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OPTIMAL AND EFFICIENT EXPERIMENTAL DESIGN FOR NONPARAMETRIC
REGRESSION WITH APPLICATION TO FUNCTIONAL DATA

Verity Alexandra Fisher

Functional data is ubiquitous in modern science, technology and medicine. An example,
which motivates the work in this thesis, is an experiment in tribology to investigate wear
in automotive transmission.

The research in this thesis provides methods for the design of experiments when
the response is assumed to be a realisation of a smooth function. In the course of the
research, two areas were investigated: designs for local linear smoothers and designs for
discriminating between two functional linear models.

Designs that are optimal for minimising the prediction variance of a smooth function
were found across an interval using two kernel smoothing methods: local linear regression
and Gasser and Miiller estimation. The values of the locality parameter and run size were
shown to affect the optimal design. Optimal designs for best prediction using local linear
regression were applied to the tribology experiment. A compound optimality criterion
is proposed which is a weighted average of the integrated prediction variance and the
inverse of the trace of the smoothing matrix using the Gasser and Miiller estimator. The
complexity of the model to be fitted was shown to influence the selection of optimal design
points. The robustness of these optimal designs to misspecification of the kernel function
for the compound criterion was also critically assessed.

A criterion and method for finding T-optimal designs was developed for discriminating
between two competing functional linear models. It was proved that the choice of optimal
design is independent of the parameter values when discriminating between two nested
functional linear models that differ by only one term. The performance of T-optimal
designs was evaluated in simulation studies which calculated the power of the test for
assessing the fit of one model using data generated from the competing model.
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Chapter 1

Introduction

Increasingly, data from experiments in science and technology are used to investigate
complex systems where the response function cannot be adequately approximated by a
simple regression function such as a low-order polynomial. Then, nonparametric regression
is preferred where no assumption is required on the form of the regression function. The
research in this thesis provides methods for the design of experiments when the response

is assumed to be a realisation of a smooth function.
In the course of the research, the following two issues are addressed:

(i) Little research is available on how to design an experiment to obtain as much infor-
mation as possible from available resource. The first broad aim of the research is to give

methods of finding highly efficient or optimal designs for nonparametric regression.

(ii) In many experiments, functional data are collected where the response from each run
is a realisation of a smooth function of a continuous variable, such as time, as opposed to a
scalar value. Then, each function may require estimation using nonparametric regression.
An example of such an experiment is given in Section 1.3. In practical applications, we
may need to make a decision about which of two models provides the better description
of a response. The second broad aim of this research is to provide methods of designing

experiments that enable discrimination between two competing functional linear models.



1.1 Models and linear smoothers

1.1.1 Modelling and estimation for nonparametric smoothing

We consider the nonparametric regression model which describes a response variable by

y; =g(z;) +¢€, forj=1,....n, (1.1)

where ¢ is the unknown regression function, z; is the value of the single explanatory vari-
able, and the ¢; are independent error random variables which are identically distributed

2. This model is often called the ‘fixed design model’, see for

with constant variance o
example Wand and Jones (1995, ch. 5). It is different from the ‘random design model’
in which the observations are regarded as a random sample from a bivariate distribution.

The work in this thesis considers only fixed design models.

Estimation of g(z) in (1.1) is through a linear smoother, g(x), which is a weighted linear

combination of the observations y; expressed as

g(x) = Si(x)y;, (1.2)

where S;(z) are the smoothing weights (see, for example, Ramsay and Silverman, 2005,
ch. 4). A simple example of a linear smoother is linear regression. Further examples can
be found in Buja, Hastie and Tibshirani (1989), Wand and Jones (1995, ch. 5), Simonoff
(1996, ch. 5) and Ramsay and Silverman (2005, ch. 4).

1.2 Functional linear models

If an experiment produces functional data, then a functional linear model may be used to

describe the response functions. This model is written in matrix form as

Y (t) = XB(t) + e(t), (1.3)

where Y'(t) is an n x 1 vector of response functions, X is the n x p model matrix, 3(t)



is an n x 1 vector of parameters and €(t) is an n x 1 vector holding realisations from a

stochastic process with mean zero and covariance function (s, t); for a < s <t < b and
[a,b] C R.

1.3 Example from tribology

To motivate the theory and results in this thesis, we consider a common type of experiment
from the EPSRC National Centre for Advanced Tribology (nCATS) at the University of
Southampton. The experiment is a pilot study to assess how six factors affect the wear of

a pin and disc assembly when a given lubricant is used to lubricate the surface of the disc.

The experiment involved 16 runs, each having a different combination of values of six
factors. Each of the factors is listed below, together with the two factor levels used in the

experiment.

e disc material: silicone or steel

e pin material: silicone or steel

e addition of soot: 0% or 10%

e level of oxidation: 0 or 10 hours

e addition of Hy504: 0 or 25mM (millimolar)

e level of moisture: 0% or 2.5%

In addition, the tribologists ran four model checking runs. In this thesis, where we label

runs from the experiment we use the labels from the randomised order of the 20 runs.

Figure 1.1 shows a schematic of the pin and disc equipment. The gimbal arm suspends
the pin over the disc. The disc spins and the combined wear on the pin and the disc is
measured by a Linear Variable Displacement Transformer at a large number of equally
spaced discrete time points (referred to as the time index). The first 500 observations are
typically discarded as ‘burn in’. In our particular motivating experiment, all observations
after the 2400th were disregarded as, for some runs, the equipment was erroneously left
on after the experiment had finished, producing spurious results. Figure 1.2 shows wear

data produced by this experiment.



Figure 1.1: Schematic of the pin and disc equipment.

The aim of the experiment is to predict the value of the response, that is, the profile over
the interval [500, 2400] of the combined wear on the pin and disc for a given combination
of values of the six factors. This is to be achieved by using an optimal design consisting
of the ‘best’ subset of points {x1,...,z,} selected from the interval [500, 2400].

1.4 Design preliminaries

The following section describes terms and ideas from the field of design of experiments
which will be used later in the thesis. A detailed account of the optimal design of ex-
periments, including various optimality criteria, with application to linear and non-linear
models can be found in Atkinson, Donev and Tobias (2007, ch. 10).

There are two approaches to design specification:

(a) A continuous, or approximate, design which is represented by a measure £ on a design

é_:{l'l Ty ... XTg }7 (14)
w1, Wy ... Wg

where, without loss of generality, z; (i = 1,...,s) are the s distinct design points and

region x and written as

w; (1 =1,...,s) are the associated design weights. Each distinct design point is called
a support point and its weight specifies the proportion of total experimental effort to be
expended at that point. Since £ is a measure, fxf dxr = 1 and the design weights are
restricted to 0 < w; <1,i=1,...,s, with > 7, w; = 1.
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Figure 1.2: Plot of data from one run of the wear experiment with an example locally
linear smooth fit.

For example, for the continuous design

0o 1 2
0.3 0.3 04

in n = 10 runs, the design used for an experiment would have three runs at each of x =0
and 1, and four runs at x = 2. When nw; is non-integer, for some ¢ = 1, ..., s, then the
value must be rounded to provide a realisable design with an integer number of occurrences
of each z; in the design; see Fedorov and Hackl (1997, ch. 1).

(b) An exact design which has s support points and n design points and may be written

gn: ry T2 ... Tg 7 (15)

rn To ... Tg

where r; is the integer number of observations taken at the ¢th distinct design point, x;,

and > 0, 1 =n.

For simplicity, we usually write an exact design as {z1,xs,...,2z,} where the z; are not

necessarily distinct.



For both approaches, we define an optimal design as one which optimises an objective

function W(&) or U(E,), for a continuous or exact design, respectively.

1.5 Objectives and overview of thesis

This thesis has two specific objectives. The first is to develop methods for the efficient de-
sign of experiments for local linear smoothing and for Gasser and Miiller kernel smoothing.
The second objective is to develop a T-optimality criterion and derive analytical results to
enable the design of experiments for efficient discrimination between two functional linear

models.

In Chapter 2, we introduce common linear smoothers and discuss the existing literature on
experimental design. We then give, in Chapter 3, methods of finding designs for prediction
using the local linear estimator for two cases:

(i) prediction at a finite number of points in the design region, and

(ii) prediction across the whole of an interval within the design region.

In Chapter 4, we find optimal and efficient designs for the Gasser and Miiller estimator
when the purpose of the experiment is prediction across an interval. We compare the
performance of designs found using the uniform and the Gaussian kernels (defined in
Section 2.1).

Chapter 5 develops, for the first time, optimal designs for ‘best’ discrimination between
two functional linear models using a T-optimality criterion developed for this class of
models. Chapter 6 evaluates the work and methods in this thesis and highlights avenues

for future work.



Chapter 2

Background to linear smoothing and

design of experiments literature

This chapter provides an introduction to local linear smoothing and a review of the liter-

ature on the design of experiments for these smoothing methods.

In Section 2.1, we give a brief description and background for nonparametric methods of
local linear smoothing, in particular kernel smoothing, which can be used to estimate the
function, g(x), in model (1.1). The estimate g(x) is calculated using (1.2), where different
forms of smoothing weights, S;(z), are used for different types of local smoothing. In
Section 2.2, we discuss the limited literature on optimal design for local fitting using the

local linear estimator.

2.1 Local fitting

Generally, local fitting describes methods of estimating g(x) such that observations at
points closer (or more local) to x have larger influence on g(z). Popular local smoothing
methods use kernel regression, spline functions and wavelets. In this section we consider
two approaches using kernel regression estimators: local polynomial estimators and the

Gasser and Miiller estimator.

Kernel regression methods, a form of local linear smoothing, were first considered by
Nadaraya (1964) and Watson (1964) and later modified by Priestly and Chao (1972) and
Gasser and Miiller (1979, 1984).



This type of local linear smoother is defined through the choice of smoothing weights,
S;(x), see equation (1.2), which determine the distribution of the weights assigned to each
observation y; in g(z). The form of S;(z) depends on a pre-specified constant h, known
as the bandwidth.

A choice of smoothing weight distribution which incorporates the bandwidth may be
obtained from using a kernel function, K (-). Such functions are symmetric and have the
property that [ K(u)du = 1. Some widely used kernel functions are given below and

shown in Figure 2.1:

0.5 if |u] <1,
Uniform: K(u) =
0  otherwise.

. 0.75(1 —u?) if Ju| <1,
Epanechnikov: K (u) =
0 otherwise.

_ 1 u?
Gaussian: K (u) = exp§ —— — 00 < u < 00,

V271

The jth smoothing weight is defined as K (u;) where u; = x — z;. Hence both the kernel
and bandwidth affect the degree of locality in g(z) in the following sense:

o If [x — x;| < h, then observation y; has a substantial weight S;(x), which is a

monotonically decreasing function of |x — ;.

o If |z —z;| > h, then S;(x) = 0 or decreases monotonically with |z — z;]|.

The Epanechnikov kernel function, has desirable asymptotic properties and so is a popular
kernel function choice (Simonoff, 1996, ch. 5). However, in this thesis, we use the uniform
and Gaussian kernel functions. The Gaussian kernel, which is widely used, is not truncated
and so S;(z) # 0 for all j. We use the uniform kernel, together with the Gaussian kernel,
in a study (Sections 3.5.3 and 4.6) of the robustness of designs to the choice of kernel
function. We consider the uniform kernel as its kernel function has a significantly different

form from that of the Gaussian kernel.
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Figure 2.1: Plot of (—) uniform, (- --) Epanechnikov and (- -) Gaussian kernel functions

2.1.1 Choice of bandwidth size

An important choice in the estimation of a function g(x) is the size of the bandwidth, A,
which is related to the complexity of the function. (In contrast, in a parametric model
the complexity is controlled by increasing or decreasing the number of parameters in the
model). The estimation of a function with many features (e.g. turning points) requires
a smaller bandwidth, so that features are not lost or weakened by observations made at
points at some distance from z having undue influence on g(x). However, even though
a small bandwidth provides a less biased estimate of ¢g(z), in that E(g(x)) is very close
to g(z), this is attained at the cost of a high variance (Ramsay and Silverman, 2005, p.
78). Conversely, larger bandwidths include more data points in the prediction at =, which

provides a prediction with low variability but potentially high bias.

Various methods have been developed to choose the optimal bandwidth for use in pre-
diction. For example, Fan and Gijbels (1995) discussed data-driven bandwidth selection
based on a residual squares criterion which is relatively simple to compute and can be
‘plugged in’ to K(-). In some cases there may be a need for a varying bandwidth (Si-
monoff, 1996, ch. 5). For example, suppose a function is relatively simple, for small =,
and then, for larger x, has a sharp peak. Estimation of the function would benefit from
a larger bandwidth initially to avoid oversmoothing, leading to a prediction which is too
‘wiggly’, followed by a smaller bandwidth to avoid undersmoothing, leading to a prediction

which is ‘too smooth’, see Section 6.2.1.1 for further discussion.



2.1.2 Local polynomial estimators

The use of local polynomial estimators, local weighted regression (loess) or moving local
regression was introduced by Pelto, Elkins and Boyd (1968) and Cleveland (1979). Miiller
(1996) provided a clear explanation of local fitting. A smooth function can often be
approximated by a simpler function over a small region of the design space. The method
of local weighted regression fits a pth degree polynomial to data locally using weighted least
squares. Each observation, y; (j = 1,...,n), is assigned a particular weight calculated
using the kernel function K, where more weight is given to an observation at a design
point closer to the prediction point z. Again, the locality of the smoothing is controlled

by the bandwidth, h.

The local linear estimator with p = 1 is widely used, and given by

A )_LZ}L {82(; h) = 81 (s h)u;} K(5)y;
T = 0n ™ a(mh)so(msh) — ai(zh)?

(2.1)

where, for r = 0,1,2, §,(z;h) = =37 uj K (%) and

1 {8a(x;h) — 31(w; h)uy} K(F)
Si(x) = nh So(x; h)So(x; h) — 81 (x; h)]; )

Note that if we set K (52) = h for all u; in (2.1) then we find §(z) reduces to

D R DT Y = D UG D WY

n v — (i w)? ’

g(x) =

the ordinary least squares estimator of Sy(z), the intercept parameter in linear regression.

A further special case is the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964),
where p = 0,

(2.2)

with

10



K(2)

S = S Ky

(2.3)

In a foundation paper, Fan (1992) established, through both theory and simulation meth-
ods, advantages of the local linear estimator (p = 1) over the alternative Nadaraya-Watson
(2.2) and the Gasser and Miiller (Section 2.1.3) smoothers. The author proved, under cer-
tain conditions, that this estimator was the ‘best’ among all linear smoothers when using
the optimal bandwidth chosen by minimising the mean expected squared error. Here ‘best’
means having the lowest maximum expected squared error over a class of true regression
functions. Fan (1992) showed this best case was achieved by the local linear estimator
with the Epanechnikov kernel function. He argued against the use of the Nadaraya-Watson
estimator because it had infinite expected squared error for all kernels, as a result of it

potentially having infinite bias.

In general, choosing an odd value for p, the degree of the local polynomial fitted, results in
the order of the bias being the same for boundary and interior points. Therefore, p = 1 or
p = 3 were suggested by Wand and Jones (1995, ch. 5). In the work presented in Chapters
3 and 4 we use p = 1 because the resulting estimator is much quicker to compute and has

often adequate bias and boundary properties for small enough h.

For a truncated kernel such as the uniform or Epanechnikov, it is important that there
are always sufficient points in the interval [x — h, x + h] to fit a polynomial of the required
degree. For example, we require at least two points within the bandwidth of our prediction
point to fit a straight line, otherwise it is impossible to estimate the slope. Also the greater
the number of design points lying within a distance of h of x, the lower the variance of

the prediction.

2.1.3 The Gasser and Miller estimator

The Gasser and Miiller estimator, see Gasser and Miiller (1979, 1984), is given by

i(z) = [% / K ( . ) dv] i (2.4)

where 7; = (vj11 +z;)/2 for 1 < j <n, Zy = 27 and Z,, = x,, and

11



S,(z) = %/ K (“ . I) do. (2.5)

The simplest weights are given by the uniform kernel.

Ramsay and Silverman (2005, p. 75) comment that the Gasser and Miiller weights are
fast to compute, deal better with unequally spaced data points and have good asymptotic
properties in comparison to the Nadaraya-Watson estimator. Unlike the local linear esti-
mator, the Gasser and Miiller estimator has boundary bias problems in a manner similar
to the Nadaraya-Watson estimator (Fan, 1992) which are not addressed in this thesis. The
Gasser and Miiller estimator is used in this thesis as we make predictions with unequally
spaced points and, in some cases, it is possible to get analytic results using the uniform

kernel.

2.2 Experimental design for local fitting

The literature provides three main approaches to experimental design for local fitting.
Cheng, Hall and Titterington (1998) developed a sequential approach using the local linear
estimator to find optimal ‘design densities’, from which the required number of design
points for an experiment is drawn at random. At each step, both the optimal design
density and asymptotic optimal bandwidths are calculated, by minimising the integrated
mean squared error. This approach has the advantage of mathematical tractability: at
each step, the optimal design density for the next step has a closed form solution. They
obtained numerical results on approximate efficiencies to illustrate the gains of the optimal

design densities over the uniform design density.

For experiments when sequential designs cannot be applied, Biedermann and Dette (2001)
proposed a minimax approach to find optimal design densities using the Gasser and Miiller
estimator. For a specified class of ‘true’ functions, g(z), and certain error distributions,
they found design densities that minimised the maximum of the asymptotic integrated
mean squared error in conjunction with using the optimal bandwidth. They numerically
investigated the performance of these optimal design densities via asymptotic relative

efficiency when either the form of g(z) of the variance function (or both) were misspecified.

The disadvantage of the design density methods is that for small to moderate sized designs,
there is large variability in the realised designs and hence in the achieved efficiencies. Hence

we have not pursued these methods.

12



The work in this thesis builds upon optimal design strategies introduced by Miiller (1992,
1996) who found continuous designs that enable ‘best’ prediction at ¢ distinct points in
the design region. Specifically, designs were found that minimised a weighted sum of
the variances of the estimator Bo(il%), for prediction at points z;, i = 1, ..., q, see Section
3.3.3.1. This is a special case of the linear optimality criterion which selects support points

to minimise the objective function

w(e) = tr S AMi(E) (2.6)

i=1

where A; = a;A with a; a scalar, and A a p X p matrix with every element zero except
for the (1,1) element which is 1. The p X p matrix, M;, is the information matrix for the

linear model at point x; for i =1, ..., ¢, given by

M; = X{ WX, (2.7)

where X; is the design matrix and W; is the matrix of kernel weights. Note that a different
X; is required for each of local quadratic and local linear regression; the value w; changes

according to the kernel function used. See Chapter 3 for more details.

This criterion was applied by Miiller (1992) to a number of simple examples of finding
optimal designs for predicting a response at nine equally spaced points in the interval

[—1, 1] when the design region consisted of the same nine points:

(a) Using the Nadaraya-Watson estimator and the uniform kernel with bandwidth A = 0.1.
This is a very simple example. Since one design point is required to be within h = 0.1 of
each of the prediction points, there is only one point to choose: the prediction point itself.

Hence the optimal design is given by the set of nine prediction points.

(b) Using the local linear estimator with two nearest neighbour weight functions (see
Cleveland (1979) and McLain (1971)). The weight functions were calibrated to ensure an
equivalent degree of smoothing was enforced throughout, by fixing the equivalent degrees

of freedom in the model.

Fedorov et al. (1999) also found designs which minimised a type of linear optimality
criterion in which the objective function was a function of the ‘mean cross product error’
matrix, R, instead of a function of the information matrix, where R is proportional to
E(g(x;) — g(z:))(g(xk) — g(xx))]. The methods of Fedorov et al. (1999) differ from those

of Miiller (1992) because the error term is split into approximation error and random error

13



in order to analyse model misspecification through the bias of the fit. In order to find
designs under this criterion, information about the the true model is required to calculate
the bias. Both local linear and local quadratic true models were considered for three levels

of local bias. Such designs are specific to the particular true model assumed.

Designs were found for making predictions at ¢ = 1,11 and 21 equally spaced points in
the interval [—1, 1] using the 101-point design region: {—1,—0.98,—0.96,--- ,0.98,1}.

Designs were found numerically using the local linear and quadratic estimators and two
types of weight function: a constant weight function over [—1, 1] and the Gaussian kernel
with standard deviation of 1/6. The authors did not explicitly define the bandwidth and
enforced the locality of the fit through the choice of the standard deviation in the Gaussian

kernel.

The authors found that an optimal design for any of ¢ = 1,11 and 21 prediction points
when there was zero bias, constant weight function and for the local linear estimator
had only two support points at -1 and 1 with w; = wy = 0.5. Optimal designs had more
support points when the Gaussian weight function was used instead of the constant weight
function. The optimal designs were not given explicitly, but plots presented indicated that

they were roughly the equally weighted points:

e {—0.45,0.45} for predicting at a single point

e {—1.00,—-0.55,—-0.20,0.20,0.55,1.00} for prediction at 11 points

e {—1.00,—-0.55,—-0.20,0.20,0.55,1.00} for prediction at 21 points.

The support points for 11 and 21 points were almost equally weighted with slightly more
weight at -0.55 and 0.55. In Chapter 3, we show how designs such as these can be obtained

by a more general approach.

Throughout this thesis we concentrate on models where the variance outweighs the bias
due to the assumed complexity of the model. Hence we follow the strategy of Miiller (1992,
1996) where only ‘stochastic disturbance’ is defined. This approach is more appropriate
than that of Fedorov et al. (1999) when we have little or no information about the function

we wish to estimate.

14



Chapter 3

Optimal designs for local linear

estimation

This chapter focuses on optimal design for ‘best’ prediction of a function g using the local
linear estimator, a type of kernel smoother. We find designs &, = {z1, ..., z,}, composed
of ordered points, that maximise the average of the reciprocal prediction variances at
q prediction points z7,...,7; € R. A similar problem was considered by Miiller (1992),
Miiller (1996) and Fedorov et al. (1999) for local linear smoothing. In Section 3.4 we

obtain more general results for prediction across a continuous interval in R.

In Section 3.5 we demonstrate our methodology on a Tribology experiment (Section 1.3),
and find optimal designs for the local linear estimator to enable accurate prediction of
the functional response from each treatment. We assess the performance for prediction
of these optimal designs using the average mean squared error. We also investigate the

robustness of the optimal designs to choice of bandwidth.

3.1 The local linear estimator

Recall, from Section 1.1.1, that a linear smoother, g(z), estimates the value of g(x) through

a linear combination of y; as

g(z) = ZSj(w)yj,

15



where S;(x) is the smoothing weight for observation y; for predicting at .

The method of local weighted regression, introduced in Section 2.1.2, fits a pth degree poly-
nomial to data locally using weighted least squares. Each observation, y; (j = 1,...,n),
is assigned a particular weight calculated using the kernel function K, where more weight

is given to an observation at a design point xz; closer to the prediction point x*.

Suppose that the (p + 1)th derivative of g(x) exists in a small neighbourhood about a

point z*. Then, from the Taylor series expansion of g(x) about x*

9@ (z*)

g(x) =~ g(z*) + g(l)(x*)(m —z*) + (x— )2+ ..+

= Bo(z") + Bi(z")(x — x¥) + ... + Bp(a™) (x — x™)P, (3.1)

where ¢?)(x) denotes the pth derivative. If we set u = x — 2* we obtain

g(x) = Po(x™) + Pr(z ) u+, ..., +58,(z")uP.

On, setting x = z*, we see that the problem of estimating g(x*) is equivalent to that of

estimating [o(z*).

It follows directly from (3.1) that, regardless of the degree of the local polynomial, g(z*) =
Bo(x*) and B(z*) = (Bo(x*), ..., Bp(2*))T minimises

> (5 = Bo(@™) = BulwJu; = . = Bp(a")el) K (wy),

where u; = x; —a* for j =1,...,n.

The form of the local polynomial estimator for p = 0 and the local linear estimator (p = 1)

used in this chapter are given by (2.2) and (2.1) respectively.

3.1.1 Local linear regression and weighted least squares

We now formulate the prediction variance for the local linear estimator, (p = 1) using

weighted least squares.
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From Wand and Jones (1995, p. 114) the local linear estimator estimates the regression
function at a specific point z* by locally fitting a first degree polynomial to the data, i.e.
the observations at x;, 7 = 1,...,n. Weighted least squares regression is used to correct

for unequal error variance. For prediction at z*, we assume the model

Y = X3(z") + e(z”), (3.2)

where Y is an n x 1 vector, X is the model matrix, in terms of wu;,

1U1

X = 1UZ )

1 u,

with u; = z; —2*, B(x*) isa (p+1) x 1 vector and €(x*) ~ N (0, W~'o?). Here the matrix
of smoothing weights, W, is given by

K(%) ... ... 0

| =

=
—~
=I5
SN—

~ ~

Then the estimator 3(z*) = (fo(z*), 1 (z*))T is given by

B(z") = (XTWX) ' XTWY. (3.3)

The estimator of the response at point x can be found, using u = x — z*, as

~

y= Bo(x*) + Ba(a")u.
Hence, if # = z* then u = 0 and §j = B, (x*).

From equations (3.2) and (3.3), the variances of the estimated parameters are

17



Var(B(a")) = o*(X"WX) " XTWW WX (XTWX) !
= (XTWX), (3.4)

using € ~ N (0, W~1¢?). The information matrix, i.e. the inverse of the variance-covariance
matrix of B(z*), is given by M(&,) = XTWX.

3.2 Ds-optimality for prediction at a single point

In this section, we find designs which maximise the reciprocal variance of §(z*) = fy(z*).
This leads us to consider Dg-optimality (Atkinson et al., 2007), which finds designs that
minimise the variance of a subset of model parameter estimators whilst regarding the

remaining parameters as nuisance parameters.

For our problem, fy(z*) is the parameter of interest and f;(z*) is the nuisance parameter.

The information matrix can be expressed, in the notation of Atkinson et al. (2007), as

M(&) = XTWX

(3.6)

The D -optimality criterion for £ seeks a design to maximise the determinant

_IM(&)

M1 (6) = Mia(&) M Mip(&n)| = 1=

For our problem,

== [ (4] [1 S ()] - [ S (5]



and
1 & U;
j=1

We can now formulate a specific D-criterion for our problem.

Criterion 3.1. Design & is Ds-optimal for predicting at a single point using the local

linear estimator if it maximises the objective function

i K () Ejo K (5) — [ wk (5))
hy i K (3) |

‘11(571) =

where u; = x; — x*.

We give (in Theorem 3.1) sufficient conditions for a design to be optimal under Criterion

3.1. To do this, we first prove two results.

Lemma 3.1. For any kernel function and design that is symmetric about x* and has at

least two design points, the objective function (3.7) is
V(&) = En: L (—) (3.8)
h

Proof. 1t is possible to write (3.7) as

= u;y Do w K ()
_%(;K(E)_ S 2K("))'

le

For a symmetric design, since the kernel function is symmetric about 0, Y7 | u; K (U—J) =0

h
Do w K
> K (5

and hence

= 0. (3.9)

Therefore
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Note that a symmetric design is not necessarily optimal. There may exist non-symmetric

designs for which .
> i1 ui K (3P

" — >0
Zj:l UEK(TJ)

and

For prediction at a single point, it is possible to find an upper bound for the objective
function analytically. This upper bound then provides a sufficient condition for a design

to be optimal under Criterion 3.1.

Lemma 3.2. An upper bound, U, for objective function (3.7) is given by

U= K(0) 2 max(¥(&,)).

Proof. By definition, K (0) is the maximum value of K. Hence, we can re-write the kernel

K (%) as [K(0) — f(u;)] with the function f satisfying f(z) > 0 for all z and f(0) =0 .

Hence from Lemma 3.1, equation (3.7) can be written as

Now,

because K (5£) > 0 for all u;, j =1,...,n. Therefore
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- o1 WK uﬁj ’
v(E) = % ( [K(0) — f (uy)] %n UQK(<U_J))] ) (3.11)
j=1 j=1"J h
<33 IKO) — fw,)
1 < 1 <
= EZK(O) - EZf(uj)
< %K(O), (3.12)
where n is the number of design points.
]

Theorem 3.1. A sufficient condition for design & to be Dg-optimal under Criterion 3.1
for prediction at a single point is V(&%) = nK(0)/h.

Proof. Proof follows directly from Lemma 3.2

3.2.1 Results

We now find D,-optimal designs using Criterion 3.1 for the uniform and Gaussian ker-
nels. Here and throughout this chapter, where designs are found numerically, we use the
‘fminsearch’ routine in MATLAB to minimise —W(&,,). This routine uses the Nelder-Mead
simplex algorithm (Nelder and Mead, 1965) as described by Lagarias et al. (1998), a direct

search method which does not use numerical or analytic gradients in the optimisation.

3.2.1.1 Optimal designs using the uniform kernel

Recall from Section 2.1 that the uniform kernel is

K(0) 0.5 if ju] <h,
’U =
0 otherwise.

21



When this kernel is used, the objective function (3.7) becomes

1 | >0 uila(uy))?
V() = — 1a(uy) — =% (3.13)
2h ; ! > iy uila(uy)
where
1 ifu; €A,
La(uy) = !
0 otherwise,
with

We can see that (3.13) is maximised when |u;| < h, so that 14(u;) =1, forall j =1,...,n,

by minimising

[ uila(uy))?
Z?:l uilA(uj) '

(3.15)

As (3.15) is greater than or equal to zero, it is minimised by any design &, satisfying

(i)

D =) (e —a")=0
j=1 j=1
& ij = nx*
j=1
ST =1, (3.16)
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forall j=1,...,n.

Substituting (3.16) into (3.17) gives

(3.17)

(3.18)

These arguments show that the average of the design points must equal z* and all design

points cannot be equal. This leads to the following corollary

Corollary 3.1. For the uniform kernel and prediction at x* a design &, = {x1,..

with n > 2 that satisfies

(i) |zj —a*| < h
(1)) T =x*

(iii) S0, (2, —7) > 0

has V(&) = =

355 18 Dg-optimal under Criterion 3.1.

Proof. Conditions (i)-(iii) imply that

and the result follows from Theorem 3.1.

T}

(3.19)

To confirm these results, optimal designs were also found numerically. We minimised

—W(&,) for a selection of values for h, 2* and n and found in every case that U(¢,) had a

maximum value of n/2h. All the optimal designs found, as expected, satisfied z = z* and

(3.18)with all n design points within h of z*.
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Note that for truncated kernels, such as the uniform, it is necessary to have at least two
design points within h of x*, otherwise it is impossible to make a prediction. If there
are more than two design points, an optimal design under Criterion 3.1 has all its points
within h of x*; then all observations contribute to the prediction. This results in greater

accuracy than if only observations at two design points are used.

The case of predicting at z* = 0 with the uniform kernel and h = 1, ensuring a constant
weight function for z; € [—1,1], is very similar to a problem considered by Fedorov et al.
(1999). These authors used the mean cross product error, assuming there was no bias
term (see Section 2.2 for details) with the constant weight function over [—1,1]. They
found the approximate optimal design with equally weighted support points, at x &1, for
the discrete design region {—1,—0.98,—0.96,--- ,0.98,1}. From Corollary 3.1, this design
is also Ds-optimal under Criterion 3.1 for n even. This is one of many designs that satisfy
Corollary 3.1.

3.2.1.2 Optimal designs for the Gaussian kernel

The Gaussian kernel is not truncated and hence K (v) > 0 for all v. The Gaussian kernel

is defined as

1 2
K(v)zﬁexp{—%} —00 < v < 00,

When using the Gaussian kernel the upper bound on the objective function, nk(0)/h

from Lemma 3.2, cannot be attained. To see this, recall from (3.11), that

n ()
U(E,) = % (Z [K(0) — f(uy)] — [%ﬁ_l U2K<(u#>)] ) ,

j=1

A design for the Gaussian kernel cannot achieve the bound U of Lemma 3.2. This is
because f(u;) = 0 implies u; = 0, as K(v) < K(0) for v # 0, and hence [>_7_, u; K (%)) =

J=1 h
0 and Y77 wiK () = 0, leading to the ratio

Do wi K (G
IWELNGY)

being indeterminate.

Numerical search found optimal designs that were symmetric about z*, and therefore by

24



Lemma 3.1 satisfy (3.8). However, these designs have the property that f(u;) # 0. The
design points are positive such that u; is very close to zero, but not exactly zero, for all j.

In other words, all the design points are of the form, z; = 2* £, where 6 > 0 is small.

Our results differ from those of Fedorov et al. (1999) for predicting at zero with the
Gaussian kernel function, again using the mean cross product error. These authors used
the normal kernel with standard deviation 1/6 with the bias term set to be zero. D-
optimal designs from Criterion 3.1 have points placed very close to zero, the point of
prediction. The optimal designs from Fedorov et al. (1999) have two support points
{—0.45,0.45}. Hence, unlike with the uniform kernel, the D,-optimal design differs from
the design from Fedorov et al. (1999) due to their different objective functions.

3.3 Ds-optimality for prediction at a finite number of

points

In this section, building on Section 3.2, we define a design criterion for when we wish to
predict the response at more than one point. We then find, for the uniform and Gaussian
kernels, the minimum number of design points needed. We also find designs for different

values of n and h for each kernel.

An optimal design for predicting at several distinct points x7, ..., x; simultaneously is not
necessarily the union of ¢ designs, each optimal for predicting at one of the points. This
is due to the fact that some design points may influence the prediction at several different

prediction points.

To find designs to predict at several points, we use a compound criterion. Atkinson
et al. (2007, p. 266), explained that minimising the sum of the variances could give a
large variance too much prominence. A better alternative is to maximise the product of
the reciprocal variances of 60( ¥) for i = 1,...,q. This is equivalent to maximising the

compound objective function

Zl !M22 £n| (3.20)

where M; is the information matrix for the local linear estimator for predicting at one point
x = x; (see Section 3.2), and Moy, is the partition of information matrix, M;, for nuisance

parameter 3 (z}) corresponding to Moo in (3.5). Therefore, analogous to Criterion 3.1, we
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find designs using the following criterion.

Criterion 3.2. Design &, is compound Ds-optimal for prediction at 7, ..., x; using the

local linear estimator if it maximises

- > K 2oioy wf K (5) — [ wi K (5P
\I/(gn) = z_;log ( hZ;L:1 U,LQJK(U}?> ) )

where w;; = x; — x;.

We consider designs for the uniform and Gaussian kernels separately.

3.3.1 Uniform kernel: minimum number of design points and

the corresponding optimal design

In this section we consider the minimum number, n,,;,, of design points required to make
a prediction at g ordered points, 27 < ... <z, and identify a D,-optimal design. Recall
that when ¢ = 1, we only required two design points to make a prediction using the local
linear estimator. When predicting at ¢ > 1 points with the uniform kernel, we require two

design points within A of each prediction point z} (i = 1,...,q).

When using the uniform kernel, only design points x; satisfying |z; — z*| < h influence
the prediction at x*. Define [z — h,z} + h| as the prediction interval for z}. For two
neighbouring prediction points, x; and zj,;, there are two different scenarios: the in-
tervals [z} — h,z} + h] and [xf = hoxi + h] either intersect, or they do not. These
two scenarios can be defined, respectively, as ‘overlapping’ interval and ‘disjoint’ interval

prediction.

In the latter case, the design points that influence the prediction at x} do not influence the
prediction at x}, ;. Hence, four design points are required, a pair on each interval, and the
pairs can be chosen independently. When the prediction intervals intersect, the position
of the design points used for predicting at = will affect the position of design points used
for predicting at xj ;. Then we require fewer than four design points. This is discussed in
Section 3.3.1.2.
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3.3.1.1 Disjoint prediction intervals

It is clear that in order to predict at ¢ points which have non-intersecting prediction
intervals, we require at least two design points for each of the ¢ points. Therefore, the
minimum number of design points required is n,,;,, = 2q. A Dg-optimal design, under
Criterion 3.2, with this minimum number of points and the uniform kernel is one which

has two distinct design points for each z}, and satisfies (3.16) and (3.17) for each interval.

If there are n > 2q design points available, we must first ensure that two distinct design
points are allocated in the interval corresponding to each z7. We then must decide how
to allocate the remaining points. An optimal design must satisfy (3.16) and (3.17) for
each prediction point. Then if n; > 2 design points are within h of z, from (3.19), the

objective function (3.20) takes the value

V(&) = Zq:log (;—h) : (3.22)

Designs found numerically with n > 2¢ design points demonstrated that if ¢ divides n
exactly, then ny = ... = n, = n/q. If ¢ does not divide n exactly but divides n — r where
r < q, then (n —r)/q points were used for ¢ — r intervals and (n —r + ¢q)/q points used for
r intervals. It does not matter which of the r intervals have an extra point, each possible
allocation gives an optimal design. Once again the n/q, (n —r)/q or (n —r + q)/q design
points in each interval must satisfy (3.16) and (3.17).

Example 1

Suppose that ¢ = 2 with 27 =0, 25 =1, h = 0.2 and n = 6. The optimal design found
numerically for n; = 3 and ny = 3 had an objective function value of 4.03; setting n; = 2
and ny = 4 gave a corresponding value of 3.91. Therefore we can see that equally dividing
points is preferred under Criterion 3.2. For both choices of nq,ny, any design satisfying
(3.16) and (3.17) on both [—0.2,0.2] and [0.8,1.2] is optimal for predicting at =3 and z3.

Example 2

Consider ¢ = 2 with 7 = 0, 5 = 1, h = 0.2 and n = 7. Numerical results show that
setting ny = 3 and ny =4 or n; = 4 and ny = 3 gives an objective function value of 4.32,
whereas setting n; = 2 and ny = 5 gives the value of 4.14. Again, in all three cases optimal
designs have points z1, ..., z; satisfying (3.16) and (3.17) in each interval for predicting

* *
at ] and x3.
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3.3.1.2 Overlapping prediction intervals

If the prediction intervals around any two prediction points intersect, then n,,;, < 2q.

There are two different cases which must be considered:

1. The intersection of two prediction intervals is itself an interval.

2. The intersection of two prediction intervals is a single point.

In this section, designs denoted ‘optimal’ have not been proven to be optimal. However
we give firm intuitive reasoning on why these designs may be optimal. Numerical results

from Section 3.3.3 confirm our conjecture.

Two simple examples for each of cases 1 and 2 above are as follows.

Example 3

Take the simplest case where we have to predict at two points, x] and =3, and
[#] — h, 2] + h] N [25 — h, x5 + h] = [25 — h,x] + h] # 0.

Then it is possible to predict at both x] and 3 with any two design points x; and x5 such
that z1,z9 € [x3 — h, 2} + h).

Example 4

The degenerate case of two overlapping intervals is when 25 —h = 27 + h. Here we require
three design points, 1, x5 and x3, with the unique three point D-optimal design having
xy =} — h, x9 = 2] + h and x3 = 2} + h. This design is the only design to satisfy (3.16)

and (3.17) on each interval.

We now investigate four cases for predicting at ¢ points, carefully defining when more than

two prediction intervals are dependent.
Case (i): prediction intervals with intersection of the form [a,b], a < b

We know that there must be at least two design points within A of each prediction point.
Therefore two points are required within each disjoint intersection of prediction intervals.
We only need to consider the disjoint intersections, as any overlapping intersections can

be treated as a single interval.
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Example 5

Suppose that predictions are required at five points z7, x5, x5, 2}, x; where the prediction
intervals for xf, z3, 2% have intersection [x§ — h, 2z} + h], and the prediction intervals for

x}, x% have intersection [z — h, z} + hl.

The intersections of these two prediction intervals are disjoint when [z} — h, 2]+ h| N [zf —
h, 3+ h] = (), that is, when zf — h > 27+ h. If these prediction intervals were not disjoint
then their intersection would result in a single prediction interval [z — h,z} + h] N [xf —
h,x} + h| = [xf — h, 2] + h].

The union of all disjoint intersections is given by

U [x:k+1 — h, kaH + hi,

where [ is the total number of disjoint intersections. We define ag = 0, a; = ¢ and a1 as

the largest integer such that

Ak+1

() [z —h,a] + 0] #0.

i=ar+1

Note that ax; > ai. Our definition of the union of disjoint intersections ensures that no
two disjoint intersections may involve the same prediction interval. This avoids a design
having more design points than necessary. The minimum number of design points required

is 21, since we require two design points per disjoint intersection.
Example 6

Here we consider an example when ¢ = 5 prediction points: ] = 0, 25 = 0.2, 25 = 0.35,

xy = 0.8 and zf = 0.9, and h = 0.2. Then there are two disjoint intersections of prediction

intervals [0.15,0.2] and [0.7, 1]. Prediction intervals for 2§, 25 and z form one intersection;

the other intersection is formed by the intersection of prediction intervals for x} and x}.

We have that ag = 0, a; = 3 and ay, = 5. Since there are two disjoint intersections, we
x

require at least four points for predicting at 7, ...,z two points in [0.15,0.2] and two

points in [0.7,1].

The locations of optimal design points with these intersections need to be determined

numerically. For all examples of case (i), including Example 6, we found that design points
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were placed at each end of the intersection intervals. That is, the compound Dg-optimal

design under Criterion 3.2 is given by

{3:* —h,xzk+1+h:k:0,...,l—1}.

Ak41

In Example 6, the optimal design had points at z; = 0.15, 29 = 0.2, x3 = 0.7 and x4, = 1.
Case (ii): intersecting prediction intervals in the form of ¢ — 1 distinct points

Now we consider the situation where ¢ prediction points are equidistant and the distance
between consecutive points is exactly h. Then the set of ¢ — 1 points which occur on the

boundaries of the intervals can be defined as

q—1
{z7+2k—1Dh:k=1,..,9g—1} = U ([m’{ + (2k — 1)h, 27 + (2k + 1)A]
k=0

A2 + (2k + h, 2t + (2% + 3)h]> . (3.23)

The minimum number of design points required to predict at 7, ..., z; is ¢+ 1 and these
design points are given by the set (3.23) augmented by the two points at the end of the

first and last prediction interval. i.e. the set of design points is

{e7+2k—-1h:k=0,..,q}.

This design is uniquely optimal since it is the only design satisfying (3.16) and (3.17) for

each prediction interval.
Example 7

Consider ¢ = 3 prediction points: zj = 0.2, 5 = 0.6 and 25 = 1 and h = 0.2. The
prediction intervals intersect at 0.4 and 0.8. Therefore the optimal design is given by
x1=0,29=04, x3=0.8 and x4 = 1.2.
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Case (iii): intersecting prediction intervals in the form of distinct points and

one interval [a,b], a < b

Here we combine cases (i) and (ii). The first ¢—1 consecutive prediction intervals intersect
at ¢ — 2 distinct points and the intersection between the (¢ — 1)th and gth prediction
intervals is an interval. We would expect to require ¢ design points to predict the response
at the ¢ — 2 points from the first ¢ — 1 intersections. However, the intersection of the

(¢ — 1)th and gth prediction intervals must also be taken into account.

The union of the intersections of these ¢ intervals is

q—1 k+1 q—1
U ﬂ [zF — h,z} +h] = U (2}, + h, 2} — h],
k=1 i=k k=1

which is equal to

{ei+@2k—Dh:k=1,...,q—2}U [x; — h,z}_; + h],

where

(2 — hal 4+ h] =[xy — h,al_y + k] O [2f — h,al+h] .

The minimum number of design points required is 1, = ¢+ 1. If 2| + h # x}, the first

q design points are given by

{e74+ 2k —1h:k=0,....,q—1}.

Then the two design points in the optimal design for predicting at zj will be z; | +h
(from the prediction of x}_,) and z} + [z} — (z;_, +h)] = 22} — 141 — h. These two design
points are equidistant from z7. This design is optimal since (3.16) and (3.17) are satisfied

for all ¢ prediction points.

However, if x;_; + h = z} the first ¢ — 1 design points are given by
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{74+ 2k —1Dh:k=0,..,g—2}.

Using the above argument for z;_; + h # zj, the two remaining design points would be
placed at 2} _, +h, included in (3.3.1.2), for predicting at x;. However, using this design it
would be impossible to make a prediction at xy as we only have one distinct design point
in [z; — h,2%q + h]. The best we can do is put two points very close, but not equal, to
xy 1+ h, so that (3.16) and (3.17) are almost satisfied for all ¢ (see Section 3.2.1.2 for a
similar argument). Therefore the two remaining design points are placed at 2} |, +h —§
and xj_; +h + ¢ for small 6 > 0.

Example 8

For making predictions at ¢ = 3 points: 27 = 0.2, 25 = 0.6 and x5 = 0.85, and h = 0.2, the
prediction intervals for ] and 2 intersect at 0.4 and the prediction intervals for =3 and
x} intersect on [0.65,0.8]. Therefore the Ds-optimal design is given by 27 = 0, 25 = 0.4,
x3 = 0.8 and x4 = 0.9.

Example 9

If we change Example 8 so that 7 = 0.2, 25 = 0.6 and 25 = 0.8, again with h = 0.2, the
problem is slightly different. Then x5 + h = x5 = 225 — x5 — h. Naively, this suggests that
two design point are placed at 0.8, giving design points x1 = 0, 9 = 0.4, x3 = 0.8 —  and
x4 = 0.8 + 6 for small § > 0.

Case (iv): Internal prediction intervals intersect at points, and the intersec-
tion of the prediction intervals for the first two and last two points are both

intervals

In this case ¢ — 2 consecutive prediction intervals for prediction at x3,...,z; ; intersect
at ¢ — 3 distinct points. There are interval intersections between the prediction intervals

for x7 and 3, and between the (¢ — 1)th and gth prediction intervals.

The union of intersection of these ¢ intervals is given by (3.24) and can be simplified as

{27+ Qk—Dh:k=2,.,q—2}U[z;—haj+h U [z} —ha}_,+h],

where
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and
[xz —h,x,_ + h] = [x;_l —hyxy  + h] N [m; — h,z, + h] .

The minimum number of design points required is npi, = ¢ + 1. If 27 ; + h # x; and

x} + h # x5 design points z, ..., 2,1 are given by

{e7+ 2k —1Dh:k=1,..,q—1}. (3.25)

The two design points for predicting at zj will be z;_; + h, included in (3.25), and 2z, —
x4—1 — h as in case (iii). The two design points for predicting at z7 are 2] — (z5 —h—27) =
225 — x5+ h and o5 — h, included in (3.25). This design is optimal since (3.16) and (3.17)

are satisfied for all ¢ prediction points.

However, as in case (iii), if zy_y+h = a; and x7+h = 25 then the design points @3, ..., T4—2

are given by

(e 2k —1Dh:k=1,...q—1}.

Under the above argument, for z; ; +h # x; and z] + h # x5 there would be two design
points placed at each of x5 — h and zj_; + h. This prevents us from making a prediction
at x7 and z; since we only have one distinct design point for each prediction. The best we
can do is put two points very close to x5 — h and z;_; + h, but not equal, so (3.16) and
(3.17) are almost satisfied for all g. Therefore the remaining design points are placed at
ry—h—0,25—h—04,r; +h—0dand z; ; +h+0 for small 6 > 0. This design does not

satisfy the sufficient conditions in Corollary 3.1 for predicting at either z7 and .
Example 10

Consider making predictions at ¢ = 4 points: ] = 0.2, 25 = 0.5, 5 = 0.9 and z; = 1.2,
with h = 0.2. The optimal design is given by xz; = 0.1, 2o = 0.3, z3 = 0.7, z, = 1.1 and
Ty = 1.3.

Example 11

To make predictions at 7 = 0.3, x5 = 0.5, x5 = 0.9 and 2z} = 1.2, with A = 0.2, the
problem is slightly different. Now z] + h = x5 = 223 — 27 — h suggesting that two design
points are put at 0.3. Therefore we have design points 1 = 0.3—6, 9 = 0.34+0, z3 = 0.7,
x4 = 1.1 and x5 = 1.3, for small § > 0.
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In general, it is possible to predict at ¢ points which have overlapping prediction intervals
in a number of different ways. A combination of results from cases (i)-(iv) can be applied
to find the minimum number of design points and to give a compound Dg-optimal design;

either established analytically or through numerical search.

3.3.2 Minimum number of design points required to predict at

g points using the Gaussian kernel

The minimum number of design points required for predicting at ¢ points with the Gaus-
sian kernel is two. This is because K (u;;) > 0 for all co < u;; < oo and hence each design
point influences the prediction at all ¢ points. However, these predictions may not be very

accurate when a large number of predictions is required and n = 2.

3.3.3 Prediction at ¢ points for different n and h

In this section, we find designs for predicting at ¢ points when more than the minimum
number of design points is available, i.e. n > n,,;,,. Optimal designs are found under
Criterion 3.2, again using the Nelder-Mead simplex algorithm. We present two sets of
optimal designs for each of the uniform and Gaussian kernels: designs for predicting at
x} = 0,25 = 0.5 and designs for predicting at 27 = 0,25 = 0.6,25 = 0.8,z; = 1.1.
Tables 3.1 and 3.2 give designs for prediction with the uniform kernel, and Tables 3.3
and 3.4 for prediction with the Gaussian kernel. All tables present optimal designs for

h =0.2,0.5,0.75,1 and n = 2,3,4,5,6,7,8, where possible.

In this section, the designs found numerically have not been proven to be optimal. How-
ever, they will be at least highly efficient under Criterion 3.2, and for brevity we denote

them as optimal.

3.3.3.1 Optimal designs for the uniform kernel.

In this section, designs are found for n > n,,;, for predicting at ¢ points where a design may

have disjoint or overlapping prediction intervals, depending on the value of the bandwidth,

h.

When h = 0.2, the prediction intervals for predicting at {0,0.5} are disjoint. Therefore a
design is optimal if it satisfies (3.16) and (3.17) for each interval and |u;;| < h for every
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prediction point, 7. Table 3.1 gives one optimal design for each n when h = 0.2; however
there are infinitely many optimal designs. Since the prediction intervals for 0 and 0.5 are
disjoint, four points are required to make a prediction. For this reason, there is no optimal

design given for n = 2, 3.

For h = 0.5,0.75,1, the prediction intervals for predicting at xj = 0,25 = 0.5 intersect.
For several values of n and h = 0.5,0.75, two optimal designs were found for predicting at
x] = 0,25 = 0.5 , both of which are given in Table 3.1. These designs, £ and —¢, have
the property that —¢&, is the design composed of the reflections of the points from & in
the line x = 0.25.

Unlike when predicting at 7 = 0,25 = 0.5 , there was only one optimal design found for
predicting at 7 = 0,25 = 0.6, 25 = 0.8,z = 1.1; see Table 3.2. This is perhaps because
the prediction points are not equally spaced, so we cannot find two optimal designs which
are reflections of each other. For prediction at zj = 0,25 = 0.6, 25 = 0.8,z = 1.1 with
h = 0.2, at least six design points are required as there are three disjoint intersections of

overlapping prediction intervals. Hence no optimal designs were found for n = 4, 5.

It was difficult to find optimal designs for A = 0.5 when predicting at 27 = 0,25 = 0.6, 25 =
0.8 and zj = 1.1 for large values of n, see Tables 3.2. Of the values for h investigated,
h = 0.5 is the smallest value of h which gives overlapping prediction intervals when
predicting at the above four points. However, the pattern of overlap was complicated for
this value of h. This led to a complicated objective function and the optimisation routine

did not always converge.

In general, for both sets of prediction points, as h is reduced an optimal design has more
support points. This is explained by the fact that only points very close to x} influence
the prediction. Hence we require more distinct design points to account for the increased

complexity when making a prediction with smaller h.
Comparison to the optimal designs of Miiller (1992)

We now compare our results to those of Miiller (1992) for the Nadaraya-Watson estimator.
Recall that this estimator is the local polynomial estimator with p = 0 and the prediction
is given by (2.2). Using this estimator, only one point is required to lie within A of z* for

a prediction to be possible.

Miiller (1992) found approximate designs for making predictions at nine points, equally
spaced on the interval [—1, 1], where the design region consisted of the same nine points.
The Nadaraya-Watson estimator and the uniform kernel were used with h = 0.1. We

found designs using the same set up as Miiller (1992), except that the design region was
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n h=0.2 h =05
2 - 0.00 0.50
3 - -0.05 0.05 0.95
4 0.02 0.02 043 0.57 0.50 021 0.29 1.00
51-0.20 001 0.19 031 0.69| -0.50 0.00 0.25 0.50 1.00
6 | -0.20 0.01 0.19 0.35 0.56 0.59 -0.50 0.00(2) 0.50(2) 1.00
7 -0.20 0.01 0.19 0.40 (a) -0.50 0.00(2) 0.13 0.50 1.00(2)
0.45 0.46 0.70 (b) -0.50(2) 0.00 0.37 0.50(2) 1.00
8 -0.20 -0.07 0.10 0.17 (a) -0.50 0.00(3) 0.30 0.50 1.00(2)
0.36 0.42 0.53 0.70 (b) -0.50(2) 0.00 0.20 0.50(3) 1.00
12 | -0.20 -0.06 0.05(2) 0.07 0.10 -0.50 -0.49 0.00(3) 0.06
0.31(2) 0.50 0.51 0.67 0.70 0.39 0.44 0.45 1.00(3)
15| -0.20 -0.07 0.03(2) 0.04 -0.50(3) 0.02 0.05
0.05 0.12 0.30 0.41(2) 0.10(2) 0.22 0.40(2)
0.43 0.52 0.61 0.62 0.70 0.43 0.49 1.00(3)
h=0.75 h=1
2 -0.25 0.75 ~0.50 1.00
3 (a) -0.25 0.27 1.25 -0.50 0.25 1
(b) -0.75 0.23 0.75
4 (a) -0.75 -0.21 0.75(2) -0.50(2) 1.00(2)
(b) -0.25(2) 0.71 1.25
5| (a)-0.75-0.25 0.53 0.75(2) -0.50(2) 0.25 1.00(2)
(b)-0.25(2) -0.03 0.75 1.25
6 | (a)-0.75-0.25(2) 0.75(3) -0.50(3) 1.00(3)
(b) -0.25(3) 0.75(2) 1.25
7 | (a) -0.75 -0.25(2) 0.75(4) (a) -0.50(3) 0.18 1.00(2) 1.50
(b) -0.25(4) 0.75(2) 1.25 (b) -1.00 -0.50(2) 0.33 1.00(3)
8 | -0.75-0.25(3) 0.75(3) 1.25 -0.50(4) 1.00(4)

Table 3.1: Ds-optimal designs under Criterion 3.2 for predicting at 7 = 0 and 23 = 0.5,
using the uniform kernel and differing numbers of design points and values for h. Number of
repetitions of a design point in parentheses; (a) and (b) indicate designs that are reflections.
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n h=0.2 h=20.5

4 - +0.30 0.90 1.29

5 - -0.50 0.30 0.39 1.10(2)

6 +0.19 0.58 0.62 0.98 1.22 -0.50 0.30(2) 0.89 1.10 1.30

7 | £0.98 0.40 0.61 0.79 1.00 1.20 | -0.50 0.30(3) 0.93 1.10 1.30

8 +0.11 0.60(3) 0.10(2) 1.30 -0.50 0.30(3) 0.89 1.10(2) 1.30
h=0.75 h=1

2 0.35 0.75 0.10 1.10

3 -0.15 0.35 1.35 -0.20 0.27 1.60

4 -0.15 0.05 0.75 1.35 -0.20 0.20 1.41 1.60

5 -0.15 0.05 0.35 1.35(2) -0.20 0.10 0.12 1.60(2)

6 | -0.750.050.35 0.75 1.35(2) -0.20 0.10(2) 1.60(3)

7| -0.750.05(2) 0.75(2) 1.35(2) -0.20 0.10(3) 1.60(3)

8 [ -0.75 0.05(2) 0.35 0.63 1.35(3) | -0.20(2) 0.10(2) 0.25 1.60(3)

Table 3.2: Ds-optimal designs under Criterion 3.2 for predicting at x7 = 0,25 = 0.6, 235 =
0.8 and x; = 1.1, using the uniform kernel and differing numbers of design points and
values for h. Number of repetitions of a design point in parentheses.

the whole interval [—1,1]. We found exact designs instead of approximate designs.

We compared our designs with those of Miiller (1992) for h = 0.1. The optimal design
from Miiller (1992) consisted of support points at each of the nine prediction points, all
equally weighted. This is due to the fact that one point is required to be within h = 0.1 of
each of the prediction points and there is only one such point in the discrete design space:

the prediction point itself.

The design found by Miiller (1992) was optimal under our criterion and set-up. In contrast,
we set the prediction region to be the interval [—1,1]. Therefore an optimal design was
any set of points with one point lying within 0.1 of each prediction point, again equally

weighted.

3.3.3.2 Optimal designs for the Gaussian kernel.

The Gaussian kernel is different from the uniform kernel in that it is not truncated. The
minimum number of design points required to make a prediction is two, as these are

sufficient to fit a straight line on the whole design region (see Section 3.3.1.2).

We consider predicting at the sets of points 27 = 0,25 = 0.5 and 2] = 0,25 = 0.6, 25 =
0.8,z; =1.1forn=2,3,4,5,6,7,8,12,15 and h = 0.2,0.5,0.75, 1.

Table 3.3 shows the results for predicting at {0,0.5}. We see that, for each value of
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n, the distinct design points become further apart as h increases. This is in line with
our expectation, as increasing the bandwidth gives a design point further away from a
prediction point more influence on the prediction at that point. We also notice that for
even values of n each optimal design has only two distinct design points, with n/2 points
at 0 — a and n/2 points at 0.5 + a. Note that for a given h, the value of a is constant.
When n is odd, there are two optimal designs, both with only two distinct design points:
(n —1)/2 points at 0 — ¢ and (n + 1)/2 points at 0.5 + b or (n+ 1)/2 points at 0 — b and
(n—1)/2 points at 0.5+ ¢ (b < a < ¢).

For example, for h = 0.5 we see a = 0.15. If n =5, then ¢ = 0.09 and b = 0.23. However,
if n = 15 then ¢ = 0.13 and b = 0.18. As n increases, b increases towards a and ¢ decreases
towards a. There is an exception when n = 3 for h = 0.5,0.75, 1. In these cases, a design
point is put at 0.25, half-way between the prediction points and then two points are placed

equidistant from 0 and 0.5.

We see similar patterns when predicting at the four points 27 = 0,25 = 0.6, 25 = 0.8, 2} =
1.1, see Table 3.4. Once again the distinct design points become more spread out as h
increases. It is also noticeable that for smaller A~ we have more support points than for
larger h. This is explained by the fact that the prediction is more local for small A. Only
points very close to z have a large amount of influence. Hence we require more support

points to account for the increase in complexity driven by h.
Comparison of optimal designs with those of Fedorov et al. (1999)

We compare the designs found by the two approaches on an example for predicting at
eleven equally spaced points in the interval [—1,1]. Fedorov et al. (1999) set the design

region to be the discrete set:

{—1,-0.98,-0.96,--- ,0.98,1},

whereas again, our design region was the interval [—1,1]. We compared the design from
Criterion 3.2 for h = 0.25, with the corresponding design of Fedorov et al. (1999) when
the standard deviation is 1/6.

For n = 15, our design has points
{£0.98(2), +0.53(3), +0.16(2),0.00} ,

with 7 distinct or support points, where (2) indicates 2 repetitions of the design point. The
optimal design in Fedorov et al. (1999) had support points {—1, —0.55, —0.2,0.2,0.55, 1},
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with roughly 50% more weight at -0.55 and 0.55 than at the other support points. The

designs from the two methods are at least qualitatively similar.

Note, that it was computationally easier to find optimal designs using the Gaussian kernel

than for the uniform kernel as fewer iterations of the optimisation routine were required.

n h=0.2 h=0.5

2 -0.02 0.52 -0.15 0.65

3 (a) -0.01(2) 0.53 -0.26 0.25 0.76

(b) -0.03(2) 0.50

4 -0.02(2) 0.52(2) -0.15(2) 0.65(2)

5 | (a) -0.01(3) 0.52(2) | (a) -0.09(3) 0.73(2)
(b) -0.02(2) 0.51(3) | (b) -0.23(2) 0.59(3)

6 -0.02(3) 0.52(3) -0.15(3) 0.65(3)

7 | (a) -0.01(4) 0.52(3) | (a)-0.10(4) 0.71(3)
(b) -0.02(3) 0.51(4) | (b) -0.21(3) 0.60(4)

8 -0.02(4) 0.52(4) -0.15(4) 0.65(4)

12 -0.02(6) 0.52(6) -0.15(6) 0.65(6)

15 -0.01(8) 0.52(7) -0.13(8) 0.68(7)

-0.02(7) 0.51(8) -0.18(7) 0.63(8)
h=0.75 h=1

2 -0.25 0.75 -0.33 0.83

3 -0.37 0.25 0.87 -0.47 0.25 0.97

4 -0.25(2) 0.75(2) -0.33(2) 0.83(2)

5 | (a) -0.15(3) 0.87(2) | (a) -0.20(3) 0.98(2)
(b) -0.37(2) 0.65(3) | (b) -0.48(2) 0.70(3)

6 -0.25(3) 0.75(3) -0.33(3) 0.83(3)

7 | (a)-0.17(4) 0.83(3) | (a) -0.24(4) 0.93(3)
(b) -0.33(3) 0.67(4) | (b) -0.43(3) 0.74(4)

8 -0.25(4) 0.75(4) -0.33(4) 0.83(4)

12 -0.25(6) 0.75(6) -0.33(6) 0.83(6)

15 | (a) -0.21(8) 0.78(7) | (a) -0.28(8) 0.88(7)
(b) -0.28(7) 0.71(8) | (b) -0.37(7) 0.79(8)

Table 3.3: Ds-optimal designs under Criterion 3.2 for predicting at xj = 0 and 235 =
0.5, using the Gaussian kernel and differing numbers of design points and values for h.
Number of repetitions of a design point in parentheses; (a) and (b) indicate designs that
are reflections.
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n h =02 h=105

2 0.00 1.10 0.00 1.09

3 0.00 0.61 1.10 -0.09 0.72 1.23
4 0.01 0.54 0.80 1.15 -0.05 0.07 1.09(2)
5 -0.01 0.60(2) 1.10(2) -0.03(2) 0.78 1.16(2)
6 0.00(2) 0.61(2) 1.10(2) -0.09(2) 0.39 1.11(3)
7 1-0.01(2) 0.57(2) 0.79 1.13(2) | -0.01(3) 0.86 1.13(3)
8 -0.01(2) 0.60(3) 1.10(3) | -0.05(3) 0.49 1.11(4)
12 | -0.01(3) 0.58(4) 0.76 1.11(4) | -0.02(5) 0.63 1.11(6)
15 0.00(5) 0.61(5) 1.10(5) 0.00(7) 1.08(8)

h=10.75 h=1

2 0.05 1.21 011 1.32

3 022 0.82 1.27 -0.38 0.91 1.29
4 -0.05(2) 1.21(2) 0.11(2) 1.32(2)
5 -0.15(2) 1.12(3) 0.27(2) 1.18(3)
6 -0.18(2) 0.31 1.20(3) -0.11(3)  1.32(3)
7 -0.12(3) 1.14(4) -0.22(3) 1.22(4)
8 -0.17(3) 0.69 1.18(4) -0.31(3) 1.15(5)
12 -0.13(5) 1.13(7) -0.24(5) 1.21(7)
15 -0.15(6) 1.12(9) -0.27(6) 1.18(9)

Table 3.4: D,-optimal designs under Criterion 3.2 for predicting at 27 = 0,25 = 0.6, 25 =
0.8 and x; = 1.1, using the Gaussian kernel and differing numbers of design points and

values for h. Number of repetitions of a design point in parentheses.
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3.4 Prediction across an interval

We now investigate designs for predicting across an entire continuous interval [—1, 1] rather
than at a discrete set of points. We define a new objective function which is the continuous

version of (3.21), and will be used in a compound D -optimality criterion to find designs.

1 ) o [Z? 1 mJ;x K x];z* 2 )
w(E,) = %/_llog ;K( 3 >_ s E%x*gz[(((%x»«)) dx
_ /_11 log [L(z")] da”, (3.26)
where

-t ffree) B

Note that, although we do not restrict the design region to [—1, 1], we will see that most

points in the resulting designs are in, or close to, the interval [—1,1].

We again find designs for prediction using both the uniform and Gaussian kernels. The
integral in (3.26) is analytically intractable for each of these kernels. Therefore we imple-
ment a numerical quadrature scheme to approximate this integral for each kernel. We have
used Legendre-Gauss quadrature to calculate the optimal weights and abscissae to approx-
imate (3.26), with the abscissae given by the roots of the Legendre polynomials. Details
of Gauss quadrature methods in general can be found in Golub and Welsch (1969). The
approximation to (3.26) involves a weighted sum of the objective function at p, abscissa

values over the integration region and is given by

WE) = Y mlos (L) 327

where x} are chosen as solutions to the Legendre polynomials and x; are Legendre-Gauss

weights.
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Criterion 3.3. An optimal design & for prediction across the interval [—1, 1] for the local

linear estimator maximises

Ve = Y mlos L)

Initially p, = 500 was chosen to give a very accurate approximation to (3.26). However, for
some larger values of n we found that it was impossible to run the optimisation algorithm
for enough iterations to converge to an optimal design. We therefore decided to choose p,
large enough to produce an accurate approximation but also small enough to enable the

optimisation to be performed in a reasonable time.

In order to choose an appropriate value of p,, we generated 500 random designs by random
selections of n points from [—1,1]. We then evaluated (3.27) for various values of p, for
each design and compared the results (see Figure 3.1 for p, = 25,500). A high correlation
between the values of the objective functions for designs under (3.27) for different p,

suggests we can use the smaller value of p, for design selection.

For some small values of n and h, for example, Figures 3.1(a) and 3.1(b), we see that
Pa = 25 does not produce sufficiently accurate results as there is not a strong correlation
between the objective function values for low —W(¢,) when calculated using p, = 25 and
Pa = H00. In these cases, we would not get the same optimal design. Hence, optimal
designs for these values of h and n were calculated using p, = 500. When A = 0.1, it

seems p, = 25 is sufficient for n > 7, see Figure 3.2.

In general, for other values of h, we use an approximation with 25 abscissa points
25
W) ~ Y milog [L(x))]. (3.28)
i=1

3.4.1 Optimal designs for predicting on [—1, 1| using the uniform

kernel

Table 3.5 gives optimal designs for Criterion 3.3 for predicting on the interval [—1, 1] using
the uniform kernel. It is important to note that for each value of h it was only possible to
find optimal designs for certain values of n. For example, when h = 0.2 we require at least
eleven points to predict over the whole interval of length 2. These eleven points are equally

spaced and ensure that there are at least two design points within h of any point in the
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Figure 3.1: Comparison of objective function values (—W¥(¢,,)) for 500 random designs with
Po = 25 and p, = 500. (a) n =3 and h = 0.1, (b) n =3 and h = 0.2, (¢) n = 3 and
h =0.5and (d) n =3 and h = 0.75.
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Figure 3.2: Comparison of objective function values (—W(&,)) for 500 random designs with
Pa = 25 and p, = 500 for n =7, h =0.1.
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interval [—1,1]. Otherwise, there are not two design points available for prediction over
every part of the interval. Therefore n = 12 is the first optimal design given in Table 3.5.
In general the designs are symmetric, or close to symmetric, with points spread across the
interval. For smaller n and larger h, the numerical optimisation was more straightforward

and faster.

For some values of n and h the designs were not quite symmetric. This may be because
the optimum has not been identified exactly. However, this is not necessarily the case.
In Table 3.5, for example, when n = 7 and h = 0.5 the optimal design found is §; =
{-1.01,-0.57,-0.25,0.11,0.30,0.64, 1.01} with ¥(&*) = 3.26. The value of the objective
function was calculated for a number of symmetric designs to see if there was an obvious

improvement to be made. However, the best symmetric design found was
&, = {—1.01,-0.60,0.28,0.00,0.28,0.60, 1.01}

with W(&,) = 3.23.

3.4.2 Optimal designs for prediction on an interval with the

Gaussian kernel

Table 3.6 gives compound Optimal designs under Criterion 3.3 for predicting over the
interval [—1, 1] using the Gaussian kernel. Firstly, we notice that the optimal designs are
symmetric about zero. This is not unexpected, as both the interval we are predicting on
and the kernel function are symmetric about zero. In a similar manner to predicting at
q = 4 points in Section 3.3.3, fewer support points are required as h increases for fixed
n. Secondly, it is noticeable that as h increases, more design points are placed near the
ends of the interval. These points are more influential in predicting at points closer to the

centre of the interval for larger h.

A uniform kernel design from Section 3.4.1 can be quantitavely compared to a design
using the Gaussian kernel by calculating the efficiency of the ‘uniform kernel” design for
prediction with the Gaussian kernel. Two examples are considered; (i) h = 0.5 and n = 5,
and (ii) h = 0.5 and n = 15. The efficiency is calculated as

Eff = exp {\Ifg(fu) — ‘I’G(fc)} ,

where Ug(£%) and U (£9) are the values of the objective function, calculated with the

Gaussian kernel, using (i) £“, the optimal design under Criterion 3.3 with the uniform
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n h=0.2

12 | -1.13 -0.85 -0.64 £+0.43 -0.27 -0.04 0.07
0.28 0.65 0.86 1.12

15| -1.11 -0.93 -0.75 -0.54 -0.39 -0.28 -0.15
0.00 0.19 0.33 0.40 0.56 0.76 0.95 1.12

h=0.5

> £1.00 £0.50 0.00

6 £0.99 £0.55 +0.20

7 £+1.01 -0.57 -0.25 0.11 0.30 0.64
8 +1.04 £0.71 £0.40 +0.16

12 -1.12 -0.85 -0.62 -0.44 -0.26 -0.05

0.06 0.28 0.46 0.65 0.87 1.13
15 | -1.12 -0.96 -0.78 -0.57 -0.41 -0.32 -0.19
-0.03 0.16 0.28 0.38 0.51 0.76 0.93 1.11

h=0.75

1 -0.94(2) -0.25(2)

5 +1.09 £0.53 0.00

6 +1.10 0.64 + 0.13 0.63

7 +1.10 -0.82 -0.23 -0.01 0.22 0.81
8 +1.17 40.83 -0.46 -0.10 0.09 0.47
12| 41.36-1.20 -0.82 -0.49 -0.34 -0.07

0.02 0.31 0.51 0.93 1.08
15 | -1.40 +£1.20 -1.03 -0.74 -0.47 -0.27 -0.05
0.01 0.08 0.24 0.51 0.71 1.05 1.39
h=1
£1.00 0.00
+£1.1221 £0.32
+1.16 +£0.52 0.01
-1.19 £-0.65 +-0.29 1.18

£-1.30 -0.84 £0.36 0.01 0.85
+1.29 -0.89 £0.48 -0.20 0.23 0.91
-1.36 -1.18 -0.80 -0.49 -0.36 -0.12

0.07 0.33 0.52 0.93 1.09 1.34
15| -1.31 -1.19 -1.05 -0.75 -0.52 -0.38 -0.28
0.11 0.15 0.37 0.50 0.64 1.02 1.16 1.35

00 ~J O O = W

—_
[\]

Table 3.5: Ds-optimal designs under Criterion 3.3 for predicting over the interval [—1, 1]
using a uniform kernel and differing numbers of design points and values for A. Number
of repetitions of a design point in parentheses.
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n h=0.2 h=0.5

2 +0.16 +0.65

3 +0.72 0.00 +0.88 0.00

4 +0.88 40.31 +0.96 =+0.31

5 +0.92 +0.46 0.00 +1.00 +0.53 0.00

6 +0.93 +0.54 =£0.18 +0.88(2) 0.00(2)

7 +0.95 +£0.59 =£0.30 0.00 +0.92(2) £0.27 0.00

8 + 096 +064 +039 +£0.12 +0.95(2) £0.50 0.00(2)

12 £0.98 £0.85 £0.52(2) £0.17(2) £0.88(4) 0.00(4)

15 | £0.95(2) +0.61(2) £0.43 £0.20(2) 0.00 +0.88(5) 0.00(5)
h =0.75 h=1

2 +0.77 +0.87

3 +0.98 0.00 +1.09 0.00

4 +0.86 +0.68 +0.87(2)

5 +0.88(2) 0.00 +0.99 0.00

6 +0.85(2) +0.60 +0.87(3)

7 +0.85(3) 0.00 +0.95(3) 0.00

8 +0.85(3) +£0.52 +0.87(4)

12 +£0.84(5) +0.33 +0.87(6)

15 +0.81(7) 0.00 -0.83(8) 0.91(7)

Table 3.6: Ds-optimal designs under Criterion 3.3 for predicting over the interval [—1, 1]
using a Gaussian kernel and differing numbers of design points and values for h. Number
of repetitions of a design point in parentheses.

kernel and (ii) €9, the optimal design under Criterion 3.3 using the Gaussian kernel.

In case (i), the uniform optimal design is £* = {—1.00, —0.50,0.00, 0.50, 1}, the Gaussian
optimal design is £€¢ = {—1.00, —0.53,0.00, 0.53, 1} and the efficiency is 0.998. In case (ii),

the uniform optimal design is

¢ =[—1.12,-0.96, —0.78, —0.57, —0.41, —0.32, —0.19,
—0.03,0.16,0.28,0.38,0.51,0.76,0.93, 1.11],

the Gaussian optimal design is £5 = {£0.88(5),0.00(5)} and the efficiency is 0.932, where
(5) indicates 5 repetitions of the design point. In these two examples the uniform kernel

designs perform well.
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3.5 Application to the tribology experiment

The designs found in Section 3.4 can be applied to experiments such as the tribology
example introduced in Section 1.3. Recall that the tribology experiment consisted of 16
runs, each of which resulted from the application of a different treatment. The response of
interest is the combined wear of the disc and pin, see Figure 1.1. The aim was to predict
this wear over the time interval [501,2400], where a time point will be denoted by xz. We
can predict the wear over this interval using the whole dataset, i.e. 1900 observations.
However, in this section, we demonstrate the application of the design methods in this
chapter by choosing a small subset of the observations with which to predict the wear.
We chose the Gaussian kernel for prediction, as it was possible to find designs with large
n for this kernel. We assess the performance of the designs from Section 3.4, for Criterion
3.3 for n = 15, 20, 25, 30 design points. To do this, a comparison is made of the smooth fit
produced by the optimal design with the smooth fit produced using the whole dataset. We
also compare the optimal designs to uniform designs composed of equally spaced points

over the interval [—1, 1]. Comparisons are made in terms of mean squared error.

Optimal designs were found for bandwidths h = 0.2,0.5 and n = 15,20,25, and for
h = 0.1,0.3 and n = 15,20,25,30 (as the optimisation was faster for h = 0.1). The
bandwidths and designs were transformed from the interval [—1,1] to [501,2400]. For
instance, h = 0.1,0.2,0.3 and A = 0.5 on the transformed interval [501,2400] correspond
to smoothing parameters of 95, 190, 285 and 475. For each run, predictions were made
using designs with all combinations of n and h. Immediately we saw that h = 0.5 was
too large for all datasets since many features of the data were oversmoothed. Therefore
we chose to investigate designs for h = 0.1,0.2 and 0.3 where the selection of A was done
‘by eye’. Designs for each of these bandwidths can be found in Table 3.7. Note that these

designs were calculated specifically for this application and cannot be found in Table 3.6.

The results are illustrated using two runs, run 2 and run 19, which exhibit very different
features. Figures 3.3 and 3.4 show the smoothed fits for these runs using bandwidths 0.2
and 0.1 respectively, for both the whole dataset and data from the corresponding optimal
designs. These bandwidths were chosen to allow enough locality to describe features of the
data. The difference in form of each run can be attributed to the different levels of factor
settings for each run (see Chapter 5). Figure 3.3 shows that the smooth fit calculated
from the whole dataset and from the data corresponding to the design points for run 2
are very similar for n = 20 and n = 25 (plots (b) and (c)). However, plot (a) shows that

15 design points were not sufficient.

For run 19, Figure 3.4 shows that the smooth fit calculated from the whole data and that
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n h=0.1
15 +0.98 +0.81 +0.67 +0.53 +0.40 +0.27 £0.13 0.00
20 +0.99 +0.87 +0.75 +0.66 +0.55 +0.45 +0.35 £0.25 £0.15 £0.05
25 +0.99 £0.94 +0.77(2) £0.63 -0.57 -0.49 -0.39
-0.34 -0.22 -0.19 -0.06 -0.02 0.10 0.15 0.25 0.32 0.41 0.48 0.58
30 0.99 +0.98 -0.81 +0.80 +0.71 £0.60(2) +0.49 -0.44 -0.36
-0.31 -0.21 -0.19 -0.07 -0.06 0.05 0.08 0.17 0.23 0.29 0.38 0.43 0.80 0.98
h=0.2
15 +0.95(2) £0.61(2) -0.43 £0.20(2) 0.00 0.42
20 +0.95 +£0.94 -0.94 +0.57(3) +0.38 £0.18 +0.16 +0.13 0.93
25 +0.96(3) £0.79 £0.55 -0.55 +0.54 -0.53 +0.23
+0.22 -0.19 -0.16 0.00 0.15 0.20 0.54 0.54
h=0.3
15 1£0.93(3) £0.41(3) £0.14 0.00
20 +0.93(4) +0.41(4) -0.16 £0.01 0.17
25 +0.93(5) -0.42 £0.41(3) -0.41 -0.18 -0.02 £0.01 0.20 0.40 0.43
30 | £0.93(6) £0.42(2) £0.41(2) +0.40 -0.39 -0.24 £0.00 0.01 0.03 0.19 0.42

Table 3.7: Further D-optimal designs under Criterion 3.3 for predicting over the interval
[—1,1] using a Gaussian kernel and differing numbers of design points and values for h.
Number of repetitions of a design point in parentheses.

from the design points are quite different, even for large values of n. Although small A can
cause the fit to be more ‘wiggly’, thus undersmoothing the data, the value of h = 0.1 was
chosen as no other value of h produced a fit which could predict the steep incline around
x = 1300. However, for each of n = 15, 20, 25, 30 the data were undersmoothed elsewhere
on the interval. This is due to the fact that, with this bandwidth, only a small number of

design points have a significant influence on the prediction at each point.

Another issue is the variability, in terms of the signal to noise ratio of the data, see Figure
3.5. This leads to the performance of the designs being very unstable. Placing a design
point at observation x;,; rather than at x; has the potential to make a big difference
in the prediction over the interval. Figure 3.6 shows the autocorrelation in the errors
from a smooth fit with A = 0.1 for run 19. For n given observations y1,...,y,, the lag k

autocorrelation is given by

(n—1) Z?;lk(yt — ) (Y1 — Y)
(n— k) > (v — 9)?

Ty =

where
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Figure 3.4: Run 19: data (small dot) and design points (large dot), with the smooth fit
using whole data (-) and smooth fit using design points (-.)(a) n = 15, (b) n = 20, (c)
n =25 and (d) n = 30.
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Figure 3.5: Run 19: Data on interval [1250, 1420].

see Chatfield (2004). The data exhibit a large degree of seasonality, which does not have a
clearly identifiable frequency. This suggests that the errors may not be independent. The
optimal designs calculated in Table 3.6 are not directly applicable to experiments where
these types of errors may be present because they were found under the assumption of
independent errors. Finding appropriate designs for correlated error variables remains an

area for future research (Chapter 6).

3.5.1 Application to simulated data

In this section, we demonstrate the design methods and assess the performance of optimal
designs from this chapter using a simulated dataset obtained from the tribology data. The
simulated data are formed by adding independent errors, from a Normal distribution with
zero mean, to the smooth fit g from the whole dataset using bandwidths h = 0.2 and
h = 0.1 for run 2 and run 19, respectively. Initially several choices of variance o? were
tried and a value of 2.25 x 1078 was chosen as it was neither too small to eliminate all

variability in the fit nor too large to prevent a reasonably accurate prediction.

Figures 3.7 and 3.8 present for run 2 and 19 respectively, two simulated datasets for each

run, obtained from optimal designs under Criterion 3.3 with n = 25 (run 2) and n = 30
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Figure 3.6: Run 19: Residual autocorrelation from fitting g(z) as a local linear estimator
with h = 0.1.

(run 19) and smooth fits to the whole datasets and to data from the optimal designs.
The datasets were obtained by adding two different sets of random errors drawn from a
N(0,2.25 x 1078) distribution. Figure 3.7 shows that for run 2, even with less variable
data, the prediction for g(x) using n = 25 design points over-predicts on x € [800, 1200].
This is because h = 0.2 leads to oversmoothing of the data. It may be that a smaller
value of h is more appropriate on [800,1200]. On the other hand, a smaller bandwidth
could give a ‘wiggly’ prediction with n = 25 design points for = € [1200, 2400], where the
response appears more linear. Figure 3.8 shows that for run 19 the prediction using n = 30
design points is more accurate when the data is less variable. However the positioning of
a single design point is still having a noticeable effect on prediction, which can be seen by
observing the effect of the first design point on the prediction, near the beginning of the

interval in the two plots in Figure 3.8.

To assess quantitatively the performance of the optimal designs, we calculated the mean
squared error for the fitted model from each design and compared against the mean squared
error for the fitted model using the whole dataset. This comparison was made using the
standardised difference of the two mean squared errors obtained as follows. We calculated

a ‘moving window’ mean squared error at each point z}, 7 = 601, ..., 2300, as

k=i+4-100

MSE(x}) = Z [9(z}) — w)”,

k=t—100
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Figure 3.7: Run 2: Simulated data with different errors simulated from N(0,2.25 x 107%)
for each plot (small dot), n = 25 design points (large dot), smooth fit using whole data
(red), smooth fit using data from design points (black).
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Figure 3.8: Run 19: Simulated data with different errors simulated from N(0,2.25 x 107%)
for each plot (small dot), n = 30 design points (large dot), smooth fit using whole data
(red), smooth fit using data from design points (black).
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where g(z}) is the kth predicted value. This moving window captures the prediction
accuracy in different sub-intervals of the design region. It is used in the standardised

difference in the mean squared error for a given design

.. MSEy(zt) — MSE,(z
SMSE(z}) = d<M;Ed(ﬁ) ( ), (3.29)

where M SE; and M SE, are the mean squared errors for the fit using data corresponding
to the optimal design and the fit using the whole dataset, respectively. If the standardised
difference is § > 0 then there is a 0 x 100% reduction in mean squared error when the whole
dataset is used (rather than the observations from the design points) to make a prediction.
If the difference is less than zero, i.e. —d, then there is a § x 100% increase in mean squared
error from using the whole dataset. We therefore expect to see a positive standardised
difference as the prediction from the whole dataset should always be as good as, if not
better than, the prediction from a subset of the data. When comparing and assessing the

smooth fits over the whole interval, we use the average standardised difference

2300

1 *
ASD = 2621 SMSE(z}).

Throughout these comparisons it should be taken into account that the D -optimal design

was found to minimise the variance and not the mean squared error.

For run 2, Figure 3.9 shows that the mean squared error is much larger for predictions
obtained from either set of data on the sub-interval [800,1200] than on the rest of the
interval, with the exception of n = 15 when x > 1600 where n is too small for adequate
prediction. This supports the suggestion that the bandwidth is too large on [800, 1200]
to capture features of the data. As we would expect, the mean squared error for the
prediction using the whole dataset is less than when using data from any of the optimal
designs. The standardised plot, see Figure 3.10, shows that designs with 15 or 25 points
have lower mean squared error values on the interval [800,1200] than the design with 20
points. Note that this is only for one simulated dataset and, as such, this difference could

be due to the particular set of realised data used.

Figure 3.11 has the same plots for run 19, as were presented for run 2 in Figure 3.9. The
largest mean squared error occurs around the time the steep change in the data occurs in
both Figures 3.11 (a) and (b). We require a smaller bandwidth and more design points in

these regions to capture these features accurately.
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Figure 3.9: Run 2: Smooth fits and MSE plots (a) g(z) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points, (b) g(z) for the
whole dataset, (¢) MSE for g(x) for 15, 20 and 25 design points and (d) MSE for g(x) for
the whole dataset.

The average standardised difference (ASD) is smallest for run 2 (0.189 to 3 d.p.) when
n = 15 and smallest for run 19 (0.166 to 3 d.p.) when n = 25. However we would expect
the ASD to be smallest when there are 25 or 30 points, for runs 2 and 19 respectively.
Again, this could be due to the single set of data.

3.5.2 Comparison with the uniform design

We now compare the optimal designs to a uniform design of equally spaced points on [501,
2400]. We again calculate the mean squared error to compare the fits obtained from using
the uniform designs with n = 15,20, 25 for h = 0.2 and n = 15,20, 25,30 for h = 0.1 and

the whole dataset. We use the same simulated dataset as in the previous section.

We see similar results to those from use of the optimal designs, see Figures 3.13-3.16. For

run 2, the mean squared error is, once again, larger on the interval [800,1200]. In order
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Figure 3.10: Run 2: Standardised difference (3.29) in mean square error between §(z)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points and
g(x) from the whole dataset. Values of the average standardised MSE difference (ASD)
over x are given in the legend.
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Figure 3.11: Run 19: Smooth fits and MSE plots (a) g(z) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points, (b)
g(x) from the whole dataset, (¢) MSE for g(x) for 15, 20, 25 and 30 design points, and
(d) MSE for g(z) for the whole dataset.
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Figure 3.12: Run 19: Standardised difference (3.29) in mean square error between §(z)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points and §(z) from the whole dataset. Values of the average standardised MSE
difference (ASD) over z are given in the legend.
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Figure 3.13: Run 2: Smooth fits and MSE plots (a) g(z) using data corresponding to
uniform designs with 15 (blue), 20 (red) and 25 (green) design points, (b) g(z) from the
whole dataset, (¢) MSE for g(x) for 15, 20 and 25 design points and (d) MSE for g(x) for
the whole dataset.
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Figure 3.14: Run 2: Standardised difference (3.29) in mean square error between §(z)
using data from uniform designs with 15 (blue), 20 (red) and 25 (green) design points and
g(x) from the whole dataset. Values of the average standardised MSE difference (ASD)
over x are given in the legend.

to compare quantitatively the optimal designs and the uniform designs, we simulated 500
datasets from each of the uniform and optimal designs for n = 15,20 and 25 (run 2) and
n = 15,20,25 and 30 (run 19). We computed the average standardised difference (ASD)
for each design and each of the 500 datasets. Employing the Central Limit Theorem, we
calculated a confidence interval for the difference in ASD between the two designs (uniform

and optimal design).

n Run 2 Run 19

15 | [—0.2033,—0.1538] | [—0.1292, —0.0903]

20 | [—0.1188,—0.0825] | [-0.0797, —0.0492]
[— ]
[ ]

25 | [—0.0812, —0.0503] 0.0982, —0.0695
30 - 0.0928, —0.0669

Table 3.8: Confidence intervals for the difference in average standardised difference (ASD)
between the optimal design and uniform design for each value of n.

Table 3.8 shows that, for each value of n, and for each run, the uniform design performs
better than the optimal design (as the upper and lower bounds are both negative). For
larger n, the uniform design has only very slightly lower SMSE. We would expect that for
larger n, say n = 50, the optimal design would be better for both run 2 and run 19, as
the optimal design concentrates points slightly more centrally than the uniform design.

Alternatively, if there is further prior information available about the response, we could
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Figure 3.15: Run 19: Smooth fits and MSE plots (a) g(z) using data corresponding to
uniform designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points, (b)
g(x) from the whole dataset, (¢) MSE for g(z) for 15, 20, 25 and 30 design points, and
(d) MSE for g(z) for the whole dataset.
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Figure 3.16: Run 19: Standardised difference (3.29) in mean square error between §(z)
using data from uniform designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points and §(z) from the whole dataset. Values of the average standardised MSE
difference (ASD) over z are given in the legend.
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tailor the optimal designs and obtain an advantage over the uniform design (see Chapter
6).

3.5.3 Robustness of prediction to bandwidth selection

When studying run 2 and run 19, there has been some uncertainty in the correct choice of
bandwidth for each of the two datasets. We now assess the robustness of the optimal design
to the choice of bandwidth. We do this by assessing the difference in making a prediction
using the whole dataset with the ‘true’ bandwidth and the prediction using optimal designs
calculated for other bandwidths. This allows us to compare the ‘best’ prediction, that is,
one using the whole dataset and the ‘true’ bandwidth, with a prediction made from an
optimal design with an alternative bandwidth. By ‘true’ we mean the bandwidth chosen
‘by eye’ at the beginning of this section. For run 2, we assume that the bandwidth is
h = 0.2, see Figure 3.3, and we use this bandwidth to make a prediction using the whole
dataset. We then use the optimal designs for h = 0.1 and A = 0.3 to predict over the
interval [501, 2400].

For run 2 the prediction on the interval [700, 1100] is much more accurate using h = 0.1 (see
Figures 3.17 and 3.18). There is a 200% increase in mean squared error when a prediction
is made using the whole dataset with h = 0.2 rather than data from the optimal design
with h = 0.1. However, the prediction using data from the optimal design with h = 0.1
was less accurate elsewhere in the interval. This highlights the possible need for a varying
bandwidth. Figures 3.19 and 3.20 show that designs with a bandwidth of h = 0.3 have a

larger mean squared error across the whole interval.

Figures 3.21 and 3.23 show that the prediction for run 19, when the ‘true’ bandwidth was
assumed to be h = 0.1 has a much larger mean squared error, especially on the interval
[1000, 1800] when h = 0.2 or h = 0.3. The mean squared error is very similar on the
interval [2000, 2400], but larger bandwidths do not perform well for this run.

3.6 Concluding Remarks

This chapter found designs which minimised a compound Dg-optimality criterion for pre-
dicting at a finite number of points and over a specified continuous interval. For prediction
at a finite number of points, we found the minimum number of points required and con-
jectured the form of the optimal designs. More generally optimal designs were found

numerically for different numbers of runs and choices of bandwidth.
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For predicting at a single point, we were able to prove the optimality of the new designs
for the uniform kernel. However, for prediction at a finite number of points, it was only
possible to establish the optimality of the new designs in particular cases. In other cases,
intuitive reasoning suggested the form of an optimal design which was supported by numer-
ical results. The designs found for predicting across an interval were obtained numerically

and, as such, some designs presented may only be near-optimal or highly efficient.

The designs for predicting over an interval were applied to the tribology experiment and
assessed using a ‘moving window’ mean squared error. This enabled us to see that predic-
tions made using a subset of the data obtained from the set of point, in an optimal design
were very similar to the predictions made using the whole dataset. The optimal designs
were also compared to the equally spaced uniform design and we found that the designs
performed very similarly. Lastly, we conducted a robustness study to assess how different
bandwidths performed using optimal designs for an assumed bandwidth. This study also
indicated that the use of different bandwidths on different sections of the interval may
have achieved a better fit for predicting the response. This supports further investigation

of designs for a varying bandwidth (see Chapter 6 for further discussion).
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Figure 3.17: Run 2: Smooth fits and MSE plots (a) g(x) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points for b = 0.1, (b) g(z)
from the whole dataset and true bandwidth of h = 0.2, (¢) MSE for g(x) for 15, 20 and
25 design points and (d) MSE for g(z) for the whole dataset.
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Figure 3.18: Run 2: Standardised difference (3.29) in mean square error between §(z)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points for
h = 0.1 and g(z) from the whole dataset with true bandwidth A = 0.2. Values of the
average standardised MSE difference (ASD) over z are given in the legend.
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Figure 3.19: Run 2: Smooth fits and MSE plots (a) g(x) using data corresponding to
optimal designs with 15 (blue), 20 (red) and 25 (green) design points for h = 0.3, (b) g(z)
from the whole dataset with true bandwidth, h = 0.2, (¢) MSE for g(z) for 15, 20 and 25
design points and (d) MSE for g(z) for the whole dataset.
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Figure 3.20: Run 2: Standardised difference (3.29) in mean square error between §(z)
using data from optimal designs with 15 (blue), 20 (red) and 25 (green) design points for
h = 0.3 and g(z) from the whole dataset with true bandwidth A = 0.2. Values of the
average standardised MSE difference (ASD) over z are given in the legend.
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Figure 3.21: Run 19: Smooth fits and MSE plots (a) g(z) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points for
h =0.2, (b) g(x) from the whole dataset with true bandwidth, A = 0.1, (¢) MSE for g(x)
for 15, 20, 25 and 30 design points, and (d) MSE for g(x) for the whole dataset.
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Figure 3.22: Run 19: Standardised difference (3.29) in mean square error between §(x)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points for h = 0.2 and g(z) from the whole dataset with true bandwidth hA = 0.1.
Values of the average standardised MSE difference (ASD) over x are given in the legend.
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Figure 3.23: Run 19: Smooth fits and MSE plots (a) g(z) using data corresponding to
optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue) design points for
h = 0.3, (b) g(x) from the whole dataset with true bandwidth, A = 0.1, (¢) MSE for g(x)
for 15, 20, 25 and 30 design points, and (d) MSE for g(x) for the whole dataset.
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Figure 3.24: Run 19: Standardised difference (3.29) in mean square error between §(x)
using data from optimal designs with 15 (blue), 20 (red), 25 (green) and 30 (light blue)
design points for h = 0.3 and g(z) from the whole dataset with true bandwidth hA = 0.1.
Values of the average standardised MSE difference (ASD) over x are given in the legend.
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Chapter 4

Compound optimal designs for

prediction using kernel smoothing

In this chapter we find optimal designs for local prediction by trading-off prediction vari-
ance and the complexity of the fitted model. We demonstrate new criteria by finding
designs for the Gasser and Miiller estimator. Throughout this chapter, we illustrate our
new criteria with examples and provide some insights using analytic results for simple

cases with the uniform kernel.

We start by providing some background results on linear smoothing generally, and the
Gasser and Miiller estimator in particular. We then find designs that minimise prediction
variance and highlight the disadvantages of this approach. To overcome these issues, we
introduce a new criterion that minimises a weighted sum of the integrated prediction
variance and a measure of the complexity of the fitted model, given by the inverse of the
trace of the smoothing matrix. We discuss some analytic results for a special case and

then find designs numerically for the uniform and Gaussian kernels.

4.1 Gasser and Miiller kernel smoothing

In this section, we introduce prediction using the Gasser and Miiller estimator. Suppose we
have design points x1,...,x, on a single variable, with associated observations v, ..., ¥n

where, as before, we assume that

y; = g(x;) + €, (4.1)
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where €; are independent error variables with constant variance for j = 1,...,n. Then,
Var {y;} = 0?. We wish to estimate the unknown function g using a linear smoother, §(z),
which estimates the function through a linear combination of the observations, y1, ..., Y,

as

g(z) = Si(x)y;, (4.2)
j=1
where S;(x) are smoothing weights (for example, Ramsay and Silverman, 2005, ch. 4).

Smoothing weights are defined for each type of linear smoother, see also Section 2.1.

The prediction at x*, using the Gasser and Miiller estimator (Gasser and Miiller, 1979,
1984) is given by

g(a") = zn: [% /:lK (v —hx) dv] Yj»

j=1
where 7; = (2,41 + x;)/2 for 1 < j < n, Ty = z; and T, = z,,. The kernel function, K,
is defined to be symmetric and satisfies [ K(v)dv = 1. The bandwidth, h, controls the

locality of the prediction; a larger value of h allows more design points to influence the

prediction at z*. The smoothing weights are therefore given by

Si(a") = %/ K (” _h""”) do. (4.3)

4.1.1 The smoothing matrix

The corresponding smoothing matrix, S, see Ramsay and Silverman (2005, p. 64) is

defined as

S = | : : : (4.4)

Note that for linear models, the trace of S equals the number of parameters; for example
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the trace of S for simple linear regression is two as there are two parameters to estimate
in the fit.

The trace of the smoothing matrix (4.4) can be used to provide a measure of effective
degrees of freedom of a smooth fit (Ramsay and Silverman, 2005, p. 67). It therefore gives

a measure of the complexity of the fitted model.

For the Gasser and Miiller estimator, the trace of the smoothing matrix is

Il [ v —
trace(S) = ; ;/@_1 K( ; )dv. (4.5)

4.1.2 The uniform kernel

The uniform kernel is defined as

0.5 if ju| <1,
K(u) =

0 otherwise.

In obtaining expressions for the smoothing weights (4.3), we use the following indicator

function. For a specified interval A C R,

1 ifzeA,
la(z) =
0 otherwise.

The smoothing weights for the uniform kernel can then be written as

/fjle<U;x)dv

> = S

where
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A ={v;|z —v| < h}. (4.7)

Evaluating (4.6) we find the smoothing weight, S;(x), as

Si(z) = %[min(m +h, %) — max(z — b, 7 _1)]. (4.8)

for zj_1 — h <z < Z; + h or zero otherwise. To show (4.8) holds, for each j = 1,...,n,

we consider a set (interval in R) defined by

Xj={v; 7;1 <o <754,

and a subset

Aj(z)={veXj;z—h<v<xz+h}.

Then we can define

I;(z) :/X 1a,dv (4.9)

with

1 ifxe A
1Aj (37) = !
0 otherwise.

Note that when A; is the empty set, then I;(z) = 0, by definition of 14;.

The set A; is not empty when the intervals [x — h,x + h| and [z,_1, Z;] overlap, i.e.
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i‘j_l—hSZL’Si’j—i‘h. (410)

This argument implies A;(x) is the interval from max(x — h,Z;_;) to min(z + h,Z;).

Therefore

= / 1dv + / Odwv
Aj Xi\A;

= min(z + h,z;) — max(z — h,T;_1). (4.11)

On substituting (4.11) into (4.9), we conclude that (4.8) is satisfied.

In general, the trace is given by

1
trace(S) = o g min(z; + h,Z;) — max(x; — h,z,;_1)]. (4.12)

From (4.12), it is clear that as the bandwidth, h, increases the trace decreases and therefore
the complexity of the model decreases. This is intuitive as increasing h allows more points
to influence the prediction at z*, i.e. a lower level of local smoothing is assumed. Increasing

the bandwidth in local linear regression also provides a less complex model, see Section
2.1.1.

Special case:

In order to find a class of analytical designs in Section 4.3, we evaluate the smoothing

weight when

Tj1 <x < Iy,

and
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.’Z’j —.fj,1 < h

= Tjp1 — Tj1 < 2h. (413)

From (4.10) and (4.13), we see that

:E]—xgh
X X
i T

= x; — v < h,

since % > z;. Similarly,
l'—fij_l S h
Xi+ X
NP Bt e A
2
=z —x; < h,

since “252=L < ;. Therefore, |z — x;] < h for all 2. Hence, when (4.10) and (4.13) hold
Tiy1+ 25
2
_ 2$—$y'2+1—l’j —|—h
h+(x — 1) +h+ (x — z;)
2

>0

Similarly z;_1 > @ — h. Therefore
. 1 /1

1 (%1
= —/ —dv
hJz, 2

Ty — Tj-1

2h
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and

trace 2h Z — T 1

Ty — T1
= . 4.14
57 (4.14)

Clearly, if (4.13) is not satisfied, Sj(x) < (Z; — &;_1)/2h, and (4.14) is an upper-bound on
trace(S).

4.2 Designs to minimise prediction variance

In this section we find a design &, = {x1,...x,} which minimises the prediction variance
at a point z*. In general, the variance of a linear smoother, g(z*), under model (4.1) is

given by

Var {g(z*)} = Var <ZSJ($*)%)

= Z Sj(:v*)QVar(yj)

= o*) Si(x"). (4.15)

j=1

From (4.15), it is clear that the sum of the squared smoothing weights, Z;’L:1 S;(z*)?, must

be minimised in order to minimise Var{g(z*)}.

Criterion 4.1. A design & for a linear smoother is optimal if it minimises the prediction

variance (4.15) at a single point x*. That is

* = argmin Si(z*)?. 4.16
¢ = argmin 3 (") (1.16)
7j=1
The prediction variance for the Gasser and Miiller estimator is given by
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Var {G(z*)} = Var( Sj(as*)yj)

SIR(Ee)

It is straightforward to establish optimal designs under Criterion 4.1 for any kernel func-

)

<

tion.

Proposition 4.1. The prediction variance, Var{g(z*)}, for the Gasser and Muiller esti-
mator is minimised for any kernel function by the design that takes all points x; to be

equal, i.e. has just one distinct design point and x4 = ... = x,.

Proof. Assume that all design points are equal and, without loss of generality, set z; = 21
for all 2 < 7 < n. Then,

T]+xq

. 1 2 v—a*
Sj(x)zﬁ/xl+xl K( h )dv

1 [ v— ¥
= - K dv.
i)

As K is a real-valued integrable function defined at x;, by the Fundamental Theorem of

Calculus

Si(z*)

[ (55) -+ ()

for all 1 < j < n, where F(x) is the anti-derivative of K (z). Thus the variance is simply

calculated as
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There is a major drawback to using designs found from Criterion 4.1. As the smooth-
ing weights are all set to be zero for j = 1,...,n, from (4.2) we see that g(z*) =
> -1 Sj(x*)y; = 0. Hence, a design from Criterion 4.1 minimises the prediction vari-
ance by only allowing a zero prediction of g(x*), which does not depend on y;. This
is equivalent to fitting a statistical model with no parameters. This null model has the

largest possible bias of g(gc*)

The mean squared error could be reduced by increasing the variance and reducing the bias.
However, in order to reduce the bias through choice of design we are required to make
assumptions about the form of the model g. Instead, we add a less restrictive constraint
to our objective function to ensure that the design allows a more realistic prediction to be

made.

4.3 Constrained and compound designs for the uni-

form kernel

We now consider designs which minimise the prediction variance with respect to a con-
straint on the effective degrees of freedom of a smooth fit, ensuring a more complex model

can be fitted to the resulting data.

4.3.1 Illustration and results for a simple case

We start by choosing a design to minimise the prediction variance at a single point given

a fixed model complexity.
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Criterion 4.2. A design £, is optimal for prediction at a point x* using a linear smoother

if
& = arg Hflin Var{g(z*)} subject to trace(S)=d > 0.

Let x denote the set of all possible design points, called the design region. For any = € Yy,
we obtain the variance of §(x) by substitution of the general form of the smoothing weights

(4.8) into the variance formula in (4.17) to give

Var{g(z)} = jﬁ Z 1g,;(x) [min(z + h, T;) — max(z — h, z; 1)), (4.18)

j=1

where

Bj:{uex;ij_l—hgugfj+h},

forj=1,...,n.

We now consider finding designs from Criterion 4.2 under assumption (4.13), that is,
zj+1 —2j—1 < 2h. This assumption leads via equation (4.14) to the constraint in Criterion

4.2 having the form

Tn —T1

trace(S) = o7

=d. (4.19)

Note that z; and x,, must be chosen to be distinct, otherwise trace(S) = 0 and the result
is again the null model. Hence, this constraint on the trace clearly prevents the design

coalescing to a single point.

Under the constraint (4.19), it follows that the length of the interval on which we make
a prediction is z,, — x1 = 2hd and so |v — z;| < 2hd since z,z; € [v1,z,] for j =1,...,n.
If d <05 and 2* € [r1,2,], j = 1,...,n, then the smoothing weights for observation
y; for prediction at z* has value S;(z*) = (Z; — Tj_1)/2h, where T; = (x;11 + z;)/2, as
1p,(r) =1 for all x € x. This leads to
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Var {g(a")} = > [S;(a")])*0?

j=1
n 02 B

= ZW[% Zj1]
j=1
0_2 n—1

= o (@2 = w4 D (@ = 2m)’ o+ (@ — 2

j=2

It will be useful to represent Var {g(z*)} as

o o2 M g2
Var {g(z*)} = T2 I+ o2 ZISJ, (4.20)
: =

Jj=1

where n; and ny are integers such that ny +no =n and I; ; and I, ; are defined in (4.21)
and (4.22).

To establish results for optimal designs under Criterion 4.2, we consider two cases: (a)

n =2m and (b) n = 2m + 1 for some integer m > 1.

Proposition 4.2. If n = 2m and d < 0.5, the optimal design under Criterion 4.2 has
design points x1, T, = x1+2dh and x9; = x9j4+1 = x1+4dhj/n, j=1,...,(n—2)/2. That

is, the design has n/2 + 1 distinct points equally spaced over the closed interval [z, xy).

Proof. Consider expression (4.20). As d < 0.5, every smoothing weight is non-zero, since
1p;(x) = 1 for all z € x, with value S;(2*) = (Z; — 7;_1)/2h. Then the elements of each
summation in (4.20) may be chosen independently since no two elements contain the same

pair of ;. Then, as n is even, we set ny = ny = n/2 and define

Toir1 — Toj_1 for j=1,.. %2
L= J J o 2 (4.21)
Ty — Tpo1 for j =3,
To — X1 for ] =1
Iy; = N . o n (4.22)
2j Toj—2 or ) =4..., bR

Hence,
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n/2 n/2

S hy=Y by=a,— 1 =2dh (4.23)
7=1 J=1

By applying Result 1 from the Appendix on minimising the sum of squared terms to

each summation in (4.20), we see that to minimise Z;fl It we set Iy ; = Iy, for j k =

1,...,n/2. Hence to minimise Var {g(z*)} we set

r3 —T1 = ... =Tj41 —T2j—1 = ... = Tp-3 — Tpn-1=Tp — Tp-1

and x4, x3, Ts, ..., Tn_3, Tn_1, T, Mmust be equally spaced. Then, using (4.23), we see that
I j =2dh/(n/2) = 4dh/n for j =1,...,n/2 and the design points are

Toj1 = z1 +4dhj/n, j=0,..,(n—2)/2
Ty =21 + 2dh. (4.24)

For the summation of I5;, an analogous set of design points are obtained

From (4.24) and (4.25), it is clear that zo; = 2941 for j =1,...,(n —2)/2. O

The prediction variance from this optimal design is then given by

2 n/2
/% g
Var {g(a")} = 15D [+ 1]
j=1
a*nd?  o*nd?
= —-
2n2 2n?
o2d?
= —. 4.26
) (1.26)

Notice that, as expected, the variance is an increasing function of d, the complexity of the

fitted model, and a decreasing function of n.
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Example 1

We illustrate Proposition 4.2 with a simple example when n = 4. Suppose that n; = ny = 2

and

11,1 =TI3— 1
]1,2 = T4 — T3
Iy =29 — 1y

Iy = x4 — 5.

)

Then, by Proposition 4.2, the design points are given by xy, xo = x3 = 1 + dh and
x4 = x1 + 2dh. Note that the three points xy, ro = x3 and x4 are equally spaced. The

minimum variance in this case is o?d?/4.

Proposition 4.3. If n =2m + 1 and d < 0.5 the optimal design under Criterion 4.2 has

design points

4dhyj , n—1

T2j+1 :$1+le fOT] :O,...,
4ddhyj , n—1
Igjzl'l—i—n—_l_]l fOrjzl,..., 5

Proof. We separate the variance into two independent summations as in (4.20) with n; =
(n—1)/2and ny = (n+1)/2:

o2 (n—1)/2 o2 (n+1)/2
Ak _ 2 2
Var {g(«")} = 16h2 Z ]1,1' + 16hH2 Z 12,3'7
j=1 j=1
where [1’]' = T2j4+1 — T25—1 for j = 1, ey (n — 1)/2,
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To — 1 for j=

IQ,j = .Z'Qj — LUQJ'_Q fOl“ j =2,..., (77451)
Tn — Tp-1 for j = ”T“,
and
(n—1)/2 (n+1)/2
Iy = Z I, ; = 2dh
Jj=1 Jj=1

(n—1)/2
J

To minimise » "

T3 —T1=...=Tj41 —X25-1 = ... = Tp-2 — Tp—g4 = Tp — Tn-2,
J

(4.27)

I 12 ; we again apply Result 1 from the Appendix to each summation
in (4.27). This sets [ ; = I for j,k =1,...,(n — 1)/2, and determines that

(4.28)

and hence 1, x3, T5..., Ty_4, Tn_o, T, must be equally spaced. Then by (4.27) we see that

I j=4dh/(n—1) for j =1,...,(n — 1)/2 and the design points are

n+1)/2 [22

Similarly, minimisation of 25:1 ; leads to the design points

The prediction variance for this optimal design is then given by
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5 [(n-1)/2 (n+1)/2
g

Var{g(z")} = 16h2 Z [127j+ Z [22,j
j=1 j=1

o%(n — 1)(dh)?  o*(n + 1)(dh)?

2(n —1)? 2(n+1)2
L[ & 2
““{mn—n+2m+n}
B a’d*n
 (n—=1)(n+1)

Notice that the variance is a function of the same order in d and n as when n = 2m.
Example 2

We illustrate Proposition 4.3 with a simple example when n = 5. Suppose that n, = 2,

ny = 3 and

[1,1 =T3— I
[1,2 =I5 — T3
12,1 =T — 1
—72,2 =Ty — X2

]2,3 =I5 — T4

Then by, Proposition 4.2, the optimal design has points 1,2y = x1 + 2dh/3, 23 = 1 +
dh, x4 = 11 + 4dh/3 and x5 = x; + 2dh. The minimum variance of g(x) is 50%d?/24.

In practice, we are unlikely to want to use linear smoothers with effective degrees of freedom
as small as d = 0.5. We have found that it is not possible to find optimal prediction designs
analytically in general for the Gasser and Miiller estimator, and hence in the next section

we use computational methods.
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4.4 Prediction variance for the uniform kernel in gen-

eral

In this section, we find designs without the restriction that d < 0.5. Now, it is impossible
to give a simple closed form for the smoothing weight S;(x). Recall that for any = € x
the variance of §(x) is given in (4.18) by

Var{g(z)} = % Z 1, (7) [min(x 4 h, Z;) — max(x — h, i’jfl)]z )

where

Bj:{uex;fj_l—hﬁugfj—i—h},

forj=1,...,n.

Finding designs analytically under Criterion 4.2 for this general case is an intractable
problem due to the form of the prediction variance. In the next section, we find designs

numerically using a constraint on the trace of the smoothing matrix given in (4.12).

4.4.1 Integrated prediction variance for the uniform kernel in

general

Designs that minimise the prediction variance integrated across an interval are more useful
for real experiments than designs that simply minimise the prediction variance at a single

point. Therefore, we now find designs satisfying Criterion 4.3.

Criterion 4.3. A design &, is optimal for prediction on the interval [-1,1] using a linear

smoother if

1
&= arg Irglin/ Var{g(z*)} dz* subject to trace(S) >d >0,
noJa

which can be reformulated as
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1 1 1

& = arg rrglin/ Var{g(xz*)} dz" subject to

—_— < - 4.2
1 trace(S) — d (4.29)

Clyde and Chaloner (1996) established, in general, the equivalence between a constrained

criterion, such as Criterion 4.3, and compound criterion, such as the following

Criterion 4.4. A design &, is optimal for prediction on the interval [—1, 1] using a linear

smoother if

V(€)= min W(E,),

where

T(E,) = (1— ) /_1 Var{g(z*)} da* + @ (4.30)

and 0 < A < 1.

Clearly, (4.30) is similar in structure to a Lagrange function (Arfken et al., 2012) for
(4.29). However, minimisation of the objective function (4.30) through choice of &, and
the Lagrange multiplier A results in A = 0 and | Var {§(z*)} da* = 0 through coalescence
of design points. Hence, we treat A as a tuning constant and find designs under Criterion

4.4 for given values of \.

Finding designs to minimise (4.30) is an analytically intractable problem. Therefore, we

find optimal designs computationally and use Legendre-Gauss quadrature (see Section 3.4)

to evaluate the integrated variance with m = 25 abscissa values, z7,..., 2} , and weights
K1,...,kmn. Hence we find designs minimising
(1—=X) Xm: w;Var {g(x])} + L, 0< A<l (4.31)
— ' trace(S)

4.4.1.1 Results

In this section, we present optimal designs under Criterion 4.4 for a variety of values of
h, n and X\ and the results are given in Tables 4.1-4.4. Figures 4.1-4.4 give the prediction
variance for A = 0.999 and A = 0.3 for each h over the interval [—1,1]. The values of n

were chosen separately for each value of h: use of a small value of A implies that we wish
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to fit a more complex model and therefore require more design points than when A is large.
The parameter A controls the weight given to the complexity constraint. Smaller values of
A result in designs that minimise the variance to be favoured. We restrict 0 < A < 1. In
this chapter, the design —¢, is defined as a design composed of reflections of the points

of & in the line x = 0.

We assume that 02 = 1. Note that if we choose a different values of o2, the designs in
Tables 4.1-4.4 are still optimal but for a different value of .

For all results with fixed n and h, decreasing A resulted in the optimal design covering a
reduced range of the prediction interval [—1,1]. For example, when h = 0.2,n = 6 and

A =0.999, an optimal design is

& = {-1.00,-0.60,—0.20,0.20,0.60,1.00} .
However when A = 0.05, we obtain

& ={-0.17,-0.07,—-0.06,0.06,0.07,0.17} ,
which has a much smaller range.

The effect of reducing the range of the design points can be seen, for example, in Figure
4.1. The lower plot shows the design points for the design where A = 0.2 and A = 0.3 in
Table 4.1, which has smallest point z; = —0.23 and largest point xg = 0.5. (There are two
points at 0.24). The plot shows that the prediction variance is zero for x < —0.23 — h and
x > 0.5+ h. In this example the integrated variance is minimised by making a constant
prediction, g(z) = 0, for points outside [x; — h,x,, + h]. For most practical experiments,

this represents too much weight being given to the variance term in (4.30).

As X\ decreases, we note from Tables 4.1-4.4 that both the integrated variance and trace(S)
decrease. For example, from Table 4.1 we see that when n = 6 and h = 0.2, the value of
A =0.999 gives [ Var = 1.04 and trace(S) = 5, whereas A = 0.05 gives [ Var = 0.029 and
trace(S) = 0.86. These results indicate that smaller values of A lead to a design with the

capacity to estimate a less complex model and hence producing a smaller variance.

Smaller values of h, and hence larger n, result in an optimal design having more clustered
design points so that a large part of the interval [-1,1] has constant zero prediction. As
an example, we consider four designs for A = 0.3 given in Tables 4.1-4.4. The designs are
for n =6 and h = 0.2, & = {—0.23,-0.03,0.02,0.24,0.24,0.5}. For n =5 and h = 0.3,
& ={-0.38,-0.08,0.03,0.20,0.49}. Forn =4 and h = 0.5 & = {—0.49,0.06,0.06,0.56}.
For n = 3 and h = 1, = {—0.62,0.08,0.97}. These designs and their prediction
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variances can be seen in Figures 4.1-4.4. As h increases and n decreases, we see that
the prediction variance increases and trace(S) decreases for fixed A. The same patten is

discovered for other fixed values of .

In conclusion, decreasing A has the effect of reducing the the range of the optimal design
and reducing the prediction variance and trace(S). The explanation is that in this case
more weight is being given to minimising the integrated variance component of (4.30),
resulting in a decreased integrated variance and trace(S). Reducing the value of h and
increasing n also reduced the range of the optimal designs. However, in this case the
variance decreases and trace(S) increases. We would expect the trace to increase with

decreasing h, to allow a more complex model to be fitted.

Unfortunately, in this study we were not able to reduce h below 0.2. This was because
smaller h required larger n and the optimisation became computationally expensive when

using the uniform kernel function for prediction.

n=~0
A & [ Var | tr(S)
0.999 £1.00 £0.60 £0.20 1.04 | 5.00
0.9 -0.82 -0.42 -0.09 0.38 0.65 0.77 | 4.55
0.8 -0.79 £0.45 £0.05 0.76 0.54 | 3.88
0.7 £0.65 £0.36 £0.12 0.39 | 3.26
0.5 +0.50 £0.19(2) 0.23 | 2.49
0.3 |-0.23-0.03 0.02 0.24(2) 0.50 | 0.12 | 1.78
0.1 -0.06 0.09 0.12 0.24(2) 0.38 | 0.05 | 1.11
0.05 +0.17 +£0.06 £0.07 0.029 | 0.86

Table 4.1: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the uniform kernel with ~ = 0.2. Design —¢; is also optimal. Numbers of repetitions of
design points are shown in parenthesis.

Figures 4.1-4.4 show how the prediction variance varies over the interval [—1,1]. We see,
from the top plot in all figures, that when A = 0.999, the variance is greater than zero
on the whole interval. Hence, we are able to predict across the whole interval using the
optimal designs. However when A\ = 0.3 (lower plot), we see that, especially for small h,
the prediction variance is only non-zero for part of the interval. The remaining section of
the interval has zero smoothing weights since there are no design points within A of these

prediction points.

We also see from the figures that by reducing A from 0.999 to 0.3 the prediction variance
becomes much smaller. This is due to the fact that we are placing more importance on

minimising the variance than the inverse of trace(S) in these cases.
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n=>
A & [ Var | tx(S)
0.999 +1.00 -0.40 0.20 0.47 0.86 | 3.33
0.9 +1.00 -0.40 0.20 0.47 0.86 | 3.33
0.8 -0.75-0.25 0.32 0.49 1 0.64 | 291
0.7 +0.72 £0.23 0 0.42 | 2.40
0.5 +0.5840.20 0.00 0.27 | 1.92
0.3 -0.38 -0.08 0.03 0.20 0.49 0.15 | 1.45
0.1 -0.22 -0.03 0.05 0.15 0.33 0.06 | 0.91
0.05 +0.21 £0.06 0.00 0.04 | 0.70
n="7
A & [ Var | tr(S)
0.999 +1.00 £0.59 £0.43 0 0.67 | 3.33
0.9 +1.00 £0.59 +£0.43 0 0.67 | 3.33
0.8 |-0.83-0.34-0.17 0.16 0.51 0.63 1.00 | 0.55 | 3.05
0.7 1-0.71-0.32-0.15 0.10 0.42 0.57 0.89 | 0.41 | 2.67
0.5 -0.62 -0.33 -0.20 0 0.20 0.33 0.62 0.23 | 2.06
0.3 |-0.47-0.23 -0.19 0.02 0.18 0.27 0.49 | 0.14 | 1.60
0.1 -0.10 0.06 0.11 0.19 0.29 0.34 0.48 | 0.05 | 0.98
0.05 | -0.07 0.06 0.11 0.18 0.25 0.28 0.40 | 0.03 | 0.78

Table 4.2: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the uniform kernel with A = 0.3. Design —¢& is also optimal.
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n=4
A & [ Var | tr(S)
0.999 +1.00 £0.12 0.64 | 2.00
0.9 +1.00 £0.12 0.64 | 2.00
0.8 +1.00 £0.12 0.64 | 2.00
0.7 +1.00 £0.12 0.64 | 2.00
0.5 -0.47 0.29 0.29 1.00 0.35 | 1.47
0.3 -0.49 0.06 0.06 0.56 0.18 | 1.04
0.1 -0.36 0.00 0.00 0.36 0.08 | 0.71
0.05 -0.22 0.05 0.05 0.33 0.05 | 0.55
n==06
A & [ Var | tr(S)
0.999 £1.00 +0.35(2) 0.45 | 2.00
0.9 +£1.00 £0.35(2) 0.45 | 2.00
0.8 +£1.00 £0.35(2) 0.45 | 2.00
0.7 £1.00 £0.35(2) 0.45 | 2.00
0.5 -0.57 -0.06 0.05 0.55(2) 0.28 | 1.57
0.3 |-0.70-0.36 -0.29 0.08 0.12 0.51 | 0.17 | 1.21
0.1 -0.35 -0.09(2) 0.18 0.20 0.07 | 0.79
0.05 £0.31 £0.11 £0.10 0.01 | 0.62

Table 4.3: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the uniform kernel with ~ = 0.5. Design —¢ is also optimal. Numbers of repetitions of
design points are shown in parenthesis.
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n=3
A & [ Var | tx(S)
0.999 +1.00 0.00 0.46 1
0.9 +1.00 0.00 0.46 1
0.8 +1.00 0.00 0.46 1
0.7 +1.00 0.00 0.46 1
0.5 +1.00 0.00 0.46 1
0.3 -0.62 0.08 0.97 0.31 | 0.79
0.1 0.06 0.48 1.00 0.11 | 047
0.05 0.25 0.62 1.00 0.06 | 0.37
n=>5
A & [ Var | tr(S)
0.999 +1.00 £0.31 0.00 0.27 | 1.00
0.9 +1.00 £0.31 0.00 0.27 | 1.00
0.8 +1.00 £0.31 0.00 0.27 | 1.00
0.7 +1.00 £0.31 0.00 0.27 | 1.00
0.5 +1.00 £0.31 0.00 0.27 | 1.00
0.3 ]-0.99-0.31 0.00 0.29 0.97 | 0.26 | 0.98
0.1 | -0.14 0.21 0.37 0.57 1.00 | 0.09 | 0.57
0.05 | 0.11 0.39 0.53 0.67 1.00 | 0.05 | 0.44

Table 4.4: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the uniform kernel with h = 1. Design —¢ is also optimal.
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Figure 4.1: Prediction variance using the Criterion 4.4 optimal design (Table 4.1) for the
uniform kernel for h = 0.2 and n = 6: A=0.999 and trace(S) = 5 (top), and A = 0.3 and
trace(S) = 1.78 (lower). Location of the optimal design points are displayed on the x-axis.

As we might expect, the prediction variance is symmetric about 0 when the optimal design

is symmetric, see Figure 4.3 for example.

4.5 Designs for the Gaussian kernel

The Gaussian kernel function is given by:

leading to the following smoothing weights using the Gasser and Miiller estimator

Si(x) = h\}% / exp {—% (“;‘”)2} dv
— 3 (@}:JJ) By (%T_ﬂ . (4.32)

Here @ is the standard normal cumulative distribution function. Unlike the uniform kernel,

the Gaussian kernel is not truncated and hence Sj(x) > 0 for all z € y and j =1,...,n.
In this section we find optimal designs satisfying Criterion 4.4, which we recall is given by
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Figure 4.2: Prediction variance using the Criterion 4.4 optimal design (Table 4.2) for the
uniform kernel for h = 0.3 and n = 5: A = 0.999 and trace(S) = 3.33 (top), and A = 0.3
and trace(S) = 1.45 (lower). Location of optimal design points are displayed on the x-axis.
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Figure 4.3: Prediction variance using the Criterion 4.4 optimal design (Table 4.3) for the
uniform kernel for A = 0.5 and n = 4: X\ = 0.999 and trace(S) = 2 (top), and A = 0.3 and
trace(S) = 1.04 (lower). Location of optimal design points are displayed on the x-axis.
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Figure 4.4: Prediction variance using the Criterion 4.4 optimal design (Table 4.4) for the
uniform kernel for h =1 and n = 3: A = 0.999 and trace(S) = 1 (top), and A = 0.3 and
trace(S) = 0.79 (lower). Location of optimal design points are displayed on the x-axis.

Criterion 4.4. A design & is optimal for prediction on the interval [—1,1] using a linear

smoother if

& = argmin U (&),

with
1

V() =(10-2x) /1 Var{g(z*)} dz* + m.

The integrated prediction variance can now be written as
n
[vartgayar — | {ZUQSJ-(x*f}dx*
j=1

IRl ) e (o) o

j=1

and the trace of the smoothing matrix given by
trace(S) = ; lcb <thj) - (L};x])} _

We again use a quadrature approximation to the integrated variance using Legendre-Gauss
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quadrature, see (4.31). As in the uniform kernel case, m = 25 abscissa values are used.

The choice of A is again restricted to (0,1) and we fix 02 = 1.

4.5.1 Designs for the Gaussian kernel

We were able to find optimal designs for larger numbers of runs, n = 12 and n = 15 see

Table 4.5, when using the Gaussian kernel compared with using the uniform kernel.

For n = 3 and 5, the optimal designs in Table 4.9 exhibit similar patterns to those found
under the uniform kernel (Table 4.4) for h = 1. However, for h < 1, we see from Tables
4.5-4.8 that the variance-trace trade off with varying A is quite different when using the
Gaussian kernel. The design points move away from the lower end of the interval [-1,1],
that is the design range is [, 1] where @ > —1 increases as A\ decreases. In other words,
the Gaussian kernel optimal designs are more clustered towards the upper end of the
interval than the uniform kernel optimal designs for the same value of A and h. Unlike
the designs for the uniform kernel, the only symmetric designs obtained here are those
including 1 = —1 and z,, = 1. Note that non-symmetric designs have the property that
the design —¢, defined as a design with the points from & reflected in the line x = 0, is

also optimal.

Tables 4.5-4.9 show that for fixed A, reducing h results in designs covering a smaller section
of the prediction interval. For example when h = 1, and A = 0.5 (Table 4.9), the design
covers the whole of the interval for both n = 3 and n = 5. Reducing h to 0.1 (Table 4.5)
results in a design where points are only within the interval [0.19,1.00] for n = 12 and
[0.12,1.00] for n = 15. For h = 0.1, it was computationally difficult to find designs for
A < 0.3. This is due to the clustered nature of the design and the increased number of
points in the design. As in the uniform case the use of a small value of h implies that we
wish to fit a more complex model and therefore require more design points than when A

is large.

Numerical results suggest that the maximum value of the trace using the Gaussian kernel

is bounded above by

trace(S) < (n — 1) {ch <ﬁ> _ 1} |

with equality when the design points are equidistant. Therefore, as A\ approaches 1, the
choice of h does not affect the design for fixed n, as seen in Tables 4.6 and 4.8. Obviously,

the choice of h does not affect the design when A = 0, when we revert to minimising only
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the variance, see Section 4.2 and hence all design points coalesce.

As X decreases, the trace decreases, as for the uniform kernel. The variance also decreases,
as expected. We also note that, as for the uniform kernel, the values of the variance and
trace(S) were constant for different values of A and the same optimal design, for example
see Table 4.9 for n = 3.

For fixed A and n, trace(S) decreases as h increases. This can be seen, for example, by
comparing Table 4.6, when for h = 0.2, n = 6 and A\ = 0.7 trace(S) = 2.50; and Table 4.8,
when h = 0.5, n = 6 and A = 0.7, trace(S) = 1.55. For large A, the variance decreases
as h increases. As \ decreases, the variances for different h have similar magnitude and
finally for the smallest values of A, the variance slightly increases with h. Note that when
h is also fixed, the prediction variance decreases and the trace increases as n increases, as

we would expect.

Figures 4.5-4.9 show how the prediction variance varies over the interval [—1, 1] for exam-
ples of Gaussian kernel optimal designs. The variance has similar values for A = 0.999 and
A = 0.3 for h = 1, see Figure 4.9, but is much smaller for A = 0.3 when h = 0.1, ..., 0.5, see
Figures 4.5-4.8. This agrees with the values of the integrated variance in Tables 4.5-4.8
and is due to the fact that the variance had more influence on the objective function when
A=03and h = 0.1,...,0.5. We also note that for h = 0.1, ...,0.3, see Figures 4.5-4.7,
respectively, when A = 0.3, the points from £ are at one end of the prediction inter-
val and therefore the variance is only noticeably greater than zero on the section of this
interval where the design points have clustered. The smoothing weights are never zero,
unlike in the uniform kernel case. However, for these designs they are very small causing
the variance to appear close to zero. The smooth Gaussian kernel function results in the

prediction variance varying much more smoothly than when using the uniform kernel.

4.6 Robustness of prediction to choice of kernel func-

tion

The previous two sections have shown that the choice of kernel function can affect the
optimal design. Therefore, we wish to assess how robust the prediction variance is to
the choice of the kernel function. Specifically, we calculate the efficiency for prediction of
designs found using the uniform kernel, calculated in Section 4.4.1.1, relative to designs
from using the Gaussian kernel. We define the efficiency of a design under Criterion 4.4

using the Gaussian kernel as
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n =12
A & [ Var | tr(S)
0.999 £+1.00 £0.82 £0.64 +£0.45 +£0.27 £0.09 0.85 | 7.00
0.9 -0.71 -0.53 -0.38 -0.23 -0.08 0.07 0.64 | 6.18
0.22 0.37 0.52 0.67 0.81 1.00
0.8 -0.30 -0.15 -0.05 0.07 0.18 0.29 0.38 | 4.88
0.40 0.52 0.63 0.75 0.85 1.00
0.7 -0.08 0.05 0.13 0.23 0.32 0.41 0.26 | 4.13
0.50 0.60 0.69 0.79 0.86 1.00
0.5 0.19 0.29 0.34 0.42 0.48 0.56 0.15 | 3.16
0.62 0.69 0.76 0.84 0.89 1.00
0.3 0.39 0.47 0.50 0.56 0.61 0.66 0.08 | 241
0.71 0.77 0.81 0.88 0.91 1.00
n =15
A & [ Var | tr(S)
0.999 | £1.00 £0.86 £0.71 £0.57 £0.43 £0.28 £0.14 0.00 | 0.71 | 7.35
0.9 -0.84 -0.68 -0.56 -0.43 -0.31 -0.18 -0.05 0.07 0.60 | 6.84
0.20 0.33 0.46 0.58 0.71 0.83 1.00
0.8 -0.40 -0.27 -0.18 -0.08 0.01 0.11 0.20 0.36 | 5.26
0.30 0.39 0.49 0.59 0.68 0.78 0.86 1.00
0.7 -0.16 -0.05 0.01 0.10 0.18 0.26 0.33 0.41 0.25 | 4.50
0.49 0.57 0.65 0.73 0.82 0.88 1.00
0.5 0.12 0.21 0.26 0.32 0.38 0.44 0.50 0.56 0.14 | 3.43
0.62 0.67 0.74 0.79 0.86 0.90 1.00
0.3 0.33 0.41 0.43 0.49 0.52 0.57 0.61 0.66 0.08 | 2.62
0.70 0.74 0.79 0.83 0.89 0.92 1.00

Table 4.5: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using

the Gaussian kernel with i = 0.1. Design —¢ is also optimal.

Figure 4.5: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 12 and h = 0.1: A = 0.999 and trace(S) = 7.00 (top), and
A = 0.3 and trace(S) = 2.41 (lower). Location of optimal design points are displayed on

Variance

Variance

the x-axis. Note that the y-axis scales for the two plots are different.
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n==~6
A & [ Var | tr(S)
0.999 +1.00 £0.60 +£0.20 0.86 | 3.41
0.9 4+1.00 £0.56 +0.19 0.84 | 3.41
0.8 -0.63 -0.26 0.03 0.33 0.62 1.00 0.58 | 2.91
0.7 -0.36 -0.04 0.19 0.45 0.67 1.00 0.41 | 2.50
0.5 -0.02 0.23 0.38 0.58 0.73 1.00 0.23 | 1.94
0.3 0.23 0.43 0.52 0.69 0.78 1.00 0.13 | 1.49
0.1 0.50 0.64 0.68 0.80 0.84 1.00 0.05 | 0.98
0.05 0.61 0.72 0.74 0.85 0.87 1.00 0.03 | 0.77
n = 10
A & | Var | tr(S)
0.999 +1.00 £0.78 +£0.56 +0.33 +0.11 0.54 | 3.79
0.9 +1.00 £0.73 £0.53 +0.32 +0.11 0.53 | 3.77
0.8 4+1.00 £0.70 £0.53 +0.31 +£0.11 0.53 | 3.77
0.7 |-0.61-0.38 -0.24 -0.06 0.10 0.27 0.43 0.61 0.75 1.00 | 0.35 | 3.10
0.5 -0.22 -0.03 0.06 0.20 0.32 0.45 0.56 0.71 0.79 1.00 | 0.20 | 2.37
0.3 0.08 0.23 0.28 0.40 0.47 0.58 0.66 0.78 0.83 1.00 0.11 | 1.81
0.1 0.41 0.51 0.53 0.62 0.65 0.73 0.76 0.86 0.88 1.00 0.04 | 1.17
0.05 0.54 0.62 0.63 0.70 0.72 0.79 0.81 0.89 0.90 1.00 0.03 | 0.92

Table 4.6: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the Gaussian kernel with h = 0.2. Design —¢ is also optimal.
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Figure 4.6: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 6 and h = 0.2: A = 0.999 and trace(S) = 3.41 (top), and
A = 0.3 and trace(S) = 1.49 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n=>5
A & [ Var | tr(S)
0.999 +1.00 £0.50 0.00 0.71 | 2.38
0.9 +1.00 £0.46 0.00 0.70 | 2.38
0.8 +1.00 £0.43 0.00 0.69 | 2.37
0.7 -0.68 -0.20 0.15 0.50 1.00 0.50 | 2.05
0.5 -0.26 0.12 0.36 0.61 1.00 0.28 | 1.59
0.3 0.05 0.34 0.51 0.69 1.00 0.16 | 1.22
0.1 0.39 0.58 0.68 0.79 1.00 0.06 | 0.80
0.05 0.52 0.67 0.75 0.83 1.00 0.04 | 0.63
n="717
A & | Var | tr(S)
0.999 +1.00 £0.66 £0.33 0.00 0.52 | 2.53
0.9 +1.00 +0.62 4+0.32 0.00 0.51 | 2.53
0.8 +1.00 £0.59 £0.31 0.00 0.50 | 2.52
0.7 +1.00 £0.56 £0.31 0.00 0.50 | 2.51
0.5 |-0.41-0.11 0.06 0.28 0.50 0.67 1.00 | 0.25 | 1.82
0.3 | -0.070.17 0.28 0.45 0.62 0.73 1.00 | 0.14 | 1.39
0.1 0.31 0.47 0.53 0.64 0.75 0.82 1.00 0.06 | 0.91
0.05 | 0.46 0.58 0.63 0.71 0.80 0.85 1.00 0.03 | 0.71

Table 4.7: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the Gaussian kernel with A = 0.3. Design —¢ is also optimal.
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Figure 4.7: Prediction variance using the Criterion 4.4 optimal design (Table 4.7) using
the Gaussian kernel for n = 5 and h = 0.3: A = 0.999 and trace(S) = 2.38 (top), and
A = 0.3 and trace(S) = 1.22 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n=4
A & [ Var | tr(S)
0.999 +1.00 £0.33 0.53 | 1.49
0.9 +1.00 £0.30 0.52 | 1.48
0.8 +1.00 £0.27 0.51 1.48
0.7 +1.00 +£0.24 0.51 | 1.47
0.5 -0.69 -0.01 0.29 1.00 0.37 | 1.26
0.3 -0.25 0.27 0.43 1.00 0.20 | 0.96
0.1 0.19 0.55 0.59 1.00 0.08 | 0.63
0.05 0.36 0.65 0.67 1.00 0.05 | 0.50
n=~0
A & [ Var | tr(S)
0.999 +1.00£0.60 £0.20 0.35 | 1.55
0.9 +1.00 £0.55 +£0.19 0.34 | 1.55
0.8 +1.00 £0.52 +£0.19 0.34 | 1.55
0.7 +1.00 £0.49 +0.19 0.33 | 1.55
0.5 +1.00 £0.43 £0.22 0.33 | 1.54
0.3 |-0.45-0.04 0.07 0.43 0.55 1.00 | 0.18 | 1.13
0.1 0.07 0.34 0.38 0.64 0.68 1.00 | 0.07 | 0.73
0.05 | 0.27 0.48 0.50 0.72 0.74 1.00 | 0.04 | 0.58

Table 4.8: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the Gaussian kernel with h = 0.5. Design —¢ is also optimal.
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Figure 4.8: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 4 and h = 0.5: A = 0.999 and trace(S) = 1.49 (top), and
A = 0.3 and trace(S) = 0.96 (lower). Location of optimal design points are displayed on
the x-axis. Note that the y-axis scales for the two plots are different.
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n=23
A & [ Var | tr(S)
0.999 +1.00 0.00 0.31 | 0.77
0.95 +1.00 0.00 0.31 | 0.77
0.9 £1.00 0.00 0.31 | 0.77
0.8 £1.00 0.00 0.31 | 0.77
0.7 £1.00 0.00 0.31 | 0.77
0.5 +1.00 0.00 0.31 | 0.77
0.3 -0.95 0.02 1.00 0.30 | 0.75
0.1 -0.18 0.40 1.00 0.11 | 0.46
0.05 0.07 0.53 1.00 0.06 | 0.37
n=2>9
A & [ Var | tr(S)
0.999 £+1.00 £0.50 0.00 0.18 | 0.79
0.9 +1.00 +0.46 0.00 0.18 | 0.79
0.8 +1.00 £0.44 0.00 0.18 | 0.79
0.7 +1.00 £0.41 0.00 0.17 | 0.79
0.5 £1.00 £0.39 0.00 0.17 | 0.79
0.3 £+1.00 £0.34 0.00 0.17 | 0.79
0.1 |-0.46 0.01 0.24 0.49 1.00 | 0.09 | 0.58
0.05 | -0.12 0.23 0.41 0.60 1.00 | 0.05 | 0.45

Table 4.9: Optimal designs from Criterion 4.4 for predicting over the interval [—1, 1] using
the Gaussian kernel with 2 = 1. Design —¢;; is also optimal.
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Figure 4.9: Prediction variance using the Criterion 4.4 optimal design (Table 4.6) using
the Gaussian kernel for n = 3 and h = 1: A = 0.999 and trace(S) = 0.77 (top), and
A = 0.3 and trace(S) = 0.75 (lower). Location of optimal design points are displayed on
the x-axis.
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[We(E)

Eff = —=
[Wa(€)]

(4.33)

where Ug(£%) and W (£9) are the values of the objective function, calculated with the
Gaussian kernel, using (i) £“, the optimal design under Criterion 4.4 using the uniform

kernel and (ii) €%, the optimal design under Criterion 4.4 using the Gaussian kernel.

Tables 4.10 and 4.11 show the efficiencies for two different scenarios. Table 4.10 gives
efficiencies for h = 1 and n = 3 for optimal designs for both the uniform and Gaussian
kernels found in Tables 4.4 and 4.9 respectively. In this case we would expect to fit
a relatively simple model. However, the second investigation, see Table 4.11, includes
efficiencies for h = 0.3 and n = 7, where the optimal designs for uniform and Gaussian
kernels are found in Tables 4.2 and 4.7, respectively. In the latter case, the fitted model

is expected to be more complex.

A €Uor 9 | Optimal Design | Eff | trace, | traceq
0.999 & +1.00 0.00 1 1 0.766
£¢ +1.00 0.00
0.9 & +1.00 0.00 1 1 0.766
£¢ +1.00 0.00
0.8 & +1.00 0.00 1 1 0.766
£C +1.00 0.00
0.7 & +1.00 0.00 1 1 0.766
£C +1.00 0.00
0.5 & +1.00 0.00 1 1 0.766
£C +1.00 0.00
0.3 & -0.62 0.08 0.97 | 0.968 | 0.79 | 0.749
£C -0.95 0.02 1.00
0.1 & 0.06 0.48 1.00 | 0.952 | 0.47 | 0.463
€@ -0.18 0.40 1.00
0.05 & 0.250.62 1.00 | 0.956 | 0.37 | 0.366
£¢ 0.07 0.53 1.00

Table 4.10: Efficiencies of uniform kernel optimal designs for prediction with the Gaussian
kernel for h = 1 and n = 3. The trace for the uniform kernel optimal design and the
Gaussian kernel optimal design are given by trace, and traceq respectively.

Table 4.10 shows that the uniform kernel optimal design performs very well when evaluated
using the Gaussian kernel, with efficiencies all greater than 0.95. For A > 0.3 the efficiency
is 1 since the design &, = {—1,0,1} is optimal using both the uniform and Gaussian

kernels.
Table 4.11 also shows that for h = 0.3 the uniform kernel optimal design performs very
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A £ or £¢ Optimal Design Eff | trace, | traceq
0.999 & +1.00 £0.59 £0.43 0.00 0.983 | 3.33 2.53
£C £1.00 £0.66 £0.33 0.00
0.9 ' +1.00 £0.59 £0.43 0.00 0.985 | 3.33 2.53
£¢ +1.00 £0.62 £0.32 0.00
0.8 & -0.83 -0.34 -0.17 0.16 0.51 0.63 1.00 | 0.918 | 3.05 2.52
£¢ £1.00 £0.59 £0.31 0.00
0.7 ' -0.71 -0.32 -0.15 0.10 0.42 0.57 0.89 | 0.962 | 2.67 2.51
£¢ £1.00 £0.56 £0.31 0.00
0.5 ' -0.62 -0.33 -0.20 0 0.20 0.33 0.62 | 0.969 | 2.06 1.82
£¢ -0.41 -0.11 0.06 0.28 0.50 0.67 1.00
0.3 ' -0.47 -0.23 -0.19 0.02 0.18 0.27 0.49 | 0.998 | 1.60 1.39
£¢ -0.07 0.17 0.28 0.45 0.62 0.73 1.00
0.1 & -0.10 0.06 0.11 0.19 0.29 0.34 0.48 | 0.939 | 0.98 0.91
£¢ 0.31 0.47 0.53 0.64 0.75 0.82 1.00
0.05 ' -0.07 0.06 0.11 0.18 0.25 0.28 0.40 | 0.932 | 0.78 0.71
¢ 0.46 0.58 0.63 0.71 0.80 0.85 1.00

Table 4.11: Efficiencies of uniform kernel optimal designs for prediction with the Gaussian
kernel for h = 0.3 and n = 7. The trace for the uniform kernel optimal design and the
Gaussian kernel optimal design are given by trace, and traceg respectively.

well when evaluated using the Gaussian kernel. Interestingly for many values of A, the
two designs cover different sections of the interval [—1,1]. For example, when A = 0.3,
the uniform kernel optimal design covers the centre of the interval whereas the Gaussian

kernel optimal design clusters at one end of the interval, yet performs almost as well.

4.7 Concluding remarks

In this chapter we have developed a new compound criterion: minimising a weighted sum
of the integrated prediction variance and the inverse trace of the smoothing matrix. This
enabled designs to be tailored to different complexities of fitted models. Optimal designs
were found for both the uniform and Gaussian kernel functions using both analytic and
numerical methods. These designs were critically assessed by investigating the robustness

of the prediction to the choice of kernel function.

We investigated designs for different compromises, via the parameter A\, between prediction
variance and model complexity. Larger values of A, placing more emphasis on model
complexity, resulted in designs with points spread more evenly across the design region
for both the uniform and Gaussian kernels. However, decreasing A had different effects for

the two kernels. For the uniform kernel, design points concentrated around the centre of
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the design region; for the Gaussian kernel, points concentrated at one end of the region.

By investigating designs for the uniform and Gaussian kernels, which have very different
forms, we were able to assess the sensitivity of design performance to choice of kernel.
For both bandwidths investigated, the performance of designs was robust to the choice of

kernel function.

Appendix

Result 1:

n
a?

For a; > 0 and ) ", a; = ¢, for some constant ¢, Y ., a7 is minimised when a; = ¢/n for

all 1 <i4,5 < n.

Proof. We can write
n—1

ap, = C— E a;

=1

and hence

n n—1 2
2 2 2

E a; =a7+..+ta, ;+ C—E a; | .

i=1 i=1

Differentiating with respect to ax (k < n — 1) gives

O(Ci, a?)
=L = 2a, — 2 |c— |-
86Lk Qe C ;CLZ

Equating to zero gives

n—1
ap =c¢— Z a;
i=1
= Q.
This holds for all k =1,...,n — 1. To establish this solution is a minimum, we check the
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second derivative

0*(Xoin, af)

=24+2>0.
3@%

Hence, ai,...,a, = ¢/n minimises >, a? subject to D1 a; = ¢
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Chapter 5

Designed experiments and functional

linear models

5.1 Introduction

Functional data arise from experiments for which multiple observations, assumed to come
from a smooth function, are measured on each unit to which a treatment has been applied.
These functions potentially vary between treatments and are often too complex to be
modelled using any obvious parametric form; see, for example, Faraway (1997), Shen
and Faraway (2004) and Shen and Xu (2006). Examples of experiments that produce

functional data can be found in chemistry, biology, tribology and engineering.

For some experiments, longitudinal data analysis methods (Diggle et al., 2002) may seem
sensible for analysing functional data. However, longitudinal datasets usually have fewer
observations per run than functional data and often a parametric model can be assumed
for the responses from each run. Functional data analysis has its place providing methods
which may work when longitudinal methods are not appropriate (Faraway, 1997). Typ-
ically, functional data has larger numbers of measurements per run and the functional

response is estimated using nonparametric methods.

There are several different types of functional data: the response variable depends on
indexing variable, t; one or more of the covariates depends on t; or both the response and
covariates depend on ¢t (Ramsay and Silverman, 2005, p. 218). Throughout this work,
we consider the first case. Functional data with functional covariates and scalar response
has been considered by authors such as Ramsay and Silverman (2005, ch. 12), Cardot
et al. (1999) and Cardot et al. (2004). Examples where both the response and covariates
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vary with time were considered by West, Harrison and Migon (1985) who assumed the
regression coefficients had autoregressive structure, referring to the model as a dynamic

generalised linear model.

The purpose of this chapter is to develop methodology for designing experiments for
functional data whose aim is to discriminate between two functional linear models. In the
first half of the chapter, we review the modelling and inferential work of Faraway (1997),
Shen and Faraway (2004) and Shen and Xu (2006) on tests for choosing between two
nested linear models. The methods are illustrated on two examples. In the second half
of this chapter, we develop a T-criterion and find T-optimal designs for discriminating
between two functional linear models. The designs are then critically assessed through

two simulation studies.

5.2 Examples of functional data

In the first half of this chapter we consider two examples: (i) a simple simulated experiment
with only one factor; (ii) the tribology example introduced in Chapter 1 which has six

factors.

5.2.1 Simulated experiment

The first example is an n-run experiment to investigate two treatments, A and B, whose
functional responses are described by different models. We assume that a runs of the

experiment have treatment A and that the response follows

ya(t) = aoa + arat + €(t), (5.1)

where aps and oy are model parameters, €(t) ~ N(0,02) for all t € Z C R and €(t), €(s)
are independent for all ¢, s € Z such that t # s.

Each of the remaining b = n — a runs of the experiment has treatment B and produces a

response following the model

yp(t) = aop + €(1), (5.2)
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(a) cos=ogp = 1,004 =2 (b) cpa = 0.003, 0014 = 0.997, 005 =1

for model A
""""" for model B

0.2 0.4 06 08 1 o 0.2 0.4 06 08 1
i i

(c) ogt = o5 =2,0004 = 0.5 (d) egqa = 0.003, 004 = 9.997, 0005 = 10

15

16 L L L L 5

Figure 5.1: Example 1: Simulated data from the application of treatments A and B (see
(5.1) and (5.2)) with various parameter values

where p is a model parameter and €(t) is defined as before.

Figure 5.1 shows simulated responses from each treatment for a selection of different
parameter values, all with 6% = 0.04. We see that in Figure 5.1 (a), (b) and (d), the
responses from treatments A and B differ much more than in Figure 5.1 (c); hence model

discrimination would be much harder in the latter case.

5.2.2 Tribology experiment

We use the tribology experiment, introduced in Chapter 1, as a motivating and illustrative
example. Recall that data were recorded from a wear study conducted to assess which
factors affected the rate of wear of a pin and disc assembly for a given lubricant. The
experiment involved 16 runs, each with a different combination of values of the six factors:
disc material, pin material, addition of soot, level of oxidation, addition of H>SO, and

level of moisture.

The experiment used an unreplicated 2672 fractional factorial design with 16 runs and
defining relation [=ACEF=ABDE=BCDF. Hence pairs of two factor interactions were

aliased together. For each of the 16 runs, the functional response ‘wear’ was measured over
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a time index. Unfortunately, for two functional runs there was no data available resulting
in a 14 run experiment. Therefore, the realised design has a partial aliasing scheme and
only 14 effects, at most, can be estimated. As stated in Chapter 1, observations during
a burn in and a period at the end of each run were removed after consultation with the

engineers.

The aim of the experiment is to predict the value of the response, that is, the profile over
the interval [500, 2400] of the combined wear on the pin and disc for a given combination of
values of the six factors. In this experiment the measured response was the the combined
wear on the pin and the disc, measured by a Linear Variable Displacement Transformer

at a large number of equally spaced discrete time points (referred to as the time index).

Figure 5.2 displays responses from two runs of the tribology experiment. Notice that there
is much more variation between runs than within runs because the form of the functional

response changes with treatment.

5.3 Definitions and notation

We formally introduce functional data following the notation of Faraway (1997). Note that,
throughout this chapter, p denotes the total number of terms in the model, including the
intercept. Suppose that the ¢th run of the experiment involves taking observations on a

smooth function

yi(t) = 6i(t) + ei(t), (5.3)

for i = 1,...,n where ¢;(t) is a realisation of a stochastic process with mean zero and
covariance function 7(s, t) with s, ¢ belonging to an interval, Z C R. When the experiment
is performed, we take n; observations on each function at values of an index variable, such

as time, and express the jth observation from the ith run, taken at t;;, as

yi(ti;) = gi(ts;) + €ij, (5.4)

for j =1,...,n;. Note that the dataset may satisty n; = m for all ¢, i.e. the same number
m of observations is recorded for each run of the experiment. This often occurs in practice

and is now assumed in the rest of the chapter. Even if n; # m for all ¢, it is often the
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Figure 5.2: Data from run 2, plot (a), and run 19, plot (b), of the tribology experiment
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case that the observations from each run can be smoothed or interpolated to obtain m

‘observations’.

In the remainder of this section, we consider methods of approximating functional re-
sponses and then fit functional linear models to explain the variation due to the different

treatments.

5.3.1 Approximating the functional response

We now wish to reconstruct g;(¢) using the discrete measurements from (5.4). In order to
do so, we require some form of smoothing. If there is little or no within-run error, then we
could simply interpolate to approximate g;(t) (Faraway, 1997). However this would not

be advisable when measurements are made with a degree of error.

There are two clear smoothing methods pointed out by Faraway (1997): (i) smooth each
run, y;, separately without reference to the type of model fitted, using methods such as
those described in Chapters 3 and 4, (ii) use cross-validation to determine the amount
of smoothing to be done, through a roughness penalty; see Ramsay and Dalzell (1991).
Note that cross-validation performs poorly when the errors are correlated (Faraway, 1997).
Other methods should be used in this case.

Smoothing methods used to reconstruct g;(¢) from m observations were discussed in Chap-
ters 3 and 4. In those chapters the method of local smoothing to reconstruct the function
g;(t) from a finite number of design points which were chosen to minimise the average

variance of g;(t) over the prediction interval.

5.3.2 Functional linear model

The functional linear model with constant covariates is defined by Faraway (1997) and

Ramsay and Silverman (2005, p. 235) as

Y (t) = XB(t) + e(t), (5.5)

where B(t) = (Bo(t),...,B,-1(t))" is a vector of functions depending on ¢, X is an n x p

model matrix, Y (t) = (yi(t),...,yn(t))? is a vector of functional responses and € =
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(€1(t),...,e,(t))T, is a vector of error functions with €;(¢) defined as in (5.3). That is, we

assume the functional response depends linearly on p unknown functional parameters.

5.4 Fitting functional linear models
In this section, we consider fitting a functional linear model (5.5). We consider using (i)
pointwise methods and (ii) regularised basis expansions.

We assume the data from the ¢th run follows the model

where @] = (2, ..., %, 1) is the ith row of the matrix X, and 3(¢) and ¢;(t) are defined

in Section 5.3.2.

The extension of the least squares principle to the functional case is described by Ramsay
and Silverman (2005, p. 236). We wish to find estimators of 3(t) to minimise

> [ lto) — (af80)]ar 56)

where in this expression, and throughout this chapter, the integral is evaluated over the
interval Z. This integral is mathematically intractable and therefore must be approxi-

mated.

5.4.1 Pointwise Methods

The least squares estimator for 3(t) for each ¢ can be calculated pointwise as

A

B(1) = (XTX) " XTY (1). (5.7)

Values of (5.7) can then be interpolated across ¢ to provide an approximate solution to
(5.6). Therefore if we can evaluate or approximate Y (t) for given ¢, then 3 can be calcu-
lated. In addition, we can make predictions ¥ (£) = HY (t), where H = X(XTX) ' X"
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directly from the approximation of Y (¢).

However, B(t) may be a very wiggly function of ¢ due to the noise in the data. Hence, we

may desire a fitting method that places smoothness constraints on B (1).

5.4.2 Fitting functional linear models with regularised basis ex-

pansions

The use of regularised basis expansions allows control of the smoothness of B(t) whilst
incorporating the level of detail the data requires (Ramsay and Silverman, 2005, p. 236).
In comparison to the pointwise method, which places no constraint on the parameter 3(t),

this method uses a roughness penalty to control the smoothness of B(t)

The data, Y (t), can be represented by the product of a basis expansion and coefficient

matrix, for instance, using a B-spline basis (see, for example Eubank (1999, ch. 6)):

Y (t) = Co(t), (5-8)

where Y (t) contains n observed response functions and C'is a n x K, matrix of coefficients
of the expansion of Y (¢) in its ¢th row for ¢ = 1,...,n runs. Here K, is the number of
basis functions chosen to represent the response, and ¢(t) is the K,-vector containing the

linearly independent basis functions.

The parameter vector 3(t), of length p, can also be expressed in terms of a basis vector
0(t), of length Kz, and a p x Kj coefficient matrix M, giving B(t) = M6(t). We define

Kj as the number of basis functions chosen to represent 3.

The roughness penalty is defined for 3 as

PEN,(8) = / LA LA dr, (5.9)

where L is a linear differential operator, that is L3 is a vector containing derivatives of
B(t) of a given order. Note that a common penalty is the integrated squared second

derivative given by
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PEN:(B) = [ (Do)} (D810} at. (5.10)

where D?[z(t)] denotes the second derivative of z(t) with respect to . The sum of squared

errors, ignoring the roughness penalty, in the functional case is

SSE(|B) = / Y (1) - XB()TTY () — XB(1)]dt.

The basis expansion for the sum of squared errors can be written as

SSEs(y|8) = / Colt) — XMO(H)” [Cb(t) — XMO(1)] dt.

The penalised least squares criterion is to minimise

PENSSE(y|8) = SSEp(y|B) + u / [LMO(t)T[LMO(t)dt. (5.11)

The scalar p controls the degree of smoothing applied via the penalty. It is possible to
re-write (5.11) in terms of Kronecker products (Ramsay and Silverman, 2005, p. 238-239),

giving the exact solution for B as

B =Me(t), (5.12)

where

vec(M) = [Joo ® (X' X) + R® u[]_l vee(XTC Jge),
with Jog = [ 0(1)[0(1))7dt, Jpe = [ @(t)[0(t)]"dt and R = [ LO(¢)[LO(t)]"dt, and recall-
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ing that Y (t) = C¢(t) from (5.8).

An optimal value of p, the smoothing parameter, can be calculated using the cross-

validated integrated squared error

CVISE = Xn: / [yi(t) — 9 (t)]2 dt, (5.13)

where 99 (t) is the predicted value for y;(t) when y;(t) is excluded from the estimation
of B, see Ramsay, Hooker and Graves (2009, p. 153-154).

5.5 Inferential methods for model comparison

In this section, we begin by discussing three methods for comparing two rival functional
linear models. We then demonstrate two of the methods by applying them to a simulated

example, in Section 5.5.2, and to data from the tribology experiment, in Section 5.5.3.

5.5.1 Methods of comparing two models

(i) Pointwise methods

When we have fitted a functional linear model, for example using the methods in Section
5.4.2, we can use the optimal values for B(t) to test the null hypothesis Hy: Y (t) =
Bo(t)1, + €(t) against the alternative hypothesis Hy: Y (t) = X3(t) + (t) by calculating
the corresponding pointwise F-ratio for every ¢. The pointwise F-ratio can be calculated

pointwise over t as

Fratio(t) = %};Eg, (5.14)

with
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SSE(t)
n—p
Sy [wilt) — 9:(0)]

n—op ’

MSE(t) =

and

SSY(t) — SSE(t)
p—1
S [0)  Ao(0)] — S ) — 00

p—1

MSR(t) =

’

with G, (t) the intercept in the functional linear model. The number of degrees of freedom
for error, df (error) = n — p, is the total number of runs less the number of independent
variables in the model. The number of degrees of freedom for regression, df (error) = p—1,
is the difference in the numbers of degrees of freedom for error for the two models being

compared.

Analogous to usual linear model theory (see, for example Draper and Smith (1998, ch.
6)), this testing procedure can be generalised for pointwise comparison of any two nested

functional linear models.

There are some caveats to only using pointwise tests. Firstly there is the problem with
making multiple comparisons. Applying Bonferroni corrections to the significance level
to account for this would compromise the power due to the within run correlation (Shen
and Xu, 2006). Secondly, Fan and Lin (1998) remarked that the correlation between
two neighbouring observations for a given run should not be ignored in the analysis. In
order to remove correlation from stationary data, these authors applied Fourier or wavelet
transformations. A final disadvantage of pointwise hypothesis testing is that it does not
give an overall assessment of significance for the difference between the functional linear
models. There are instances where two models may be falsely shown to differ significantly
at a point, when they do not differ significantly over the whole interval (Ramsay and
Silverman, 2005, p. 228).

(ii) Multivariate-based methods

Faraway (1997) and Shen and Faraway (2004) argued that if y;(¢) is measured on an equally
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spaced grid of m values of ¢, then methods of multivariate analysis may be used provided
predictions are only required at the same values of ¢ for each function. To compare two
nested multivariate linear models, the likelihood ratio test could be used, where the test
statistic depends on the log ratio of eigenvalues of the estimated covariance matrix from
each model. However, this sequence of ratios need not tend to 0 as m — oo. Hence,
the test statistic may be dominated by terms (ratios) which only nominally contribute to
the variation in the data. Faraway (1997) and Shen and Faraway (2004) concluded that
the likelihood ratio statistic is only suitable for small m, which is unusual for functional

datasets. For this reason, we will not use this test in the first half of this chapter.
(iii) Functional F-test

Faraway (1997), Cuevas, Febrero and Fraiman (2004) and Shen and Faraway (2004) in-
troduced the idea of a functional F-test. In contrast to the pointwise methods of Section
5.5.1 (i), a functional F-test considers differences between models across the whole interval
for ¢t. This type of test can be used to compare two nested functional linear models, the
smaller model 1 and model 2, having p and q parameters respectively, with ¢ > p. The null
hypothesis is that labelled model 1 is true, and the alternative hypothesis is that model 2

is true.

The test statistic for the functional F-test is given by

b s ros)/la—p) 5.15)

rssa/(n —q)

where rss; and rssy are the residual sum of squares for the smaller and larger model

respectively, given by

rss; = Z/yz — gu(t))2dt  forl = 1,2,

with g;(¢) the fitted value for run ¢ and model [.

The distribution of (5.15) is too complicated to derive analytically. This led Cuevas et al.
(2004) to propose an asymptotic test based on the numerator of (5.15). Shen and Faraway

(2004) considered a more intuitive approximation, used later in this chapter, where

s~ 3 0t — )

=1 j=1
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for I = 1,2. The test statistic (5.15) is then compared to an F distribution with A\(¢—p) and
A(n — q) degrees of freedom where A is the degrees-of-freedom-adjustment-factor defined

as

oo 2

A= M (5.16)
[e.9] )\2
k=1 "k

The values Ay are eigenvalues of the covariance function (s, t) from (5.3). We can estimate
A by

[trace(3)]2

A= -
trace(X?)

, (5.17)

where 3, = S &(t)é(t)/(n — q) with e(t;) = y;(t;) — §ai(t;). Large degrees of

freedom are required for an accurate estimate of A\, see Shen and Faraway (2004).

If ¢;(t;), €:(t) were identically and independently distributed then A = m. Correlation
between ¢;(t;) and € (t;) would reduce the value of A, leading to lower degrees of freedom
for the reference F distribution and hence a higher critical value. Therefore, data that is
more highly correlated with ¢ will need a larger value of the test statistic in order to reject

the null hypothesis.

Suppose a model is being considered which has p terms. We may wish to examine the
importance of each term individually. For the rth term; r = 0,...,p — 1 we test Hy :
B-(t) = 0 against H; : 8,.(t) #Z 0 by using the test statistic given by

7SS, — I'SS1
F, = 5% 7T 5.18
rssy/(n — p) ( )

where rssg, is the residual sum of squares under (,.(t) = 0. Shen and Faraway (2004)

provide straightforward methods for calculating this ratio as

[ B2(t)at

= s/ — ) (X X)L

(5.19)
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where (X'X),,! is the rth diagonal element of (X’X)~! and rss; is the residual sum of
squares for the model under the alternative hypothesis. As described by Shen and Faraway
(2004), it is possible to approximate the null distribution of F,. by an F distribution with A
and A(n — p) degrees of freedom, where A is defined in (5.16) and approximated by (5.17).

5.5.2 Application to a simulated example

We return to the example of Section 5.2.1 and consider a simulation of n = 20 runs of
data: a runs have treatment A applied to them, resulting in responses from model (5.1);
b =n — a runs have treatment B and responses from model (5.2). We wish to investigate
how inbalance between the number of times each treatment occurs in a simple design

affects the performance of tests (i) and (iii) described in the last section.

The functional model for the ith run can be expressed as:

where ¢ € [0, 1] and

1 if treatment A is applied to the ith unit
0 if treatment B is applied to the ith unit .

For each run, observations were simulated at m = 100 values of ¢, equally spaced between
0.01 and 1. We set apa = 0.003,a14 = 9.997 in (5.1) and app = 10 in (5.2), and
obtain values of ¢;; by random draws from a N (0, 1) distribution, where i =1,...,20,j =
1,...,100.

(i) Pointwise F-ratio

We used the pointwise method outlined in Section 5.4.1 to fit a functional linear model

(5.20) by finding B(t) to minimise (5.7), that is B(t) = (X7 X) ' XTY (t) for each ¢.

We simulated five different allocations of numbers of runs having treatment A and B,
chosen as different proportions and shown in Table 5.1. A single set of errors was simulated
and used for every combination of @ and b in order to eliminate Monte Carlo error. The
values of the Fratio(t) statistic (5.14) for testing the null hypothesis: f;(t) = 0 are shown
in Figure 5.3. The 95% percentile of the F distribution with 1 and 18 degrees of freedom
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respectively is also shown.

a | b
2 118
5115
10 | 10
15| 5
18 | 2

Table 5.1: Values of a and b used in the simulated example

Figure 5.3 indicates how the Fratio(t) changes with ¢, i.e. we can see the changing evidence
of a difference between the treatments. In general, the Fratio(t) is largest when a = b = 10.

Also note that as the difference between a and b increase, this Fratio decreases as expected.

Examining how the pointwise F-ratio varies over time is useful as we can see whether the
significance of the treatment effects changes over the interval. In this example, Figure 5.3
shows that the pointwise F-ratio value decreases as t decreases, subject to random error.
This is because the effects of model A and B differ more towards the beginning of the
interval, see Figure 5.1 (d). Figure 5.3 shows that for all treatment combinations, except
a = 10,b = 10, there is a significant difference between models A and B for ¢ € [0, 0.80].
The pointwise F-ratio was larger than the critical value, 4.41. For plots (a), (b), (d) and
(e) it is noticeable that for some t > 0.80, there is significant difference between models A
and B. This is due to the random error in models A and B. When a = 10,b = 10, there

was a significant difference between the two models over the whole interval, see Figure 5.3

(c).

Figure 5.3 (f) shows the maximum value of the pointwise F-ratio and the functional F-test
statistic (5.19) for a = 1,...,19 . The maximum pointwise F-ratio and the functional
F-test statistic both increase for a = 1,...,10 and decreases from a = 10,...,19. The
largest maximum pointwise F-ratio and functional F-test values occurring when a = 10
and b = 10 is not unexpected as the balanced number of runs for each treatment should
give us the most information to discriminate between models A and B, through minimising

the variance of £y (t).
Functional F-test

We next investigate the functional F-test using the simulated example. Recall, we are
comparing a functional linear model to a ‘constant’ model, therefore there are 18 degrees

of freedom for error and 1 for regression.

Table 5.2 contains the values of the functional F-test statistic, Fi, values calculated from
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Figure 5.3: Pointwise Fratio(t) against ¢ for testing (;(¢) = 0 for each combination of a
and b together with the 95th percentile of F] 15 [plots (a)-(e)] and maximum values of the
pointwise F-ratio and the functional F-test statistics for a = 1,...,19 over the interval

[0,1] ()
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(5.19) for r = 1 to test the null hypothesis that the constant model, Y = £y(¢)1,, + €(t),
where 1,, is an (n x 1) vector of ones, is true against the alternative that the linear model,
(5.20), with the additional parameter 3 (t), is true. To calculate critical values, values of
5\, the adjusted degrees of freedom were calculated using (5.17) and were also included in
the table. Figure 5.3 (f) displays the values of the test statistic graphically. The critical
value for this test at the 5% significance level, is shown in Table 5.2 for each combination

of a, b values.

Table 5.2 shows that the value of F} is largest for a = 10 and b = 10 and decreases as
the difference between a and b increases. In all cases, the F} values are greater than the
corresponding critical value from the F-distribution. This agrees with the findings from
Figure 5.3 for the functional F-test that, for the majority of the interval, the pointwise

F-ratio shows a significant difference between the two models.

al|b A F Critical value
2 | 18 | 14.92 | 34.29 1.71
5 | 15| 15.01 | 121.63 1.70
10 | 10 | 15.01 | 163.72 1.70
15 5 | 14.94 | 123.13 1.70
18 | 2 | 14.94 | 31.82 1.71

Table 5.2: Test statistic and functional F tests for each split of 20 runs between treatment
A and B (simulated data).

5.5.3 Application to a tribology experiment

We now investigate selecting a functional linear model to describe the data from the 262
tribology experiment where each linear term corresponds to the main effect of a factor.

We model the observations on the ith run of the experiment by

yi(t) = @] B(t) + e(t), (5.21)

for i = 1,...,14, where ! is the ith row of the model matrix X having first entry 1, and
rth entry 1 if factor r is at the high level or —1 if it is at the low level (r =1,...,6).

We wish to investigate whether each main effect should be included in the fitted model

using both the functional F-test and the pointwise F-ratio test.
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The model (5.21) was fitted using a regularised basis expansion as in Section 5.4.2. We used
8 basis functions for both Y and 8 and (5.10) for the roughness penalty. The smoothing
parameter p = 10'° was calculated by minimising the cross-validation integrated squared

error, see Figure 5.4.
(i) Pointwise F-ratio

Following Section 5.5.1 (i), pointwise F-ratios were calculated for each of the 1900 points
labelled ¢ = 1,...,1900. Figure 5.5 shows that only the intercept was significant over the
whole interval at the 5% level. We also found, evidence at the 5% significance level that
oxidisation, /34, had influence on wear but only for the first section of the ¢ interval. These

results provide little evidence that any of the factors have an important influence on wear.

We now consider adding two-factor interactions to model (5.21). However, we came across
a problem in using cross-validation to calculate the optimal value of u. When we estimate
14 parameters (intercept, 6 main effects and 7 two-factor interactions), the information
matrix X’X is very close to being singular. To overcome this problem we removed one two-
factor interaction (between moisture and pin material). The resulting information matrix
had full rank. However, the cross-validation method used to calculate optimal p removes
the ith run from the data when fitting a model to predict the ith wear measurement. This
means that the corresponding design matrix has the ith row removed. For some i (e.g.
i = 2) this results in (X9)7(X(?) becoming singular. This is the result of the lack of

orthogonality of the realised design due to the two missing runs.
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Therefore, we now fit a model with all main effects and including the two two-factor
interactions between disc material and pin material, and disc material and soot. This
model has nine parameters to be estimated. The roughness parameter was again calculated

by cross-validation to be p = 10115,

Figure 5.6 shows that only the intercept was significant over the whole interval at the 5%
significance level. We also found that oxidisation, [3;, was significant at the 5% level for
most of the interval ¢ € [1,1900], which differs from the findings when the model fitted
had only main effects. As the realised design with 14 runs is not orthogonal it is, of course,

possible for the addition of interactions to change the estimates of main effect terms.
(iii) Functional F-test

Analogous to our strategy for the pointwise F-ratio, we first consider the model which
only includes main effects and an intercept term. We fitted (5.21) and minimised (5.11)
to find the seven estimators BO, e ,36. The functional F-test (5.19) was then performed
to individually test which effects should be in the model. The critical value of the F
distribution with A = 1.035 and A(n — p) = 1.035(14 — 7) = 7.25 degrees of freedom (see
(5.17)) at the 5% significance level is 5.47. The values of the test statistic for each effect
can be found in Table 5.3. We see that the intercept was found to be the only significant

term.

In order to compare the above results with those of the pointwise F-ratio, we constructed
a functional F-test for the model with main effects and the two interactions: between disc
material, and pin material, and disc material and soot. For a 5% significance level test,
the critical value of the F distribution with A = 1.029 and A(n—p) = 1.029(14—9) = 5.15
degrees of freedom is 6.46. The test statistic value for each term is given in Table 5.3.
The intercept was found to be the only significant term, as it was when a model with only
main effects was fitted. Note that for oxidation, the 4 term, the test statistic is close to
the critical value. We may expect this since this term was significant over most of the

interval; see Figure 5.6.

5.6 Conclusions from the examples

The example constructed using the simulated data in Section 5.5.2 provides evidence that
unequal numbers of runs for each treatment lead to smaller values of the test statistics in
both the pointwise and functional F-tests. This is due to the larger variance of Bl (t) than

would occur for a balanced design and is analogous to what happens in a ‘scalar’ linear
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Model term | Model 1 | Model 2
Bo 10.75 17.19
o1t 3.09 3.45
B 0.54 0.87
B3 1.02 1.63
B 3.80 6.08
Bs 1.57 3.28
Be 0.90 1.45
B2 - 5.09
b3 - 0.38

Table 5.3: Example 2: Functional F-test statistics for model 1 (all main effects) and model
2 (all main effects and the disc material-pin material and disc material-soot interactions).
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model.

The performance of the pointwise and functional F-tests explored in the simulated example

can only be indicative because only one set of data was simulated.

As highlighted in Section 5.5.1, the functional F-test does not have the multi-testing
disadvantages of the pointwise F-ratio and takes some account of the possible correlation
in the observations. Hence the functional test is preferred. In the second half of this
chapter, we find optimal designs using a criterion which is similar to the functional F-test

statistic.

5.7 Optimal designs for model discrimination

The remainder of this chapter is focussed on optimal design for model discrimination. In
this section, we review goodness-of-fit testing and the criterion of T-optimality for a uni-
variate response (Atkinson and Fedorov, 1975), describe an adaptation of T-optimality for
multivariate response models (cf Ucinski and Bogacka, 2005) and develop a T-optimality
criterion for functional linear models. In the following section we assess the performance
of designs found from this criterion to approximate the power for discriminating between

two functional linear models using simulation studies.

We begin by considering the notation for the univariate case to illustrate the design prob-

lem. Suppose that we wish to compare two linear models:

model 1: Y, = FB+e,, (5.22)

and

model 2: Yy =GO + 7, (5.23)

where Y'; (i = 1,2) are the n x 1 vectors of observations, 3 and 6 are, respectively a p x 1
and g x 1 vectors of parameters, €, ~ N(0,0%I), € = (e1,...,6,), n=(n1,...,m,)" and

o? is known. Here F and G are model matrices given by
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fo(iUl) < fp—1($1)
F = : : , (5.24)

fo([En) fp—l(QJn)

and
go(r1) - gg-1(z1)
G = : : . (5.25)
gO(vxn) oo gq—l(xn)
The points x; for © = 1,... ,n are design points, that is values taken by the single variable

—1 <z <1, and the functions f and g are known functions of x.

We may regard an optimal design for model discrimination, as a design which enables
a ‘best’ test of the hypothesis that model 1 is correct given data arising from model 2.
Therefore the theory of optimal design for model discrimination can be motivated by

goodness-of-fit testing used in classical linear modelling.

5.7.1 Likelihood-based goodness-of-fit testing

A goodness-of-fit test compares a given model with p < n parameters to the full saturated
model, assumed to have n parameters. A likelihood-based goodness-of-fit test uses the
deviance as a statistic to measure discrepancy between models (McCullagh and Nelder,

1989, p33). The deviance for model 1 is given by

D(Y,Y)=2(Y,Y)-2(Y,Y), (5.26)
where
Y =FB,
(Y,Y) = —"log (2ma?) — %‘Q(Y — FB)T(Y — FB),
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and

YY) =~ log (2m0?) .

Here 3 = (FTF)"'FTY is the least squares estimator under model 1. The deviance for

model 1 is therefore defined as

D(Y,Y;) = . (5.27)

If the deviance is larger than an appropriate critical value from a y? distribution with
n — p degrees of freedom, then there is evidence to reject the null hypothesis that model

1 is an adequate description of the data.

5.7.2 T-optimality

In this section we introduce the ideas behind optimal design for model discrimination.
We review the work by Atkinson and Fedorov (1975) for a univariate response, apply
these ideas to the case of multivariate response and develop a T-optimality criterion for

functional linear models. We illustrate these methods with a simple example.

Atkinson and Fedorov (1975) introduced T-optimality for univariate models, with an ob-
jective function based on the sum of squares for lack of fit of a first model given that the

data comes from a second model.

5.7.2.1 Univariate response

We review the methodology for designing experiments to discriminate between two uni-

variate linear models.

The deviance, or sum of squares, for testing the assumption that model 1 is correct given

we expect data to come from model 2 is given by substituting F(Y2) = G@ into (5.27):
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o (E(Ys) - FB)(E(Ys) — FB)

2

o

[E(Y;) = F(FTF) ' FTE(Yz)] " [E(Y;) - F(FTF) 7 FE(Ys)]
(GO — F(FTF)'FTGO]" [Go — F(FTF) ' FTG6)

6"G" [I — H* G

0'GT I — H] GO, (5.28)

R R R OR

where H = F(FTF)7'FT is the hat matrix and (I — H) is an idempotent matrix. An
exact T-optimal design maximises ¥(¢) = 87 G [I — H] GO with respect to the design
points, which feature in both G and H.

Note that in the univariate case, ¥(&) is proportional to the non-centrality parameter for
the distribution of the test statistic (5.27) assuming an alternative hypothesis of model 2
being true; see McCulloch, Searle and Neuhaus (2008, p. 126).

In the examples in this chapter, we find approximate optimal designs rather than exact
designs. Recall from Section 1.4, approximate designs are represented by a measure £ on
the design region y. An approximate design with observations at s distinct design points,

often referred to as support points, in y is written:
g=< 707 ° b (5.29)
wp Wy ... Wg

For simplicity, and without loss of generality, in this chapter we assume that points
T1,...,Ts in an n-point (n > s) exact design are distinct. The first line of (5.29) gives
the s support points and the second line gives the associated design weights, 0 < w; < 1;

> r_,w; = 1. More details can be found in Section 1.4.

Approximate designs are useful for the simulation studies later in this chapter, as they
allow the straightforward construction of designs with large numbers of points through
scaling of s. Instead of finding an exact design for large n, for example n > 50, we can
find an approximate design and use the weights, rounding nw;, to construct an exact

design.

135



Criterion 5.1. A T-optimal design & for discriminating between models 1 and 2 maz-

1MISES

W) =0"G"(I - H,)"W(I — H,)G8, (5.30)

where W = diag(w;) fori,...,s and H, = F(FTWF)'FTW.

Proposition 5.1. The optimal design under Criterion 5.1 is independent of 0 if models
1 and 2, defined in equations (5.22) and (5.23), are nested and only differ by one term

(@=p+1).

Proof. The proof follows that of Atkinson et al. (2007, p. 360). Assume that model 2 is
the larger model and partition the model matrix G into [F' : F'] where F is an s x 1 vector.
The vector of parameters @ can also be partitioned as 87 = 07 : 05], with 6, of size p x 1

and 6, a scalar.

The T-optimality objective function can then be written as follows:

V() = 6°GTUI-H)"W(I - H)G6

T . Fr T o . 61
= (0] : )] Fr [[ — H"W[I — H|[F : F] 92]
T . 6,
= [6] :6,]A 6, ] )
Here,
W . o
A = _FT][I_H”L“] WII — H,|[F : F|

FT(I — H,)"W(I — H,F FT[I — H,)"W[I — H,|F
FT(I — H)"W|[I — H,JF F[I - H,)"WI[I — H,|F

0 0
= ) |, (5.31)
|0 FT(I—H,)"W(I - H,)F

as H,F = (FTWF)'FTWF = I. Therefore,
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0 0
0 FT(I—H,)™W(I — H,)F
= O,FT(I — H,)"W(I — H,)F6,

o« FT'(I—-H,)"W(I - H,)F.

W(E) o [‘9{392]

61
)

The last step follows from 5 being scalar. Hence the result is shown. m

Example

We wish to find an approximate T-optimal design to enable a test of whether a simple

linear model (model 1):

Y1 = Po + Bix; + €,

is a suitable fit given we expect data from a quadratic model (model 2):

Yoi = Bo + O12; + 929712 + 7.

fori=1,...,s. Hence F' has the form

, (5.32)

where x4, ..., x, are support points. The expected data are assumed to follow model 2, i.e.

E(Y2) = GO, where: 6, a 3 x 1 vector of unknown model parameters and

G=|: : : |. (5.33)

From Proposition 5.1, the two models differ by only one term and the value of 8 does not

affect the optimal design.
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In order to find approximate T-optimal designs numerically, we used a grid of n, = 21
equally spaced points on the interval [—1, 1] and found the optimal weights wy, ws, ..., wy,
to maximise V(&) in Criterion 5.1 using the Nelder-Mead algorithm. We would expect
some of the weights to be zero, with the non-zero weights indicating which s of the n, grid

points were in the support of the design.

The optimal design was found to be

10 1
52{ 0.25 0.5 0.25 } (5.34)

5.7.2.2 Multivariate response

We describe T-optimal designs for the multivariate case as a stepping stone to designs for
the functional linear model, although we also derive some results which are of interest in

themselves.

Ucinski and Bogacka (2005) considered T-optimality for multivariate non-linear models.
Specifically they found T-optimal designs for discriminating between two specific mul-
tiresponse models, assuming that observations on an individual response variable were
correlated. Their work was applied to dynamic systems and chemical kinetic models.

Here we adapt their ideas to linear models.

In multivariate regression, we record m observations, one for each response variable, for

each of the n runs of an experiment. For example, the m responses, of the first run are of

the form
vii = Porfo(zr) + Bufi(z) + ...+ Bpora(@r) fo—1(z1) + €n
Yim = 50mf0(1’1) + ﬁlmfl(xl) +...+ ﬁp—l,m(xl)fpfl(xl) + €1m,
where the error variable €; = (€11, €19, . .., €1,,)7 has E(e;) = 0 and Var(e;) = ¥ (Johnson

and Wichern, 1998).

Suppose we wish to discriminate between the following two multivariate linear models:
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model 1: Y} = FB+ Ry,

and

model 2: Yy = GT + Rs. (5.35)
Here the matrices Y; and Y5 hold the n X m responses from models 1 and 2, respectively:
Yin .. Yam

The model matrices F' and G are defined in (5.24) and (5.25). The matrices, B and T', of

parameters in models 1 and 2, respectively are

/601 oo ﬁOm
Bpr-11 -+ Bpi—1m
and
901 90m
T = :
0q1,171 c qu,l,m

The matrices of errors, R, and R,, are given by

€11 ... €1m

Rl: )

€l -+ €nm
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and

M1 -+ "Tm

where vec(RY) ~ N(0,1 ® ), with ¥ the within run covariance and the vector operator

for a matrix A, written in terms of columns A = [ay,...a,], is defined as
a;
as
vec(A) = ‘ : (5.36)
a,
For each of the i runs, i = 1,...,n, the (j, k)th element of the covariance matrix is given

by X = cov(e;y,€). Note that we assume observations from different runs are not

correlated.

The multivariate maximised log-likelihood is given by

z (YYl) - —% log(2) — glog(\z\) - %tr [z-l {Y - FB}T {Y - FB}] ,

see Johnson and Wichern (1998). The deviance for testing model 1 is correct, given the

expected data from model 2, is given by

D (B Y1) = 20(B(M) B(Y2) -2 (E(Y). 1)
= —mnlog(2m) — nlog(|X|) + mnlog(2m) + nlog(|X|)

i {2—1 {E(Yg) - FB}T {E(Yg) - FB}]
S [2—1 {E(YQ) - FB}T {E(YQ) - FB}} +C

= tr [S7'TTG"(I - H)GT] + C, (5.37)

where m is the number of within run observations and C' does not depend on the design

or the data. Details on the derivation of the multivariate normal deviance can be found

140



in Johnson and Wichern (1998).

Criterion 5.2. A T-optimal design £ for discriminating between two multivariate re-

sponse models mazrimises

v(E) = tr[s'7'6"(I - H,)"W(I - H,)GT] , (5.38)

where W is the matriz of design weights in (5.29) and H,, is defined after (5.30).

Proposition 5.2. The optimal design from Criterion 5.2, is independent of the choice of
T and X if models 1 and 2 are nested and only differ by one term (g =p+1).

Proof. The proof is similar to that of Proposition 5.1. Once again, we assume model 2 is
the larger model and partition the model matrix G into [F : F]. The matrix of parameters

T can also be partitioned with 77 = [BT : T7], with B of size p x m and T a 1 x m vector.

The deviance for lack of fit of model 1 can be then written as follows:

U(E) o« tr{x'1"G"(I - H,) "W - H,)GT}
FT

T

= tr {2—1[BT 17 [ — H,)"W[I — H,)[F : F) b

}

= tr {E—ITTFT(I ~H)TW(I — Hw)FT}
— tr {FT([ —H)TW(I — Hw)FTZ—lfT}
= T Tty {ﬁT(J — H )W — Hw)F}

o tr {FT(I ~ H)TW(I - Hw)F} ,
using the result in (5.31) and the fact that TS ~'77 is a scalar and does not depend on

the design.

Hence we have shown that the optimal design is independent of the choice of T and X

when models 1 and 2 only differ in one term. O]

Example

We wish to compare two multivariate models: the single linear multivariate model (model

1)
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1 = €11 ... €1m
_ S Bor - Bom n : :
- Bii - Bim ' ' 7

1 z, €nl -+ €Enm

Y = GT'+ R,
1z 2?2 Oo1 ... Bom mi .- Mm
= P 011 ... O |+
1 =z, a:i Oor ... bom Ml - Nnm

Once again we assume that model 1, the linear model, is true. We wish to find an
approximate design which allows us to discern whether a linear model is appropriate given

that expect data from the quadratic model.

As the two models differ by only one term, the model parameters, T', and covariance

matrix, >, do not influence the optimal design by Proposition 5.2.

An optimal design was found using the simplex Nelder Mead numerical search algorithm

for different values of m.

‘o 1 0 1
) 025 05 025 [

to be T-optimal.

5.7.2.3 Functional response

We adapt the methodology for a multivariate response to the case of functional response

and propose a T-optimality criterion for design selection.

Recall that for a functional response, a linear model is written in the form
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vit) = £1(2)B(t) + ei(t),

for the i run of the experiment, i = 1,...,n and f(z) = (fo(z),..., f,—1(x)). We assume
that errors ¢;(t) and ¢;(s) are realisations from a Gaussian stochastic process with mean

zero and covariance function 7y(s,t) with s,¢ belonging to a real interval.

As for the multivariate and univariate cases, we wish to choose design points which enable
a test of whether model 1 is true, given that we expect data to come from model 2. For a

functional response, we define

model 1: y;(t) = f*(2)B() + &(t), (5.39)

and

model 2:  1s;(t) = g7 (2)0(t) + ni(1), (5.40)

with 7;(t) following the same definition as €;(t).

For each run we assume that the functional response can be evaluated at m points. These
points may be the actual measurements or predictions from the reconstructed functional
response (Shen and Faraway, 2004). We can approximate y;;(t), for j = 1,2, by the vector
(yji(t1), .., yji(tm)), and the realised dataset may be placed in a matrix

yir(t) .. yin(tm)
Y, = : :

Yin(t1) o Yjn(tm)

Note that in general there may be different numbers of observations per run. In the work

presented here, we assume there are m observations per run.

Now we can define model 1 and model 2 in terms of realised data

model 1: Y} = FB+ Ry, (5.41)
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and

model 2: Y, = GT + R,. (5.42)
Here B is the matrix of parameters

Bi(ty) ... Biltm)

610171(751) 5p171<tm>

and R; is the matrix of errors

er(ty) .. eltm)
R, = : : )
en(t1) .. €utm)

Also, T is a ¢ x m parameter matrix and Ry is an n X m error matrix defined similarly to

B and Ry, respectively.

The log-likelihood is given by

z (YY1> - —% log(27) — glog(\z\) . %tr {21 {Y . FB}T {Y . FB}] ,

where ¥ is the variance-covariance matrix for model 1. Analogous to (5.37), the deviance

is given by

D (E(YQ), Y1> x tr [2 TGN (I — HYTGT]
Hence, following Section 5.7.2.2, we can find approximate T-optimal designs using the

following criterion

Criterion 5.3. A functional T-optimal approzimate design & maximises
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V() =tr{S'T"(I - H,)"W(I — H,)T}, (5.43)

where W is the matriz of design weights in (5.29) and H, = (FITWF)"'FTW.

Proposition 5.3. The choice of design points satisfying Criterion 5.3 is independent of
the choice of T and ¥ if models 1 and 2 are nested and only differ by one term.

Proof. Follows directly from Proposition 5.2 O

Proposition 5.4. Univariate, multivariate and hence functional T-optimal designs are

identical when model 1 and model 2 are nested and only differ by one term.

Proof. The objective functions for the univariate, multivariate and hence functional T-
optimality criteria are identical for nested models that only differ by one term. Therefore

the optimal designs are the same. O]

Corollary 5.1. If models 1 and 2 are nested and differ by more than one term, the T-

optimal design depends only on Y and the additional parameters in model 2.

Proof. Proof follows from the proof of Proposition 5.2, where T is a (¢ — p) X m matrix

and F is a m X (¢ — p) matrix. ]

Note that in the case where > = I we find that

D (E(E),?}) x tr[T7GT(I — H)'GT]

= 3D (Blumlt)] - guit)) (5.44)

i=1 j=1

where yo;(t;) is a realisation of (5.39) and ¢y,(¢;) is a fitted value from (5.40). The function
(5.44) is equivalent to the test statistic proposed in Shen and Faraway (2004) and Shen
and Xu (2006) when the data are observed without error. These authors accounted for
correlation by adapting the degrees of freedom for the test rather than explicitly through

inclusion of a the matrix X, see Section 5.5.1.
Example

Suppose we wish to discriminate between two functional models: the linear model
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Y1i(t) = Bo(t) + Bi(t)x + ei(t),

and the quadratic model

Yai(t) = Oo(t) + 01(t)x + Oy (t)z* + n;(t).

We again assume that the linear model (model 1) is true. We wish to find an approximate
design which allows us to discern whether a linear model is appropriate given we expect
data from the quadratic model. In order to do this we maximise the objective function
(5.43). As the models differ by only one term, neither 7" nor ¥ influence the optimal
design. Using the Nelder-Mead algorithm, we find the optimal design to be

-1 0 1
_ , 5.45
¢ { 0.25 0.5 0.25 } (545)

agreeing with Proposition 5.4.

We verify that the design (5.45) is indeed T-optimal by showing that it satisfies a sufficient
condition for optimality obtained from a General Equivalence Theorem (Atkinson and
Fedorov, 1975). A sufficient condition for the design £* to be T-optimal is that

max ¢(z,§") < ¥(£),

TEX

where

U(@, €)= (B(y(t) — (1), (5.46)

and, in our example,

model 1:  E(y1(t)) = Bo(t) + S1(t)x
model 2:  E(ya(t)) = 0p(t) + 01 (t)x + O5(t)2>.
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The function ¢(x, &) is the derivative of ¥(€) in the direction of the point x. Here

91(t) = Bo(t) + Bu(t)z. (5.47)

Assuming expected data from model 2,

B(t) = (FTWF) " FTW E(Ya(1))

_ [ Oo(t) + 302(2) (5.48)
01(t) 7
where W = diag([0.25, 0.5,0.5]),
1 -1
F: ]. O 9
1 1

and E(Y3(t)) is the vector of expected response under model 2 for each of z = —1,0, 1,

Oo(t) — 01(1) + 02(t)
E(Ya(t)) = 0o(t)
Oo(t) + 01(t) + Oo(2)

Substituting the values for @ from (5.48) into (5.47) and (5.46), we find

P(z, &) <€O(t) +01(t)x + Ox(t)x* — Op(t) — %Qz(t) — 6 (t)x)

= {02(75) (xQ — %)} 2. (5.49)

Now max,e(—1,1 ¥(z, &) = 1605(t) when x = —1,0, 1. For this example,
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0(E) = 1 (46) — 06+ 020) ~ () — 500) + a1
+ % (00 —0o(t) — %92@))
1 2
= 192(0

Therefore ¥(x, &) < W(E) with equality at the support points z = —1,0,1. Therefore
by the General Equivalence Theorem for T-optimality, the design in (5.45) is indeed T-

optimal.

5.8 Simulation studies to assess power

In this section we conduct simulation studies to assess the power of the functional F-test
for data obtained using the T-optimal design found in Section 5.7.2.3. Recall that the
power of a test is the probability that the test will reject the null hypothesis when the null
hypothesis is false, that is, Power = P(H, is rejected|H is false). Simulation studies were
conducted for two examples: the first testing the goodness-of-fit of a linear model given
the data came from a quadratic model, and the second one testing the goodness-of-fit
of a first order model with two factors and their interaction when the data came from a

two-factor model with their interaction and both quadratic terms.

5.8.1 Example 1

In this example we test the hypothesis that a first order model describes the data, when
the alternative hypothesis states that a quadratic model is correct using the optimal design
(5.45). Specifically,

Ho:Y(t) = Yi(t) = Bo(t) + fr(t)x + e(t)
Hi :Y(t) = Yat) = 0o(t) + 01 (t)x + 02(t) 2 + n(t).
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We assume a linear model for the observation on each run

y1i(t) = Bo(t) + Br(t)z; + Bo(t)xF + (1), (5.50)

but simulated a response from the model

Yai (1) = Oo(t) + 01(t)z; + O5(t) 2 + ni(1), (5.51)

in order to test the assumption that a linear model was true, given the data was simulated

from a quadratic model.

We assume an AR1 auto-regressive covariance function where €;(t),n;(t) ~ N(0,0?) and
Cov(e(t;), €i(ty)) = Cov(ni(t;),ni(tx)) = pl=* for t; and t, on some real interval and
lp| < 1. Throughout the study, we employ ¢ € [—1,1]. Note that we will consider a
different covariance structure later in the section. Now to generate data, the parameter

functions 6y, 01, 05 are defined in this example to be

90 (t) = Qg + Ckoﬂf + a02t2
91 (t) = Oj0 + Oéllt -+ Oélth
92 (t) = Q9 + Oézlt -+ 0622t2,

The values of parameters amgg, a1 and aas are most important in the simulation study as
they determine, through 605(t), the difference between the linear and the quadratic models,
(5.50) and (5.51). Therefore the parameters g, (o1, a2, @10, 11 and a;o were fixed while

o0, (o1 and e were investigated.

The response function is observed at m points on each run and therefore the data gener-

ating model can be written as

Y, = GT + Ry, (5.52)
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where T is calculated from

Qoo Qo1 Qp2 1 ... 1

T = 10 (11 (19 tl e tm
2 2

Qion (g1 (99 tl e tm

and vec(Ry) ~ N(0,1 ® ¥ + J ® Io2) where J is the n X n matrix of ones. The variance-

covariance matrix ¥ has an autoregressive (AR1) autocorrelation structure defined as

Y — a : N : (5.53)

where o2 is the within run error variance. The between run error variance is denoted by
2

O-b .

The approximate optimal design in (5.45) was used to calculate an exact design, with n
design points. The proportion of design points placed at each of the three support points,
-1, 0 and 1 was determined by the weigths w; = 0.25,ws = 0.5 and w3 = 0.25. Table 5.4
gives the values of n used in the simulation study, with the corresponding exact design for

each number of runs.

n|—-1]0]1
121 3 |6 |3
241 6 12| 6
72 18 | 36 | 18

Table 5.4: Exact designs for various n

In this example, we use the functional F-statistic (5.18) to compare the residual sum of
squares for the assumed first order model (5.50) to the residual sum of squares for the
ANOVA model containing three parameters (one for each distinct value of x). Note that
for this design with 3 distinct design points, the residual sum of squares for the ANOVA

model is the same as that for the quadratic model.

The residual sum of squares for the linear model is calculated as

RSS = zn: / (yi(t) — fF (FTF)‘lFTY(t))th, (5.54)
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with fI' defined as the ith row of the design matrix F. The integral is analytically
intractable and hence approximated using Legendre-Gauss quadrature, with x; the roots

of the Legendre polynomials and ¢; the assumed abscissa values:

RSS ~ izn] (vi(t;) — fFE(FTR) ' FTY (1)) (5.55)

=1 j5=1

Here we assume my = m and that we take observations at the quadrature points. The

residual sum of squares for the ANOVA model is given by

RSS = Z / yi(t) — ;(1))” dt, (5.56)

approximated by

RSS ~ 3wy (lts) — 5it)?

=1 j=1

where

%Z?/ﬁy]()forjzl..&

— 3n/4 . n n
yi(t):<%2] 2/4+13/J<>f0r‘721+1"'37

\% Z?:3n/4+1 yi(t) for j = % +1...n

i.e. y;(t) is the average of the replicated response from the corresponding support point.

We now describe four simulation studies to investigate how various aspects of these de-
signs affect the power for discriminating between (5.50) and (5.51). We first outline the

simulation algorithm, which was followed in the studies.
Algorithm

For each combination of values of the parameters investigated:
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1. Generate a dataset of n x m responses from the quadratic model (5.52) according

to the selected experimental design.

2. Fit the smaller model (5.50) and the ANOVA model to the generated data.

3. Calculate the residual sum of squares for each of the first order and ANOVA models.

4. Compute the test statistic (5.15).

5. Compare the value of the test statistic to the 95th percentile of the F distribution
with A(g — p) and A(n — ¢) degrees of freedom, where p = 2 and ¢ = 3 for the
T-optimal design and ) is the degrees-of-freedom-adjustment-factor in (5.17).

6. Repeat steps 1-5 1000 times and calculate the power as the proportion of times that

the null hypothesis, i.e. the smaller model is the ‘true’ model, is rejected.

We now describe the four studies and present the results.

Study 1: To investigate the effect of the parameters asgg, an; and asy, which determine
05(t), on the power. The parameters asy and ag; were set to each of 0.5, 1 and 1.5 and

ag varied over the interval [0, 2].

In the simulation study we assumed o2 = 0.1 and o7 = 2 to make the between run error

variance much larger than the within run error variance, as usually occurs in practice,

The results of this study are shown in Figure 5.7. We see that as the number n, of design
points, or runs, increases the power increases for 21 equally spaced values of a9 such that
0 < a9y < 2. Further, the larger the values of agy and asq, the larger the power over the
whole range of ass. This is to be expected as 6, increases for larger awss and therefore
it is easier to discriminate between the linear and quadratic models. Also note that for
an; = 1.5, the power is close to 1 for n = 72. Fixing oy and increasing aw; (across rows
in Figure 5.7) has little or no effect on the power. This is explained by the form of the
parameter function 0y (t) = g+ o1t + aoet? and that —1 < ¢ < 1, resulting in ao; having
no effect overall on the size of 6. For larger asg, there is a smaller difference in power

between the different numbers of runs because the discrimination problem is then easier.

Study 2: Influence of size of between run error variance, o2, on power
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Figure 5.7: Example 1: Power calculated from 1000 simulations using the functional T-

optimal design for 9 combinations of agg and aw; values with 0 < agy < 2, and number of
runs n =12 (<), n =24 (--) and n = 72(---)..
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Figure 5.8: Example 1: Power calculated from 1000 simulations using the functional T-
optimal design against between run error 0 < 07 < 4 forn =12 (-) , n = 24 (- -) and

n="72(-)

We carried out a further study to investigate how varying the parameter o7, the between
run error variance, influences power. The other parameters were fixed at asy = ag =
age =1, 02 = 0.1 and p = 0.75. For each of 17 equally spaced values of 0 < o7 < 4, the

algorithm was used to obtain 1000 responses.

A comparison of the three curves in Figure 5.8 shows that the power decreases as o7
increases. Also, the power decreases more quickly for smaller values of n. This is because
a larger amount run-to-run error makes it harder to discern departures from the first order

model.
Study 3: Power comparisons to alternative designs

We compared the power curve for the functional T-optimal design (5.45) to the curves for
three possible alternative designs for discrimination between the first order and quadratic

models, each having different numbers of support points:

(a) the D-optimal design for the quadratic model

7853
2
I
—N—
wl= |
—_
wli= O

3

(b) the discrete uniform 4-point design on [-1,1] with equal weights

Wl =
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Figure 5.9: Example 1: Power against ags from 1000 simulations for the D-optimal design,
' forn=12 (-),n=24(--)and n="T72 (---).
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(c) the discrete uniform 6-point design on [-1,1] with equal weights

W=
= o=

SR

. -1 —-06 —-0.2 02 06 1
&= 1 1 1 1 1 (-
6 6

We fixed the parameters agy = ag = 1, 02 = 0.1, 0 = 2 and p = 0.75 and, as before,
investigated how the power changed for n = 12,24, 72 runs as aws varied. The results are
shown in Figures 5.9, 5.10 and 5.11 for designs £%, £° and £€ respectively. The corresponding
plot for the T-optimal design is the central plot of Figure 5.7. As expected, the power
of the three alternative designs is generally lower than that of the T-optimal design, for
each choice of number of runs. However, the power when the D-optimal design £, is used
is very similar to that for the T-optimal design for all n investigated. The power was
however, lower for n = 12. These results are explained by the fact that the D-optimal and

T-optimal designs only differ in their weights.

Overall, the equally-spaced four-point design, £, and the equally spaced six-point design,
£¢, have considerably lower power than the T-optimal design with maximum shortfalls
of 21% and 37% for n = 12, 21% and 36% for n = 24, and 12% and 25% for n = 72
respectively. For n = 72, the power is reasonably high for both designs and increases

almost to 1 for the highest values of ass. Both designs performed similarly for each value
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Figure 5.10: Example 1: Power against s, from 1000 simulations for design £°, for n = 12
(-),n=24(--)and n="72(---).

09 4

Power
\
y
5\
\\ 1

o
=]
\
\
\
L

05} - B

04r -7 B

Figure 5.11: Example 1: Power against ags from 1000 simulations for design £¢, n = 12

(-)yn=24(--)and n="72(---).
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of n investigated.
Study 4: To investigate an alternative error structure

We performed a limited investigation into the impact on power of changing the variance
covariance matrix and the selection of moy points used to calculate the residual sum of
squares (5.55). The my points here are chosen to be distinct from the m points where
observations are made which were used previously in (5.55). Instead of using the autore-
gressive correlation structure (5.53), as in the previous studies, we generated the data

using a covariance function, which is often used in practice.

r(t,s) = Cov(n(t),n(s)) = exp [—[(2(t — 5))"] (5.57)

for t,s € [-1,1].

We wish to calculate the residual sum of squares using msy points where the response
has not been observed. To obtain predictions for the msy points, we used cubic spline
interpolation. The predictions may then be used to estimate the covariance function

r(s,t), where the jkth element of the corresponding variance-covariance matrix is given
by

) 1 i )
Pty te) = = (Yi, = F(FUF) Uty ) (Y, — F(FTF)FTY ),

with Y, as the ¢;th column of the matrix Y, generated from (5.52). The matrix of errors
R, used to generate Y, satisfies vec(Ry) ~ N(0,1 ® ¥ + J ® Io}) where X has entries

defined by (5.57) and J is an n x n matrix of ones.

We no longer use quadrature to estimate the integrals in the residual sum of squares
formula for the assumed and ANOVA models given in (5.54) and (5.56). Therefore, we no

longer need weights and hence the values z; in (5.55) are set to one.

The vectors of my values at which we predict the response clearly affect the estimated
covariance structure. We considered three different vectors and investigated how they

affected the power. We set my = 2m and used

(a) Equally spaced points on the interval [—1, 1]

(b) 39 points equally spaced points on [—1,0] and one point at -1
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(c) 39 points equally spaced on [—1,0.5] and one point at -1.

The parameter values of gy = a9 = age = 2.5 02 = 0.1, 07 = 2 and p = 0.75 were fixed

in the simulation which followed the algorithm described earlier with n = 32.

The results showed that the power was largest, 0.7060, when the mo = 40 prediction points
were equally spaced over [—1,1]. The power obtained using the prediction points in (b)
and (c) were lower at 0.3510, and 0.5040 respectively. We also calculated the average of
the 1000 values of the degrees of freedom adjustment factors , \, for (a)-(c), which were
very similar for each case: (a) 1.49, (b) 1.46, (c) 1.49. We might expect the power to
increase with the value of A because larger A leads to larger degrees of freedom and a
smaller critical value for the functional F-test. This may be difficult to establish from this

simulation since we calculate an average over the 1000 simulations.

Changing the method of estimating the covariance structure allowed us to gain some
information on the influence of the location of the prediction points on the power of the
test to discriminate between the linear and quadratic functional models. The study which

varied the prediction points was very limited and could be further explored in future work.

5.8.2 Example 2

In this example, we investigate the power of the test to reject a two-factor model with
interaction (model 1), when the data comes from a two-factor model with an interaction

and both quadratic terms.

This example considers two models where model 1 and model 2 differ in two terms. We
assess how the T-optimal designs change according to the parameter values in model 2
and also the degree of correlation, p. We then use simulation to investigate the effect of
the number of runs on the power of the test. We also investigated some alternative designs
and calculated their power in order to compare their performance to that of the functional

T-optimal design.

Specifically we test the hypothesis
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Y1 (t) 50 (t) + 61 (t)xl + ﬁg (t):(fg + ﬁlgl’,{xg + €(t>
H1 . y(t) = y2(t> = «90(75) + 01 (t)l‘l + 92(15)1‘2 + 6)121‘1.I2
+ 011 (t)2T + Ooa(t) a3 + n(2).

We assume a linear model for each run ¢

model 1:  y1;(t) = Bo(t) + Bi(t) 1 + Pa(t)Tes + Brav1ira; + €(1), (5.58)

but simulate a response from the model

model 2: ygl(t) = ‘90(75) —+ 91 (t)$1, + 92(t>x2i + ‘9121311'3722' (559)
+ ‘911(15)1‘%1 + 6’22(75)1]%2 + Uz(t)

We assume an AR1 auto-regressive covariance function where €;(t),n;(t) ~ N(0,0?) and
Cov(ei(t;), €i(ty)) = Cov(n;(t;),n:(tr)) = p~*I for ¢; and t;, on some real interval. In this
study, we have ¢;,t; € [0, 1] to ensure easier assessment of the effect of the linear terms in
functions 011 (t) and 02,(t) defined below.

In a similar way to Example 1, the parameter functions 0y(t), 61 (t), 02(t), 012(t), 011 (t), O2a(t)

are defined in terms of quadratic functions

Oo(t) = oo+ ot + apat’
01(t) a1 + ant + agat?
05 (t) Qao + o1t 4 agot?
015(t) g0 + agit 4 agot?
011(t) Qg + ant + agt?
) Q50 + amit + asat?.

The parameter values oy = (g, 1, g2)? and ais = (50, 51, as2)” determine, through
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011 and 65y, the difference between model 1 and model 2. Corollary 5.1 shows that the
functional T-optimal design depends only on the subset of terms appearing in model 2,

but not model 1. Hence oy, a2, ez have no influence on the choice of design. We therefore
fix them to be (1,1,1).

The response is observed at m points per run and therefore the model can be written as

Y, = GT + Ry, (5.60)

where Y5 is an n X m response matrix and T is calculated from

Qoo Qo1 02
Q1o Q11 Qq2
Qigp Qg1 (2
Q3o (31 (32

2 2
ty ...t
Q0 Q41 OYy2

Q50 Q51 Q52

and vec(Ry) ~ N(0,I ® ¥ + J ® Io?) where J is an n X n matrix of ones. The variance-

covariance matrix ¥ has an autoregressive (AR1) autocorrelation structure defined in

(5.53).

5.8.2.1 Optimal design

We found functional T-optimal designs as described in Section 5.7.2.2 using the Nelder
Mead simplex algorithm. We tried a variety of different a4 and a5 values to see whether
the parameter choices affected the design. To investigate the effect of p on the T-optimal
designs, we conducted a small study in which a4 and as were fixed and found designs
numerically for a variety of p values. The results (not shown) indicated that the value
of p had little effect on the choice of optimal design, providing some evidence that the

T-optimal design is robust to the degree of correlation.
Case 1

We fixed either a4 or as and varied the elements in the other parameter vector. In the

case where all the parameters in a4 and ag were positive, the T-optimal approximate
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design was found to be

5_{ (-1,-1) (1,-1) (0,0) (=1,1) (1,1) } (5.61)

B 0.1250 0.1250 0.5 0.1250 0.1250

We found that the functional T-optimal design and objective function values (5.43) for
the parameter vectors —ay and —ais were the same as those for the parameter vectors
a4 and as, for any choice of entries in ay and as. For example, when ay = (6,5,4)7
and as = (5,5,3)T the value of the objective function was 5.8993. The same value was
obtained when ay = (=6, -5, —4)T and a5 = (-5, —5, —3)7.

Case 2

We fixed either ay4 or ais to be positive and set the other parameter vector to be negative.

In this case we found the T-optimal design to have the form

&=

{(0,—1) (=1,0) (1,0) (0,1) (fbf?)} (5.62)

0.25y  0.25y 0.25y 0.25y (1—7)

where (1, 72) has (71, 22) € [—1, 1] with v ~ 0.9999 so that weight (1 — ~) is very small.
This design would be very poor in practice as most realised exact designs would only have
four support points unless n is very large, and four support points is not enough to test

whether model 1 is the ‘true’ model.

We found that the functional T-optimal design and objective function values (5.43) for
the parameter vectors —ay and ais were the same as those for the parameter vectors —oy
and as, for any choice of entries in ay and as. For example, when ay = (6,5,4)7 and
as = (—5,—5,-3)T, and ay = (—6,—5,—4)T and a5 = (5,5,3)T the optimal design was
(5.62) and the value of the objective function was 5.8993.

Case 3

We set either ay = 0 or a5 = 0, resulting in factor 1 or 2, respectively, being deleted
from model 2. In both cases, the optimal design has 15 support points. If ay = 0 then
the design has weight 0.25 at design points (-1,%), weight 0.5 at design points (0,x) and
weight 0.25 at design points (1,x), where x is a defining any level of factor 2. Note that
the projection of this design onto the first factor gives the T-optimal design (5.45).

The power for each example was calculated by following the algorithm described earlier
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except for steps 1, 2 and 5 which are:
1. Generate responses from model 2 (5.60)

2. Fit the first order model (5.58) and the ANOVA model

5. Compare the test statistic to the reference distribution, an F distribution with
5\(q — p) and 5\(77, — q) degrees of freedom where p = 4 and ¢ = 6 for the opti-

mal design and ) is the degrees-of-freedom-adjustment-factor in (5.17)

We investigated 8 different values of n and 6 combinations of parameter vectors a4 and
as, where all parameters were chosen to be positive. Hence the T-optimal design was
given by (5.61). The other parameters were kept fixed with m = 20, 02 = 0.1 and o} = 2
and p = 0.75. We calculated the power for three designs:

(a) the T-optimal design (5.61)
(b) a D-optimal design for model 2

o { (~1,-1) (0,-1) (L,=1) (=1,0) (0,0) (1,0) (-L,1) (0,1) (1,1) }

0.146 0.080 0.146  0.080 0.096 0.080 0.146 0.080 0.146

(c) the 9-point design:

5.8.2.2 Results

Figure 5.12 shows that in all cases the functional T-optimal design had higher power to
reject model 1. We also see that examples with larger values of parameters, a4 and as,
had larger power, e.g. in the bottom row of Figure 5.12, and the power generally increased

with n. The trend in Example 2 is the same as that seen in Example 1, Study 1. Larger
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Figure 5.12: Example 2: Power against the number of runs, n from 1000 simulations for
three designs: T-optimal design in (5.61) (-); D-optimal design for model 2 (- -); 9-point
equally weights design (- --) and six choices of ay and a.
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parameters in  indicated a larger difference in the two models being compared. In all
cases the D-optimal design for model 2 out performed the equally spaced nine point design.
It is important to note that the power for the D-optimal design is variable in all plots.
The weights do not give consistent proportions of design points once we have rounded to
get an integer number of runs. Therefore, the exact designs, used to calculate the power,
change quite substantially for these values of n. However, we did investigate larger n for

this design and we found that as expected the power did increase slowly with n.

5.9 Concluding remarks

In this chapter we have developed novel results on optimal designs for discriminating
between two functional linear models when, for each response variable, observations made

on the same run may be correlated. Specifically we have:

e proposed a T-optimality criterion for discriminating between two such models

e proved that, if two linear models differ by only one term, then the same design is
T-optimal for discriminating between pairs of models that are both univariate or

both multivariate or both functional

e established analytically a T-optimal design for discriminating between a first and

second order functional linear model with a single explanatory variable.

We have assessed the power of the test for discriminating between the above first and
second order functional linear models via simulation studies. We have also found numer-
ically designs to discriminate between two functional linear models that differ by more
than one term, and compared their performances. Simulation studies showed that the
power resulting from the use of a T-optimal design was greater than that from competing

designs, including a D-optimal design.

We also carried out some investigations on how the power varied according to the choice
of prediction points. However, this work was limited and there is scope to extend these

ideas to further investigate the problem.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis we have investigated two aspects of experimental design for functional data.
First, the selection of points at which to take observations in order to reconstruct the
functional response from a single run of the experiment using nonparametric techniques.
Secondly, the choice of points that enable effective discrimination between two functional

linear models.

In Chapters 3 and 4, we found optimal designs to ‘best’ predict a smooth function g using
criteria based on prediction variance. We considered two different methods of nonpara-
metric prediction using the local linear and Gasser and Miiller estimators. Chapter 5
developed theory and methods for finding designs to enable discrimination between two
functional linear models by testing the fit of one model given data generated from the

alternative model.

6.1.1 Optimal design for nonparametric prediction of a curve

The aim of the work in both Chapters 3 and 4 was to find ordered design points to enable
nonparametric prediction. In both chapters we investigated a variety of methods and

different optimality criteria.

Chapter 3 found optimal designs which minimised a compound Dg-optimality criterion
for prediction across a specified interval. Initially, we found designs for prediction at

a finite number of points which were then generalised to optimal designs for prediction
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across an interval. Application of designs found using the Gaussian kernel were then
demonstrated using data from the tribology experiment. A study, drawing on the tribology
data, indicated that these designs performed similarly to equally spaced designs in enabling
a model which was a good fit to the data to be found, where mean squared error was
used to measure goodness of fit. In the tribology application the choice of bandwidth was
difficult without prior knowledge of the curve. The use of different bandwidths on different

intervals may have achieved a better fit for predicting different sections of the response.

The work in Chapter 4 found designs by trading-off integrated prediction variance against
the complexity of the fitted model as quantified by the trace of the smoothing matrix. We
minimised an objective function that was a weighted sum of these two components. This
enabled designs to be tailored to different complexities of models to be fitted in the data
analysis. We conducted a robustness study to investigate the effect of misspecifying the

kernel.

6.1.2 T-optimal designs for functional linear models

In Chapter 5 we obtained the first results on T-optimal designs for functional linear models.
We showed that the choice of an optimal design for discriminating between two nested
functional linear models, which differ by only one term, is independent of the parameter
values in each model and the correlation structure of each of the functional responses, see
Proposition 5.3 of Section 5.7.2.3. Where the models differ by more than one term, the
design depends on the parameters for the additional terms in the larger model (Corollary
5.1).

The T-optimal designs were then used in simulation studies to calculate the power of the
test for assessing the fit of model 1 given data obtained from model 2 for two specific
examples, where model 1 is nested in model 2. We found that tests had larger power
for larger numbers of runs and smaller between run errors led to larger power. Another
intuitive result was that the power increased when the parameters for the additional terms
in model 2 were larger. The correlation structure and the location of the prediction points
were briefly investigated in the power studies; there is scope to investigate further these

influences on the choice of optimal design.
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Figure 6.1: Smooth fits using a design for run 19 (a) data from the optimal design with
varying h, h = 0.2 on [501,1000] and [1751,2400] and h = 0.1 on [1001, 1750] (black) (b)
whole dataset with A = 0.1 (red)

6.2 Future Work

6.2.1 Optimal design for local linear regression

6.2.1.1 Varying the bandwidth in local linear regression

In Section 3.5.3 we introduced the idea of allowing for a variable bandwidth in design
selection. This would be appropriate when it is anticipated that data to be collected will
have features such as a turning point or a point of inflection. Allowing the bandwidth h
to have different values for different ranges of x allows information on complexity to be
introduced into model (1.1) in a similar way to constraining the complexity of the smooth
fit, as seen in Section 4.3. We require a small value of h to predict complex features in
our data. For example, the prediction of the data in run 19 of the tribology experiment
(Figure 6.1) would benefit from a smaller bandwidth on the interval [1001,1750]. On the
other hand, a larger bandwidth is required for the remaining parts of the interval so the

data are not oversmoothed.

We explore these issues for simulated data from run 19, with €; ~ N(0,0.00015%) and
€j, €, independent for j,k = 1,...,n, using an optimal design found by Criterion 3.3 and
the search method in Chapter 3, for the following varying bandwidth: A = 0.1 for 1001 <
x < 1750 and h = 0.2 elsewhere. Figure 6.1 shows the resulting fit from the data generated
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Figure 6.2: Designs for constant bandwidth with A = 0.2 (bottom) and varying bandwidth:
h = 0.1 on [1001, 1750] and h = 0.2 otherwise (top)

via the optimal design found for varying bandwidth
[513, 544,605, 665,973,973,979, 1086, 1208, 1223, 1283, 1452, 1457,

1464, 1680, 1689, 1690, 1697, 2045, 2050, 2051, 2052, 2367, 2369, 2375].

The constant bandwidth design with A = 0.2 has points
(539, 539, 539, 700, 928, 928, 938,947, 1232, 1242, 1270, 1299, 1451,

1593, 1640, 1659, 1669, 1963, 1963, 1963, 1973, 2201, 2362, 2362, 2362].

The difference in distributions of the points in each design are shown in Figure 6.2. The
design obtained from prediction using a variable bandwidth had two more points in the
interval [1001, 1750]. There are also more points closer to the centre of the interval for the

varying bandwidth, as expected, due to the more complex fit enforced by h = 0.1.

Figure 6.1 also shows the smooth fit obtained from the whole dataset and bandwidth
h = 0.2. The fit using data from the design is better for prediction over [1001, 1750] and
does not oversmooth the remaining data. However, there is a discontinuity where the
bandwidth changes at x = 1001 and x = 1751.

An interesting problem for the future is the need to find an appropriate method of avoiding
this sudden change in bandwidth and then to develop efficient designs for this type of data
analysis. One possible method is block-wise least squares parabolic fitting, introduced by
Hérdle and Marron (1995) which sets a bandwidth for each block and then smooths the

bandwidth over the blocks using local linear regression techniques.
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6.2.1.2 Correlated errors

In this thesis, we have found optimal designs to enable the ‘best’ prediction using the local
linear estimator with the assumption (Section 2.1) that the error variables are independent.
When observations have a natural ordering, e.g. over time, this assumption may not hold
(Simonoff, 1996). It is important that if data are likely to be correlated, then this feature
is incorporated into the model, as it affects the choice of bandwidth (Opsomer, Wang and
Yang, 2001).

In general, if we make no assumptions about either the form of the mean function g
or the correlation structure then it is impossible to estimate either function separately
(Opsomer et al., 2001). Therefore, to find optimal designs for unknown g we would have
to make an assumption about the correlation structure. A simple starting point would
be to assume the errors follow an AR(1) process. Designs could also be found for other
correlation structures and the robustness of designs to different types of correlation could

be investigated.

6.2.2 Designs to minimise the integrated variance subject to a

constraint

In Chapter 4, we developed a new criterion, which was applied to designs under the
Gasser and Miiller estimator. The criterion minimised a weighted sum of the integrated
variance and the inverse trace of the smoothing matrix. A sensible extension would be to
find designs using this criterion for the local linear estimator. We would then be able to
compare these designs with those found for the Gasser and Miiller estimator. In addition,
this comparison would give some indication of how Dg-optimal designs from Chapter 3

differ from designs obtained via the new constrained criterion in Chapter 4.

Another possible avenue of future work would be to extend methods in Chapter 3 and
4 to find designs for prediction for more than one variable. In particular, it would be
interesting to find designs using Criterion 4.4 for a multi-variable Gaussian process model

(Rasmussen and Williams, 2006).

6.2.3 Further work on T-optimality for functional linear models

It would be useful to gain a more general understanding of T-optimal designs for discrim-

inating between two functional linear models through expanding the range of models for
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which designs are found in Chapter 5. In particular, more complex models and how the
choice of covariance structure influences the design when the models differ by more than

one term could both be considered.

In Chapter 5 we briefly discussed the effect of the choice of the set of points where predic-
tions are made for each run on the power of the test for rejecting a model given data from
a competing model. We considered three simple sets of points. This research could be
taken further by incorporating the work in Chapters 3 and 4 to create a two stage design
problem. Initially, we find for each run an optimal design for predicting the functional
response. Then these designs can be used as the prediction points in the T-optimality

power studies.

We could also construct an example using a factorial experiment in order to assess how the
optimal design and form of § change with different treatments. We may wish to investigate
how the treatment affects the choice of h used in finding an optimal set of points at which

to observe the functional response.
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