MSE
difference (ASD) over x are given in the legend.
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Figure 3.13: Run 2: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
uniform designs with 15 (blue), 20 (red) and 25 (green) design points, (b) ĝ(x) from the
whole dataset, (c) MSE for ĝ(x) for 15, 20 and 25 design points and (d) MSE for ĝ(x) for
the whole dataset.
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Figure 3.14: Run 2: Standardised difference (3.29) in mean square error between ĝ(x)
using data from uniform designs with 15 (blue), 20 (red) and 25 (green) design points and
ĝ(x) from the whole dataset. Values of the average standardised MSE difference (ASD)
over x are given in the legend.

to compare quantitatively the optimal designs and the uniform designs, we simulated 500

datasets from each of the uniform and optimal designs for n = 15, 20 and 25 (run 2) and

n = 15, 20, 25 and 30 (run 19). We computed the average standardised difference (ASD)

for each design and each of the 500 datasets. Employing the Central Limit Theorem, we

calculated a confidence interval for the difference in ASD between the two designs (uniform

and optimal design).

n Run 2 Run 19
15 [−0.2033,−0.1538] [−0.1292,−0.0903]
20 [−0.1188,−0.0825] [−0.0797,−0.0492]
25 [−0.0812,−0.0503] [−0.0982,−0.0695]
30 - [−0.0928,−0.0669]

Table 3.8: Confidence intervals for the difference in average standardised difference (ASD)
between the optimal design and uniform design for each value of n.

Table 3.8 shows that, for each value of n, and for each run, the uniform design performs

better than the optimal design (as the upper and lower bounds are both negative). For

larger n, the uniform design has only very slightly lower SMSE. We would expect that for

larger n, say n = 50, the optimal design would be better for both run 2 and run 19, as

the optimal design concentrates points slightly more centrally than the uniform design.

Alternatively, if there is further prior information available about the response, we could
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Figure 3.15: Run 19: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
uniform designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points, (b)
ĝ(x) from the whole dataset, (c) MSE for ĝ(x) for 15, 20, 25 and 30 design points, and
(d) MSE for ĝ(x) for the whole dataset.
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Figure 3.16: Run 19: Standardised difference (3.29) in mean square error between ĝ(x)
using data from uniform designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points and ĝ(x) from the whole dataset. Values of the average standardised MSE
difference (ASD) over x are given in the legend.
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tailor the optimal designs and obtain an advantage over the uniform design (see Chapter

6).

3.5.3 Robustness of prediction to bandwidth selection

When studying run 2 and run 19, there has been some uncertainty in the correct choice of

bandwidth for each of the two datasets. We now assess the robustness of the optimal design

to the choice of bandwidth. We do this by assessing the difference in making a prediction

using the whole dataset with the ‘true’ bandwidth and the prediction using optimal designs

calculated for other bandwidths. This allows us to compare the ‘best’ prediction, that is,

one using the whole dataset and the ‘true’ bandwidth, with a prediction made from an

optimal design with an alternative bandwidth. By ‘true’ we mean the bandwidth chosen

‘by eye’ at the beginning of this section. For run 2, we assume that the bandwidth is

h = 0.2, see Figure 3.3, and we use this bandwidth to make a prediction using the whole

dataset. We then use the optimal designs for h = 0.1 and h = 0.3 to predict over the

interval [501, 2400].

For run 2 the prediction on the interval [700, 1100] is much more accurate using h = 0.1 (see

Figures 3.17 and 3.18). There is a 200% increase in mean squared error when a prediction

is made using the whole dataset with h = 0.2 rather than data from the optimal design

with h = 0.1. However, the prediction using data from the optimal design with h = 0.1

was less accurate elsewhere in the interval. This highlights the possible need for a varying

bandwidth. Figures 3.19 and 3.20 show that designs with a bandwidth of h = 0.3 have a

larger mean squared error across the whole interval.

Figures 3.21 and 3.23 show that the prediction for run 19, when the ‘true’ bandwidth was

assumed to be h = 0.1 has a much larger mean squared error, especially on the interval

[1000, 1800] when h = 0.2 or h = 0.3. The mean squared error is very similar on the

interval [2000, 2400], but larger bandwidths do not perform well for this run.

3.6 Concluding Remarks

This chapter found designs which minimised a compound Ds-optimality criterion for pre-

dicting at a finite number of points and over a specified continuous interval. For prediction

at a finite number of points, we found the minimum number of points required and con-

jectured the form of the optimal designs. More generally optimal designs were found

numerically for different numbers of runs and choices of bandwidth.
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For predicting at a single point, we were able to prove the optimality of the new designs

for the uniform kernel. However, for prediction at a finite number of points, it was only

possible to establish the optimality of the new designs in particular cases. In other cases,

intuitive reasoning suggested the form of an optimal design which was supported by numer-

ical results. The designs found for predicting across an interval were obtained numerically

and, as such, some designs presented may only be near-optimal or highly efficient.

The designs for predicting over an interval were applied to the tribology experiment and

assessed using a ‘moving window’ mean squared error. This enabled us to see that predic-

tions made using a subset of the data obtained from the set of point, in an optimal design

were very similar to the predictions made using the whole dataset. The optimal designs

were also compared to the equally spaced uniform design and we found that the designs

performed very similarly. Lastly, we conducted a robustness study to assess how different

bandwidths performed using optimal designs for an assumed bandwidth. This study also

indicated that the use of different bandwidths on different sections of the interval may

have achieved a better fit for predicting the response. This supports further investigation

of designs for a varying bandwidth (see Chapter 6 for further discussion).
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Figure 3.17: Run 2: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points for h = 0.1, (b) ĝ(x)
from the whole dataset and true bandwidth of h = 0.2, (c) MSE for ĝ(x) for 15, 20 and
25 design points and (d) MSE for ĝ(x) for the whole dataset.
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Figure 3.18: Run 2: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points for
h = 0.1 and ĝ(x) from the whole dataset with true bandwidth h = 0.2. Values of the
average standardised MSE difference (ASD) over x are given in the legend.
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Figure 3.19: Run 2: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points for h = 0.3, (b) ĝ(x)
from the whole dataset with true bandwidth, h = 0.2, (c) MSE for ĝ(x) for 15, 20 and 25
design points and (d) MSE for ĝ(x) for the whole dataset.
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Figure 3.20: Run 2: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points for
h = 0.3 and ĝ(x) from the whole dataset with true bandwidth h = 0.2. Values of the
average standardised MSE difference (ASD) over x are given in the legend.
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Figure 3.21: Run 19: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points for
h = 0.2, (b) ĝ(x) from the whole dataset with true bandwidth, h = 0.1, (c) MSE for ĝ(x)
for 15, 20, 25 and 30 design points, and (d) MSE for ĝ(x) for the whole dataset.
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Figure 3.22: Run 19: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points for h = 0.2 and ĝ(x) from the whole dataset with true bandwidth h = 0.1.
Values of the average standardised MSE difference (ASD) over x are given in the legend.
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Figure 3.23: Run 19: Smooth fits and MSE plots (a) ĝ(x) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points for
h = 0.3, (b) ĝ(x) from the whole dataset with true bandwidth, h = 0.1, (c) MSE for ĝ(x)
for 15, 20, 25 and 30 design points, and (d) MSE for ĝ(x) for the whole dataset.
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Figure 3.24: Run 19: Standardised difference (3.29) in mean square error between ĝ(x)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points for h = 0.3 and ĝ(x) from the whole dataset with true bandwidth h = 0.1.
Values of the average standardised MSE difference (ASD) over x are given in the legend.
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Chapter 4

Compound optimal designs for

prediction using kernel smoothing

In this chapter we find optimal designs for local prediction by trading-off prediction vari-

ance and the complexity of the fitted model. We demonstrate new criteria by finding

designs for the Gasser and Müller estimator. Throughout this chapter, we illustrate our

new criteria with examples and provide some insights using analytic results for simple

cases with the uniform kernel.

We start by providing some background results on linear smoothing generally, and the

Gasser and Müller estimator in particular. We then find designs that minimise prediction

variance and highlight the disadvantages of this approach. To overcome these issues, we

introduce a new criterion that minimises a weighted sum of the integrated prediction

variance and a measure of the complexity of the fitted model, given by the inverse of the

trace of the smoothing matrix. We discuss some analytic results for a special case and

then find designs numerically for the uniform and Gaussian kernels.

4.1 Gasser and Müller kernel smoothing

In this section, we introduce prediction using the Gasser and Müller estimator. Suppose we

have design points x1, . . . , xn on a single variable, with associated observations y1, . . . , yn

where, as before, we assume that

yj = g(xj) + εj, (4.1)
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where εj are independent error variables with constant variance for j = 1, . . . , n. Then,

Var {yj} = σ2. We wish to estimate the unknown function g using a linear smoother, ĝ(x),

which estimates the function through a linear combination of the observations, y1, . . . , yn,

as

ĝ(x) =
n∑
j=1

Sj(x)yj, (4.2)

where Sj(x) are smoothing weights (for example, Ramsay and Silverman, 2005, ch. 4).

Smoothing weights are defined for each type of linear smoother, see also Section 2.1.

The prediction at x∗, using the Gasser and Müller estimator (Gasser and Müller, 1979,

1984) is given by

ĝ(x∗) =
n∑
j=1

[
1

h

∫ x̄j

x̄j−1

K

(
v − x∗

h

)
dv

]
yj,

where x̄j = (xj+1 + xj)/2 for 1 ≤ j < n, x̄0 = x1 and x̄n = xn. The kernel function, K,

is defined to be symmetric and satisfies
∫
K(v) dv = 1. The bandwidth, h, controls the

locality of the prediction; a larger value of h allows more design points to influence the

prediction at x∗. The smoothing weights are therefore given by

Sj(x
∗) =

1

h

∫ x̄j

x̄j−1

K

(
v − x∗

h

)
dv. (4.3)

4.1.1 The smoothing matrix

The corresponding smoothing matrix, S, see Ramsay and Silverman (2005, p. 64) is

defined as

S =


S1(x1) S2(x1) . . . Sn(x1)

S1(x2) S2(x2) . . . Sn(x2)
...

...
. . .

...

S1(xn) S2(xn) . . . Sn(xn)

 . (4.4)

Note that for linear models, the trace of S equals the number of parameters; for example
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the trace of S for simple linear regression is two as there are two parameters to estimate

in the fit.

The trace of the smoothing matrix (4.4) can be used to provide a measure of effective

degrees of freedom of a smooth fit (Ramsay and Silverman, 2005, p. 67). It therefore gives

a measure of the complexity of the fitted model.

For the Gasser and Müller estimator, the trace of the smoothing matrix is

trace(S) =
1

h

n∑
j=1

∫ x̄j

x̄j−1

K

(
v − xj
h

)
dv. (4.5)

4.1.2 The uniform kernel

The uniform kernel is defined as

K(u) =

0.5 if |u| ≤ 1,

0 otherwise.

In obtaining expressions for the smoothing weights (4.3), we use the following indicator

function. For a specified interval A ⊂ R,

1A(x) =

1 if x ∈ A,

0 otherwise.

The smoothing weights for the uniform kernel can then be written as

Sj(x) =
1

h

∫ x̄j

x̄j−1

K

(
v − x
h

)
dv

=
1

h

∫ x̄j

x̄j−1

1

2
1A(x)dv, (4.6)

where
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A = {v; |x− v| ≤ h} . (4.7)

Evaluating (4.6) we find the smoothing weight, Sj(x), as

Sj(x) =
1

2h
[min(x+ h, x̄j)−max(x− h, x̄j−1)]. (4.8)

for x̄j−1 − h ≤ x ≤ x̄j + h or zero otherwise. To show (4.8) holds, for each j = 1, . . . , n,

we consider a set (interval in R) defined by

Xj = {v; x̄j−1 ≤ v ≤ x̄j} ,

and a subset

Aj(x) = {v ∈ Xj; x− h ≤ v ≤ x+ h} .

Then we can define

Ij(x) =

∫
Xj

1Aj
dv (4.9)

= 2hSj(x),

with

1Aj
(x) =

1 if x ∈ Aj
0 otherwise.

Note that when Aj is the empty set, then Ij(x) = 0, by definition of 1Aj
.

The set Aj is not empty when the intervals [x− h, x+ h] and [x̄j−1, x̄j] overlap, i.e.
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x̄j−1 − h ≤ x ≤ x̄j + h. (4.10)

This argument implies Aj(x) is the interval from max(x − h, x̄j−1) to min(x + h, x̄j).

Therefore

Ij(x) =

∫
Aj

1dv +

∫
Xj\Aj

0dv

= min(x+ h, x̄j)−max(x− h, x̄j−1). (4.11)

On substituting (4.11) into (4.9), we conclude that (4.8) is satisfied.

In general, the trace is given by

trace(S) =
1

2h

n∑
j=1

[min(xj + h, x̄j)−max(xj − h, x̄j−1)]. (4.12)

From (4.12), it is clear that as the bandwidth, h, increases the trace decreases and therefore

the complexity of the model decreases. This is intuitive as increasing h allows more points

to influence the prediction at x∗, i.e. a lower level of local smoothing is assumed. Increasing

the bandwidth in local linear regression also provides a less complex model, see Section

2.1.1.

Special case:

In order to find a class of analytical designs in Section 4.3, we evaluate the smoothing

weight when

x̄j−1 ≤ x ≤ x̄j,

and
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x̄j − x̄j−1 ≤ h

⇒ xj+1 − xj−1 ≤ 2h. (4.13)

From (4.10) and (4.13), we see that

x̄j − x ≤ h

⇔ xj+1 + xj
2

− x ≤ h

⇒ xj − x ≤ h,

since
xj+1+xj

2
≥ xj. Similarly,

x− x̄j−1 ≤ h

⇔ x− xj + xj−1

2
≤ h

⇒ x− xj ≤ h,

since
xj+xj−1

2
≤ xj. Therefore, |x− xj| ≤ h for all x. Hence, when (4.10) and (4.13) hold

x+ h− x̄j = x+ h− xj+1 + xj
2

=
2x− xj+1 − xj

2
+ h

=
h+ (x− xj+1) + h+ (x− xj)

2

≥ 0

⇒ x+ h ≥ x̄j.

Similarly x̄j−1 ≥ x− h. Therefore

Sj(x
∗) =

1

h

∫
1

2
1A dv

=
1

h

∫ x̄j

x̄j−1

1

2
dv

=
x̄j − x̄j−1

2h
,
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and

trace(S) =
1

2h

n∑
j=1

[x̄j − x̄j−1]

=
xn − x1

2h
. (4.14)

Clearly, if (4.13) is not satisfied, Sj(x) ≤ (x̄j − x̄j−1)/2h, and (4.14) is an upper-bound on

trace(S).

4.2 Designs to minimise prediction variance

In this section we find a design ξn = {x1, . . . xn} which minimises the prediction variance

at a point x∗. In general, the variance of a linear smoother, ĝ(x∗), under model (4.1) is

given by

Var {ĝ(x∗)} = Var

(
n∑
j=1

Sj(x
∗)yj

)

=
n∑
j=1

Sj(x
∗)2Var(yj)

= σ2

n∑
j=1

Sj(x
∗)2. (4.15)

From (4.15), it is clear that the sum of the squared smoothing weights,
∑n

j=1 Sj(x
∗)2, must

be minimised in order to minimise Var{ĝ(x∗)}.

Criterion 4.1. A design ξ∗n for a linear smoother is optimal if it minimises the prediction

variance (4.15) at a single point x∗. That is

ξ∗ = arg min
ξ

n∑
j=1

Sj(x
∗)2. (4.16)

The prediction variance for the Gasser and Müller estimator is given by
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Var {ĝ(x∗)} = Var

(
n∑
j=1

Sj(x
∗)yj

)

=
σ2

h

n∑
j=1

(∫ x̄j

x̄j−1

K

(
v − x∗

h

)
dv

)2

. (4.17)

It is straightforward to establish optimal designs under Criterion 4.1 for any kernel func-

tion.

Proposition 4.1. The prediction variance, Var{ĝ(x∗)}, for the Gasser and Müller esti-

mator is minimised for any kernel function by the design that takes all points xj to be

equal, i.e. has just one distinct design point and x1 = . . . = xn.

Proof. Assume that all design points are equal and, without loss of generality, set xj = x1

for all 2 ≤ j ≤ n. Then,

Sj(x
∗) =

1

h

∫ x1+x1
2

x1+x1
2

K

(
v − x∗

h

)
dv

=
1

h

∫ x1

x1

K

(
v − x∗

h

)
dv.

As K is a real-valued integrable function defined at x1, by the Fundamental Theorem of

Calculus

Sj(x
∗) =

[
F

(
x1 − x∗

h

)
− F

(
x1 − x∗

h

)]
= 0,

for all 1 ≤ j ≤ n, where F (x) is the anti-derivative of K(x). Thus the variance is simply

calculated as
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Var {ĝ(x∗)} =
n∑
j=1

Sj(x
∗)2σ2

= 0.

There is a major drawback to using designs found from Criterion 4.1. As the smooth-

ing weights are all set to be zero for j = 1, . . . , n, from (4.2) we see that ĝ(x∗) =∑n
j=1 Sj(x

∗)yj = 0. Hence, a design from Criterion 4.1 minimises the prediction vari-

ance by only allowing a zero prediction of ĝ(x∗), which does not depend on yj. This

is equivalent to fitting a statistical model with no parameters. This null model has the

largest possible bias of ˆg(x∗).

The mean squared error could be reduced by increasing the variance and reducing the bias.

However, in order to reduce the bias through choice of design we are required to make

assumptions about the form of the model g. Instead, we add a less restrictive constraint

to our objective function to ensure that the design allows a more realistic prediction to be

made.

4.3 Constrained and compound designs for the uni-

form kernel

We now consider designs which minimise the prediction variance with respect to a con-

straint on the effective degrees of freedom of a smooth fit, ensuring a more complex model

can be fitted to the resulting data.

4.3.1 Illustration and results for a simple case

We start by choosing a design to minimise the prediction variance at a single point given

a fixed model complexity.
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Criterion 4.2. A design ξ∗n, is optimal for prediction at a point x∗ using a linear smoother

if

ξ∗n = arg min
ξn

Var {ĝ(x∗)} subject to trace(S) = d ≥ 0.

Let χ denote the set of all possible design points, called the design region. For any x ∈ χ,

we obtain the variance of ĝ(x) by substitution of the general form of the smoothing weights

(4.8) into the variance formula in (4.17) to give

Var {ĝ(x)} =
σ2

4h2

n∑
j=1

1Bj
(x) [min(x+ h, x̄j)−max(x− h, x̄j−1)]2 , (4.18)

where

Bj = {u ∈ χ; x̄j−1 − h ≤ u ≤ x̄j + h} ,

for j = 1, . . . , n.

We now consider finding designs from Criterion 4.2 under assumption (4.13), that is,

xj+1−xj−1 ≤ 2h. This assumption leads via equation (4.14) to the constraint in Criterion

4.2 having the form

trace(S) =
xn − x1

2h
= d. (4.19)

Note that x1 and xn must be chosen to be distinct, otherwise trace(S) = 0 and the result

is again the null model. Hence, this constraint on the trace clearly prevents the design

coalescing to a single point.

Under the constraint (4.19), it follows that the length of the interval on which we make

a prediction is xn − x1 = 2hd and so |x − xj| ≤ 2hd since x, xj ∈ [x1, xn] for j = 1, ..., n.

If d ≤ 0.5 and x∗ ∈ [x1, xn], j = 1, . . . , n, then the smoothing weights for observation

yj for prediction at x∗ has value Sj(x
∗) = (x̄j − x̄j−1)/2h, where x̄j = (xj+1 + xj)/2, as

1Bj
(x) = 1 for all x ∈ χ. This leads to
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Var {ĝ(x∗)} =
n∑
j=1

[Sj(x
∗)]2 σ2

=
n∑
j=1

σ2

4h2
[x̄j − x̄j−1]2

=
σ2

16h2

[
(x2 − x1)2 +

n−1∑
j=2

(xj+1 − xj−1)2 + (xn − xn−1)2

]
.

It will be useful to represent Var {ĝ(x∗)} as

Var {ĝ(x∗)} =
σ2

16h2

n1∑
j=1

I2
1,j +

σ2

16h2

n2∑
j=1

I2
2,j, (4.20)

where n1 and n2 are integers such that n1 + n2 = n and I1,j and I2,j are defined in (4.21)

and (4.22).

To establish results for optimal designs under Criterion 4.2, we consider two cases: (a)

n = 2m and (b) n = 2m+ 1 for some integer m ≥ 1.

Proposition 4.2. If n = 2m and d ≤ 0.5, the optimal design under Criterion 4.2 has

design points x1, xn = x1 + 2dh and x2j = x2j+1 = x1 + 4dhj/n, j = 1, ..., (n− 2)/2. That

is, the design has n/2 + 1 distinct points equally spaced over the closed interval [x1, xn].

Proof. Consider expression (4.20). As d ≤ 0.5, every smoothing weight is non-zero, since

1Bj
(x) = 1 for all x ∈ χ, with value Sj(x

∗) = (x̄j − x̄j−1)/2h. Then the elements of each

summation in (4.20) may be chosen independently since no two elements contain the same

pair of xj. Then, as n is even, we set n1 = n2 = n/2 and define

I1,j =

x2j+1 − x2j−1 for j = 1, ..., n−2
2

xn − xn−1 for j = n
2
,

(4.21)

I2,j =

x2 − x1 for j = 1

x2j − x2j−2 for j = 2, ..., n
2
.

(4.22)

Hence,
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n/2∑
j=1

I1,j =

n/2∑
j=1

I2,j = xn − x1 = 2dh. (4.23)

By applying Result 1 from the Appendix on minimising the sum of squared terms to

each summation in (4.20), we see that to minimise
∑n/2

j=1 I
2
1,j we set I1,j = I1,k for j, k =

1, ..., n/2. Hence to minimise Var {ĝ(x∗)} we set

x3 − x1 = . . . = x2j+1 − x2j−1 = . . . = xn−3 − xn−1 = xn − xn−1

and x1, x3, x5, ..., xn−3, xn−1, xn must be equally spaced. Then, using (4.23), we see that

I1,j = 2dh/(n/2) = 4dh/n for j = 1, ..., n/2 and the design points are

x2j+1 = x1 + 4dhj/n, j = 0, ..., (n− 2)/2

xn = x1 + 2dh. (4.24)

For the summation of I2j, an analogous set of design points are obtained

x2j = x1 + 4dhj/n, j = 1, ..., (n− 2)/2. (4.25)

From (4.24) and (4.25), it is clear that x2j = x2j+1 for j = 1, ..., (n− 2)/2.

The prediction variance from this optimal design is then given by

Var {ĝ(x∗)} =
σ2

16h2

n/2∑
j=1

[
I2

1,j + I2
2,j

]
=

σ2nd2

2n2
+
σ2nd2

2n2

=
σ2d2

n
. (4.26)

Notice that, as expected, the variance is an increasing function of d, the complexity of the

fitted model, and a decreasing function of n.
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Example 1

We illustrate Proposition 4.2 with a simple example when n = 4. Suppose that n1 = n2 = 2

and

I1,1 = x3 − x1

I1,2 = x4 − x3

I2,1 = x2 − x1

I2,2 = x4 − x2.

Then, by Proposition 4.2, the design points are given by x1, x2 = x3 = x1 + dh and

x4 = x1 + 2dh. Note that the three points x1, x2 = x3 and x4 are equally spaced. The

minimum variance in this case is σ2d2/4.

Proposition 4.3. If n = 2m+ 1 and d ≤ 0.5 the optimal design under Criterion 4.2 has

design points

x2j+1 = x1 +
4dhj

n− 1
for j = 0, ...,

n− 1

2

x2j = x1 +
4dhj

n+ 1
for j = 1, ...,

n− 1

2
.

Proof. We separate the variance into two independent summations as in (4.20) with n1 =

(n− 1)/2 and n2 = (n+ 1)/2:

Var {ĝ(x∗)} =
σ2

16h2

(n−1)/2∑
j=1

I2
1,j +

σ2

16h2

(n+1)/2∑
j=1

I2
2,j,

where I1,j = x2j+1 − x2j−1 for j = 1, . . . , (n− 1)/2,
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I2,j =


x2 − x1 for j = 1

x2j − x2j−2 for j = 2, . . . , (n−1)
2

xn − xn−1 for j = n+1
2
,

and

(n−1)/2∑
j=1

I1,j =

(n+1)/2∑
j=1

I2,j = 2dh. (4.27)

To minimise
∑(n−1)/2

j=1 I2
1,j we again apply Result 1 from the Appendix to each summation

in (4.27). This sets I1,j = I1,k for j, k = 1, ..., (n− 1)/2, and determines that

x3 − x1 = . . . = x2j+1 − x2j−1 = . . . = xn−2 − xn−4 = xn − xn−2, (4.28)

and hence x1, x3, x5..., xn−4, xn−2, xn must be equally spaced. Then by (4.27) we see that

I1,j = 4dh/(n− 1) for j = 1, ..., (n− 1)/2 and the design points are

x2j+1 = x1 +
4dhj

n− 1
, j = 0, ...,

n− 1

2
.

Similarly, minimisation of
∑(n+1)/2

j=1 I2
2,j leads to the design points

x2j = x1 +
4dhj

n+ 1
, j = 1, ...,

n− 1

2
.

The prediction variance for this optimal design is then given by
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Var {ĝ(x∗)} =
σ2

16h2

(n−1)/2∑
j=1

I2
1,j +

(n+1)/2∑
j=1

I2
2,j


=

σ2(n− 1)(dh)2

2(n− 1)2
+
σ2(n+ 1)(dh)2

2(n+ 1)2

= σ2

[
d2

2(n− 1)
+

d2

2(n+ 1)

]
=

σ2d2n

(n− 1)(n+ 1)
.

Notice that the variance is a function of the same order in d and n as when n = 2m.

Example 2

We illustrate Proposition 4.3 with a simple example when n = 5. Suppose that n1 = 2,

n2 = 3 and

I1,1 = x3 − x1

I1,2 = x5 − x3

I2,1 = x2 − x1

I2,2 = x4 − x2

I2,3 = x5 − x4

Then by, Proposition 4.2, the optimal design has points x1, x2 = x1 + 2dh/3, x3 = x1 +

dh, x4 = x1 + 4dh/3 and x5 = x1 + 2dh. The minimum variance of ĝ(x) is 5σ2d2/24.

In practice, we are unlikely to want to use linear smoothers with effective degrees of freedom

as small as d = 0.5. We have found that it is not possible to find optimal prediction designs

analytically in general for the Gasser and Müller estimator, and hence in the next section

we use computational methods.
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4.4 Prediction variance for the uniform kernel in gen-

eral

In this section, we find designs without the restriction that d ≤ 0.5. Now, it is impossible

to give a simple closed form for the smoothing weight Sj(x). Recall that for any x ∈ χ
the variance of ĝ(x) is given in (4.18) by

Var {ĝ(x)} =
σ2

h2

n∑
j=1

1Bj
(x) [min(x+ h, x̄j)−max(x− h, x̄j−1)]2 ,

where

Bj = {u ∈ χ; x̄j−1 − h ≤ u ≤ x̄j + h} ,

for j = 1, . . . , n.

Finding designs analytically under Criterion 4.2 for this general case is an intractable

problem due to the form of the prediction variance. In the next section, we find designs

numerically using a constraint on the trace of the smoothing matrix given in (4.12).

4.4.1 Integrated prediction variance for the uniform kernel in

general

Designs that minimise the prediction variance integrated across an interval are more useful

for real experiments than designs that simply minimise the prediction variance at a single

point. Therefore, we now find designs satisfying Criterion 4.3.

Criterion 4.3. A design ξ∗n, is optimal for prediction on the interval [-1,1] using a linear

smoother if

ξ∗n = arg min
ξn

∫ 1

−1

Var {ĝ(x∗)} dx∗ subject to trace(S) ≥ d ≥ 0,

which can be reformulated as
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ξ∗n = arg min
ξn

∫ 1

−1

Var {ĝ(x∗)} dx∗ subject to
1

trace(S)
≤ 1

d
. (4.29)

Clyde and Chaloner (1996) established, in general, the equivalence between a constrained

criterion, such as Criterion 4.3, and compound criterion, such as the following

Criterion 4.4. A design ξ∗n, is optimal for prediction on the interval [−1, 1] using a linear

smoother if

Ψ(ξ∗n) = min
ξn

Ψ(ξn),

where

Ψ(ξn) = (1− λ)

∫ 1

−1

Var {ĝ(x∗)} dx∗ +
λ

trace(S)
, (4.30)

and 0 < λ < 1.

Clearly, (4.30) is similar in structure to a Lagrange function (Arfken et al., 2012) for

(4.29). However, minimisation of the objective function (4.30) through choice of ξn and

the Lagrange multiplier λ results in λ = 0 and
∫

Var {ĝ(x∗)} dx∗ = 0 through coalescence

of design points. Hence, we treat λ as a tuning constant and find designs under Criterion

4.4 for given values of λ.

Finding designs to minimise (4.30) is an analytically intractable problem. Therefore, we

find optimal designs computationally and use Legendre-Gauss quadrature (see Section 3.4)

to evaluate the integrated variance with m = 25 abscissa values, x∗1, . . . , x
∗
m, and weights

κ1, . . . , κm. Hence we find designs minimising

(1− λ)
m∑
i=1

κiVar {ĝ(x∗i )}+
λ

trace(S)
, 0 < λ < 1. (4.31)

4.4.1.1 Results

In this section, we present optimal designs under Criterion 4.4 for a variety of values of

h, n and λ and the results are given in Tables 4.1–4.4. Figures 4.1-4.4 give the prediction

variance for λ = 0.999 and λ = 0.3 for each h over the interval [−1, 1]. The values of n

were chosen separately for each value of h: use of a small value of h implies that we wish
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to fit a more complex model and therefore require more design points than when h is large.

The parameter λ controls the weight given to the complexity constraint. Smaller values of

λ result in designs that minimise the variance to be favoured. We restrict 0 < λ < 1. In

this chapter, the design −ξ∗n, is defined as a design composed of reflections of the points

of ξ∗n in the line x = 0.

We assume that σ2 = 1. Note that if we choose a different values of σ2, the designs in

Tables 4.1–4.4 are still optimal but for a different value of λ.

For all results with fixed n and h, decreasing λ resulted in the optimal design covering a

reduced range of the prediction interval [−1, 1]. For example, when h = 0.2, n = 6 and

λ = 0.999, an optimal design is

ξ∗n = {−1.00,−0.60,−0.20, 0.20, 0.60, 1.00} .

However when λ = 0.05, we obtain

ξ∗n = {−0.17,−0.07,−0.06, 0.06, 0.07, 0.17} ,

which has a much smaller range.

The effect of reducing the range of the design points can be seen, for example, in Figure

4.1. The lower plot shows the design points for the design where h = 0.2 and λ = 0.3 in

Table 4.1, which has smallest point x1 = −0.23 and largest point x6 = 0.5. (There are two

points at 0.24). The plot shows that the prediction variance is zero for x < −0.23−h and

x > 0.5 + h. In this example the integrated variance is minimised by making a constant

prediction, ĝ(x) = 0, for points outside [x1 − h, xn + h]. For most practical experiments,

this represents too much weight being given to the variance term in (4.30).

As λ decreases, we note from Tables 4.1–4.4 that both the integrated variance and trace(S)

decrease. For example, from Table 4.1 we see that when n = 6 and h = 0.2, the value of

λ = 0.999 gives
∫

Var = 1.04 and trace(S) = 5, whereas λ = 0.05 gives
∫

Var = 0.029 and

trace(S) = 0.86. These results indicate that smaller values of λ lead to a design with the

capacity to estimate a less complex model and hence producing a smaller variance.

Smaller values of h, and hence larger n, result in an optimal design having more clustered

design points so that a large part of the interval [-1,1] has constant zero prediction. As

an example, we consider four designs for λ = 0.3 given in Tables 4.1–4.4. The designs are

for n = 6 and h = 0.2, ξ∗n = {−0.23,−0.03, 0.02, 0.24, 0.24, 0.5}. For n = 5 and h = 0.3,

ξ∗n = {−0.38,−0.08, 0.03, 0.20, 0.49}. For n = 4 and h = 0.5 ξ∗n = {−0.49, 0.06, 0.06, 0.56}.
For n = 3 and h = 1, ξ∗n = {−0.62, 0.08, 0.97}. These designs and their prediction
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variances can be seen in Figures 4.1–4.4. As h increases and n decreases, we see that

the prediction variance increases and trace(S) decreases for fixed λ. The same patten is

discovered for other fixed values of λ.

In conclusion, decreasing λ has the effect of reducing the the range of the optimal design

and reducing the prediction variance and trace(S). The explanation is that in this case

more weight is being given to minimising the integrated variance component of (4.30),

resulting in a decreased integrated variance and trace(S). Reducing the value of h and

increasing n also reduced the range of the optimal designs. However, in this case the

variance decreases and trace(S) increases. We would expect the trace to increase with

decreasing h, to allow a more complex model to be fitted.

Unfortunately, in this study we were not able to reduce h below 0.2. This was because

smaller h required larger n and the optimisation became computationally expensive when

using the uniform kernel function for prediction.

n = 6
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.60 ±0.20 1.04 5.00
0.9 -0.82 -0.42 -0.09 0.38 0.65 0.77 4.55
0.8 -0.79 ±0.45 ±0.05 0.76 0.54 3.88
0.7 ±0.65 ±0.36 ±0.12 0.39 3.26
0.5 ±0.50 ±0.19(2) 0.23 2.49
0.3 -0.23 -0.03 0.02 0.24(2) 0.50 0.12 1.78
0.1 -0.06 0.09 0.12 0.24(2) 0.38 0.05 1.11
0.05 ±0.17 ±0.06 ±0.07 0.029 0.86

Table 4.1: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the uniform kernel with h = 0.2. Design −ξ∗n is also optimal. Numbers of repetitions of
design points are shown in parenthesis.

Figures 4.1-4.4 show how the prediction variance varies over the interval [−1, 1]. We see,

from the top plot in all figures, that when λ = 0.999, the variance is greater than zero

on the whole interval. Hence, we are able to predict across the whole interval using the

optimal designs. However when λ = 0.3 (lower plot), we see that, especially for small h,

the prediction variance is only non-zero for part of the interval. The remaining section of

the interval has zero smoothing weights since there are no design points within h of these

prediction points.

We also see from the figures that by reducing λ from 0.999 to 0.3 the prediction variance

becomes much smaller. This is due to the fact that we are placing more importance on

minimising the variance than the inverse of trace(S) in these cases.
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n = 5
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 -0.40 0.20 0.47 0.86 3.33
0.9 ±1.00 -0.40 0.20 0.47 0.86 3.33
0.8 -0.75 -0.25 0.32 0.49 1 0.64 2.91
0.7 ±0.72 ±0.23 0 0.42 2.40
0.5 ±0.58±0.20 0.00 0.27 1.92
0.3 -0.38 -0.08 0.03 0.20 0.49 0.15 1.45
0.1 -0.22 -0.03 0.05 0.15 0.33 0.06 0.91
0.05 ±0.21 ±0.06 0.00 0.04 0.70

n = 7
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.59 ±0.43 0 0.67 3.33
0.9 ±1.00 ±0.59 ±0.43 0 0.67 3.33
0.8 -0.83 -0.34 -0.17 0.16 0.51 0.63 1.00 0.55 3.05
0.7 -0.71 -0.32 -0.15 0.10 0.42 0.57 0.89 0.41 2.67
0.5 -0.62 -0.33 -0.20 0 0.20 0.33 0.62 0.23 2.06
0.3 -0.47 -0.23 -0.19 0.02 0.18 0.27 0.49 0.14 1.60
0.1 -0.10 0.06 0.11 0.19 0.29 0.34 0.48 0.05 0.98
0.05 -0.07 0.06 0.11 0.18 0.25 0.28 0.40 0.03 0.78

Table 4.2: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the uniform kernel with h = 0.3. Design −ξ∗n is also optimal.
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n = 4
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.12 0.64 2.00
0.9 ±1.00 ±0.12 0.64 2.00
0.8 ±1.00 ±0.12 0.64 2.00
0.7 ±1.00 ±0.12 0.64 2.00
0.5 -0.47 0.29 0.29 1.00 0.35 1.47
0.3 -0.49 0.06 0.06 0.56 0.18 1.04
0.1 -0.36 0.00 0.00 0.36 0.08 0.71
0.05 -0.22 0.05 0.05 0.33 0.05 0.55

n = 6
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.35(2) 0.45 2.00
0.9 ±1.00 ±0.35(2) 0.45 2.00
0.8 ±1.00 ±0.35(2) 0.45 2.00
0.7 ±1.00 ±0.35(2) 0.45 2.00
0.5 -0.57 -0.06 0.05 0.55(2) 0.28 1.57
0.3 -0.70 -0.36 -0.29 0.08 0.12 0.51 0.17 1.21
0.1 -0.35 -0.09(2) 0.18 0.20 0.07 0.79
0.05 ±0.31 ±0.11 ±0.10 0.01 0.62

Table 4.3: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the uniform kernel with h = 0.5. Design −ξ∗n is also optimal. Numbers of repetitions of
design points are shown in parenthesis.
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n = 3
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 0.00 0.46 1
0.9 ±1.00 0.00 0.46 1
0.8 ±1.00 0.00 0.46 1
0.7 ±1.00 0.00 0.46 1
0.5 ±1.00 0.00 0.46 1
0.3 -0.62 0.08 0.97 0.31 0.79
0.1 0.06 0.48 1.00 0.11 0.47
0.05 0.25 0.62 1.00 0.06 0.37

n = 5
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.31 0.00 0.27 1.00
0.9 ±1.00 ±0.31 0.00 0.27 1.00
0.8 ±1.00 ±0.31 0.00 0.27 1.00
0.7 ±1.00 ±0.31 0.00 0.27 1.00
0.5 ±1.00 ±0.31 0.00 0.27 1.00
0.3 -0.99 -0.31 0.00 0.29 0.97 0.26 0.98
0.1 -0.14 0.21 0.37 0.57 1.00 0.09 0.57
0.05 0.11 0.39 0.53 0.67 1.00 0.05 0.44

Table 4.4: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the uniform kernel with h = 1. Design −ξ∗n is also optimal.
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Figure 4.1: Prediction variance using the Criterion 4.4 optimal design (Table 4.1) for the
uniform kernel for h = 0.2 and n = 6: λ=0.999 and trace(S) = 5 (top), and λ = 0.3 and
trace(S) = 1.78 (lower). Location of the optimal design points are displayed on the x-axis.

As we might expect, the prediction variance is symmetric about 0 when the optimal design

is symmetric, see Figure 4.3 for example.

4.5 Designs for the Gaussian kernel

The Gaussian kernel function is given by:

K

(
v − x
h

)
=

1√
2π

exp

{
−(v − x)2

2h2

}
,

leading to the following smoothing weights using the Gasser and Müller estimator

Sj(x) =
1

h
√

2π

∫ x̄j

x̄j−1

exp

{
−1

2

(
v − x
h

)2
}

dv

= Φ

(
x̄j − x
h

)
− Φ

(
x̄j−1 − x

h

)
. (4.32)

Here Φ is the standard normal cumulative distribution function. Unlike the uniform kernel,

the Gaussian kernel is not truncated and hence Sj(x) > 0 for all x ∈ χ and j = 1, . . . , n.

In this section we find optimal designs satisfying Criterion 4.4, which we recall is given by
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Figure 4.2: Prediction variance using the Criterion 4.4 optimal design (Table 4.2) for the
uniform kernel for h = 0.3 and n = 5: λ = 0.999 and trace(S) = 3.33 (top), and λ = 0.3
and trace(S) = 1.45 (lower). Location of optimal design points are displayed on the x-axis.

Figure 4.3: Prediction variance using the Criterion 4.4 optimal design (Table 4.3) for the
uniform kernel for h = 0.5 and n = 4: λ = 0.999 and trace(S) = 2 (top), and λ = 0.3 and
trace(S) = 1.04 (lower). Location of optimal design points are displayed on the x-axis.
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Figure 4.4: Prediction variance using the Criterion 4.4 optimal design (Table 4.4) for the
uniform kernel for h = 1 and n = 3: λ = 0.999 and trace(S) = 1 (top), and λ = 0.3 and
trace(S) = 0.79 (lower). Location of optimal design points are displayed on the x-axis.

Criterion 4.4. A design ξ∗n is optimal for prediction on the interval [−1, 1] using a linear

smoother if

ξ∗n = arg min
ξn

Ψ(ξn),

with

Ψ(ξn) = (1− λ)

∫ 1

−1

Var {ĝ(x∗)} dx∗ +
λ

trace(S)
.

The integrated prediction variance can now be written as

∫
Var {ĝ(x∗)} dx∗ =

∫ { n∑
j=1

σ2Sj(x
∗)2

}
dx∗

=

∫ {
σ2

n∑
j=1

[
Φ

(
x̄j − x∗

h

)
− Φ

(
x̄j−1 − x∗

h

)]2
}

dx∗,

and the trace of the smoothing matrix given by

trace(S) =
n∑
j=1

[
Φ

(
x̄j − xj
h

)
− Φ

(
x̄j−1 − xj

h

)]
.

We again use a quadrature approximation to the integrated variance using Legendre-Gauss
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quadrature, see (4.31). As in the uniform kernel case, m = 25 abscissa values are used.

The choice of λ is again restricted to (0, 1) and we fix σ2 = 1.

4.5.1 Designs for the Gaussian kernel

We were able to find optimal designs for larger numbers of runs, n = 12 and n = 15 see

Table 4.5, when using the Gaussian kernel compared with using the uniform kernel.

For n = 3 and 5, the optimal designs in Table 4.9 exhibit similar patterns to those found

under the uniform kernel (Table 4.4) for h = 1. However, for h < 1, we see from Tables

4.5-4.8 that the variance-trace trade off with varying λ is quite different when using the

Gaussian kernel. The design points move away from the lower end of the interval [-1,1],

that is the design range is [α, 1] where α > −1 increases as λ decreases. In other words,

the Gaussian kernel optimal designs are more clustered towards the upper end of the

interval than the uniform kernel optimal designs for the same value of λ and h. Unlike

the designs for the uniform kernel, the only symmetric designs obtained here are those

including x1 = −1 and xn = 1. Note that non-symmetric designs have the property that

the design −ξ∗n, defined as a design with the points from ξ∗n reflected in the line x = 0, is

also optimal.

Tables 4.5–4.9 show that for fixed λ, reducing h results in designs covering a smaller section

of the prediction interval. For example when h = 1, and λ = 0.5 (Table 4.9), the design

covers the whole of the interval for both n = 3 and n = 5. Reducing h to 0.1 (Table 4.5)

results in a design where points are only within the interval [0.19, 1.00] for n = 12 and

[0.12, 1.00] for n = 15. For h = 0.1, it was computationally difficult to find designs for

λ < 0.3. This is due to the clustered nature of the design and the increased number of

points in the design. As in the uniform case the use of a small value of h implies that we

wish to fit a more complex model and therefore require more design points than when h

is large.

Numerical results suggest that the maximum value of the trace using the Gaussian kernel

is bounded above by

trace(S) ≤ (n− 1)

[
2Φ

(
2

(n− 1)h

)
− 1

]
,

with equality when the design points are equidistant. Therefore, as λ approaches 1, the

choice of h does not affect the design for fixed n, as seen in Tables 4.6 and 4.8. Obviously,

the choice of h does not affect the design when λ = 0, when we revert to minimising only
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the variance, see Section 4.2 and hence all design points coalesce.

As λ decreases, the trace decreases, as for the uniform kernel. The variance also decreases,

as expected. We also note that, as for the uniform kernel, the values of the variance and

trace(S) were constant for different values of λ and the same optimal design, for example

see Table 4.9 for n = 3.

For fixed λ and n, trace(S) decreases as h increases. This can be seen, for example, by

comparing Table 4.6, when for h = 0.2, n = 6 and λ = 0.7 trace(S) = 2.50; and Table 4.8,

when h = 0.5, n = 6 and λ = 0.7, trace(S) = 1.55. For large λ, the variance decreases

as h increases. As λ decreases, the variances for different h have similar magnitude and

finally for the smallest values of λ, the variance slightly increases with h. Note that when

h is also fixed, the prediction variance decreases and the trace increases as n increases, as

we would expect.

Figures 4.5–4.9 show how the prediction variance varies over the interval [−1, 1] for exam-

ples of Gaussian kernel optimal designs. The variance has similar values for λ = 0.999 and

λ = 0.3 for h = 1, see Figure 4.9, but is much smaller for λ = 0.3 when h = 0.1, ..., 0.5, see

Figures 4.5–4.8. This agrees with the values of the integrated variance in Tables 4.5–4.8

and is due to the fact that the variance had more influence on the objective function when

λ = 0.3 and h = 0.1, ..., 0.5. We also note that for h = 0.1, ..., 0.3, see Figures 4.5–4.7,

respectively, when λ = 0.3, the points from ξ∗n are at one end of the prediction inter-

val and therefore the variance is only noticeably greater than zero on the section of this

interval where the design points have clustered. The smoothing weights are never zero,

unlike in the uniform kernel case. However, for these designs they are very small causing

the variance to appear close to zero. The smooth Gaussian kernel function results in the

prediction variance varying much more smoothly than when using the uniform kernel.

4.6 Robustness of prediction to choice of kernel func-

tion

The previous two sections have shown that the choice of kernel function can affect the

optimal design. Therefore, we wish to assess how robust the prediction variance is to

the choice of the kernel function. Specifically, we calculate the efficiency for prediction of

designs found using the uniform kernel, calculated in Section 4.4.1.1, relative to designs

from using the Gaussian kernel. We define the efficiency of a design under Criterion 4.4

using the Gaussian kernel as
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n = 12
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.82 ±0.64 ±0.45 ±0.27 ±0.09 0.85 7.00
0.9 -0.71 -0.53 -0.38 -0.23 -0.08 0.07 0.64 6.18

0.22 0.37 0.52 0.67 0.81 1.00
0.8 -0.30 -0.15 -0.05 0.07 0.18 0.29 0.38 4.88

0.40 0.52 0.63 0.75 0.85 1.00
0.7 -0.08 0.05 0.13 0.23 0.32 0.41 0.26 4.13

0.50 0.60 0.69 0.79 0.86 1.00
0.5 0.19 0.29 0.34 0.42 0.48 0.56 0.15 3.16

0.62 0.69 0.76 0.84 0.89 1.00
0.3 0.39 0.47 0.50 0.56 0.61 0.66 0.08 2.41

0.71 0.77 0.81 0.88 0.91 1.00

n = 15
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.86 ±0.71 ±0.57 ±0.43 ±0.28 ±0.14 0.00 0.71 7.35
0.9 -0.84 -0.68 -0.56 -0.43 -0.31 -0.18 -0.05 0.07 0.60 6.84

0.20 0.33 0.46 0.58 0.71 0.83 1.00
0.8 -0.40 -0.27 -0.18 -0.08 0.01 0.11 0.20 0.36 5.26

0.30 0.39 0.49 0.59 0.68 0.78 0.86 1.00
0.7 -0.16 -0.05 0.01 0.10 0.18 0.26 0.33 0.41 0.25 4.50

0.49 0.57 0.65 0.73 0.82 0.88 1.00
0.5 0.12 0.21 0.26 0.32 0.38 0.44 0.50 0.56 0.14 3.43

0.62 0.67 0.74 0.79 0.86 0.90 1.00
0.3 0.33 0.41 0.43 0.49 0.52 0.57 0.61 0.66 0.08 2.62

0.70 0.74 0.79 0.83 0.89 0.92 1.00

Table 4.5: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the Gaussian kernel with h = 0.1. Design −ξ∗n is also optimal.

Figure 4.5: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 12 and h = 0.1: λ = 0.999 and trace(S) = 7.00 (top), and
λ = 0.3 and trace(S) = 2.41 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n = 6
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.60 ±0.20 0.86 3.41
0.9 ±1.00 ±0.56 ±0.19 0.84 3.41
0.8 -0.63 -0.26 0.03 0.33 0.62 1.00 0.58 2.91
0.7 -0.36 -0.04 0.19 0.45 0.67 1.00 0.41 2.50
0.5 -0.02 0.23 0.38 0.58 0.73 1.00 0.23 1.94
0.3 0.23 0.43 0.52 0.69 0.78 1.00 0.13 1.49
0.1 0.50 0.64 0.68 0.80 0.84 1.00 0.05 0.98
0.05 0.61 0.72 0.74 0.85 0.87 1.00 0.03 0.77

n = 10
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.78 ±0.56 ±0.33 ±0.11 0.54 3.79
0.9 ±1.00 ±0.73 ±0.53 ±0.32 ±0.11 0.53 3.77
0.8 ±1.00 ±0.70 ±0.53 ±0.31 ±0.11 0.53 3.77
0.7 -0.61 -0.38 -0.24 -0.06 0.10 0.27 0.43 0.61 0.75 1.00 0.35 3.10
0.5 -0.22 -0.03 0.06 0.20 0.32 0.45 0.56 0.71 0.79 1.00 0.20 2.37
0.3 0.08 0.23 0.28 0.40 0.47 0.58 0.66 0.78 0.83 1.00 0.11 1.81
0.1 0.41 0.51 0.53 0.62 0.65 0.73 0.76 0.86 0.88 1.00 0.04 1.17
0.05 0.54 0.62 0.63 0.70 0.72 0.79 0.81 0.89 0.90 1.00 0.03 0.92

Table 4.6: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the Gaussian kernel with h = 0.2. Design −ξ∗n is also optimal.

Figure 4.6: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 6 and h = 0.2: λ = 0.999 and trace(S) = 3.41 (top), and
λ = 0.3 and trace(S) = 1.49 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n = 5
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.50 0.00 0.71 2.38
0.9 ±1.00 ±0.46 0.00 0.70 2.38
0.8 ±1.00 ±0.43 0.00 0.69 2.37
0.7 -0.68 -0.20 0.15 0.50 1.00 0.50 2.05
0.5 -0.26 0.12 0.36 0.61 1.00 0.28 1.59
0.3 0.05 0.34 0.51 0.69 1.00 0.16 1.22
0.1 0.39 0.58 0.68 0.79 1.00 0.06 0.80
0.05 0.52 0.67 0.75 0.83 1.00 0.04 0.63

n = 7
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.66 ±0.33 0.00 0.52 2.53
0.9 ±1.00 ±0.62 ±0.32 0.00 0.51 2.53
0.8 ±1.00 ±0.59 ±0.31 0.00 0.50 2.52
0.7 ±1.00 ±0.56 ±0.31 0.00 0.50 2.51
0.5 -0.41 -0.11 0.06 0.28 0.50 0.67 1.00 0.25 1.82
0.3 -0.07 0.17 0.28 0.45 0.62 0.73 1.00 0.14 1.39
0.1 0.31 0.47 0.53 0.64 0.75 0.82 1.00 0.06 0.91
0.05 0.46 0.58 0.63 0.71 0.80 0.85 1.00 0.03 0.71

Table 4.7: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the Gaussian kernel with h = 0.3. Design −ξ∗n is also optimal.

Figure 4.7: Prediction variance using the Criterion 4.4 optimal design (Table 4.7) using
the Gaussian kernel for n = 5 and h = 0.3: λ = 0.999 and trace(S) = 2.38 (top), and
λ = 0.3 and trace(S) = 1.22 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n = 4
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.33 0.53 1.49
0.9 ±1.00 ±0.30 0.52 1.48
0.8 ±1.00 ±0.27 0.51 1.48
0.7 ±1.00 ±0.24 0.51 1.47
0.5 -0.69 -0.01 0.29 1.00 0.37 1.26
0.3 -0.25 0.27 0.43 1.00 0.20 0.96
0.1 0.19 0.55 0.59 1.00 0.08 0.63
0.05 0.36 0.65 0.67 1.00 0.05 0.50

n = 6
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00±0.60 ±0.20 0.35 1.55
0.9 ±1.00 ±0.55 ±0.19 0.34 1.55
0.8 ±1.00 ±0.52 ±0.19 0.34 1.55
0.7 ±1.00 ±0.49 ±0.19 0.33 1.55
0.5 ±1.00 ±0.43 ±0.22 0.33 1.54
0.3 -0.45 -0.04 0.07 0.43 0.55 1.00 0.18 1.13
0.1 0.07 0.34 0.38 0.64 0.68 1.00 0.07 0.73
0.05 0.27 0.48 0.50 0.72 0.74 1.00 0.04 0.58

Table 4.8: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the Gaussian kernel with h = 0.5. Design −ξ∗n is also optimal.

Figure 4.8: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 4 and h = 0.5: λ = 0.999 and trace(S) = 1.49 (top), and
λ = 0.3 and trace(S) = 0.96 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n = 3
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 0.00 0.31 0.77
0.95 ±1.00 0.00 0.31 0.77
0.9 ±1.00 0.00 0.31 0.77
0.8 ±1.00 0.00 0.31 0.77
0.7 ±1.00 0.00 0.31 0.77
0.5 ±1.00 0.00 0.31 0.77
0.3 -0.95 0.02 1.00 0.30 0.75
0.1 -0.18 0.40 1.00 0.11 0.46
0.05 0.07 0.53 1.00 0.06 0.37

n = 5
λ ξ∗n

∫
Var tr(S)

0.999 ±1.00 ±0.50 0.00 0.18 0.79
0.9 ±1.00 ±0.46 0.00 0.18 0.79
0.8 ±1.00 ±0.44 0.00 0.18 0.79
0.7 ±1.00 ±0.41 0.00 0.17 0.79
0.5 ±1.00 ±0.39 0.00 0.17 0.79
0.3 ±1.00 ±0.34 0.00 0.17 0.79
0.1 -0.46 0.01 0.24 0.49 1.00 0.09 0.58
0.05 -0.12 0.23 0.41 0.60 1.00 0.05 0.45

Table 4.9: Optimal designs from Criterion 4.4 for predicting over the interval [−1, 1] using
the Gaussian kernel with h = 1. Design −ξ∗n is also optimal.

Figure 4.9: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 3 and h = 1: λ = 0.999 and trace(S) = 0.77 (top), and
λ = 0.3 and trace(S) = 0.75 (lower). Location of optimal design points are displayed on
the x-axis.
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Eff =
|ΨG(ξG)|
|ΨG(ξu)|

, (4.33)

where ΨG(ξu) and ΨG(ξG) are the values of the objective function, calculated with the

Gaussian kernel, using (i) ξu, the optimal design under Criterion 4.4 using the uniform

kernel and (ii) ξG, the optimal design under Criterion 4.4 using the Gaussian kernel.

Tables 4.10 and 4.11 show the efficiencies for two different scenarios. Table 4.10 gives

efficiencies for h = 1 and n = 3 for optimal designs for both the uniform and Gaussian

kernels found in Tables 4.4 and 4.9 respectively. In this case we would expect to fit

a relatively simple model. However, the second investigation, see Table 4.11, includes

efficiencies for h = 0.3 and n = 7, where the optimal designs for uniform and Gaussian

kernels are found in Tables 4.2 and 4.7, respectively. In the latter case, the fitted model

is expected to be more complex.

λ ξuor ξG Optimal Design Eff traceu traceG
0.999 ξu ±1.00 0.00 1 1 0.766

ξG ±1.00 0.00
0.9 ξu ±1.00 0.00 1 1 0.766

ξG ±1.00 0.00
0.8 ξu ±1.00 0.00 1 1 0.766

ξG ±1.00 0.00
0.7 ξu ±1.00 0.00 1 1 0.766

ξG ±1.00 0.00
0.5 ξu ±1.00 0.00 1 1 0.766

ξG ±1.00 0.00
0.3 ξu -0.62 0.08 0.97 0.968 0.79 0.749

ξG -0.95 0.02 1.00
0.1 ξu 0.06 0.48 1.00 0.952 0.47 0.463

ξG -0.18 0.40 1.00
0.05 ξu 0.25 0.62 1.00 0.956 0.37 0.366

ξG 0.07 0.53 1.00

Table 4.10: Efficiencies of uniform kernel optimal designs for prediction with the Gaussian
kernel for h = 1 and n = 3. The trace for the uniform kernel optimal design and the
Gaussian kernel optimal design are given by traceu and traceG respectively.

Table 4.10 shows that the uniform kernel optimal design performs very well when evaluated

using the Gaussian kernel, with efficiencies all greater than 0.95. For λ ≥ 0.3 the efficiency

is 1 since the design ξn = {−1, 0, 1} is optimal using both the uniform and Gaussian

kernels.

Table 4.11 also shows that for h = 0.3 the uniform kernel optimal design performs very
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λ ξu or ξG Optimal Design Eff traceu traceG
0.999 ξu ±1.00 ±0.59 ±0.43 0.00 0.983 3.33 2.53

ξG ±1.00 ±0.66 ±0.33 0.00
0.9 ξu ±1.00 ±0.59 ±0.43 0.00 0.985 3.33 2.53

ξG ±1.00 ±0.62 ±0.32 0.00
0.8 ξu -0.83 -0.34 -0.17 0.16 0.51 0.63 1.00 0.918 3.05 2.52

ξG ±1.00 ±0.59 ±0.31 0.00
0.7 ξu -0.71 -0.32 -0.15 0.10 0.42 0.57 0.89 0.962 2.67 2.51

ξG ±1.00 ±0.56 ±0.31 0.00
0.5 ξu -0.62 -0.33 -0.20 0 0.20 0.33 0.62 0.969 2.06 1.82

ξG -0.41 -0.11 0.06 0.28 0.50 0.67 1.00
0.3 ξu -0.47 -0.23 -0.19 0.02 0.18 0.27 0.49 0.998 1.60 1.39

ξG -0.07 0.17 0.28 0.45 0.62 0.73 1.00
0.1 ξu -0.10 0.06 0.11 0.19 0.29 0.34 0.48 0.939 0.98 0.91

ξG 0.31 0.47 0.53 0.64 0.75 0.82 1.00
0.05 ξu -0.07 0.06 0.11 0.18 0.25 0.28 0.40 0.932 0.78 0.71

ξG 0.46 0.58 0.63 0.71 0.80 0.85 1.00

Table 4.11: Efficiencies of uniform kernel optimal designs for prediction with the Gaussian
kernel for h = 0.3 and n = 7. The trace for the uniform kernel optimal design and the
Gaussian kernel optimal design are given by traceu and traceG respectively.

well when evaluated using the Gaussian kernel. Interestingly for many values of λ, the

two designs cover different sections of the interval [−1, 1]. For example, when λ = 0.3,

the uniform kernel optimal design covers the centre of the interval whereas the Gaussian

kernel optimal design clusters at one end of the interval, yet performs almost as well.

4.7 Concluding remarks

In this chapter we have developed a new compound criterion: minimising a weighted sum

of the integrated prediction variance and the inverse trace of the smoothing matrix. This

enabled designs to be tailored to different complexities of fitted models. Optimal designs

were found for both the uniform and Gaussian kernel functions using both analytic and

numerical methods. These designs were critically assessed by investigating the robustness

of the prediction to the choice of kernel function.

We investigated designs for different compromises, via the parameter λ, between prediction

variance and model complexity. Larger values of λ, placing more emphasis on model

complexity, resulted in designs with points spread more evenly across the design region

for both the uniform and Gaussian kernels. However, decreasing λ had different effects for

the two kernels. For the uniform kernel, design points concentrated around the centre of
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the design region; for the Gaussian kernel, points concentrated at one end of the region.

By investigating designs for the uniform and Gaussian kernels, which have very different

forms, we were able to assess the sensitivity of design performance to choice of kernel.

For both bandwidths investigated, the performance of designs was robust to the choice of

kernel function.

Appendix

Result 1:

For ai > 0 and
∑n

i=1 ai = c, for some constant c,
∑n

i=1 a
2
i is minimised when ai = c/n for

all 1 ≤ i, j ≤ n.

Proof. We can write

an = c−
n−1∑
i=1

ai

and hence

n∑
i=1

a2
i = a2

1 + ...+ a2
n−1 +

(
c−

n−1∑
i=1

ai

)2

.

Differentiating with respect to ak (k ≤ n− 1) gives

∂(
∑n

i=1 a
2
i )

∂ak
= 2ak − 2

[
c−

n−1∑
i=1

ai

]
.

Equating to zero gives

ak = c−
n−1∑
i=1

ai

= an.

This holds for all k = 1, . . . , n− 1. To establish this solution is a minimum, we check the
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second derivative

∂2(
∑n

i=1 a
2
i )

∂a2
k

= 2 + 2 > 0.

Hence, a1, . . . , an = c/n minimises
∑n

i=1 a
2
i subject to

∑n
i=1 ai = c
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Chapter 5

Designed experiments and functional

linear models

5.1 Introduction

Functional data arise from experiments for which multiple observations, assumed to come

from a smooth function, are measured on each unit to which a treatment has been applied.

These functions potentially vary between treatments and are often too complex to be

modelled using any obvious parametric form; see, for example, Faraway (1997), Shen

and Faraway (2004) and Shen and Xu (2006). Examples of experiments that produce

functional data can be found in chemistry, biology, tribology and engineering.

For some experiments, longitudinal data analysis methods (Diggle et al., 2002) may seem

sensible for analysing functional data. However, longitudinal datasets usually have fewer

observations per run than functional data and often a parametric model can be assumed

for the responses from each run. Functional data analysis has its place providing methods

which may work when longitudinal methods are not appropriate (Faraway, 1997). Typ-

ically, functional data has larger numbers of measurements per run and the functional

response is estimated using nonparametric methods.

There are several different types of functional data: the response variable depends on

indexing variable, t; one or more of the covariates depends on t; or both the response and

covariates depend on t (Ramsay and Silverman, 2005, p. 218). Throughout this work,

we consider the first case. Functional data with functional covariates and scalar response

has been considered by authors such as Ramsay and Silverman (2005, ch. 12), Cardot

et al. (1999) and Cardot et al. (2004). Examples where both the response and covariates
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vary with time were considered by West, Harrison and Migon (1985) who assumed the

regression coefficients had autoregressive structure, referring to the model as a dynamic

generalised linear model.

The purpose of this chapter is to develop methodology for designing experiments for

functional data whose aim is to discriminate between two functional linear models. In the

first half of the chapter, we review the modelling and inferential work of Faraway (1997),

Shen and Faraway (2004) and Shen and Xu (2006) on tests for choosing between two

nested linear models. The methods are illustrated on two examples. In the second half

of this chapter, we develop a T-criterion and find T-optimal designs for discriminating

between two functional linear models. The designs are then critically assessed through

two simulation studies.

5.2 Examples of functional data

In the first half of this chapter we consider two examples: (i) a simple simulated experiment

with only one factor; (ii) the tribology example introduced in Chapter 1 which has six

factors.

5.2.1 Simulated experiment

The first example is an n-run experiment to investigate two treatments, A and B, whose

functional responses are described by different models. We assume that a runs of the

experiment have treatment A and that the response follows

yA(t) = α0A + α1At+ ε(t), (5.1)

where α0A and α1A are model parameters, ε(t) ∼ N(0, σ2) for all t ∈ I ⊂ R and ε(t), ε(s)

are independent for all t, s ∈ I such that t 6= s.

Each of the remaining b = n− a runs of the experiment has treatment B and produces a

response following the model

yB(t) = α0B + ε(t), (5.2)
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Figure 5.1: Example 1: Simulated data from the application of treatments A and B (see
(5.1) and (5.2)) with various parameter values

where α0B is a model parameter and ε(t) is defined as before.

Figure 5.1 shows simulated responses from each treatment for a selection of different

parameter values, all with σ2 = 0.04. We see that in Figure 5.1 (a), (b) and (d), the

responses from treatments A and B differ much more than in Figure 5.1 (c); hence model

discrimination would be much harder in the latter case.

5.2.2 Tribology experiment

We use the tribology experiment, introduced in Chapter 1, as a motivating and illustrative

example. Recall that data were recorded from a wear study conducted to assess which

factors affected the rate of wear of a pin and disc assembly for a given lubricant. The

experiment involved 16 runs, each with a different combination of values of the six factors:

disc material, pin material, addition of soot, level of oxidation, addition of H2SO4 and

level of moisture.

The experiment used an unreplicated 26−2 fractional factorial design with 16 runs and

defining relation I=ACEF=ABDE=BCDF. Hence pairs of two factor interactions were

aliased together. For each of the 16 runs, the functional response ‘wear’ was measured over
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a time index. Unfortunately, for two functional runs there was no data available resulting

in a 14 run experiment. Therefore, the realised design has a partial aliasing scheme and

only 14 effects, at most, can be estimated. As stated in Chapter 1, observations during

a burn in and a period at the end of each run were removed after consultation with the

engineers.

The aim of the experiment is to predict the value of the response, that is, the profile over

the interval [500, 2400] of the combined wear on the pin and disc for a given combination of

values of the six factors. In this experiment the measured response was the the combined

wear on the pin and the disc, measured by a Linear Variable Displacement Transformer

at a large number of equally spaced discrete time points (referred to as the time index).

Figure 5.2 displays responses from two runs of the tribology experiment. Notice that there

is much more variation between runs than within runs because the form of the functional

response changes with treatment.

5.3 Definitions and notation

We formally introduce functional data following the notation of Faraway (1997). Note that,

throughout this chapter, p denotes the total number of terms in the model, including the

intercept. Suppose that the ith run of the experiment involves taking observations on a

smooth function

yi(t) = gi(t) + εi(t), (5.3)

for i = 1, . . . , n where εi(t) is a realisation of a stochastic process with mean zero and

covariance function γ(s, t) with s, t belonging to an interval, I ⊂ R. When the experiment

is performed, we take ni observations on each function at values of an index variable, such

as time, and express the jth observation from the ith run, taken at tij, as

yi(tij) = gi(tij) + εij, (5.4)

for j = 1, . . . , ni. Note that the dataset may satisfy ni = m for all i, i.e. the same number

m of observations is recorded for each run of the experiment. This often occurs in practice

and is now assumed in the rest of the chapter. Even if ni 6= m for all i, it is often the
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Figure 5.2: Data from run 2, plot (a), and run 19, plot (b), of the tribology experiment
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case that the observations from each run can be smoothed or interpolated to obtain m

‘observations’.

In the remainder of this section, we consider methods of approximating functional re-

sponses and then fit functional linear models to explain the variation due to the different

treatments.

5.3.1 Approximating the functional response

We now wish to reconstruct gi(t) using the discrete measurements from (5.4). In order to

do so, we require some form of smoothing. If there is little or no within-run error, then we

could simply interpolate to approximate gi(t) (Faraway, 1997). However this would not

be advisable when measurements are made with a degree of error.

There are two clear smoothing methods pointed out by Faraway (1997): (i) smooth each

run, yi, separately without reference to the type of model fitted, using methods such as

those described in Chapters 3 and 4, (ii) use cross-validation to determine the amount

of smoothing to be done, through a roughness penalty; see Ramsay and Dalzell (1991).

Note that cross-validation performs poorly when the errors are correlated (Faraway, 1997).

Other methods should be used in this case.

Smoothing methods used to reconstruct gi(t) from m observations were discussed in Chap-

ters 3 and 4. In those chapters the method of local smoothing to reconstruct the function

gi(t) from a finite number of design points which were chosen to minimise the average

variance of ĝi(t) over the prediction interval.

5.3.2 Functional linear model

The functional linear model with constant covariates is defined by Faraway (1997) and

Ramsay and Silverman (2005, p. 235) as

Y (t) = Xβ(t) + ε(t), (5.5)

where β(t) = (β0(t), . . . , βp−1(t))T is a vector of functions depending on t, X is an n × p
model matrix, Y (t) = (y1(t), . . . , yn(t))T is a vector of functional responses and ε =
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(ε1(t), . . . , εn(t))T , is a vector of error functions with εi(t) defined as in (5.3). That is, we

assume the functional response depends linearly on p unknown functional parameters.

5.4 Fitting functional linear models

In this section, we consider fitting a functional linear model (5.5). We consider using (i)

pointwise methods and (ii) regularised basis expansions.

We assume the data from the ith run follows the model

yi(t) = xTi β(t) + εi(t),

where xTi = (xi0, . . . , xi,p−1) is the ith row of the matrix X, and β(t) and εi(t) are defined

in Section 5.3.2.

The extension of the least squares principle to the functional case is described by Ramsay

and Silverman (2005, p. 236). We wish to find estimators of β(t) to minimise

n∑
i=1

∫ [
yi(t)−

(
xTi β(t)

)]2
dt, (5.6)

where in this expression, and throughout this chapter, the integral is evaluated over the

interval I. This integral is mathematically intractable and therefore must be approxi-

mated.

5.4.1 Pointwise Methods

The least squares estimator for β(t) for each t can be calculated pointwise as

β̂(t) =
(
XTX

)−1
XTY (t). (5.7)

Values of (5.7) can then be interpolated across t to provide an approximate solution to

(5.6). Therefore if we can evaluate or approximate Y (t) for given t, then β̂ can be calcu-

lated. In addition, we can make predictions Ŷ (t) = HY (t), where H = X(XTX)−1XT
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directly from the approximation of Y (t).

However, β̂(t) may be a very wiggly function of t due to the noise in the data. Hence, we

may desire a fitting method that places smoothness constraints on β̂(t).

5.4.2 Fitting functional linear models with regularised basis ex-

pansions

The use of regularised basis expansions allows control of the smoothness of β̂(t) whilst

incorporating the level of detail the data requires (Ramsay and Silverman, 2005, p. 236).

In comparison to the pointwise method, which places no constraint on the parameter β(t),

this method uses a roughness penalty to control the smoothness of β̂(t).

The data, Y (t), can be represented by the product of a basis expansion and coefficient

matrix, for instance, using a B-spline basis (see, for example Eubank (1999, ch. 6)):

Y (t) = Cφ(t), (5.8)

where Y (t) contains n observed response functions and C is a n×Ky matrix of coefficients

of the expansion of Y (t) in its ith row for i = 1, . . . , n runs. Here Ky is the number of

basis functions chosen to represent the response, and φ(t) is the Ky-vector containing the

linearly independent basis functions.

The parameter vector β(t), of length p, can also be expressed in terms of a basis vector

θ(t), of length Kβ, and a p ×Kβ coefficient matrix M , giving β(t) = Mθ(t). We define

Kβ as the number of basis functions chosen to represent β.

The roughness penalty is defined for β as

PENL(β) =

∫
[Lβ(t)]T [Lβ(t)] dt, (5.9)

where L is a linear differential operator, that is Lβ is a vector containing derivatives of

β(t) of a given order. Note that a common penalty is the integrated squared second

derivative given by
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PEN2(β) =

∫ {
D2[β(t)]

}T {
D2[β(t)]

}
dt, (5.10)

where D2[x(t)] denotes the second derivative of x(t) with respect to t. The sum of squared

errors, ignoring the roughness penalty, in the functional case is

SSE(y|β) =

∫
[Y (t)−Xβ(t)]T [Y (t)−Xβ(t)]dt.

The basis expansion for the sum of squared errors can be written as

SSEB(y|β) =

∫
[Cφ(t)−XMθ(t)]T [Cφ(t)−XMθ(t)] dt.

The penalised least squares criterion is to minimise

PENSSE(y|β) = SSEB(y|β) + µ

∫
[LMθ(t)]T [LMθ(t)]dt. (5.11)

The scalar µ controls the degree of smoothing applied via the penalty. It is possible to

re-write (5.11) in terms of Kronecker products (Ramsay and Silverman, 2005, p. 238-239),

giving the exact solution for β̂ as

β̂ = M̂θ(t), (5.12)

where

vec(M) =
[
Jθθ ⊗ (XTX) +R⊗ µI

]−1
vec(XTCJφθ),

with Jθθ =
∫
θ(t)[θ(t)]Tdt, Jφθ =

∫
φ(t)[θ(t)]Tdt and R =

∫
Lθ(t)[Lθ(t)]Tdt, and recall-

119



ing that Y (t) = Cφ(t) from (5.8).

An optimal value of µ, the smoothing parameter, can be calculated using the cross-

validated integrated squared error

CV ISE =
n∑
i=1

∫ [
yi(t)− ŷ(−i)(t)

]2
dt, (5.13)

where ŷ(−i)(t) is the predicted value for yi(t) when yi(t) is excluded from the estimation

of β, see Ramsay, Hooker and Graves (2009, p. 153-154).

5.5 Inferential methods for model comparison

In this section, we begin by discussing three methods for comparing two rival functional

linear models. We then demonstrate two of the methods by applying them to a simulated

example, in Section 5.5.2, and to data from the tribology experiment, in Section 5.5.3.

5.5.1 Methods of comparing two models

(i) Pointwise methods

When we have fitted a functional linear model, for example using the methods in Section

5.4.2, we can use the optimal values for β̂(t) to test the null hypothesis H0: Y (t) =

β0(t)1n + ε(t) against the alternative hypothesis H1: Y (t) = Xβ(t) + ε(t) by calculating

the corresponding pointwise F-ratio for every t. The pointwise F-ratio can be calculated

pointwise over t as

Fratio(t) =
MSR(t)

MSE(t)
, (5.14)

with
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MSE(t) =
SSE(t)

n− p

=

∑n
i=1 [yi(t)− ŷi(t)]2

n− p
,

and

MSR(t) =
SSY (t)− SSE(t)

p− 1

=

∑n
i=1

[
yi(t)− β̂0(t)

]2

−
∑n

i=1 [yi(t)− ŷi(t)]2

p− 1
,

with β̂0(t) the intercept in the functional linear model. The number of degrees of freedom

for error, df(error) = n − p, is the total number of runs less the number of independent

variables in the model. The number of degrees of freedom for regression, df(error) = p−1,

is the difference in the numbers of degrees of freedom for error for the two models being

compared.

Analogous to usual linear model theory (see, for example Draper and Smith (1998, ch.

6)), this testing procedure can be generalised for pointwise comparison of any two nested

functional linear models.

There are some caveats to only using pointwise tests. Firstly there is the problem with

making multiple comparisons. Applying Bonferroni corrections to the significance level

to account for this would compromise the power due to the within run correlation (Shen

and Xu, 2006). Secondly, Fan and Lin (1998) remarked that the correlation between

two neighbouring observations for a given run should not be ignored in the analysis. In

order to remove correlation from stationary data, these authors applied Fourier or wavelet

transformations. A final disadvantage of pointwise hypothesis testing is that it does not

give an overall assessment of significance for the difference between the functional linear

models. There are instances where two models may be falsely shown to differ significantly

at a point, when they do not differ significantly over the whole interval (Ramsay and

Silverman, 2005, p. 228).

(ii) Multivariate-based methods

Faraway (1997) and Shen and Faraway (2004) argued that if yi(t) is measured on an equally
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spaced grid of m values of t, then methods of multivariate analysis may be used provided

predictions are only required at the same values of t for each function. To compare two

nested multivariate linear models, the likelihood ratio test could be used, where the test

statistic depends on the log ratio of eigenvalues of the estimated covariance matrix from

each model. However, this sequence of ratios need not tend to 0 as m → ∞. Hence,

the test statistic may be dominated by terms (ratios) which only nominally contribute to

the variation in the data. Faraway (1997) and Shen and Faraway (2004) concluded that

the likelihood ratio statistic is only suitable for small m, which is unusual for functional

datasets. For this reason, we will not use this test in the first half of this chapter.

(iii) Functional F-test

Faraway (1997), Cuevas, Febrero and Fraiman (2004) and Shen and Faraway (2004) in-

troduced the idea of a functional F-test. In contrast to the pointwise methods of Section

5.5.1 (i), a functional F-test considers differences between models across the whole interval

for t. This type of test can be used to compare two nested functional linear models, the

smaller model 1 and model 2, having p and q parameters respectively, with q > p. The null

hypothesis is that labelled model 1 is true, and the alternative hypothesis is that model 2

is true.

The test statistic for the functional F-test is given by

Ffun =
(rss1 − rss2)/(q − p)

rss2/(n− q)
, (5.15)

where rss1 and rss2 are the residual sum of squares for the smaller and larger model

respectively, given by

rssl =
n∑
i=1

∫
(yi(t)− ŷli(t))2dt for l = 1, 2,

with ŷli(t) the fitted value for run i and model l.

The distribution of (5.15) is too complicated to derive analytically. This led Cuevas et al.

(2004) to propose an asymptotic test based on the numerator of (5.15). Shen and Faraway

(2004) considered a more intuitive approximation, used later in this chapter, where

rssl ≈
1

m

n∑
i=1

m∑
j=1

(yi(tj)− ŷli(tj))2,
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for l = 1, 2. The test statistic (5.15) is then compared to an F distribution with λ(q−p) and

λ(n − q) degrees of freedom where λ is the degrees-of-freedom-adjustment-factor defined

as

λ =
(
∑∞

k=1 λk)
2∑∞

k=1 λ
2
k

. (5.16)

The values λk are eigenvalues of the covariance function γ(s, t) from (5.3). We can estimate

λ by

λ̂ =
[trace(Σ̂)]2

trace(Σ̂2)
, (5.17)

where Σ̂j,k =
∑n

i=1 ε̂i(tj)ε̂i(tk)/(n − q) with εi(tj) = yi(tj) − ŷ2i(tj). Large degrees of

freedom are required for an accurate estimate of λ, see Shen and Faraway (2004).

If εi(tj), εi(tk) were identically and independently distributed then λ̂ = m. Correlation

between εi(tj) and εi(tk) would reduce the value of λ̂, leading to lower degrees of freedom

for the reference F distribution and hence a higher critical value. Therefore, data that is

more highly correlated with t will need a larger value of the test statistic in order to reject

the null hypothesis.

Suppose a model is being considered which has p terms. We may wish to examine the

importance of each term individually. For the rth term; r = 0, . . . , p − 1 we test H0 :

βr(t) ≡ 0 against H1 : βr(t) 6≡ 0 by using the test statistic given by

Fr =
rss0r − rss1

rss1/(n− p)
, (5.18)

where rss0r is the residual sum of squares under βr(t) ≡ 0. Shen and Faraway (2004)

provide straightforward methods for calculating this ratio as

Fr =

∫
β̂2
r (t)dt

(rss1/(n− p))(X ′X)−1
rr

, (5.19)
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where (X ′X)−1
rr is the rth diagonal element of (X ′X)−1 and rss1 is the residual sum of

squares for the model under the alternative hypothesis. As described by Shen and Faraway

(2004), it is possible to approximate the null distribution of Fr by an F distribution with λ

and λ(n− p) degrees of freedom, where λ is defined in (5.16) and approximated by (5.17).

5.5.2 Application to a simulated example

We return to the example of Section 5.2.1 and consider a simulation of n = 20 runs of

data: a runs have treatment A applied to them, resulting in responses from model (5.1);

b = n− a runs have treatment B and responses from model (5.2). We wish to investigate

how inbalance between the number of times each treatment occurs in a simple design

affects the performance of tests (i) and (iii) described in the last section.

The functional model for the ith run can be expressed as:

yi(t) = β0(t) + β1(t)xi + εi, (5.20)

where t ∈ [0, 1] and

xi =

1 if treatment A is applied to the ith unit

0 if treatment B is applied to the ith unit .

For each run, observations were simulated at m = 100 values of t, equally spaced between

0.01 and 1. We set α0A = 0.003, α1A = 9.997 in (5.1) and α0B = 10 in (5.2), and

obtain values of εij by random draws from a N(0, 1) distribution, where i = 1, . . . , 20, j =

1, . . . , 100.

(i) Pointwise F-ratio

We used the pointwise method outlined in Section 5.4.1 to fit a functional linear model

(5.20) by finding β̂(t) to minimise (5.7), that is β̂(t) = (XTX)−1XTY (t) for each t.

We simulated five different allocations of numbers of runs having treatment A and B,

chosen as different proportions and shown in Table 5.1. A single set of errors was simulated

and used for every combination of a and b in order to eliminate Monte Carlo error. The

values of the Fratio(t) statistic (5.14) for testing the null hypothesis: β1(t) ≡ 0 are shown

in Figure 5.3. The 95% percentile of the F distribution with 1 and 18 degrees of freedom
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respectively is also shown.

a b
2 18
5 15
10 10
15 5
18 2

Table 5.1: Values of a and b used in the simulated example

Figure 5.3 indicates how the Fratio(t) changes with t, i.e. we can see the changing evidence

of a difference between the treatments. In general, the Fratio(t) is largest when a = b = 10.

Also note that as the difference between a and b increase, this Fratio decreases as expected.

Examining how the pointwise F-ratio varies over time is useful as we can see whether the

significance of the treatment effects changes over the interval. In this example, Figure 5.3

shows that the pointwise F-ratio value decreases as t decreases, subject to random error.

This is because the effects of model A and B differ more towards the beginning of the

interval, see Figure 5.1 (d). Figure 5.3 shows that for all treatment combinations, except

a = 10, b = 10, there is a significant difference between models A and B for t ∈ [0, 0.80].

The pointwise F-ratio was larger than the critical value, 4.41. For plots (a), (b), (d) and

(e) it is noticeable that for some t > 0.80, there is significant difference between models A

and B. This is due to the random error in models A and B. When a = 10, b = 10, there

was a significant difference between the two models over the whole interval, see Figure 5.3

(c).

Figure 5.3 (f) shows the maximum value of the pointwise F-ratio and the functional F-test

statistic (5.19) for a = 1, . . . , 19 . The maximum pointwise F-ratio and the functional

F-test statistic both increase for a = 1, . . . , 10 and decreases from a = 10, . . . , 19. The

largest maximum pointwise F-ratio and functional F-test values occurring when a = 10

and b = 10 is not unexpected as the balanced number of runs for each treatment should

give us the most information to discriminate between models A and B, through minimising

the variance of β̂1(t).

Functional F-test

We next investigate the functional F-test using the simulated example. Recall, we are

comparing a functional linear model to a ‘constant’ model, therefore there are 18 degrees

of freedom for error and 1 for regression.

Table 5.2 contains the values of the functional F-test statistic, F1, values calculated from
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Figure 5.3: Pointwise Fratio(t) against t for testing β1(t) ≡ 0 for each combination of a
and b together with the 95th percentile of F1,18 [plots (a)-(e)] and maximum values of the
pointwise F-ratio and the functional F-test statistics for a = 1, . . . , 19 over the interval
[0,1] (f)
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(5.19) for r = 1 to test the null hypothesis that the constant model, Y = β0(t)1n + ε(t),

where 1n is an (n× 1) vector of ones, is true against the alternative that the linear model,

(5.20), with the additional parameter β1(t), is true. To calculate critical values, values of

λ̂, the adjusted degrees of freedom were calculated using (5.17) and were also included in

the table. Figure 5.3 (f) displays the values of the test statistic graphically. The critical

value for this test at the 5% significance level, is shown in Table 5.2 for each combination

of a, b values.

Table 5.2 shows that the value of F1 is largest for a = 10 and b = 10 and decreases as

the difference between a and b increases. In all cases, the F1 values are greater than the

corresponding critical value from the F-distribution. This agrees with the findings from

Figure 5.3 for the functional F-test that, for the majority of the interval, the pointwise

F-ratio shows a significant difference between the two models.

a b λ̂ F1 Critical value
2 18 14.92 34.29 1.71
5 15 15.01 121.63 1.70
10 10 15.01 163.72 1.70
15 5 14.94 123.13 1.70
18 2 14.94 31.82 1.71

Table 5.2: Test statistic and functional F tests for each split of 20 runs between treatment
A and B (simulated data).

5.5.3 Application to a tribology experiment

We now investigate selecting a functional linear model to describe the data from the 26−2

tribology experiment where each linear term corresponds to the main effect of a factor.

We model the observations on the ith run of the experiment by

yi(t) = xTi β(t) + εi(t), (5.21)

for i = 1, . . . , 14, where xTi is the ith row of the model matrix X having first entry 1, and

rth entry 1 if factor r is at the high level or −1 if it is at the low level (r = 1, . . . , 6).

We wish to investigate whether each main effect should be included in the fitted model

using both the functional F-test and the pointwise F-ratio test.
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Figure 5.4: Tribology experiment: Cross-validated integrated squared error scores for
log10 µ = 4, 4.5, . . . , 14.

The model (5.21) was fitted using a regularised basis expansion as in Section 5.4.2. We used

8 basis functions for both Y and β and (5.10) for the roughness penalty. The smoothing

parameter µ = 1011.5 was calculated by minimising the cross-validation integrated squared

error, see Figure 5.4.

(i) Pointwise F-ratio

Following Section 5.5.1 (i), pointwise F-ratios were calculated for each of the 1900 points

labelled t = 1, . . . , 1900. Figure 5.5 shows that only the intercept was significant over the

whole interval at the 5% level. We also found, evidence at the 5% significance level that

oxidisation, β4, had influence on wear but only for the first section of the t interval. These

results provide little evidence that any of the factors have an important influence on wear.

We now consider adding two-factor interactions to model (5.21). However, we came across

a problem in using cross-validation to calculate the optimal value of µ. When we estimate

14 parameters (intercept, 6 main effects and 7 two-factor interactions), the information

matrix X ′X is very close to being singular. To overcome this problem we removed one two-

factor interaction (between moisture and pin material). The resulting information matrix

had full rank. However, the cross-validation method used to calculate optimal µ removes

the ith run from the data when fitting a model to predict the ith wear measurement. This

means that the corresponding design matrix has the ith row removed. For some i (e.g.

i = 2) this results in (X(−i))T (X(−i)) becoming singular. This is the result of the lack of

orthogonality of the realised design due to the two missing runs.
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Figure 5.5: Smoothed values of the pointwise F-ratios for β0, . . . , β6, against t, together
with the 95th percentile of F1,7
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Therefore, we now fit a model with all main effects and including the two two-factor

interactions between disc material and pin material, and disc material and soot. This

model has nine parameters to be estimated. The roughness parameter was again calculated

by cross-validation to be µ = 1011.5.

Figure 5.6 shows that only the intercept was significant over the whole interval at the 5%

significance level. We also found that oxidisation, β4, was significant at the 5% level for

most of the interval t ∈ [1, 1900], which differs from the findings when the model fitted

had only main effects. As the realised design with 14 runs is not orthogonal it is, of course,

possible for the addition of interactions to change the estimates of main effect terms.

(iii) Functional F-test

Analogous to our strategy for the pointwise F-ratio, we first consider the model which

only includes main effects and an intercept term. We fitted (5.21) and minimised (5.11)

to find the seven estimators β̂0, . . . , β̂6. The functional F-test (5.19) was then performed

to individually test which effects should be in the model. The critical value of the F

distribution with λ̂ = 1.035 and λ̂(n− p) = 1.035(14− 7) = 7.25 degrees of freedom (see

(5.17)) at the 5% significance level is 5.47. The values of the test statistic for each effect

can be found in Table 5.3. We see that the intercept was found to be the only significant

term.

In order to compare the above results with those of the pointwise F-ratio, we constructed

a functional F-test for the model with main effects and the two interactions: between disc

material, and pin material, and disc material and soot. For a 5% significance level test,

the critical value of the F distribution with λ̂ = 1.029 and λ̂(n−p) = 1.029(14−9) = 5.15

degrees of freedom is 6.46. The test statistic value for each term is given in Table 5.3.

The intercept was found to be the only significant term, as it was when a model with only

main effects was fitted. Note that for oxidation, the β4 term, the test statistic is close to

the critical value. We may expect this since this term was significant over most of the

interval; see Figure 5.6.

5.6 Conclusions from the examples

The example constructed using the simulated data in Section 5.5.2 provides evidence that

unequal numbers of runs for each treatment lead to smaller values of the test statistics in

both the pointwise and functional F-tests. This is due to the larger variance of β̂1(t) than

would occur for a balanced design and is analogous to what happens in a ‘scalar’ linear
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Figure 5.6: Pointwise F-ratio plots for β0, . . . , β13, representing all main effects and two
interactions, together with the 95th percentile of F1,5.

Model term Model 1 Model 2
β0 10.75 17.19
β1 3.09 3.45
β2 0.54 0.87
β3 1.02 1.63
β4 3.80 6.08
β5 1.57 3.28
β6 0.90 1.45
β12 - 5.09
β13 - 0.38

Table 5.3: Example 2: Functional F-test statistics for model 1 (all main effects) and model
2 (all main effects and the disc material–pin material and disc material–soot interactions).
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model.

The performance of the pointwise and functional F-tests explored in the simulated example

can only be indicative because only one set of data was simulated.

As highlighted in Section 5.5.1, the functional F-test does not have the multi-testing

disadvantages of the pointwise F-ratio and takes some account of the possible correlation

in the observations. Hence the functional test is preferred. In the second half of this

chapter, we find optimal designs using a criterion which is similar to the functional F-test

statistic.

5.7 Optimal designs for model discrimination

The remainder of this chapter is focussed on optimal design for model discrimination. In

this section, we review goodness-of-fit testing and the criterion of T-optimality for a uni-

variate response (Atkinson and Fedorov, 1975), describe an adaptation of T-optimality for

multivariate response models (cf Uciński and Bogacka, 2005) and develop a T-optimality

criterion for functional linear models. In the following section we assess the performance

of designs found from this criterion to approximate the power for discriminating between

two functional linear models using simulation studies.

We begin by considering the notation for the univariate case to illustrate the design prob-

lem. Suppose that we wish to compare two linear models:

model 1: Y1 = Fβ + ε, , (5.22)

and

model 2: Y2 = Gθ + η, (5.23)

where Y i (i = 1, 2) are the n× 1 vectors of observations, β and θ are, respectively a p× 1

and q×1 vectors of parameters, ε,η ∼ N(0, σ2I), ε = (ε1, . . . , εn)T , η = (η1, . . . , ηn)T and

σ2 is known. Here F and G are model matrices given by
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F =


f0(x1) . . . fp−1(x1)

...
...

f0(xn) . . . fp−1(xn)

 , (5.24)

and

G =


g0(x1) . . . gq−1(x1)

...
...

g0(xn) . . . gq−1(xn)

 . (5.25)

The points xi for i = 1, . . . , n are design points, that is values taken by the single variable

−1 ≤ x ≤ 1, and the functions f and g are known functions of x.

We may regard an optimal design for model discrimination, as a design which enables

a ‘best’ test of the hypothesis that model 1 is correct given data arising from model 2.

Therefore the theory of optimal design for model discrimination can be motivated by

goodness-of-fit testing used in classical linear modelling.

5.7.1 Likelihood-based goodness-of-fit testing

A goodness-of-fit test compares a given model with p < n parameters to the full saturated

model, assumed to have n parameters. A likelihood-based goodness-of-fit test uses the

deviance as a statistic to measure discrepancy between models (McCullagh and Nelder,

1989, p33). The deviance for model 1 is given by

D(Y , Ŷ ) = 2l(Y ,Y )− 2l(Y , Ŷ ), (5.26)

where

Ŷ = F β̂,

l(Y , Ŷ ) = −n
2

log
(
2πσ2

)
− 1

2σ2
(Y − F β̂)T (Y − F β̂),
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and

l(Y ,Y ) = −n
2

log
(
2πσ2

)
.

Here β̂ = (F TF )−1F TY is the least squares estimator under model 1. The deviance for

model 1 is therefore defined as

D(Y , Ŷ1) =
(Y − F β̂)T (Y − F β̂)

σ2
. (5.27)

If the deviance is larger than an appropriate critical value from a χ2 distribution with

n − p degrees of freedom, then there is evidence to reject the null hypothesis that model

1 is an adequate description of the data.

5.7.2 T-optimality

In this section we introduce the ideas behind optimal design for model discrimination.

We review the work by Atkinson and Fedorov (1975) for a univariate response, apply

these ideas to the case of multivariate response and develop a T-optimality criterion for

functional linear models. We illustrate these methods with a simple example.

Atkinson and Fedorov (1975) introduced T-optimality for univariate models, with an ob-

jective function based on the sum of squares for lack of fit of a first model given that the

data comes from a second model.

5.7.2.1 Univariate response

We review the methodology for designing experiments to discriminate between two uni-

variate linear models.

The deviance, or sum of squares, for testing the assumption that model 1 is correct given

we expect data to come from model 2 is given by substituting E(Y2) = Gθ into (5.27):
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D(E(Y2), Ŷ1) =
(E(Y2)− F β̂)T (E(Y2)− F β̂)

σ2

∝
[
E(Y2)− F (F TF )−1F TE(Y2)

]T [
E(Y2)− F (F TF )−1F TE(Y2)

]
,

∝
[
Gθ − F (F TF )−1F TGθ

]T [
Gθ − F (F TF )−1F TGθ

]
∝ θTGT [I −H]2Gθ

∝ θTGT [I −H]Gθ, (5.28)

where H = F (F TF )−1F T is the hat matrix and (I − H) is an idempotent matrix. An

exact T-optimal design maximises Ψ(ξ) = θTGT [I −H]Gθ with respect to the design

points, which feature in both G and H.

Note that in the univariate case, Ψ(ξ) is proportional to the non-centrality parameter for

the distribution of the test statistic (5.27) assuming an alternative hypothesis of model 2

being true; see McCulloch, Searle and Neuhaus (2008, p. 126).

In the examples in this chapter, we find approximate optimal designs rather than exact

designs. Recall from Section 1.4, approximate designs are represented by a measure ξ on

the design region χ. An approximate design with observations at s distinct design points,

often referred to as support points, in χ is written:

ξ =

{
x1 x2 ... xs

w1 w2 ... ws

}
. (5.29)

For simplicity, and without loss of generality, in this chapter we assume that points

x1, . . . , xs in an n-point (n ≥ s) exact design are distinct. The first line of (5.29) gives

the s support points and the second line gives the associated design weights, 0 < wi ≤ 1;∑s
i=1wi = 1. More details can be found in Section 1.4.

Approximate designs are useful for the simulation studies later in this chapter, as they

allow the straightforward construction of designs with large numbers of points through

scaling of s. Instead of finding an exact design for large n, for example n > 50, we can

find an approximate design and use the weights, rounding nwi, to construct an exact

design.
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Criterion 5.1. A T-optimal design ξ∗ for discriminating between models 1 and 2 max-

imises

Ψ(ξ) = θTGT (I −Hw)TW (I −Hw)Gθ, (5.30)

where W = diag(wi) for i, . . . , s and Hw = F (F TWF )−1F TW .

Proposition 5.1. The optimal design under Criterion 5.1 is independent of θ if models

1 and 2, defined in equations (5.22) and (5.23), are nested and only differ by one term

(q = p+ 1).

Proof. The proof follows that of Atkinson et al. (2007, p. 360). Assume that model 2 is

the larger model and partition the model matrix G into [F : F̃ ] where F̃ is an s×1 vector.

The vector of parameters θ can also be partitioned as θT = [θT1 : θ2], with θ1 of size p× 1

and θ2 a scalar.

The T-optimality objective function can then be written as follows:

Ψ(ξ) = θTGT (I −H)TW (I −H)Gθ

= [θT1 : θ2]

[
F T

F̃ T

]
[I −H]TW [I −H][F : F̃ ]

[
θ1

θ2

]

= [θT1 : θ2]A

[
θ1

θ2

]
.

Here,

A =

[
F T

F̃ T

]
[I −Hw]TW [I −Hw][F : F̃ ]

=

[
F T [I −Hw]TW [I −Hw]F F T [I −Hw]TW [I −Hw]F̃

F̃ T [I −Hw]TW [I −Hw]F F̃ [I −Hw]TW [I −Hw]F̃

]

=

[
0 0

0 F̃ T (I −Hw)TW (I −Hw)F̃

]
, (5.31)

as HwF = (F TWF )−1F TWF = I. Therefore,
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Ψ(ξ) ∝ [θT1 : θ2]

[
0 0

0 F̃ T (I −Hw)TW (I −Hw)F̃

][
θ1

θ2

]
= θ2F̃

T (I −Hw)TW (I −Hw)F̃ θ2

∝ F̃ T (I −Hw)TW (I −Hw)F̃ .

The last step follows from θ2 being scalar. Hence the result is shown.

Example

We wish to find an approximate T-optimal design to enable a test of whether a simple

linear model (model 1):

y1i = β0 + β1xi + εi,

is a suitable fit given we expect data from a quadratic model (model 2):

y2i = β0 + θ1xi + θ2x
2
i + ηi.

for i = 1, . . . , s. Hence F has the form

F =


1 x1

...
...

1 xs

 , (5.32)

where x1, ..., xs are support points. The expected data are assumed to follow model 2, i.e.

E(Y2) = Gθ, where: θ, a 3× 1 vector of unknown model parameters and

G =


1 x1 x2

1
...

...
...

1 xs x2
s

 . (5.33)

From Proposition 5.1, the two models differ by only one term and the value of θ does not

affect the optimal design.
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In order to find approximate T-optimal designs numerically, we used a grid of ng = 21

equally spaced points on the interval [−1, 1] and found the optimal weights w1, w2, ..., wng

to maximise Ψ(ξ) in Criterion 5.1 using the Nelder-Mead algorithm. We would expect

some of the weights to be zero, with the non-zero weights indicating which s of the ng grid

points were in the support of the design.

The optimal design was found to be

ξ =

{
−1 0 1

0.25 0.5 0.25

}
. (5.34)

5.7.2.2 Multivariate response

We describe T-optimal designs for the multivariate case as a stepping stone to designs for

the functional linear model, although we also derive some results which are of interest in

themselves.

Uciński and Bogacka (2005) considered T-optimality for multivariate non-linear models.

Specifically they found T-optimal designs for discriminating between two specific mul-

tiresponse models, assuming that observations on an individual response variable were

correlated. Their work was applied to dynamic systems and chemical kinetic models.

Here we adapt their ideas to linear models.

In multivariate regression, we record m observations, one for each response variable, for

each of the n runs of an experiment. For example, the m responses, of the first run are of

the form

y11 = β01f0(x1) + β11f1(x1) + . . .+ βp−1,1(x1)fp−1(x1) + ε11

...

y1m = β0mf0(x1) + β1mf1(x1) + . . .+ βp−1,m(x1)fp−1(x1) + ε1m,

where the error variable ε1 = (ε11, ε12, . . . , ε1m)T has E(ε1) = 0 and V ar(ε1) = Σ (Johnson

and Wichern, 1998).

Suppose we wish to discriminate between the following two multivariate linear models:
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model 1: Y1 = FB +R1,

and

model 2: Y2 = GT +R2. (5.35)

Here the matrices Y1 and Y2 hold the n×m responses from models 1 and 2, respectively:

Yi =


Yi11 . . . Yi1m

...
...

Yin1 . . . Yinm

 (i = 1, 2).

The model matrices F and G are defined in (5.24) and (5.25). The matrices, B and T , of

parameters in models 1 and 2, respectively are

B =


β01 . . . β0m

...
...

βp1−1,1 . . . βp1−1,m

 ,

and

T =


θ01 . . . θ0m

...
...

θq1−1,1 . . . θq1−1,m

 .

The matrices of errors, R1 and R2, are given by

R1 =


ε11 . . . ε1m
...

...

εn1 . . . εnm

 ,
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and

R2 =


η11 . . . η1m

...
...

ηn1 . . . ηnm

 ,

where vec(RT
i ) ∼ N(0, I ⊗ Σ), with Σ the within run covariance and the vector operator

for a matrix A, written in terms of columns A = [a1, . . .an], is defined as

vec(A) =


a1

a2

...

an

 . (5.36)

For each of the i runs, i = 1, . . . , n, the (j, k)th element of the covariance matrix is given

by Σjk = cov(εij, εik). Note that we assume observations from different runs are not

correlated.

The multivariate maximised log-likelihood is given by

l
(
Y, Ŷ1

)
= −mn

2
log(2π)− n

2
log(|Σ|)− 1

2
tr

[
Σ−1

{
Y − FB̂

}T {
Y − FB̂

}]
,

see Johnson and Wichern (1998). The deviance for testing model 1 is correct, given the

expected data from model 2, is given by

D
(
E(Y2), Ŷ1

)
= 2l (E(Y2), E(Y2))− 2l

(
E(Y2), Ŷ1

)
= −mn log(2π)− n log(|Σ|) +mn log(2π) + n log(|Σ|)

+tr

[
Σ−1

{
E(Y2)− F B̂

}T {
E(Y2)− F B̂

}]
= tr

[
Σ−1

{
E(Y2)− F B̂

}T {
E(Y2)− F B̂

}]
+ C

= tr
[
Σ−1T TGT (I −H)GT

]
+ C, (5.37)

where m is the number of within run observations and C does not depend on the design

or the data. Details on the derivation of the multivariate normal deviance can be found
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in Johnson and Wichern (1998).

Criterion 5.2. A T-optimal design ξ∗ for discriminating between two multivariate re-

sponse models maximises

Ψ(ξ) = tr
[
Σ−1T TGT (I −Hw)TW (I −Hw)GT

]
, (5.38)

where W is the matrix of design weights in (5.29) and Hw is defined after (5.30).

Proposition 5.2. The optimal design from Criterion 5.2, is independent of the choice of

T and Σ if models 1 and 2 are nested and only differ by one term (q = p+ 1).

Proof. The proof is similar to that of Proposition 5.1. Once again, we assume model 2 is

the larger model and partition the model matrix G into [F : F̃ ]. The matrix of parameters

T can also be partitioned with T T = [BT : T̃ T ], with B of size p×m and T̃ a 1×m vector.

The deviance for lack of fit of model 1 can be then written as follows:

Ψ(ξ) ∝ tr
{

Σ−1T TGT (I −Hw)TW (I −Hw)GT
}

= tr

{
Σ−1[BT : T̃ T ]

[
F T

F̃ T

]
[I −Hw]TW [I −Hw][F : F̃ ]

[
B

T̃

]}
= tr

{
Σ−1T̃ T F̃ T (I −Hw)TW (I −Hw)F̃ T̃

}
= tr

{
F̃ T (I −Hw)TW (I −Hw)F̃ T̃Σ−1T̃ T

}
= T̃Σ−1T̃ T tr

{
F̃ T (I −Hw)TW (I −Hw)F̃

}
∝ tr

{
F̃ T (I −Hw)TW (I −Hw)F̃

}
,

using the result in (5.31) and the fact that T̃Σ−1T̃ T is a scalar and does not depend on

the design.

Hence we have shown that the optimal design is independent of the choice of T and Σ

when models 1 and 2 only differ in one term.

Example

We wish to compare two multivariate models: the single linear multivariate model (model

1)
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Y = FB +R1

=


1 x1

...
...

1 xn


(

β01 . . . β0m

β1,1 . . . β1,m

)
+


ε11 . . . ε1m
...

...

εn1 . . . εnm

 ,

and the quadratic model (model 2)

Y = GT +R2

=


1 x1 x2

1
...

...

1 xn x2
n


 θ01 . . . θ0m

θ11 . . . θ1m

θ21 . . . θ2m

+


η11 . . . η1m

...
...

ηn1 . . . ηnm

 .

Once again we assume that model 1, the linear model, is true. We wish to find an

approximate design which allows us to discern whether a linear model is appropriate given

that expect data from the quadratic model.

As the two models differ by only one term, the model parameters, T , and covariance

matrix, Σ, do not influence the optimal design by Proposition 5.2.

An optimal design was found using the simplex Nelder Mead numerical search algorithm

for different values of m.

ξ =

{
−1 0 1

0.25 0.5 0.25

}
,

to be T-optimal.

5.7.2.3 Functional response

We adapt the methodology for a multivariate response to the case of functional response

and propose a T-optimality criterion for design selection.

Recall that for a functional response, a linear model is written in the form
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yi(t) = fT (x)β(t) + εi(t),

for the ith run of the experiment, i = 1, . . . , n and f(x) = (f0(x), . . . , fp−1(x)). We assume

that errors εi(t) and εi(s) are realisations from a Gaussian stochastic process with mean

zero and covariance function γ(s, t) with s, t belonging to a real interval.

As for the multivariate and univariate cases, we wish to choose design points which enable

a test of whether model 1 is true, given that we expect data to come from model 2. For a

functional response, we define

model 1: y1i(t) = fT (x)β(t) + εi(t), (5.39)

and

model 2: y2i(t) = gT (x)θ(t) + ηi(t), (5.40)

with ηi(t) following the same definition as εi(t).

For each run we assume that the functional response can be evaluated at m points. These

points may be the actual measurements or predictions from the reconstructed functional

response (Shen and Faraway, 2004). We can approximate yji(t), for j = 1, 2, by the vector

(yji(t1), . . . , yji(tm)), and the realised dataset may be placed in a matrix

Yj =


yj1(t1) . . . yj1(tm)

...
...

yjn(t1) . . . yjn(tm)

 .

Note that in general there may be different numbers of observations per run. In the work

presented here, we assume there are m observations per run.

Now we can define model 1 and model 2 in terms of realised data

model 1: Y1 = FB +R1, (5.41)
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and

model 2: Y2 = GT +R2. (5.42)

Here B is the matrix of parameters

B =


β1(t1) . . . β1(tm)

...
...

βp1−1(t1) . . . βp1−1(tm)

 ,

and R1 is the matrix of errors

R1 =


ε1(t1) . . . ε1(tm)

...
...

εn(t1) . . . εn(tm)

 ,

Also, T is a q×m parameter matrix and R2 is an n×m error matrix defined similarly to

B and R1, respectively.

The log-likelihood is given by

l
(
Y, Ŷ1

)
= −mn

2
log(2π)− n

2
log(|Σ|)− 1

2
tr

[
Σ−1

{
Y − FB̂

}T {
Y − FB̂

}]
,

where Σ is the variance-covariance matrix for model 1. Analogous to (5.37), the deviance

is given by

D
(
E(Y2), Ŷ1

)
∝ tr

[
Σ−1T TGT (I −H)TGT

]
,

Hence, following Section 5.7.2.2, we can find approximate T-optimal designs using the

following criterion

Criterion 5.3. A functional T-optimal approximate design ξ∗ maximises
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Ψ(ξ) = tr
{

Σ−1T T (I −Hw)TW (I −Hw)T
}
, (5.43)

where W is the matrix of design weights in (5.29) and Hw = (F TWF )−1F TW .

Proposition 5.3. The choice of design points satisfying Criterion 5.3 is independent of

the choice of T and Σ if models 1 and 2 are nested and only differ by one term.

Proof. Follows directly from Proposition 5.2

Proposition 5.4. Univariate, multivariate and hence functional T-optimal designs are

identical when model 1 and model 2 are nested and only differ by one term.

Proof. The objective functions for the univariate, multivariate and hence functional T-

optimality criteria are identical for nested models that only differ by one term. Therefore

the optimal designs are the same.

Corollary 5.1. If models 1 and 2 are nested and differ by more than one term, the T-

optimal design depends only on Σ and the additional parameters in model 2.

Proof. Proof follows from the proof of Proposition 5.2, where T̃ is a (q − p) ×m matrix

and F̃ is a m× (q − p) matrix.

Note that in the case where Σ = I we find that

D
(
E(Y2), Ŷ1

)
∝ tr

[
T TGT (I −H)TGT

]
=

n∑
i=1

m∑
j=1

(E [y2i(tj)]− ŷ1i(tj))
2 , (5.44)

where y2i(tj) is a realisation of (5.39) and ŷ1i(tj) is a fitted value from (5.40). The function

(5.44) is equivalent to the test statistic proposed in Shen and Faraway (2004) and Shen

and Xu (2006) when the data are observed without error. These authors accounted for

correlation by adapting the degrees of freedom for the test rather than explicitly through

inclusion of a the matrix Σ, see Section 5.5.1.

Example

Suppose we wish to discriminate between two functional models: the linear model
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y1i(t) = β0(t) + β1(t)x+ εi(t),

and the quadratic model

y2i(t) = θ0(t) + θ1(t)x+ θ2(t)x2 + ηi(t).

We again assume that the linear model (model 1) is true. We wish to find an approximate

design which allows us to discern whether a linear model is appropriate given we expect

data from the quadratic model. In order to do this we maximise the objective function

(5.43). As the models differ by only one term, neither T nor Σ influence the optimal

design. Using the Nelder-Mead algorithm, we find the optimal design to be

ξ =

{
−1 0 1

0.25 0.5 0.25

}
, (5.45)

agreeing with Proposition 5.4.

We verify that the design (5.45) is indeed T-optimal by showing that it satisfies a sufficient

condition for optimality obtained from a General Equivalence Theorem (Atkinson and

Fedorov, 1975). A sufficient condition for the design ξ∗ to be T-optimal is that

max
x∈χ

ψ(x, ξ∗) ≤ Ψ(ξ∗),

where

ψ(x, ξ∗) = (E(y2(t))− ŷ1(t))2, (5.46)

and, in our example,

model 1: E(y1(t)) = β0(t) + β1(t)x

model 2: E(y2(t)) = θ0(t) + θ1(t)x+ θ2(t)x2.
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The function ψ(x, ξ) is the derivative of Ψ(ξ) in the direction of the point x. Here

ŷ1(t) = β̂0(t) + β̂1(t)x. (5.47)

Assuming expected data from model 2,

β̂(t) = (F TWF )−1F TWE(Y2(t))

=

(
θ0(t) + 1

2
θ2(t)

θ1(t)

)
, (5.48)

where W = diag([0.25, 0.5, 0.5]),

F =

 1 −1

1 0

1 1

 ,

and E(Y2(t)) is the vector of expected response under model 2 for each of x = −1, 0, 1,

E(Y2(t)) =

 θ0(t)− θ1(t) + θ2(t)

θ0(t)

θ0(t) + θ1(t) + θ2(t)

 .

Substituting the values for β̂ from (5.48) into (5.47) and (5.46), we find

ψ(x, ξ∗n) =

(
θ0(t) + θ1(t)x+ θ2(t)x2 − θ0(t)− 1

2
θ2(t)− θ1(t)x

)2

=

[
θ2(t)

(
x2 − 1

2

)]2

. (5.49)

Now maxx∈[−1,1] ψ(x, ξ∗n) = 1
4
θ2

2(t) when x = −1, 0, 1. For this example,

147



Ψ(ξ∗n) =
1

4

(
θ0(t)− θ1(t) + θ2(t)− θ0(t)− 1

2
θ2(t) + θ1(t)x

)2

+
1

2

(
θ0 − θ0(t)− 1

2
θ2(t)

)2

+
1

4

(
θ0(t) + θ1(t) + θ2(t)− θ0(t)− 1

2
θ2(t)− θ1(t)x

)2

=
1

4
θ2

2(t)

Therefore ψ(x, ξ∗n) ≤ Ψ(ξ∗n) with equality at the support points x = −1, 0, 1. Therefore

by the General Equivalence Theorem for T-optimality, the design in (5.45) is indeed T-

optimal.

5.8 Simulation studies to assess power

In this section we conduct simulation studies to assess the power of the functional F-test

for data obtained using the T-optimal design found in Section 5.7.2.3. Recall that the

power of a test is the probability that the test will reject the null hypothesis when the null

hypothesis is false, that is, Power = P (H0 is rejected|H0 is false). Simulation studies were

conducted for two examples: the first testing the goodness-of-fit of a linear model given

the data came from a quadratic model, and the second one testing the goodness-of-fit

of a first order model with two factors and their interaction when the data came from a

two-factor model with their interaction and both quadratic terms.

5.8.1 Example 1

In this example we test the hypothesis that a first order model describes the data, when

the alternative hypothesis states that a quadratic model is correct using the optimal design

(5.45). Specifically,

H0 : Y (t) = Y 1(t) = β0(t) + β1(t)x+ ε(t)

H1 : Y (t) = Y 2(t) = θ0(t) + θ1(t)x+ θ2(t)x2 + η(t).
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We assume a linear model for the observation on each run i

y1i(t) = β0(t) + β1(t)xi + β2(t)x2
i + εi(t), (5.50)

but simulated a response from the model

y2i(t) = θ0(t) + θ1(t)xi + θ2(t)x2
i + ηi(t), (5.51)

in order to test the assumption that a linear model was true, given the data was simulated

from a quadratic model.

We assume an AR1 auto-regressive covariance function where εi(t), ηi(t) ∼ N(0, σ2) and

Cov(εi(tj), εi(tk)) = Cov(ηi(tj), ηi(tk)) = ρ|j−k| for tj and tk on some real interval and

|ρ| ≤ 1. Throughout the study, we employ t ∈ [−1, 1]. Note that we will consider a

different covariance structure later in the section. Now to generate data, the parameter

functions θ0, θ1, θ2 are defined in this example to be

θ0(t) = α00 + α01t+ α02t
2

θ1(t) = α10 + α11t+ α12t
2

θ2(t) = α20 + α21t+ α22t
2,

The values of parameters α20, α21 and α22 are most important in the simulation study as

they determine, through θ2(t), the difference between the linear and the quadratic models,

(5.50) and (5.51). Therefore the parameters α00, α01, α02, α10, α11 and α12 were fixed while

α20, α21 and α22 were investigated.

The response function is observed at m points on each run and therefore the data gener-

ating model can be written as

Y2 = GT +R2, (5.52)
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where T is calculated from

T =

 α00 α01 α02

α10 α11 α12

α20 α21 α22


 1 . . . 1

t1 . . . tm

t21 . . . t2m

 .

and vec(R2) ∼ N(0, I ⊗Σ + J ⊗ Iσ2
b ) where J is the n× n matrix of ones. The variance-

covariance matrix Σ has an autoregressive (AR1) autocorrelation structure defined as

Σ =
σ2
a

1− ρ2


1 ρ . . . ρm−1

...
...

ρm−1 . . . ρ 1

 (5.53)

where σ2
a is the within run error variance. The between run error variance is denoted by

σ2
b .

The approximate optimal design in (5.45) was used to calculate an exact design, with n

design points. The proportion of design points placed at each of the three support points,

-1, 0 and 1 was determined by the weigths w1 = 0.25, w2 = 0.5 and w3 = 0.25. Table 5.4

gives the values of n used in the simulation study, with the corresponding exact design for

each number of runs.

n −1 0 1
12 3 6 3
24 6 12 6
72 18 36 18

Table 5.4: Exact designs for various n

In this example, we use the functional F-statistic (5.18) to compare the residual sum of

squares for the assumed first order model (5.50) to the residual sum of squares for the

ANOVA model containing three parameters (one for each distinct value of x). Note that

for this design with 3 distinct design points, the residual sum of squares for the ANOVA

model is the same as that for the quadratic model.

The residual sum of squares for the linear model is calculated as

RSS =
n∑
i=1

∫ (
yi(t)− fTi (F TF )−1F TY (t)

)2
dt, (5.54)
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with fTi defined as the ith row of the design matrix F . The integral is analytically

intractable and hence approximated using Legendre-Gauss quadrature, with κj the roots

of the Legendre polynomials and tj the assumed abscissa values:

RSS ≈
n∑
i=1

m2∑
j=1

κj
(
yi(tj)− fTi (F TF )−1F TY (tj)

)2
. (5.55)

Here we assume m2 = m and that we take observations at the quadrature points. The

residual sum of squares for the ANOVA model is given by

RSS =
n∑
i=1

∫
(yi(t)− ȳi(t))2 dt, (5.56)

approximated by

RSS ≈
n∑
i=1

m∑
j=1

κj (yi(tj)− ȳi(tj))2 ,

where

ȳi(t) =



4
n

∑n/4
j=1 yj(t) for j = 1 . . . n

4

2
n

∑3n/4
j=n/4+1 yj(t) for j = n

4
+ 1 . . . 3n

4

4
n

∑n
j=3n/4+1 yi(t) for j = 3n

4
+ 1 . . . n,

i.e. ȳi(t) is the average of the replicated response from the corresponding support point.

We now describe four simulation studies to investigate how various aspects of these de-

signs affect the power for discriminating between (5.50) and (5.51). We first outline the

simulation algorithm, which was followed in the studies.

Algorithm

For each combination of values of the parameters investigated:
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1. Generate a dataset of n ×m responses from the quadratic model (5.52) according

to the selected experimental design.

2. Fit the smaller model (5.50) and the ANOVA model to the generated data.

3. Calculate the residual sum of squares for each of the first order and ANOVA models.

4. Compute the test statistic (5.15).

5. Compare the value of the test statistic to the 95th percentile of the F distribution

with λ̂(q − p) and λ̂(n − q) degrees of freedom, where p = 2 and q = 3 for the

T-optimal design and λ̂ is the degrees-of-freedom-adjustment-factor in (5.17).

6. Repeat steps 1-5 1000 times and calculate the power as the proportion of times that

the null hypothesis, i.e. the smaller model is the ‘true’ model, is rejected.

We now describe the four studies and present the results.

Study 1: To investigate the effect of the parameters α20, α21 and α22, which determine

θ2(t), on the power. The parameters α20 and α21 were set to each of 0.5, 1 and 1.5 and

α22 varied over the interval [0, 2].

In the simulation study we assumed σ2
a = 0.1 and σ2

b = 2 to make the between run error

variance much larger than the within run error variance, as usually occurs in practice,

The results of this study are shown in Figure 5.7. We see that as the number n, of design

points, or runs, increases the power increases for 21 equally spaced values of α22 such that

0 ≤ α22 ≤ 2. Further, the larger the values of α20 and α21, the larger the power over the

whole range of α22. This is to be expected as θ2 increases for larger α22 and therefore

it is easier to discriminate between the linear and quadratic models. Also note that for

α21 = 1.5, the power is close to 1 for n = 72. Fixing α20 and increasing α21 (across rows

in Figure 5.7) has little or no effect on the power. This is explained by the form of the

parameter function θ2(t) = α20 +α21t+α22t
2 and that −1 ≤ t ≤ 1, resulting in α21 having

no effect overall on the size of θ2. For larger α20, there is a smaller difference in power

between the different numbers of runs because the discrimination problem is then easier.

Study 2: Influence of size of between run error variance, σ2
b , on power
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α20 = 1.5

α20 = 1

α20 = 0.5

α21 = 0.5 α21 = 1 α21 = 1.5

Figure 5.7: Example 1: Power calculated from 1000 simulations using the functional T-
optimal design for 9 combinations of α20 and α21 values with 0 ≤ α22 ≤ 2, and number of
runs n = 12 (–), n = 24 (- -) and n = 72(· · · )..
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Figure 5.8: Example 1: Power calculated from 1000 simulations using the functional T-
optimal design against between run error 0 ≤ σ2

b ≤ 4 for n = 12 (–) , n = 24 (- -) and
n = 72 (· · · )

We carried out a further study to investigate how varying the parameter σ2
b , the between

run error variance, influences power. The other parameters were fixed at α20 = α21 =

α22 = 1, σ2
a = 0.1 and ρ = 0.75. For each of 17 equally spaced values of 0 ≤ σ2

b ≤ 4, the

algorithm was used to obtain 1000 responses.

A comparison of the three curves in Figure 5.8 shows that the power decreases as σ2
b

increases. Also, the power decreases more quickly for smaller values of n. This is because

a larger amount run-to-run error makes it harder to discern departures from the first order

model.

Study 3: Power comparisons to alternative designs

We compared the power curve for the functional T-optimal design (5.45) to the curves for

three possible alternative designs for discrimination between the first order and quadratic

models, each having different numbers of support points:

(a) the D-optimal design for the quadratic model

ξa =

{
−1 0 1

1
3

1
3

1
3

}
,

(b) the discrete uniform 4-point design on [-1,1] with equal weights

154



Figure 5.9: Example 1: Power against α22 from 1000 simulations for the D-optimal design,
ξa, for n = 12 (–), n = 24 (- -) and n = 72 (· · · ).

ξb =

{
−1 −1

3
1
3

1
1
4

1
4

1
4

1
4

}
,

(c) the discrete uniform 6-point design on [-1,1] with equal weights

ξc =

{
−1 −0.6 −0.2 0.2 0.6 1

1
6

1
6

1
6

1
6

1
6

1
6

}
.

We fixed the parameters α20 = α21 = 1, σ2
a = 0.1, σ2

b = 2 and ρ = 0.75 and, as before,

investigated how the power changed for n = 12, 24, 72 runs as α22 varied. The results are

shown in Figures 5.9, 5.10 and 5.11 for designs ξa, ξb and ξc respectively. The corresponding

plot for the T-optimal design is the central plot of Figure 5.7. As expected, the power

of the three alternative designs is generally lower than that of the T-optimal design, for

each choice of number of runs. However, the power when the D-optimal design ξa, is used

is very similar to that for the T-optimal design for all n investigated. The power was

however, lower for n = 12. These results are explained by the fact that the D-optimal and

T-optimal designs only differ in their weights.

Overall, the equally-spaced four-point design, ξb, and the equally spaced six-point design,

ξc, have considerably lower power than the T-optimal design with maximum shortfalls

of 21% and 37% for n = 12, 21% and 36% for n = 24, and 12% and 25% for n = 72

respectively. For n = 72, the power is reasonably high for both designs and increases

almost to 1 for the highest values of α22. Both designs performed similarly for each value
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Figure 5.10: Example 1: Power against α22 from 1000 simulations for design ξb, for n = 12
(–), n = 24 (- -) and n = 72 (· · · ).

Figure 5.11: Example 1: Power against α22 from 1000 simulations for design ξc, n = 12
(–), n = 24 (- -) and n = 72 (· · · ).

.
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of n investigated.

Study 4: To investigate an alternative error structure

We performed a limited investigation into the impact on power of changing the variance

covariance matrix and the selection of m2 points used to calculate the residual sum of

squares (5.55). The m2 points here are chosen to be distinct from the m points where

observations are made which were used previously in (5.55). Instead of using the autore-

gressive correlation structure (5.53), as in the previous studies, we generated the data

using a covariance function, which is often used in practice.

r(t, s) = Cov(η(t), η(s)) = exp
[
−|(2(t− s))2|

]
(5.57)

for t, s ∈ [−1, 1].

We wish to calculate the residual sum of squares using m2 points where the response

has not been observed. To obtain predictions for the m2 points, we used cubic spline

interpolation. The predictions may then be used to estimate the covariance function

r(s, t), where the jkth element of the corresponding variance-covariance matrix is given

by

r̂(tj, tk) =
1

n− p
(
Y tj − F (F TF )−1F TY tj

)T (
Y tk − F (F TF )−1F TY tk

)
,

with Y tj as the tjth column of the matrix Y , generated from (5.52). The matrix of errors

R2, used to generate Y, satisfies vec(R2) ∼ N(0, I ⊗ Σ + J ⊗ Iσ2
b ) where Σ has entries

defined by (5.57) and J is an n× n matrix of ones.

We no longer use quadrature to estimate the integrals in the residual sum of squares

formula for the assumed and ANOVA models given in (5.54) and (5.56). Therefore, we no

longer need weights and hence the values zj in (5.55) are set to one.

The vectors of m2 values at which we predict the response clearly affect the estimated

covariance structure. We considered three different vectors and investigated how they

affected the power. We set m2 = 2m and used

(a) Equally spaced points on the interval [−1, 1]

(b) 39 points equally spaced points on [−1, 0] and one point at -1
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(c) 39 points equally spaced on [−1, 0.5] and one point at -1.

The parameter values of α20 = α21 = α22 = 2.5 σ2
a = 0.1, σ2

b = 2 and ρ = 0.75 were fixed

in the simulation which followed the algorithm described earlier with n = 32.

The results showed that the power was largest, 0.7060, when the m2 = 40 prediction points

were equally spaced over [−1, 1]. The power obtained using the prediction points in (b)

and (c) were lower at 0.3510, and 0.5040 respectively. We also calculated the average of

the 1000 values of the degrees of freedom adjustment factors , λ̂, for (a)-(c), which were

very similar for each case: (a) 1.49, (b) 1.46, (c) 1.49. We might expect the power to

increase with the value of λ̂ because larger λ̂ leads to larger degrees of freedom and a

smaller critical value for the functional F-test. This may be difficult to establish from this

simulation since we calculate an average over the 1000 simulations.

Changing the method of estimating the covariance structure allowed us to gain some

information on the influence of the location of the prediction points on the power of the

test to discriminate between the linear and quadratic functional models. The study which

varied the prediction points was very limited and could be further explored in future work.

5.8.2 Example 2

In this example, we investigate the power of the test to reject a two-factor model with

interaction (model 1), when the data comes from a two-factor model with an interaction

and both quadratic terms.

This example considers two models where model 1 and model 2 differ in two terms. We

assess how the T-optimal designs change according to the parameter values in model 2

and also the degree of correlation, ρ. We then use simulation to investigate the effect of

the number of runs on the power of the test. We also investigated some alternative designs

and calculated their power in order to compare their performance to that of the functional

T-optimal design.

Specifically we test the hypothesis
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H0 : y(t) = y1(t) = β0(t) + β1(t)x1 + β2(t)x2 + β12x
T
1 x2 + ε(t)

H1 : y(t) = y2(t) = θ0(t) + θ1(t)x1 + θ2(t)x2 + θ12x1x2

+ θ11(t)x2
1 + θ22(t)x2

2 + η(t).

We assume a linear model for each run i

model 1: y1i(t) = β0(t) + β1(t)x1i + β2(t)x2i + β12x1ix2i + εi(t), (5.58)

but simulate a response from the model

model 2: y2i(t) = θ0(t) + θ1(t)x1i + θ2(t)x2i + θ12x1ix2i (5.59)

+ θ11(t)x2
1i + θ22(t)x2

2i + ηi(t).

We assume an AR1 auto-regressive covariance function where εi(t), ηi(t) ∼ N(0, σ2) and

Cov(εi(tj), εi(tk)) = Cov(ηi(tj), ηi(tk)) = ρ|j−k| for tj and tk on some real interval. In this

study, we have tj, tk ∈ [0, 1] to ensure easier assessment of the effect of the linear terms in

functions θ11(t) and θ22(t) defined below.

In a similar way to Example 1, the parameter functions θ0(t), θ1(t), θ2(t), θ12(t), θ11(t), θ22(t)

are defined in terms of quadratic functions

θ0(t) = α00 + α01t+ α02t
2

θ1(t) = α10 + α11t+ α12t
2

θ2(t) = α20 + α21t+ α22t
2

θ12(t) = α30 + α31t+ α32t
2

θ11(t) = α40 + α41t+ α42t
2

θ22(t) = α50 + α51t+ α52t
2.

The parameter values α4 = (α40, α41, α42)T and α5 = (α50, α51, α52)T determine, through
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θ11 and θ22, the difference between model 1 and model 2. Corollary 5.1 shows that the

functional T-optimal design depends only on the subset of terms appearing in model 2,

but not model 1. Hence α1,α2,α3 have no influence on the choice of design. We therefore

fix them to be (1, 1, 1).

The response is observed at m points per run and therefore the model can be written as

Y2 = GT +R2, (5.60)

where Y2 is an n×m response matrix and T is calculated from

T =



α00 α01 α02

α10 α11 α12

α20 α21 α22

α30 α31 α32

α40 α41 α42

α50 α51 α52



 1 . . . 1

t1 . . . tm

t21 . . . t2m

 ,

and vec(R2) ∼ N(0, I ⊗ Σ + J ⊗ Iσ2
b ) where J is an n× n matrix of ones. The variance-

covariance matrix Σ has an autoregressive (AR1) autocorrelation structure defined in

(5.53).

5.8.2.1 Optimal design

We found functional T-optimal designs as described in Section 5.7.2.2 using the Nelder

Mead simplex algorithm. We tried a variety of different α4 and α5 values to see whether

the parameter choices affected the design. To investigate the effect of ρ on the T-optimal

designs, we conducted a small study in which α4 and α5 were fixed and found designs

numerically for a variety of ρ values. The results (not shown) indicated that the value

of ρ had little effect on the choice of optimal design, providing some evidence that the

T-optimal design is robust to the degree of correlation.

Case 1

We fixed either α4 or α5 and varied the elements in the other parameter vector. In the

case where all the parameters in α4 and α5 were positive, the T-optimal approximate
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design was found to be

ξ =

{
(−1,−1) (1,−1) (0, 0) (−1, 1) (1, 1)

0.1250 0.1250 0.5 0.1250 0.1250

}
. (5.61)

We found that the functional T-optimal design and objective function values (5.43) for

the parameter vectors −α4 and −α5 were the same as those for the parameter vectors

α4 and α5, for any choice of entries in α4 and α5. For example, when α4 = (6, 5, 4)T

and α5 = (5, 5, 3)T the value of the objective function was 5.8993. The same value was

obtained when α4 = (−6,−5,−4)T and α5 = (−5,−5,−3)T .

Case 2

We fixed either α4 or α5 to be positive and set the other parameter vector to be negative.

In this case we found the T-optimal design to have the form

ξ =

{
(0,−1) (−1, 0) (1, 0) (0, 1) (x̃1, x̃2)

0.25γ 0.25γ 0.25γ 0.25γ (1− γ)

}
, (5.62)

where (x̃1, x̃2) has (x̃1, x̃2) ∈ [−1, 1] with γ ≈ 0.9999 so that weight (1− γ) is very small.

This design would be very poor in practice as most realised exact designs would only have

four support points unless n is very large, and four support points is not enough to test

whether model 1 is the ‘true’ model.

We found that the functional T-optimal design and objective function values (5.43) for

the parameter vectors −α4 and α5 were the same as those for the parameter vectors −α4

and α5, for any choice of entries in α4 and α5. For example, when α4 = (6, 5, 4)T and

α5 = (−5,−5,−3)T , and α4 = (−6,−5,−4)T and α5 = (5, 5, 3)T the optimal design was

(5.62) and the value of the objective function was 5.8993.

Case 3

We set either α4 = 0 or α5 = 0, resulting in factor 1 or 2, respectively, being deleted

from model 2. In both cases, the optimal design has 15 support points. If α4 = 0 then

the design has weight 0.25 at design points (-1,?), weight 0.5 at design points (0,?) and

weight 0.25 at design points (1,?), where ? is a defining any level of factor 2. Note that

the projection of this design onto the first factor gives the T-optimal design (5.45).

The power for each example was calculated by following the algorithm described earlier
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except for steps 1, 2 and 5 which are:

1. Generate responses from model 2 (5.60)

2. Fit the first order model (5.58) and the ANOVA model

5. Compare the test statistic to the reference distribution, an F distribution with

λ̂(q − p) and λ̂(n − q) degrees of freedom where p = 4 and q = 6 for the opti-

mal design and λ̂ is the degrees-of-freedom-adjustment-factor in (5.17)

We investigated 8 different values of n and 6 combinations of parameter vectors α4 and

α5, where all parameters were chosen to be positive. Hence the T-optimal design was

given by (5.61). The other parameters were kept fixed with m = 20, σ2
a = 0.1 and σ2

b = 2

and ρ = 0.75. We calculated the power for three designs:

(a) the T-optimal design (5.61)

(b) a D-optimal design for model 2

ξb =

{
(−1,−1) (0,−1) (1,−1) (−1, 0) (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)

0.146 0.080 0.146 0.080 0.096 0.080 0.146 0.080 0.146

}
.

(c) the 9-point design:

ξc =

{
(−1,−1) (0,−1) (1,−1) (−1, 0) (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

}
.

5.8.2.2 Results

Figure 5.12 shows that in all cases the functional T-optimal design had higher power to

reject model 1. We also see that examples with larger values of parameters, α4 and α5,

had larger power, e.g. in the bottom row of Figure 5.12, and the power generally increased

with n. The trend in Example 2 is the same as that seen in Example 1, Study 1. Larger
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Figure 5.12: Example 2: Power against the number of runs, n from 1000 simulations for
three designs: T-optimal design in (5.61) (–); D-optimal design for model 2 (- -); 9-point
equally weights design (· · · ) and six choices of α4 and α5.
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parameters in θ̃ indicated a larger difference in the two models being compared. In all

cases the D-optimal design for model 2 out performed the equally spaced nine point design.

It is important to note that the power for the D-optimal design is variable in all plots.

The weights do not give consistent proportions of design points once we have rounded to

get an integer number of runs. Therefore, the exact designs, used to calculate the power,

change quite substantially for these values of n. However, we did investigate larger n for

this design and we found that as expected the power did increase slowly with n.

5.9 Concluding remarks

In this chapter we have developed novel results on optimal designs for discriminating

between two functional linear models when, for each response variable, observations made

on the same run may be correlated. Specifically we have:

• proposed a T-optimality criterion for discriminating between two such models

• proved that, if two linear models differ by only one term, then the same design is

T-optimal for discriminating between pairs of models that are both univariate or

both multivariate or both functional

• established analytically a T-optimal design for discriminating between a first and

second order functional linear model with a single explanatory variable.

We have assessed the power of the test for discriminating between the above first and

second order functional linear models via simulation studies. We have also found numer-

ically designs to discriminate between two functional linear models that differ by more

than one term, and compared their performances. Simulation studies showed that the

power resulting from the use of a T-optimal design was greater than that from competing

designs, including a D-optimal design.

We also carried out some investigations on how the power varied according to the choice

of prediction points. However, this work was limited and there is scope to extend these

ideas to further investigate the problem.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis we have investigated two aspects of experimental design for functional data.

First, the selection of points at which to take observations in order to reconstruct the

functional response from a single run of the experiment using nonparametric techniques.

Secondly, the choice of points that enable effective discrimination between two functional

linear models.

In Chapters 3 and 4, we found optimal designs to ‘best’ predict a smooth function g using

criteria based on prediction variance. We considered two different methods of nonpara-

metric prediction using the local linear and Gasser and Müller estimators. Chapter 5

developed theory and methods for finding designs to enable discrimination between two

functional linear models by testing the fit of one model given data generated from the

alternative model.

6.1.1 Optimal design for nonparametric prediction of a curve

The aim of the work in both Chapters 3 and 4 was to find ordered design points to enable

nonparametric prediction. In both chapters we investigated a variety of methods and

different optimality criteria.

Chapter 3 found optimal designs which minimised a compound Ds-optimality criterion

for prediction across a specified interval. Initially, we found designs for prediction at

a finite number of points which were then generalised to optimal designs for prediction
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across an interval. Application of designs found using the Gaussian kernel were then

demonstrated using data from the tribology experiment. A study, drawing on the tribology

data, indicated that these designs performed similarly to equally spaced designs in enabling

a model which was a good fit to the data to be found, where mean squared error was

used to measure goodness of fit. In the tribology application the choice of bandwidth was

difficult without prior knowledge of the curve. The use of different bandwidths on different

intervals may have achieved a better fit for predicting different sections of the response.

The work in Chapter 4 found designs by trading-off integrated prediction variance against

the complexity of the fitted model as quantified by the trace of the smoothing matrix. We

minimised an objective function that was a weighted sum of these two components. This

enabled designs to be tailored to different complexities of models to be fitted in the data

analysis. We conducted a robustness study to investigate the effect of misspecifying the

kernel.

6.1.2 T-optimal designs for functional linear models

In Chapter 5 we obtained the first results on T-optimal designs for functional linear models.

We showed that the choice of an optimal design for discriminating between two nested

functional linear models, which differ by only one term, is independent of the parameter

values in each model and the correlation structure of each of the functional responses, see

Proposition 5.3 of Section 5.7.2.3. Where the models differ by more than one term, the

design depends on the parameters for the additional terms in the larger model (Corollary

5.1).

The T-optimal designs were then used in simulation studies to calculate the power of the

test for assessing the fit of model 1 given data obtained from model 2 for two specific

examples, where model 1 is nested in model 2. We found that tests had larger power

for larger numbers of runs and smaller between run errors led to larger power. Another

intuitive result was that the power increased when the parameters for the additional terms

in model 2 were larger. The correlation structure and the location of the prediction points

were briefly investigated in the power studies; there is scope to investigate further these

influences on the choice of optimal design.
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Figure 6.1: Smooth fits using a design for run 19 (a) data from the optimal design with
varying h, h = 0.2 on [501, 1000] and [1751, 2400] and h = 0.1 on [1001, 1750] (black) (b)
whole dataset with h = 0.1 (red)

6.2 Future Work

6.2.1 Optimal design for local linear regression

6.2.1.1 Varying the bandwidth in local linear regression

In Section 3.5.3 we introduced the idea of allowing for a variable bandwidth in design

selection. This would be appropriate when it is anticipated that data to be collected will

have features such as a turning point or a point of inflection. Allowing the bandwidth h

to have different values for different ranges of x allows information on complexity to be

introduced into model (1.1) in a similar way to constraining the complexity of the smooth

fit, as seen in Section 4.3. We require a small value of h to predict complex features in

our data. For example, the prediction of the data in run 19 of the tribology experiment

(Figure 6.1) would benefit from a smaller bandwidth on the interval [1001, 1750]. On the

other hand, a larger bandwidth is required for the remaining parts of the interval so the

data are not oversmoothed.

We explore these issues for simulated data from run 19, with εj ∼ N(0, 0.000152) and

εj, εk independent for j, k = 1, ..., n, using an optimal design found by Criterion 3.3 and

the search method in Chapter 3, for the following varying bandwidth: h = 0.1 for 1001 ≤
x ≤ 1750 and h = 0.2 elsewhere. Figure 6.1 shows the resulting fit from the data generated
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Figure 6.2: Designs for constant bandwidth with h = 0.2 (bottom) and varying bandwidth:
h = 0.1 on [1001, 1750] and h = 0.2 otherwise (top)

via the optimal design found for varying bandwidth

[513, 544, 605, 665, 973, 973, 979, 1086, 1208, 1223, 1283, 1452, 1457,

1464, 1680, 1689, 1690, 1697, 2045, 2050, 2051, 2052, 2367, 2369, 2375].

The constant bandwidth design with h = 0.2 has points

[539, 539, 539, 700, 928, 928, 938, 947, 1232, 1242, 1270, 1299, 1451,

1593, 1640, 1659, 1669, 1963, 1963, 1963, 1973, 2201, 2362, 2362, 2362].

The difference in distributions of the points in each design are shown in Figure 6.2. The

design obtained from prediction using a variable bandwidth had two more points in the

interval [1001, 1750]. There are also more points closer to the centre of the interval for the

varying bandwidth, as expected, due to the more complex fit enforced by h = 0.1.

Figure 6.1 also shows the smooth fit obtained from the whole dataset and bandwidth

h = 0.2. The fit using data from the design is better for prediction over [1001, 1750] and

does not oversmooth the remaining data. However, there is a discontinuity where the

bandwidth changes at x = 1001 and x = 1751.

An interesting problem for the future is the need to find an appropriate method of avoiding

this sudden change in bandwidth and then to develop efficient designs for this type of data

analysis. One possible method is block-wise least squares parabolic fitting, introduced by

Härdle and Marron (1995) which sets a bandwidth for each block and then smooths the

bandwidth over the blocks using local linear regression techniques.
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6.2.1.2 Correlated errors

In this thesis, we have found optimal designs to enable the ‘best’ prediction using the local

linear estimator with the assumption (Section 2.1) that the error variables are independent.

When observations have a natural ordering, e.g. over time, this assumption may not hold

(Simonoff, 1996). It is important that if data are likely to be correlated, then this feature

is incorporated into the model, as it affects the choice of bandwidth (Opsomer, Wang and

Yang, 2001).

In general, if we make no assumptions about either the form of the mean function g

or the correlation structure then it is impossible to estimate either function separately

(Opsomer et al., 2001). Therefore, to find optimal designs for unknown g we would have

to make an assumption about the correlation structure. A simple starting point would

be to assume the errors follow an AR(1) process. Designs could also be found for other

correlation structures and the robustness of designs to different types of correlation could

be investigated.

6.2.2 Designs to minimise the integrated variance subject to a

constraint

In Chapter 4, we developed a new criterion, which was applied to designs under the

Gasser and Müller estimator. The criterion minimised a weighted sum of the integrated

variance and the inverse trace of the smoothing matrix. A sensible extension would be to

find designs using this criterion for the local linear estimator. We would then be able to

compare these designs with those found for the Gasser and Müller estimator. In addition,

this comparison would give some indication of how Ds-optimal designs from Chapter 3

differ from designs obtained via the new constrained criterion in Chapter 4.

Another possible avenue of future work would be to extend methods in Chapter 3 and

4 to find designs for prediction for more than one variable. In particular, it would be

interesting to find designs using Criterion 4.4 for a multi-variable Gaussian process model

(Rasmussen and Williams, 2006).

6.2.3 Further work on T-optimality for functional linear models

It would be useful to gain a more general understanding of T-optimal designs for discrim-

inating between two functional linear models through expanding the range of models for
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which designs are found in Chapter 5. In particular, more complex models and how the

choice of covariance structure influences the design when the models differ by more than

one term could both be considered.

In Chapter 5 we briefly discussed the effect of the choice of the set of points where predic-

tions are made for each run on the power of the test for rejecting a model given data from

a competing model. We considered three simple sets of points. This research could be

taken further by incorporating the work in Chapters 3 and 4 to create a two stage design

problem. Initially, we find for each run an optimal design for predicting the functional

response. Then these designs can be used as the prediction points in the T-optimality

power studies.

We could also construct an example using a factorial experiment in order to assess how the

optimal design and form of ĝ change with different treatments. We may wish to investigate

how the treatment affects the choice of h used in finding an optimal set of points at which

to observe the functional response.
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Uciński, D. and Bogacka, B. (2005) T-optimum designs for discrimination between two

multiresponse dynamic models. Journal of the Royal Statistical Society: Series B, 67,

3–18.

Wand, M. P. and Jones, M. (1995) Kernel Smoothing. London: Chapman and Hall.

Watson, G. S. (1964) Smooth regression analysis. Sankhya A, 26, 101–116.

West, M., Harrison, P. J. and Migon, H. S. (1985) Dynamic generalized linear models and

bayesian forecasting (with discussion). Journal of the American Statistical Association,

80, 73–97.

174


