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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

School of Mathematics

Doctor of Philosophy

DESIGN OF EXPERIMENTS WITH MIXED EFFECTS AND DISCRETE RESPONSES,
PLUS RELATED TOPICS

By Timothy William Waite

For certain types of experiment, the response cannot be adequately modelled using a normal
distribution. When this is the case, it is common to use a Generalised Linear Model (GLM) to
analyse the data. Such models allow us to fit a wide range of response distributions including
Bernoulli and Poisson.

If responses in the same block are correlated, it may be appropriate to model the impact of
blocking using random effects. The GLM can be extended in several ways to include random
effects; both Generalised Linear Mixed Models (GLMMs) and Hierarchical Generalised Linear
Models (HGLMs) are common examples of such extensions. Another example is a random inter-
cept model for a binary response bioassay study with repeated measurements on heterogeneous
individuals. The latter model is related to a GLMM but not strictly within that class.

Obtaining designs for non-normal models with random effects is complicated by the fact
that the information matrix, on which most optimality criteria are based, is computationally
expensive to evaluate. Indeed, if one computes naively, the search for a typical optimal GLMM
design is likely to take several months.

When estimating GLMMs, it is common to use analytical approximations such as marginal
quasi-likelihood (MQL) and penalised quasi-likelihood (PQL) in place of full maximum likelihood
estimation. In Chapters 2 and 3, we consider the use of such computationally cheap approx-
imations to construct surrogates for the information matrix when producing optimal designs.
These reduce the computational burden substantially, enabling us to obtain designs within a
practical time frame. The accuracy of the analytical approximations is explored through the use
of a detailed computational approximation, which enables us to compute the optimal maximum
likelihood design in the case where there are at most two points per block. It is found that one
of the analytical approximations appears to perform consistently better than the others for the
purposes of producing designs.

In Chapters 4 and 5, designs for an individual variation bioassay model are obtained in
the cases where (i) there is a single observation, or (ii) there are multiple observations, per
individual. In the former case, designs on the basis of both maximum likelihood and analytical
approximations are found and compared. In the multiple observation case, a restriction on
the design space enables optimal designs to be computed using a computational approximation
related to that for GLMMs. This involves extensive precomputation of numerical integrals.

In Chapter 6 designs for HGLMs are studied using a computationally inexpensive asymptotic
approximation to the variance-covariance matrix of the parameter estimators. This allows us to
derive designs which are also efficient for the estimation of the random effects.

Throughout, the dependence of the optimal design on the unknown values of the model
parameters is addressed through the use of Bayesian methods, which codify uncertainty about
the parameter values using a prior distribution. We often assess the performance of the designs
obtained from the optimisation of a Bayesian objective function in terms of the distribution on
the local efficiencies which is induced by the prior distribution.

When the parameter space contains degenerate values, there is a problem with potential
non-convergence of the Bayesian objective function used to select designs. This issue is explored
in depth in Chapter 7, and results are obtained for a number of standard models.
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Chapter 1

Introduction

1.1 Background

In science, experiments are regularly conducted to investigate the impact of changing the values of

controllable explanatory variables, labelled x1, . . . , xq, on a response y. Such experiments consist

of applying treatments, that is combinations of particular values of the xi, to experimental units

and observing the resulting values of y. By choosing a good experimental design, in other words

making a wise selection of the treatments to be applied, the quality of the inference about the

effect of the xi can be greatly improved. The subject of design of experiments within Statistics is

concerned with the common case where, despite controlling the factors x1, . . . , xq, there remains

uncontrolled variation in the response. In this scenario, the data collected are best interpreted

via statistical analyses involving the fitting of stochastic models. Of prime importance therefore

are the statistical properties of the inference to be drawn, particularly insofar as these depend on

the choice of experimental design. In this thesis, we focus on design for classes of models which

accommodate two main features, namely (i) non-normality of the response, and (ii) grouping of

the experimental units into blocks. We give details of these features below. For these models,

which are relatively complex, the calculation of the statistical properties of a given design involves

a nontrivial amount of computation.

Non-normality of response. Much effort has been devoted to developing theory and meth-

ods for design under the assumption that the response follows a normal (Gaussian) distribu-

tion. Notable examples include the classic topics of factorial designs and their fractions, as well

as response surface methodology (e.g. Myers, Montgomery and Anderson-Cook, 2009). These

methods have been applied extensively in areas such as agriculture and the chemical industry.

However in certain applications the response y cannot be modelled adequately using a nor-

mal distribution, making it necessary to use more sophisticated statistical tools than the linear

model. For instance, in some bioassays and reliability tests the outcome measure is binary,

taking values 0 or 1 only. Binary responses also feature in the aeronautical industry experiment

discussed by Woods and Van de Ven (2011). Here, the outcome of interest was whether or not a

spray-coating contained cracks following its application to an engine bearing. In other industrial

situations the response is a continuous, positive random variable best modelled using a Gamma

distribution (Robinson, Myers and Montgomery, 2004; Robinson, Wulff, Montgomery and Khuri,

1



2 CHAPTER 1. INTRODUCTION

2006). Alternatively, the outcome may be a count, in which case a Poisson distribution may

be appropriate. A wide range of non-normal distributions for the response is available through

the framework of generalised linear models (GLMs; McCullagh and Nelder, 1989). The design

problem for GLMs has been discussed, among others, by Chaloner and Larntz (1989), Woods,

Lewis, Eccleston and Russell (2006) and Russell, Woods, Lewis and Eccleston (2009). For more

details of designs for GLMs and their extensions, see the literature review in Section 1.2.

Blocking. The experimental units in the examples of Woods and Van de Ven (2011) and

Robinson et al. (2004, 2006) are grouped into homogeneous sets, called blocks, within which the

responses are correlated. This feature often arises in experiments on manufacturing processes

where there are typically batch effects. The units within a particular batch may be regarded as

a block. Grouping of experimental units also occurs in biological or clinical experiments since

repeated observations on an individual tend to be correlated. Thus the collection of measure-

ments on a given individual constitutes a block. The statistical model and the experimental

design should take into account the potential effect of these blocks. In particular, when selecting

a blocked experimental design, in addition to the choice of treatments one must consider also

the division of the treatments among the different blocks.

When performing a regression analysis of the data, one way to take into account the impact

of blocks is to include extra terms in the predictor. Another approach is to directly model the

correlation between responses in the same block. For some details on the second approach, see

Section 1.2.4. We concentrate mainly on the inclusion of additional terms in the predictor. In

this case, one has a choice whether to use either fixed effects or random effects for blocks. For

a detailed discussion on the distinction, see McCulloch and Searle (2001, Chapter 1). Random

effects are the most appropriate choice when the blocks can be regarded as a sample which is

drawn from a wider population. We believe that this is usually the case in the industrial and

biological examples mentioned above, and as a result we focus on models with random block

effects for the majority of the thesis. The foremost advantage of using a random effects model is

that it is possible to make predictions about the response for blocks other than the ones that were

actually present in the experiment, i.e. future batches or future patients. Random block effects

are also important in split-plot experiments, where it is not possible to estimate simultaneously

fixed effects for both blocks and whole-plot factors (for further details, see Chapter 6). These

advantages do however come at the expense of an additional level of parametric modelling

assumptions: to implement the strategy we usually assume that the random effects are drawn

from a normal distribution with mean 0. There are two main classes of models for non-normal

data which also incorporate random effects. These are generalised linear mixed models (GLMMs;

McCulloch and Searle, 2001) and hierarchical generalised linear models (HGLMs; Lee, Nelder

and Pawitan, 2006). We discuss design for these models in Chapters 2–3 and 6 respectively.

Let x = (x1, . . . , xq)
T ∈ X , where X is the design space of possible treatments. From a

mathematical viewpoint, in this thesis a design is in general a measure on B = Xm, m ≥ 1,

where the term measure is used in the measure-theoretic sense (e.g. Billingsley, 2012). The space

B corresponds to the set of combinations of m treatment vectors which can be applied together

within a block of m experimental units. Mostly our design measures will have a finite support

and so they will be discrete measures, although on some occasions in Chapter 7 designs will

be defined by probability density functions (i.e. the measures are absolutely continuous). An

approximate design is a probability measure, and does not correspond to a particular sample
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size. In the finitely-supported case, being a probability measure means that the design ξ can be

written as

ξ =

{
ζ1 . . . ζb

w1 . . . wb

}
, (1.1)

with ζk ∈ B, wk > 0, 1 ≤ k ≤ b, and
∑b
k=1 wk = 1. The weight wk is interpreted as the

approximate proportion of available experimental blocks (assumed to be of size m) which should

receive the particular combination of treatments ζk. Clearly to implement a general approximate

design for a particular sample size, n, the weights must be rounded since it may not be the case

that nwk is an integer. For rounding procedures which result in efficient designs, see Pukelsheim

and Rieder (1992). We focus on approximate designs in all of the thesis except Chapter 6, where

we investigate exact designs. An exact design of size n is a finitely-supported counting measure,

ξ′, on B. The form (1.1) still applies but now instead the wk are positive integers which must

sum to n. The interpretation here is simpler: wk gives the precise number of blocks which

should use the treatments given in ζk. From our perspective, the unblocked designs and analysis

more commonly encountered in the optimal design literature (e.g. Atkinson, Donev and Tobias,

2007) correspond to the case m = 1, together with a model which does not incorporate block

heterogeneity.

Optimality criteria. The optimal design paradigm is to find an approximate or exact design, ξ,

which optimises the value of an objective function. This function should be chosen to reflect the

purpose of experimentation. Atkinson et al. (2007) provide an extensive introductory overview,

with many references to research papers providing further technical details. The advantage of

this approach is that the resulting designs are tailored to specific problems, thereby increasing

the efficiency of estimation and inferences drawn. The most common optimality criteria in the

literature relate to the variance of estimators of the model parameters. For instance, a D-

optimal design minimises the determinant of the asymptotic variance-covariance matrix of the

parameter estimators (Atkinson et al., 2007, Ch. 11) and thus yields, in a sense, asymptotically

optimal point estimates. We use variants of the D-criterion to select designs in this thesis. If

maximum likelihood is used to estimate the parameters, θ ∈ Rp, then the asymptotic estimator

variance is proportional to M(ξ;θ)−1, where M(ξ;θ) is the p × p Fisher information matrix.

Therefore the calculation of M(ξ;θ) is an important issue in the construction of D-optimal

designs. Other common variance-based optimality criteria also optimise the value of a function

of M(ξ;θ). For instance, A-optimal designs minimise trace[M−1(ξ;θ)], which is equivalent to

minimising the average asymptotic variance of the parameter estimators. E-optimal designs

minimise the variance of the least well estimated normalised contrast cTθ, c ∈ Rp, cT c = 1.

Both of these criteria are discussed by Atkinson et al. (2007, Ch. 10). There are also optimality

criteria for objectives other than parameter estimation: for example discrimination between

models, for which T -optimality may be appropriate (Atkinson et al., 2007, Ch. 20). All of the

criteria mentioned above assume that one of the models to be fitted is correct, i.e. is the true

data generating process. In general it is possible that all of the models we attempt to fit are

incorrect. In this case we say there is model bias. For a classic paper which illustrates the

potential impact of model bias on the optimal choice of design see Box and Draper (1959).

Parameter dependence. A problem which occurs for models other than the normal-response

linear model is that to know which designs are optimal one must know the values of θ. One

approach is simply to pick a set of values, θg. A D-optimal design, ξ∗(θg), calculated under the
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assumption that θg is equal to the true parameter vector is referred to as being locally D-optimal

at θg. However, if θg is a poor guess then ξ∗(θg) may be highly inefficient.

Sequential design attempts to overcome this by iteratively calculating optimal designs using

information obtained in previous experimental runs. At each iteration, Abdelbasit and Plackett

(1983) computed maximum likelihood estimates using the data available so far. With this they

calculated a locally optimal one-point design, which was used to obtain the next response. For

an example of a Bayesian sequential approach, see Dror and Steinberg (2008). Sequential designs

may not be an option if the number of runs is limited, if only a single experiment is possible, or

if obtaining the responses is time-consuming. The latter is the case, for instance, in agricultural

experimentation where one might have to wait many months between setting up crop varieties

and fertilisers, and observing the yield.

Maximin designs are chosen to maximise the worst value,

min
θ∈S

ψ(ξ;θ) ,

of a local objective function, ψ(ξ;θ), for θ in a predefined subset, S ⊆ Rp, of possible parameter

values. Example criteria include maximin D-optimality (King and Wong, 2000) and standardised

maximin D-optimality (Dette, 1997), with ψ(ξ;θ) = log |M(ξ;θ)| and ψ(ξ;θ) = eff(ξ;θ) =

{|M(ξ;θ)|/ supξ′ |M(ξ′;θ)|}1/p respectively. However, such designs may potentially exhibit poor

performance for a large proportion of the parameter space.

In contrast, Bayesian designs maximise the value of an objective function of the form

Ψ(ξ) =

∫
Rp

ψ(ξ;θ)f(θ)dθ , (1.2)

where f : Rp → [0,∞) is the density function for a prior distribution on θ. Again ψ is a

local objective function, though not necessarily the same as before. To obtain a fully principled

Bayesian design, Ψ(ξ) should approximate the expected change in (Shannon) information from

prior to posterior, as in Chaloner and Verdinelli (1995). A popular implementation of this sets

ψ(ξ;θ) = log |M(ξ;θ)|. In the pseudo-Bayesian approach, it is not assumed that subsequent

data analysis will be performed using Bayesian methods. Instead, (1.2) is interpreted as a device

which enables us to derive a design whose frequentist performance is good ‘on average’ over the

parameter space. In Chapter 2 we adopt a particular pseudo-Bayesian philosophy, assessing the

robustness of ξ in terms of the distribution on eff(ξ;θ) which is induced by the prior. The latter

approach originated in Woods et al. (2006).

1.2 Related literature

Our focus throughout Chapters 2–5 is on design for GLMMs and derived models. The class

of GLMMs, defined in Section 2.1.1, contains some notable subclasses which are illustrated in

Figure 1.1. The important subclasses are the Generalised Linear Models (GLMs), which contain

no random effects, and the Linear Mixed Models (LMMs), which contain random effects but

have normal response distributions and an identity link function. In addition we have also the

Linear Models (LMs), which contain no random effects and have a normal response distribution.

In this section we outline the context of our research by presenting an account of the literature
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{ GLMMs }

{ LMMs } { GLMs }

{ LMs }

Figure 1.1: Hasse diagram of important subclasses within the family of GLMMs. An upward
line from A to B, both sets, indicates that A ⊆ B.

on designs for the first three of these model classes. We omit coverage of more basic material on

design for LMs. We also refrain from presenting literature on HGLMs since this only relates to

Chapter 6.

1.2.1 Design for linear mixed models

Block designs for linear mixed models were studied by Cheng (1995), who was able to prove

analytical results of varying generality. A highlight of this paper is a theorem on optimal

allocation strategies. This result gives sufficient conditions under which the D-optimal minimally

supported design for the LMM takes an appealing form. In particular, given these conditions,

the LMM design can be obtained by taking the treatments from a D-optimal LM design, and

allocating these to blocks in accordance with a balanced incomplete block design. The paper

also gives some numerically calculated locally D-optimal designs for a one-factor quadratic model

with two points per block. The method used is not easily adaptable to other examples, but the

numerical results provide an interesting comparator for the designs resulting from the theorem.

In this specific case, designs resulting from the theorem were extremely close to optimal.

Goos and Vandebroek (2001) developed a point exchange algorithm for the construction of

D-optimal designs. The algorithm can easily be extended to different problem structures: the

number of factors and block sizes can be varied, and different terms can be included in the

predictor. The authors demonstrated that for large values of the correlation parameter, the

D-optimal design for a random block effects model is the same as that for a fixed effects model.

Sometimes block designs face additional restrictions. For instance many experiments exhibit

a split-plot structure. A split-plot design contains two types of factors: whole-plot and sub-plot

factors. Each whole-plot factor is constrained to take the same value for all runs within a given

block, whereas the sub-plot factors are free to vary within blocks. In a fixed effects framework,

it is impossible to estimate the effect of a whole-plot factor since it is completely confounded

with the block effect. An important advantage of random block effects modelling is that it

permits estimation of whole-plot factor effects. Jones and Goos (2007) develop methodology for

computing optimal split-plot designs under an LMM. A co-ordinate exchange algorithm is used,

which eliminates the need for a candidate set of treatments. We consider a similar approach for

non-normal responses in Chapter 6. Optimisation methods for further complex design structures

have also been developed, for instance split-split-plot designs (Jones and Goos, 2009).

The above papers all address random intercept models only. Ouwens, Tan and Berger (2002)
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optimised designs for a quadratic model with time as the only factor. Random intercept and

random slope terms were also included. The objective was to produce measurement schedules

for a growth retardation study. The issue of dependence on the parameters was addressed using

a maximin approach. However, the resulting approximate designs were not much more efficient

than equally spaced designs of the same size. Berger and Tan (2004) also consider maximin

designs for the LMM.

The articles mentioned so far in this section optimise estimation of the fixed effects parameters

only, assuming that the variance components are known and that estimation of these is not of

interest. For an upcoming article which considers optimisation of the precision of variance

component estimators, see Loeza-Serrano and Donev (2012).

1.2.2 Design for generalised linear models

When the response is binary, a logistic regression model is typically used. This is an instance

of a GLM. For this model, maximin designs have been discussed by King and Wong (2000) and

sequential design by Abdelbasit and Plackett (1983). For count reponses, a Poisson model is

often appropriate. Design for this model is considered by Minkin (1993) and Russell, Woods,

Lewis and Eccleston (2009).

Much theoretical work on the local design problem for GLMs has focussed on the use of

canonical forms to transform the optimisation problem to one in which the objective function

does not depend on the parameters. Nonetheless, the resulting transformed design space has

constraints which usually do depend on the values of the parameters. Ford, Torsney and Wu

(1992) and Atkinson and Haines (1996) discuss canonical forms as well as geometrical methods of

finding locally D-optimal designs. A recent advance by Yang, Zhang and Huang (2011) reduces

the problem of locally optimal design for a multifactor logistic model to a one-dimensional

optimisation problem provided all but one of the covariates are bounded. For the results of the

latter to apply, the linear predictor must contain only the first-order effects of the covariates and

no interactions.

In the GLM context, various techniques for handling parameter dependence of optimal de-

signs have been explored in depth. An interesting review is given by Khuri, Mukherjee, Sinha

and Ghosh (2006). Below we also mention several papers which appeared subsequent to this.

In their paper on Bayesian design, Chaloner and Larntz (1989) applied an expected log-

determinant criterion to the logistic model with one factor. This criterion was extended to

incorporate uncertainty about the form of the form of the linear predictor and link function by

Woods et al. (2006). An algorithmic approach, using simulated annealing, was used to produce

designs for multifactor problems, including a four-factor logistic model. Prior to this most papers

had concentrated on one or two factors only. Woods et al. (2006) also proposed assessing design

performance in terms of the distribution on the local efficiencies induced by the prior distribution.

Their methods are able to take into account uncertainty in the form of the predictor, the values

of the parameters and also the choice of link function. Gotwalt, Jones and Steinberg (2009) were

able to produce more efficient designs for the same problem through the use of a novel numerical

integration method.

Dror and Steinberg (2008) combined the sequential and Bayesian approaches by generating
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a set of candidate augmentation points from the locally optimal design at the posterior median.

To discriminate between these candidate points, the objective function of Chaloner and Larntz

(1989) was used, with the average being taken instead with respect to the posterior distribution

of the parameters. One advantage of this method is that efficient designs can be calculated even

when the number of points in the experiment is still small. However, given that small sample

size is a concern, it may be better to avoid the use of the information matrix, which is only

asymptotically related to the variance of the parameter estimators. One could instead attempt

to use alternative estimators whose variance can be computed exactly, such as those considered

for logistic regression by Russell, Eccleston, Lewis and Woods (2009).

Dror and Steinberg (2006) obtained robust designs for GLMs by computing large numbers

of locally optimal designs and applying k-means clustering to the resulting totality of design

points. The designs obtained in this way perform comparably to those of Woods et al. (2006),

but are much faster to compute. A further merit is that the locally optimal designs which

are required to evaluate the overall performance of the design are already available from the

construction algorithm. Russell, Woods, Lewis and Eccleston (2009) adopted a similar strategy,

which is particularly effective for the Poisson model due to the availability here of a closed form

for the locally optimal designs, thus eliminating the need for any numerical search. However, the

formula for the designs applies only to the model with the linear effects of the factors. Moreover,

there are mild restrictions on the values of the parameters for which it holds.

Work on GLM designs is ongoing. Yang, Mandal and Majumdar (2012) consider experiments

with binary responses and two-level factors. Stufken and Yang (2012) develop theoretical results

on optimal designs for binary and count response regression models using fixed effects for blocks.

1.2.3 Generalised linear mixed models

Estimation for GLMMs is significantly more challenging than for LMMs or GLMs because for

these models the likelihood contains intractable integrals over the potential values of the random

effects (McCulloch and Searle, 2001, Chapter 8). Breslow and Clayton (1993) proposed iterative

procedures which approximate the GLMM with LMMs in order to avoid the need to compute

difficult integrals, but these approximate procedures were shown to yield biased estimates of the

model parameters. It is preferable instead to use the more computationally intensive methods

described by McCulloch (1997). These combine an EM or Newton-Raphson algorithm with

Metropolis sampling of the posterior distribution of the random effects. However, such meth-

ods may potentially be slow. A surprising result due to Lele, Nadeem and Schmuland (2010)

makes ML estimation for GLMMs more attractive, interestingly using Bayesian methods but

cloning the data so as to filter out the influence of our prior beliefs on the posterior distribution.

Truly Bayesian estimation which retains the influence of the prior distribution is also available,

for instance see Zeger and Karim (1991) who describe a Gibbs sampling procedure. Bayesian

model fitting for GLMMs is implemented in the R package MCMCglmm by Hadfield (2010). Other

aspects of Bayesian data analysis using GLMMs, such as model selection, are also reasonably

well developed (e.g. Overstall and Forster, 2010).

Design for GLMMs is complicated by the fact that the information matrix is not available

in closed form, and exact evaluation requires computationally intensive numerical integration

techniques. Therefore approximations to the information matrix are usually used. These are
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typically based on the approximate inference techniques of Breslow and Clayton (1993) and

Goldstein and Rasbash (1996), and we will follow a similar approach in this thesis. Such ap-

proximations have been used by Moerbeek, Van Breukelen and Berger (2001) and Moerbeek and

Maas (2005) to produce designs for logistic GLMMs, a problem which was also considered by

Ouwens, Tan and Berger (2006). The first two of these design papers gave analytical formulae

for the optimal designs which take into account various cost constraints. However, they only

considered locally optimal designs. The third design paper uses a maximin criterion and an

algorithmic approach to produce robust designs. All three papers are limited by a restriction

to dichotomous independent variables, and in the case of the first two only one or two such

factors can be considered. With our method, which is based on similar approximations, we shall

attempt to deal with multiple continuous factors using a flexible algorithmic approach.

Niaparast (2009) considered design for the log-link Poisson model with random intercept, us-

ing a quasi-likelihood approximation to the information matrix. The form of this approximation

is simplified by the fact that, in the Poisson case, closed form expressions for the marginal mean

and variance are available. This is not true for other distributions or link functions, therefore

the approximation can not be adapted to all GLMMs, and the paper did not address the issue of

parameter dependence. Niaparast and Schwabe (2013) extend work on quasi-likelihood designs

to the Poisson model with a random slope coefficient.

Tekle, Tan and Berger (2008) produced highly efficient maximin designs for binary longi-

tudinal data, using similar information matrix approximations to Moerbeek et al. (2001). The

designs consisted of measurement schedules in which all individuals are observed at identical time

intervals. The authors consider the optimal number of time points, whereas the corresponding

quantity in our work, the block size, is assumed to be fixed by the nature of the experiment.

The latter will indeed be the case in many industrial experiments. Whilst various forms of the

predictor were considered, the model contains only one independent variable: time.

Sinha and Xu (2011) were able to compute sequential designs for the logistic mixed effects

model without resorting to the approximations of Breslow and Clayton (1993), instead using a

direct computational approximation to the information matrix. By using an algorithm which

adds just one point at a time to the design, the number of possible outcomes is restricted as

there are only two possible outcomes per point. This restriction makes the evaluation of the

information matrix more feasible. Only locally optimal augmentations were considered.

Ogungbenro and Aarons (2011) considered the use of approximations similar to Breslow and

Clayton (1993) for ordinal and count response models. They compared standard errors obtained

from simulation with those anticipated by the information matrix approximations. Reasonable

agreement was demonstrated.

1.2.4 Further related models

GLMMs are referred to as conditional models because the response is assumed to follow a GLM

conditional upon the realised values of some random effects pertaining to a particular block.

Under a conditional model, the responses in the same block are marginally correlated because

units in the same block have random effects in common.

An alternative to the conditional model is to assume that any particular response follows a
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GLM marginally, but that responses in the same block are correlated. This is referred to instead

as marginal modelling. The parameters of this marginal GLM can be estimated using Gener-

alised Estimating Equations (GEEs; Liang and Zeger, 1986), which account for the dependence

structure using a working correlation matrix. Liang and Zeger (1986) suggest parameterising the

working correlation matrix and attempting to estimate these new correlation parameters from

the data. Chaganty and Joe (2004) advocate instead regarding the working correlation matrix as

a ‘weight matrix’ and holding the correlation parameters fixed. This was found to produce more

efficient estimates of the marginal model parameters. One concern with marginal modelling is

that there may not be any probability model which corresponds to a given correlation structure,

as there are bounds on the possible values of the correlation for binary variables (see Chaganty

and Joe, 2004, Section 2).

Design for binary data modeled by GEEs has been discussed by Tekle et al. (2008) and Woods

and Van de Ven (2011). The former used this approach to take into account autoregressive serial

correlations in the longitudinal setting. The latter found that an effective design strategy was

to take the design points from a robust unblocked design and allocate these optimally to blocks.

When the allocation was chosen to maximise the local objective function at the prior mean,

the resulting designs were comparable to the output of an unrestricted numerical search for the

optimal Bayesian blocked design. However, the allocation strategy was computationally much

cheaper.

Optimal design methodology has also been developed for nonlinear mixed effects models

(NLMEs), with particular focus on examples in pharmacokinetics (PK) and toxicokinetics, see

for example Mentré, Mallet and Baccar (1997); Gagnon and Leonov (2004). These disciplines

study the transport of compounds through the body. Often the compound is a novel drug in

an early phase clinical trial. Of primary interest is the time dependence of the concentration of

the compound within the bloodstream. Typically parametric compartmental models are used to

describe these dynamics. These models are solutions of differential equations approximating the

underlying transport mechanism between different ‘components’ of the body. Random effects

are included to model the variation of the parameters between different individuals. In PK

experiments, drug concentration measurements are taken on multiple occasions per individual.

The design problem is to choose the number of measurements, and the times at which they

should be taken. From the perspective of this thesis, there is only one controllable factor (time)

in the experiment, and the measurements on an individual patient constitute a block.

There are several commonalities between the optimal design problems in Chapters 2–5, and

those for NLMEs. The first is that the information matrix does not have a closed form, ne-

cessitating some form of approximation. Another is the parameter dependence of the optimal

designs. Retout and Mentré (2003) consider two information matrix approximations. The first

linearises the model around the population mean value of the parameters, and is referred to as

FO (first order). The second involves a linearisation of the model around a simulated value of

the individual parameters. The FO method is similar to one of the approximations we consider,

MQL (Breslow and Clayton, 1993). The second method is based on the FOCE (first-order con-

ditional estimation) method of Lindstrom and Bates, which is similar to PQL estimation for

GLMMs. The corresponding FOCE information matrix thus is in a similar spirit to our PQL

approximation. However, the implementation of the FOCE information matrix involves Monte

Carlo integration and is therefore more similar to the PQL approximation of Tekle et al. (2008)
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than to ours, since we use a cruder approximation which can be expressed analytically. Atkin-

son (2008) used Monte Carlo simulations to estimate the marginal mean and covariance of the

model. From these quantities it is possible to derive an expression for the information matrix,

for details see the reference.

The design approach for NLMEs using FO and FOCE is implemented in the R function PFIM

(Bazzoli, Retout and Mentré, 2010). This software allows calculation of optimal designs for many

PK models using either the Nelder-Mead simplex algorithm, or a Federov-Wynn algorithm. A

graphical user interface is also available to assist the practitioner.

For a cautionary note on the use of linearisation-based approximations to the information

matrix in NLMEs, see Mielke and Schwabe (2010).

1.3 Outline of thesis

The generic problem in models with random effects and non-normal response distributions is

that the Fisher information matrix involves intractable integrals over the potential values of the

random effects. Thus evaluation of M(ξ;θ) is in general a computationally intensive procedure

involving numerical integration or Monte Carlo simulation. As a result, direct numerical opti-

misation of the design is usually much too slow to be practical. Indeed if one computes näıvely

the search is likely to take several months.

In Part I, which contains Chapters 2 and 3, we develop design methodology for GLMMs.

Several computationally inexpensive, analytical approximations to the information matrix are

proposed in Chapter 2. These enable the search time to be vastly reduced. The approximations

are based on the approximate estimation procedures, MQL and PQL, and are similar to those

used previously in the design literature, e.g. Moerbeek et al. (2001) (for further details, see

Section 1.2.3). In Chapter 3, the performance of these approximations is compared through

the use of a higher fidelity, more computationally intensive procedure referred to as maximum

likelihood by numerical interpolation (MLNI). To our knowledge, no performance comparison

between analytical approximations has been attempted before. The MLNI procedure yields

locally optimal and Bayesian designs in the case where there are two points per block. A further

analytical approximation (AMQL) is proposed in Chapter 3, which yields designs that are almost

100% efficient when compared to the designs from MLNI.

The focus of Part II is the design of dose-response bioassay experiments with heterogeneous

individuals. The response is binary, and the event y = 1 corresponds to an unrepeatable event,

such as death of an individual in the study. Chapter 4 considers the case where we are able to

make only one observation per individual. The model in this case is a GLMM, and we explore

the performance of some of the approximations of Chapter 2 in this setting. To be able to

estimate the parameters of the model with any reasonable amount of precision we need a prior

estimate of the degree of heterogeneity among the individuals. Robustness of the estimation to

misspecification of this quantity is investigated. In Chapter 5, we consider the case where it is

possible to make multiple observations per individual. The model in this case is not a GLMM,

owing to fact that the event y = 1 is unrepeatable: once an individual ‘dies’, they cannot yield

any further observations. Nonetheless, we can use a computational approximation related to

MLNI to derive optimal designs within a restricted class.
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Part III contains Chapters 6 and 7. In Chapter 6, we develop design methodology for Hi-

erarchical Generalised Linear Models (HGLMs, Lee and Nelder, 1996). HGLMs constitute an

alternative class of models with which it is possible to take into account the two primary fea-

tures of interest in this thesis, namely (i) non-normal response distributions and (ii) correlation

between responses in the same block. For these models, computationally inexpensive asymptotic

approximations to the variance-covariance matrix of the parameter estimators are available. An

advantage of HGLM design is that consideration of the quality of estimation of the individual

random effects is relatively straightforward. In Chapter 7, we consider nonlinear design problems

in which the parameter space contains degenerate parameter values, which we refer to as singu-

larities. This may lead to the technical difficulty of non-convergence of the objective function

when the most common implementation of the Bayesian D-optimality criterion (Chaloner and

Verdinelli, 1995) is used. We show, by means of an explicit example, that the issue may arise

even when the support of the prior distribution is a bounded interval. Alternative optimality

criteria are considered as a solution, in addition to designs with infinite support defined by a

probability density function.

Finally, Chapter 8 gives some concluding remarks and suggests potential directions for related

future research.
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Chapter 2

Designs from analytical

approximations

As discussed in Chapter 1, most standard optimality criteria such as D-, A-, and E- optimality

require us to maximise a functional of the Fisher information matrix. Corresponding measures

of design performance also involve the information matrix. In Section 2.1 we define the Gen-

eralised Linear Mixed Model (GLMM), and in Section 2.2 we explore issues associated with

computation of the Fisher information matrix for a GLMM with observations correlated within

blocks. The computational cost of the evaluation of the information matrix motivates us to

consider computationally cheap analytical approximations which can be used in the search for

an optimal design. The GLMM design problem is nonlinear, hence the optimal design depends

on the unknown values of the parameters. This parameter dependence is addressed in Section

2.4 through the use of Bayesian designs, and in particular we apply the optimality criteria of

Firth and Hinde (1997). Some example designs are computed in Section 2.5. These serve to

illustrate some of the principles of block designs in this setting. In Section 2.6, we use our ap-

proximations to evaluate designs for the Poisson model, and compare our results with those of

Niaparast (2009) and Russell, Woods, Lewis and Eccleston (2009).

2.1 The Generalised Linear Mixed Model

2.1.1 Definition

Suppose that there are q controllable ‘treatment’ covariates x1, . . . , xq, each taking values in

[−1, 1]. Let us denote the response for the jth unit in the ith block by yij , and the corresponding

vector of treatment covariates by xij ∈ X = [−1, 1]q, for i = 1, . . . , n, j = 1, . . . ,mi. Let also ζi

denote the mi treatment vectors in the ith block, ζi = (xi1, . . . ,ximi) ∈ Xmi . We say that ζi is

the exact design for the ith block.

The GLMM can be defined as follows: for each block in the experiment there is an associated

vector ui of r random effects, conditional upon which the response follows an exponential family

distribution,

yij |ui ∼ π(µij) ,

15
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with mean µij = µ(xij |ui) and variance var(yij |ui) = v(xij |ui). The mean function µ(x|u) is

defined by

g(µ(x|u)) = ν(x|u;β)

ν(x|u;β) = fT (x)β + zT (x)u (2.1)

where f : X → Rp is a known vector of regressor functions, and β is a vector containing the

p fixed effects parameters. The function z : X → Rr is also known, and typically will be a

subvector of f . The known function g is called the link function, and ν in (2.1) is referred to as

the linear predictor. We also refer to η = fT (x)β as the fixed part of the linear predictor. To fully

determine the model we must also make assumptions about the distribution of ui: throughout

most of the thesis, we specify ui ∼ MVN(0, G) independently for different i, with G a covariance

matrix. Often we will also assume that G is known, for more details see Section 2.2. In general,

the presence of random effects in the linear predictor introduces a correlation between responses

which are in the same block.

The simplest non-trivial random effects structure is exemplified by the random intercept

model, in which r = 1 so that there is a single, scalar, random effect ui ∼ N(0, σ2) associated

with each block. In this case, we have that

g(µ(xij |ui)) = fT (xij)β + ui , (2.2)

and z is the constant function, z(x) = 1. If in addition f : x 7→ (1,xT )T , then as well as the

random intercept the model contains the linear effects of x1, . . . , xq.

When the responses are counts, a Poisson distribution may be used for the response together

with logarithmic link function, i.e. g = log. In this case we refer to the model (2.1) as a Poisson

mixed model.

For binary data, we use a Bernoulli response distribution together with an inverse logistic

function as the link, in other words g(µ) = log{µ/(1−µ)}. With these additional specifications,

we refer to the models (2.1) and (2.2) as the logistic mixed model and logistic random intercept

model respectively.

A degenerate case of the logistic random intercept model arises when σ2 is large. This causes

the linear predictor in a block to be swamped by the block effect ui, which is large in absolute

value with high probability, and therefore we have for each 1 ≤ i ≤ n that

P (yij = 1 : 1 ≤ j ≤ mi) ≈ 1/2 ,

in other words with approximately 50% probability all responses in the ith block are equal to 1.

In addition, we have also that

P (yij = 0 : 1 ≤ j ≤ mi) ≈ 1/2 .

To see this note that if νij = ν(xij |ui) is larger in modulus than a certain magnitude, M1, then

the conditional mean g−1(νij) is numerically indistinguishable from one of 0 or 1. For large σ2,

the magnitude, M2, of ui required to make |ηij | > M1 is negligible compared to the standard

deviation of ui. Therefore the probability that ui > M2 is essentially 1/2, as is the probability



2.1. THE GENERALISED LINEAR MIXED MODEL 17

that ui < −M2. The first of these events leads to a block with all responses equal to 1, and the

second to a block with all responses equal to 0, both with high probability. For a more formal

proof of these properties using Lebesgue integration theory, see Section 7.9.4.

In these degenerate cases any experimental design will lead to essentially no insight about β,

other than that it is of a different order of magnitude to σ2. However, if one simply observed data

of this type, one might conclude that no dependence on the explanatory variables was present.

2.1.2 Intra-block correlation

In this section we develop some intuition about the strength of dependence between observations

in the same block by computing the intra-block correlation as a function of the block effect

variance σ2 in the logistic random intercept model for a particular design.

First of all, we give a description of what happens in the case of an LMM. An analogous

linear mixed model to the random intercept model in the previous subsection is

yij = fT (xij)β + ui + εij , (2.3)

where the ui ∼ N(0, σ2) and εij ∼ N(0, σ2
ε ) independently. This is a generalised linear mixed

model with identity link function and a normal response distribution. In this model, observations

in the same block are correlated, specifically

corr(yij , yik) =
σ2

σ2 + σ2
ε

, (2.4)

for 1 ≤ j 6= k ≤ mi. We refer to (2.4) as the intra-block correlation.

In the logistic random intercept model, in addition to the block effect variance σ2, the

covariance between observations in the same block will depend upon the model parameters and

the values of the xi. There is not a simple closed form expression for this dependence. It is,

however, possible to gain insight into how the correlation varies as a function of σ2 by specifying

a design and some values of the parameters.

We consider a two-factor example, xij = (x
(ij)
1 , x

(ij)
2 )T , with linear effects of x1 and x2 in the

predictor, i.e. f : x 7→ (1,xT )T . We set β = (0, 1, 2)T and used the design with a single block

(n = 1, m1 = 4) given in Table 2.1. Monte Carlo estimates of the mean correlation,

ρ =
1(
m1

2

)
 ∑

1≤j<k≤m1

corr(y1j , y1k)

 ,
between observations have been calculated for various σ2 in the range [0, 400]. These were

obtained by simulating 1000 possible response patterns for each σ2 and evaluating the empirical

correlation between the responses at the design points. Figure 2.1 shows the correlation for

σ2 up to 50. After this point, the correlation increases much more slowly. Table 2.2 gives

rough estimates of the value of σ2 needed to achieve certain correlations. In this example, the

proportion of simulated blocks in which the responses are all identical was approximately equal

to the correlation. These results are helpful to inform the choice of prior distribution on σ2, for

example, in Section 2.5.2 the prior mean of (β0, β1, β2)T is (0, 1, 2)T . At these values, the prior
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Figure 2.1: Intra-block correlation as a function of σ2

modal value of σ2 = 1 corresponds to a correlation between 0.1 and 0.2. However we must bear

in mind that the correlations may not be at all robust to the choice of design, and therefore this

study may be used as a very rough guide only.

x1 x2

1.00 0.17
-1.00 1.00
-1.00 -0.17
1.00 -1.00

Table 2.1: Design with a single block for the correlation study

2.1.3 Designs

In this chapter the focus is on approximate block designs in which the sizes of all blocks are

equal, similar to those considered by Cheng (1995). We explain this further below. For the rest

of the chapter we assume that mi = m for i = 1, . . . , n.

We consider ζi and ζj , i 6= j, to be equivalent (writing ζi ∼= ζj) if ζj can be obtained by

rearranging the components of ζi, in other words ζi and ζj contain the same treatments with the

same multiplicities. Taking this into account, suppose that there are b distinct ζi, i = 1, . . . ,m,

up to equivalence. Without loss of generality we may reorder the blocks so that ζi, i = 1, . . . , b,

are distinct (i.e. inequivalent), and for all j > b there is a unique k ≤ b with ζk ∼= ζj . For

k = 1, . . . , b, let nk be the number of blocks using settings ζk, in other words nk is the number

of distinct j ≤ n such that ζk ∼= ζj . Writing wk = nk/n we have the following concise notation
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ρ σ2

0.1 0.75
0.2 1.8
0.3 3.5
0.4 6
0.5 10
0.6 20
0.7 50
0.8 100
0.9 340

Table 2.2: Correlation for varying σ2

for the design, ξ, used:

ξ =

{
ζ1 · · · ζb

w1 · · · wb

}
. (2.5)

Clearly for wk as defined above, nwk is an integer since nwk = nk. However, when constructing

optimal designs, we search among ‘approximate designs’ which resemble (2.5) apart from they

do not have the restriction that nwk is an integer. In order to implement an approximate design

for a particular finite number of blocks, the weights wk must effectively be rounded, for details

of good rounding procedures see e.g. Pukelsheim and Rieder (1992).

For example, consider a problem in which there are two treatment variables, x1 and x2. One

might have a design with b = 2 support blocks, ζ1 and ζ2, each of which has weight 1/2 and

contains m = 2 treatment vectors. Two potential sets of treatments constituting the blocks ζ1

and ζ2 are shown in Figure 2.2. The interpretation of the blocks each having weight 1/2 is that,

ideally, n/2 of the n blocks in the experiment should use the factor levels in ζ1 and the other

n/2 should use those in ζ2. Of course this will not be possible exactly if n is an odd integer but,

provided n is large enough, a close approximation can be obtained by rounding.

(a)
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Figure 2.2: Example of an approximate block design consisting of two equally weighted blocks,
(a) ζ1 and (b) ζ2. Points on the plot correspond to treatment vectors, for instance the bottom-left
point in (a) corresponds to x = (−1,−1)T .
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2.2 Information matrix

In this section, we discuss the role of the information matrix, M , and motivate the use of

approximations to M for this particular class of models.

Typically optimal designs are chosen to maximise the value of a given functional of the ex-

pected Fisher information matrix, M , associated with the estimation problem. For example,

under D-optimality one finds the design which maximises the value of det(M) (Atkinson et al.,

2007, p.151). The importance of the information matrix stems from its role in maximum like-

lihood estimation, where it is proportional to the inverse of the asymptotic variance matrix of

the parameter estimators (Davison, 2003, p.118). It can thus be thought of as a measure of the

likely precision of the estimators resulting from the experiment.

Let θ denote the complete set of parameters for the model (2.1). Thus θ includes the fixed

effects parameters β as well as parameters specifying the distribution of ui. Then we shall

seek designs which maximise the value of det(Mβ), where Mβ is the information matrix for β,

holding all other components of θ fixed. The use of Mβ is appropriate when estimating β with

known variance components. In common with many papers on design for both LMMs (Cheng,

1995; Goos and Vandebroek, 2001) and GLMMs (Moerbeek and Maas, 2005; Tekle et al., 2008;

Niaparast, 2009), in this chapter we do not consider the additional variability in β̂ which is

introduced when the variance components also need to be estimated.

For the approximate block design ξ in (2.5), the information matrix Mβ depends on the

entire set of parameters θ, and can be decomposed into a weighted sum of information matrices

for each support block

Mβ(ξ,θ) =

b∑
k=1

wkMβ(ζk,θ) . (2.6)

This follows from the independence of blocks, and is analogous to Cheng (1995, Section 3). The

information matrix for the kth block, k ≤ b, in the design is

Mβ(ζk,θ) = Eyk

{
−∂

2 log p(yk|θ, ζk)

∂β∂βT

}
, (2.7)

where yk = (yk1, yk2, . . . , ykm)T is the vector of responses in the kth block, which is yet to be

observed at the planning stage. (Recall that the kth block uses settings ζk). The symbol ∂
∂β

denotes calculation of the vector of partial derivatives with respect to each of the components

of β. For ζ = (x1, . . . ,xm) ∈ Xm an arbitrary block, the term p(y|θ, ζ) is the likelihood of the

model parameters given the hypothetical vector of responses y = (y1, . . . , ym)T . For the logistic

mixed model with binary response, this is given by

p(y|θ, ζ) =

∫
Rr

m∏
j=1

µ(xj |u)yj{1− µ(xj |u)}(1−yj)fu(u) du , (2.8)

where fu is the density function of a MVN(0, G) random variable. For the random intercept

model (2.8) becomes an integral over (−∞,∞) and fu = φσ2 , where φσ2 is the density function

of a N(0, σ2) random variable.

Again for a logistic mixed model with binary response, we can in principle compute the

expectations necessary to evaluate (2.6) by considering all possible outcomes in each block. This
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approach is referred to as complete enumeration. Expanding the expectation in (2.7), we have

that

Mβ(ζ,θ) =
∑

y∈{0,1}m

−∂2 log p(y|θ, ζ)

∂β∂βT
p(y|θ, ζ) , (2.9)

where the sum is over all possible response patterns in a block. Thus to be able to compute

M(ξ,θ) we need only be able to evaluate p(y|θ, ζ) and the derivatives of log p with respect to

β. However, there is in general no closed form expression for the integral in (2.8), therefore we

must resort to numerical methods, e.g. quadrature. Moreover there is no closed form for the

required derivatives. One approach to calculating the Hessian of log p is to use finite difference

methods of numerical differentiation, combined with quadrature for evaluating integrals. This

involves evaluating p at many neighbouring values of θ for each of the 2m terms in the sum

(2.9). It is clear that this process is computationally involved, and in practice if we evaluate the

information matrix in this way the search for an optimal design will likely take several months.

Note that in the case where the response can take infinitely many values, such as when the

response is a count with Poisson distribution, the calculation of an expression analogous to (2.9)

involves an infinite sum. We must therefore be careful to include sufficiently many terms in

order for the partial sum to be close to its limiting value.

Except in the special case of the linear model – see Section 2.2.1 – dependence of the in-

formation matrix upon the parameters must be addressed in order to produce a single design

for the experiment. For example, one can maximise an objective function which measures the

average performance, or expected utility, of a design with respect to a prior distribution on θ.

We discuss this in more detail in Section 2.4. However, before doing so, in Section 2.3 we focus

on the development of approximate methods for the calculation of Mβ for a given value of θ.

2.2.1 Special cases

To give some context, we now discuss the form of the information matrix in the more straight-

forward special cases of the model, namely linear models and linear mixed models. We assume

for simplicity that mi = m, i = 1, . . . , n.

When the model is linear, with normal response distribution and no random effects, we have

Mβ(ξ;θ) =

b∑
k=1

m∑
j=1

wk f(xkj)f
T (xkj) .

In this case, Mβ(ξ;θ) does not depend on the value of θ and so optimal designs can be found

without prior knowledge about the parameters. With this model, var(β̂) = (1/n)M−1
β (ξ,θ)

for all n. In other words, here the information matrix gives more than just an asymptotic

approximation to the estimator variance.

Let us denote by Fi the m× p model matrix for the ith block of the data, i.e.

Fi =
[

f(xi1) · · · f(xim)
]T

.
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Furthermore let F be the the full model matrix for the data,

F =
[
FT1 · · · FTn

]T
.

Also let Y = (y11, y12, . . . , y1m, y21, . . . , ynm)T be the vector containing the responses written

in lexicographical order, and denote by yi = (yi1, . . . , yim)T the vector of responses in the ith

block, 1 ≤ i ≤ n.

Assume now that we have the random intercept linear mixed model (2.3), with error variance

σ2
ε and random effects variance σ2. Then the variance matrix of yi is

Λ = σ2
ε Im + σ21m1Tm ,

where Im is an m ×m identity matrix and 1m is an m-vector with all entries equal to 1. The

variance of Y is the block diagonal matrix Π with n repeats of Λ on the diagonal. The maximum

likelihood estimator for β is

β̂ = (1/n)M−1
β FTΠ−1Y

= (1/n)M−1
β

n∑
i=1

FTi Λ−1yi ,

where

Mβ(ξ;θ) = (1/n)FTΠ−1F

=

b∑
k=1

wkF
T
k Λ−1Fk .

Equivalent expressions are given by McCulloch and Searle (2001, Section 6.3), but we have mod-

ified the notation somewhat. In this model it is also the case that var(β̂) = (1/n)M−1
β (ξ;θ) for

all n, and so the information matrix provides more than just an asymptotic approximation to

the estimator variability. Here β̂ coincides with the generalised least squares estimator (GLS,

Draper and Smith, 1998, Section 9.2). GLS will be used in Section 2.3, where we derive approx-

imations to the GLMM information matrix. Note that, given ξ and θ, evaluation of Mβ(ξ;θ)

requires only basic operations on relatively small matrices. Thus, evaluation of Mβ(ξ;θ) is com-

putationally inexpensive. Also observe that Mβ(ξ;θ) depends on θ only through the variance

components σ2
ε and σ2, and so optimal designs for this model can be derived without knowledge

of β.

2.3 Derivation of approximations

Approximate methods of estimation for GLMMs which avoid the use of quadrature are discussed,

among others, by Breslow and Clayton (1993), Rodriguez and Goldman (1995), and Goldstein

and Rasbash (1996). These papers propose several approximate procedures, including ‘first-

order’ MQL and PQL together with ‘second-order’ counterparts, referred to as MQL2 and PQL2

respectively.

In this section, we derive approximations to var(β̂) corresponding to these different techniques
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in order to produce analytically tractable approximations to the information matrix for use in

design optimisation. We derive the MQL and PQL approximations to the information matrix,

and state the form of an MQL2 approximation which is derived in Section 2.9.

The derivations of the first order methods given by Breslow and Clayton (1993) are com-

paratively easier to follow, and that paper gives clear expressions for approximations to var(β̂).

However, the derivations are not easily extended to higher order approximations. We there-

fore follow instead the approach of Rodriguez and Goldman (1995) and Goldstein and Rasbash

(1996), which revolves around a Taylor series expansion of the inverse link function. The latter

two papers are less explicit in terms of expressions for var(β̂).

We recover expressions for MQL and PQL which are identical to those of Breslow and Clayton

(1993), and we are also able to derive an expression for MQL2.

The derivations involve several approximation steps which are difficult to justify formally.

The ad-hoc nature of these steps is not new to our work, but is already present in the papers

mentioned above. In Chapter 3, we compare the resulting approximations in terms of their

ability to produce efficient designs.

The expressions given apply to GLMMs with canonical link, and multiple random effects.

The MQL2 approximation applies when the random effects are independent, in other words

when G is a diagonal matrix.

The MQL and PQL information matrix approximations are similar to the FO and FOCE

information matrix approximations proposed for nonlinear mixed effects models by Retout and

Mentré (2003). For additional discussion on the commonalities between the design problems

here and those for NLMEs, see Section 1.2.4.

2.3.1 Working variates

Goldstein and Rasbash (1996) discussed iterative methods of fitting GLMMs using working

variates which are iteratively recalculated and then taken as the response in a weighted least

squares regression problem. There are several versions of the methods, which correspond to

different forms of the working variate. The different versions are referred to as marginal quasi-

likelihood (MQL) and penalised quasi-likelihood (PQL), each of which has a first and second

order version. First order MQL and PQL are equivalent to the methods of the same name in

Breslow and Clayton (1993). The advantage of using the Goldstein and Rasbash formulation is

the extension to second order methods, which are known to be slightly more accurate estimation

procedures.

The working variates are functions of (i) the observed data, (ii) some current estimates of the

parameter values, and in the case of PQL, (iii) some current predictions of the random effects.

In general, the working variate for the first order methods can be written as

tij = ν̃ij +
1

h′(ν̃ij)
[yij − h(ν̃ij)] , (2.10)

where ν̃ij is a current estimate of the linear predictor which depends on the method being used.

Above, h = g−1 is the inverse link function.

For MQL, we estimate the linear predictor using the current values, β̃, of the parameter
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estimates, and assume that the random effects are approximately zero, so that

ν̃MQL

ij = fT (xij)β̃ = η̃ij .

In contrast, for PQL we also estimate the values of the random effects using some prediction

procedure, e.g. McCulloch and Searle (2001, Ch. 9). For the purposes of deriving the approxi-

mations, it is not necessary to consider the details of the procedure used. Thus, the estimate of

the linear predictor under PQL is

ν̃PQL

ij = fT (xij)β̃ + zTijũi ,

where ũi is the the current estimate/prediction of the random effects vector ui.

These working variates can also be shown, using Taylor series expansions of the expected

value of the response, to approximately follow a linear model (see Section 2.3.2). Specifically,

tij ≈ νij +
1

h′(ν̃ij)
εij , (2.11)

where the εij have mean 0 but are not normally distributed or independent, although we will

see in Sections 2.3.4 and 2.3.5 that analytical approximations to the covariance structure of the

RHS of (2.11) are available.

The fitting methods proceed by iterating around the following steps until β̃ converges:

1. Calculate the values of the working variate, tij , using the current estimates, β̃, of β and

current predictions, ũ, of u if necessary.

2. Regress tij on the fT (xij) using generalised least squares (GLS, Draper and Smith, 1998,

Section 9.2) in order to obtain an updated estimate, β̆, of β. To do this we need to know

the covariance matrix of the tij , which is approximated in Sections 2.3.4 and 2.3.5.

3. Set β̃ = β̆.

The limiting value of β̃ is used as an overall estimate of β. In practice, the estimator corre-

sponding to this process may exhibit some bias (for examples see Goldstein and Rasbash, 1996),

the magnitude of which depends on the particular version of the method being used. At each

stage of the iteration there is a natural information matrix (see Section 2.3.3) for β arising from

GLS theory, which we use to approximate the true information matrix.

2.3.2 Taylor series expansions

In this section, we use Taylor series expansions to show that the first order working variates

approximately follow a linear model.

We proceed by approximating the conditional mean of the response using a Taylor series

expansion of the inverse link function, h, around the current estimate of the linear predictor,
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ν̃ij . Specifically we focus on the first order approximation,

h(νij) = h(ν̃ij + [νij − ν̃ij ])

≈ h(ν̃ij) + (νij − ν̃ij)h′(ν̃ij) . (2.12)

We now rewrite the GLMM of Section 2.1 as follows

yij = h(νij) + εij , (2.13)

where the conditional distribution of the error term, εij , is such that the distribution of yij

remains the same. In particular, εij satisfies

E(εij |ui) = 0

var(εij |ui) = var(yij |ui) . (2.14)

Note that in general the distribution of εij , given ui, will be awkward and not of exponential

family form. Substituting (2.12) in (2.13), we obtain a stochastic approximation to yij , namely

yij ≈ h(ν̃ij) + (νij − ν̃ij)h′(ν̃ij) + εij . (2.15)

By performing some simple algebraic operations we are able to obtain the form of a working

variate which follows a linear model approximately. Subtracting h(ν̃ij) from both sides of (2.15)

we have that

yij − h(ν̃ij) ≈ (νij − ν̃ij)h′(ν̃ij) + εij , (2.16)

and dividing (2.16) through by h′(ν̃ij) we find that

1

h′(ν̃ij)
[yij − h(ν̃ij)] ≈ νij − ν̃ij +

1

h′(ν̃ij)
εij . (2.17)

Finally, adding ν̃ij to both sides of (2.17), and defining tij to be equal to the left hand side (thus

motivating our earlier definition), we obtain

tij = ν̃ij +
1

h′(ν̃ij)
[yij − h(ν̃ij)]

≈ νij +
1

h′(ν̃ij)
εij , (2.18)

as was stated in (2.11). Treating ν̃ij as fixed we see using (2.18) that E(tij) ≈ νij and therefore

that tij follows a linear model approximately (albeit with a non-normal response distribution).

Clearly the assumption that ν̃ij is fixed ignores the fact that the estimates depend on the data.

2.3.3 Relation to information matrix

The approximate information matrices arise out of the iterative methods as follows. For 1 ≤ i ≤
n, let ti = (ti1, . . . , timi

)T be the vector of working variates in the ith block in the data. Denote

by Vi the variance matrix of ti, i.e. the variance of the working variates in the ith block. Finally

let V be the block diagonal matrix with blocks Vi, i = 1, . . . , n. Also recall the definitions of the
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model matrices Fi and F from Section 2.2.1.

Using the approximate model (2.18) the variance of the GLS estimator, β̂, from step 2 in

Section 2.3.1 is approximately

var(β̂) ≈
{
FTV −1F

}−1
, (2.19)

by generalised least squares theory. The above expression would hold with equality, for all sample

sizes, if the linear model approximation (2.18) held exactly. In practice there is a further reason

for the approximation symbol in (2.19) since we also approximate var(ti). Equation (2.19) can

be rewritten using matrix algebra as

var(β̂) ≈

{
n∑
i=1

FTi V
−1
i Fi

}−1

,

which can be further rewritten in terms of the b distinct support blocks as

var(β̂) ≈

{
n

b∑
k=1

wkF
T
k V
−1
k Fk

}−1

. (2.20)

If n is large then we expect that var(β̂) ≈ var∞(β̂), in other words the asymptotic approximation

to the variance will be reasonably accurate. Recall that M is related to the asymptotic variance

covariance matrix of β̂ via

nMβ(ξ,θ) = var∞(β̂)−1 . (2.21)

Combining (2.20) and (2.21), we obtain the approximation for the information matrix of the

design measure ξ,

Mβ(ξ,θ) ≈
b∑

k=1

wk F
T
k V
−1
k Fk ,

Thus, given the definition of a particular working variate, one computes the approximation by

evaluating the variance-covariance matrices, Vk, of tk, k = 1, . . . , b. Different approximations

are obtained by considering different forms of working variate.

2.3.4 MQL

In this section we compute the variance-covariance matrix of the tij under MQL by applying the

conditioning identity (McCulloch and Searle, 2001, Ch. 1, p. 11),

var(tij) = E(var(tij |ui)) + var(E(tij |ui)) ,

to the right hand side of (2.18). We treat the current estimate ν̃ij as a fixed quantity. This

yields

var(tij) ≈ E
{

var

[
νij +

1

h′(ν̃ij)
εij

∣∣∣ui]}+ var

{
E

[
νij +

1

h′(ν̃ij)
εij

∣∣∣ui]}
= E

[
1

h′(ν̃ij)2
var(εij |ui)

]
+ var(νij) , (2.22)

where the simplification follows since (i) for the leftmost term, conditional on ui the predictor

νij has no variance and h′(ν̃ij) is fixed, thus the only term with any variance is εij , and (ii) for
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the rightmost term, conditional on ui, the predictor νij is fixed and εij has zero expectation.

Equation (2.22) can be further simplified using (2.14) to

var(tij) = E

[
1

h′(ν̃ij)2
var(yij |ui)

]
+ zTijGzij

= E

[
1

h′(ν̃ij)2
h′(νij)

]
+ zTijGzij , (2.23)

where the second line follows since for the logistic and Poisson models (with log link function)

we have that var(yij |ui) = h′(νij). If we approximate both ν̃ij and νij by ηij = fT (xij)β then

(2.23) becomes

var(tij) =
1

h′(ηij)
+ zTijGzij , (2.24)

where the expectation is evaluated trivially because by using νij ≈ ηij we assume implicitly that

the random effects are approximately 0. Using a similar argument we can show that, for j 6= k,

cov(tij , tik) = zTijGzik.

2.3.5 PQL

Under PQL we must also condition on the value of ũi. Equation (2.22) becomes

var(tij) ≈ E
[

1

h′(ν̃ij)2
var(εij |ui, ũi)

]
+ var(νij) , (2.25)

which we simplify using the assumption that

var(εij |ui, ũi) ≈ var(εij |ui) . (2.26)

We justify this heuristically on the basis that knowing an estimate (i.e. prediction) of ui does

not give much extra information about var(εij) when we already know the value of ui, except

perhaps through indirect information about the fixed effects parameters. This is a simplification

and not rigorous mathematics, but it allows us to obtain a form for the expectation which can

be evaluated analytically for both the logistic and Poisson models.

Combining (2.25) and (2.26) with the approximation ν̃ij ≈ νij yields

var(tij) ≈ E
[

1

h′(νij)2
var(εij |ui)

]
+ var(νij) (2.27)

= E

[
h′(νij)

h′(νij)2

]
+ var(νij) (2.28)

= E

(
1

h′(νij)

)
+ zTijGzij , (2.29)

which can be evaluated analytically for the logistic model and Poisson model under log-link

as shown in the following. Again we can use a similar argument to show that for j 6= k,

cov(tij , tik) = zTijGzik.

Logit link

When the the model is logistic the link function g is the logit (i.e. inverse logistic) function,
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g(µ) = log{µ/(1− µ)}. We can evaluate the expectation in (2.29) as follows

E

(
1

h′(νij)

)
= E

(
1

µij(1− µij)

)
= E

(
(1 + eνij )2

eνij

)
= E(e−νij + 2 + eνij )

= 2 + 2ez
T
ijGzij/2 cosh(fT (xij)β) ,

using that if X is distributed as N(µ, σ2) then E(eX) = eµ+σ2/2, together with the fact that

νij ∼ N(fT (xij)β, z
T
ijGzij).

Log link

If a logarithmic link function is used, then the expectation in (2.29) is

E

(
1

h′(νij)

)
= E

(
1

µij

)
= E

(
e−νij

)
= exp{−fT (xij)β + σ2/2} ,

using the same result on the expectation of a lognormal random variable.

The PQL approximation we derive in this section is not the same as that used by Tekle et al.

(2008) to construct designs for binary time series data. Those authors took as their starting

point the approximate PQL variance-covariance matrix of Breslow and Clayton (1993, Section

2.2). The expression for this approximation contains the random effects u = (uTi , . . . ,u
T
n )T ,

which are a (latent) part of the data, and so are not known when designing the experiment. To

overcome this problem, the authors used simulated samples of 500 u vectors from the assumed

distribution (fixing the values of the random effects parameters G).

In the above, we do not use simulated u values. We instead derive a different approximation

using a similar approach as for MQL in Section 2.3.4. Our expression can alternatively be

obtained by approximating the expectation of the part of the Breslow-Clayton PQL matrix

which depends on u, for details see the appendix, Section 2.8. In some sense, our alternative

approach attempts to integrate u out analytically, although to do so we must make a crude

approximation. As a consequence, the Monte Carlo PQL approximation of Tekle et al. (2008)

is likely to be more accurate than our PQL.

2.3.6 MQL2

In this section we state the form of the approximation for second-order MQL (MQL2). As an

estimation method, MQL2 exhibits slightly less bias than MQL (Rodriguez and Goldman, 1995,

Section 4.4). Our expression for this approximation only applies when G is a diagonal matrix.

For this approximation, we take a second order expansion of the conditional link function,

but omit second order terms in β so that we may continue to use linear model theory. More



2.4. ROBUSTNESS OF DESIGNS TO PARAMETER UNCERTAINTY 29

precisely, we use the approximation

h(νij) = h
(
ηij + fT (xij)(β − β̃) + zTijui

)
≈ h(ηij) + h′(ηij)

(
fT (xij)(β − β̃) + zTijui

)
+
h′′(ηij)

2
(zTijui)

2 ,

and use this to define the working variate

tij =
1

h′(ηij)
(yij − h(ηij)) + ηij −

h′′(ηij)

2h′(ηij)
zTijGzij

≈ fT (xij)β + zTijui +
1

h′(ηij)
εij +

h′′(ηij)

2h′(ηij)
((zTijui)

2 − zTijGzij) . (2.30)

Note that the form of the working variate is essentially the same as that in the first order MQL

method, with a simple correction term which ensures that the relation E(tij) ≈ fT (xij)β is

maintained. This correction term is necessary because (zTijui)
2 is distributed as zTijGzij times a

χ2
1 variable and hence has expectation zTijGzij .

The derivations of the variance and covariance of the tij for the second order expansion are

much lengthier, and for this reason they are relegated to an appendix, Section 2.9. We give the

final expressions here:

var(tij) =
1

h′(ηij)
+ zTijGzij + (1/2)

[
h′′(ηij)

h′(ηij)

]2

(zTijGzij)
2 ,

cov(tij , tik) = zTijGzik + (1/2)
h′′(ηij)

h′(ηij)

h′′(ηik)

h′(ηik)
(zTijGzik)2 .

These expressions correspond to those from Section 2.3.4, with additional second order terms

in the zTijGzik. Note that when the link function is logistic, the second derivative satisfies

h′′(η) = d
dη (µ(1− µ)) = h′(η)− 2h(η)h′(η) = (1− 2µ)h′(η), and the above expressions simplify

to

var(tij) =
1

µ
(0)
ij (1− µ(0)

ij )
+ zTijGzij + (1/2)(1− 2µ

(0)
ij )2(zTijGzij)

2 ,

cov(tij , tik) = zTijGzik + (1/2)(1− 2µ
(0)
ij )(1− 2µ

(0)
ik )(zTijGzik)2 ,

where µ
(0)
ij = µ(xij |0).

2.4 Robustness of designs to parameter uncertainty

2.4.1 Background and approach

The information matrix for a GLMM, in common with the information matrix for many gen-

eralised linear models and nonlinear models, depends on the unknown values of the model

parameters. So too, therefore, does the D-optimal design, ξ∗D = arg maxξ |M(ξ;θ)|.

A simple way of obtaining a design when θ is unknown is to choose a ‘guess’, θg, and use the

design which would be optimal were θg in fact correct. This procedure is referred to as locally

optimal design (Atkinson et al., 2007, Ch. 17). The resulting design, ξ∗(θg), is said to be locally
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optimal at θg. However, the performance of a design obtained in this way can be hampered by a

poor initial estimate. A related concept, which is useful in assessing the performance of a design

ξ is that of local efficiency, by which we mean the efficiency of ξ relative to ξ∗(θ) for a particular

posited value of θ,

eff(ξ|θ) =

{
|M(ξ;θ)|
|M(ξ∗(θ);θ)|

}1/p

,

where p is the number of parameters of interest.

In order to construct a design which is robust to potential misspecification of the model

parameters, we use a (pseudo-)Bayesian approach, which begins with codifying our prior beliefs

about the parameters θ using a probability distribution, P. It is not however, assumed that the

resulting analysis will be Bayesian, or if it is that it will use P. Once we have elicited P, we seek

the design which maximises the value of the objective function of Firth and Hinde (1997):

Iα(ξ) =

(1/α) logEθ{|Mβ(ξ;θ)|α} , α 6= 0 ,

Eθ(log |Mβ(ξ;θ)|) , α = 0 ,
(2.31)

for some particular choice of α. Those authors show that Iα is a concave function for α ≤ 1/p,

where p = dim(β), in which case the criterion satisfies a general equivalence theorem.

A common choice of α in the generalised linear model setting is α = 0, for instance Chaloner

and Larntz (1989) and Woods et al. (2006). The former authors justify this choice by observing

that in this case, maximising Iα is approximately equivalent to maximising the expected posterior

gain in Shannon information. Thus the criterion has a fully decision theoretic basis, since it

maximises a utility function relating to the anticipated Bayesian analysis. The latter property

is less important in the pseudo-Bayesian approach, since we do not assume the analysis will be

conducted in a Bayesian fashion.

In some of our work, we use a positive value of α = 1/p. An intuitive way of understanding

this choice is that we do not want extreme values of the parameters to dominate our design

considerations. For logistic GLMMs, uninformative experimental outcomes are highly probable

as θ → ∞ (the case σ2 → ∞ was mentioned in Section 2.1), so it is likely that |M | → 0, and

log |M | → −∞. Thus it is possible that
∫

log |M(ξ,θ)|f(θ)dθ may fail to converge. We discuss

this issue in depth in Chapter 7.

In order to evaluate (2.31), we must use numerical integration methods. Monte Carlo methods

or Latin Hypercube Sampling could be employed, but instead in some examples we use the

quadrature method of Gotwalt et al. (2009) which has been applied successfully in the case

of generalised linear models. In other examples we use a simple discrete approximation to a

continuous prior.

Once designs have been obtained, we assess them in terms of their local efficiency distribution,

which is the distribution induced on eff(ξ|θ) by the prior distribution on θ. This measure of

design robustness has been used previously by Woods et al. (2006) in the context of generalised

linear models.
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2.5 Examples

2.5.1 Preliminaries

In this section we compute several designs using the approximate methods we have set out

so far. We also compare the designs that result from the different approximations, in order

to gain an idea of whether the approximations produce consistent answers. First, however we

discuss some additional details. We use the integration method of Gotwalt et al. (2009) to

calculate the expectation in the Firth-Hinde objective function I1/p, defined in (2.31). This

technique lends itself most easily to the use of normal prior distributions. Thus we shall adopt

the normal as a default prior distribution on the fixed effects parameters. However, the random

effects variances must be positive and so for these we use log-normal prior distributions. For

details of the implementation, see Appendix 2.10. In future examples we will also use uniform

prior distributions on bounded intervals. The objective function in (2.31) is optimised using the

transformations of Atkinson et al. (2007, pp. 128–131) which yield an unconstrained optimisation

problem. Details of these transformations are also given in Section 3.6. Both the BFGS (Nocedal

and Wright, 1999) and Nelder-Mead simplex method (Nelder and Mead, 1965) can be used to

perform the optimisation, and both are available through the R function optim (R Development

Core Team, 2012). The BFGS algorithm typically converges in fewer iterations.

To assess the relative performance of the designs found under the different approximations,

(i) MQL, (ii) PQL and (iii) MQL2, we must first define measures of local and ‘parameter-

averaged’ efficiency under the different approximations. Using Ma to denote the information

matrix under approximation a (one of MQL, PQL or MQL2) we define

a-eff(ξ1|ξ2,θ) =

{
|Ma(ξ1,θ)|
|Ma(ξ2,θ)|

}1/p

, (2.32)

which is the local efficiency (at θ) of design ξ1 relative to design ξ2 using approximation a. Let

a1, a2 and a3 be MQL, PQL and MQL2 respectively. Also let ξ∗i be the I1/p-optimal design

under approximation ai, 1 ≤ i ≤ 3. We define the parameter-averaged efficiency in terms of the

objective function I1/p as follows

E(ξ∗i |ξ∗j ; aj) =
exp{p−1I(aj)(ξ∗i )}
exp{p−1I(aj)(ξ∗j )}

=

∫
|Maj (ξ∗i ,θ)|1/p dP(θ)∫
|Maj (ξ∗j ,θ)|1/p dP(θ)

, (2.33)

where 1 ≤ i, j ≤ 3 and the superscript on the Is denotes that the corresponding approximate

information matrix should be used. Note that if the optimisation has correctly converged then

(2.33) should be at most 1. In addition observe that if we had that aj-eff(ξ∗i |ξ∗j ,θ) = e for all θ

in the support of P then we would also have that E(ξ∗i |ξ∗j ; aj) = e.

2.5.2 Two factor logistic model

In a two factor model, x = (x1, x2)T . Let the random effects ui = ui be scalar. We assume the

following random intercept structure for the linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + u . (2.34)
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Figure 2.3: Optimal designs for the 2-factor model (2.34) under MQL (4), PQL (◦) and MQL2
(×), using the first prior (common variance of 0.5).

Designs maximising I1/p have been computed for this model with m = 4 points per block under

two different priors on θ. The priors have a common mean, but the second is more diffuse and

thus it is possible to see that the effect of greater uncertainty about the parameters is to increase

the number of blocks in the optimal design. This is consistent with the results of Chaloner and

Larntz (1989), who found that for logistic models with no block effect the number of treatments

in the optimal design increased with the range on uniform priors.

Independent normal priors were used on (β0, β1, β2, log σ2) with means (0, 1, 2, 0). A common

variance of 0.5 was used for the first design, and for the second design the variances on β0, β1

and β2 were increased to 3. Figure 2.3 gives a plot of the single block in the design under the

first prior, and Figure 2.4 gives plots of both blocks in the design under the second prior. For

each approximation the treatments in the optimal designs are similar, and under prior 2 the

allocation to blocks of corresponding points is identical. The weights associated with block (a)

in Figure 2.4 were 0.474, 0.475 and 0.476 under MQL, MQL2 and PQL respectively.

Figure 2.5 shows the distributions of the local MQL efficiency, (2.32), for the MQL optimal

designs based on a simulation with sample size 1000. This figure was obtained by simulating

1000 parameter vectors from each of the priors, and searching for the locally optimal design at

each of those vectors. The resulting designs were then compared to the Bayesian design. The

optimisation algorithm used the Bayesian MQL design as an initial design, so that the designs

reported as locally optimal were always more efficient than the Bayesian MQL design. Thus

the positive density for efficiencies greater than 1 in Figure 2.5 is an artefact of the smoothing

method. The mean efficiency under the first prior is 91.1%, under the second (more diffuse)

prior it is 72.2%. The lower and upper quartiles of the efficiency under the first prior are 86.0%

and 97.7% respectively, whereas under the second prior these are 59.5% and 86.7%. Thus, as

one would anticipate, the performance is worse on average and more variable under the more

diffuse prior.

A näıve choice might be to use the points from a 22 factorial design, in other words (x1, x2) =
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Figure 2.4: (a) First and (b) second blocks of the optimal designs for the 2-factor model (2.34)
under MQL (4), PQL (◦) and MQL2 (×), using the second prior (common variance of 3).

(−1,−1), (1,−1), (−1, 1), and (1, 1). Factorial designs are frequently employed when the data

can be modelled using a linear model (Atkinson et al., 2007, Ch.7). In this case a single block is

large enough to accommodate all points of the factorial design. Figure 2.6 shows the distribution

of the local MQL efficiency for the factorial design under the first prior distribution. In this case

the factorial performs quite well, and is reasonably robust to different possible values of the

parameters. This occurs because the values of the parameters are quite small in this example,

so a linear model may reasonably well approximate the logistic model (see Cox, 1988; Woods

et al., 2006). For a situation where the factorial (or rather, an allocation of the factorial points)

performs less well see Section 3.4.2.

The designs for both priors are compared under each approximation using the objective

function efficiency measure (2.33). The results are given in Tables 2.3 and 2.4, and show that

each design is highly efficient under all of the different approximations.

Approximation
Design a1 (MQL) a2 (PQL) a3 (MQL2)

ξ∗1 (MQL) 1.000000 0.998009 0.999984
ξ∗2 (PQL) 0.998050 1.000000 0.998487
ξ∗3 (MQL2) 0.999983 0.998362 1.000000

Table 2.3: Efficiency of optimal designs under different approximations, 2-factor model, first
prior (common variance of 0.5). Explicitly, the entry in the ith row and jth column gives the
value of E(ξ∗i |ξ∗j , aj).

2.5.3 Three factor logistic model

We now have x = (x1, x2, x3)T . We assume the random effects are scalar, and adopt the following

linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + β3x3 + u . (2.35)

Designs for this model have been computed for a single prior distribution, and the results are

presented here. A block size of m = 3, which is smaller than the number of fixed parameters,



34 CHAPTER 2. DESIGNS FROM ANALYTICAL APPROXIMATIONS

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Local efficiency

D
en
si
ty

Figure 2.5: Smoothed density estimates of MQL-efficiency distributions for the MQL optimal
design under the (a) first prior (broken line), and (b) the second prior (solid line), for the 2-factor
model (2.34).
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Figure 2.6: Smoothed density estimate of the MQL-efficiency distribution for the factorial design
under the first prior, for the 2-factor model (2.34).
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Approximation
Design a1 (MQL) a2 (PQL) a3 (MQL2)

ξ∗1 (MQL) 1.000000 0.999329 0.999999
ξ∗2 (PQL) 0.999431 1.000000 0.999433
ξ∗3 (MQL2) 0.999999 0.999369 1.000000

Table 2.4: Efficiency of optimal designs under different approximations, 2-factor model, second
prior (common variance of 3). Explicitly, the entry in the ith row and jth column gives the
value of E(ξ∗i |ξ∗j , aj).
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Figure 2.7: Design points for the 3-factor model (2.35) under MQL. Points with the same plotting
symbol (4, ◦ or ×) belong to the same block.

was chosen to ensure that the resulting designs would have multiple blocks. Independent normal

priors were used on (β0, β1, β2, β3, log σ2) with means (0, 1, 2, 5, 0) and a common variance of

0.5. In the resulting designs, the values of x1 and x2 were close to the endpoints of the interval

[−1, 1]. The design points, together with their allocation to blocks are shown in Figures 2.7–2.8.

The weights of the blocks are given in Table 2.5.

A comparison of the designs under each different approximation, using the objective function

measure (2.33) as for the previous example, indicates a small issue of convergence. Namely, the

MQL and PQL designs are 0.58% and 0.5% more efficient than the MQL2 design when evaluated

under MQL2. Thus in fact it is probably not true that the MQL2 optimal design has only two

blocks. Note that these improvements are very small indeed, and all other comparisons yield an

efficiency in the range 97.4% to 100%.

Figure 2.9 shows a smoothed density estimate of the local MQL efficiency distribution for

the optimal MQL design, based on a simulated sample from the prior of size 1000. Once again,

the positive density for efficiencies greater than 1 is an artefact of the smoothing method. The

sample estimate of the mean of this distribution is 83.6%, and the median is 85.6%. The lower

and upper quartiles are 77.9% and 90.9% respectively. This suggests that the design is reasonably

robust to different possible values of the parameter vectors from the prior distribution.
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Figure 2.8: Design points for the 3-factor model (2.35) under (a) PQL and (b) MQL2. Points
with the same plotting symbol (4, ◦ or ×) belong to the same block.

Weight
Block symbol MQL PQL MQL2

◦ .327 .332 .496
4 .294 .302 .504
× .379 .366 -

Table 2.5: Block weights of designs for the 3-factor model (2.35). Symbols refer to those used
in Figures 2.7 and 2.8. The symbol for a PQL block is the symbol used for the corresponding
block in the MQL design. There is no correspondence between a block in the PQL/MQL design
and one with the same symbol in the MQL2 design.
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Figure 2.9: Smoothed density estimate of the local MQL-efficiency distribution of the MQL
optimal design for the 3-factor model given in (2.35).
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2.6 Poisson response

In this section we consider the use of our information matrix approximations to calculate designs

for the Poisson model with random intercept. We compare the resulting expressions to those of

Niaparast (2009), who considered design for this model using a quasi-likelihood approximation

to the information matrix. For more details of the quasi-likelihood approach, see Section 2.6.2.

The designs from our methods and those of Niaparast are finally compared to designs for the

Poisson model with no random effects, which are obtained using the analytical results of Russell,

Woods, Lewis and Eccleston (2009). Throughout this section, the natural logarithm is used as

a link function. We largely ignore the issue of parameter dependence of the optimal design by

concentrating on locally optimal designs, in other words we assume a value of the parameters.

Niaparast (2009) considered ‘doubly approximate’ block designs of the following form,

ξ =

{
ζ1 . . . ζb

w1 . . . wb

}
,

where the ζk, k = 1, . . . , b, are themselves approximate designs over [−1, 1]q, i.e.

ζk =

{
xk1 . . . xkMk

λk1 . . . λkMk

}
.

Above, wk, λk1, . . . , λkMk
> 0, Mk ≥ 1, 1 ≤ k ≤ b, with

∑b
k=1 wk = 1 and

∑Mk

j=1 λkj = 1. The

blocks in this paper were, in theory, repeated measurements on individuals. The author proves

that the optimal design of this type treats all individuals identically, in other words the first

support block ζ1 has w1 = 1. This structure is referred to as a single-group design. If we are

to apply the same individual design to all participants (i.e. all blocks), then at the very least it

needs to be possible to make p observations (runs) per individual (per block) for the fixed effects

parameters to be estimable. In general we may not be free to perform so many runs, in which

case these designs do not offer much insight.

It is also worth reflecting on the purpose of experimentation. One reason for adopting a

random block effects strategy is that we are unable to estimate all of the parameters of interest

within a fixed effects framework. Another is that there are many blocks, and it is helpful to

introduce some structure to the block effects. One possible setup compatible with a single-group

design is an experiment with a small number of blocks and many runs within each block. Here

it would be possible to perform intra-block comparisons of all the treatments. The benefits

of random-effects modelling are not so clear in such an example, unless one wished to make

predictions about future batch effects. However, to be able to make good predictions one is

likely to need more blocks.

Our interpretation of these comments is that it is perhaps more realistic and more relevant

to restrict the number of support treatments per block. This is the approach we have followed

with our definition of a design in Section 2.1.3.



38 CHAPTER 2. DESIGNS FROM ANALYTICAL APPROXIMATIONS

2.6.1 Properties of the model

The Poisson random intercept model uses a log link and satisfies

logE(yij |ui) = νij = fT (xij)β + ui ,

with conditional variance var(yij |ui) = E(yij |ui) = ef
T (xij)β+ui . As before, β is the vector of

p fixed effects parameters, and the function f : [−1, 1]q → Rp is known. The random effects

are independent draws from a N(0, σ2) distribution. For this model, the marginal mean and

variance can be computed analytically (Niaparast, 2009). We repeat those results here.

The marginal mean is

µ̄ij = E(yij) = exp{fT (xij)β + σ2/2} ,

as eui is log-normal. The marginal variance is

var(yij) = varE(yij |ui) + E var(yij |ui)

= e2fT (xij)βvar(eui) + ef
T (xij)βE(eui)

= e2fT (xij)β(eσ
2

− 1)eσ
2

+ ef
T (xij)βeσ

2/2

= µ̄2
ij(e

σ2

− 1) + µ̄ij . (2.36)

Responses in different blocks are independent, however responses in the same block have nonzero

covariance. For j 6= k,

cov(yij , yik) = cov(E(yij |ui), E(Yik|ui)) + E(cov(yij , yik|ui))

= ef
T (xij)βef

T (xik)βcov(eui , eui) + 0

= ef
T (xij)βef

T (xik)βeσ
2

(eσ
2

− 1)

= µ̄ij µ̄ik(eσ
2

− 1) . (2.37)

2.6.2 Quasi-likelihood estimation

The method of quasi-likelihood (Wedderburn, 1974) requires only the mean and variance of the

response to be specified, and not a full likelihood. Since the mean and variance of the Poisson

random intercept model are analytically tractable, a quasi-likelihood type estimation procedure

may be used for this model.

Let us suppose that there are N observations, and the vector of responses, Y, has mean µ(β)

and variance φ2V (β), which depends on β only through µ, in other words V = V (µ(β)). Then

the quasi-score p-vector is defined as (McCullagh and Nelder, 1989, Chapter 9)

U(β,Y) = φ2DT (V (β))−1(Y − µ(β)) ,

where D = ∂µ
∂βT is the N × p matrix of partial derivatives of the components of µ with respect

to each component of β. The quasi-likelihood estimates of β are obtained by solving

U(β,Y) = 0p , (2.38)
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where 0p = (0, 0, . . . , 0)T is a p-vector of zeroes. If the observations are independent, the quasi-

score vector has an anti-derivative, in other words there exists a scalar function Q(β,Y) such

that
∂Q

∂β
(β,Y) = U(β,Y) .

In this case Q is referred to as the quasi-likelihood function. Moreover in this case, solving (2.38)

is equivalent to finding the estimates of β which maximise Q.

Subject to some regularity conditions, the estimators obtained from solving (2.38) are asymp-

totically normally distributed with variance-covariance matrix equal to the inverse of the variance

of the quasi-score

MQL(β) = DT (V (β)−1)D . (2.39)

Thus M corresponds to the information matrix under likelihood theory. We refer to M as the

quasi-likelihood information matrix.

However, when we have dependent data there is no guarantee that a proper quasi-likelihood

function exists (McCullagh and Nelder, 1989). There is some dispute as to the correct interpre-

tation of quasi-likelihood in this case, however we may still regard (2.38) as a set of estimating

equations. Generalised estimating equations (GEEs; Liang and Zeger, 1986) extend these esti-

mating equations to the case of dependent data, and also allow the variance-covariance structure

to be incorrectly specified. Moreover the above paper shows that asymptotic results hold even

when the variance specification is wrong, and that (2.39) is correct when the variance is correctly

specified. Thus we can regard the quasi-score estimating equations for dependent data as an

instance of GEEs when the variance is in fact correctly specified.

Niaparast (2009) defines D-optimal designs for the Poisson random intercept model to be

those which maximise det(MQL). We can compute MQL using the formula (2.39) together with

the analytical expressions for the components of V , equations (2.36) and (2.37).

2.6.3 Designs

We computed locally D-optimal designs for the Poisson mixed model by numerically optimising

the determinants of the MQL, PQL and QL approximate information matrices. This was done

for the two-factor model with linear effects plus random intercept; in other words the model

with linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + u .

The values assumed for the fixed effects parameters were (β0, β1, β2) = (0, 1, 2), and a range of

values of the block effect variance σ2 was used.

Russell, Woods, Lewis and Eccleston (2009) derived an analytical form for the D-optimal

approximate design in the case of the first order Poisson model with no random effects and

no blocking. For the model with two explanatory variables, this optimal design has 3 equally

weighted support points. More specifically, when we take β = (0, 1, 2)T as above, the design

measure on X = [−1, 1]2 is

ξ =

{
(−1, 1) (1, 0) (1, 1)

1/3 1/3 1/3

}
.
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σ2 Method Design
.16 quasi (1, 1) (−1, 1) (1,−0.092)

PQL (1,−0.087)
MQL (1,−0.089)

.81 quasi (1,−0.096)
PQL (1,−0.092)
MQL (1,−0.094)

2 quasi (1,−0.098)
PQL (1,−0.093)
MQL (1,−0.096)

10 quasi (1,−0.098)
PQL (1,−0.064)
MQL (1,−0.098)

Table 2.6: Optimal designs for Poisson mixed model, 3 points per block. All are single block
designs and contain the points (1, 1) and (−1, 1).

In order to be able to use the above analytical result as a point of reference, we fixed a block

size of 3 for the examples, and considered the value σ2 = 0. In this case, the designs found

using numerical optimisation contained the points anticipated by the theory. Table 2.6.3 shows

the resulting experimental designs under the different approximations for each of four values of

σ2 > 0. In each case, the design contained a single block, in other words b = 1, w1 = 1. For the

smaller values of the block variance, the designs from the different approximations appear quite

similar. However, they clearly differ from the designs obtained not taking the block effect into

account. When σ2 = 10, the MQL and QL designs are close together, but the PQL design is a

little different.

2.7 Discussion

In this chapter we have proposed methods of obtaining approximate Bayesian designs for GLMMs

where the observations are correlated within blocks, using approximations to the information

matrix and the criterion of Firth and Hinde (1997). Designs have been calculated for a few

specific forms of the linear predictor, and a number of prior distributions. We have successfully

replicated the result that increasing prior vagueness leads to more support points, which in

this case means blocks, in the optimal design. Moreover, we have seen that for the values

of σ2 in this chapter, the different approximations yield fairly consistent designs in terms of

efficiency. However, we have not yet assessed the impact of this work by comparing the efficiency

of designs obtained to those from simpler methods, or indeed to designs obtained using the exact

information matrix.

In Chapter 3 we shall compare the different approximations by using various benchmark

problems, and we find some evidence that, when the value of σ2 is large enough for the different

approximations to diverge, MQL outperforms PQL and MQL2. This agrees with the results

for the one-factor model in Chapter 4, although in this special case designs based on a simple

approximation to the marginal mean are able to do much better than either MQL or PQL.

Despite the difficulty of obtaining maximum likelihood designs in the general case, we are

able in Chapter 3 to develop a methodology to do so when the block size is two. Moreover the
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approach is such that Bayesian designs can be computed, and local efficiencies can be compared

across the optimal designs from each of the different methods.

The approximations of this chapter should be readily adaptable to more models than the

random intercept model. It would be interesting to attempt to compute designs for models

including block-variable interactions, where the effects of the xi are allowed to vary randomly

across the blocks. Examples of applications with such a structure in the linear predictor include

split-plot experiments in film manufacturing (Robinson et al., 2004), and semiconductor man-

ufacture (Robinson et al., 2006), although in these cases the response is neither Bernoulli nor

Poisson but Gamma distributed. Our approximations should however also carry over to this

case, we must simply substitute the correct link function in equations (2.24) and (2.29).

2.8 Appendix: Alternative derivation of PQL

In this Section, we provide an alternative derivation of the PQL approximation given in Section

2.3.5. The starting point is the PQL variance expression of Breslow and Clayton (1993), which

depends on u. We wish to take the expectation with respect to u, but to do so we must make a

further approximation.

From Breslow and Clayton (1993, Section 2.2), the approximate PQL variance-covariance

matrix for the parameter estimator β̂ of β is (translated into our notation),

var(β̂) ≈ (FTV −1F )−1 . (2.40)

The matrix V is block diagonal with blocks Vi, i = 1, . . . , n, given by

Vi = V(ζi|ui)

= W (ζi|ui)−1 + Z(ζi)GZ(ζi)
T ,

where for an arbitrary block, ζ = (x1, . . .xm),

Z(ζ) = [ z(x1) . . . z(xm)]T ,

and W (ζ|u) is the diagonal matrix of conditional variances of the responses given the random

effects u, in other words

W (ζ|u) = diag {v(xi|u) : 1 ≤ j ≤ m}

= diag {h′(ηi) : 1 ≤ j ≤ m} ,

with ηi = fT (xi), 1 ≤ i ≤ m. Thus, the PQL variance approximation satisfies

1

n
varPQL(β̂)−1 =

1

n

n∑
i=1

FTi V−1(ζi|ui)Fi

=

b∑
k=1

nk
n
FTk

 1

nk

∑
{i : ζi∼=ζk}

V−1(ζk|ui)

Fk ,
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→
b∑

k=1

wkF
T
k Eu{V−1(ζk|u)}Fk almost surely as n→∞ .

The second line can be obtained using the following idea. Since we have ordered the blocks such

that ζ1, . . . , ζb are the distinct blocks among ζ1, . . . , ζn, we may group terms of the sum whose

blocks ζi are equivalent. The third line follows using the strong law of large numbers as follows.

As n → ∞, so too nk = wkn → ∞. The terms in the inner sum, V−1(ζk|ui), i : ζi ∼= ζk, form

an IID sample of size nk. The mean of this sample converges almost surely to the population

mean.

No closed form for Eu(V−1(ζ|u)) exists. However, as we saw in Section 2.3.5, E(W−1(ζ|u))

does have an analytical form for both the logistic and Poisson model. We now make the following

approximation, making no claim that it is close,

Eu(V−1(ζk|u)) = E{(W (ζk|u)−1 + Z(ζk)GZ(ζi)
T )−1}

≈ (E{W (ζk|u)−1}+ Z(ζk)GZ(ζk)T )−1

=: V̄ −1
k .

This yields the PQL approximation to the information matrix,

M(ξ,θ) =

b∑
k=1

wk FkV̄
−1
k FTk

=

b∑
k=1

wk Fk
{
E{W (ζk|u)−1}+ Z(ζk)GZ(ζk)T

}−1
FTk ,

which is identical to the expression we obtained previously.

2.9 Appendix: Derivation of the MQL2 approximation

2.9.1 Variance of the working variate

To compute the variance of tij we condition on ui. Thus, using the approximate model (2.30),

var(tij) = E(var(tij |ui)) + var(E(tij |ui))

≈ E
(
h′(νij)

h′(ηij)2

)
+ var

[
zTijui +

h′′(ηij)

2h′(ηij)
(zTijui)

2

]
.

We may approximate the first term in the same manner as for first order MQL. The second term

may be evaluated by comparison to a non-central χ2
1 distribution. Note that for v an arbitrary

random variable and h′′, h′ deterministic functions, by completing the square,

var

[
v +

h′′

2h′
v2

]
=

(
h′′

2h′

)2

var

[
v2 +

2h′

h′′
v

]
=

(
h′′

2h′

)2

var

[(
v +

h′

h′′

)2
]
.
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In Secton 2.9.2 we show that when v ∼ N(0, τ2) and λ is non-random we have that var{(v +

λ)2} = 2τ2(τ2 + 2λ2). Therefore, letting λ = h′

h′′ , and v = zTijui the above becomes

h′′2

4h′2
2 var(zTijui)

{
var(zTijui) + 2

(
h′

h′′

)2
}

=
var(zTijui)

2

2

(
h′′

h′

)2

+ var(zTijui)

= (1/2)2

(
h′′(ηij)

h′(ηij)

)2

(zTijGzij)
2 + zTijGzij .

Therefore the overall expression for the variance is

var(tij) =
1

h′(ηij)
+ zTijGzij + (1/2)

(
h′′(ηij)

h′(ηij)

)2

(zTijGzij)
2 .

2.9.2 Variance of a non-central χ2 distribution.

In fact we compute the variance of v = (u+ λ)2 where u is N(0, τ2) and λ is non-random. First

of all we note that the mean is

E(v) = E(u2 + 2λu+ λ2) = τ2 + λ2 .

Now we apply the usual formula for the variance,

var(v) = E(v2)− (E(v))2

= E((u+ λ)4)− (τ2 + λ2)2

= E(u4 + 4u3λ+ 6u2λ2 + 4uλ3 + λ4)− (τ2 + λ2)2

= 3τ4 + 6τ2λ2 + λ4 − (τ2 + λ2)2

= 2τ4 + 4τ2λ2 ,

where we computed E(u4) = 3τ4 and E(u3) = 0 using moment generating functions.

2.9.3 Covariance of the working variates

In the above we neglected computing the covariances of the MQL2 working variate at different

points in the same block. This is an essential part of the approximation, therefore we present

this calculation here. For 1 ≤ i ≤ n, 1 ≤ j 6= k ≤ mi, we condition on the random effect vector

ui to obtain

cov(tij , tik) = cov(E(tij |ui), E(tik|ui)) + E(cov(tij , tik|ui))

= cov

{(
zTijui +

h′′(ηij)

2h′(ηij)
(zTijui)

2

)
,

(
zTikui +

h′′(ηik)

2h′(ηik)
(zTikui)

2

)}
,

where ηij = xijβ̃ is the current estimate of the fixed part of the linear predictor neglecting

random effects. The second line above follows since cov(tij , tik|ui) = 0, due to conditional

independence of tij and tik. Defining

U ′j = zTijui +
h′′(ηij)

2h′(ηij)
(zTijui)

2 ,
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we have that

cov(tij , tik) = E(U ′jU
′
k)− E(U ′j)E(U ′k) . (2.41)

Multiplying out U ′j and U ′k directly gives the following expression for the product,

U ′jU
′
k = (zTijui)(z

T
ikui) +

h′′(ηij)

2h′(ηij)
(zTijui)

2(zTikui)

+
h′′(ηik)

2h′(ηik)
(zTijui)(z

T
ikui)

2 +
h′′(ηij)h

′′(ηik)

4h′(ηij)h′(ηik)
(zTijui)

2(zTikui)
2 , (2.42)

whose terms are polynomials in the components of the ui. The degrees of the polynomial from

the terms 1, 2, 3 and 4 are 2, 3, 3 and 4 respectively. We now look at these polynomials in more

detail to compute the expectation E(U ′jU
′
k), and eventually the covariance cov(tij , tik).

We now make use of the assumption, made for MQL2 only, that G is a diagonal matrix. We

aim to show that the second and third terms of (2.42) contribute nothing to the expectation

E(U ′jU
′
k). Let us denote the jth component of ui by uij , j = 1, . . . , r. Then the second and

third terms of (2.42) are both linear combinations of third order terms in the uij . Since G is

diagonal, different components of ui are independent, and so

E(u2
iluim) = E(u2

il)E(uim) = 0 ,

and E(uiluimuin) = E(uil)E(uim)E(uin) = 0 ,

where l, m and n are arbitrary distinct indices. Therefore all third order terms in the uij vanish

when we take the expectation.

We may obtain an expression for the expectation of the first term in (2.42) by writing out

the linear combination zTijui explicitly,

E
{

(zTijui)(z
T
ikui)

}
=

∑
1≤l,m≤r

z
(l)
ij z

(m)
ik E(uiluim)

=

r∑
l=1

z
(l)
ij z

(l)
ik E(u2

il)

=

r∑
l=1

z
(l)
ij z

(l)
ik Gll

= zTijGzik ,

where z
(l)
ij denotes the lth co-ordinate of the vector zij . The second and third lines follow since

if k 6= l then E(uikuil) = E(uik)E(uil) = 0 by independence, and also E(u2
il) = var(uil) = Gll

as u2
il follows a Gllχ

2
1 distribution.

We now consider the expectation of the fourth term in (2.42), for the moment forgetting the

factor involving derivatives of f . By writing out the linear combinations explicitly we obtain

E
{

(zTijui)
2(zTikui)

2
}

=
∑

1≤s,t,v,w≤r

z
(s)
ij z

(t)
ij z

(v)
ik z

(w)
ik E(uisuituivuiw) . (2.43)

We now partition the set of 4-tuples S = {(s, t, v, w) : 1 ≤ s, t, v, w ≤ r} according to the

number, and multiplicities, of distinct values taken by s, t, v, w. Any (s, t, v, w) must belong to
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one of S1, . . . ,S5 ⊂ S defined as follows:

1. S1 = {(s, s, s, s) : 1 ≤ s ≤ r}, i.e. indices all equal

2. S2 = { 4-tuples with two distinct values in pairs, i.e. with multiplicities 2, 2 }

3. S3 = { 4-tuples with two distinct values, multiplicities 3, 1 }

4. S4 = { 4-tuples with three distinct values, multiplicities 2, 1, 1 }

5. S5 = { 4-tuples with four distinct values, multiplicities 1, 1, 1, 1 }

Suppose that for a particular (s, t, v, w) one of the indices is different from all of the others.

Without loss of generality, we may suppose this distinguished index is s. By the assumption

it has the property that s 6= t, v, w. Then we would have by independence of the u’s that

E(uisuituivuiw) = E(uis)E(uituivuiw) = 0. By this argument, for any (s, t, v, w) in S3, S4 or

S5, we have E(uisuituivuiw) = 0, since for a 4-tuple in any of these sets there is always an index

whose value has multiplicity one. Therefore we can rewrite (2.43) as

E
{

(zTijui)
2(zTikui)

2
}

=
r∑
s=1

z
(s)2
ij z

(s)2
ik E(u4

is)

+
∑

(s,t,v,w)∈S2

z
(s)
ij z

(t)
ij z

(v)
ik z

(w)
ik E(uisuituivuiw)

=

r∑
s=1

z
(s)2
ij z

(s)2
ik E(u4

is)

+
∑

1≤a<b≤r

E(u2
iau

2
ib)
{
z

(a)2
ij z

(b)2
ik

+ 4z
(a)
ij z

(b)
ij z

(a)
ik z

(b)
ik + z

(b)2
ij z

(a)2
ik

}
, (2.44)

where the second line follows by considering all (s, t, v, w) ∈ S2 such that {s, t, v, w} = {a, b},
a < b. Let us recall that for a normal random variable ζ ∼ N(0, σ2) the lower order moments

are E(ζ2) = σ2, E(ζ3) = 0 and E(ζ4) = 3σ4. Using these we deduce that (2.44) can in fact be

written as

E
{

(zTijui)
2(zTikui)

2
}

= 3
∑
s

z
(s)2
ij z

(s)2
ik G2

ss

+
∑
a<b

{
z

(a)2
ij z

(b)2
ik + z

(b)2
ij z

(a)2
ik + 4z

(a)
ij z

(b)
ij z

(a)
ik z

(b)
ik

}
GaaGbb , (2.45)

Equation (2.45) can further be re-expressed as:

E
{

(zTijui)
2(zTikui)

2
}

= 3
∑
s

z
(s)2
ij z

(s)2
ik G2

ss

+
∑
s 6=t

{
z

(s)2
ij z

(t)2
ik + 2z

(s)
ij z

(t)
ij z

(s)
ik z

(t)
ik

}
GssGtt

=
∑
s,t

{
z

(s)2
ij z

(t)2
ik + 2z

(s)
ij z

(t)
ij z

(s)
ik z

(t)
ik

}
GssGtt

= (zTijGzij)(z
T
ikGzik) + 2(zTijGzik)2 .
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Therefore E(U ′jU
′
k) = zijGzTik + (λ/4)

{
(zTijGzij)(z

T
ikGzik) + 2(zTijGzik)2

}
, where λ is the ratio

of derivatives of h, λ =
h′′(ηij)h′′(ηik)
h′(ηij)h′(ηik) . Since E(U ′j) =

h′′(ηij)
2h′(ηij)E{(z

T
iju)2} =

h′′(ηij)
2h′(ηij)z

T
ijGzij , we

have using (2.41) that

cov(U ′j , U
′
k) = zTijGzik + (λ/4)

{
(zTijGzij)(z

T
ikGzik) + 2(zTijGzik)2

}
− (λ/4)(zTijGzij)(z

T
ikGzik)

= zTijGzik + (λ/2)(zTijGzik)2

= zTijGzik + (1/2)
h′′(ηij)h

′′(ηik)

h′(ηij)h′(ηik)
(zTijGzik)2 .

Note that the above corresponds with the expression we found for var(tij).

We now write the variance matrix for the whole block, var(ti), in matrix form. Let us denote

by Zi the matrix whose columns are the zij . Then, since G is diagonal, the matrix ZTi GZi has

(j, k)th entry zTijGzik, so that we may write

var(ti) = diag

{
1

h′(ηij)
: 1 ≤ j ≤ mi

}
+ ZTi GZi + (1/2)

h′′(ηi)

h′(ηi)

(
h′′(ηi)

h′(ηi)

)T
∗ (ZTi GZi)

∗2 ,

where ∗ denotes componentwise (Hadamard) multiplication of matrices, and the vector ηi =

(ηi1, . . . , ηim)T . The definition of the (originally scalar) derivative functions, h′ and h′′, is here ex-

tended to permit vector arguments by acting componentwise, e.g. h′(ηi) = (h′(ηi1), . . . , h′(ηim))T .

For vectors a,b of the same length we define a
b to be the result of componentwise division.

2.10 Appendix: The integration method

of Gotwalt et al. (2009)

2.10.1 Adaptation to the logistic random intercept model

Gotwalt et al. (2009) proposed a numerical method for evaluating the log-determinant objective

function of Chaloner and Larntz (1989),

I0(ξ) =

∫
Rp

log |Mβ(ξ,β)| dP(β) ,

under the logistic model with parameters β when the prior, P, on β is multivariate normal. Here

the method is adapted to evaluate the objective function I1/p(ξ) of Firth and Hinde (1997), under

the logistic random intercept model of Section 2.1. As the approximation lends itself to the use

of normal priors, we shall adopt the normal as a default prior on the fixed effects parameters.

However, the random effects variance must be positive and so for this we use a log-normal prior.

We shall assume a priori that the parameters are independent.

The derivation of Gotwalt et al. (2009) applies equally well if a function other than log |M | is
used in the integrand, provided the distribution on the integration variables remains the same.

Therefore the approximation can be restated in the following way: if D is a multivariate normal

distribution of dimension d, with mean t̄ and variance Σ, and ψ is a general function of t, a
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placeholder variable, then

∫
ψ(t) dD(t) ≈ wR0ψ(t̄) +

nR∑
i=1

nQ∑
j=1

nS∑
k=1

wRiwSk

nQ
ψ(t̄ + L

√
τiQijvk) , (2.46)

where {τi, wRi
}nR
i=0 are the generalised Gauss-Laguerre abscissae and weights (Cassity, 1965),

{vk, wSk
}nS

k=0 are the abscissae and weights from the Mysovskikh extended simplex rule, and the

{Qij : 1 ≤ i ≤ nR, 1 ≤ j ≤ nQ} are randomly generated orthogonal matrices which rotate the

Mysovshikh simplex. The matrix L is the lower Cholesky root of Σ, so that Σ = LLT . The

various abscissae and weights will be defined in the next subsection, however for the moment

note that if tT = (tT1 , t2) = (βT , log σ2), with β and σ2 the logistic random intercept model

parameters, and

ψ(t) = |Mβ(ξ,θ)|1/p ,

=
∣∣Mβ

(
ξ, (tT1 , e

t2)T
)∣∣1/p , (2.47)

then the LHS of (2.46) becomes

I1/p(ξ) =

∫
|M(ξ,θ)|1/p dP(θ) , (2.48)

where P is the normal-lognormal prior on θ = (βT , σ2)T which is induced by the distribution D
on t. This is seen from the fact that if V and W are random variables related by V = Ψ(W ),

with Ψ an arbitrary fixed function, then the expectations E(V ) and E{Ψ(W )} are identical.

Therefore, to evaluate (2.48) approximately, substitute the function ψ from (2.47) into (2.46).

2.10.2 Abscissae and weights

The radial abscissae, τi, i = 1, . . . , nR, are given by 2ai, where the ai are the roots of the

generalised Laguerre polynomial of degree nR with parameter (p+ 1)/2. The parameter differs

slightly from that in the result of Gotwalt et al. (2009), since in their paper the dimension

of the integral was p whilst in our case the dimension of (2.48) is p + 1. The roots of the

generalised Laguerre polynomial can be found using the algorithm of Press, Teuklosky, Vetterling

and Flannery (1992, pp.147-151). The corresponding weights are

wi =
Γ(nR + 1)Γ(nR + (p+ 1)/2)

(nR + (p+ 1)/2)Γ((p+ 1)/2){L(p+1)/2−1
nR−2 (ai)}2

,

where Lsn denotes the generalised Laguerre polynomial of order n with parameter s (Cassity,

1965), and Γ denotes the gamma function. The construction of the Mysovkikh extended simplex

requires several steps. First of all one creates a simplex of p+ 2 vertices vi, i = 0, . . . , p+ 1, on

the unit sphere in Rp+1. This simplex is defined by vi = (vi1, . . . , vi(p+1))
T and

vij =


−
√

p+2
(p+1)(p−j+3)(p−j+2) , j < i√

(p+2)(p−i+2)
(p+1)(p−i+3) , j = i

0 , j > i .
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Then the midpoints of these vertices are added to the simplex. The construction is then com-

pleted by adding the negatives of all vertices and midpoints. The weights corresponding to the

vertices and their negatives are all equal to (p + 1)(6 − p)/{2(p + 2)2(p + 3)}, and the weights

corresponding to midpoints and their negatives are all equal to 2p2/{(p+ 1)(p+ 2)2(p+ 3)}.

We obtain the matrices Qij by randomly generating matrices whose entries have indepen-

dent standard normal distributions, and then taking the QR factorisation, as mentioned by, for

example, Stewart (1980). We implemented this using the built in functions in the programming

language R.



Chapter 3

Comparison of approximations

In this chapter, we compare the ability of the different approximations in Chapter 2 to produce

efficient designs for the logistic random intercept model. To perform the comparison, we use

a few different benchmarks. In Section 3.1, we examine the sensitivity of the MQL and PQL

approximations to the use of different allocations of the same treatments among blocks. The

relativeD-efficiencies of different allocations are computed under each of the approximations, and

compared with the efficiencies computed numerically using complete enumeration. Section 3.2

develops a methodology, which we call maximum likelihood by numerical interpolation (MLNI),

for computing the optimal design under ML in the case where there are two points per block.

This technique is also extended to yield Bayesian designs without having to resort to the less

accurate analytical approximations to the information matrix. In Section 3.3 we propose a

further analytical approximation (AMQL), which is superior to those in Chapter 2. Despite

being computationally very cheap, AMQL performs comparably with MLNI in the examples of

Section 3.4.

3.1 Detection of optimal allocation

In this section, we take two different allocations of a four-point GLM design (corresponding to

σ2 = 0) and evaluate the relative efficiency of the two allocations using various approximations.

The initial design is a four-point exact D-optimal design for the logistic regression model with

two factors x1 and x2 and linear predictor

η(x;β) = β0 + β1x1 + β2x2 , (3.1)

with (β0, β1, β2)T = (0, 5, 10)T . The locally optimal design points, {A,B,C,D} ⊆ [−1, 1]2, for

this problem are shown in Figure 3.1. We consider allocating these four points to an approximate

block design, in the sense of Section 2.1.3, in two different ways:

1. Allocation 1: Block 1, ζ1 = {A,B}. Block 2, ζ2 = {C,D}. We expect this to be a poor

allocation because the level of x1 is constant within each block. Hence we anticipate some

confounding between the effect of x1 and the block effects.

2. Allocation 2: Block 1, ζ1 = {A,C}. Block 2, ζ2 = {B,D}. We expect that this offers some

49
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improvement over allocation 1 above, since within each block there are two levels of both

x1 and x2.

In both cases, the blocks are to be equally weighted.

The resulting approximate block designs are to be used to estimate the logistic random

intercept model with conditional linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + u ,

where the true values of the fixed effects parameters are (β0, β1, β2)T = (0, 5, 10)T in accordance

with the GLM above. The relative efficiency of Allocation 1, using Allocation 2 as a reference

has been computed using the analytical approximations of Chapter 2 (MQL, PQL, and MQL2),

complete enumeration (which we refer to simply as ML), and the improved analytical approxi-

mation, adjusted MQL (AMQL). We defer the details of the AMQL approximation to Section

3.3, but include it in the considerations here for the sake of completeness. The efficiencies under

each of these methods are displayed as functions of σ2 in Figure 3.2.

-1.0 -0.5 0.0 0.5 1.0
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.0

-0
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Figure 3.1: D-optimal design on 4 points for the model (3.1).

We see that the correct pattern, given by the ML curve, is for the relative efficiency of Allo-

cation 1 to decrease monotonically as σ2 increases. Therefore the choice of allocation becomes

more important as the degree of heterogeneity among the blocks increases. This pattern is also

followed by the MQL and adjusted MQL (AMQL) efficiencies, although these approximations

tend to underestimate the efficiency of Allocation 1, thereby exaggerating the importance of

selecting Allocation 2. The information matrix evaluations necessary to compute the relative

ML efficiencies were performed using complete enumeration, as in (2.9). For values of σ2 up to

around 1, the different methods produce similar efficiency curves.
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Figure 3.2: Relative D-efficiency of Allocation 1, under various approximations

For σ2 ≥ 1 the approximations begin to diverge noticeably. Under PQL the efficiency de-

creases to a minimum of roughly 90% at σ2 ≈ 3. For σ2 ≥ 3, the efficiency increases back to

1 and remains at that level. In other words, according to PQL, for moderately large σ2 there

is no difference between the two allocations. In Section 3.1.1, we will show that PQL is always

insensitive to allocation for large σ2. This appears to be a serious defect for an approximate

method of computing block designs. Moreover, as we shall see in Sections 3.4 and 4.4.5, for

moderately large σ2 the treatments in the optimal PQL design tend to be worse even than those

from a GLM design, in other words a design completely ignoring the presence of a block effect.

Thus, it seems PQL is a worse approximation than MQL for the purposes of design construction.

MQL2 is the only approximation which selects the wrong allocation, doing so for σ2 greater

than around 7. Furthermore, the efficiency is very much greater than 1 for large σ2. This

suggests that MQL2 is the worst approximation, which is perhaps initially surprising given its

second order nature. However recall that the conditional mean, h(νij), lies between 0 and 1. As

outlined in Section 2.3.6, MQL2 attempts to approximate this quantity with an expression which

contains second order terms in the random effects. When σ2 is large, the terms involving random

effects will often dominate, causing the approximation to lie outside the bounds. Moreover, the

second order terms in MQL2 will tend to be larger than the first order terms present in MQL

and PQL. As a result MQL2 will perform worse when σ2 is large, in virtue of the approximation

to h(νij) lying further from [0,1].

3.1.1 Analytical results

In this section, we study the behaviour of the MQL and PQL information matrices of a fixed

design as σ2 → ∞. This leads to an analytical proof of the property identified in Section 3.1,
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that PQL is insensitive to the allocation of treatments to blocks for large σ2. Of course, for

very large σ2 the model is degenerate: as stated in Section 2.1.1, in this case within most blocks

the responses will be equal. Thus it will not matter much in practice which allocation is chosen

as either way the inference will be very poor. However, as in Section 3.1, low sensitivity to

the allocation used may occur for intermediate values of σ2, for which the model is not yet

degenerate.

Recall from Section 2.3 that the MQL and PQL information matrices for a design ξ can be

written in the form

M(ξ;θ) =

b∑
i=1

wiF
T
i V
−1
i Fi , (3.2)

where Fi is the model matrix of the ith block, ζi, in the design. Also, wi is the corresponding

weight, and Vi is the variance-covariance matrix of the working variate in block i which depends

on the approximation method. We shall invert Vi analytically using the following matrix formula

(see Fedorov and Hackl, 1997, p. 107).

Lemma 3.1 (Inversion and determinant formula). Let A be an invertible a× a matrix, and B

an a × b matrix. Then we have the following expressions for the inverse and determinant of

A+BBT , ∣∣A+BBT
∣∣ = |A|

∣∣I +BTA−1B
∣∣ (3.3)

(A+BBT )−1 = A−1 −A−1B(I +BTA−1B)−1BTA−1 . (3.4)

The next result is useful for showing that PQL is insensitive to the allocation chosen for large

values of the random effects variance, σ2. Note that a corollary of this is the intuitive fact that

if the observations within a block are independent, then the allocation of treatments to blocks

does not matter.

Lemma 3.2. If the Vi, i = 1, . . . , b in (3.2) are diagonal, then M is insensitive to the choice of

allocation, provided each point is moved to a block with the same weight as before.

Proof of Lemma 3.2. As Vi is diagonal we may write it as

Vi =


vi1

vi2
. . .

vim

 .

Note that, by the matrix algebra of outer products

FTi V
−1
i Fi =

(
f(xi1) f(xi2) . . . f(xim)

)


v−1
i1

v−1
i2

. . .

v−1
im




fT (xi1)

fT (xi2)
...

fT (xim)


=

m∑
j=1

v−1
ij f(xij)f

T (xij) .

This can be verified by writing out all the necessary indexed sums, if desired.
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Note therefore that

M(ξ; θ) =

b∑
i=1

m∑
j=1

wiv
−1
ij f(xij)f

T (xij) .

This remains unchanged if the indices i and j are permuted between the points xij , provided

that the weight associated with a given point does not change. Thus, given the hypothesis, M

is insensitive to the chosen allocation, subject to the stated caveat.

Large σ2 properties of MQL

For MQL,

Wi = diag

{
1

µ
(0)
ij (1− µ(0)

ij )
: 1 ≤ j ≤ m

}
,

where diag{dj : 1 ≤ j ≤ m} denotes the m ×m diagonal matrix with diagonal entries dj , and

µ
(0)
ij = µ(xij |0), in other words µ

(0)
ij is the conditional mean of the response assuming that the

random effect is equal to 0. Then for MQL, the variance matrix Vi is given by

Vi = Wi + σ21m1Tm , (3.5)

where 1m is an m× 1 vector of 1s. Applying formula (3.4) to equation (3.5), by setting A = Wi

and B = σ1m, yields

V −1
i = W−1

i −W−1
i (σ1m)

{
I + (σ1m)TW−1

i (σ1m)
}−1

(σ1Tm)W−1
i

= W−1
i − σ2W−1

i 1m
{

1 + σ2tr(W−1
i )

}−1
1TmW

−1
i

= W−1
i − σ2

1 + σ2tr(W−1
i )

W−1
i 1m1TmW

−1T
i

= W−1
i − 1

σ−2 + tr(W−1
i )

W−1
i 1m(W−1

i 1m)T . (3.6)

Note that W−1
i 1m is the vector containing the diagonal elements of W−1

i , in other words

W−1
i 1m = (µ

(0)
ij (1 − µ

(0)
ij ) : 1 ≤ j ≤ m )T . Considering the RHS of equation (3.6) we see

that, as σ2 →∞,

V −1
i →W−1

i − 1

tr(W−1
i )

W−1
i 1m(W−1

i 1m)T .

Defining V −1
i,∞ = limσ2→∞ V −1

i , to evaluate the limiting efficiency two designs ξ1 and ξ2 one

needs only evaluate

lim
σ2→∞

M(ξ, θ) =

b∑
i=1

wiF
T
i V
−1
i,∞Fi ,

for each of the designs under consideration. The matrix V −1
i,∞ is not diagonal, so the allocation

potentially remains important in the limit.

Large σ2 properties of PQL

For PQL

Wi = diag
{

2 + 2eσ
2/2 cosh(fT (xij)β) : 1 ≤ j ≤ m

}
,
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and note that

Vi = Wi + σ21m1Tm .

It is helpful to consider a rescaled version of Vi, namely

Ṽi = e−σ
2/2Vi . (3.7)

Correspondingly we consider a rescaled version of Wi, defined by

W̃i = e−σ
2/2Wi

= diag
{

2e−σ
2/2 + 2 cosh(fT (xij)β) : 1 ≤ j ≤ m

}
,

so that Ṽi = W̃i + σ2e−σ
2/21m1Tm. Clearly, as σ2 →∞,

W̃i → W̃i,∞ = diag
{

2 cosh(fT (xij)β) : 1 ≤ j ≤ m
}
.

Using (3.7) we can rewrite the PQL information matrix as

M(ξ, θ) = eσ
2/2

b∑
i=1

wiF
T
i Ṽ
−1
i Fi

= eσ
2/2M̃(ξ,θ) ,

where we refer to M̃ as the renormalised (PQL) information matrix. Applying the inversion

formula (3.4) to Ṽi gives

Ṽ −1
i = W̃−1

i − σ2e−σ
2/2

1 + σ2e−σ2/2tr(W̃−1
i )

W̃−1
i 1m(W̃−1

i 1m)T

= W̃−1
i − 1

σ−2eσ2/2 + tr(W̃−1
i )

W̃−1
i 1m(W̃−1

i 1m)T . (3.8)

As σ2 →∞, so too σ−2eσ
2/2 →∞. Moreover, since W̃i → W̃i,∞ so too W̃−1

i → W̃−1
i,∞ and also

tr(W̃−1
i )→ tr(W̃−1

i,∞) which is a fixed real number. Therefore the second term in (3.8) tends to

lim
σ2→∞

(
1

σ−2eσ2/2 + tr(W̃−1
i )

)
W̃−1
i,∞1m(W̃−1

i,∞1m)T = 0m×m ,

and Ṽ −1
i →W−1

i,∞. Thus, as σ2 →∞, Ṽ −1
i tends to a diagonal matrix.

When calculating efficiencies, the renormalised information matrix may be used, since the

normalisation factors cancel in the efficiency equation as follows:

eff(ξ1; ξ2,θ) =

{
|M(ξ1,θ)|
|M(ξ2,θ)|

}1/p

=

{
eσ

2/2|M̃(ξ1;θ)|
eσ2/2|M̃(ξ2;θ)|

}1/p

=

{
|M̃(ξ1,θ)|
|M̃(ξ2,θ)|

}1/p

.
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Since for large σ2 the renormalised information matrix is independent of the allocation, so the

relative efficiency of two allocations of the same design must be 1. In other words, for large σ2,

PQL does not distinguish between allocations.

In Section 3.4, we observe that this allocation property is not the only deficiency of PQL.

It can also produce worse design points than MQL (and even than we would obtain simply

by ignoring the presence of random effects). This is somewhat counterintuitive, since as an

estimation procedure PQL has been found to yield better results than MQL. The answer may lie

in the gross approximations we make in the derivations in Sections 2.3.5 and 2.8 to guarantee an

analytically tractable expression for var(ti). These approximations are of higher fidelity when

the random effects variability is small, which we know since PQL and MQL expressions are

identical to those in the GLM case when σ2 = 0. For larger σ2 there is no reason that these

steps should be accurate. To resolve whether the deficiencies in our PQL are down to these

steps, one could consider a Monte Carlo PQL expression along the lines of Tekle et al. (2008).

However, doing so would reduce the computational advantages over complete enumeration.

3.2 ML design methodology

In this section we have two objectives. Firstly, we present a faster method of evaluating the

information matrix using complete enumeration (2.9). Secondly we discuss a methodology,

referred to as maximum likelihood by numerical interpolation (MLNI), which enables us to

obtain D-optimal designs under ML in the case where there are two units per block. The key

idea is to use numerical integration to precompute a lookup table for the weight matrix, W

(Section 3.2.1). This table will contain practically all numerical integrals which are possibly

relevant to the computation of M for a particular value of σ2.

The weight matrix, W , will turn out to depend only on the values of the fixed parts of the

linear predictor at the two points in the block. Therefore the same lookup table can be used for

different predictor structures and, perhaps most importantly, different values of the parameters

β. This property facilitates the construction of Bayesian designs when there is uncertainty only

in the β parameters, as will be considered in Section 3.4.

3.2.1 Alternate expression for information matrix

Recall that the information matrix for a block ζ can be written as a sum over all possible

outcomes in the block of terms involving the likelihood p(y|ζ,θ) and its derivatives with respect

to β. Previously we computed p(y|ζ,θ) using quadrature to evaluate the integral, and numerical

differentiation to approximate the Hessian. Here we show how to avoid the use of numerical

differentiation.

The first step is to make a change of differentiation variable from β to η using the chain rule.

The second step is to use differentiation under the integral sign to express the derivative with

respect to η of the likelihood in terms of an integral. A full description of differentiation under

the integral, together with a list of conditions on the integrand to enable its use, are given in

Section 3.9.
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Let ζ = (x1, . . .xm) ∈ Xm be an arbitrary block. From (2.9), we have that

Mβ(ζ,θ) =
∑

y∈{0,1}m

−∂2 log p(y|θ, ζ)

∂β∂β
p(y|θ, ζ) .

Using standard ML theory, under regularity this can be rewritten as

Mβ(ζ,θ) =
∑

y∈{0,1}m
p(y|θ, ζ)

(
∂ log p

∂β

)(
∂ log p

∂β

)T
,

which can be further rewritten, using the chain rule on log p, as

Mβ(ζ,θ) =
∑

y∈{0,1}m

1

p(y|θ, ζ)

∂p

∂β

∂p

∂β

T

. (3.9)

Let η = (η1, . . . , ηm)T be the vector of linear predictors, ηj = fT (xj)β, j = 1, . . . ,m, and

let zj = z(xj). Moreover write h = g−1 for the inverse link function. Recall from (2.8) that the

probability of a particular outcome for the block, y, is

p(y|θ, ζ) =

∫
Rr

m∏
j=1

µ(xj |u)yj{1− µ(xj |u)}(1−yj)fu(u) du

=

∫
Rr

m∏
j=1

[
yjh(ηj + zTj u) + (1− yj){1− h(ηj + zTj u)}

]
fu(u) du . (3.10)

To see that the second expression in (3.10) is correct, one simply needs to consider the possible

cases, yj ∈ {0, 1}, 1 ≤ j ≤ m, and verify that in each eventuality we obtain the same integrand

as in the first line. The purpose of expressing the integrand using linear combinations rather

than exponentiation is that, in R at least, the former is computationally faster. Moreover, it is

more straightforward to analytically differentiate linear combinations.

Note that (3.10) depends on the parameters β only through the linear predictors η. To stress

this, we write

p(y|θ, ζ) = py(η, ζ, G) ,

where G = var(u). By the chain rule, we have that

∂py

∂β
= FT

∂py

∂η
,

where F is the m × p model matrix for the block ζ, which is given by stacking the fT (xj),

j = 1, . . . ,m. Thus in fact

Mβ(ζ,θ) = FT

 ∑
y∈{0,1}m

1

py

(
∂py

∂η

)(
∂py

∂η

)TF

= FTWF , (3.11)
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where the m×m matrix W = W (η, ζ, G) is defined by

W (η, ζ, G) =
∑

y∈{0,1}m

1

py

(
∂py

∂η

)(
∂py

∂η

)T
. (3.12)

We call W the weight matrix. In the case of a random intercept model, py and W depend upon

ζ only through η and we can write py = py(η, σ2) and W = W (η, σ2). We will also sometimes

notationally supress dependence on σ2, since in the locally optimal design problem σ2 is held

fixed throughout.

Note that a numerical issue may potentially arise when evaluating (3.12) if py is too small.

In practice this has not occurred in our work.

We now give expressions for the partial derivatives ∂py/∂η. Differentiating under the integral

sign in (3.10) we obtain for 1 ≤ k ≤ m,

∂py

∂ηk
=(2yk − 1)

·
∫
Rr

h′(ηk + zTk u)
∏
j 6=k

[
yjh(ηj + zTj u)

+ (1− yj){1− h(ηj + zTj u)}
]
fu(u) du . (3.13)

We use quadrature, via the R function integrate, to evaluate (3.10) and (3.13) directly, and

this enables us to evaluate the information matrix using (3.11) without resorting to numerical

differentation (i.e. finite difference methods).

3.2.2 Maximum likelihood by numerical interpolation

We now outline the computational strategy for obtaining D-optimal ML designs for the logistic

random intercept model. In our examples we restrict our attention to the case where there are

m = 2 units per block. Further technical details on the implementation in this case are given in

Section 3.2.3.

The idea is simple: given σ2, let us suppose that we could construct tables of the values of

the functions py(η), ∂py/∂ηk(η), k = 1, . . . ,m, evaluated over a fine grid of values of η in Rm.

For our examples it was adequate to tabulate over the bounded region [−20, 20]m, because the

parameter space and the design space were both bounded. Once the function values have been

obtained on the grid, subsequent evaluations of the information matrix can be performed almost

instantaneously by ‘looking up’ the values of py and ∂py/∂ηk at the value of η corresponding to

the particular design of interest.

Of course, we will want to evaluate py and ∂py/∂ηk at values of η other than those contained

in the grid, but we can approximate the values of the functions at such non-grid points by a

suitable multivariate interpolation method.

Because py and ∂py/∂ηk depend on β only through η, we can use the same interpolation

tables no matter what the value of β. We can also use the same tables in problems with different

numbers of factors, and which include different functions of the factors in the regression (in other

words f is also allowed to vary). The only restrictions are that if σ2 or the block size are changed
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then the tables must be recalculated. This versatility will be useful in obtaining designs robust to

model parameters (and structure), such as when computing Bayesian optimal designs in Section

3.4.2.

The difficulty in constructing interpolation tables of the type described above depends on

the block size, m, in two ways. Firstly, for a grid with fixed step length, the number of points

in the grid increases exponentially with the block size (the curse of dimensionality). Secondly,

py and ∂py/∂ηk must be tabulated for each potential outcome y. There are 2m such outcomes,

and so as m increases the number of functions to be tabulated also increases exponentially. As

a result, precomputation of interpolation tables is likely to be a feasible strategy only when m

is small, say m = 2, 3.

We note a technical feature which applies for all m, which is that we do not need to tabulate

∂py/∂ηk for all y ∈ {0, 1}m and all 1 ≤ k ≤ m. Instead it will suffice to precompute only

the first partial derivative, ∂py/∂η1 for y ∈ {0, 1}m. The reason for this is as follows. Let

y(k) = (yk, y2, . . . , yk−1, y1, yk+1, . . . , ym)T denote the vector obtained by exchanging the first

and kth components of y, and similarly for η(k). Then

∂py

∂ηk
(η) =

∂py(k)

∂η1
(η(k)) , (3.14)

and the second term can be evaluated using the tables for ∂py(k)/∂η1. In the next section, we

illustrate the use of (3.14) in the case m = 2.

3.2.3 Details in case m = 2

In this section we give further technical details for the case m = 2. Here the number of terms in

the summation (i.e. 2m = 4) is manageable. In practice we use the tables for py and ∂py/∂η1

to construct tables for each of the components of the weight matrix, W11,W12,W21,W22. It

is the components of the weight matrix which we interpolate. We tabulate over the range

−20 ≤ η1, η2 ≤ 20 on a rectangular grid with step length 0.1, and evaluate in between the grid

points using bilinear interpolation on each of the entries in the matrix separately. The function

interp.surface in the R package fields (Furrer, Nychka and Sain, 2010) is used to perform

the interpolation.

Let us note the simplified forms of the integrals for the outcome y = (1, 1)T . First, we have

that

p11(η) =

∫ ∞
−∞

h(η1 + u)h(η2 + u)φσ2(u) du , (3.15)

where φσ2 is the density of a N(0, σ2) random variable. Secondly, the derivative ∂p11/∂η1 is

∂p11

∂η1
(η) =

∫ ∞
−∞

h′(η1 + u)h(η2 + u)φσ2(u) du . (3.16)

When m = 2 it is adequate to tabulate p11 and ∂p11/∂η1, together with the expectation

function, e : R→ [0, 1], which is defined by

e(η) =

∫ ∞
−∞

h(η + u)φσ2(u) du .
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This is the expected value of a single response with predictor having fixed part η, or equivalently

the probability that this response is 1. Then, as py is the probability of outcome y,

p11 + p10 = P (y1 = 1) = e(η1)

p01 + p11 = P (y2 = 1) = e(η2) .

So that, rearranging,

p10 = e(η1)− p11(η1, η2) (3.17)

p01 = e(η2)− p11(η1, η2) , (3.18)

whereby we obtain tables for p10 and p01 from those for p11 and e. Also we have that

p00 + p10 + p01 + p11 = 1 ,

therefore we can obtain a table for p00 via

p00 = 1− e(η1)− e(η2) + p11 . (3.19)

As discussed in Section 3.2.2, we can use the table for ∂p11/∂η1 to give a table for ∂p11/∂η2

since
∂p11

∂η2
(η1, η2) =

∂p11

∂η1
(η2, η1) .

The remaining partial derivatives are computed by differentiating (3.17)–(3.19) with respect to

η1 and η2. This gives the following set of equations, which can be used to construct tables for

the remaining partial derivatives given the tables for e and ∂p11/∂η1:

∂p10

∂η1
= e′(η1)− ∂p11

∂η1

∂p10

∂η2
= −∂p11

∂η2

∂p01

∂η1
= −∂p11

∂η1

∂p01

∂η2
= e′(η2)− ∂p11

∂η2

∂p00

∂η1
= −e′(η1) +

∂p11

∂η1

∂p00

∂η2
= −e′(η2) +

∂p11

∂η2
.

Finally, the complete set of tables for py, ∂py/∂η1 and ∂py/∂η2, y ∈ {0, 1}2, can be used to

construct a table for the component functions of the weight matrix, via (3.12).

3.3 Adjusted MQL

We will see in Section 3.4 that the MQL approximation is not able to find quite the right

treatments for the optimal design in certain examples. We suggest that this is because the

approximation does not match the marginal mean of the response accurately enough, and use

this to propose a simple modification which appears to improve the designs in the case of the

random intercept model. This improved approximation is referred to as adjusted MQL.
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Breslow and Clayton (1993) derive the MQL approximation by considering the quasi-likelihood

equations for dependent data (McCullagh and Nelder, 1989, Section 9.3). Quasi-likelihood es-

timation requires one to specify only the mean and variance of a model, and to form the MQL

estimating equations the authors use a crude approximation to these quantities. Specifically, the

approximation for the mean is

E(yij) ≈ h(fT (xij)β) ,

and the variance approximation comes from a first order Taylor series in the variance components.

However, in the same paper another approximation for the marginal mean of the response is

mentioned in the case of a binary response with logit link. It is stated that the marginal model

for the mean is a GLM with ‘attenuated’ coefficients. Namely, translating to the notation of

Section 2.1,

E(yij) ≈ h

 fT (xij)β√
1 + c2zijGzTij

 , (3.20)

where c = 16
√

3/(15π), and zij = z(xij). In the case of the random intercept model this

simplifies to

E(yij) ≈ h
(

fT (xij)β√
1 + c2σ2

)
.

Therefore, heuristically, one might anticipate the designs to be improved by substituting the

attenuated version of the parameters when calculating the information matrix. The proposed

reason is that in this case, the approximation to the marginal mean underlying MQL is much

closer to the truth, when we consider the mean as a function of the xi. This is a heuristic only,

and a rather rough one at best, however we shall see that the approximation is very accurate in

practice.

In Figure 3.3 the design resulting from the use of adjusted MQL is essentially indistinguish-

able from the true ML designs, and this is also seen with the Bayesian designs of Section 3.4.2.

It could certainly be argued that by adjusting the parameters one is likely to corrupt the co-

variance approximation, but it seems that the matching the second moments accurately is much

less important than matching the marginal mean. For the sake of clarity we give an explicit

definition of our adjusted MQL approximation below. Note that this applies for the random

intercept model only.

Adjusted MQL. Given a design ξ and parameter values θ = (βT , σ2)T , the adjusted MQL in-

formation matrix of ξ at θ is given by substituting adjusted parameter values into the expression

for the MQL information matrix. Specifically,

MAMQL(ξ;θ) = MMQL(ξ;θadj) ,

where the adjusted parameter values, θadj, are obtained by multiplying the β parameters by the

attenuation factor from Breslow and Clayton (1993, Section 3.1), therefore

θadj =
(
βT (1 + c2σ2)−1/2, σ2

)T
.
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The relative AMQL D-efficiency at θ of design ξ1 relative to ξ2 is

effAMQL(ξ1; ξ2,θ) =

(
|MAMQL(ξ1;θ)|
|MAMQL(ξ2;θ)|

)1/p

(3.21)

= effMQL(ξ1; ξ2,θadj) . (3.22)

3.4 Examples

In this section we compute some example ML designs, and compare these to the designs result-

ing from the MQL and PQL approximations of Chapter 2. The random effects variance will be

large enough that the designs from the various approximations are quite different. Using the ML

designs as a reference we see that the MQL design is more efficient than those resulting from the

other approximations of Chapter 2. The reason for this is that under MQL the selected treat-

ments are closer to the ML-optimal treatments. The Adjusted MQL approximation proposed in

Section 3.3 performs better than any of the methods from Chapter 2.

3.4.1 Locally optimal designs

We calculate designs for the 2-factor logistic random intercept model with linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + u . (3.23)

The form of the predictor is the same as in Section 2.5.2, however here there are just two points

per block, and the parameter values are different. Namely, (β0, β1, β2) = (0, 5, 10) and σ2 = 5.

As the block size is less than the number of parameters, the blocks are incomplete and the

design will need more than one support block in order for the parameters to be estimable. The

fixed effects parameters were chosen to be large in order to investigate a situation in which the

factorial design is a poor choice (compare this to the scenario in Section 2.5.2). A large value

of σ2 was selected so that we may gain an idea of the relative performance of MQL and PQL

when the designs from the two methods have diverged.

The optimal designs for this problem consist of two equally weighted blocks for each approx-

imation. The design blocks resulting from the various methods are shown in Figure 3.3, with

corresponding blocks from the different designs shown on the same plot. Additionally, we include

a design labelled ‘GLM’. The points for this design were obtained by calculating a four-point

exact design for the GLM corresponding to the case σ2 = 0. The allocation shown is the optimal

allocation of these points to two blocks of size two, found by computing the objective function

value for the three possibilities. (Note the similarity with Section 3.1).

Using the MLNI design as a reference, the D-efficiencies of the MQL, PQL and GLM designs

were 91.2%, 78.2% and 67–86.7% respectively, where the range of values for the GLM design

efficiency corresponds to the use of different allocations. From the size of this range we see that

allocation is indeed important. The MQL design is the most efficient out of the MQL, PQL

and GLM designs. The PQL design is the least efficient of these three, being worse than the

optimal allocation of the GLM design points. If we inspect the points more closely (Figure 3.4),

we see that the MQL points lie between the GLM points and those from the MLNI design.
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Figure 3.3: Support blocks, ζ1 and ζ2, in the locally D-optimal designs for model (3.23) under
several approximations, approximation indicated by plotting character
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Thus, the use of MQL represents a correction of the GLM design points, even if the correction

is not large enough in magnitude. In contrast, the PQL points are further away from the MLNI

points than the GLM points. This pattern is also seen in the 1-factor example in Chapter 4.

The fact that PQL is also insensitive to the choice of allocation for large σ2 (Section 3.1) leads

us to believe that PQL is in fact a poor approximation for the purpose of producing designs

for larger values of σ2. The best approximation is AMQL, which produces a design which is

virtually indistinguishable from the ML design. The MQL2 design has a point in the first block

which is wildly different from that under the other approximations. Moreover in the first block,

both treatments have the same value of x1. For this particular design, it seems most likely that

the optimisation has not converged to a global maximum.

3.4.2 Bayesian designs

We calculate Bayesian optimal designs for the logistic random intercept model with linear pre-

dictor

ν(x|u) = β0 + β1x1 + β2x2 + u ,

where a priori (β0, β1) = (0, 5), σ2 = 5 and β2 ∼ U [0, 10]. This amounts to taking the example

of Section 3.4, and introducing substantial uncertainty as to the value of β2. The wide range of

possible values of this parameter will lead to a locally optimal design being a poor choice in this

example.

We choose the design ξ to optimise the value of the mean log-determinant objective function

(Chaloner and Larntz, 1989)

I0(ξ) =

∫ ∞
−∞

log |M(ξ;θ)| fθ(θ) dθ , (3.24)

where fθ denotes the density function of the prior on θ. In this example we use the log-

determinant criterion, as opposed to the I1/p criterion of Firth and Hinde (1997) which is dis-

cussed in Section 2.4, because the prior density has bounded support. We evaluate the objective

function (3.24) by use of a crude quadrature scheme,

I0(ξ) ≈
10∑
k=0

1

11
log |M(ξ;θk)| ,

with θk = (0, 5, k, 5)T , k = 0, . . . , 10. This is equivalent to approximating the uniform prior with

the discrete equiprobable prior on {0, 1, . . . , 10}. A better quadrature scheme, such as that of

Gotwalt et al. (2009) could be used, however the one above is adequate for the purposes of this

example. As the value of σ2 is the same for all the θk, we only need precompute one lookup

table (see Sections 3.2.1–3.2.2 for details of the MLNI method).

Bayesian D-optimal designs were computed under each of the different approximations, and

are given in Tables 3.1–3.5. All of the Bayesian designs contain more blocks than the locally

optimal design in Section 3.4, which makes sense given the degree of uncertainty in the param-

eters.

Locally D-optimal MLNI designs were also computed for the parameter values at each of the

quadrature points θk. The locally optimal designs were used to compute the local D-efficiencies
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of the Bayesian designs, which are shown as a function of β2 in Figure 3.5. The ordering of the

performance of the approximations is clearly the same as in Section 3.4. The Bayesian MLNI

and AMQL designs are essentially indistinguishable in terms of their efficiency curve. The MQL

design is consistently more efficient than the PQL design. For higher values of the parameters,

β2 ≥ 8, the MQL2 design slightly outperforms the MQL and PQL designs, but on average the

latter two are superior to MQL2. With respect to the discrete, approximating prior the mean

D-efficiencies are 80.6%, 73.5% and 66.9% for the MLNI, MQL and PQL designs respectively.

In Figure 3.6 the robustness of the optimal Bayesian MLNI design is benchmarked against

some simpler comparators, namely: (i) the locally optimal MLNI design evaluated at the

centroid of the parameter space i.e. θ = (0, 5, 5, 10)T , and (ii) an optimal allocation of the

22 factorial design points to two equally weighted blocks, specifically ζ1 = {(−1,−1), (1, 1)},
ζ2 = {(−1, 1), (1,−1)}. We see that the Bayesian design is indeed more robust than the lo-

cally optimal design. When the parameter β2 takes its extreme values 0 and 10, the Bayesian

design has D-efficiencies of 58.1% and 65.5% respectively, compared with 46.4% and 55.6% for

the locally optimal design. This greater robustness of the Bayesian design comes at the loss

of a mere 2% in D-efficiency compared with the locally optimal when β2 = 5. The factorial

design performs reasonably well when β2 is small, but extremely badly for larger values: the

D-efficiency when β2 = 10 is just 3.8%, and the D-efficiency averaged across the set of plausible

values of β2 is 31.8%.
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Figure 3.5: Local D-efficiencies of the Bayesian designs under each approximation

Block (i) xTi1 xTi2 Weight (wi)

1 ( 1.000, -0.402) (-1.000, 0.402) 0.370
2 (-0.144, 1.000) ( 0.144, -1.000) 0.227
3 ( 1.000, -1.000) (-1.000, 1.000) 0.402

Table 3.1: Bayesian MLNI design

Block (i) xTi1 xTi2 Weight (wi)

1 (-0.874, 1.000) ( 0.874, -1.000) 0.205
2 (-0.449, 0.049) ( 0.449, -0.049) 0.328
3 (-1.000, 0.659) ( 1.000, -0.659) 0.294
4 ( 0.232, -1.000) (-0.232, 1.000) 0.173

Table 3.2: Bayesian MQL design
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Figure 3.6: Robustness of the Bayesian MLNI design compared with simpler approaches

Block (i) xTi1 xTi2 Weight (wi)

1 (-1.000, 0.549) ( 1.000, -0.592) 0.244
2 ( 0.213, -1.000) ( 1.000, -0.499) 0.135
3 (-0.106, -0.172) (-0.076, 1.000) 0.152
4 ( 0.549, -0.618) (-0.561, 0.621) 0.379
5 (-0.422, 1.000) (-1.000, 0.709) 0.090

Table 3.3: Bayesian PQL design

Block (i) xTi1 xTi2 Weight (wi)

1 ( 1.000, -0.508) ( 0.261, -0.539) 0.512
2 (-1.000, 1.000) (-1.000, 0.460) 0.254
3 (-1.000, 0.704) (-0.316, 1.000) 0.234

Table 3.4: Bayesian MQL2 design

Block (i) xTi1 xTi2 Weight (wi)

1 (-1.000, 1.000) ( 1.000, -1.000) 0.404
2 ( 0.129, -1.000) (-0.128, 1.000) 0.232
3 (-1.000, 0.386) ( 1.000, -0.386) 0.364

Table 3.5: Bayesian AMQL design
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3.5 Linking design and analysis

In this section we make some considerations regarding the analysis of data resulting from our

designs for the logistic GLMM. We perform ML estimation of the random intercept logistic

model using the R package glmmML (Broström, 2011). To carry out PQL estimation we use the

glmmPQL function in the package BradleyTerry2 (Turner and Firth, 2010). The latter provides

an option either to estimate σ2 or to hold it fixed at a known value.

Study 1: First of all we observe that difficulties arise if we attempt to estimate all of the

parameters (including σ2) using designs with two points per block. To illustrate the problem we

simulated 100 samples of n = 100 blocks using the optimal ML design with parameter values

(β0, β1, β2, σ
2) = (0, 5, 10, 5). For each simulated dataset we calculated the ML estimates of the

parameter values, thereby producing a sample of 100 draws from the distribution of (β̂, σ̂2) under

the ML design. The resulting distributions of the ML estimators were bimodal, see for example

Figure 3.7 which shows the distribution of β̂1. The range of the estimates is extremely large

compared to the true parameter value. Bimodality also occurs if we use PQL estimation, and if

we use the MQL or PQL designs. The issue appears to be one of parameter identification: in

this case the blocks are not large enough to estimate all of the parameters (at least not with this

design, which does not take account of the need to estimate σ2). Note that a larger simulation

size was not used because in this example the estimation routines crashed quite frequently,

presumably owing to the difficulty of the estimation.

Study 2: However, the estimation is more satisfactory when the blocks are larger. We

formed a design with a single block of size m = 4 from the design points of the locally D-optimal

ML design from the previous paragraph, which had 2 points per block. Figure 3.8 shows the

distribution of (β̂, σ̂2) based on 10,000 simulations of 100 blocks. The parameter values used

were the same as before, in other words (β0, β1, β2, σ
2) = (0, 5, 10, 5). We see that the range of

estimated values of β is vastly reduced in comparison with the case m = 2.

Study 3: We now compare the different designs and estimation methods, holding σ2 fixed at

its true value throughout the estimation. Figures 3.9–3.11 give Monte Carlo samples from the

distributions of the parameter estimators of β0, β1, β2 under ML and PQL estimation. Samples

were generated using the ML, MQL and PQL designs. The true values of the parameters were set

to (β0, β1, β2, σ
2) = (0, 5, 10, 5) and these are indicated on each plot by a vertical line. We used

10,000 repeated samples, and each sample consisted of n = 100 blocks in total. There are a few

points of note. Firstly, when using PQL estimation, the estimators of all the parameters except

β0 are biased. Secondly, the variances of the estimators are smallest using the ML design under

both estimation methods. In other words, using the PQL design rather than the ML design does

not lead to the PQL estimator having smaller variance. The MQL design gives smaller variances

than the PQL design, again under both estimation methods. In this instance, the bias under

PQL estimation is somewhat reduced by using the PQL design. However, here you would not

be likely to use PQL estimation in practice since ML produces nearly unbiased estimates and is

not difficult to implement.



68 CHAPTER 3. COMPARISON OF APPROXIMATIONS

-10 0 10 20 30 40 50

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

0.
03
5

D
en
si
ty

Figure 3.7: Study 1. Empirical distribution of β̂1 using the ML design with 2 points per block,
based on 100 simulations of 100 blocks. Vertical line indicates the true value of β1.
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Figure 3.8: Study 2. Empirical distribution of β̂1 using the ML design with 4 points per block,
based on 10,000 simulations of 100 blocks.
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Figure 3.9: Study 3. Empirical distribution of estimates of β0 under ML (black) and PQL (grey), using the ML, PQL and MQL designs (left, centre and
right respectively).
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Figure 3.10: Study 3. Empirical distribution of estimates of β1 under ML (black) and PQL (grey), using the ML, PQL and MQL designs (left, centre and
right respectively).
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Figure 3.11: Study 3. Empirical distribution of estimates of β2 under ML (black) and PQL (grey), using the ML, PQL and MQL designs (left, centre and
right respectively).
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3.6 Optimisation algorithms

In Sections 2.5 and 3.4, we performed numerical searches for optimal designs using the trans-

formations of Atkinson et al. (2007) together with the general purpose BFGS or Nelder-Mead

algorithms. In this section, we consider the use of alternative algorithms. We find that a modified

co-ordinate optimisation approach is more effective.

3.6.1 Algorithm 1: Transformation

Here we give details of the transformations from Atkinson et al. (2007). These are used to

convert the optimisation problem into an equivalent formulation which involves a search over an

unconstrained space. The controllable treatment variables x1, . . . , xq are transformed according

to

xi = sin zi , i = 1, . . . , q ,

thus as xi varies in [−1, 1], the transformed variable zi takes values spanning the whole of R.

The weights wk, k = 1, . . . , b, of the design ξ are transformed in a more complicated way to

account for the constraints wk ≥ 0,
∑b
k=1 wk = 1. The transformation used is

w1 = sin2 Ω1

w2 = sin2 Ω2 cos2 Ω1

...

wk = sin2 Ωk

k−1∏
l=1

cos2 Ωl , 2 ≤ k ≤ b− 1 ,

...

wb =

b−1∏
l=1

cos2 Ωl ,

and the Ωk are allowed to take values in the whole of R.

General purpose algorithms are applied to find the optimal treatment values and weights on

the scale of zi and Ωk.

3.6.2 Algorithm 2: Co-ordinate optimisation

In following sections we will make use of a co-ordinate optimisation algorithm for approximate

block designs which is similar to the co-ordinate exchange algorithm employed by Meyer and

Nachtsheim (1995) for exact designs. This section gives details of the simple co-ordinate optimi-

sation. A modified version, with has additional heuristic features to cope with problems specific

to approximate block designs, is described in Section 3.6.3. Throughout the optimisation, we

fix the maximum number, b, of distinct support blocks allowed in a design. This means that a

design can be stored in an array of dimension b × (mq + 1), in which each row corresponds to

a support block of the design, where q is the number of controllable variables (factors). For a

detailed plan of how the design is stored in the array, see Table 3.6.
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At each step of the algorithm we select an entry (or ‘co-ordinate’) of the array to be the

focus of our attention. Depending on the type of co-ordinate selected, we consider changes to

the design in one of the following ways:

1. Treatment variable setting. When the selected entry belongs to one of the xkj , 1 ≤ k ≤ b,
1 ≤ j ≤ m, (i.e. the entry is not a weight), the selected entry is varied and all other entries

in the array are held fixed.

2. Weight, not currently equal to 1. When the selected entry is a weight we must be careful

to maintain the constraint that the weights sum to unity. This is done as follows. Suppose

the current value of the weight is wi and the proposed new value is w′i. Then we multiply

the other weights, wj , j 6= i, in the design by a factor of (1 − w′i)/(1 − wi), keeping the

factor settings constant.

3. Weight, currently equal to 1. Let w′i be the proposed value. In this case we instead set all

other weights to have the same value, w′j = (1− w′i)/(b− 1).

In accordance with these rules we change the design by varying the selected co-ordinate, and

find the value which maximises the objective function. This optimal value is then kept, together

with any corresponding changes to the other parts of the design. We perform the maximisation

with a general purpose one-dimensional optimisation algorithm, namely the optimize function

in R.

A pass of the algorithm involves working through the array in ‘typewriter fashion’, left-

to-right, top-to-bottom, performing co-ordinate optimisation steps as described above. The

algorithm begins by generating random designs until a nonsingular starting design is found. It

then repeatedly performs passes until a pass yields no changes to the design.

The algorithm is based on a greedy heuristic, and is prone to becoming stuck in suboptimal

attractor states. As a result, multiple random initialisations are used to obtain an efficient final

design.

Unit 1 Unit 2 . . . Unit m Weight

Block 1 xT11 xT12 . . . xT1m w1

Block 2 xT21 xT22 . . . xT2m w2

...
...

. . .
...

Block m xTb1 xTb2 . . . xTbm wb

Table 3.6: The structure of the array used to store approximate block designs in the algorithms.
Note that xTij is a row vector with entries corresponding to the settings of the q factors applied
to the jth unit in the ith block.

3.6.3 Algorithm 3: Modified co-ordinate optimisation

The modified co-ordinate optimisation described in this section addresses two problems with

the simple version of the algorithm given in Section 3.6.2. Firstly, the simple algorithm tends

to produce designs in which there are several very similar blocks, see for example the design in
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Figure 3.16. It seems that we should consider ‘consolidating’ these similar blocks in order to

simplify the description of the design. Secondly, once a block has been given zero weight in the

simple algorithm, the factor settings in that block will become stagnant, since changing their

values does not affect the value of the objective function.

In order to address the problem of stagnation, we modify the basic pass of the co-ordinate

optimisation to handle differently those factor settings in a block i with wi = 0. Instead, given

a proposed value x of such a co-ordinate we first form a modified design which assigns weight

0.01 to block i, and multiplies the remaining weights by 0.99. We then choose x to maximise

the objective function value of the modified design. The result is that even zero-weighted blocks

are systematically improved, and if later on they become a useful addition to the design they

will be ‘resurrected’.

The modified algorithm also includes a consolidation step, which proceeds as follows:

1. evaluate the information matrix, Mi = M(ζi,θ), i = 1, . . . , b, for each block of the design

using the appropriate approximation.

2. for every pair i < j, evaluate ∆ij = Mi −Mj .

3. if the maximum absolute value of the entries in ∆ij is less than the threshold τ , transfer

the weight from block j onto block i, in other words adopt the new weights w′i = wi + wj

and w′j = 0. By default we set τ = 10−4.

We coalesce a pair of blocks when their information matrices are similar – in other words when

they are performing a similar function for the design. This method is much neater than com-

paring the points in the blocks, which would require us to match points in two different blocks

according to the distance between them.

The overall structure of the new algorithm is now described. Let ϕ denote the design objective

function corresponding to the optimality criterion of interest. In the following examples, ϕ

corresponds to local D-optimality, in other words ϕ(ξ) = log |M(ξ;θ)|.

1. Randomly generate designs until a non-singular design is found and use this to initialise

the search.

2. Optimise the current design by repeatedly performing passes until a complete pass yields

no changes. Call the resulting design ξ1.

3. Attempt to consolidate ξ1. If no consolidation is possible, we terminate the algorithm and

output ξ1. If consolidation is possible, we call the consolidated design ξ2. Clearly ξ2 is less

efficient than ξ1.

4. Optimise ξ2 to form ξ3.

5. If ϕ(ξ3) < ϕ(ξ1), then the algorithm terminates and we output ξ1. If ϕ(ξ3) = ϕ(ξ1) then

we stop and output ξ3. Otherwise, if ϕ(ξ3) > ϕ(ξ1), we instead return to Step 2 with ξ3

as the current design.

Thus the algorithm terminates when optimisation of the consolidated design does not result in

an improvement compared to the unconsolidated design.
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3.7 Further examples

We now evaluate the performance of Algorithms 1, 2 and 3 by considering some test problems

in which we calculate locally D-optimal MQL and PQL designs. We do not calculate AMQL

designs, despite this being the best approximation. We view this omission as relatively unim-

portant, since the MQL objective function is simply the AMQL objective function of a problem

with different parameter values. As a result, the character of the optimisation problem should

not differ too much between these methods. Moreover, the MQL approximation is more general

since it applies also to models other than the random intercept.

3.7.1 Two factors, first order model

Locally optimal designs were evaluated for the first order model in two factors, with linear

predictor

ν(x|u) = β0 + β1x1 + β2x2 + u . (3.25)

The assumed parameter values were

(β0, β1, β2, σ
2)T = (0, 1, 2, 1)T ,

and designs were evaluated with all blocks of size m = 4.

The optimal MQL and PQL designs constructed using Algorithm 1 each consist of a single

block with weight 1. The factor settings in this block are indicated in Figure 3.12. The optimal

MQL design constructed using Algorithm 2 consists of two blocks. The factor settings and

weights of these blocks are given in Figure 3.13. The MQL coordinate-exchange design was

slightly superior in terms of D-efficiency compared to the other two designs. The relative D-

efficiency of the MQL and PQL transformation designs were 99.94% and 98.16% respectively.

The general equivalence theorem (Atkinson et al., 2007, p. 122) is often used to verify the

optimality of an algorithmically-derived design. To perform this check in this example would

require the evaluation of a function from the 8-dimensional space of possible support blocks.

Such a function would be rather difficult to visualise and so we do not follow this approach.
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Figure 3.12: Factor settings in the MQL and PQL designs obtained using Algorithm 1 for the
first-order model (3.25)
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model (3.25)
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3.7.2 Two factors, second order model

We consider locally optimal designs for the second order model with linear predictor

ν(x|u) = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + u . (3.26)

The assumed parameter values were (β0, β1, β2, β12, β11, β22, σ
2)T = (0, 1, 2, 0.5, 0.2, 0.2, 1)T . For

each optimisation, the best of 10 random starts is reported.

The optimal MQL and PQL designs found by transformation each contain 3 blocks with

non-negligible weight. The factor settings for these transformation designs are shown in Figures

3.14 and 3.15. MQL designs found using the co-ordinate optimisation algorithm had a larger

number of blocks. When the design was allowed to include up to 10 blocks, only 8 had non-zero

weight. If 5–8 blocks were allowed, all of the blocks in the resulting design had non-zero weight.

For the 8-block design, see Figure 3.16. It seems that some of the blocks are very similar and

could possibly be consolidated, for instance two of the blocks in the 2nd row.

The designs were compared using relative efficiencies calculated by complete enumeration.

The PQL and MQL transformation designs designs were 97.4% and 97.9% efficient compared to

the co-ordinate exchange design.

Allowing up to 10 blocks, the modified co-ordinate exchange found a design which was 4%

better than the previous best (co-ordinate exchange with up to 10 blocks), and which was

supported on 6 blocks. This design is shown in Figure 3.17.

3.7.3 Comparison of algorithms

The relative performance of the three algorithms; transformation, co-ordinate optimisation and

modified co-ordinate optimisation, is considered here in the context of the example of Section

3.7.2. The study also helps us gain insight into the number of distinct support blocks actually

required in this example.

For each method, optimal designs were computed using 10 random starts and allowing b

distinct blocks, for b increasing from 2 to 10. Figure 3.18 shows the efficiency of the resulting

design in each case (using the best design found overall as the reference of 100% efficiency). We

see that there is essentially no improvement to be gained from allowing more than 6 blocks.

It is also apparent the performance of the transformation algorithm is quite variable, and that

it produces suboptimal designs. Figure 3.19 shows the number of support blocks with non-

negligible weight in the final designs. From this we see that with b ≥ 6 the simple co-ordinate

optimisation will tend to include more blocks than is strictly necessary. In contrast, modified co-

ordinate optimisation always produces a design containing at most 6 blocks. The transformation

algorithm tends to include too few blocks, explaining the comparatively poor performance of its

designs.

Figure 3.20 shows the MQL-efficiencies of the designs found using Algorithms 2 and 3 with

b ≥ 4. These efficiencies are compared with the number of blocks with non-zero weight in the

final designs. We note several features of this plot. Firstly, the right hand side contains no points,

meaning that none of the final designs contained 9 or 10 ‘active’ support blocks. Algorithm 3

produced three designs with six blocks. This occurs because for this algorithm allowing more
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than six support blocks does not increase the number of support blocks actually present in the

final design. Effectively, only six blocks were needed to obtain an optimal design. There is no

design on the plot with three blocks because such a design has an efficiency outside the range

of the plot. Each design with b ≥ 4 has an efficiency greater than 99.9%. Thus it is possible to

use a design with just four distinct support blocks without sacrificing any appreciable efficiency.

For the design to be fully efficient, at least six support blocks are required.
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Figure 3.14: MQL design obtained using Algorithm 1 for the second-order model (3.26)
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Figure 3.15: PQL design obtained using Algorithm 1 for the second-order model (3.26)
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Figure 3.16: Design obtained by Algorithm 2 for the second-order model (3.26)
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Figure 3.17: Design obtained by Algorithm 3 for the second-order model (3.26)



3.7. FURTHER EXAMPLES 81

2 4 6 8 10

0.
80

0.
85

0.
90

0.
95

1.
00

Maximum number of blocks allowed

E
ffi

ci
en

cy
 o

f b
es

t d
es

ig
n 

fo
un

d

Algorithm 1
Algorithm 2
Algorithm 3

Figure 3.18: Efficiency of the designs found from the three different algorithms, with up to b
blocks allowed, b = 2, . . . , 10.

2 4 6 8 10

0
2

4
6

8
10

Maximum allowed number of blocks

N
um

be
r o

f b
lo

ck
s 

in
 o

pt
im

al
 d

es
ig

n

Algorithm 1
Algorithm 2
Algorithm 3

Figure 3.19: Number of blocks with non-negligible weight in the designs resulting from the three
algorithms, allowing a maximum of b blocks, b = 2, . . . , 10.
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3.8 Discussion

In this chapter, one of our main objectives was to compare the performance of the designs

resulting from the different approximations in Chapter 2. In order to evaluate this performance,

we employed a computational methodology (MLNI) to compute ML designs in the case where

there are two points per block. This comparison shows that MQL is a better approximation

for design than PQL and MQL2, which have some serious deficiencies. The problems with the

latter two are particularly evident when one compares different allocations for large values of

the random effects variance. A new approximation, adjusted MQL, was also proposed which

produced designs that were almost 100% efficient when compared to the MLNI designs.

In the future we are likely to want to calculate designs for logistic mixed models other than

the random intercept, thereby allowing the effect of the xi to vary across the blocks. The MLNI

and AMQL methods are restricted to the random intercept model, but the MQL approximation

can be applied immediately to the more general set up. Within the context of the random

intercept model, the MLNI approach is presently restricted to two points per block. In contrast,

AMQL achieves similar accuracy in the m = 2 case but can be used with any number of points

per block.

We have seen that consideration of the block effect is worthwhile, as this impacts on the

optimal treatments and the allocation of treatments to blocks. Moreover by using Bayesian

criteria we were able to find designs which are substantially more robust to different values of

the parameters than näıve designs such as the factorial.

3.9 Appendix: measure-theoretic results

In Section 3.2.1 we used ‘differentiation under the integral sign’ to express ∂py/∂ηk as an integral.

In this section, we formally state and prove the theorem which allows us to do so. This theorem

is a standard result on Lebesgue integration, as is the dominated convergence theorem on which

the proof rests.

Throughout this section, let (S,Σ, µ) be a measure space, where formally Σ is a σ-algebra

on S and µ : Σ → [0,∞] is a measure. For details of the formalism, see e.g. Billingsley (2012).

Intuitively, S is the set upon which we wish to define a measure, and Σ is the collection of subsets

of S to which we can assign a meaningful value of the measure (this corresponds to an ‘event’

in probability theory).

Theorem 3.1 (Differentiation under the integral sign). Let U be an open subset of R, and

f : U × S → R a function satisfying

1. for all t ∈ U , ft(x) = f(t, x) is integrable as a function of x

2. for all x ∈ S, fx(t) = f(t, x) is differentiable as a function of t

3. there exists an integrable function g such that∣∣∣∣∂f∂t (t, x)

∣∣∣∣ ≤ g(x) ,

for all x ∈ S and all t ∈ U .
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Then, for all t, the function dt(x) = (∂f/∂t)(t, x) is integrable. In addition, the integral function

F : U → R defined by

F (t) =

∫
S

f(t, x) dµ(x)

is differentiable and
dF

dt
=

∫
S

∂f

∂t
(t, x) dµ(x) .

This is a very slight generalisation of the result given by Apostol (1974, pp. 283-4) and

Williams (1991, p. 222). The proof is essentially the same, and relies on the dominated conver-

gence theorem, which we state below. This result will also be used in Chapter 7.

Theorem 3.2 (Dominated convergence). Let {fn, n ∈ N} be a sequence of real-valued measurable

functions on (S,Σ, µ). Suppose that the sequence converges pointwise to a function f and that

convergence is dominated by an integrable function g, in other words

|fn(x)| ≤ g(x) ,

for all n ∈ N and all x ∈ S. Then f is integrable and

lim
n→∞

∫
S

fn dµ =

∫
S

f dµ .

For details of the proof, see Billingsley (2012, p. 222).

Proof of Theorem 3.1. Let δn be an arbitrary sequence with δn → 0. Define the sequence of

functions,

gn(x) =
f(t+ δn, x)− f(t, x)

δn
− ∂f

∂t
(t, x) . (3.27)

By definition of the partial derivative gn(x) → 0 as n → ∞ for all x in S. Moreover, we can

rewrite this as

lim
n→∞

f(t+ δn, x)− f(t, x)

δn
=
∂f

∂t
(t, x) .

Thus, considered as a function of x, ∂f/∂t(t, x) is a limit of measurable functions and so is

itself measurable (Billingsley, 2012, p. 194). By condition 3, it is also integrable. Also note that

convergence of gn to 0 is dominated by an integrable function: using the mean value theorem it

can be seen that |gn| ≤ 2g. Thus, dominated convergence can be applied to show that

lim
n→∞

F (t+ δn)− F (t)

δn
−
∫
S

∂f

∂t
(t, x)dµ(x)

= lim
n→∞

∫
S

[
f(t+ δn, x)− f(t, x)

δn
− ∂f

∂t
(t, x)

]
dµ(x)

= lim
n→∞

∫
S

gn(x)dµ(x)

= 0 .

We applied Theorem 3.1 to py, given in (3.10), in order to derive the expression (3.13)

for ∂py/∂ηk. Here we demonstrate that the application of the result is valid, by checking the
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integrand satisfies the conditions listed in the Theorem. Here our integration variable, which

was previously denoted x, is instead the vector u and S = Rr. The ‘parameter’ of the integral,

formerly t, is now ηk, which takes values in U = R. Defining

f(ηk,u) =

m∏
j=1

[
yjh(ηj + zTj u) + (1− yj){1− h(ηj + zTj u)}

]
fu(u) ,

we have that py(η, σ2) =
∫
Rr f(ηk,u)du. We take as our measure space Rr with the usual Borel

σ-algebra, and Lebesgue measure, and consider each condition in turn:

1. Considered as a function of u, f(ηk,u) is measurable, since it is formed from combining

continuous functions of u. Note that, as 0 ≤ h ≤ 1, we must also have that 0 ≤ f(ηk,u) ≤
fu(u). Therefore considered as a function of u, f(ηk,u) is also integrable for all ηk.

2. Considered as a function of ηk, f(ηk,u) is differentiable with

∂f

∂ηk
= (2yk − 1)h′(ηk + zTk u)

∏
j 6=k

[
yjh(ηj + zTj u) + (1− yj){1− h(ηj + zTj u)}

]
fu(u) .

3. It is the case that 0 ≤ h′ = h(1 − h) ≤ 1/4 (consider h′ as a quadratic in h), and so the

partial derivative is dominated by an integrable function∣∣∣∣ ∂f∂ηk
∣∣∣∣ ≤ (1/4)fu(u) .

Thus we may apply the Theorem to obtain
∂py
∂ηk

=
∫
Rr

∂f
∂ηk

(ηk,u)du.
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Part II

Dose-response experiments with

unit variation
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Chapter 4

Single dosing designs

4.1 Introduction

In dose-response experiments on biological organisms, there may often be substantial heterogene-

ity between the individuals in the study. In this scenario it may be desirable to take account of

the differences between individuals by including random effects in the model, corresponding to

a ‘frailty’ term. We will consider experiments similar to the entomological bioassay, reported by

Ridout and Fenlon (1991), used to investigate the effect of virus concentration on insect mortal-

ity. In that experiment, the individuals each received a dose d of the ‘treatment’, and a binary

response y (insect survival or death, coded 0/1) was subsequently observed. The combination

of binary response and random effects means that the resulting model is related to the GLMMs

of Chapters 1-3. In this chapter we consider ways of obtaining efficient designs for this problem.

One issue which arises immediately is that, compared to a vanilla GLMM experiment, there

are additional restrictions on the observations we can collect. In particular, although we may

be able to collect multiple observations per individual, once we observe a 1 (death) there can be

no further dosings. The restriction on the set of possible outcomes impacts upon measures of

estimator variability, and this must be considered in the design problem.

The feature of individuals ‘dropping out’ of the data upon expiring allows the model to

describe the selection effect resulting from repeated applications of the treatment. The latter

occurs since frailer individuals will tend to perish first. This selection phenomenon has been

noted before in very similar models for repeated Bernoulli trials by Xue and Brookmeyer (1997),

and it is also similar to the effect observed by Hougaard (1995) in models for continuous survival

times with individual frailty terms.

The complication for design which is caused by the presence of the ‘stopping rule’ can be

avoided if we restrict our attention to designs in which there is just one dosing event per indi-

vidual, in other words only a single observation is collected for each insect. However, with this

restriction the model parameters are approximately unidentifiable unless a prior estimate of the

random effects variance, σ2, is available.

In this chapter we focus our attention on these restricted, single-dosing designs. We have

two objectives. Firstly, to consider variance-optimal designs in the case where a prior estimate

89
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of σ2 is available. Secondly we explore the impact of misspecification of σ2 on the estimates

of the fixed effects parameters. In Chapter 5, we investigate designs with multiple dosings per

individual.

For single dosing designs the model reduces to a GLMM, and so the approximations developed

in Chapter 2 are applicable. These approximations are based on the MQL and PQL estimation

methods described by Breslow and Clayton (1993). In Chapter 2, they allowed us to avoid the

large number of numerical integrals necessary to consider the potential values of the random

effects and all possible response patterns in a blocked binary response experiment. In this setup,

where the model is relatively simple, we will find that the approximations are less effective

than other approaches. However, this design problem is a useful testing ground for evaluating

the performance of those methods. Moreover, the results confirm our findings in Chapter 2 that

MQL is better than PQL at approximating the optimal treatment values. Indeed, PQL produces

designs that are less efficient than the ones resulting from not taking into account the unit effect.

The single-dosing case with known σ2 is also very similar to the situation where the model

is a 1-factor binary response GLM, albeit with a rather unusual link function. Thus there is a

connection between this work and that on variance-optimal designs for dose-response GLM-type

models, for instance Ford et al. (1992) and Biedermann, Dette and Zhu (2006).

The experiment of Ridout and Fenlon (1991) satisfies the constraint of one dosing per in-

dividual. In their application, it was not possible to achieve the intended dose exactly, which

we refer to as a dose-error setting. The authors’ analysis addressed the presence of dose-error

rather than individual variability. However, the models for these two phenomena are similar and

we explore the connection between designs in the two cases. Design when the intended factor

level is not achieved exactly has been discussed in the case of linear models with complicated

predictor structures by Donev (2004). For dose-error models with binary response, designs have

been calculated by Tang and Bacon-Shone (1992). A probit link function was chosen by those

authors because the marginal mean of the response is then tractable. With a logistic link, this

property fails. In this chapter we calculate designs which take into account individual variation,

in other words designs for the logistic random intercept model.

A sufficiently precise prior estimate of σ2 may be available, for instance from prior scientific

knowledge. If no such estimate is available, or if our main interest is in understanding selection

effects, then we must consider using designs with multiple dosings per individual. In Chapter

5, we consider the application of optimal design theory to multiple-dosing designs within a

restricted class. Namely, we constrain dosings applied to the same individual to use the same

dose level. The ideas of complete enumeration and precomputation, developed in Chapters 2

and 3 both prove helpful in making the calculation of designs a reality.

As the primary model in this chapter is nonlinear, the optimal design may depend on the

unknown values of the model parameters. This issue of parameter dependence can be addressed

by using a Bayesian design approach, which codifies uncertainty about the parameter values

using a prior distribution. For thorough examples of the use of Bayesian designs for logistic

regression models (without random effects), see Chaloner and Larntz (1989) or Woods et al.

(2006).
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4.2 Models

We begin by stating the form of the individual variation model for a general design with multiple

dosings per individual. Let us denote by yij , i = 1, . . . , n, j = 1, . . . , ti, the response on the jth

dosing of the ith individual, which takes value 1 if the individual dies, or 0 if it survives. Also

let xij = log dij be the log-dose administered on this occasion.

We assume that there are independent random effects (or ‘frailty’ terms), ui ∼ N(0, σ2),

corresponding to the ith individual. Conditional upon ui, and also provided the individual has

not already died, the response of individual i on the jth occasion (or ‘dosing’) follows a random

intercept logistic model for the probability of death, i.e.

logitE(yij) = β0 + β1xij + ui , (4.1)

where logit : q 7→ log{q/(1− q)} , q ∈ (0, 1). Let β = (β0, β1)T . Then we refer to η = η(x;β) =

β0 + β1x as the (linear) predictor, and denote ηij = η(xij ;β). The stopping rule mentioned

in the introduction is that if yij = 1, then there are no further responses yik, k > j, in other

words ti ≤ Ti, where Ti is the (random) time of the first 1 for individual i. We may stop taking

observations before time Ti. For example, there may be a non-random upper limit mi on the

number of dosing events, in which case ti = min{mi, Ti}. Thus in this scenario ti is a random

variable with possible values {1, . . . ,mi}.

The number of doses survived is very much like a discrete lifetime variable, and it is interesting

to consider the model from a survival analysis perspective. As noted by Xue and Brookmeyer

(1997), heterogeneity of frailty leads to differential survival: since strong individuals tend to

survive longer, the surviving population becomes more resilient over time. This manifests itself

in a hazard function which decreases over time. Let us assume that individuals repeatedly receive

a dose with linear predictor η = β0 + β1x. Then

H(t; η, σ2) = P
{

die on (t+ 1)th dose
∣∣ survived first t doses

}
=

∫∞
−∞{1− h(η + u)}th(η + u)φσ2(u) du∫∞

−∞{1− h(η + u)}t φσ2(u) du
, (4.2)

for σ2 > 0, with h : η 7→ 1/(1 + e−η) the logistic function, and φσ2 the density function of a

N(0, σ2) random variable. If σ2 = 0, then H(t; η, σ2) = h(η) for all t, in other words the hazard

is constant. Figure 4.1 shows the change in hazard over time with η = 0 for a few different

values of σ2. We see the impact of the selection effect: for instance, if σ2 = 5.01 and t = 10,

only a small percentage of the remaining population will be killed following another dosing. This

kind of model might potentially be useful in examples where we are interested in understanding

whether further applications of, say, a particular pesticide, or antibiotic, are to provide a benefit

– or whether the dose needs to be increased.

Turning around the definition of the response, so that 1 is the event ‘patient is cured’, and 0

is the event ‘patient not cured’, this model could be useful in clinical trials where some patients

are intrinsically more difficult to cure than others. Clearly, once a patient is cured we would not

subject them to further doses and so they would drop out of the study.

There are many examples of this discrete response bioassay setup with ti = 1 for all i, in
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Figure 4.1: Change in the hazard, (4.2), over time for several values of σ2

other words where there is a single dosing per individual. Usually in this case, it is assumed

that σ2 = 0. In the entomology experiment of Ridout and Fenlon (1991), xi1 corresponds to the

log-concentration of virus which is given to the insects. The use of the log-dose in the predictor

ensures a zero probability of death at zero dose, and is well established in the applied literature,

see for example Smits and Vlak (1988) or Ridout and Fenlon (1991). More sophisticated analyses

such as the generalised one-hit model (Ridout, Fenlon and Hughes, 1993) are better able to model

the behaviour at low doses, by allowing for control mortality, in other words insect death not

due to the virus.

4.2.1 Single dosing case

The remainder of this chapter focusses on designs in which each individual receives a dose on

only one occasion, in other words ti = 1 for all i. We refer to such designs as single-dosing

designs.

There are several rationales for contemplating this restriction. Firstly, if ti = 1 then the

stopping rule is irrelevant: there can be no deaths before the first dosing, and a death on the

first observation does not affect subsequent observations because there are none. The model in

this case reduces to a GLMM. As a result, the design problem is simplified and we are also able

to consider the performance of the approximations from Chapters 2–3 in a simpler setting than

before. Secondly, an implicit assumption of model (4.1) is that individuals are not weakened by

previous doses, and that the does do not accumulate. This may be true if we are careful and

allow adequate recovery time for the individuals. However, if we are unsure we can avoid these

assumptions by considering the case where ti = 1. The downside of this is that single-dosing

designs do not permit satisfactory estimation of all the parameters in the model. We show

in Section 4.8 that for reasonable sample sizes, estimation of the full parameter vector is very

imprecise.



4.2. MODELS 93

Let us simplify our notation for the single-dosing case, denoting yi1 instead by yi. Observe

that (4.1) can be written in the notation of Section 2.1 as

logitE(yi |ui) = fT (xi)β + ui , f(xi) =

(
1

xi

)
, β =

(
β0

β1

)
. (4.3)

We shall denote the entire vector of model parameters as θ = (β0, β1, σ
2)T .

The marginal mean of the response under model (4.1) is not analytically tractable, however

we have the following approximation

E(yi) ≈ expit

(
β0 + β1xi√

1 + c2σ2

)
, (4.4)

where expit is the logistic function, in other words the inverse of logit, and the constant c =

16
√

3/(15π). Thus, the marginal mean follows approximately a logistic model with coefficients

attenuated by a factor that depends on the degree of individual variation. The approximation

(4.4) comes from Zeger, Liang and Albert (1988), via Breslow and Clayton (1993), and can be

justified using a probit approximation to the logistic model along the lines of Demidenko (2004,

pp. 335–8).

In Section 4.8, we use the approximation (4.4) to suggest a (non-neighbouring) pair of pa-

rameter vectors, θ1 and θ2, such that a very large sample is required to distinguish between θ1

and θ2 reliably. Therefore a prior estimate of σ2 must be available from a separate experiment

in order for the parameters of (4.1) to be estimated. If one is available, then we estimate the

remaining parameters, β0 and β1 via the following estimation procedure.

Estimation Procedure 1. Hold the random intercept variance, σ2, fixed at the prior estimate,

and maximise the likelihood for model (4.1) with respect to β0 and β1.

In practice, an estimate of σ2 might be available from an experiment in which there are

multiple trials per individual. If these trials begin with fairly low doses then it is likely most

insects will survive to receive a second treatment, enabling further observations to be collected.

Moreover, with low doses the potential for weakening might be reduced. Clearly such an exper-

iment would also give information about the other parameters, but it is not clear how to factor

in this information without resorting to a Bayesian analysis.

In Section 4.6, we study the robustness of Estimation Procedure 1 with respect to misspeci-

fication of σ2 and find that only an imprecise estimate is needed.

4.2.2 Dose-error model

We now consider the dose-error model analogous to that of Ridout and Fenlon (1991), in the

single-dosing case ti = 1 only. Under this model, conditioned on the received dose the response

follows a logistic model, namely

logitE(yi | εi) = β0 + β1(xi + εi) , (4.5)

where the εi are independent N(0, σ2
ε ) random variables representing the deviation from the

intended (log-)concentration, and β0, β1 ∈ R, σ2
ε > 0 are model parameters. This is identical to



94 CHAPTER 4. SINGLE DOSING DESIGNS

the model considered by Burr (1988) except that the link function here is logistic rather than

probit.

The model parameters in (4.5) are also (approximately) unidentifiable unless a prior esti-

mate of σ2
ε is available. Supposing an estimate is available, we might estimate the remaining

parameters via the following procedure.

Estimation Procedure 2. Hold the measurement error variance, σ2
ε , fixed and maximise the

likelihood for model (4.5) with respect to β0 and β1.

This technique is similar that discussed for the logistic random intercept problem.

There are potentially simple experiments which can provide an independent estimate of σ2
ε

(this was the case in Ridout and Fenlon, 1991). For example, one might repeatedly attempt

to deliver a specific dose, and precisely measure the received doses using some more compli-

cated apparatus. It would then be straightforward to estimate σ2
ε independently of the other

parameters.

Clearly the dose-error model (4.5) is a reparameterisation of the random intercept model (4.1),

via σ2 = β2
1σ

2
ε . This follows from setting ui = β1εi in the original formulation. It therefore makes

sense to consider the relationship between the design problems for the two models. However,

note that there is a subtle difference between Estimation Procedures 1 and 2, since holding σ2
ε

fixed is equivalent to holding the ratio σ2/β2
1 constant. The latter is clearly not the same has

holding σ2 fixed. We shall see in Appendix 4.9 that this leads to the information matrices for

the two problems being different.

4.3 Optimal single-dosing designs

In this section we derive optimal designs for the unit variation model (4.1), with a single dosing

per individual. We partially address parameter dependence of the optimal design using canonical

forms, and the assumption that the optimal design obeys a certain symmetry property reduces

the search to a one-dimensional optimisation.

We shall consider continuous, or approximate, designs. We explain this below. Suppose that

there are k distinct levels among the log-doses used in the experiment, xi, i = 1, . . . , n. Without

loss of generality we may reorder the data so that x1, . . . , xk are distinct. Moreover in this case,

for all j, k < j ≤ n there is a unique i, 1 ≤ i ≤ k, such that xi = xj . For each i, 1 ≤ i ≤ k, let

ni be the number of j with xi = xj . Then we have the following concise notation for the design

used,

ξ =

{
x1 . . . xk

λ1 . . . λk

}
, (4.6)

where λi = ni/n is the proportion of individuals assigned to log-dose xi. The λi defined in this

way satisfy λi > 0,
∑k
i=1 λi = 1. It is clear also that nλi = ni must be an integer. However,

when searching for optimal designs we take (4.6) as the definition of a design, and relax the

assumption that nλi is an integer. Such designs are ‘approximate’ because for finite n the design

weights λi will usually need to be rounded before the design is implemented.

Experimental designs are typically chosen to optimise some function of the Fisher information

matrix, M , of the parameters which are to be estimated. In this work we focus on D-optimal
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designs, which maximise the value of det(M). The importance of the information matrix arises

from its role in maximum likelihood (ML) theory, where it appears as the inverse asymptotic

variance covariance matrix of the ML parameter estimators (Davison, 2003, Ch.4, p.118). Thus,

D-optimal designs yield variance-optimal point estimators of the parameters to be estimated.

We concentrate on designs for Estimation Procedure 1 in Section 4.2.1. With this procedure

we only estimate β0 and β1, whilst holding σ2 fixed at an assumed true value. Therefore we

only need consider the information matrix for β, which we refer to as Mβ. This matrix will

nevertheless depend on the entire set of parameters, θ. For the design ξ, the matrix Mβ is given

by

Mβ(ξ;θ) =

k∑
i=1

λiEyi

{
−∂2 log p(yi|θ, xi)

∂β∂βT

}
, (4.7)

where p(y|θ, x) is probability of obtaining response y ∈ {0, 1} for an individual who receives

log-dose x, assuming parameter values θ. Explicitly, for y ∈ {0, 1}, x ∈ R, and θ ∈ R2 × [0,∞)

the likelihood p(y|θ, x) is given by

p(y|θ, x) =

∫ ∞
−∞

h(β0 + β1x+ u)y {1− h(β0 + β1x+ u)}1−y φσ2
u
(u) du , (4.8)

where h is the logistic function, and φσ2
u

is the density function of a N(0, σ2
u) random variable.

The integral in (4.8) is not tractable, therefore (4.7) can be quite costly to evaluate. This leads

us to consider approximating the information matrix Mβ.

Breslow and Clayton (1993) and Goldstein and Rasbash (1996) discussed approximate meth-

ods for the estimation of generalised linear mixed models. The methods are referred to as

marginal quasi-likelihood (MQL) and penalised quasi-likelihood (PQL), and can also be used to

derive cheap approximations, M
(a)
β (ξ;β), a = MQL, PQL, to Mβ(ξ;θ). For full details of the

derivation of these approximations, see Chapter 2. For details of their implementation in this

setting, see Section 4.4. The expression (4.7) can also be approximated directly by evaluating

the integrals using numerical quadrature, although this is more costly than using MQL or PQL.

Details are of this are also presented in Section 4.4. We refer to the information matrix obtained

by numerical integration simply as the ML information matrix, M
(ML)
β . Substituting the ap-

proximations in place of the true information matrix allows us to produce reasonably D-efficient

experimental designs quickly by finding ξ(a) which maximises det(M
(a)
β (ξ,β)), a =MQL, PQL,

ML. We refer to ξ(MQL) as the ‘MQL design’, and so on.

Before proceeding, let us note from (4.8) that p(y|θ, x) depends on θ and x only through the

linear predictor, η = β0 + β1x. We stress this point notationally by defining, for y = 0, 1, the

function py : R× [0,∞)→ [0, 1] via

py(η, σ2) = p(y|θ, x) , y ∈ {0, 1} . (4.9)

This function will be useful in Section 4.4.1 when considering in more detail the partial derivatives

of log p with respect to β.
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4.3.1 Canonical forms

In this section we use a canonical form to eliminate the dependence of the optimisation problem

upon β. For a more thorough discussion on the use of canonical forms in the context of design

for generalised linear models, see Atkinson and Haines (1996).

The ML information matrix, and the MQL and PQL approximate information matrices, for

the design ξ can all be written in the form

M
(a)
β (ξ;θ) =

k∑
i=1

λif(xi)W (ηi, σ
2)fT (xi) , (4.10)

where W (ηi, σ
2) is a scalar function of the linear predictor ηi = β0 +β1xi and σ2. The key point

is that Mβ depends on β only through the predictors ηi. The exact form of W depends on the

approximation used, however in all cases (4.10) can be rewritten as

Mβ(ξ;θ) =

k∑
i=1

λiW (ηi, σ
2)f(xi)f

T (xi)

=

k∑
i=1

λiW (ηi, σ
2)

(
1

xi

)(
1 xi

)
=

k∑
i=1

λiW (ηi, σ
2)

(
1 xi

xi x2
i

)
, (4.11)

where we use the notation Mβ rather than M
(a)
β to avoid clutter. We now transform to a

canonical problem using the variable

zi = β0 + β1xi , i = 1, . . . , k .

Note that defining

B =

(
1 0

β0 β1

)
,

we have that (
1

zi

)
= B

(
1

xi

)
, i = 1, . . . , k , (4.12)

and therefore, for β1 6= 0,

f(xi) = B−1

(
1

zi

)
, i = 1, . . . , k .

Thus the information matrix (4.11) can be written as

Mβ(ξ;θ) =

k∑
i=1

λiW (zi, σ
2)B−1

(
1 zi

zi z2
i

)
B−T

= B−1

{
k∑
i=1

λiW (zi, σ
2)

(
1 zi

zi z2
i

)}
B−T ,
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and the determinant of M can be written as

|Mβ(ξ;θ)| = |B|−2

∣∣∣∣∣
k∑
i=1

λiW (zi, σ
2)

(
1 zi

zi z2
i

)∣∣∣∣∣
= |B|−2ϕ(z;λ;σ2) . (4.13)

Above, z = (z1, . . . , zk)T , λ = (λ1, . . . , λk)T , and ϕ is defined by

ϕ(z,λ;σ2) =

∣∣∣∣∣
k∑
i=1

λiW (zi, σ
2)

(
1 zi

zi z2
i

)∣∣∣∣∣ . (4.14)

Since B does not depend on z, (4.13) is maximised with respect to z if and only if (4.14) is

maximised. We can thus find the D-optimal design by finding z and λ to maximise ϕ(z,λ;σ2),

and then transforming back to obtain the doses, using xi = β−1
1 (zi − β0). Hence we need now

only solve an optimisation problem which depends on σ2, and not upon β.

Note that (4.14) is equal to the determinant of the information matrix of a transformed

design for the canonical choice of parameters, βc = (0, 1)T . In other words,

ϕ(z,λ;σ2) = |Mβ

(
ξz ; θ = (βc , σ

2)T
)
| ,

where

ξz =

(
z1 . . . zk

λ1 . . . λk

)
.

4.3.2 Symmetries

Biedermann et al. (2006) show that, for a wide variety of binary outcome dose-response models,

the D-optimal design is supported on 2 distinct doses. This is one of several papers which

attempt to derive more general theoretical results about the number of support points in various

types of nonlinear models. Another notable example is Yang (2010). Aside from their theoretical

interest, these results are helpful because they enable us to reduce the dimension of the design

optimisation problem, thereby allowing more efficient and reliable numerical searches to be

conducted.

In Section 4.12 we adapt the arguments of the above authors to derive similar results for

models with information matrices having the structure given in (4.10). In particular we derive

an analytical condition (condition I) on the weight function W , which is sufficient to guarantee

that the canonical design maximising ϕ(z,λ;σ2) is of the simplified form

ξz =

{
−z z

1/2 1/2

}
. (4.15)

In words, ξz is supported on 2 equally weighted log-doses, and these are symmetric around 0.

We are able to establish analytically that condition I holds when W is the weight function

corresponding to the MQL and PQL approximations. For the ML weight function, we have

performed numerical checks which appear to confirm that condition I holds, although we have

not been able to obtain an analytical proof. Therefore in all cases we restrict our numerical
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search for the optimal canonical design to designs of the simplified form (4.15).

It will be shown that the weight function W for each approximation satisfies

W (−η, σ2) = W (η, σ2) , (4.16)

therefore the objective function (4.14) simplifies under assumption (4.15) to

χ(z|σ2) =

∣∣∣∣∣W (z, σ2)

(
1 0

0 z2

)∣∣∣∣∣
∝ z2W (z, σ2)2 . (4.17)

Thus, for fixed σ2, finding the optimal design reduces to the one-dimensional problem of finding

z ∈ R which maximises (4.17).

In Sections 4.10 and 4.11 we also offer alternative proofs that the optimal canonical design

is of the simplified form (4.15), in the case of the MQL approximation only. One of the proofs

makes use of the results of Pukelsheim (1987) and Yang et al. (2011), the other utilises the

General Equivalence Theorem.

4.4 Approximations

In this Section we give the details of the computation of D-optimal designs using the different

approximations. In the case of MQL, the optimal design can be derived as a function of σ2

without having to resort to a separate optimisation for each value of σ2.

The MQL, PQL and ML designs, ξ(MQL), ξ(PQL) and ξ(ML), are compared in Section 4.4.5.

We also compare these to designs resulting from a further approximation, AGLM, which is

obtained by considering a probit approximation to the logistic link function. It is found that the

MQL and PQL approximations are poor in this problem, although MQL at least leads to designs

which are better than those obtained by ignoring the presence of the random effect. This latter

point is in agreement with the results of Chapter 3, where it was found that the MQL designs

had better treatments than those under PQL.

4.4.1 Maximum likelihood

In this section we demonstrate how to calculate the weight matrix W of equation (4.10) under

maximum likelihood. We also show that the weight function satisfies the property (4.16).

Recall from (4.7) that the information matrix for a general design ξ is

Mβ(ξ;θ) =

k∑
i=1

λiEyi

{
−∂2 log p(yi|θ, xi)

∂β∂βT

}
. (4.18)

The expectation can be evaluated by considering the two possible outcomes for the response y
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when log-dose x is applied,

Ey

{
−∂2 log p(y|θ, x)

∂β∂βT

}
=

1∑
y=0

−∂2 log p(y|θ, x)

∂β∂βT
p(y|θ, x) .

Using standard ML theory, under regularity this can be rewritten as

Ey

{
−∂2 log p(y|θ, x)

∂β∂βT

}
=

1∑
y=0

p(y|θ, x)

(
∂ log p(y|θ, x)

∂β

)(
∂ log p(y|θ, x)

∂β

)T
,

which can be further rewritten, using the chain rule on log p, as

Ey

{
−∂2 log p(y|θ, x)

∂β∂βT

}
=

1∑
y=0

1

p(y|θ, x)

(
∂p(y|θ, x)

∂β

)(
∂p(y|θ, x)

∂β

)T
. (4.19)

Recalling from (4.9) that p(y|θ, x) = py(η, σ2), we have by the chain rule that

∂p(y|θ, x)

∂β
= f(x)

∂py
∂η

. (4.20)

Therefore, combining (4.19) and (4.20), we can express (4.18) as

Mβ(ξ;θ) =

k∑
i=1

λi f(xi)

{
1∑
y=0

1

py(ηi, σ2)

[
∂py
∂η

(ηi, σ
2)

]2
}

fT (xi) ,

where
∂py
∂η (ηi, σ

2) means evaluation of the partial derivative function
∂py
∂η at arguments (ηi, σ

2).

This is clearly in the form (4.10), therefore the weight function W under maximum likelihood is

W (η, σ2) =

1∑
y=0

1

py(η, σ2)

(
∂py
∂η

)2

. (4.21)

Using the fact that p0 + p1 = 1, (4.21) can be simplified as follows

W =
1

p0

(
∂p0

∂η

)2

+
1

p1

(
∂p1

∂η

)2

=
1

1− p1

(
∂(1− p1)

∂η

)2

+
1

p1

(
∂p1

∂η

)2

=

{
1

1− p1
+

1

p1

}(
∂p1

∂η

)2

=
1

p1(1− p1)

(
∂p1

∂η

)2

. (4.22)

Recall that p1 and its derivative are given by

p1(η, σ2) =

∫ ∞
−∞

1

1 + e−(η+u)
φσ2(u) du , (4.23)
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∂p1

∂η
(η, σ2) =

∫ ∞
−∞

∂

∂η

{
1

1 + e−(η+u)

}
φσ2(u) du

=

∫ ∞
−∞

eη+u

(1 + eη+u)2
φσ2(u) du , (4.24)

where φσ2 is the density function of a N(0, σ2) random variable. We evaluate W using the form

(4.22), by numerical integration of (4.23) and (4.24).

To show that the weight function satisfies the symmetry property (4.16), note that; (i)

p1(−η) = 1 − p1(η), and (ii) ∂p1/∂η is invariant to η → −η. Therefore p1(1 − p1) is also

invariant to η → −η (as the two terms in the product ‘swap over’) and so too is (4.22). Facts

(i) and (ii) can be verified by some simple algebra using expressions (4.23) and (4.24).

4.4.2 MQL

Under MQL (see Chapter 2), the weight function in (4.10) is

W (η, σ2) =

{
1

µ(0)(1− µ(0))
+ σ2

}−1

=
(
eη + 2 + e−η + σ2

)−1
,

where µ(0) = h(β0 + β1x) is the approximation to the conditional mean obtained by assuming

that ui ≈ 0. It is a simple check to see that W satisfies property (4.16).

We now present a simplification of the optimisation problem which occurs for MQL only. Re-

call from (4.17) that finding the optimal canonical design amounts to finding z which maximises

χ(z|σ2) = z2W (z)2. Maximising χ is equivalent to minimising

ψ(z) = χ(z|σ2)−1/2

= z−1W (z)−1

= z−1
(
eη + 2 + e−η + σ2

)
. (4.25)

It turns out to be more sensible to consider the problem in this form, as it is easier to obtain

the solution over a range of σ2 values.

Let us define a special case of the function ψ when σ2 = 0, i.e. when the model is a GLM,

ψ0(z) = z−1

(
1

µ(0)(1− µ(0))

)
. (4.26)

Then it follows trivially from (4.25) that

ψ(z|σ2) = ψ0(z) + z−1σ2 ,

which when differentiated yields
dψ

dz
=
dψ0

dz
− σ2

z2
. (4.27)
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Figure 4.2: The function g(z) determining the optimal MQL design, 1.543 ≤ z ≤ 3

From (4.27), it follows that

dψ

dz
= 0 if and only if z2 dψ0

dz
= σ2 .

Therefore to find the optimal design ξz, we consider the function

g(z) = z2 dψ0

dz
,

and for a given value of σ2 we find zopt solving g(z) = σ2. Figure 4.2 shows the function g,

therefore giving the optimal design for σ2 up to 30. Here the derivative of ψ0 was evaluated

using numerical differentiation, however an analytical expression is available. Note that we only

plot g for z ≥ 1.543, which is the optimal value when σ2 = 0, since g is negative for smaller

values of z. For σ2 ≤ 5, the optimal design is given approximately by

z∗ ≈ 1.543 + (1/10)σ2 ,

which can be seen by reference to Figure 4.3.

4.4.3 PQL

Under PQL (for details see Chapter 2), the weight function in (4.10) is

W (η, σ2) =
{

2 + 2eσ
2/2 cosh(η) + σ2

}−1

.
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Figure 4.3: The function g(z) determining the optimal MQL design, 1.543 ≤ z ≤ 2

It is clear that the weight function satisfies property (4.16) since cosh is an even function. No

appreciable simplification of the optimisation problem is possible.

4.4.4 Adjusted GLM

We shall also consider designs derived from a probit approximation to the logistic link. We refer

to such designs as Adjusted GLM (AGLM) designs. This approximation makes the integrals

analytically tractable, and leads to the attenuation formula in Breslow and Clayton (1993, section

3.1). Namely, the marginal mean is approximately

E(yi) ≈ expit

(
β0 + β1xi√

1 + c2σ2

)
,

where c = 16
√

3/(15π). In other words the marginal model is approximately also a logistic

model whose coefficients are attenuated by a factor (1 + c2σ2)−1/2. Therefore to form the probit

approximation to the optimal design we find the optimal design for a GLM with attenuated

parameters (β′0, β
′
1) = (β0/

√
1 + c2σ2, β1/

√
1 + c2σ2). This results in the support points

±zcan.

√
1 + c2σ2

β1
− β0

β1
,

where zcan. is the positive support point of the optimal canonical design for the GLM, in other

words for the model with parameters (β0, β1, σ
2) = (0, 1, 0).

The idea behind this approximation is quite similar to that underlying AMQL in Section

3.3. However, for AMQL finds an MQL design with adjusted parameters, rather than a GLM

design. The reason it is sufficient here to adjust a GLM design is that there are no covariances
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Figure 4.4: Locally optimal canonical designs under ML, MQL, PQL and AGLM, σ2 ≤ 5

to consider due to there being only one observation per individual.

4.4.5 Comparison of locally optimal designs

Figure 4.4 shows the optimal z > 0 for σ2 ≤ 5 under ML, MQL, PQL and AGLM approximations.

Figure 4.5 shows the optimal z > 0 under ML and AGLM for values of σ2 up to 100.

The D-efficiency of an arbitrary design ξ is

D-eff(ξ;θ) =

{
|Mβ(ξ;θ)|
|Mβ(ξ∗;θ)|

}1/2

,

where ξ∗ is the locally D-optimal design (under ML). Figures 4.6 and 4.7 show the efficiency

of the MQL and AGLM designs as a function of σ2. Note in particular that the efficiency of

the AGLM design is extremely close to 1. Note that the PQL design points are heading in the

opposite direction to the others, and therefore for σ2 > 0 the PQL design will be less efficient

than the GLM design. This is noteworthy given that the GLM design does not acknowledge the

presence of individual variation, whereas the PQL design attempts to do so.
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Figure 4.5: Locally optimal canonical designs under ML and AGLM, σ2 ≤ 100
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Figure 4.6: D-efficiency of MQL and AGLM locally optimal designs, as a function of σ2 ≤ 5
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Figure 4.7: D-efficiency of MQL and AGLM locally optimal designs, as a function of σ2 ≤ 40
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4.5 Robust designs

The optimal design depends on the unknown values of the model parameters. Before the exper-

iment is performed there is uncertainty about the values of these parameters, which complicates

the choice of a good experimental design. If we use a locally optimal design we must choose a

best initial guess for the parameters, however if this guess is poor then the resulting design may

be highly inefficient.

Ideally we would like an experimental design which is robust to different possible values of the

parameters. In this section we calculate some more robust designs using two techniques. The first

involves combining locally optimal designs from a number of plausible values of the parameters,

and the second method is a Bayesian approach. The latter involves codifying uncertainty about

the parameter values using a prior distribution, and then choosing the design which has the

highest average efficiency with respect to those prior beliefs.

Maximum mean efficiency designs are not the standard Bayesian designs seen in the literature:

typically one maximises the average log-determinant of the information matrix (e.g. Chaloner and

Larntz, 1989). In Chapter 7 we give a detailed account of reasons for the use of maximum mean

efficiency designs. Similarly, mixtures of locally optimal designs are not commonly employed,

however they are extremely cheap to obtain once the locally optimal designs are available.

Therefore they may serve as a crude benchmark.

Throughout Sections 4.5.1 and 4.5.2 we focus on the computation of robust optimal designs

for the 1 point per block GLMM model (4.3). For illustration we use the MQL approximation to

compute designs and efficiencies. In Section 4.5.3 we compare the results with optimal designs

for the dose error model of Tang and Bacon-Shone (1992), which uses a probit link.

4.5.1 Mixtures of locally optimal designs

In this example we entertain, for illustration, four arbitrarily chosen possibilities θ1, . . . ,θ4 for

the parameter vector θ = (β0, β1, σ
2). These possibilities, together with the corresponding

locally optimal designs ξ1, . . . , ξ4 are listed in Table 4.1. The table of efficiencies for ξ1, . . . , ξ4

under each of θ1, . . . ,θ4 is given in Table 4.2. From the latter, we see that the maximally robust

locally optimal design (Melas, 2005) is ξ1 which has a minimum efficiency of 7.8%, occurring

under θ3. It is clear that this worst-case performance of the design is in fact quite poor.

Recall that the function on the set of p×p real symmetric matrices defined by M 7→ |M |1/p is

concave (e.g. Firth and Hinde, 1997). Let us consider a weighted average of the locally optimal

designs ξ1, . . . , ξ4 defined by a vector γ = (γ1, . . . , γ4) of positive weights such that
∑4
i=1 γi = 1.

We define the weighted average of the designs ξ1, . . . , ξ4,

ξ′ =

4∑
i=1

γiξi ,

as follows: if x is a support point of at least one of the ξi then it is also a support point of ξ′, and

its probability mass in ξ′ is the weighted average of its probability masses in ξ1, . . . , ξ4, where

the average is weighted by γ.
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Note that

eff(ξ′;θj) =
|
∑4
i=1 γiMβ(ξi;θj)|1/2

|Mβ(ξj ;θj)|1/2

≥
∑4
i=1 γi|Mβ(ξi;θj)|1/2

|Mβ(ξj ;θj)|1/2

≥
4∑
i=1

γi eff(ξi;θj)

≥ (ETγ)j ,

where the inequality follows due to concavity, and E is the 4 × 4 efficiency matrix whose ijth

component is eff(ξi;θj). We rewrite this as the vector inequality

eff(ξ′; Θ) ≥ ETγ , (4.28)

where Θ is the ordered set of plausible values of θ. The inequality (4.28) gives a lower bound on

the efficiency under the different plausible values of θ. As the bound in (4.28) is linear in γ, it

can be manipulated rather easily. In particular, since E is invertible in this case, we can make

the bound uniform across all the plausible θ values by solving

ETγ = (1, . . . , 1)T ,

and rescaling so that
∑
i γi = 1. In this particular case, this yields

γ = (0.03, 0.116, 0.415, 0.436)T ,

and the efficiency of ξ′ is at least 45.1% in each case. Note that the weight on ξ1 is small despite

this being the maximally robust locally optimal design. This occurs because all of the designs

have a reasonable performance under θ1 and θ2, whilst ξ1 and ξ2 perform badly under θ3 and

θ4.

Clearly the design obtained in this way will always have a large number of support points,

which may not be practical. However this design may provide a useful calibration point against

which to measure the robustness of other designs. Moreover applying this approach may be

useful when evaluating the information matrix for a given proposal design is costly, since in this

case optimising a maximin or Bayesian objective function will be slow.

As an aside, the actual efficiency vector for the mixture design ξ′ was (0.779, 0.745, 0.559, 0.578)T ,

much larger than the lower bound.

Parameter values
β0 β1 σ2 Design points

θ1 0 1 1 -1.664 1.664
θ2 2 1 0.5 -3.606 -0.394
θ3 5 3 2 -2.255 -1.078
θ4 -1 3 0.1 -0.185 0.852

Table 4.1: Plausible parameter values and locally optimal designs
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Parameter values
Design θ1 θ2 θ3 θ4

ξ1 1.000 0.575 0.078 0.150
ξ2 0.570 1.000 0.210 0.018
ξ3 0.336 0.566 1.000 0.020
ξ4 0.490 0.188 0.021 1.000

Table 4.2: Efficiencies of locally optimal designs

4.5.2 Bayesian designs

In this section we place a prior distribution on Θ, specifically P (θ = θl) = πl, l = 1, . . . , 4, with

π = (0.2, 0.3, 0.25, 0.25). We then find the design ξ, with m support points, which maximises

the mean efficiency,

Eθ eff(ξ;θ) =

4∑
l=1

πl eff(ξ;θl)

=

4∑
l=1

πl
|Mβ(ξ;θl)|1/p

|Mβ(ξl;θl)|1/p
. (4.29)

Note that the optimal determinant values in the denominator of (4.29) have already been

computed in the previous subsection. With k = 2 the optimal design has a mean efficiency of

54%, and with 3–8 points the optimal mean efficiency is 68%. Compare this with the mixture

design in the previous section, which has a mean efficiency of 66%. We are able to do better on

average with just 3 (compared with 16) support points. The optimal 3-point Bayesian design is

ξ =

{
−2.418 −0.618 0.775

0.358 0.352 0.290

}
,

where the first row contains the design points and the second row gives the weights. The efficiency

vector for ξ is

eff(ξ; Θ) = (0.804, 0.782, 0.578, 0.561)T .

In particular, the Bayesian design is more efficient than the mixture design ξ′ under all of the

plausible θ values except θ4, where it performs comparably.

In Section 7.5.2 we give a pseudo-Bayesian justification of the use of designs maximising

(4.29), in the case where the analyst will perform a frequentist analysis whose value is to be

measured in terms of size of confidence intervals produced.

It will often be desirable to use a more complex approximation to a continuous prior. In this

case, numerical quadrature techniques such as that of Gotwalt et al. (2009) may be used.

4.5.3 Probit dose-error model

In Section 4.2.1, we defined Estimation Problems 1 & 2 for the random intercept and dose-

error models respectively, and pointed out that the information matrices differ for these two

problems. In this section, we calculate designs which are an approximation to the optimal
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designs for Estimation Problem 2, and compare these to the corresponding optimal designs for

Estimation Problem 1.

Instead of the logit, we use a probit link function for the dose-error model since expressions for

the information matrix in the latter case have been developed already by Tang and Bacon-Shone

(1992). We also calculate robust designs for the probit dose-error model using the techniques of

Sections 4.5.1 and 4.5.2.

Model and information matrix

The model considered by Tang and Bacon-Shone (1992) is parameterised in the following way

P (y = 1|x, ε) = Φ(β(x+ ε− γ)) , (4.30)

where ε ∼ N(0, σ2
e) is the dose-error (with σ2

e known), Φ is the standard normal CDF, and β

and γ are parameters to be estimated. This relates to

P (y = 1|x, ε) = Φ(β0 + β1(x+ ε)) , (4.31)

by the reparameterisation

β = β1

γ = −β0/β1 .

Note that (4.31) is simply (4.5) with a probit, rather than logit, link function. The nonlinear

reparameterisation between (4.30) and (4.31) does not affect locally D-optimal designs, or local

D-efficiencies, and so we use D-optimal designs for (4.30) as approximations to the D-optimal

designs for (4.5).

Let ξ be an arbitrary approximate design with support log-doses x1, . . . , xk and weights

w1, . . . , wk. Let Γ = (β, γ)T . The information matrix for (4.30), with σ2
ε known, is (Tang and

Bacon-Shone, 1992)

MDE
Γ (ξ;θ) =

 ∑k
i=1

wi

Φi(1−Φi)

(
∂Φi

∂γ

)2 ∑k
i=1

wi

Φi(1−Φi)

(
∂Φi

∂γ

)(
∂Φi

∂β

)
∑k
i=1

wi

Φi(1−Φi)

(
∂Φi

∂γ

)(
∂Φi

∂β

) ∑k
i=1

wi

Φi(1−Φi)

(
∂Φi

∂β

)2

 ,

where

∂Φi
∂γ

= − β√
1 + β2σ2

ε

φ

(
β(xi − γ)√

1 + β2σ2
ε

)
∂Φi
∂β

=
xi − γ

(1 + β2σ2
ε )3/2

φ

(
β(xi − γ)√

1 + β2σ2
ε

)

Φi = Φ

(
β(xi − γ)√

1 + β2σ2
ε

)
.
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Plausible parameter values

We obtain the set of plausible parameter values for the probit dose-error model by applying the

transformations

β = β1

γ = −β0/β1

σ2
ε = σ2/β2

1 ,

to the plausible parameters for the logistic random intercept model in Table 4.1. Note that this

is simply a reparameterisation from a random intercept model to a dose error model, and it does

not attempt to use the best probit approximation of the logistic function.

Let us establish the notation κ = (β, γ, σ2
ε ) to denote the vector containing the new param-

eters, and κ1, . . . ,κ4 for the transformed parameter vectors corresponding to θ1, . . . ,θ4. Then

the locally optimal designs for the dose-error model are given in Table 4.3, together with the

corresponding MQL designs from the logistic model. The designs for the dose-error model were

calculated using the expressions of Tang and Bacon-Shone (1992). We note that the designs for

the two models appear mainly to be quite similar. The efficiency of each optimal design from

the random intercept model under the corresponding dose-error model is also shown. In most

cases the random intercept designs were near-optimal under the dose-error model.

Efficiency matrix

Let us denote the locally optimal dose-error design at κi by ζi. The efficiency matrix, Eij =

eff(ζi|κj), calculated using the dose-error model is

E =


1.000 0.299 0.002 0.000

0.424 1.000 0.273 0.000

0.359 0.670 1.000 0.000

0.383 0.106 0.004 1.000

 ,

from which we see that the maximally robust locally optimal design is ζ4. This design may not

be satisfactory, however, since under the worst case the efficiency is just 0.4.

Note that the efficiencies of ζ1, ζ2, ζ3 are very poor when the dose-error model parameters are

equal to κ4. One might be tempted to suggest that this is because the differences between the

random intercept and dose-error designs in Table 4.1 are greatest for κ4. However the observed

low efficiency is due more to the choice of the dose-error model. To see this, we computed

effML
RI (ζ1|ζ4,θ4) = 0.18, where effML

RI (ζ1|ζ4,θ4) is the relative efficiency of designs ζ1 and ζ4 for

estimating the random intercept, assuming parameter values θ4. The ML approximation was

used for this calculation. The point of this calculation is that the same pair of designs has a very

different relative efficiency when compared under the dose-error and random intercept models.
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Mixture design

The weight vector for the mixture design is (0.356, 0.239, 0.140, 0.267), and the lower bound on

the efficiencies is 42.8%.

Bayesian design

The 3-point Bayesian design which optimises the mean efficiency is

ζ =

(
−0.2966 −2.4638 0.6715

0.3961 0.3744 0.2294

)
.

Its efficiency vector is eff(ζ|κ) = (0.733, 0.776, 0.462, 0.532)T , with mean 0.628. To achieve a

better mean efficiency of 63.6%, at least 5 points are required.

Design points
Parameters Dose-error Random intercept Efficiency
θ1 (κ1) -1.61 1.61 -1.66 1.66 0.999
θ2 (κ2) -3.39 -0.61 -3.61 -0.39 0.977
θ3 (κ3) -2.32 -1.01 -2.26 -1.08 0.988
θ4 (κ4) -0.06 0.73 -0.19 0.85 0.913

Table 4.3: Locally optimal designs under dose-error model, with probit link, and random inter-
cept model, with logistic link. The final column shows the D-efficiency of the random intercept
design for estimating the dose-error model.

4.6 Robustness of estimation

In this section we investigate the impact of misspecifying σ2 on the estimation of β0 and β1.

4.6.1 Recap of proposed estimation procedure

Recall that the proposed estimation procedure is to maximise the ‘conditional’ likelihood of

β0, β1 which is obtained by plugging an assumed value, σ2
g , of σ2 into the actual (log)likelihood,

in other words β̂ is the maximiser of

`(β0, β1;σ2
g) =

n∑
i=1

log

{∫ ∞
−∞

h(β0+β1xi+ui)
yi
(
1−h(β0+β1xi+ui)

)(1−yi)
φσ2

g
(ui)dui

}
, (4.32)

where h(t) = 1/(1 + exp(−t)) is the logistic function, and φσ2 is the pdf of a N(0, σ2) random

variable.

4.6.2 Computational details

We used a quasi-Newton method (BGFS, see e.g. Dennis and Schnabel, 1987, pp. 198–203) to

directly maximise the numerically calculated (log)-likelihood. We supplied a routine for the



112 CHAPTER 4. SINGLE DOSING DESIGNS

calculation of the derivative of the log-likelihood (i.e. the score), to avoid difficulties experienced

with the evaluation of finite-difference approximations to the derivative.

A notable feature is that precomputation of a lookup table for the marginal mean of the

model speeds up the ML estimation by several orders of magnitude. In a specific example we

encountered, the reduction in maximisation time was from 30s when integrals were evaluated

just-in-time compared to 0.009s when precompuation was employed. Let us define the following

sσ2(η) = (h ∗ φσ2)(η)

=

∫ ∞
−∞

h(η + u)φσ2(u)du

=

∫ ∞
−∞

h(η + σu)φ1(u)du , (4.33)

where ∗ denotes the convolution operator. Note that if η is the value of the linear predictor

for an individual, then the marginal expectation of their response is sσ2(η). Then in fact the

likelihood (4.32) can be evaluated in terms of sσ2 as

`(β0, β1;σ2
g) =

n∑
i=1

log

{
yisσ2

g
(β0 + β1xi) + (1− yi)

(
1− sσ2

g
(β0 + β1xi)

)}
. (4.34)

There are two advantages to the use of (4.34) over (4.32). Firstly, the use of an addition, rather

than exponentiation in the integrand is computationally faster. Secondly, if a table for sσ2
g

has

been precomputed, changing the value of β incurs no extra integration with (4.34). We tabulate

sσ2(η), using the numerical quadrature provided by integrate in R, for η on a grid of spacing 0.1

over [−10, 10]. This was adequate for the values of σ2
g included in our study. Linear interpolation

is used to approximate function values at values of η in between grid points.

The derivative, ∂`/dβ required for the BFGS algorithm can be computed in the following

way. Denoting the contribution to the likelihood from individual i by Li we have that

` =

n∑
i=1

logLi

Li = yis(ηi) + (1− yi)
(
1− s(ηi)

)
(4.35)

∂Li
∂ηi

= yis
′(ηi)− (1− yi)s′(ηi) (4.36)

∂`

∂β
=

n∑
i=1

1

Li

∂Li
∂ηi

(
1

xi

)
, (4.37)

where the final line holds by applying the chain rule twice. If we also precompute a lookup table

for s′, we can evaluate the score very quickly using equations (4.35)–(4.37). This is relatively

simple, since

s′σ2(η) =

∫ ∞
−∞

h′(η + σu)φ1(u)du

=

∫ ∞
−∞

e−(η+σu)

(1 + e−(η+σu))2
φ1(u)du ,

which can be tabulated as easily as sσ2 , using integrate with a grid of spacing 0.1 on [−10, 10].
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4.6.3 Results

We evaluated MSEs of β̂0 and β̂1 in the case where (β0, β1) = (1, 1.5), and there are n = 100

individuals. Various combinations of true σ2 and assumed σ2
g were considered.

In the first instance, a fixed design ξ1 was assumed which assigns 50 individuals each to the

doses log(x(1)) = −5/3 and log(x(2)) = 1/3. This design is close to D-optimal when σ2 = 0, as it

has linear predictors equal to ±1.5. The calculated MSEs, based on 10,000 simulated datasets,

for β̂0 and β̂1 are shown in Figures 4.8(a) and 4.9(a) respectively. Each curve corresponds to a

different true value of σ2, and the progression from left to right shows the change in MSE as

the assumed value σ2
g changes. Note in particular that it is always optimal to take a value of

σ2
g which is less than the true value of σ2. However, the penalty incurred by taking σ2

g = σ2,

if the latter is known, is never very large. In the cases shown, the MSE is relatively robust for

σ2
g ≥ σ2 − 1.5 or so. Choosing σ2

g ≤ σ2 is clearly better than choosing σ2
g > σ2, thus it is better

to use a guess for σ2 which is an underestimate.
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Figure 4.8: Mean squared error of β̂0, under (a) fixed design, and (b) near-optimal design
strategies, for varying values of true σ2 and assumed σ2

g
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Figure 4.9: Mean squared error of β̂1, under (a) fixed design, and (b) near-optimal design
strategies, for varying values of true σ2 and assumed σ2

g
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A second study was conducted to reflect the fact that our assumed value of σ2 may have

an impact on the choice of design used. Specifically, given the assumed value σ2
g , a probit

approximation, ξ∗(β0, β1, σ
2
g) to the locally optimal design (as in Section 4.4.4) was chosen.

Note that the choice of this design is unrealistically efficient, since it requires knowledge of the

true values of β0 and β1. Figures 4.8(b) and 4.9(b) show the MSEs for β̂0 and β̂1 under the

combined design-estimation procedure. The difference made by using a locally optimal design

at the guessed σ2
g is small. Figure 4.10 shows that the possible gains are biggest for β̂1 when

σ2 is large and σ2
g is close to the true value. When the guess is poor, the MSEs resulting from

using the optimal design are worse. Thus, the optimal design strategy is slightly less robust

to misspecification of σ2
g than using a fixed design. However, the factor which has the greatest

bearing on the MSE is the choice of σ2
g .
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Figure 4.10: Mean squared error of (a) β̂0 and (b) β̂1, under fixed and near-optimal design
strategies, for varying values of σ2 and assuming we always guess correctly, σ2 = σ2

g .

4.7 Discussion

In this chapter we have examined the connection between the dose error model and the random

intercept model with one point per block. Whilst the information matrix for these two models

differs between Estimation Problems 1 and 2, we have found in Section 4.5.3 that often the

locally optimal designs are similar under the two models.

By focussing on the logistic, rather than probit, model we have moved to a case where the

relevant integrals are analytically intractable. However, the use of numerical integration in this

problem is feasible due to the small number of variables and outcomes involved. This is in stark

contrast to the case of the general GLMM of Chapter 2 where the approximations were required.

Despite the fact that it is not necessary to use MQL and PQL in this example, applying these

approximations has given us insight into their relative performance. Clearly one would be much

better using the ML designs or those resulting from the probit approximation for this problem.

However, in keeping with our results in Chapter 3 we found that MQL is much better than PQL

at locating the correct treatments for the optimal design. Once again, the PQL design had worse

design points than the GLM design (which ignores the random effects) for σ2 > 0.
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We have been able to check that the optimal canonical design is of the assumed form (4.15):

numerically in the case of ML, and analytically for MQL and PQL. An analytical proof for ML

seems infeasible due to the presence of intractable integrals in the weight function.

The moderately robust designs formed from mixtures of locally optimal designs were cheap

to obtain and serve as a benchmark for more complicated methods such as Bayesian designs.

In practice their use will become difficult as uncertainty in the parameters increases; since one

must consider a greater number of parameter values, the number of support points of the design

will increase rapidly. Moreover with a continuous prior one must pick a small representative set

of parameter values. The issue of the choice of this set would need further research before this

method could be used more widely.

Maximum mean efficiency designs have a natural pseudo-Bayesian interpretation, and they

avoid the assumption that the resulting data will be analysed using Bayesian methods. This

is in contrast to approaches such as maximising the expected Kullback-Leibler divergence from

the prior to the posterior, such as recommended by Chaloner and Verdinelli (1995). Moreover,

maximum mean efficiency designs are fairly straightforward to obtain in simple models where

there is a cheap way to obtain locally optimal designs. Such situations are becoming more

common with the availability of analytical results for a wide range of two-parameter models

(Konstantinou, Biedermann and Kimber, 2011), Poisson GLMs (Russell, Woods, Lewis and

Eccleston, 2009), and other more general multifactor GLMs subject to restrictions on the ranges

of the design variables (Yang et al., 2011). Maximum mean efficiency designs can also be helpful

in the presence of singularities in the parameter space, for details see Chapter 7.

4.8 Appendix: Identifiability

In this section we show that for designs with a single dosing per individual, the model parameters

are approximately unidentifiable.

We do this by noting that, given θ′ = (β′0, β
′
1, σ
′2)T , there is a (large) set, Θ(θ′) ⊆ R2×(0,∞),

such that for θ̃ ∈ Θ(θ′),

P (Y = 1 | θ̃, x) ≈ P (Y = 1 |θ′, x) for all log-doses x ∈ R . (4.38)

Specifically, such a set is given by

Θ(θ′) =

{
θ̃

∣∣∣∣∣ θ̃ = (γβ′0, γβ
′
1, τ

2) , τ2 > 0 , γ =

√
1 + c2τ2

1 + c2σ′2

}
,

where c = 15
√

3/(16π). This follows from the approximation (4.4), since

P (Y = 1 | θ̃, x) ≈ expit

(
γβ′0 + γβ′1x√

1 + c2τ2

)
= expit

(
β′0 + β′1x√
1 + c2σ′2

)
≈ P (Y = 1 |θ′, x) .

As a result of (4.38) it is hard to distinguish, with reasonable sample sizes, between putative
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parameter values in Θ(θ′). One can derive analytical bounds on the difference |P (Y = 1 |θ′, x)−
P (Y = 1 | θ̃, x)| for all θ, τ2 and x. However these bounds are usually substantial overestimates –

the difference being much less, particularly when τ2 is moderately close to σ′2. When considering

sample size, we look at smaller differences.

Sample size. Consider an experiment whose purpose it is to detect whether θ = θ′ or θ = θ̃

best fits the data, for some particular fixed θ̃ ∈ Θ(θ′). We assume that the experiment consists

of a single log-dose level, x, applied to all individuals, and that this dose gives optimal power

for testing hypothesis

H0 : θ = θ′ vs. H1 : θ = θ̃

when using the one-sided rejection region

C =

{
p̂ ≥ p(x;θ′) + 1.6

√
p(x;θ′)[1− p(x;θ′)]

n

}
.

Above, p̂ =
∑n
i=1 Yi/n is the proportion of deaths, and

p(x;θ) =

∫
R
h(β0 + β1x+ u)φσ2(u) du

is the marginal probability of death with these parameters and this dose. Note that we assume

p(x;θ′) < p(x; θ̃). Reversing this inequality and going through the argument changing signs

leaves the final answer unchanged.

Under the assumption that n is large, the size of the above test is approximately 5%. Under

H1 the following event has approximately 95% probability,

I =

p̂ ≥ p(x; θ̃)− 1.6

√
p(x; θ̃)[1− p(x; θ̃)]

n

 ,

and I ∩ C = ∅ if and only if

|p(x; θ̃)− p(x;θ′)| ≥ 1.6

√p(x; θ̃)[1− p(x; θ̃)]

n
+

√
p(x;θ′)[1− p(x;θ′)]

n

 .
Therefore the test has 95% power to reject H1 if and only if

n ≥ (1.6)2

√p(x; θ̃)(1− p(x; θ̃))

n
+

√
p(x;θ′)(1− p(x;θ′))

n

2

|p(x; θ̃)− p(x;θ′)|−2 .

We denote the RHS of the above inequality by nmin. Note that with sσ2 defined as in (4.33),

and letting η′ = β′0 + β′1x, we have that

p(x;θ′) = sσ′2(η′)

p(x; θ̃) = sτ2

(
η′
√

1 + c2τ2

1 + c2σ′2

)
,

so in fact nmin is determined completely by η′, σ′2 and τ2. In other words one does not need to
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know the specific values of β′0, β′1, and x to compute nmin.

As an example, consider the case where σ2 = 1 and τ2 = 2. This yields γ ≈ 1.12, which

means that the values of the ‘β’ parameters in θ̃ are 12% inflated compared to those in θ′ (and so

these parameter values are quite different). Figure 4.11 shows nmin as a function of η′ for these

values of σ′2 and τ2. The horizontal line shows n = 4.5 × 104. If we choose x to minimise the

required sample size then we still need more than 45,000 subjects to achieve 95% power. This

figure will not be feasible in most applications. Note also that this dose level is unrealistically

efficient, since to calculate the dose needed to achieve this value of η′ we need to know the values

of β0, β1.

Note as an aside that in the above example, we have p(x;θ′) = p(x; θ̃) when η′ = 0 and also

when η′ ≈ 2.74. If an experiment uses these values of η′, then the two parameter vectors will be

completely unidentifiable from the data. Moreover if the value of η′ used in the experiment is

close to the above values, nmin can be arbitrarily large. This explains the presence of the vertical

asymptote in Figure 4.11.
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Figure 4.11: Sample size, nmin(η′;σ′2, τ2), required for 95% power in test of θ′ vs. θ̃ as a function
of η′.
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4.9 Appendix: Information matrices for the two estima-

tion problems

In this section we discuss why the information matrices differ for Estimation Problems 1 and 2

defined in Sections 4.2.1 and 4.2.2 respectively.

We begin by defining the following function, which will help us express the likelihood functions

under models (4.3) and (4.5):

I(η, σ2) =

∫ ∞
−∞

h(η + t)φσ2(t) dt

= Et∼N(0,τ2) {h(η + t)} ,

where φσ2 is the density of a N(0, τ2) random variable, and h is the logistic function. The

function I(η, σ2) is identical to p1(η, σ2), defined in Section 4.4.1, but it is beneficial to have an

unsubscripted version here.

Then the likelihood for the dose-error model, given a single observation at xi which resulted

in a 1, is given by

`DE(β0, β1, σ
2
ε |1) = Eεi [h(ηi + β1εi)]

= Eε̃ [h(ηi + ε̃i)] ,

where ε̃i ∼ N(0, β2
1σ

2
ε ) and ηi = β0 + β1xi. In terms of I, this is

`DE(β0, β1, σ
2
ε |1) = I(β0 + β1xi, β

2
1σ

2
ε ) .

In contrast, the likelihood for the random intercept model (also given a 1 observed at dose xi) is

`RI(β1, β1, σ
2|1) = Eui

[h(ηi + ui)]

= I(β0 + β1xi, σ
2) .

The key point is that when we come to evaluate the derivatives of the likelihoods with respect

to β, we obtain different things for the two parameterisations. Using I1 and I2 to denote the

partial derivative of I with respect to its first and second arguments respectively, we have by

the chain rule that

∂`DE

∂β1
=I1(β0 + β1xi, β

2
1σ

2
ε )xi

+ I2(β0 + β1xi, β
2
1σ

2
ε ) 2β1σ

2
ε , (4.39)

∂`RI

∂β1
=I1(β0 + β1xi, σ

2)xi . (4.40)

Using the fact that β2
1σ

2
ε = σ2 makes the first term of (4.39) equal to (4.40). However there is

no way of making the second term in (4.39) vanish. Moreover the second term does not vanish

when these partial derivatives are substituted into (4.19) to form the information matrix.
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4.10 Appendix: Proof of optimality of MQL design using

symmetry arguments

Recall that the canonical locally optimal design problem is to maximise ϕ(z,λ|σ2), defined in

(4.14), with respect to ξz. In this appendix, we give a proof that the optimal MQL design for

the canonical problem is of the symmetric form

ξ∗ =

(
−z z

1/2 1/2

)
,

using symmetrisation argument, and a Lemma by Yang et al. (2011). A rather longer proof of

this result, using the General Equivalence Theorem, is outlined in Section 4.11. The lemma is a

slightly more general version of the result proved in Yang and Stufken (2009), and we quote it

here, using slightly different notation:

Lemma 4.1 (Yang et al., 2011). Suppose that F1(c) and F3(c) are continuous functions on

(A,B] satisfying

F ′1(c) < 0(
F ′2(c)

F ′1(c)

)′
> 0 ,

for c ∈ (A,B]. Then for any k given points {(ci, wi) : i = 1, . . . , k}, where ci ∈ (A,B], wi ≥ 0,

and
∑k
i=0 wi = 1, there exists a point c̃ such that

k∑
i=1

wiF1(ci) = F1(c̃) ,

k∑
i=1

wiF2(ci) < F2(c̃) .

Proof. The case k = 2 is equivalent to Proposition A.2 of Yang and Stufken (2009). Extend by

induction, as done by Yang et al. (2011) for specific F1 and F2.

Next we state some results on the Loewener ordering, which is fundamental in theoretical

treatments of the notion of the information provided a design, see Pukelsheim (1987).

Definition 4.1 (Loewener ordering). Let A,B be symmetric p×p matrices. We say that A ≥ B
in the Loewener ordering if the difference, A−B is non-negative definite.

Lemma 4.2 (Determinant respects Loewener ordering). If A,B are symmetric p× p matrices

and A ≥ B in the Loewener ordering, then |A| ≥ |B|.

Proof. Let D denote the function which maps a given symmetric p× p matrix M to |M |1/p. By

Firth and Hinde (1997), D is concave. Thus

D(A) = 2D(
1

2
A) ,
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= 2D

(
1

2
B +

1

2
(A−B)

)
≥ 2×

{
1

2
D(B) +

1

2
D(A−B)

}
≥ D(B)

where the third line follows by concavity and the fourth line follows since, as A−B is non-negative

definite, |A−B| ≥ 0. Taking pth powers gives the desired result.

The final two lemmata before the main proof discuss symmetry properties, in the sense of

Pukelsheim (1987), for the canonical problem. Let us denote an arbitrary design by

ξ =

(
z1 . . . zk

λ1 . . . λk

)
,

where the λi are weights and the zi are support points, i = 1, . . . , k.

Lemma 4.3. Let ξ be a design for the canonical problem, and G : z 7→ −z , z ∈ R. Then G acts

on the support points of ξ in the natural way, namely

G(ξ) =

{
G(z1) . . . G(zn)

λ1 . . . λn

}
,

and the determinant of the information matrix is unchanged by the application of G. In other

words |M(G(ξ))| = |M(ξ)|. In the language of Pukelsheim (1987), the determinant, which is an

information functional, is G-invariant.

Proof. By (4.11), the information matrix of the transformed design is

M(G(ξ)) =

k∑
i=1

λiW (−zi, σ2)

(
1

−zi

)(
1 −zi

)
.

As W (−z, σ2) = W (z, σ2) for all the approximations, with some simple matrix algebra this can

be re-expressed as

M(G(ξ)) =

k∑
i=1

λiW (zi, σ
2)

(
1 0

0 −1

)(
1

zi

)(
1 zi

)( 1 0

0 −1

)
.

=

(
1 0

0 −1

){
k∑
i=1

λiW (zi, σ
2)

(
1

zi

)(
1 zi

)}( 1 0

0 −1

)
.

Therefore, by the multiplicative properties of determinants,

|G(M(ξ))| =

∣∣∣∣∣
(

1 0

0 −1

)∣∣∣∣∣ |M(ξ)|

∣∣∣∣∣
(

1 0

0 −1

)∣∣∣∣∣
= |M(ξ)| .

so |M | is G-invariant, as claimed.
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Lemma 4.4 (Designs are improved by symmetrisation). Define the symmetrised design by

ξ1 =

(
z1 −z1 . . . zk −zk
λ1/2 λ1/2 . . . λk/2 λk/2

)
= (1/2)ξ + (1/2)G(ξ) .

Then the symmetrised design has a greater value of the objective function under D-optimality,

in other words |M(ξ1)| ≥ |M(ξ)|.

Proof. We have that∣∣∣∣M (
1

2
ξ +

1

2
G(ξ)

)∣∣∣∣1/p =

∣∣∣∣12M(ξ) +
1

2
G(M(ξ))

∣∣∣∣1/p
≥ 1

2
|M(ξ)|1/p +

1

2
|G(M(ξ))|1/p

= |M(ξ)|1/p ,

where the first line follows from additivity of the information matrix, the second from concavity

of | · |1/p, and the third from Lemma 4.3.

We now proceed to the proof of optimality of the symmetric design. As stated in Lemma

4.4, the design ξ can be improved upon by using the symmetrised design ξ1. The information

matrix of the symmetrised design is

M(ξ1) =

( ∑
λiW (|zi|, σ2) 0

0
∑
λi|zi|2W (|zi|, σ2)

)
.

It can be shown by relatively simple calculus that the functions F1(c) = W (c, σ2) and F2(c) =

c2W (c, σ2) satisfy the conditions of Lemma 1 on (0,∞), where W is the MQL weight function

defined in Section 4.4.2. Thus, taking wi = λi and ci = |zi| in Lemma 1, there exists some c̃

such that

k∑
i=1

λiW (|zi|, σ2) = W (c̃, σ2) (4.41)

k∑
i=1

λiz
2
iW (|zi|, σ2) < c̃2W (c̃, σ2) . (4.42)

Define a new design by

ξ̃ =

(
c̃ −c̃

1/2 1/2

)
.

Then the information matrix for ξ̃ is

M(ξ̃) =

(
W (c̃, σ2) 0

0 c̃2W (c̃, σ2)

)
.

By (4.41) and (4.42), M(ξ̃) ≥M(ξ1) in the Loewner ordering. By Lemma 4.2, so too |M(ξ̃)| ≥
|M(ξ1)|. As the symmetrised design, ξ1, is better than ξ in the objective function sense, so is ξ̃.

Hence there is an optimal design which consists of two symmetric points.
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4.11 Appendix: Proof of optimality of MQL design using

General Equivalence Theorem

In Section 4.4.2 we derived the optimal MQL design for given β and σ2 using a canonical form.

In the derivation, we assumed that the optimal design ξ was of the restricted form (4.15). Here

we justify this assumption by using the General Equivalence Theorem to prove that the optimal

symmetric design is in fact globally optimal.

4.11.1 General Equivalence Theorem

Recall that the locally D-optimal MQL canonical design,

ξz =

{
z1 . . . zk

λ1 . . . λk

}
,

is that which maximises

ϕ(ξz;σ
2) = ϕ(z,λ;σ2) = |Mβ(ξz;θc)| ,

where θc = (0, 1, σ2)T . In the above, Mβ is the MQL approximation to the information matrix.

Let us define the derivative of logϕ at ξ in the direction of a point (transformed log-dose) z ∈ X
by the following:

d(z, ξz) = lim
ε→0

(ε−1 [logϕ {(1− ε)ξz + εδz} − logϕ(ξz)]) ,

where δz denotes the design which places unit mass at the point z. Then the General Equivalence

Theorem (for example Chaloner and Larntz, 1989) states that

ξ∗ maximises ϕ(ξz) if and only if sup
z∈X

d(z, ξ∗) = 0 .

Moreover, in this case, the derivative will attain the supremum at the support points of the

design, in other words

d(z, ξ∗) = 0 , ∀z ∈ Support(ξ∗) .

Note that the necessary property that the design region is compact does not hold here, since

R is unbounded. However this problem can be circumvented in a way analogous to the one-

factor logistic design problem without random effects (Chaloner and Larntz, 1989), namely by

observing that the optimal design points are finite and restricting to an interval containing these

points.

Note also that the General Equivalence Theorem has not been proved explicitly for MQL

information matrices. However, the necessary property, that the information matrix is additive

over independent experiments, clearly does hold.
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4.11.2 Outline of proof

Let us use the following notation for the optimal symmetric design,

ξ =

{
−z∗ z∗

0.5 0.5

}
, (4.43)

where z∗ maximises zW (z, σ2), and W is the MQL weight function. In order to show that

this symmetric design is in fact globally optimal for the canonical problem, we will show that

sup d(z, ξ) is equal to zero. This is done in several parts, using calculus together with the fact

that d(z, ξ) has derivatives of all orders. Namely we will show that:

1. The Fréchet derivative d(z, ξ) has at most 3 turning points. We demonstrate this essentially

by showing that its fourth derivative, d(4)(z, ξ), is positive everywhere.

2. The support points ±z∗ are turning points of d(z, ξ), as is 0. By the above, these are all

the turning points of d(z, ξ).

3. The support points of ξ are zeroes of d(z, ξ).

4. The derivative at zero, d(0, ξ), is at most zero.

5. For z such that |z| > |z∗| , d(z, ξ) < 0.

These conditions are sufficient to establish that supz∈R d(z, ξ) = 0, by the following argument. By

points 1, 2 and 3, the value of d(0, ξ) is in fact strictly negative, since if it were zero then by Rolle’s

theorem there must be additional turning points in (−z∗, 0) and (0,−z∗), thus contradicting 1.

Now suppose there were a point z1 in (−z∗, z∗) such that d(z1, ξ) > 0. We may assume without

loss of generality that z1 > 0. Then by continuity there would also be z2 ∈ (0, z1) such that

d(z2, ξ) = 0. By Rolle’s theorem there would then be an additional turning point in (0, z∗),

contradicting 1. Thus d(z, ξ) < 0 for all z except ±z∗.

To begin establishing properties 1–5 we must first obtain an expression for the function

d(z, ξ). Using a point prior in the expressions of Chaloner and Larntz (1989), we obtain

d(z, ξz) = tr
{
M−1(ξz,θ)m(z,θ)

}
− p , (4.44)

where p is the number of parameters of interest, in this case 2, and

m(z,θ) = M(δz,θ)

is the information matrix of the design which places unit mass at z. Recall that the canonical

problem is defined by β = (0, 1), and in this setup we have that

m(z,θ) = W (z, σ2)

(
1 z

z z2

)

M(ξ,θ) = W (z∗, σ
2)

(
1 0

0 z2
∗

)
,

where in the second line we have used the particular form for ξ given by (4.43).
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Figure 4.12: The derivative, d(z, ξ), with σ2 = 1. Vertical lines indicate z = ±z∗

Substituting these matrices into (4.44), we obtain

d(z, ξ) =
W (z, σ2)

W (z∗, σ2)

(
1 +

z2

z2
∗

)
− 2 , (4.45)

wherein the reason for the complicated proof becomes clear: the function d depends on constants

z∗ and W (z∗, σ
2) which are defined only implicitly as the solution of the differential equation

d
dz (zw) = 0. Moreover, it is inadequate to simply plot d as a function of z, since we require a

proof for all values of σ2. However, such a plot for a particular σ2 serves as an indication of the

general shape of d, see Figure 4.12.

In Sections 4.11.3–4.11.6 we establish properties 1–5.

4.11.3 Number of turning points

In this section we show that d(z, ξ) has at most 3 turning points. First of all, let us derive an

identity involving the first derivative of the weight function W . Recall from Section 4.4.2 that

1/W = ez + 2 + e−z + σ2 . (4.46)

Therefore, by the chain rule,

−W−2 dW

dt
= ez − e−z .

Thus,
dW

dt
= W 2(e−z − ez) . (4.47)
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Now note that the d(z, ξ), i.e. (4.45), may be rewritten as

d(z, ξ) =
1

z∗W (z∗, σ2)
W (z, σ2)

{
z2
∗ + z2

}
− 2

∝W (z, σ2)
{
z2
∗ + z2

}
+ constant .

Therefore the first derivative of d with respect to z satisfies

d

dz
{d(z, ξ)} ∝ z2

∗
dW

dt
+ z2 dW

dt
+ 2zW (4.48)

∝ −W 2(z2
∗ + z2)(ez − e−z) + 2zW

∝ −W 2
{

(z2
∗ + z2)(ez − e−z)− 2zW−1

}
.

Hence z is a turning point of d(z, ξ) if and only if F (z) = 0, where

F (z) = (z2
∗ + z2)(ez − e−z)− 2zW−1

= (z2
∗ + z2)(ez − e−z)− 2z(ez + 2 + e−z + σ2) . (4.49)

We show that the third derivative of F (z), F ′′′(z), is positive everywhere. This is sufficient to

show that F has at most 3 distinct zeroes. (Indeed, suppose there were 4 distinct zeroes, then

we could repeatedly apply Rolle’s Theorem to show the existence of 3, 2, and 1 distinct zeroes of

F ′, F ′′, F ′′′ respectively. The last of these contradicts the positivity of F ′′′). By basic calculus,

F ′(z) = ez(z2 + z2
∗ − 2) + e−z(z2 + z2

∗ − 2)− 2(2 + σ2)

= G(z) +G(−z)− 2(2 + σ2) , (4.50)

where we define G as

G(z) = ez(z2 + z2
∗ − 2) .

Differentiating (4.50) twice, we obtain

F ′′′(z) = G′′(z) +G′′(−z) . (4.51)

It is relatively simple to check that

G′′(z) = ez(z2 + 4z + z2
∗) . (4.52)

Substituting (4.52) into (4.51) yields

F ′′′(z) = (ez + e−z)(z2 + z2
∗) + 4z(ez − e−z)

> 0 for all z .

Thus F (z) has at most 3 distinct roots, and d(z, ξ) has at most 3 turning points.
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4.11.4 Identifying turning points

Recall that ±z∗ are such that z∗W (z∗, σ
2) is maximised, therefore

d

dz
(zW )

∣∣∣∣
z=z∗

= 0 . (4.53)

However, by the product rule, we have

d

dz
(zW ) = W + z

dW

dz
. (4.54)

Evaluating (4.48) at z = z∗ and using (4.54) we obtain

d

dz

{
d(z, σ2)

} .
= 2z2

∗
dW

dt

∣∣∣∣
z=z∗

+ 2z∗W (z∗, σ
2)

.
= 2z∗

d

dz
(zW )

∣∣∣∣
z=z∗

.
= 0 ,

where the dotted equals sign denotes equality up to multiplication by the constant of propor-

tionality. As zero times a constant is zero, we have that ±z∗ are turning points of d(z, σ2). Note

also from (4.47) that dW/dt = 0 at z = 0. Therefore, evaluation of (4.48) at z = 0 yields zero.

Hence 0 is also a turning point of d(z, σ2).

4.11.5 Value of d(0, σ2)

Note that at z = 0, the derivative is

d(0, ξ) =
W (0, σ2)

W (z∗, σ2)
− 2 .

Therefore to show that d(0, ξ) ≤ 0, we must bound the value of W at z∗. Using (4.46) we obtain

W (0, ξ) = (4 + σ2)−1. Therefore in particular we must show that

1/W (z∗, σ
2) ≤ 2(4 + σ2) .

To do this, we make use of the following

Theorem 4.1. The maximiser, z∗ > 0, of zW (z, σ2) is the unique positive root of

H(z) = 2 + σ2 ,

where

H(z) = z(ez − e−z)− (ez + e−z) . (4.55)

Proof. By (4.47) and (4.54), it follows that

d

dz
(zW ) = W + zW 2(e−z − ez) .
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Since d(zW )/dz = 0 at z = z∗, dividing the above by W 2 gives

0 = W (z∗, σ
2)−1 + z∗(e

−z∗ − ez∗)

= ez∗ + 2 + e−z∗ + σ2 + z∗(e
−z∗ − ez∗) .

Rearranging gives that H(z∗) = 2 + σ2. Uniqueness follows by considering the derivative,

H ′(z) = z(ez + e−z), which is positive for z > 0.

Theorem 4.2. The function H(z) is bounded below as follows:

H(z) ≥ 2 cosh(z)− 4 .

Proof. We proceed by expansion of the exponential functions in the definition of H. Note the

following identities:

ez + e−z = 2

(
1 +

z2

2!
+
z4

4!
+ . . .

)
= 2 + 2

∑
j=2,4,...

zj

j!

z(ez − e−z) = 2z

(
z +

z3

3!
+
z5

5!
+ . . .

)
= 2

∑
j=2,4,...

zj

(j − 1)!
.

Substituting the above in (4.55) yields

H(z) = −2 + 2

 ∑
j=2,4,...

zj

(j − 1)!
−

∑
j=2,4,...

zj

j!


= −2 + 2

∑
j=2,4,...

j − 1

j!
zj

≥ −2 + 2
∑

j=2,4,...

1

j!
zj

≥ −2 + (2 cosh(z)− 2) .

Theorem 4.3. The value of w at z∗ satisfies

1/W (z∗, σ
2) ≤ 2(4 + σ2) .

Proof. By Theorems 4.1 and 4.2 above, at z = z∗ we have that

2 + σ2 = H(z∗) ≥ 2 cosh(z∗)− 4 ,
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and so cosh(z∗) ≤ (6 + σ2)/2. However, by (4.46) it is also true that

1/W (z∗, σ
2) = ez∗ + 2 + e−z∗ + σ2

= 2 cosh(z∗) + 2 + σ2

≤ (6 + σ2) + (2 + σ2) ,

as required.

4.11.6 Other properties

It remains to be shown that properties 3 and 5 from Section 4.11.2 hold. These properties are

relatively simple to establish.

To prove property 3, that the support points, ±z∗, of the optimal design are zeroes of the

derivative, substitute z = ±z∗ in (4.45). To demonstrate that property 5 holds, consider (4.45)

and note that, for |z| > |z∗|

d(z, ξ) =
W (z, σ2)

W (z∗, σ2)

(
1 +

z2

z2
∗

)
− 2

<
W (z, σ2)

W (z∗, σ2)

(
2z2

z2
∗

)
− 2 . (4.56)

By the definition of z∗, we have that

z2W (z, σ2) ≤ z2
∗W (z∗, σ

2) , (4.57)

for all z. Combining (4.56) and (4.57) we see that d(z, σ2) < 0 for all z such that |z| > |z∗|, as

required.

4.12 Appendix: Proof using BDZ

In this section, we prove optimality of the simplified form, (4.15), of the design under the MQL

and PQL approximations. We also give numerical evidence to support that the simplified designs

are also optimal under ML.

Biedermann et al. (2006), henceforth referred to as BDZ, consider binary outcome dose-

response models where the probability of event occurrence for a particular dose level is

π(x) = H(γ(x− α)) , (4.58)

with γ and α real-valued parameters, and H some cumulative distribution function on R.

The information matrix of an approximate design ξ with weights λi and support doses xi,

i = 1, . . . , k, is then

M(ξ) =

k∑
i=1

λiW (γ(xi − α))

(
γ2 −γ(xi − α)

−γ(xi − α) (xi − α)2

)
,
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where

W (z) =
(H ′)2

H(1−H)
(z) .

There is a class of design optimality criteria, referred to as Φp-optimality, p ∈ (−∞, 1],

which is related to optimal estimation of KT (α, γ)T , where K is a 2×2 matrix. This class of

criteria includes the commonly-encountered A-, D- and E- optimality criteria (when p = −1, 0,∞
respectively).

In their Theorem 2, Biedermann et al. (2006) derive a sufficient condition (called condition

I) on W for the Φp-optimal design to be supported on two doses. This condition is that, for all

c ∈ R, the equation (1/W )′′(z) = c has at most two distinct roots. They state moreover, defining

z to be γ(x−α), that if W is an even function with W (z) = W (−z) then the transformed support

points of the optimal design z1, z2 will be symmetric about 0, i.e. z1 = −z2.

Without changing any substantive details of the argument, it is possible to obtain a similar

result when the information matrix is of the related form

M(ξ) =

k∑
i=1

λiW (zi)

(
1 zi

zi z2
i

)
, (4.59)

namely that when W satisfies condition I, the D-optimal design will be supported on at most 2

distinct points. Moreover, symmetry of W implies symmetry of the support points of the design.

For completeness, we give the proof at the end of this Appendix.

We now note that the MQL and PQL information matrices are indeed of the form (4.59),

and that their corresponding weight functions satisfy condition I.

MQL:

W−1
MQL(z) = ez + 2 + e−z + σ2

(1/WMQL)′′ = 2 cosh(z) .

Clearly (1/W )′′ = c has at most two roots for all c ∈ R. Indeed, there are precisely two roots

for c > 2, one for c = 2 and none for c < 2.

PQL:

W−1
PQL(z) = 2 + 2eσ

2/2 cosh(z) + σ2

(1/WPQL)′′(z) = 2eσ
2/2 cosh(z) .

Similarly, in this case (1/W )′′ = c has at most two roots for all c ∈ R. Indeed, there are precisely

two roots for c > 2eσ
2/2, one for c = 2eσ

2/2and none for c < 2eσ
2/2.

By the above, we can verify with certainty that the MQL and PQL canonical designs are indeed

of the simplified form (4.15). For ML the weight function is much more complicated and an

analytical proof that W satisfies condition I remains elusive. However we can check numerically

by making use of the following result, which is proved by elementary calculus (product rule and

so on).
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Figure 4.13: Numerical checking of condition I for the ML weight function, various σ2.

Lemma 4.5. Let W (z) = (H′)2

H(1−H) (z). Then

d2

dz2
(1/W ) =

1

(H ′)4

{
− 6(H − 1)H(H ′′)2

− 2(H ′)4 + 2(H − 1)HH(3)H ′ + 3(2H − 1)(H ′)2H ′′
}
. (4.60)

If H(z) = sσ2(z) is defined as in (4.33), then we can evaluate sσ2 and its derivatives using

numerical integration, using

s
(n)
σ2 (z) =

∫ ∞
−∞

h(n)(z + u)φσ2(u)du ,

with h the logistic function.

Figure 4.13 shows the numerically evaluated (1/W )′′ from ML using various σ2. In each case

the condition seems to be satisfied, as (1/W )′′ resembles a cosh type function.

Proof of result similar to BDZ, Theorem 2. We operate in less generality than Biedermann et al.

(2006), however the proof is otherwise identical to that in their paper.

As we focus on D-optimal designs we can make use of the usual form of the General Equiva-

lence theorem. We work again with the canonical problem, θ = θc = (0, 1, σ2)T . The directional

derivative of logϕ(ξz) = log |M(ξz;θc)| in the direction of an arbitrary log-dose z ∈ X is

d(z, ξz) = tr{M−1(ξz;θc)m(z;θc)} − p ,

where m(z;θc) is the information matrix of a design supported only on z. Note the expression
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for d(z, ξz) agrees with that in the previous Section.

Suppose that ξ is a D-optimal design, then d(z, ξz) ≤ 0 for all z ∈ X with equality at the

support points of ξ. Note that

m(z;θc) = W (z)

(
1 z

z z2

)
,

and so

d(z, ξz) = W (z){a0 + a1z + a2z
2} − p ≤ 0 ,

with equality at the support points. Equivalently,

q(z) ≤ r(z) , (4.61)

with equality at the support points, where q(z) = a0 + a1z + a2z
2, and r(z) = p/W (z).

Suppose now that the support of ξ contains 3 distinct points, zi, i = 1, 2, 3 with q(zi) = r(zi).

By the mean value theorem, there exist points z′i, i = 1, 3 with z1 < z′1 < z2 < z′3 < z3 such that

q′(z′i) = r′(z′i), i = 1, 3. Moreover, by (4.61) we must have that q′(zi) = r′(zi), i = 1, 2, 3. Thus

we have 5 distinct points where q′ and r′ are equal. Applying the mean value theorem again (to

q′ and r′), we obtain 4 points where q′′ and r′′ are equal. As q′′ is constant, this contradicts the

assumption in condition I, namely that for all real c, (1/W )′′ = c has only 2 roots.

Thus there can be at most 2 distinct support points of any ξ which is D-optimal.

We now show that if W is symmetric, the design is symmetric in that it is supported on ±z,
for some z ∈ R. Note that

M(ξ) =

( ∑k
i=1 λiW (zi)

∑k
i=1 λiziW (zi)∑k

i=1 λiziW (zi)
∑k
i=1 λiz

2
iW (zi)

)
,

and denoting by ξ− the reflection of ξ at the origin, we have that

M(ξ−) =

( ∑k
i=1 λiW (zi) −

∑k
i=1 λiziW (zi)

−
∑k
i=1 λiziW (zi)

∑k
i=1 λiz

2
iW (zi)

)
,

therefore |M(ξ)| = |M(ξ−)|.

By concavity of ϕ, we have that ξsym = (1/2)ξ + (1/2)ξ− satisfies ϕ(ξsym) ≥ (1/2)ϕ(ξ) +

(1/2)ϕ(ξ−). By the preceding paragraph, the RHS is the optimal value of ϕ and so ξsym must

also be D-optimal. Therefore ξsym must have 2 support points. By definition, ξsym is clearly

symmetric, assigning equal weight to z and −z. This proves the symmetry result.
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Chapter 5

Multiple dosing designs

In order to be able to use the designs of Chapter 4, we need a prior estimate of σ2, the individual

random effect variance. We demonstrated in Section 4.6 that estimation of β is fairly robust to

some misspecification of σ2. However, if our a priori uncertainty about σ2 is too large then the

design strategy of using a single dosing per individual, together with the corresponding analysis,

will be inadequate. As a consequence our design will need to be capable of estimating σ2.

Another consideration is that σ2 may not simply be a nuisance parameter, but it may be

of interest in itself. For instance, we may be interested in understanding the selection effects

described in Section 4.2.1. In this case, the ability to produce an estimate of σ2 from the data

is essential to the scientific question at hand.

In either of these two situations, we must be prepared to consider designs which involve

multiple dosing events per individual. In this section, we investigate the optimal dose levels to

be included in such designs.

5.1 Maximum likelihood estimation

For the ith individual, data takes the form of a sequence of (ti−1) doses survived, di,1, . . . , di,(ti−1),

together with a final dose di,ti and a variable yi which indicates whether the individual is killed

on the final dose. Letting h denote the expit, i.e. logistic, function, the log-likelihood for the

individual is

`indiv(β0, β1, σ
2; ti,di, yi) = log

{∫ ∞
−∞

h(ηi,ti + u)yi {1− h(ηi,ti + u)}1−yi

·
ti−1∏
j=1

{1− h(ηi,j + u)}φσ2(u) du

}
, (5.1)

where ηi,j = β0 + β1 log di,j is the linear predictor for the jth dose.

The log-likelihood given the complete data from n independent individuals is

`(β0, β1, σ
2; t,D,y) =

n∑
i=1

`indiv(β0, β1, σ
2; ti,di, yi) ,

133
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where t and y are the vectors consisting of the ti and yi respectively, and D is an array containing

the dij (note that the rows of D are not necessarily the same length, and so the array is ‘ragged’).

For ‘test to destruction’ designs, yi = 1 for all i.

We were able to implement a computational maximum likelihood estimation procedure for

the full model by using numerical quadrature to perform evaluations of (5.1), together with

generic numerical optimisation algorithms. Specifically, the functions integrate and optim in

the R statistical computing environment were used (R Development Core Team, 2012). The

BFGS algorithm was used, with numerically calculated derivatives.

To see whether this ML estimation procedure is effective, we performed a simple simulation

study. With true parameter values (β0, β1, σ
2) = (0, 1, 0.1) we generated 1000 datasets each

consisting of 100 individuals. Each individual was dosed up to a maximum of 105 times (ef-

fectively until destruction). All individuals were assigned to the alternating two-dose sequence

d = (d1, d2, d1, d2, . . .) with d1 = 0.223, d2 = 4.482. The resulting Monte Carlo estimates

for the means of the parameter estimators were Ẽ(β̂0) = 0.055 ± 0.03, Ẽ(β̂1) = 1.019 ± 0.01,

Ẽ(σ̂2) = 0.105 ± 0.008. The numbers after the ± give the half-width, 1.96s/
√
Nmc, of the ap-

proximate 95% Monte Carlo confidence interval, with s2 the (unbiased) sample estimate of the

variance of the parameter and Nmc the Monte Carlo sample size. The estimated means are very

close to the true parameter values, suggesting the procedure works reasonably well. The confi-

dence interval for E(β̂0) does not include the true value of β0, but this does not contradict theory

as the ML estimator using a sample size of 100 individuals is only approximately unbiased.

5.2 Evaluation of the information matrix

In this section we give details of the computation of the information matrix for general designs,

and designs falling into an obvious restricted class.

Let d be a fixed dose sequence, of length m, which is to be followed until the event occurs.

Thus the maximum possible number of dosing events is m, at which point the event has either

occured or not. The possible outcomes for any individual are the times of death i.e. t =

1, 2, . . . ,m,m∗, where the asterisk denotes censoring, as in survival analysis. Given values of the

parameters θ = (β0, β1, σ
2)T let us denote the probability of outcome t by P = P (t; d,θ). The

set of possible outcomes for t is discrete, and finite, so that the individual information matrix

can be calculated using a complete enumeration approach similar to that in Chapter 2. The

resulting expression is

Mindiv(d,m,θ) =
∑

t=1,...,m,m∗

−P (t; d,θ)
∂2 logP (t; d,θ)

∂θ∂θT
(5.2)

=
∑

t=1,...,m,m∗

1

P (t; d,θ)

(
∂P (t; d,θ)

∂θ

)(
∂P (t; d,θ)

∂θ

)T
. (5.3)

Letting the predictor values be η = (η1, . . . , ηm)T we have

P (t; d,θ) =

∫ ∞
−∞

h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)}φσ2(u) du , 1 ≤ t ≤ m, (5.4)
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where φσ2 is the density function of a N(0, σ2) random variable, and

P (m∗; d,θ) =

∫ ∞
−∞

m∏
j=1

{1− h(ηj + u)}φσ2(u) du . (5.5)

Note therefore that in fact P (t; d,θ) = P (t;η, σ2) for t = 1, . . . ,m,m∗. We will also use the

notation Pt(η, σ
2) = P (t;η, σ2) when dependence on η and σ2 is of prime importance.

For a general design, it is possible to evaluate the form (5.2) by a combination of evaluation of

(5.4) and (5.5) using numerical quadrature, and numerical differentiation of logP . When deriving

optimal designs, we will work within the restricted class of designs featuring just one dose level

per individual. In other words, we focus on designs such that the dose sequence corresponding

to each individual is constant i.e. di = (di, di, . . . , di)
T . Within this class, considerable structure

can be introduced in the form (5.3), which allows much faster computation of the information

matrix. This is useful when comparing many candidate designs, as is necessary in the numerical

search for optimal designs.

5.2.1 Evaluation for constant-dose-sequence designs

The form of (5.3) can be simplified in the restricted design setting by writing the partial deriva-

tives ∂P/∂θ as integrals. This is done by taking the derivative under the integral sign (Theorem

3.1, Section 3.9), and it results in the individual information matrix being expressed in terms of

a number of ‘elementary integrals’ Ij,t(η;σ2), described below, which are functions of η and σ2

only.

For each value of η on a grid, the integrals Ij,t and Pt are evaluated by use of a quadrature

scheme. The result is that effectively all the integrals necessary to evaluate design properties for

a particular σ2 have been precomputed. Then the information matrix for different designs and

parameter values can be evaluated simply by interpolation-type operations which are orders of

magnitude faster than numerical evaluation of integrals.

For interpolation, we use splines whose coefficients are precomputed along with the values of

the integrals. Splines were chosen because it is helpful to have a smooth approximation to the

information matrix when performing optimisation. Initially, linear interpolation was used, but

in this case the derivative functions in the equivalence theorem behaved rather oddly, having

cusps at the grid points.

We consider the partial derivatives ∂Pt/∂θ separately for censored and uncensored outcomes;

Uncensored outcomes

Recall:

Pt(η;σ2) =

∫ ∞
−∞

h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)}φσ2(u) du .

We can evaluate the derivative of Pt with respect to the fixed effects parameters in the following

way

∂Pt
∂β0

=

t∑
l=1

∂Pt
∂ηl

∂ηl
∂β0

, (5.6)
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and similarly for β1, by applying the chain rule from multivariable calculus to the decomposition,

R2 → Rm → [0, 1]

β 7→ η 7→ Pt(η, σ
2) ,

(5.7)

of the mapping β 7→ Pt(η, σ
2). However, for t ≥ 2 and 1 ≤ l < t,

∂Pt
∂ηl

=

∫ ∞
−∞

h(ηt + u){−h′(ηl + u)}
∏

1≤j 6=l≤t−1

{1− h(ηj + u)}φσ2(u) du .

This follows from a direct application of Theorem 3.1, similar to that in Section 3.9. In the case

of a constant-dose-sequence design we have that ηl = η, for all l, in other words η = η1 is a

constant vector. The above partial derivative, evaluated at a constant η is

∂Pt
∂ηl

∣∣∣∣
η=η1

= (−1)×
∫ ∞
−∞

h′(η + u)h(η + u) {1− h(η + u)}t−2 φσ2(u) du , equal for all l ,

=: I1,t(η) , (5.8)

with | denoting evaluation of the partial derivative function at a particular η.

For l = t we have

∂Pt
∂ηt

∣∣∣∣
η=η1

=

∫ ∞
−∞

h′(η + u){1− h(η + u)}t−1 φσ2(u) du

=: I2,t(η) , (5.9)

again following a straightforward application of Theorem 3.1. Substituting (5.8) and (5.9) into

(5.6), we find that in the case of a constant dose individual design,

∂Pt
∂β

=
[
(t− 1)I1,t(η) + I2,t(η)

]( 1

log d

)
. (5.10)

Considering derivatives with respect to σ2 yields

∂Pt
∂σ2

∣∣∣∣
η=η1

=

∫ ∞
−∞

h(η + u){1− h(η + u)}t−1 ∂φσ2(u)

∂σ2
du

= I3,t(η) , (5.11)

from a slightly more delicate application of Theorem 3.1, for details see Section 5.7.

Censored outcome

In this case the probability P is

Pm∗(η, σ
2) =

∫ ∞
−∞

m∏
j=1

{1− h(ηj + u)}φσ2(u) du , 1 ≤ t ≤ m.

The derivatives of P with respect to ηl are

∂Pm∗

∂ηl
= (−1)×

∫ ∞
−∞

h′(ηl + u)
∏

1≤j 6=l≤m

{1− h(ηj + u)}φσ2(u) du .
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and so, for all 1 ≤ l ≤ m,

∂Pm∗

∂ηl

∣∣∣∣
η

= (−1)×
∫ ∞
−∞

h′(η + u) {1− h(η + u)}m−1 φσ2(u) du , equal for all l ,

= −I2,m(η) . (5.12)

Substituting (5.12) into the chain rule (5.6), we have that

∂Pm∗

∂β
=
[
−mI2,m(η)

]( 1

log d

)
. (5.13)

Finally, considering derivatives of Pm∗ with respect to σ2 gives

∂Pm∗

∂σ2

∣∣∣∣
η=η1

=

∫ ∞
−∞
{1− h(η + u)}m ∂φσ

2(u)

∂σ2
du

= I4,m∗(η) . (5.14)

In common with the other derivatives taken with respect to σ2 we must be slightly more careful

with this application of Theorem 3.1, see Section 5.7.

If we wish to generate lookup tables for fixed maximum number of trials m then we need to

tabulate, on a grid of η values, the following functions which are defined by the above integrals:

I1,t for t = 2, . . .m

Pt

I2,t

I3,t

}
for t = 1, . . . ,m

I4,m∗

If for example m = 20, there are 80 functions to be tabulated. With a grid of step length 0.1

on [−10, 10], it takes around 10s to perform all the necessary precomputations including the

calculation of spline coefficients.

5.3 Locally optimal designs

In this section we work to find locally D-optimal designs, which maximise log |Mθ(ξ;θ)|. We

first define a standardisation to a canonical form. This enables optimal designs to be found

independently of the values of β0 and β1.

Throughout the rest of the chapter, we work with the notion of an approximate design. Let

us assume that there are at most m dosing events per individual. In general, an approximate

design for the multiple dosing problem is defined by a discrete probability measure on the set of

dose-sequences of length m. In other words, an arbitrary design can be written as

ξ =

{
d1 . . . dn

w1 . . . wn

}
,
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where di = (di1, . . . , dim)T with dij > 0 for i = 1, . . . , n, j = 1, . . . ,m, and the weights wi

satisfy wi > 0,
∑n
i=1 wi = 1. The interpretation of ξ is that a proportion wi of the available

individuals will follow dose sequence di until either death or the sequence is completed. However,

we only derive constant-dose-sequence designs in which di = (di, . . . , di)
T . In this case we use

the shorthand

ξ =

{
d1 . . . dn

w1 . . . wn

}
,

and it is taken as understood that the doses are to be repeated up to m times.

The overall information matrix for the design ξ is obtained from a weighted sum of the

individual information matrices,

M(ξ;θ) =

n∑
i=1

wiMindiv(di,m,θ) .

5.3.1 Standardisation

Similarly to the case in Chapter 4 with one observation per individual, it is possible to define a

linear transformation which relates the optimal design for arbitrary values of β0 and β1 to the

optimal design in the case where (β0, β1) are equal to their ‘canonical’ values, (0, 1).

Once we have established this result, all that remains is to numerically evaluate optimal

designs for the canonical β and varying values of σ2, which we do in Section 5.3.2. The first step

in the proof is to observe a further structural property of the individual information matrix for

constant-dose-sequence designs. Essentially we wish to decompose the individual information

matrix into a product of three terms such that (i) the outer terms only depend on β, and (ii)

the central term depends on the design and the parameters, but only through η.

We first develop some additional notation for useful combinations of the elementary integrals.

For t = 1, . . . ,m, define

wt(η) = (t− 1)I1,t(η) + I2,t(η)

vt(η) = I3,t(η) ,

and also set

wm∗(η) = −mI2,m(η)

vm∗(η) = I4,m∗(η) .

Furthermore let

B =

 1 0 0

β0 β1 0

0 0 1

 ,

and let us define the standardised individual information matrix to be

M̃(η) =
∑

t=1,...,m,m∗

1

Pt(η)
qt(η)qTt (η) ,
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where

qt =

 wt(η)

ηwt(η)

vt(η)

 .

Note that Mindiv(d,m,θ) = M̃(η) in the case where β = (0, 1)T , and d = (d, d, . . . , d)T .

Lemma 5.1. For d any constant dose-sequence, and θ an arbitrary parameter vector, the indi-

vidual information matrix can be written as

Mindiv(d,m,θ) = B−1M̃(η)B−T .

Proof. From results on constant-dose-sequence designs in equations (5.10), (5.11), (5.13), and

(5.14) together with the definitions above, we have that

∂Pt(η)

∂θ
=

 wt

wt log d

vt

 .

Therefore by straightforward matrix multiplication, and the fact that η = β0 + β1 log d,

B
∂Pt
∂θ

= qt . (5.15)

Recall also that

Mindiv =
∑

t=1,...,m,m∗

1

Pt

(
∂Pt
∂θ

)(
∂Pt
∂θ

)T
,

Provided β1 6= 0 we can premultiply (5.15) by B−1 and substitute the result into the complete

enumeration equation above. This gives

Mindiv =
∑
t

1

Pt
B−1qtq

T
t B
−T

= B−1

{∑
t

1

Pt
qtq

T
t

}
B−T .

The term in the middle is precisely the definition of M̃ . The result follows immediately.

Lemma 5.2. The locally D-optimal design for arbitrary β can be obtained by a straightfor-

ward transformation of the design (ηi, wi), i = 1, . . . , n,
∑n
i=1 wi = 1, solving the canonical

optimisation problem

maximise Υ(η,w) = log

∣∣∣∣∣
n∑
i=1

wiM̃(ηi)

∣∣∣∣∣ .
The required transformation is given by log di = β−1

1 (ηi − β0).

Proof. By Lemma 5.1, we have for any design ξ, with support points di and weights wi, i =

1, . . . , n, that

M(ξ;β, σ2) = B−1

{
n∑
i=1

wiM̃(ηi)

}
B−T ,
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and so

|M | = |B|−2

∣∣∣∣∣
n∑
i=1

wiM̃(ηi)

∣∣∣∣∣ .
As |B| does not depend on the design, maximising |M | is equivalent to maximising the stan-

dardised information matrix of the ‘predictor design’ given by (ηi, wi).

5.3.2 Numerical results for various σ2

In this section we calculate locally optimal designs with canonical β for various σ2. As explained

in Section 5.3.1, the dependence on β can be overcome using a canonical transformation. Com-

bining the results from these two sections, we therefore have available the locally optimal designs

in a broad range of parameter scenarios.

The optimal designs are computed using a ‘co-ordinate optimisation’ approach, restricting

the search to designs supported on two dose levels. The optimality of the resulting designs is then

verified using the General Equivalence Theorem, confirming the adequacy of designs supported

on two doses. For further details of the algorithm and the General Equivalence Theorem in this

context, see Section 5.4.2. Note that it is indeed possible to estimate all three parameters with

such a design, which would not be the case if all the parameters were fixed effects parameters.

As one of the parameters is a variance component, this estimability does not conflict with the

classical theory.

The support doses of the locally D-optimal designs for various σ2 in the range [0.5, 5] are

shown on a log-scale in Figure 5.1. The pattern is that as σ2 increases, the optimal doses move

further apart. This tendency towards more extreme doses parallels the situation in designs with

one dosing per individual. In that case the phenomenon arises due to the attenuation in the

marginal effect of log x introduced by the individual variation. A similar attenuation factor

clearly applies here for the first dosing event.

The proportion of individuals allocated to the low dose in the locally optimal design is shown

in Figure 5.2 as σ2 varies. This weight increases from 0.35 to 0.41 as σ2 increases from 0.5 to 5.

Figure 5.3 shows the shape of the derivative function from the equivalence theorem for each

of the locally optimal designs computed. These plots verify (up to numerical approximation

errors) the optimality of the designs found, as the derivative is in each case never much bigger

than zero, and has approximate zeroes at the support points of the design.

5.4 Bayesian designs

In this section we give some examples of the use of precomputed interpolation tables for con-

structing Bayesian designs for the multiple dosing problem.

5.4.1 Objective function evaluation

We find designs which maximise an approximation to the objective function of Chaloner &

Larntz (1989), in other words

ψ(ξ) = Eθ{log |M(ξ;θ)|} , (5.16)
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Figure 5.1: Support points of the locally optimal designs, with (β0, β1)T = (0, 1)T , as σ2 varies
in [0.5, 5]. Note the log-transformed vertical axis.
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Figure 5.2: Weight of the lowest dose in the locally optimal designs with (β0, β1)T = (0, 1)T , as
σ2 varies in [0.5, 5]. Note that the vertical axis ranges from 0.34 to 0.41.
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Figure 5.3: Plots of the GET derivative function Ψ(ξ∗i , d), (5.19), of the locally optimal designs
for σ2

i = 0.5, 1, 1.5, . . . , 5. The panels correspond to the different values of σ2. Dotted vertical
lines indicate the location of the support points of the design.
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where the expectation is with respect to the prior distribution on θ = (β0, β1, σ
2)T . Usually

the prior distribution has a density function, f(θ). Note however that if the prior distribution

assigns unit mass to a particular parameter vector, then we recover the objective function for

local D-optimality.

As a computational surrogate for (5.16), we employ the discretised version

ψd(ξ) =

Na∑
s=1

πs log |M(ξ;θs)| , (5.17)

where for s = 1, . . . , Na, θs = (β0s, β1s, σ
2
s)T and πs are the integration abscissae and weights

respectively. The weights satisfy
∑Na

s πs = 1. Details of the formation of the abscissae and

weights are given in the examples.

When computing (5.17) for many candidate designs, it is advantageous to tabulate the ele-

mentary integrals Ij,t(η;σ2), j = 1, . . . , 4, t = 1, . . . ,m, defined in Section 5.2.1. This precom-

putation is performed on a grid of η values for each value of σ2 appearing in the abscissae, in

other words for σ2 = σ2
s , s = 1, . . . , Na.

5.4.2 Optimisation

To derive the designs in this section we use a combination of a ‘co-ordinate optimisation’ al-

gorithm, and verification of optimality using the General Equivalence Theorem. Recall that a

constant-dose-sequence design ξ can be written as

ξ =

{
d1 . . . dn

w1 . . . wn

}
,

and that ξ assigns a proportion wi of the individuals to dose di and repeatedly applies this dose

up to a maximum of m = 20 times.

The co-ordinate optimisation algorithm proceeds by iteratively adjusting each of d1, . . . , dn

and then w1, . . . , wn. When a new value of a dose is proposed, all other design parameters are

held constant. When a new value of the weight wi is proposed, the ratios between wj , j 6= i are

held constant, and these weights are adjusted to preserve the constraint
∑n
k=1 wk = 1. Thus on

setting wi ← w′i, one sets the remaining weights as wj ← wj(1−w′i)/(1−wi). At each step, the

new value of the design parameter is selected to maximise the value of (5.17). Thus the design

search consists of a sequence of one-dimensional optimisation problems. Let us consider φd as

a function of di ceteris paribus, writing ϕi(di) = ψd(ξ). Then ϕi(di) typically has several local

maxima. We attempt to avoid choosing a local optimum which is not optimal over all di by the

following method. First we compute ϕi(vj), j = 1, . . . , k, on a grid, v1, . . . , vk, of potential di

spanning a wide range of values. We then note j such that ϕi(vj) is maximised, and concentrate

a more refined optimisation on a neighbourhood of vj .

We now discuss the use of the General Equivalence Theorem in this context. The derivative

of ψ, at design ξ in the direction of an arbitrary alternative design ζ is defined to be

Ψ(ξ; ζ) = lim
α→0

α−1[ψ{(1− α)ξ + αζ} − ψ(ξ)] ,
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and with ψ as in (5.16) this can be evaluated as

Ψ(ξ; ζ) = Eθ tr{M−1(ξ;θ)M(ζ;θ)} − p , (5.18)

see for instance Firth & Hinde (1997) or Atkinson et al. (2007, Section 18.2). In the above,

tr denotes the trace of a matrix, and p is the number of parameters contained in M , which is

therefore of order p× p. We can approximate (5.18) by

Ψd(ξ; ζ) =

Na∑
s=1

πs tr{M−1(ξ;θs)M(ζ;θs)} − p ,

and this is in fact the derivative of the discretised objective function (5.17). This expression can

be evaluated numerically given numerically evaluated information matrices M(ξ;θs), M(ζ,θs).

We make some additional definitions before stating the Theorem. For d > 0, let us define

δ(d) to be the design which assigns unit mass to the dose sequence d1, which repeats dose d a

total of m times. Moreover let us define the shorthand Ψ(ξ; d) = Ψ(ξ; δ(d)). We are now ready

for the result.

Theorem 5.1. If an objective function ψ is concave, which indeed (5.16) and (5.17) are, then

the following statements concerning the design ξ∗ are equivalent:

1. The design ξ∗ is optimal, in other words ψ(ξ∗) = supξ ψ(ξ).

2. For all potential doses d > 0, we have Ψ(ξ∗; d) ≤ 0.

Moreover, at the support doses of ξ∗ it is the case that Ψ(ξ; d) = 0.

The Theorem can be used to check the optimality of a given design. If the proposed design

turns out to be suboptimal, then evaluation of Ψ can suggest ways of improving the current ξ,

for instance as in Atkinson (2008). Usually we should consider including in the support those

doses d where Ψ(ξ, d) is at its maximum. Once a good set of support doses for ξ has been found,

the doses can be held fixed and the weights optimised (again using a co-ordinate type procedure

as above).

Note that by choosing a prior distribution which assigns point mass to θ we see that Theorem

5.1 applies also to local D-optimality. In this case, the derivative is

Ψ(ξ; d) = tr{M−1(ξ;θ)M(δ(d);θ)} − p . (5.19)

5.4.3 Example 1

Assume the following discrete prior distribution

θ = (β0, β1, σ
2)T =


(0, 1, .1)T with probability 1/3

(0, 2, .4)T with probability 1/3

(1, .5, 1)T with probability 1/3

,

and use the support points of the distribution as the integration abscissae, with equal weights.

This rather small prior at least has the feature of multiple values of σ2.



5.4. BAYESIAN DESIGNS 145

-6 -4 -2 0 2

-0
.1
2

-0
.1
0

-0
.0
8

-0
.0
6

-0
.0
4

-0
.0
2

0.
00

log(Dose)

D
er

iv
at

iv
e 

va
lu

e

Figure 5.4: Derivative function Ψ(ξ; d) for the optimal Bayesian design in Example 1 (Section
5.4.3). Vertical dotted lines indicate the location of the support points of the design. Note the
log-transformed horizontal axis.

The optimal Bayesian design found was

ξ =

{
0.002 0.029 0.118 0.789

0.136 0.005 0.326 0.532

}
.

A plot of the derivative from the General Equivalence Theorem is given in Figure 5.4. This

confirms the optimality of the design: the function is non-positive and attains zero at the support

points of the design (up to numerical approximation errors).

On its own, the co-ordinate algorithm struggled to identify the dose d = 0.029, due to the

small optimal weight. However, omitting this dose still results in a design which is close to being

optimal. Let ξ′ denote the design which sets the weight of interest to zero, and multiplicatively

rescales the remaining weights to sum to 1. Then ψ(ξ) = −4.275826 and ψ(ξ′) = −4.275897.

5.4.4 Example 2

Here we assume the following independent prior distributions for the model parameters,

β0 ∼ U(−0.5, 0.5)

β1 ∼ U(0.6, 1.4)

σ2 ∼ U(0, 3) .

We compute the objective function using abscissae generated from a 30-point random Latin

hypercube sample. The abscissae were evenly weighted.
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Figure 5.5: Derivative function Ψ(ξ; d) for the optimal Bayesian design in Example 2 (Section
5.4.4). Vertical dotted lines indicate the locations of the support points of the design.

The optimal design supported on 4 doses was found to be

ξ =

{
0.021137 0.021134 0.957547 0.964165

0.161461 0.222379 0.354727 0.261433

}
.

Its Equivalence Theorem derivative is shown in Figure 5.5. The derivative seems to satisfy the

conditions for the design to be near-optimal. Clearly, the doses fall into two pairs of almost

equal doses and it should be adequate to consolidate the doses within these pairs. Let ξ′ denote

the design obtained by rounding the doses to three decimal places, which consolidates the first

two doses. Then ψ(ξ) = −5.53642 and ψ(ξ′) = −5.53644, so there is little difference between ξ

and ξ′ in terms of performance.

This example was computationally much more involved. Due to the larger number of abscis-

sae, evaluation of the objective function took of the order of a second.

5.5 Designs not tailored for σ2

Let us define

Mβ(ξ;θ) =

n∑
i=1

wi ETi

{
−∂2 logP (Ti; di,θ)

∂β∂βT

}
,

where Ti is the (random) number of doses administered, before death, to an individual receiving

dose sequence di. Defined thus, Mβ(ξ;θ) is the part of the information matrix corresponding to

β0 and β1. This reduced information matrix has a natural interpretation. If σ2 is known, and
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we perform an experiment using design ξ with N individuals then

var(β̂) ≈ (1/N)M−1
β (ξ;θ) .

We use this to motivate a further optimality criterion. We say that ξ isDβ-optimal if it maximises

the value of |Mβ(ξ;θ)|. A Dβ-optimal design optimises (asymptotically) point estimation of β

when σ2 is known.

In this section, we look at Dβ-optimal designs for the unit variation model, with the same

restrictions as in Section 5.3. In Chapter 2, we developed approximations to the equivalent

of Mβ for GLMMs. We briefly consider the performance of these approximations for the unit

variation model here.

It is relatively straightforward to use the work of the previous sections to obtain designs

which optimise |Mβ|. One simply ignores the third row and column of the information matrices

evaluated using complete enumeration. The same optimisation algorithms can be applied to

yield the locally optimal design, in other words co-ordinate optimisation restricted to designs

supported on two doses. In the parameter scenario (β0, β1, σ
2)T = (0, 1, 1)T we found the optimal

doses were 0.02 and 2.56, both evenly weighted.

For local Dβ-optimality, the objective function is ψ(ξ) = log |Mβ(ξ;θ)|, and the directional

derivative from the General Equivalence Theorem is

Ψ(ξ; d) = tr{M−1
β (ξ;θ)Mβ(δ(d);θ)} − 2 .

This follows from (5.18) since the information matrix Mβ is 2× 2. Figure 5.6 shows the compu-

tationally evaluated derivative for the Dβ-optimal design found from a numerical search, which

satisfies the required conditions. The maximal dose in the D-optimal design for this scenario is

smaller than 1 (i.e. lower than the ‘standard’ dose), in contrast the Dβ-optimal design uses a

dose which is larger than 1.

Note that the model is no longer a straightforward GLMM, due to the stopping rule applying

at the individual level (i.e. that we can take no further observations on an individual once they

have died). This makes the assumptions underlying the MQL approximation to var β̂ more

questionable. We do not return to first principles to derive a new approximation. Instead, we

try to use the existing approximation to produce a design which might be applicable in this

situation. Specifically, we derive an MQL-optimal wholeplot design for a 1-factor GLMM with

m = 20 points per block, using the same assumed values of β, σ2 as above. We can use the same

optimisation algorithms as for the complete enumeration designs, and this yields optimal doses

13.74, 0.07 which are again evenly weighted. The derivative function again confirms optimality

of this design (Figure 5.7).

The D-efficiency of the MQL design relative to the Dβ-optimal complete enumeration design

is 80.0%. To see why the MQL design is inefficient, note that the maximal dose used is around

14 times the ‘standard’ unit dose, which is much larger than in any of our previous designs. The

likely reason such high doses were not present in the complete enumeration designs is that the

latter designs acknowledge the stopping rule. At a high dose, individuals are very likely to die

on the first attempt: we can extract more information by using a lower dose which allows the

individual to survive longer and thereby provide more observations.
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Figure 5.6: Derivative function for Dβ-optimal design, with information matrices evaluated using
complete enumeration. Vertical dotted lines show the location of the support doses. Note doses
are plotted on the log scale.
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Figure 5.7: Derivative function for Dβ-optimal design obtained using the MQL approximation.
Vertical dotted lines show the location of the support doses. Note doses are plotted on the log
scale.
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5.6 Discussion

The numerical construction of D-optimal, including Bayesian D-optimal, multiple dosing designs

for the unit variation model is computationally feasible within the restricted class we have

outlined. The restricted class in general might not contain the overall D-optimal design, however

the restricted designs may be used as a benchmark against which to measure other design

strategies.

An issue may arise with the use of asymptotic normal approximations to the distributions

of the parameter estimators when the true value of σ2 is small. Since σ̂2 is bounded below by

0, the distribution will be noticably skewed unless the variance is small (which happens only

if the sample size is large). In the linear mixed effects model case there is positive probability

that σ̂2 = 0 which can lead to the asymptotic variance approximation being inaccurate (see

McCulloch & Searle, 2001, pp. 39–42). This phenomenon may also be present for the models

under consideration here: cases where σ̂2 = 0 are mentioned by Xue and Brookmeyer (1997).

To produce more accurate measures of estimator variability, it is conceivable that one might

wish to look instead at the distribution of log σ̂2 which could plausibly be closer to Gaussian

with smaller sample sizes. We do not investigate this in detail here, but we do make some

observations. By the chain rule, ∂P/∂ log σ2 = σ2∂P/∂σ2, and so only a minor modification of

the computational scheme in Section 5.2.1 is necessary to evaluate ∂P/∂θ, and therefore also

the information matrix, under the new parameterisation.

Another question is how to improve the numerical procedures for ML estimation: at the

moment, optimisation of the likelihood takes around 1 minute on a MacBook Pro laptop with

a 2.4GHz Intel Core i5 processor. Clearly this is not prohibitive for point estimation, but

simulation-based assessments of estimator variability are still fairly involved. The implementa-

tion of fast estimation procedures for this model would be helpful in seeing this kind of study

design and analysis adopted in practice.

For designs in the restricted class, it is extremely likely that tabulation of elementary integrals

similar to those in Section 5.2.1 could be helpful also for estimation. A good starting point for

a procedure might be the following, which we have not implemented and do not pursue further.

First, construct interpolation tables for a large number of σ2, say on a finely spaced grid in

[e−10, e3]. One should then be able to obtain relatively quickly the estimates of β for σ2 held

fixed, which we call β̂(σ2). These ‘conditional’ estimates could be used to compute a profile

likelihood for σ2 evaluated on a grid. A smooth interpolation of these profile likelihood values

could then be used to find an approximation to σ̂2, and hence β̂ = β̂(σ̂2).

5.7 Appendix: Differentiation with respect to σ2

In this section, we show that the application of differentiation under the integral to evaluate

∂Pt/∂σ
2 is valid. We consider the uncensored case in detail, the censored case follows an anal-

ogous argument. Let ε > 0 be arbitrary, U = (ε,∞), S = R and f : U × S → R be defined

by

f(σ2, u) = h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)}φσ2(u) ,
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so that Pt(η, σ
2) =

∫
R f(σ2, u)dµ(u), where µ denotes Lebesgue measure. Considered as a

function of u ∈ S, f is integrable for each σ2 ∈ U , since it is continuous and dominated by

φσ2(u). Moreover, for fixed u ∈ S, f is differentiable for all σ2 > 0, with

∂f

∂σ2
= h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)}∂φσ
2

∂σ2
(u)

= h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)} 1

2σ2
(1− σ2)φσ2(u) .

On U = (ε,∞), the function σ2 7→ 1
2σ2 (1 − σ2) is bounded above, say by a constant K > 0.

Therefore also ∣∣∣∣ ∂f∂σ2

∣∣∣∣ ≤ Kφσ2(u) ,

for all σ2 ∈ U and all u ∈ S, in other words the partial derivative is dominated by an integrable

function. Therefore we may apply Theorem 3.1 to obtain that

∂Pt
∂σ2

(η, σ2) =

∫
R

∂f

∂σ2
(σ2, u) dµ(u)

=

∫
R
h(ηt + u)

t−1∏
j=1

{1− h(ηj + u)}∂φσ
2

∂σ2
(u) dµ(u) ,

for all σ2 > ε. However, the choice of ε > 0 was arbitrary and so the above holds for all σ2 > 0.
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Chapter 6

Designs for Hierarchical

Generalised Linear Models

6.1 Introduction

In Chapters 2 and 3, we developed methodology for deriving efficient designs for GLMMs. The

purpose of using such models is to take into account non-normality of the response distribution

and correlation between observations within the same block. An alternative modelling strategy

would be to use Hierarchical Generalised Linear Models (HGLMs). In this chapter, we develop

design methodology for HGLMs.

The family of HGLMs, introduced by Lee and Nelder (1996, 2001), extends GLMMs, primar-

ily by allowing random effects distributions other than the Gaussian. In particular, the use of

random effects distributions which are conjugate to the exponential family used for the response

can simplify some of the computations involved. The main innovation of the aforementioned

papers was to suggest maximisation of the ‘h-likelihood’ as a technique for the joint estimation

of the fixed and random effects. This proposition generated substantial controversy not least in

the discussion adjoining Lee and Nelder (1996). The asymptotic properties of the method were

studied, and shown to be comparable to marginal likelihood inference under certain regularity

conditions. The computational simplifications resulting from the use of h-likelihood make the

technique much cheaper to implement than marginal likelihood inference in a GLMM.

We will show in this chapter that the computational advantages of the h-likelihood approach

carry over also to the design problem, where they are possibly more pronounced. As a result,

the use of approximations to the Fisher information matrix considered in the GLMM context

in Chapters 2 and 3 are unnecessary for HGLMs. One of our contributions is the suggestion

of an appropriate design optimality criterion, which is based on optimisation of a h-likelihood

analogue of Fisher information, as opposed to the analogue of the observed information which is

employed by Lee, Nelder and co-authors for their inferences. For more details, see Section 6.3.

The chapter is organised as follows. In Section 6.2 we define the class of HGLMs and give

details of the h-likelihood estimation procedure. Section 6.3 considers different forms of the

information matrix for HGLMs, and uses these to motivate various optimality criteria. We con-
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sider several different design structures, including split-plot designs, with differing degrees of

restrictions of the factors. These structures are outlined, together with corresponding optimi-

sation algorithms in Section 6.4. Examples of the construction of designs using the methods

developed are given in Sections 6.5 and 6.6.

6.2 Hierarchical generalised linear models

We focus on HGLMs in which the influence of the blocks appears through a random intercept

term. These models are defined as follows. Let yij denote the response of the jth unit in the

ith block, i = 1, . . . , nb, j = 1, . . . ,mi, and further let xij denote the vector of values, applied to

this unit, of the q controllable variables. Let N =
∑nb

i=1mi be the total number of observations.

Associated with the ith block in the experiment there is a corresponding random effect, or

random intercept, denoted by vi.

Conditional on vi, the responses in block i are independent and follow a generalised linear

model. In other words, the conditional distribution of yij given vi is an exponential family π(µij)

with mean µij , and variance φV (µij). The mean relates to the controllable variables via the

linear predictor ηij and the link function gµ, as follows:

gµ(µij) = ηij = fT (xij)β + vi , (6.1)

where β is the vector of p fixed effects parameters, and f : Rq → Rp is a known function which

specifies which terms are to be included in the linear predictor. For example, f(x) may contain

just first order terms in the entries of x, or it may also include other polynomial terms such as

quadratics or interactions.

To complete the definition of the HGLM, we must specify the distribution of the response,

and the random effects. Unlike in a GLMM, the specification of the distribution of vi is not

done directly, instead we first relate vi to a random effect ui on a different scale, via a link

function gr for the random effects. Thus gr(ui) = vi. Then the distribution of ui is specified,

with a (vector) parameter α, to determine the model. For examples of choices of distributions

and link functions to determine the HGLM, see Table 6.1. The random effects distributions

used in HGLMs commonly have two parameters. To ensure identifiability, Lee and Nelder

(1996) recommended imposing a constraining relation on the parameters to yield a one-parameter

distribution. Suggested restrictions are also listed in Table 6.1.

Model Distribution of u Mode of v Restriction Mode after
restriction

Link (gr =
gµ)

Poisson-gamma Gamma(α1, α2) log(α1α2) α1α2 = 1 0 log

Binomial-beta Beta(α1, α2) log
(
α1−1
α2−1

)
α1 = α2 0 logit

Normal-normal Normal(α1, α2) α1 α1 = 0 0 identity

Table 6.1: Choices of distribution and link function in HGLMs. In each case the first part of the
model name defines the conditional distribution of the response, and the usual corresponding
GLM variance function is used. The second part of the name gives the distribution of ui.

An equivalent vector statement of (6.1) can be obtain by writing the data in ‘long’ format

and defining appropriate model matrices. These model matrices will be useful later when stating
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the form of the information matrix. Let us denote by y the vector of responses yij written in

lexicographical order, grouped by block, i.e.

y = (y11, . . . , y1m1
, y21, . . . , y2m2

, . . . , ynb1, . . . , ynbmnb
)T .

Let us also denote by F be the fixed effects model matrix whose rows are the fT (xij), again in

lexicographical order. Finally let us write Z for the N × nb indicator matrix that identifies the

block to which an observation belongs, that is

Z =


1m1 0

1m2

. . .

0 1mnb

 ,

with 1k = (1, 1, . . . , 1)T a column vector consisting of k ones. Then the model equation (6.1)

can be restated as

gµ(E(y|v)) = Fβ + Zv ,

where gµ acts elementwise and v = (v1, . . . , vnb
)T .

6.2.1 h-likelihood inference

In a series of papers (Lee and Nelder, 1996, 2001, 2009; Lee, Nelder and Noh, 2007), Lee, Nelder

and co-authors advocate the use of h-likelihood as a device for the joint estimation of fixed and

random effects. The h-(log)likelihood is defined as

h(β,α,v; y) = log fy|v(y|v;β,α) + log fv(v;α) , (6.2)

considered as a function of both the fixed and random effects, v and β. In (6.2), fy|v and fv

denote respectively (i) the conditional density of the responses given the random effects, and

(ii) the density function of the random effects v. Thus the h-likelihood is formed by taking the

joint density function of the data and the random effects, and viewing it as a function of v and

β. Clearly (6.2) is not an orthodox likelihood as v is an unobservable random variable. The

maximum h-likelihood estimators are given by

(β̂T , v̂T )T = arg max
β,v

h(β,αv; y) .

Note that maximum h-likelihood estimation of (βT ,vT )T is equivalent to Bayesian maximum

a posteriori estimation of (βT ,vT ) with an improper uniform prior on β (see for example the

comment by D. Clayton in the discussion following Lee and Nelder, 1996). In this chapter we

assume that the parameters, α, of the random effects distribution are known.

Much of the controversy surrounding the use of h-likelihood appeared to stem from the

suggestion of Lee and Nelder (1996) to use h-likelihood estimates also in the case when interest

lies only in β, rather than the usual marginal likelihood,

`(β; y) =

∫
f(y,v;β,α) dv .
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This idea was later revised: Lee and Nelder (2009, Section 3.2) suggest using the marginal

likelihood, but interpret the ‘marginal likelihood as an adjusted profile likelihood (in the sense of

Barndorff-Nielsen, 1983) eliminating nuisance unobservables v from the h-likelihood’. Thus they

regard the h-likelihood as being more fundamental than the marginal likelihood but recognise

the need to eliminate nuisance parameters. The HGLM literature also proposes techniques for

estimation of α, by a restricted likelihood conditional on the marginal estimates of β, but we do

not consider this aspect here. The limitation of scope not to consider the quality of estimation

of variance components is also present in work on design for linear mixed models, e.g. Goos and

Vandebroek (2001), and is an avenue for future work.

In this chapter we take an agnostic stance with regard to abstract inferential principles, and

evaluate h-likelihood estimators from a straightforward frequentist viewpoint. In particular, in

Appendix 6.9 we find that the asymptotic approximations to the variance of (β̂, v̂) given in Lee

and Nelder (1996) seem to be accurate enough to be used as the basis for optimal designs. We

found the asymptotic approximations to be accurate even when there are restrictions on the

design structure such that fixed effects estimation of the block effects would be impossible, for

instance when we must use a split-plot design.

6.3 Optimality criteria

6.3.1 Information matrices

Before we define our optimality criteria, we first discuss several asymptotically equivalent ex-

pressions which allow us to approximate the variance of h-likelihood estimators of the model

parameters. This offers us several potential generalisations of the classical information matrix.

We will base our design optimality criteria on one of these generalisations, the ‘marginal expected

h-information matrix’, a choice which is justified below. In this section, we use ξ to denote the

(exact) design of the experiment, which is defined by the xij , 1 ≤ i ≤ nb, 1 ≤ j ≤ mi.

Let us define H to be the negative Hessian matrix of the h-(log)likelihood,

H(ξ;β,α,v,y) =

(
− ∂2h
∂β2 − ∂2h

∂β∂vT

− ∂2h
∂v∂βT − ∂

2h
∂v2

)
.

We define the observed h-information matrix as the estimate of H,

Ĥ = H(ξ; β̂, α̂, v̂,yobs) ,

where yobs is an observed vector of responses. In the case where α is known, clearly we may use

α̂ = α. The conditional expected h-information is defined to be

JC(ξ;β,α,v) = Ey|v[H(ξ;β,α,v,y)|v] ,

which can be estimated from data as ĴC = JC(ξ; β̂, α̂, v̂). Finally we also define the marginal

expected h-information as

JM (ξ;β,α) = Ey,v[H(ξ;β,α,v,y)]

= Ev[JC(ξ;β,α,v))] .
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Defined thus, JM can be estimated from data as ĴM = JM (ξ; β̂, α̂). In the above definitions

Ey|v denotes an average with respect to the conditional distribution of y given v, whereas Ey,v

denotes expectation with respect to the joint distribution of y and v. Note that we refer to

JM as the ‘marginal information matrix’ because it is the marginal expectation of the negative

Hessian, as opposed to JC which is a conditional mean.

Lee and Nelder (1996) refer, somewhat implicitly, to some of the above matrices as asymptotic

approximations to the (inverse) marginal variance of the error in the h-likelihood estimators,

particularly in the case where α is known. In other words,

var

(
β̂

v̂ − v

)
≈ Ĥ−1, Ĵ−1

C , J−1
C , Ĵ−1

M , J−1
M . (6.3)

They make use of Ĵ−1
C when performing inference on β, v. For the observed, conditional expected

and marginal expected information see Lee and Nelder (1996), Sections 3.3, 4.1 and Appendix

C respectively.

Note that the variance in (6.3) is not a conditional variance (for instance upon v). It is a

marginal variance, which includes variation arising from the fact that if we were to repeat the

experiment several times the block effects would be different each time. As a result, it seems

most appropriate at the design phase to use J−1
M as an approximation to the variance, since this

does not require us to assume (or estimate) a value of the random effects v prior to running the

experiment. In Section 6.9 we empirically evaluate the use of J−1
M as a variance approximation.

The conditional h-information can be evaluated as (see Lee and Nelder, 1996, Section 4.1,

but note the slightly different definition of U)

JC(ξ;β,α,v) =
1

φ

(
FTWF FTWZ

ZTWF ZTWZ + φU

)
,

where W = W (β, ξ,v) is the diagonal matrix of GLM weights with diagonal entries(
∂µij
∂ηij

)2

V (µij)
−1 =

1

[g′µ(µij)]2V (µij)
, (6.4)

written in lexicographical order. The matrix U is diagonal with ith entry −∂2 log fv(v;α)/∂v2
i .

The matrices F and Z are as given in Section 6.2. The marginal h-information, on which we

base optimal designs, can be evaluated as

JM (ξ;β,α) =
1

φ

(
FT E(W )F FT E(W )Z

ZT E(W )F ZT E(W )Z + φE(U)

)
, (6.5)

where the expectations here are with respect to v. These expectations can be evaluated using

the details given in the appendix, Section 6.8.

6.3.2 Optimality criteria

Clearly, in common with the situation for other complex models, optimal designs for HGLMs

will depend on the values of the parameters (β,α). In view of this, we say an exact design ξ∗ is
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locally D-optimal at (β,α) if it maximises

ψD(ξ;β,α) = |JM (ξ;β,α)| ,

for particular assumed values of the parameters.

Sometimes interest may lie in the fixed effects parameters only. We will therefore also consider

DS-optimal designs (Atkinson et al., 2007, p. 138) for estimating β as precisely as possible, again

based on JM . Specifically, a design ξ∗ is locally DS-optimal for β (at β,α) if it minimises

ψDS
(ξ;β,α) = |Vββ(ξ;β,α)| ,

where Vββ(ξ;β,α) is the top-left p × p (i.e. β) part of J−1
M (ξ;β,α). This can be evaluated in

the following way: decomposing JM into block submatrices as

JM =

(
Mββ Mβv

Mvβ Mvv

)
,

where Mββ is p× p and Mvv is nb × nb, we have that (Atkinson et al., 2007)

Vββ = {Mββ −MβvM
−1
vv Mvβ}−1 ,

and so an equivalent criterion for ξ∗ to be DS optimal is that

ΦDS
(ξ;β,α) =

1

φ
|FT E(W )F − FT E(W )Z[ZT E(W )Z + φE(U)]−1ZT E(W )F |

is maximised at ξ = ξ∗. The DS criterion takes into account that we are also estimating the

random effects but does not make precise estimation of v a consideration, other than insofar as

it affects estimation of β.

Note that if v is truly nuisance then, as was stated in Section 6.2.1, strictly we should use

marginal likelihood estimation of, and inference about, β. Thus the use of such DS-optimal

designs is not totally principled. However, DS-optimal designs do provide an interesting point

of comparison for the D-optimal GLMM designs of Chapters 2 and 3. Recall that in these

chapters, we computed D-optimal designs for GLMMs using various approximations to the

Fisher information matrix associated with maximum (marginal) likelihood estimation.

In order to obtain designs which are more robust to prior uncertainty about the values of

(β,α), we will also compute pseudo-Bayesian D-optimal designs, in other words designs ξ which

maximise the objective function of Chaloner and Larntz (1989), i.e.

ψBayes(ξ; f) =

∫
logψ(ξ;β,α) f(β,α) dβ dα , (6.6)

where f is a prior density function on (β,α). There is not an assumption that the resulting data

analysis will be Bayesian, this ‘prior’ is merely a device to ensure a greater degree of robustness

to a range of possibilities for the true values of the parameters. As discussed in Chapter 7, the

objective function (6.6) may fail to converge if the support of the prior distribution is too large

or contains singularities. For the sake of simplicity, here we restrict our attention to uniform

priors that avoid singularities.
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6.4 Design structures

In much experimental design literature the objects of focus are continuous designs, in other

words designs defined through a finitely supported probability measure which is independent

of the sample size. Such a measure represents the fraction of available resource that should be

allocated to particular experimental conditions. Continuous designs do not make sense in the

context of h-likelihood estimation, since the the following quantities depend on the sample size:

(i) the number of random effects parameters, (ii) the number of arguments in the h-likelihood,

and (iii) the dimension of the information matrix. Therefore we focus exclusively on exact designs

where the sample size is fixed. Within the exact design framework, we consider various design

structures corresponding to different degrees of restriction on the factors in the experiment.

A split-plot experiment is a blocked experiment in which one or more of the factors are

restricted to have the same value for all runs in each block. For a discussion of the merits of such

designs in the context of industrial experiments see Jones and Nachtsheim (2009). To properly

analyse the data from these experiments, mixed models are necessary. The restricted factors in

a split-plot experiment are referred to as whole-plot factors, and the remaining free factors are

referred to as sub-plot factors. Whole-plot factors may also be referred to as ‘hard-to-change’,

with a typical example being the temperature of an oven.

In this chapter we derive designs of three types: unrestricted, split-plot, and ‘whole-plot’.

By a whole-plot design we mean a split-plot design in which all of the factors are whole-plot

factors (and so there are no sub-plot factors). For an instance of a whole-plot design, see that

used in the count-response wave-solder experiment reported by Hamada and Nelder (1997), or

the binomial-response seed germination experiment discussed by Breslow and Clayton (1993).

The first pair of authors analysed their data using overdispersed fixed-effects generalised linear

models, which model the extra variation introduced by the presence of blocks by including a

single extra parameter. However, these models are unable to take into account the correlation

between observations in the same block which is introduced by the block effects if they are

present. Also, in the fixed-effects framework it is impossible to fit a separate parameter for each

block, as a result of the total confounding of all of the factors with blocks. A mixed effects model

analysis of these types of experiments, for example using HGLMs, would allow the consideration

of block effects. This is indeed the approach taken in the second example by Breslow and Clayton

(1993), who modelled their data using GLMMs. We consider the wave-solder experiment further

in Section 6.5.

6.4.1 Algorithms

To find optimal unrestricted, split-plot, and whole-plot designs we use a co-ordinate optimisation

algorithm similar to the ‘candidate-set-free’ approach of Jones and Goos (2007). Let fw and fs

denote the number of whole-plot and sub-plot factors respectively. Throughout the algorithm,

the computer holds two arrays in memory: an nb × fw whole-plot factor array, and an N × fs
sub-plot factor array. In the sub-plot factor array, the first m1 rows correspond to the factor

values used in the first block, the next m2 rows to the second block, and so on. In the whole plot

factor array, the ith row corresponds to the values of the whole plot factors used in the ith block.

For an illustration of the setup of these arrays, see Tables 6.2 and 6.3, in which W1, . . . ,Wfw
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represent the whole-plot factors and S1, . . . , Sfs represent the sub-plot factors.

The algorithm begins by generating random designs until a non-singular design is found.

The main loop of the algorithm consists of repeatedly performing passes. In each pass of the

algorithm, we optimise each element of the array in ‘typewriter fashion’ moving across each row

from left to right. Upon reaching the end of a row we move to the leftmost entry in the next

row. This is done first for the whole-plot factor array, and second for the sub-plot factor array.

For each element, all possible changes its value are considered (the factors are discrete in

this work). The value of the objective function is calculated for each proposed update to the

co-ordinate. The change which would maximise the objective function value is kept, and we

then move on to the next element in the array. The algorithm terminates after a complete pass

yields no changes. Since the algorithm is greedy, it is prone to becoming stuck in sub-optimal

attractor states. To mitigate this, the best design from multiple random initialisations is chosen.

When finding unrestricted designs, there is no whole-plot array, as there are no whole-plot

factors. Conversely, when finding whole-plot designs there is no sub-plot array.

Block W1 W2 . . . Wfw

1 • • . . . •
2 • • . . . •
...

...
...

. . .
...

nb • • . . . •

Table 6.2: Whole-plot factor array used in the co-ordinate optimisation algorithm. Large dots,
•, represent arbitrary values of the factors.

Unit S1 S2 . . . Sfs
Block 1 (1, 1) • • . . . •

(1, 2) • • . . . •
...

...
...

. . .
...

(1,m1) • • . . . •
Block 2 (2, 1) • • . . . •

(2, 2) • • . . . •
...

...
...

. . .
...

(2,m2) • • . . . •
...

...
...

Block nb (nb, 1) • • . . . •
(nb, 2) • • . . . •

...
...

...
. . .

...
(nb,mnb

) • • . . . •

Table 6.3: Sub-plot factor array used in the co-ordinate optimisation algorithm. Large dots, •,
represent arbitrary values of the factors.

6.5 Example: wave-solder experiment

Hamada and Nelder (1997) discuss an experiment, reported by Condra (1993), investigating a
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Factor y
Block A B C D E F G 1 2 3

1 0 0 0 0 0 0 0 13 30 26
2 0 0 0 1 1 1 1 4 16 11
3 0 0 1 0 0 1 1 20 15 20
4 0 0 1 1 1 0 0 42 43 64
5 0 1 0 0 1 0 1 14 15 17
6 0 1 0 1 0 1 0 10 17 16
7 0 1 1 0 1 1 0 36 29 53
8 0 1 1 1 0 0 1 5 9 16
9 1 0 0 0 1 1 0 29 0 14

10 1 0 0 1 0 0 1 10 26 9
11 1 0 1 0 1 0 1 28 173 19
12 1 0 1 1 0 1 0 100 129 151
13 1 1 0 0 0 1 1 11 15 11
14 1 1 0 1 1 0 0 17 2 17
15 1 1 1 0 0 0 0 53 70 89
16 1 1 1 1 1 1 1 23 22 7

Table 6.4: Fractional factorial design used in the wave soldering experiment from Hamada and
Nelder (1997), with response data

wave-soldering process for electronic circuit card assembly. We use this example to motivate the

construction of more efficient designs for similar experiments with larger blocks.

In the original experiment there were 7 factors, labelled A–G, each with two levels coded

by 0/1 as is common in generalised linear model analyses. We opt to keep this coding in what

follows, contrary to the coding of ±1 usual in the design literature, since we prefer consistency

with the original example. The response was the number of defects per plate, and the data were

analysed with an overdispersed Poisson model. The effects of interest were the main effects of

A–G, together with six two-factor interactions between A–D, namely AB, AC, AD, BC, BD

and CD. The aim of the study was to discover which combination of factor levels minimised the

average number of defects.

The design actually used had its treatments taken from a 27−3 fractional factorial design (see

Table 6.4), and the plates were soldered in 16 batches of 3 plates. Within any given batch, the

same process settings were used for all three plates. We argue that this potentially constitutes

a whole-plot block structure.

We re-analysed the original data set using a Poisson-gamma HGLM. The terms we chose to

include in the linear predictor were the same as in the final GLM model in Hamada and Nelder

(1997), i.e. the main effect of F was not included and the only interactions fitted were AC and

BD. The R package HGLMMM (Molas and Lesaffre, 2011) was used to estimate the fixed effects

parameters and variance component only, as the particular values of the random effects are not

relevant in future experiments. The option to use an approximation to the marginal likelihood

rather than the h-likelihood was selected because this is recommended when interest is in the

fixed effects only (Lee et al., 2007). The parameter estimates obtained are given are given in

Table 6.5.

We computed a locally D-optimal whole-plot design for estimating the HGLM, using these

refitted parameter values. The factor settings for this design are given in Table 6.6. We assumed
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that the batches in the future experiment would be of size 10, rather than 3, in order for the

asymptotic variance approximations to hold reasonably well.

In the fractional factorial design shown in Table 6.4, each factor has the property that the

high and low levels are used the same number of times. We refer to this as property as balance (in

the factors). In contrast, the locally D-optimal design is substantially unbalanced. In particular,

factor G is set to its high level only for only 1/16 of the available runs, in other words around

6% of the time. This lack of balance property is a recurring theme in D-optimal designs for

Poisson-gamma HGLMs, for additional examples see Section 6.6.2. The efficiency gain in using

the locally optimal design is fairly substantial: the efficiency of the design actually used was

81.3%.

Term Estimate Std. Error
Intercept 3.101 0.157

A -0.144 0.159
B 0.301 0.149
C 0.472 0.151
D 0.523 0.146
E -0.194 0.106
G -0.757 0.107
AC 0.726 0.213
BD -1.215 0.213

α2 = var(ui) 0.027 -

Table 6.5: Parameter estimates for the refitted HGLM. The parameter α2 denotes the scale
parameter of the gamma distribution for ui.

Factor
Block A B C D E F G

1 0 0 0 1 0 1 0
2 0 0 1 0 0 0 0
3 0 0 1 1 1 0 0
4 0 1 0 0 1 0 0
5 0 1 0 1 0 0 0
6 0 1 1 0 0 1 0
7 1 0 0 0 0 0 0
8 1 0 0 1 1 0 0
9 1 0 1 0 1 1 0

10 1 0 1 1 0 0 0
11 1 0 1 1 0 0 0
12 1 0 1 1 0 1 0
13 1 0 1 1 0 1 1
14 1 1 0 0 0 1 0
15 1 1 1 0 0 0 0
16 1 1 1 1 1 1 0

Table 6.6: Locally D-optimal wholeplot HGLM design for the wave soldering experiment, as-
suming runs of size 10
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6.5.1 Lack of balance

In the wave-solder example, we observed that the D-optimal design can be quite unbalanced.

That such a degree of imbalance is optimal is perhaps at first surprising. However, similar

phenomena have been observed before in the context of Poisson designs without random effects.

In particular, Russell, Woods, Lewis and Eccleston (2009) derive an analytical form for the

locally D-optimal approximate design in the first-order Poisson regression model, under certain

restrictions on the parameter values. The covariates are assumed to be continuous. In the

resulting optimal designs, each of the variables is set to only two levels, one of which is at the

end of the allowable range and one of which is in the interior. The interior value is used for only

100/(p+ 1)% of the runs in the experiment, where p is the number of factors (equivalently, the

number of non-intercept fixed effects parameters). Thus, D-optimal Poisson designs can be quite

unbalanced. Note that if βj is positive, then the majority of the time xj is set to the highest

possible level, whereas if βj < 0 then xj is most often set to the lowest possible level.

The key to understanding this feature is to consider the heteroscedasticity assumption in the

Poisson model. Settings of the factors, x, which have a higher mean response also have a higher

variance. Thus to be able to estimate with high precision the mean at such an x, one needs to

assign more experimental effort here than to settings where the mean (and so too the variance)

is lower.

A numerical study was conducted to investigate the sensitivity of balance in the D-optimal

HGLM design to the values of the parameters. The value of the intercept and main effects

parameters for A–G were varied one at a time, holding all other parameters constant. In each

case, the range tried was [−1.5, 1.5]|β̃i|, where β̃i is the corresponding value estimated from the

original data set (except for F , where a range of [-3,3] was used). The value of β0 was found not

to affect the optimal design.

The results of the numerical study are shown in Figure 6.1. Each of the panels in this figure

corresponds to one of the factors A-G. The horizontal axis of the ith panel shows the value of

the main effect parameter, βi, for the corresponding factor. The vertical axis on the ith panel

shows the proportion of runs in the experiment which have xi = 1. High or low proportions

correspond to a lack of balance, whilst those near 0.5 indicate near perfect balance. In each case,

the original fitted parameter value β̃i is indicated by a vertical dotted line. It is clear from the

figure that as βi increases, a greater proportion of runs use xi = 1. The parameter values for

the non-interacting factors E,F,G have the greatest impact on the optimal design. However,

the sizes of the effects of factors C and D are also important.
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Figure 6.1: Locally D-optimal designs for estimating Poisson-gamma HGLM in wave solder experiment: sensitivity of balance to parameter values. Each
panel corresponds to a factor whose main effect parameter is varied.
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The computations to produce Figure 6.1 are of the ‘overnight’ order: for each of 8 parameters,

11 values were used. For each of these values, 75 random starts of the co-ordinate exchange

algorithm were tried. The entire set of optimisations for each parameter value takes around 5-10

minutes on a Macbook Pro computer with a 2.4GHz Intel Core i5 processor.

6.6 Comparison of methods

6.6.1 Alternative approaches

As stated in the introduction, there are alternative conditional modelling strategies which can

be used to analyse the data from experiments with non-normal, blocked responses. We will

compare the HGLM designs obtained in this chapter to

1. designs for corresponding GLMMs, arising from an MQL approximation to the Fisher infor-

mation matrix associated with maximum (marginal) likelihood along the lines of Chapter

2.

2. designs for quasi-likelihood estimation of corresponding GLMMs, along the lines of Nia-

parast (2009). For further background to this approach, see Section 2.6.

We obtain a GLMM corresponding to a particular HGLM by using the same linear predictor

structure, and same fixed effects parameter values. The value of the GLMM block effect variance,

σ2, is chosen to make the resulting random effects distribution close to that under the HGLM.

For instance, in a Poisson-gamma HGLM, the distribution of vi = log ui is reasonably close to

normal with mean 0. A reasonable choice of σ2 is therefore the variance of vi.

For the Poisson response GLMM with log-link, the expressions for the information matrices

are

JMQL(ξ;β, σ2) =

nb∑
i=1

FTi W
−1
i,MQLFi

JQL(ξ;β, σ2) =

nb∑
i=1

FTi W
−1
i,QLFi ,

where Fi is the mi × p model matrix for the ith block, and

Wi,MQL = diag(e−fT (xij)β : 1 ≤ j ≤ mi) + σ21mi
1Tmi

Wi,QL = diag(e−fT (xij)β : 1 ≤ j ≤ mi) + (eσ
2

− 1)1mi
1Tmi

,

where f and β are as defined in (6.1), and diag(·) denotes the diagonal matrix with diagonal

entries equal to those given in the parentheses. Finally, 1mi = (1, 1, . . . , 1)T is an mi-vector

consisting of ones.

Note that it is much easier to evaluate the marginal expected h-information than it is to com-

pute the GLMM information matrix via the complete enumeration method detailed in Chapters

2 and 3. This is essentially because for the former we do not need to evaluate a separate integral

for each possible outcome in the block. Moreover, for the Poisson-gamma HGLM, all necessary
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integrals to compute the marginal h-information can be evaluated analytically: for details, see

Section 6.8.

6.6.2 Four factor example

As another example we consider designs where there are four controllable factors x1, . . . , x4 each

with two levels, again coded as 0/1. A first order predictor structure is assumed, in other words

ηij = β0 + β1x
(ij)
1 + β2x

(ij)
2 + β3x

(ij)
3 + β4x

(ij)
4 + vi , (6.7)

where x
(ij)
k is defined by xij = (x

(ij)
1 , . . . , x

(ij)
4 )T for k = 1, . . . , 4, i = 1, . . . , nb, j = 1, . . . ,mi.

In this case, f(x) = (1,xT )T , and β = (β0, β1, β2, β3, β4)T .

We shall obtain D- and DS-optimal designs for the Poisson-gamma HGLM and compare

these to MQL and QL designs for a corresponding Poisson GLMM, as described in Section

6.6.1. Locally optimal designs of these types are computed under the parameter scenarios (a)–

(d) outlined in Table 6.7. A complete list of the designs calculated to form the evidence for

this Section is given in Table 6.8, in terms of the combinations of criterion, design structure and

parameter scenario which define the design.

Scenario βT

(a) (0, 2, 2, 2)
(b) (0, 0.1, 0.2, 0.3, 0.5)
(c) (0, 0.2, 0.2, 0.2, 0.2)
(d) (0, 0, 0, 0, 0)

Table 6.7: Parameter scenarios in the four-factor example.

Criterion Wholeplot Split-plot Unrestricted
D-HGLM b, a∗,c∗,d∗ a, b, c, d a, b, c, d
DS-HGLM b, c, d

MQL-GLMM a∗,b∗,c∗,d∗ b, c, d, a∗ a, b, c, d
QL-GLMM b, c, d, a∗

Table 6.8: Complete list of designs calculated for Section 6.6.2. This table states which parameter
scenarios, as defined in Table 6.7, were used to calculate locally optimal designs, cross-classified
by criterion and design structure. Starred, italicised entries correspond to designs which were
used only to inform the argument, and which are not presented, or used in calculations, in
Section 6.6.2.

Throughout, we assume (α1, α2) = (10, 0.1) which satisfies the restriction α1α2 = 1 made in

Table 6.1. By simulation, we found that the variance of vi = log ui is approximately 0.1 and so

set σ2 = 0.1 to obtain an approximating GLMM. We consider the unrestricted, whole-plot and

split-plot design structures described in Section 6.4.

Comparison of D-optimal HGLM designs and GLMM designs

The overarching picture for unrestricted and wholeplot designs seems to be that HGLM D-

optimal designs tend to replicate treatments with higher means, or equivalently variances, much
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more strongly than GLMM designs. The D-optimal HGLM and GLMM unrestricted designs

under parameter scenario (b) are given (across two tables each) in Tables 6.9–6.10 and 6.11–

6.12. In these representations, the first table gives the treatments to be used in terms of their

factor settings, and the second table gives the incidence of these treatments in each block. In

particular, the larger numbers in the leftmost incidence column in Table 6.10 show that the

‘all-high’ treatment is replicated quite heavily. Figure 6.2 shows the relationship between the

treatment mean and its replication, for HGLM and GLMM unrestricted designs under parameter

scenarios (a)–(c). From this figure, we see that there is a strong positive association between

the mean response and replication in the leftmost column, corresponding to the HGLM designs.

The same trend is not evident in the GLMM column.

x1 x2 x3 x4

t1 1 1 1 1
t2 1 1 1 0
t3 1 1 0 1
t4 1 1 0 0
t5 1 0 1 1
t6 1 0 1 0
t7 1 0 0 1
t8 0 1 1 1
t9 0 1 1 0

t10 0 1 0 1
t11 0 0 1 1
t12 0 0 0 1

Table 6.9: D-optimal HGLM unrestricted design under parameter scenario (b). Table shows
factor settings for the treatments, t1–t12, used in the design defined in Table 6.10.

Treatment
Block t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 Block replication

1 5 1 1 2 1 1
2 3 2 1 1 2 1 1
3 3 1 1 2 3 2
4 4 1 1 2 1 1 1
5 3 1 2 1 3 1
6 3 1 1 2 2 1 1
7 3 1 1 1 1 2 1 1
8 4 1 1 1 3 1
9 3 2 2 2 1 1

10 2 1 2 2 3 2
11 3 1 2 2 1 1 1
12 3 1 2 1 1 2 2
13 2 1 1 1 2 3 1

Table 6.10: D-optimal HGLM unrestricted design, under parameter scenario (b). Table shows
incidence within blocks of treatments t1–t12, defined in Table 6.9. For example, the top-left
entry of the main part of the table tells us that treatment t1 occurs 5 times in the first block.
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X1 X2 X3 X4

t1 1 1 1 1
t2 1 1 1 0
t3 1 1 0 1
t4 1 1 0 0
t5 1 0 1 1
t6 1 0 1 0
t7 1 0 0 1
t8 1 0 0 0
t9 0 1 1 1

t10 0 1 1 0
t11 0 1 0 1
t12 0 1 0 0
t13 0 0 1 1
t14 0 0 1 0
t15 0 0 0 1

Table 6.11: GLMM unrestricted design, computed under parameter scenario (b) with MQL
approximation. Table shows factor settings for the treatments used to define the design in Table
6.12.

Treatment
Block t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 Block

repli-
cation

1 1 1 1 2 1 1 1 2 1
2 1 2 1 2 1 2 1 1
3 3 1 1 1 1 1 1 1 1
4 1 3 2 1 1 2 1
5 2 1 1 1 1 2 1 1 1
6 1 2 2 1 1 2 1 1
7 1 1 1 1 2 1 1 1 1 1
8 2 1 1 1 1 1 1 1 1 1
9 2 1 2 1 2 2 1

10 1 1 1 2 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1
12 2 3 1 1 1 2 1
13 1 1 2 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 2 1 3 1 1
16 2 3 1 3 1 1

Table 6.12: GLMM unrestricted design, computed under parameter scenario (b) with MQL.
Table shows incidence of treatments t1–t15 within blocks. Note that the factor settings for the
treatments are given in Table 6.11.
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Figure 6.2: Relationship between mean response and replication, unrestricted locally D-optimal
designs. Left and right columns correspond to the two different models, HGLM and GLMM
(with MQL) respectively. The rows correspond to the different parameter scenarios outlined in
the text. Scenario (d) is omitted as any treatment would have the same mean for these values
of the parameters.
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In the whole-plot designs, many blocks use the treatment which sets all of the factors to the

high level, for instance see Table 6.13 which shows the optimal HGLM wholeplot design under

parameter scenario (b). This design favours the ‘all-high’ treatment.

For split-plot designs, the most obvious pattern in the HGLM D-optimal designs is that the

whole-plot factors tend to be imbalanced. The favoured value of the whole-plot factor is the one

which leads to higher variance. Tables 6.14 and 6.15 show respectively the treatments and their

incidence in blocks for the HGLM optimal split-plot design under parameter scenario (a). In

Table 6.15, the treatments are ordered so that they can be divided according to whether x1 = 1

or 0. From this it is clear that x1 = 0 in only one of the 16 blocks. This imbalance is not as

evident in the GLMM and quasi-likelihood split-plot designs. See for instance Tables 6.16 and

6.17, which together give the quasi-likelihood design under parameter scenario (b).

Replication of high-mean treatments is beneficial in different ways depending on the design

structure. Simulation studies were performed to assess the variances and correlations of param-

eter estimators using the designs from parameter scenario (a). Estimation of both HGLMs and

GLMMs was considered, using the R packages hglm (Ronnegard, Shen and Moudud, 2010) and

glmmML (Broström, 2011). Using the results of these simulations, the validity of the asymptotic

approximations was also evaluated, and found to be satisfactory. For details, see Appendix 6.9.

When estimating the HGLM using an unrestricted design under parameter scenario (b),

surprisingly overall the HGLM design has higher estimator variances than the GLMM design.

This can be seen in Figure 6.3 which compares diagonal elements of the variance matrix of

(β̂, v̂ − v) from the two designs. The HGLM design does however have lower correlations

between the main effects estimators (Figure 6.4). When using a wholeplot structure, the GLMM

design gives much less precise estimation of the random effects in the HGLM (though estimation

is better for the other parameters, see Figure 6.5 which again compares the diagonal of the

variance matrix for the two designs).

Again under scenario (b), when estimating the GLMM using an unrestricted design structure,

the GLMM design provided better (i.e. lower variance) estimators of the fixed effects (Table

6.18). When using wholeplot designs, however, there were convergence issues with the estimation

procedure. This seemed to be due to difficulty with the GLMM design in estimating the block

effect variance σ2. This is likely due to the fact that the GLMM design methodology does

not yet take into account estimation of this parameter. With σ2 held fixed at its ‘true’ value

(i.e. σ2 = 0.1) during the estimation, the GLMM design provided better estimates of all the

parameters, most notably the intercept.

Comparison with HGLM-DS and quasi-likelihood GLMM designs

Overall, the HGLM-DS and quasi-likelihood designs were close to D-optimal for estimating the

GLMM. Also, HGLM-DS and quasi-likelihood designs both had similar efficiencies to the GLMM

designs for estimating the full HGLM (Tables 6.19–6.22). An apparent exception to the latter is

in the results for the split-plot designs, where the GLMM design is somewhat more efficient than

the quasi-likelihood for estimating the HGLM. However, this is is not really a proper exception:

Table 6.22 shows that in fact the GLMM design was only a ‘local solution’ of the optimisation

problem, being slightly worse for estimating the GLMM than the quasi-likelihood design. It is

of course a possibility that there are many designs which are D-optimal for the GLMM which

have different D-efficiencies for estimating the HGLM.
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Comparison of design structures

Suppose that it is possible to choose between several design structures, but more restricted

designs (e.g. split-plot or wholeplot) are economically more convenient. In other words, some

of the factors in the experiment are hard, but not impossible, to change within blocks. Then

the choice of design will involve a trade-off between the loss in efficiency incurred by using a

more restricted design versus the reduction in cost. As a result it is worthwhile quantifying such

losses.

Table 6.23 shows the D-efficiencies, for estimation of the HGLM, of the locally D-optimal

HGLM designs calculated under parameter scenarios (b), (c) and (d). The use of a split-plot de-

sign when we could actually use an unrestricted design results in a loss in D-efficiency of between

14 and 43 percentage points. These losses occur in parameter scenarios (c) and (b) respectively.

Clearly the D-efficiency loss in scenario (c) may be tolerable, depending on the reduction in cost

achieved. The use of a wholeplot design when we could in fact use an unrestricted design results

in larger losses of between 43 and 62 percentage points. Such large losses are less likely to be

permissible.

The D-efficiency of a wholeplot design compared to a split-plot design can also be calculated

from Table 6.23. For instance, in parameter scenario (c), this efficiency is 57.4/86.0 × 100% ≈
66.7%. The worst case efficiency loss when using a wholeplot rather than a split-plot design

among these examples was 38.8 percentage points. This occurred in scenario (b).
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Block x1 x2 x3 x4 Repl.
1 1 1 1 1 5
2 1 1 1 0 1
3 1 1 0 1 1
4 1 0 1 1 2
5 1 0 0 1 1
6 0 1 1 1 3
7 0 1 1 0 1
8 0 1 0 1 1
9 0 0 1 1 1

Table 6.13: D-optimal HGLM wholeplot design, parameter scenario (b). Note that the factor
settings are held constant across each block, and so only one row per block is required.

x1 x2 x3 x4

t1 1 1 1 1
t2 1 1 1 0
t3 1 1 0 1
t4 1 1 0 0
t5 1 0 1 1
t6 1 0 1 0
t7 1 0 0 1
t8 1 0 0 0
t9 0 1 1 1

t10 0 1 1 0
t11 0 1 0 0
t12 0 0 1 1
t13 0 0 0 1
t14 0 0 0 0

Table 6.14: D-optimal HGLM splitplot design, parameter scenario (a). Table shows factor
settings for the treatments used in the design defined by Table 6.15.
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Treatment
x1 = 1 x1 = 0

Block t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 Block repli-
cation

1 3 2 1 2 1 1 1
2 4 3 1 1 1 1
3 2 1 3 2 2 1
4 3 2 3 1 1 1
5 1 2 2 1 2 2 1
6 2 2 2 1 2 1 1
7 3 4 1 1 1 1
8 2 1 1 1 2 3 1
9 1 1 1 4 2 1 1

10 2 2 1 3 2 1
11 2 1 3 1 1 1 1 1
12 1 3 1 3 2 1
13 1 4 2 1 2 1
14 3 3 2 1 1 1
15 3 1 1 2 3 1
16 5 2 1 1 1 1

Table 6.15: D-optimal HGLM splitplot design, parameter scenario (a). Table shows incidence
of treatments t1–t14 within blocks. Note that the factor settings for the treatments are given in
Table 6.14.

x1 x2 x3 x4

t1 1 1 1 1
t2 1 1 1 0
t3 1 1 0 1
t4 1 1 0 0
t5 1 0 1 1
t6 1 0 1 0
t7 1 0 0 1
t8 1 0 0 0
t9 0 1 1 1

t10 0 1 1 0
t11 0 1 0 1
t12 0 1 0 0
t13 0 0 1 1
t14 0 0 1 0
t15 0 0 0 1
t16 0 0 0 0

Table 6.16: Quasi-likelihood GLMM split-plot design, parameter scenario (b). Table shows
factor settings for the treatments used in the design defined in Table 6.17.
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Treatment
x1 = 1 x1 = 0

Blo-
ck

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 Rep.

1 1 1 2 1 2 1 1 1 1
2 1 1 1 1 1 2 2 1 1
3 2 2 1 1 1 3 1
4 2 1 1 1 1 2 1 1 1
5 1 1 3 1 2 1 1 1
6 1 2 2 1 2 2 1
7 3 1 2 2 2 1
8 3 1 1 1 1 1 2 1
9 1 2 1 2 2 2 1
10 3 2 1 3 1 1
11 1 2 3 1 1 2 1
12 2 1 2 1 2 1 1 1
13 2 2 1 2 2 1 1
14 1 1 2 2 1 1 2 1
15 2 2 1 1 2 1 1 1
16 3 2 1 1 3 1

Table 6.17: Quasi-likelihood GLMM split-plot design, parameter scenario (b). Table shows
incidence of treatments t1–t16 within blocks. Note that the factor settings for the treatments
are given in Table 6.16.
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Figure 6.3: Variances of HGLM parameter estimators, comparison between unrestricted D-
optimal HGLM and GLMM designs in parameter scenario (b). Each point on the plot corre-
sponds to an entry in the diagonal of the covariance matrix, var(β, v̂ − v).



6.6. COMPARISON OF METHODS 175

-0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Correlation under HGLM design

C
or

re
la

tio
n 

un
de

r G
LM

M
 d

es
ig

n

Figure 6.4: Correlations between HGLM parameter estimators, comparison between unrestricted
D-optimal HGLM and GLMM designs in parameter scenario (b). Each point on the plot corre-
sponds to an off-diagonal term in the correlation matrix, corr(β, v̂ − v).
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Figure 6.5: Jittered variances for estimating HGLM, comparison between wholeplot D-optimal
HGLM and GLMM designs in parameter scenario (b). Each point on the plot corresponds to
an entry in the diagonal of the covariance matrix, var(β, v̂ − v)
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Design
Parameter HGLM-D GLMM

β0 0.5085 0.0447
β1 0.1144 0.0274
β2 0.1180 0.0270
β3 0.1153 0.0267
β4 0.1144 0.0282

Table 6.18: Maximum likelihood estimator variances, for estimation of GLMM, using unre-
stricted designs under parameter scenario (b).

Design
Scenario (β-values) GLMM HGLM-DS

(b) 93.6 93.6
(c) 96.5 98.7
(d) 100.0 100.0

Table 6.19: D-efficiency (%), for estimation of the HGLM, of unrestricted designs

Design
Scenario (β-values) HGLM-D HGLM-DS

(b) 83.4 100.0
(c) 88.7 100.0
(d) 100.0 100.0

Table 6.20: MQL D-efficiency (%), for estimation of the GLMM, of unrestricted designs

Design
Scenario (β-values) QL GLMM

(b) 92.7 98.7
(c) 92.0 93.9
(d) 99.9 99.9

Table 6.21: D-efficiency (%), for estimation of the HGLM, of split-plot designs

Design
Scenario (β-values) QL HGLM

(b) 100.4 95.5
(c) 99.5 94.5
(d) 99.9 100.0

Table 6.22: MQL D-efficiency (%), for estimation of the GLMM, of split-plot designs

Design structure
Scenario (β-values) Split-plot Wholeplot

(b) 57.5 38.0
(c) 72.7 44.5
(d) 86.0 57.4

Table 6.23: D-efficiency (%), for estimation of HGLM, of locally D-optimal restricted HGLM
designs compared with unrestricted locally D-optimal HGLM design under parameter scenarios
(b), (c) and (d).



6.7. DISCUSSION 177

6.6.3 Bayesian design

In this section, we consider split-plot designs for the first order model (6.7) which are robust

to a range of possible parameter values. We assume that x1 is the only whole-plot factor. To

attempt to find a more robust solution, we find the design maximising the objective function

(6.6). As regards prior beliefs, we adopt independent uniform prior distributions with ranges

[−0.5, 0.5], [−0.3, 0.3], [−0.2, 0.2] and [−0.1, 0.1] for β1, β2, β3 and β4 respectively. It is assumed

a priori that β0 = 0 and α1 = 10. This corresponds to a moderate range of uncertainty about

the possible size and direction of the effects of the factors, with the whole-plot factor potentially

having a non-negligible influence. To quantify this, suppose that β1 = 0.5. If x1 changes from 0

to 1, then ceteris paribus the conditional mean of the response will be multiplied by e0.5 ≈ 1.64,

a 64% increase. For β1 = −0.5, the same shift in x1 would result in a 39.3% decrease in the

conditional mean response.

We approximated the integral in objective function (6.6) by

ψBayes(ξ) ≈
1

30

30∑
s=1

logψD(ξ;βs,α) ,

where βs, s = 1, . . . , 30, is a 30-point Latin Hypercube sample from

[−0.5, 0.5]× [−0.3, 0.3]× [−0.2, 0.2]× [−0.1, 0.1] .

This number of abscissae rendered the optimisation feasible, but still a substantial task requiring

several hours of computation. Quadrature schemes involving a larger number of abscissae, such

as that of Gotwalt et al. (2009) do not currently seem feasible with designs containing this many

free co-ordinates.

The local efficiency, at β = 0, of the Bayesian design was 99.99%, so there is very little

difference between the Bayesian and centroid designs. Figure 6.6 compares the Bayesian design

with the locally optimal design at this centroid in terms of the efficiency distributions induced

by the prior distribution. To produce this figure we first sampled 450 parameter vectors from

the prior distribution, computing the locally optimal design at each of these parameter vectors.

The efficiency of the Bayesian design and centroid design were then computed by comparing to

the locally optimal design. Finally, kernel density estimates of the two efficiency distributions

were made. From the figure, we see that the performance of the Bayesian design is essentially

indistinguishable from the centroid design in this case. Both designs are very robust, suggesting

that in practical terms the degree of parameter uncertainty expressed in the prior is not hugely

significant.

6.7 Discussion

Optimal HGLM designs are a feasible strategy in problems where there are blocks or split-plot

structures and count responses, although finding unrestricted Bayesian designs for the 7-factor

example is a computational challenge. They provide an interesting alternative compared with

GLMM designs along the lines of Chapter 2. Efficiency gains are clearly possible when using

this approach in favour of more näıve ones, particularly through the replication of high-variance
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Figure 6.6: Kernel density estimates of the efficiency distributions of the Bayesian design (solid
line) and locally optimal design at the centroid (dotted line) from Section 6.6.3.

treatments.

An open issue, as with the GLMM design scenario, is the consideration of the quality of the

estimation of variance components. Lee and Nelder (1996, Section 4.1) comment that estimators

of β and α are asymptotically orthogonal, and nearly so in finite samples. However this may

not hold when the blocks are very small, and in this case it is likely to be difficult to estimate α.

In our examples, we have focussed on the Poisson-gamma model, since this yields analytically

tractable expressions for the matrices E(W ) and E(U) which are present in the marginal h-

information matrix. Other models will typically require additional computation in order to

approximate these matrices. Investigation of methods and examples for other response and

random effects distributions is an avenue for future research.
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6.8 Appendix: Further details

In this section we give explicit analytical expressions for the terms E(W ) and E(U) which appear

in the marginal h-information matrix. For other HGLMs these expectations can typically not

be evaluated analytically, and some approximation procedure is required.

We have that yij |ui ∼ Poisson(µij) where µij = exp{fT (xij)β}ui and ui ∼ Gamma(α1, α2).

Here α1 > 0 is a shape parameter, and α2 > 0 is a scale parameter. As the model uses the

canonical link, the GLM weight (6.4) reduces to

V (µij) = µij = exp{fT (xij)}ui .

Since E(ui) = α1α2, which is equal to 1 by the restriction suggested in Lee and Nelder (1996)

to ensure identifiability,

E(W ) = diag
{

exp[fT (xij)] : (i, j) in lexicographical order
}
.

The matrix U is diagonal with ith entry −∂2 log fv(v;α)/∂v2
i . The pdf for the random effect ui

is

fu(ui;α1, α2) =
uα1−1
i exp(−ui/α2)

Γ(α1)αα1
2

.

Using the fact that vi = log ui, and applying the transformation rule for pdfs, we see that the

density of v satisfies

log fv(v) = log fu(exp(v)) + v

= [(α1 − 1) log u− u/α2 − log(Γ(α1)αα1
2 )] + v

= α1v − exp(v)/α2 − log(Γ(α1)αα1
2 ) .

Hence

E

(
−∂

2 log fv(v;α)

∂v2
i

)
= E

(
− ∂2

∂v2
i

nb∑
i′=1

log fv(vi′ ;α)

)
= E (exp(vi)/α2)

= α1 ,

where the first line follows by independence of the random effects. Thus E(U) is in fact an

nb × nb diagonal matrix with all entries equal to α1.

6.9 Appendix: Validation of asymptotic approximations

The simulation studies conducted in Section 6.6.2 were also used to assess the validity of the

asymptotic approximations. The sampled parameter estimates were used to compute a Monte

Carlo approximation, Vemp, of var(β̂T , v̂T −vT )T . In Figures 6.7 and 6.8, the entries of Vemp are

plotted against the corresponding entries in the theoretical approximation, Vth, to var(β̂T , v̂T −
vT )T . The latter is obtained by inverting the marginal h-information matrix, (6.5), in other

words Vth = J−1
M . The plots shown are for the unrestricted and whole-plot designs under
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parameter scenario (a). Other examples with comparable numbers and sizes of blocks resulted

in similar figures. The points in the figures are close to the line of equality, indicating that the

asymptotic approximations hold reasonably well, in other words Vemp ≈ Vth.
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Figure 6.7: Comparison between theoretical and empirical covariance matrices, HGLM unre-
stricted design under parameter scenario (a).
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Figure 6.8: Comparison between theoretical and empirical covariance matrices, HGLM whole-
plot design under parameter scenario (a).
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Chapter 7

Optimal design in the vicinity of

singularities

In this chapter we consider in more depth the construction of designs which are robust to

parameter uncertainty. In particular, we show that the most popular formulation of the Bayesian

D-optimality criterion (Chaloner and Larntz, 1989; Chaloner and Verdinelli, 1995) is degenerate

in a wider range of scenarios than has previously been explicitly acknowledged. To overcome

this problem, we consider (i) the use of alternative optimality criteria which are better behaved,

and (ii) the use of designs with infinite support, defined through a probability density function.

7.1 Introduction

In recent years there has been focus on applying more complex statistical models to the analysis

of experimental data. For instance, in some industrial applications the response variable does not

follow a normal distribution, and so a generalised linear model (GLM) or generalised linear mixed

model (GLMM) is appropriate for the analysis. Examples in the photography, semiconductor

and aeronautrics industries are given by Robinson et al. (2004, 2006) and Woods and Van de

Ven (2011). Another area is pharmacokinetics, where it is beneficial to use mechanistic models

whose parameters have a direct biological interpretation. Typically compartmental models are

used, with random effects which model the variation in drug response between patients (see

Retout, Comets, Samson and Mentré, 2007, for references and a discussion of optimal design for

these models).

These more complex models have in common the property that the D-optimal design may

depend on the unknown values of the model parameters, θ ∈ Rp. Several methods have been

proposed to derive designs which are reasonably efficient under a range of plausible values for

the parameters, such as maximin and Bayesian approaches. We initially consider approximate

designs defined by a discrete probability measure. For a univariate response we can write

ξ =

{
x1 . . . xk

w1 . . . wk

}
, (7.1)

183
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with xi ∈ X ⊂ Rq and wi > 0 for 1 ≤ i ≤ k, and
∑k
i=1 wi = 1. If there are blocks present within

the data, or there are multivariate responses, we may need a slightly different notion of design,

such as that in Chapters 2 and 3. The weights wi represent the proportions of units which are

assigned to experimental conditions xi.

A definitive account of Bayesian design is given by Chaloner and Verdinelli (1995), who

argue that a principled approach is to seek the design, ξ∗, which maximises the expected gain

in Shannon information from prior to posterior density, given by

φS(ξ) =

∫
log

p(θ|y, ξ)
f(θ)

p(y,θ|ξ) dθ dy , (7.2)

where f(θ) is the prior density for θ, p(θ|y, ξ) is the posterior density of θ, and p(y,θ|ξ) is the

joint density of y and θ. For nonlinear models, the integral (7.2) is intractable. In this case, the

authors propose maximising one of the following two substitutes, based on asymptotic normal

approximations to the posterior distribution,

φ(ξ) = Eθ log |nM(ξ;θ)| (7.3)

φ2(ξ) = Eθ log |nM(ξ;θ) +R| , (7.4)

where M is the Fisher information matrix, n is the sample size, and R is the matrix of second

derivatives of log f or the prior precision matrix. The resulting criteria are referred to as Bayesian

D-optimality criteria.

The objective function (7.3) is also often used when there is not necessarily an assumption

that the resulting data will be analysed using Bayesian methods (e.g. Woods et al., 2006), or

when different priors may be used for the design and analysis. In either of these cases, the

principled justification of the use of (7.2) breaks down somewhat. Instead, we can think of

maximisation of (7.3) essentially as trading off the efficiency of the design across the likely

values of the parameters.

We say that θ0 is a singularity if, for any fixed ξ, |M(ξ;θ)| → 0 as θ → θ0. If it is possible a

priori for θ to be arbitrarily close to θ0, then there may be serious issues with the use of (7.3),

or also (7.4) if R is not positive definite. Specifically, we may have that φ(ξ) = −∞, in other

words (7.3) does not converge, for many designs which would not traditionally be considered to

be singular. In extreme cases, see for instance Section 7.6, we can have that φ(ξ) = −∞ for all

finitely supported designs, even though almost all such designs have positive (local) efficiency for

all values of θ which are possible a priori. In this situation, (7.3) fails to discriminate between

any proposed design, and so is useless in helping us make a choice.

This issue of convergence has been little discussed in the optimal design literature, and yet

it is important to understand in order to be able to design experiments when there is ‘extreme’

parameter uncertainty. There is an example of non-convergence in Tsutakawa (1972), and a

small amount of discussion of the issue in Chaloner and Verdinelli (1995) who mention it only

when the prior support is unbounded; in Section 7.6 we present an example of non-convergence

when the prior is supported on a bounded interval. In this chapter, we attempt to outline the

main problems surrounding convergence and find examples from the literature in which the issue

may arise. We also put forward some suggestions for alternative methods of handling parameter

uncertainty which work in the vicinity of singularities. Several analytical results are given for
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the exponential model, which serves to help understanding of the general issues.

One potential way forward is to extend the traditional notion of an approximate design.

Rather than restricting our attention only to finitely supported probability measures as in Atkin-

son et al. (2007), we also consider designs with infinite support defined by a probability density

function. We refer to such designs as density designs, and the performance of finite samples from

these densities is considered.

7.2 Singularities

We now attempt to clarify, at least conceptually, the issue of convergence. Let ξ be a fixed

design and θ0 be a singularity such that there are values of θ which are arbitrarily close to θ0,

and which are possible a priori. Then as θ → θ0, log |M(ξ;θ)| → −∞. Depending on the rate

of the convergence of log |M | to −∞, and the behaviour of f near θ0, the integral in (7.3) may

or may not converge.

For instance, suppose that the model had one parameter, p = 1, θ0 = 0 and log |M | and f

were such that

log |M(ξ, θ)|f(θ) = O(|θ|−1) as θ → 0 .

Then we could approximate the integral (7.3) close to θ0 = 0, as∫ δ

−δ
log |M(ξ, θ)|f(θ)dθ ≈ C

∫ δ

−δ
|θ|−1dθ

= −∞ ,

or some C, which is negative since log |M(ξ; θ)| → −∞. Since in regular problems log |M | is

bounded above, this is sufficient to establish that φ(ξ) = −∞. The approximation can be made

more rigorous, but the above sketch is enough to show what might happen.

Essentially, for φ to be finite, the prior density must decay sufficiently quickly in the neigh-

bourhood of all singularities. It is difficult in general to determine analytically what is the

necessary rate of decay for a given model. If we do not consider the issue, we run the risk that

we are in the situation discussed in Section 7.6, in which all finitely supported designs have

φ(ξ) = −∞.

A problem in practice is that we cannot establish numerically whether the integral (7.3)

converges. We may perform checks, for instance, by using quadrature schemes with an increasing

number, na, of abscissae – but we will be unable to tell if it is the case that our estimate of φ(ξ)

is simply converging very slowly to −∞ as na increases.

7.2.1 Examples where the issue arises

In this section we give examples of some models which contain singularities, and one which may

potentially do so. Further details are given in Sections 7.3 and 7.6.
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Logistic model

Chaloner and Larntz (1989) consider Bayesian designs for the logistic model where the response

is Bernoulli, with a single explanatory variable x, parameters θT = (µ, β) and probability of

success

p(x,θ) =
1

1 + exp{−β(x− µ)}
. (7.5)

In this model there are singularities at β = 0,∞. From here onwards, we use the phrase ‘β =∞
is a singularity’ as a shorthand for: as β → ∞, for any fixed design |M(ξ,θ)| → 0. The reason

for the occurrence of the singularity at 0 is simple, since when β = 0, µ is not identifiable. For

further details, see Section 7.3.1.

Binary GLMMs

Let us suppose that we have binary responses in blocks, as occurs in the aeronautical industry

example of Woods and Van de Ven (2011). Such data can be modelled using a binary GLMM.

Let the jth response in the ith block be denoted by yij , i = 1, . . . , n, j = 1, . . . ,mi, and

corresponding vectors of explanatory variables by xij ∈ [−1, 1]q. Then the random intercept

binary generalised linear mixed model is given by

yij |ui ∼ Bernoulli{µ(xij |ui)}

g(µ(x|u)) = fT (x)β + u (7.6)

ui ∼ N(0, σ2) ,

where g is the logit function, and the ui are random intercepts which are independent for different

i. The (known) function f : [−1, 1]q → Rp maps the explanatory variables to the terms in the

model, and β is the vector of p fixed effects parameters. Design for these models is considered in

Chapters 2 and 3. For large values of σ2, the model is degenerate (see Section 7.9.4). This causes

concern for the potential existence of a singularity at σ2 =∞. Moreover, it is a possibility that

similar problems to the 1-factor logistic model may occur at β =∞.

Exponential model

The exponential decay model occurs in chemical kinetics (Atkinson et al., 2007, pp. 248–250).

We consider the model parameterised by half-life, θ ∈ R, rather than the ‘rate’ parameterisation

used by the above authors. The response y is the concentration of a chemical compound, and

the explanatory variable is time, denoted here by x ≥ 0. The model is given by

yi = η(xi, θ) + εi η(x, θ) = e−x/θ (7.7)

εi ∼ N(0, σ2) ,

where 1 ≤ i ≤ n, xi ≥ 0, and σ2 > 0. The model has singularities at θ = 0,∞.

Compartmental model

Atkinson, Chaloner, Herzberg and Juritz (1993) consider designs for a single compartmental

model, which can be used to model the passage of a drug through a subject. The response y
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is the concentration in the blood of a chemical of interest, and x ≥ 0 is time. The model has

parameters θ = (θ1, θ2)T and is given by

yi = η(xi,θ) + εi

η(x, θ) = e−θ1x − e−θ2x (7.8)

εi ∼ N(0, σ2) ,

where 1 ≤ i ≤ n, xi ≥ 0, and σ2 > 0. We have omitted the magnitude parameter θ3 from the

model as this does not affect the optimal design. This model has singularities along the line

θ1 = θ2 and when θ1 = 0 or θ2 = 0.

7.3 Examples in more detail

In this section we justify our claims about the existence of singularities in two of the examples,

in varying levels of mathematical rigour.

7.3.1 Logistic model

Chaloner and Larntz (1989) give the expression for the determinant of the information matrix

of model (7.5) for a design

ξ =

{
x1 · · · xk

w1 · · · wk

}
. (7.9)

as

|M(ξ,θ)| = β2ts , (7.10)

where

t =

k∑
i=1

wiλi s =

k∑
i=1

wiλi(xi − x̄)2

x̄ = t−1
k∑
i=1

wiλixi λi = p(xi,θ){1− p(xi,θ)} ,

and p(x,θ) is given by (7.5).

To see that there is a singularity at β = 0, first note that mini xi ≤ x̄ ≤ maxi xi and

0 ≤ λi ≤ 1/4 for all i. Therefore

s ≤ (1/4)(max
i
xi −min

i
xi)

2

t ≤ 1/4 ,

and clearly also s, t ≥ 0. Thus

|M(ξ,θ)| ≤ β2(1/16)(max
i
xi −min

i
xi)

2 → 0 as β → 0 .

The existence of this singularity is due to the fact that at β = 0, µ is not identifiable.
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The singularity as β →∞ occurs because the mean dose-response curve converges to a step

function centred on x = µ. Thus any fixed design will eventually miss the region of interest for

β sufficiently large, as the ‘jump’ in the mean response will occur between design points. For

the formal proof, see Section 7.9.3.

The existence of the singularity at β = 0 is due to the choice of parameterisation, which

is such that model (7.5) is not a GLM (as the model is not linear in the parameters on the

scale of the linear predictor). This issue could be avoided by choosing a GLM parameterisation.

However, the scale given is probably the most natural on which to specify prior information

about the parameters: if one assumed a priori that the intercept and slope parameters were

independent, this would imply that β and µ were correlated (possibly only weakly). This may

not necessarily be desirable. In any case, the chosen scale is more than likely the one we would

use to report results, and so it is sensible to use this parameterisation for the design.

To consider the impact of the prior distribution on the convergence of (7.3), we fix a particular

design

ξ =

{
0.5 0.5

−1 1

}
,

and let µ = 0.

For this design the determinant of the information matrix is

|M(ξ,θ)| = |β|2e2|β|(1 + e|β|)−4 .

Since 0 ≤ |β| ≤ e|β| and e|β| ≥ 1, the above satisfies

|β|4(2e|β|)−4 ≤ |M(ξ,θ)| ≤ e4|β| ,

and so

4 log |β| − 4 log 2− 4|β| ≤ log |M(ξ,θ)| ≤ 4|β| . (7.11)

Suppose that X1(β) and X2(β) are R-valued functions satisfying X1(β) ≤ X2(β) for all β. Then

we have the following property

E(X1) =

∫
R
X1(β)f(β)dβ ≤

∫
R
X2(β)f(β)dβ = E(X2) . (7.12)

Using (7.11) and (7.12) with X1 = log |M | and X2 = 4|β|, we see that if E(|β|) < ∞ then also

E log |M | ≤ 4E(|β|) < ∞. The condition E(|β|) < ∞ is clearly quite unrestrictive and is only

broken by very pathological priors, such as the Cauchy distribution.

To ensure also that E log |M | > −∞, a sufficient extra condition is that E log |β| > −∞.

We see this by considering (7.11) and (7.12) with X1 = 4 log |β| − 4 log 2 − 4|β| and X2 =

log |M |. Similar arguments show that this extra condition is also necessary. However, it is

rather more strict than the first condition, and it therefore may be violated more easily by prior

distributions which are only ‘semi-pathological’. For instance, if β = exp(−|Z|) where Z has a

standard Cauchy distribution, then this condition is broken and so φ(ξ) = −∞. Nonetheless, this

distribution on β might be plausible for some applications. Its cumulative distribution function
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is

F (β) = 2

(
− arctan{− log(β)}

π
+ 0.5

)
, 0 < β ≤ 1 . (7.13)

This CDF is plotted in Figure 7.1.
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Figure 7.1: Cumulative distribution function, (7.13), of β under the semi-pathological prior in
Section 7.3.1

7.3.2 Compartmental model

The information matrix for model (7.8) under design ξ, using the notation in (7.9), is

M(ξ,θ) =

k∑
i=1

wi

(
∂η(xi,θ)

∂θ

)(
∂η(xi,θ)

∂θ

)T
=

( ∑k
i=1 wix

2
i e
−2θ1xi −

∑k
i=1 wix

2
i e
−(θ1+θ2)xi

−
∑k
i=1 wix

2
i e
−(θ1+θ2)xi

∑k
i=1 wix

2
i e
−2θ2xi

)
.

As θ1 → θ2, the first column tends to the negative of the second column and so |M(ξ,θ)| → 0.

Thus there is a singularity along the line θ1 = θ2. This singularity arises because the expected

value of the response is identical for any pair of (θ1, θ2) such that θ1 = θ2.

If either θ1 or θ2 → ∞, three entries of the information matrix will tend to 0 and so

|M(ξ,θ)| → 0. Therefore there are also singularities where θ1 = ∞ or θ2 = ∞. These sin-

gularities occur because the part of the model corresponding to the large parameter value is

eventually indistinguishable from 0 on the (fixed) design points. The prior distributions used by

Atkinson et al. (1993), which were uniform priors, successfully avoided all the singularities we

have identified, but there was no mention of the issue.
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7.4 Potential solutions

In this section we outline our main ideas for obtaining designs in the case where there are

singularities, and so the issue of convergence of (7.3) is unavoidable. However to summarise,

we must either give up the primacy of the criterion that maximises (7.3), or else in general be

prepared to abandon finitely supported designs.

7.4.1 Local efficiency distribution

Our first suggestion, which originated in Woods et al. (2006), is that the assessment of any

candidate design ξ should be on the basis of the local efficiency function eff(ξ|θ), and the

distribution of local efficiencies induced by our prior beliefs on θ. The local efficiency is given

by

eff(ξ|θ) =
|M(ξ,θ)|1/p

supξ′ |M(ξ′,θ)|1/p
,

provided that supξ′ |M(ξ′,θ)| > 0. We assume that the set of θ ∈ Rp such that supξ′ |M(ξ′,θ)| =
0 is of measure zero with respect to the prior distribution. This set is the the collection of

singularities if M is continuous. This regularity condition holds in all of the examples we have

considered, and it is sufficient to guarantee that the efficiency distribution is well-defined. It

does not matter what value we assign to eff(ξ|θ) for singular θ since this only affects events of

probability zero.

From this perspective, the optimisation of an objective function which involves an average

over our prior beliefs on θ is a device to aid us in obtaining a satisfactory efficiency distribution

by producing a 1-dimensional summary of this distribution. This is essentially a pseudo-Bayesian

viewpoint which assumes that the resulting analysis will be performed in a non-Bayesian fashion.

Chaloner and Verdinelli (1995) discourage the use of efficiency-based criteria, citing among

other things the lack of a canonical choice of such a criterion. However, in those cases where the

principles behind the justification of (7.2) break down, and (7.3) is degenerate, it seems sensible

to make use of a criterion which is well-behaved. The choice between different efficiency-based

criteria can perhaps be made by the extent to which they penalise very low efficiencies in certain

parameter scenarios.

7.4.2 Mean local efficiency

An alternative to the optimisation of (7.3) is to maximise the mean local efficiency,

Ψ(ξ) = Eθ eff(ξ|θ) , (7.14)

which is well-defined and satisfies

0 ≤ Ψ(ξ) ≤ 1 ,

for all choices of model, prior distribution, and design such that the set of θ ∈ Rp with

supξ′ |M(ξ′,θ)| = 0 is of measure zero. A pseudo-decision-theoretic justification of this criterion,

assuming that the analyst will use non-Bayesian methods, is given in Section 7.5.2, together with

practical issues surrounding the computation of (7.14). The objective function can be shown
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to be concave on the space of design measures, and also differentiable. Therefore a General

Equivalence Theorem holds for this criterion.

7.4.3 Firth and Hinde’s Iα

Another possible alternative criterion is to maximise the objective function of Firth and Hinde

(1997),

Iα(ξ) =

(1/α) log[Eθ{|M(ξ,θ)|α}] α 6= 0

Eθ log{|M(ξ,θ)|} α = 0 .
(7.15)

Those authors show that Iα is concave and differentiable provided α ≤ 1/p, where p is the

dimension of M . In this case, the criterion therefore satisfies a General Equivalence Theorem.

There are no issues with convergence for this criterion for 0 < α ≤ 1/p, for details and further

issues see Section 7.5.1.

7.4.4 Modification of prior

If one adjusts the prior distribution, bounding its support away from any singularities, then the

objective function (7.3) will converge. The resulting optimal design can be assessed in terms of

the efficiency distribution using the ‘true’, unadjusted prior distribution.

Note that making this modification causes the criterion to totally ignore the performance

of the design in the neighbourhood of the singularities. Thus if the practitioner is seriously

concerned that the parameters may be arbitrarily close to singular values, another approach

should be used.

7.4.5 Density designs

With (7.1) we defined a design to be a (finitely-supported) discrete probability measure on X .

Sometimes it is beneficial to generalise this by allowing a design to be an arbitrary probability

measure on X . In particular, this allows us to define a design in terms of a probability density

function, g(x), on X . We refer to these as density designs. In Section 7.6.2 we give an example

where all finitely supported designs are singular with respect to (7.3), but there are nonsingular

density designs.

For an arbitrary design measure ξ, the information matrix satisfies

M(ξ,θ) =

∫
X
M(x,θ) dξ(x) .

When ξ is finitely-supported, this is

M(ξ,θ) =

k∑
i=1

wiM(xi,θ) ,

and for density designs it is

M(ξ,θ) =

∫
X
M(x,θ)g(x)dx .
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The latter can be used to evaluate the objective function (7.3), via

Eθ log |M(ξ,θ)| =
∫
Rp

log

∣∣∣∣∫
X
M(x,θ)g(x)dx

∣∣∣∣ f(θ)dθ .

A density design is not implementable without further consideration. To create a design we can

use in practice, we draw a finite sample from this measure. The properties of this scheme are

studied in Section 7.7, but a key property is that the randomness of the sampled designs means

there can always be a positive probability of obtaining a reasonably efficient design, even if on

average the performance is worse than using a deterministic design. Note however that results

on density designs must be obtained analytically, and in general this is intractable.

There is clearly a parallel to drawn between the situation here and that discussed by Wiens

(1992). The latter considers designs for linear regression which are robust to functional depar-

tures from the assumed model within various classes. When the widest class of alternatives is

entertained, specifically an L2-neighbourhood of 0, it is found that all finitely supported designs

are singular with respect to the minimax criterion, while designs defined by a density function

are non-singular.

7.5 Alternative optimality criteria

7.5.1 Firth and Hinde’s Iα

In Section 7.4.3 we stated that there are no convergence issues with Iα for 0 < α ≤ 1/p. Let us

now clarify why this is the case. The key observation is the following.

Lemma 7.1. The expectation involved in (7.15), Eθ{|M(ξ,θ)|α}, is non-negative. Moreover it

is equal to 0 if and only if |M(ξ,θ)| = 0 for all θ. Thus ξ is singular with respect to Iα if and

only if ξ is singular locally for all parameter values. In other words, Iα(ξ) > −∞ unless ξ is

uniformly singular.

The result essentially follows by continuity of the integrand. Thus we do not need be con-

cerned with negative infinities. Provided we are willing to assume a mild regularity condition,

we do not need to worry about positive infinities either.

Lemma 7.2. A sufficient condition for Iα(ξ) <∞ for all ξ is that for any fixed ξ there do not

exist parameter values such that |M(ξ,θ)| is arbitrarily large.

A potential criticism of Iα is that it does not account for the scale (in other words, the

maximum possible value) of |M(ξ,θ)| at a particular value of θ. Thus it may be possible to

make a large impact on the value of the objective function by focussing efforts on the performance

of ξ at values of θ where supξ′ |M(ξ′,θ)| is large. We would ideally like a scale-free objective

function which rewards designs that perform ‘as well as possible’ for different possible true values

of θ, with weighting corresponding to the probability of those values. This is indeed provided

by the mean local efficiency, (7.14).
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7.5.2 Mean local efficiency

The mean local efficiency criterion can be justified in a pseudo-decision theoretic way as follows.

We assume equal financial cost per run, and that the (frequentist) objective of the experiment

is to produce a confidence interval for the parameters.

Let c be the budget for the experiment. Suppose we spend the entire budget running an

experiment with a design which is 100e% efficient. If we had made a better choice and used

the optimal design instead, we would have spent a smaller amount, namely ec, while expecting

to obtain confidence intervals of the same size. Thus the financial value of the information

we obtain from our inefficient experiment is ec, which is the cost to run the cheapest equally

informative experiment. We can thus regard the loss due to inefficiency as

L(ξ,θ) = c(1− eff(ξ|θ)) .

Choosing ξ to minimise our expected loss with respect to the prior distribution on θ is equivalent

to maximising the mean local efficiency.

Note that the above justification assumes that the prior distribution will not be used in the

analysis. This might be the case if: (i) it is difficult to elicit a prior which accurately summarises

expert beliefs, thus we might use a ‘rough’ prior to design the experiment, (ii) the designer and

the analyst have differing prior beliefs about θ, or (iii) an objective analysis not incorporating

prior beliefs is required.

As we stated in Section 7.4.2, the objective function (7.14) is concave. Moreover it is differ-

entiable, and the derivative of Ψ at ξ2 in the direction of ξ1 is

ψ(ξ2, ξ1) =
1

p
Eθ{eff(ξ2|θ) tr[M(ξ1,θ)M(ξ2,θ)−1]} − Eθ{eff(ξ2|θ)} . (7.16)

For proofs, see Section 7.9.2.

In practice, the expectation (7.14) must be evaluated numerically. This may be via Monte

Carlo or a quadrature scheme, such as that of Gotwalt et al. (2009). In the case of numerical

quadrature, we estimate (7.14) by

Ψ(ξ) ≈
na∑
i=1

γi eff(ξ|θi) ,

where θi and γi, i = 1, . . . , na, are the integration abscissae and weights respectively. To evaluate

eff(ξ|θi) we must in general find the locally optimal design at θi using numerical maximisation.

The fact that we cannot be completely certain to have found the optimal design means that,

in general, our numerical approximations to the local efficiencies will be overestimates. It is

computationally more straightforward to approximate the mean local efficiency if there is an

analytical form for the locally optimal designs, such as in Chaloner and Larntz (1989) or Russell,

Woods, Lewis and Eccleston (2009).
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7.6 Analytical results for exponential model

We now turn our attention to the exponential model (7.7). Proofs of the results given in Section

7.6–7.6.2 are presented in Section 7.9.5. The information matrix for a finitely supported design

ξ is

M(ξ, θ) =

k∑
i=1

wi

(
∂η(xi, θ)

∂θ

)2

=

k∑
i=1

wi

(
x2
i

θ4

)
e−2xi/θ .

From this it can be seen that there are singularities at θ = 0,∞. Note however that for θ ∈ (0,∞)

the only singular design is that which places unit mass at x = 0. All other single point designs

are locally nonsingular for θ > 0.

Let us assume a U(0, a) prior distribution, a > 0, which presupposes that θ may be arbitrarily

close to the singularity at 0. Then we have the two rather dramatic results:

Lemma 7.3. All single-point designs are φ-singular.

Theorem 7.1. All finitely supported designs are φ-singular.

The proof of the first result proceeds by direct integration, and for the second we approximate

φ(ξ) by φ(mini xi) as the design point closest to 0 can be shown to dominate the integral. For

full details see Section 7.9.5. Note that trivially these results hold also for the alternative

approximation (7.4) since the prior is flat, R = d2 log f/dθ2 = 0.

These results essentially state that the range of scenarios entailed in the U(0, a) prior is too

broad for there to be a satisfactory trade-off under φ using finitely supported designs. Nonethe-

less, finitely-supported optimal designs can be obtained under alternative criteria such as the

mean local efficiency Ψ, as in Section 7.6.1. If we are determined to continue to look at φ, we

must consider designs defined by probability density functions. We will show in Section 7.6.2,

there exists such a density design which is nonsingular with respect to φ.

In fact, conditions on any smooth prior density supported on [0, a] can be obtained for φ to

be non-degenerate on the set of finitely supported designs.

Lemma 7.4. A necessary condition for there to exist φ-nonsingular finitely supported designs

is that the prior density function f(θ) satisfies f(0) = 0. This condition is also sufficient.

The proof proceeds by Taylor series expansion of the prior density function at θ = 0.

7.6.1 Optimal designs

In the exponential model, it is straightforward to obtain locally optimal designs using simple

calculus.

Lemma 7.5. The locally optimal design at θ is the single point design x = θ. The maximal

value of M(ξ, θ) is

sup
x>0

M(x, θ) =
1

e2θ2
.
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Note as a corollary that

eff(x|θ) =
e2x2

θ2
e−2x/θ .

Furthermore we can obtain the Ψ-optimal design analytically.

Lemma 7.6. The design which maximises the mean local efficiency (7.14) under θ ∼ U(0, a)

is that which assigns unit mass to x = a/2. Moreover the mean efficiency in this case is 67%,

irrespective of the value of a.

The local efficiency of the Ψ-optimal design is plotted as a function of θ in Figure 7.2, in the

case a = 5. Note the extremely poor performance in the region of θ = 0, and local optimality for

θ = a/2. Figure 7.3 shows the probability density function for the local efficiency distribution

induced by the prior distribution on θ. This plot was obtained by considering eff(x|θ) as a

transformation of θ, and numerically inverting the efficiency function (for more details, see

Section 7.9.6). Note in particular the infinite density at eff(ξ, θ) = 0 and the jump around

eff(ξ, θ) = 0.7. The high density of efficiencies near 0 is due to the flatness of the efficiency

function in this region, and the jump occurs near 0.7 because this is the break point above which

there are two values of θ which give rise to the same efficiency.
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Figure 7.2: Exponential model: local efficiency of Ψ-optimal design, 0 ≤ θ ≤ a

7.6.2 Density designs

First note that the exponential model has only one parameter, therefore M(x, θ) is a scalar and

we can show that

eff(ξ|θ) =

∫
X

eff(x|θ)g(x)dx .

We obtain the following results for the uniform design defined by the probability density function

g(x) = a−1, 0 < x < a.

Lemma 7.7. The uniform design, ξ ∼ U(0, a), is φ-nonsingular.
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Figure 7.3: Exponential model: local efficiency density, Ψ-optimal design

Lemma 7.8. The efficiency eff(ξ|θ) of the uniform design is analytically tractable. Moreover,

as θ → 0, it is

eff(ξ|θ) ∼ e2

4a
θ .

For the case a = 5, the local efficiency of the uniform design is plotted as a function of θ

in Figure 7.4, together with the limiting behaviour given in the previous Lemma. Note that

the efficiency for small θ is much better than with the Ψ-optimal design, although the practical

significance is only made clear in Section 7.7. For small efficiencies, eff(ξ, θ) is essentially a linear

transformation of θ and so the distribution of small efficiencies will be close to uniform. As a

result, there is no peak at 0 in the local efficiency density. For a plot of this efficiency density,

see Figure 7.5.

We make no claim that the uniform design is optimal. Derivation of an optimal density in

this case would be a formidable task as a result of the form of the objective function. However,

we can obtain a lower bound on the ‘Bayesian’ efficiency of the design, which we define as

Bayes-eff(ξ) = 100× exp{φ(ξ)− sup
ξ′
φ(ξ′)}% . (7.17)

The definition of the quantity (7.17) is justified as follows. First note that

φ(ξ) = Eθ logM(ξ, θ) = Eθ log eff(ξ|θ) + Eθ log s(θ) ,

where s(θ) = supξ′M(ξ′, θ) is the maximal value of the local objective function for a particular

θ. As s(θ) does not depend on the chosen design, (7.17) can be rewritten as

Bayes-eff(ξ) = 100× exp{φE(ξ)− sup
ξ′
φE(ξ′)}% ,

with φE(ξ) = Eθ log eff(ξ|θ).
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Let ξ1, ξ2 be density designs and φE(ξi) = log ei, i = 1, 2. Then ξ1 is equivalent, modulo

φE to a (hypothetical) design, ξe1 , which is 100e1% efficient for all θ. Similarly, modulo φE

we have that ξ2 is equivalent to a design, ξe2 , which is 100e2% efficient for all θ. Clearly the

only possibility for eff(ξe1 |ξe2) is e1/e2 × 100%. By the equivalences we have stated, so too

eff(ξ1|ξ2) = e1/e2 × 100%.

Lemma 7.9. The uniform design has Bayes-eff(ξ) ≥ 69% independently of a.
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Figure 7.4: Exponential model: local efficiency function for the uniform design, ξ ∼ U(0, a),
0 ≤ θ ≤ a
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Figure 7.5: Exponential model: probability density of local efficiency distribution, uniform design
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7.7 Interpretation of density designs

In this section we study the properties of finite samples drawn from the design density ξ = U(0, a)

for the exponential model (7.7) with prior θ ∼ U(0, a). Let Xn = (x1, . . . , xn)T be such a sample.

Then Eθ log |M(Xn; θ)| = −∞ with certitude, therefore there is no sense in which the value of

the objective function at Xn converges to that at ξ. However, the efficiency of Xn satisfies

certain desirable asymptotic properties as n→∞.

7.7.1 Asymptotic properties

Considering efficiencies we observe that

eff(Xn|θ) =
1

n

n∑
i=1

eff(xi|θ) (7.18)

EXn
{eff(Xn|θ)} = eff(ξ|θ) .

Theorem 7.2. By the strong law of large numbers, for all θ,

eff(Xn|θ)→ eff(ξ|θ) almost surely as n→∞ . (7.19)

In other words the efficiency of the sampled design converges to that of the density design.

Note that (7.18) is only true because we are in a 1-parameter model, however the conclusion

(7.19) can most likely be obtained when there are more parameters by considering convergence

of the information matrix.

Moreover, note that as the efficiency is a sum of IID random variables, we can apply the

central limit theorem to show that, for large n, eff(Xn|θ) is approximately normally distributed

with mean eff(ξ|θ) and variance

v(θ) =
1

n

(
Ex[eff(x|θ)2]− eff(ξ|θ)2

)
,

which can be computed analytically. This can be used to obtain approximate 95% performance

limits, such as in Figure 7.6.

It can be shown using Lemma 7.8 that, as θ → 0, we have

Ex[eff(x|θ)2] ∼ 3e4

128a
θ ,

so that, for small θ, the variance of the efficiency is approximately

var(eff(Xn|θ)) ≈
1

n

(
3e4

128a
θ − e4

16a2
θ2

)
.

Thus the performance limits become

e2

4a
θ ± 1.96

√
1

n

(
3e4

128a
θ − e4

16a2
θ2

)
.
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Figure 7.6: Approximate 95% performance limits for finite design of size n = 100 from the
uniform design

Since the centre of the interval is O(θ) and the ± term is O(
√
θ), if n is fixed then for small θ

the lower limit is negative and hence not useful.

This seems to be saying that to guarantee good performance for all θ, we need to sample

infinitely many points from ξ, which agrees with our intuition.

7.7.2 Benefits

The benefit of using a random sample from a design density is that no matter what the value of

θ, there is always a positive chance that we will obtain a reasonably efficient design. This must

of course be traded off against the positive probability of obtaining a highly inefficient design.

Let us fix θ, and a desired level of efficiency, say 70%. Note that

eff(x|θ) = h(x/θ) ,

where

h(u) = e2u2e−2u ,

and so eff(x|θ) > 0.7 if and only if γ1 ≤ x/θ ≤ γ2, where γ1 < γ2 are the two roots of h(γ) = 0.7.

Using this we can obtain a crude lower bound for the probability that eff(Xn|θ) ≥ 0.7 as follows

P (eff(Xn|θ) ≥ 0.7) = P

(
1

n

n∑
i=1

eff(xi|θ) ≥ 0.7

)
≥ P (eff(xi|θ) ≥ 0.7 for i = 1, . . . , n)
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≥
n∏
i

P (γ1θ ≤ xi ≤ γ2θ)

≥ θn(γ2 − γ1)n .

7.8 Discussion

In this chapter we have highlighted the potential impact of singularities on the convergence of

the mean-log-determinant objective function, φ. In particular we have shown that if the range

of prior parameter uncertainty is sufficiently wide that we approach singularities, it may be

necessary either to abandon φ or to give up on finitely supported designs.

It can be a relatively difficult analytical problem even to identify singularities, let alone

determine the rate of prior decay in their neighbourhood necessary to ensure that φ > −∞.

Thus, in these cases of extreme parameter uncertainty it may be more practical to use an

alternative criterion such as the mean local efficiency criterion.

It will be difficult in general problems to compute φ(ξ) for a density design, since only

analytical methods will be able to determine if the objective function converges. However, in

cases where it is possible to find nonsingular density designs analytically, it would be interesting

to see whether φ-optimal density designs can be derived. It is not immediately obvious how

one should extend the General Equivalence Theorem or the Federov-Wynn algorithm to density

designs. To see this, consider taking the directional derivative of φ at ξ in the direction of a

single design point x: by taking a convex combination of ξ with the single point design x one

obtains a design which is not a density design and so not relevant to the question of optimality

in the class of density designs.

Other future work could focus more directly on designing the local efficiency distribution, for

instance penalising distributions with a comparatively large variance or having a high probability

attached to very low efficiencies.

7.9 Appendix: Proofs and further analytical results

7.9.1 Singularity property of Firth and Hinde’s Iα

Proof of Lemma 7.1. We assume the regularity condition that M(ξ,θ) is a continuous function

of ξ and θ. Observe that Iα = −∞ precisely when
∫
θ
|M(ξ;θ)|αf(θ)dθ = 0, where f is the

(continuous) prior density function. As M is non-negative definite, |M |α ≥ 0. Thus |M |αf(θ) is

non-negative and continuous and from results in mathematical analysis,
∫
θ
|M(ξ;θ)|αf(θ)dθ = 0

implies |M |αf(θ) = 0 for all θ ∈ Θ. The latter condition can occur only if |M(ξ;θ)| = 0 for all

θ in the support of f . This proves the ‘only if’ implication, the ‘if’ part is trivial.

Lemma 7.10. Suppose that M(ξ;θ) is continuous function of ξ and θ. Then Ψ(ξ) = Eθ(eff(ξ|θ)) =

0 iff |M(ξ;θ)| = 0 for all θ.

The proof is analogous to the above.
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7.9.2 Concavity and differentiability of mean local efficiency

We use equation (4) of Firth and Hinde (1997),

|δM1 + (1− δ)M2|α ≥ δ|M1|α + (1− δ)|M2|α . (7.20)

which holds for α ≤ 1/p, where p is the dimension of M . To demonstrate that Ψ(ξ) =

Eθ(eff(ξ|θ)) is concave, set α = 1/p and let M1 = M(ξ1,θ) and M2 = M(ξ2,θ) in (7.20).

Then divide the inequality through by |M∗|1/p = supξ′ |M(ξ′,θ)|1/p and take expectations with

respect to θ. This yields

Eθ

(
|M(δξ1 + (1− δ)ξ2,θ)|1/p

|M∗|1/p

)
≥ δE

(
|M1|1/p

|M∗|1/p

)
+ (1− δ)E

(
|M2|1/p

|M∗|1/p

)
. (7.21)

Recall the definition of mean efficiency,

Ψ(ξ) = E(eff(ξ|θ)) = E

{
|M(ξ,θ)|1/p

supξ′ |M(ξ′,θ)|1/p

}
.

Hence, using (7.21),

E eff(δξ1 + (1− δ)ξ2|θ) ≥ δE eff(ξ1|θ) + (1− δ)E eff(ξ2|θ) ,

and so Ψ is concave as claimed.

The derivative of Ψ at ξ2 in the direction of ξ1 is defined as

ψ(ξ2, ξ1) = lim
δ→0

δ−1{Ψ
(
(1− δ)ξ2 + δξ1

)
−Ψ(ξ2)}

=
d

dδ

∣∣∣
δ=0

Ψ
(
(1− δ)ξ2 + δξ1

)
.

To calculate this derivative, let us first define the shorthand

M = δM1 + (1− δ)M2 ,

and note that (Silvey, 1980, p.21)

d

dδ

∣∣∣
δ=0

log |M | = tr(M1M
−1
2 )− p .

Using the chain rule we calculate the derivative of |M |1/p as,

d

dδ

∣∣∣
δ=0
|M |1/p =

d

dδ

∣∣∣
δ=0

exp{p−1 log |M |}

= p−1|M2|1/p{tr(M1M
−1
2 )− p} .

As |M∗| does not depend on δ, we can obtain the derivative of the local efficiency by dividing

the above through by |M∗|1/p,

d

dδ

∣∣∣
δ=0

{
|M |1/p

|M∗|1/p

}
= p−1 eff(ξ2|θ){tr(M1M

−1
2 )− p} .
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Finally, it is straightforward to obtain the directional derivative of the mean local efficiency, we

differentiate under the expectation sign to obtain

ψ(ξ2, ξ1) =
d

dδ

∣∣∣
δ=0

E

{
|M |1/p

|M∗|1/p

}
= E

{
d

dδ

∣∣∣
δ=0

|M |1/p

|M∗|1/p

}
=

1

p
E{eff(ξ2|θ) tr(M1M

−1
2 )} − E{eff(ξ2|θ)} .

7.9.3 Singularity in logistic model at β =∞

We must consider the case x = µ slightly differently and so we change the notation for a design,

writing instead

Ξ =

{
µ x1 · · · xk

wµ w1 · · · wk

}
,

where for all i, xi 6= µ. As µ is the dose at which p = 1/2, λµ = 1/4 and we have that

|M(Ξ,θ)| = β2

(
(1/4)wµ +

k∑
i=1

wiλi

)(
(1/4)wµ(µ− x̄)2 +

k∑
i=1

wiλi(xi − x̄)2

)
. (7.22)

Note that

β2λi =
β2eβ|xi−µ|

(1 + eβ|xi−µ|)2

→ 0 as β →∞ ,

which is sufficient to establish that

lim
β→∞

|M(Ξ,θ)| =

0 if wµ = 0

(1/16)w2
µ limβ→∞ β2(µ− x̄)2 if wµ > 0 ,

(7.23)

as when we expand (7.22) all other terms contain factors of the form β2λi and hence vanish in

the limit. We now consider the case wµ > 0. Note that,

β(µ− x̄) =

∑k
i=1 wi(λiβ)(µ− xi)

(1/4)wµ +
∑k
i=1 wiλi

→ 0 ,

as β → ∞ (and therefore also x̄ → µ). This follows since βλi → 0 and λi → 0, therefore the

numerator converges to 0 and the denominator converges to (1/4)wµ > 0. Therefore from (7.23)

it is clear there is a singularity at β =∞.

7.9.4 Binary GLMM

Here we demonstrate formally the limiting property of the model which concerns us. As the

likelihood and information matrix are defined in terms of integrals with respect to u, we require
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results from measure theory which allow us to compute the limits of sequences of integrals.

Notably we use Lebesgue’s dominated convergence theorem, which is stated fully in Theorem

3.2. We apply the result below to the case that σ2 →∞.

First, we recall some notation from Chapters 2 and 3. Let m be the block size, and ζ =

{x1, . . . ,xm} ⊂ [−1, 1]q be an arbitrary block. Also let η = (η1, . . . , ηm)T the the corresponding

vector of the fixed parts of the linear predictors, ηj = fT (xj)β, j = 1, . . . ,m. Then py(η, σ2)

is the probability of obtaining responses y from block ζ. Recall also that h denotes the logistic

function, h(η) = 1/(1 + e−η), and φσ2 is the density function of a N(0, σ2) random variable.

Lemma 7.11. As σ2 →∞, the logistic random intercept model is degenerate in the way described

in Section 2.1. Namely,

py(η, σ2)→

1/2 for y = 1 = (1, 1, . . . , 1)T and y = 0 = (0, 0, . . . , 0)T

0 for all other y ∈ {0, 1}m.

Proof. Let ζ = {x1, . . . ,xm} be an arbitrary block. For σ2 > 0, define

Gσ2(u) =
m∏
i=1

h(ηj + σu)φ1(u) . (7.24)

Recall from (3.10) that p1(η, σ2) =
∫
RGσ2(u)du. As our measure space we take (R,B,L), where

B is the Borel σ-algebra on R, and L is Lebesgue measure. Since 0 ≤ h(η) ≤ 1 for all η ∈ R, the

function Gσ2 is dominated by the integrable function φ1. Moreover as σ2 → ∞, Gσ2 converges

pointwise to the function G∞, given by

G∞(u) =

φ1(u) for u > 0

0 for u < 0 .

The above limit can be verified by noting that, if u > 0 then h(ηj +σu)→ 1 as σ →∞, whereas

if u < 0 then h(ηj + σu)→ 0.

Let σ2
n > 0 be an arbitrary positive sequence such that σ2

n → ∞ as n → ∞. By dominated

convergence, as n → ∞, p1(η, σ2
n) =

∫
RGσ2

n
(u)du →

∫
RG∞(u)du = 1/2. This is sufficient to

establish that as σ2 →∞, p1(η, σ2)→ 1/2, since if this were not the case we could construct a

sequence of σ2
n with σ2 →∞ and p1(η, σ2

n) not converging to 1/2 (contradicting the above).

An analogous argument shows that as σ2 →∞, p0(η, σ2)→ 1/2. Since probabilities sum to

unity,

p0 + p1 +
∑

y 6=0,1

py = 1 .

Taking limits as σ2 →∞,

(1/2) + (1/2) +
∑

y 6=0,1

lim
σ2→∞

py = 1 ,

and so limσ2→∞ py = 0 for y other than 1 or 0.
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7.9.5 Exponential model

Proof of Lemma 7.3 (φ-singularity of single point designs). Let x ∈ (0, a). Then

log |M(x, θ)| = −2x

θ
− 4 log θ + 2 log x .

Thus, if θ ∼ U(0, a), a > 0, then

Eθ(log |M(x, θ)|) =
1

a

∫ a

0

{
−2x

θ
− 4 log θ + 2 log x

}
dθ

=
1

a

{∫ a

0

−2x

θ
dθ −

∫ a

0

4 log θdθ +

∫ a

0

2 log xdθ

}
= −∞− 4{a log a− a}/a+ 2a log(x)/a

= −∞ ,

due to the fact that
∫ a

0
(1/θ)dθ =∞ and

∫ a
0

log θdθ = a log a− a. Thus all one-point designs are

φ-singular.

Proof of Theorem 7.1 (φ-singularity of finitely supported designs). Let ξ be an arbitrary finitely

supported approximate design, with support points and weights notated as in (7.9). Then

log |M(ξ, θ)| = log

k∑
i=1

wix
2
i

θ4
e−2xi/θ .

Observe that we have the following: fix x > 0, then for all y > 0

log(x+ y) ≤ log(x) + y/x ,

in other words the logarithm function is always below its tangents (easily established geometri-

cally, or using calculus).

Thus we have that

log |M(ξ, θ)| = log

{
k∑
i=1

wix
2
i

θ4
e−2xi/θ

}

≤ log

{
w1x

2
1

θ4
e−2x1/θ

}
+

∑k
i=2

wix
2
i

θ4 e−2xi/θ

w1x2
1

θ4 e−2x1/θ

≤ log

{
w1x

2
1

θ4
e−2x1/θ

}
+

k∑
i=2

wix
2
i

w1x2
1

e−2(xi−x1)/θ

≤ logw1 + logM(x1, θ) + T (θ) , (7.25)

where T (θ) is defined to be the term on the right. Without loss of generality we may reorder

the xi such that x1 is the smallest, in other words xi − x1 ≥ 0 for all i. This means that

0 ≤ T (θ) ≤
∑k
i=2 wix

2
i /(w1x

2
1), and so T (θ) has a finite, positive mean with respect to the

U(0, a) distribution on θ.

However, as we have established in Lemma 7.3, the middle term of (7.25) has mean −∞.

Hence also E(log |M(ξ, θ)|) = logw1 + E log |M(x, θ)|+ E(T (θ)) = −∞.
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Proof of Lemma 7.4 (conditions on prior). Recall the result we wish to prove: Let the prior

density function f be differentiable and supported on [0, a]. Then in the exponential model, a

necessary and sufficient condition for E(log |M(x, θ)|) > −∞ for all x > 0 is that f(0) = 0.

Combining this with Theorem 1, if f(0) > 0 then all finitely supported designs are singular

with respect to the mean log-determinant.

(Sufficient) First note that

Eθ(log |M(x, θ)|) =
1

a

∫ a

0

{
−2x

θ
− 4 log θ + 2 log x

}
f(θ) dθ . (7.26)

If f is differentiable at 0, with f(0) = 0, then by the definition of differentiability we can write

f(θ) = θ{f ′(0) + h(θ)} ,

with h a function such that h(θ)→ 0 as θ → 0.

In particular, given K > 0 there is ε > 0 such that h ≤ K on (0, ε). Therefore, considering

the first term in the integrand of (7.26), which is the only term which can cause us problems,

over (0, ε) we have that ∫ ε

0

f(θ)

θ
dθ ≤

∫ ε

0

θ{f ′(0) +K}
θ

dθ

≤ ε{f ′(0) +K} .

Clearly also ∫ a

ε

f(θ)

θ
dθ <∞ ,

as the integrand is continuous, and therefore bounded, on the integration region. Hence the

integral over the whole range (0, a) is finite, ie∫ a

0

f(θ)

θ
dθ <∞ .

The second term in the integrand of (7.26) is unproblematic since f is clearly bounded on (0, a).

Therefore
∫ a

0
f(θ) log θ dθ ≤ supθ f(θ)

∫ a
0

log θ dθ <∞.

The third term in the integrand of (7.26) has finite integral provided x > 0.

(Necessary) Suppose f(0) > 0. Then f can be bounded below by some L > 0 on some in-

terval (0, ε). Thus ∫ ε

0

f(θ)

θ
dθ ≥

∫ ε

0

L

θ
dθ =∞ .

This forces E(log |M(x, θ)|) = −∞.
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Proof of Lemma 7.6 (optimal mean efficiency design). Note that

eff(x|θ) =
x2e2

θ2
e−2x/θ

=
d

dθ

(
xe2

2
e−2x/θ

)
.

Therefore when θ ∼ U(0, a), we have that

Eθ{eff(x|θ)} =
xe2

2a
e−2x/a .

As we consider a 1-parameter model,

Eθ{eff(ξ|θ)} =

n∑
i=1

wiEθ{eff(xi|θ)}

≤ sup
x∈(0,a)

Eθ{eff(x|θ)} ,

with equality when ξ is the design which assigns unit mass to x1 = argmaxx∈(0,a) xe
−2x/a. It is

easy to verify by calculus that x1 = a/2. The mean efficiency of this design is

Eθ{eff
(a

2

∣∣∣θ)} = e/4 ≈ 0.67 .

Proof of Lemma 7.7 (φ-nonsingularity of ξ = U(0, a), the uniform design). The information ma-

trix is

M(ξ, θ) =
1

a

∫ a

0

M(x, θ)dx

=
1

aθ4

∫ a

0

x2e−2x/θdx ,

=
1

aθ4

[
−1

4
θe−2x/θ(θ2 + 2θx+ 2x2)

]x=a

x=0

=
1

4aθ
− e−2a/θ(θ2 + 2θa+ 2a2)

4aθ3
. (7.27)

Note that the first term on the RHS tends to∞ as θ → 0, and the second term tends to 0. Thus

in fact M(ξ, θ) → ∞ as x → 0, and the uniform design can be made arbitrarily informative by

taking θ sufficiently small.

To see that M(ξ, θ) has a positive minimum on θ ∈ (0, a), note that

M(ξ, θ) =
1

4a2
H(θ/a)

H(t) = {t2 − e−2/t[t2 + 2t+ 2]}/t3 ,

where H(t) : [0, 1] → R can be checked to be monotone decreasing in t with value H(1) ≈
0.323 > 0. As M(ξ, θ) ≥ 0.32/(4a2), log |M | is bounded below and so φ(ξ) > −∞.



7.9. APPENDIX: PROOFS AND FURTHER ANALYTICAL RESULTS 207

Proof of Lemma 7.8 (efficiency of uniform design). To obtain an analytical expression for the

efficiency, divide (7.27) by supx∈(0,a)M(x, θ) = 1/(e2θ2). To calculate the limiting behaviour as

θ → 0, observe that the term containing e−2a/θ must tend to 0.

Proof of Lemma 7.9 (lower bound on Bayesian efficiency). Applying Jensen’s inequality (to the

concave function log) we obtain that

φE(ξ) = Eθ log eff(ξ|θ)

≤ logEθEx eff(x|θ)

≤ logExEθ eff(x|θ) .

By Lemma 7.8, the maximal mean efficiency for a single point design is e/4 ≈ 0.67. Therefore,

for all ξ,

φE(ξ) ≤ 1 + log(1/4) .

It is not immediately clear whether this upper bound is obtainable. However we use it to

obtain a lower bound on the Bayesian efficiency of a given design. With ξu the uniform design,

eff(ξu|θ) = e2θ2

4a2 H(θ/a) = G(θ/a), and we have that

Eθ log eff(ξu|θ) =

∫ a

0

(1/a) logG(θ/a)dθ

=

∫ 1

0

logG(t)dt ,

which is independent of a. We computed numerically
∫ 1

0
logG(t)dt ≈ log 0.465. The Bayesian

efficiency of the uniform design is therefore at least 0.465/0.67× 100% ≈ 69.5%, independently

of a.

7.9.6 Efficiency density plots

We can obtain better plots of the density function of the efficiency distribution by using the fact

that eff(ξ|θ) is a transformation of the variable θ. Defining the shorthand

E(θ) = eff(ξ|θ) ,

and using square brackets notation for density functions, we have by a change of variable argu-

ment that

[E ](t) =
∑

θ:E(θ)=t

∣∣∣∣ 1

E ′(θ)

∣∣∣∣ f(θ)

=
∑

θ:E(θ)=t

∣∣∣∣ 1

aE ′(θ)

∣∣∣∣ ,
where f(θ) = a−11{θ ∈ (0, a)} is the prior density function. This is analogous to the usual

result for the density of a monotonic differentiable transformation of a random variable of known

density. However here we must take into account that, for given t ∈ [0, 1], there may be multiple

θ such that E(θ) = t.
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Analytical expressions for E ′ are available in the examples under consideration, and we can

find all the solutions to E(θ) = t numerically. Thus we can obtain a direct numerical estimate

of the efficiency density, without having to simulate from any distributions.



Chapter 8

Discussion and areas for

development

8.1 Approximations for GLMMs

In Chapter 2 we developed the MQL and PQL approximations to the information matrix and

applied them to calculate Bayesian designs for some GLMMs containing random intercepts.

The designs resulting from these cheap analytical approximations were compared to designs

from a more direct computational approximation, using MLNI, in Chapter 3. We have collected

evidence which seems to suggest that in general MQL leads to more efficient designs than does

PQL, for two reasons. First of all, PQL is not sufficiently sensitive to the allocation used when

σ2 is large (Section 3.1), and secondly it tends to find treatments which are worse than if we did

not take into account the random effects at all (Sections 3.4 and 4.4.5).

One objective for future work is to calculate designs when the random effects structure is

more complicated, for instance allowing the effects of the xi to vary from block-to-block. MQL

and PQL can be used in these situations at no extra cost, though our results suggest that PQL

is unlikely to be a good choice. An obvious question is whether we are able to evaluate the

performance of the approximations in this new situation. It would also be interesting in general

to compare the performance of our approximations with the ‘Monte Carlo PQL’ of Tekle et al.

(2008).

In Section 2.6.2 it was mentioned that the use of quasi-likelihood for dependent data in the

work of Niaparast (2009) is the same as using generalised estimating equations for a marginal

model in which the mean and variance have been derived from the conditional model. There are

several other links between the various estimation and design methods which we discuss here.

MQL is similar to a quasi-likelihood/GEE approach, but with an approximated marginal

mean and variance. The approximation to the marginal mean is obtained by ignoring the

random effects, and the variance approximation arises from a first order Taylor series expansion

(Breslow and Clayton, 1993). The observation that the marginal mean approximation could

be substantially improved by using the attenuation formula (3.20) led to the proposal of the

adjusted MQL approximation, which resulted in designs much closer to the ‘correct’ answer

209



210 CHAPTER 8. DISCUSSION AND AREAS FOR DEVELOPMENT

derived using the MLNI approach in Section 3.4.

In some sense there is a relationship between the GEE-type methods and the MLNI approach

for the logistic random intercept model when there are 2 points per block, because in this case

the first two moments specify the entire probability distribution. An area for future work is to

see whether it is possible to use a method analogous to that of Niaparast (2009), but instead

evaluating the marginal mean and variance of the conditional model computationally. This

would allow the computations behind MLNI to be used to calculate designs with more points

per block, although these would be quasi-likelihood, rather than maximum likelihood designs.

8.2 Other models

In Chapters 4 and 5 we developed techniques for optimal designs in single and multiple dosing

bioassays with individual variation. In the multiple dosing case, the designs are found within a

restricted class which we do not claim is optimal overall. However with the new technique these

designs are relatively inexpensive to compute and may be useful as a benchmark against which

to measure arbitrary candidate designs. An obvious question is whether additional insights could

assist in finding the overall optimal designs. Another is whether there are techniques to handle

more complicated random effects structures.

Additional research into the benefits of using the multiple-dosing approach could be helpful

for practitioners: at the moment these kinds of studies do not seem to be used in real applications.

This may perhaps be related to the lack of software implementations for fitting the ‘GLMM-

plus-stopping-rule’ model. However, such a package certainly seems like a realistic possibility.

The development of HGLMs in Lee and Nelder (2001) allows for the modelling of the depen-

dence of dispersion components upon the covariates. This flexibility may be important in the

robust product design setting, where the aim is to find values of the xi such that the variance of

the response is low, as exemplified in Lee, Nelder and Park (2011). Exploration of the impact

on the choice of design in this scenario would be interesting.

8.3 General comments

In all of the areas studied in this thesis, the adoption of the techniques in a practical environment

would be aided by the implementation of user-friendly software. The most useful tool would

perhaps be a graphical platform for the comparison between given proposed designs and those

found using the algorithms outlined here. Applied case studies would no doubt prove effective

in spurring the most needed developments in the methodology.

The general direction of this thesis is extending the availability of variance-optimal designs

to a broader range of more complex statistical models. The use of these models involves making

further parametric assumptions about the data generating process. An interesting and impor-

tant topic is the robustness of these analyses, together with the optimal designs, to systematic

departures from the model assumptions. An ideal treatment would not specify a parametric

alternative for the truth, instead confining the possible discrepancies to a set which defines a

‘neighbourhood’ of the approximately correct model. Li and Wiens (2011) conduct research in

this direction for misspecified dose-response models.
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