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Abstract— This paper presents a method of removing the
noise caused by eye blinks from an electroencephalogram (EEG)
signal in real time based on morphological component analysis
(MCA). This method sparsely represents both the eye blink
and the EEG signal basis matrices using a Short Time Fourier
Transform (STFT). This approach has two main advantages: 1)
fast computation of the estimation of the signal coefficients using
the basis pursuit algorithm 2) less memory requirement. The
obtained result shows that the correlation coefficient between
the raw EEG and the cleaned EEG is between 0.72 and 0.94
which implies that it is possible to remove eye blink noise from
the EEG signal in real time without affecting an underlying
brain signal.

I. INTRODUCTION

The electroencephalogram (EEG) signal is the composi-
tion of brain activities recorded as changes in electric poten-
tial at various locations on the scalp. Traditionally, EEG has
been used for medical and medical brain computer interface
(BCI) applications, but in recent years there has been a
great interest of non-medical BCI applications such as device
control, training and education, gaming and entertainment
[1]. Most of these applications require portable and wearable
EEG devices with a single or a few EEG channels to reduce
the cost, power consumption, size and improve user comfort
level.

The raw EEG signal is usually contaminated by artifacts
from sources such as the heart, eyes, muscle movements and
interference from electrical equipment, the mains supply and
other electromagnetic sources. Removing these artifacts is
essential as they can affect the detection and extraction of
features from the EEG signal. Artifacts from eye blinks are
particularly difficult to suppress due to their large amplitude
which is of the order of ten times larger than a typical EEG
signal [2]. Existing methods of removing eye blink artifacts
from the EEG signal are based on regression [3] [4], principal
component analysis (PCI) [5] and independent component
analysis (ICA) [6] and are not suited to single channel non-
medical applications. Regression based methods require an
extra channel for recording eye blinks as a reference signal.
Both PCI and ICA based methods require the EEG to have
at least two channels. Morphological component analysis
(MCA) [7] is another method which has attracted much atten-
tion in sparse signal processing. Yong et al. [8] demonstrated
the feasibility of MCA for removing artifacts from an offline
EEG signal. However, the author computed some of the
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basis matrices using SPARCO (a Matlab toolbox developed
for testing and reconstruction algorithm) and estimated the
coefficients of signal components using another optimization
algorithm. Such an approach requires more memory than
the presently reported method as basis matrices need to be
stored during the estimation of the coefficients of the signal
components. The size of memory required increases with
the size of the matrices and the number of components to be
estimated from the signal.

This paper presents a real time method to remove eye
blinks from EEG signal based on MCA. Both eye blink and
EEG signals are sparsely represented using basis matrices
which are fast and efficiently computed using Short Time
Fourier Transform (STFT). Computing basis matrices in real
time offers the advantage of requiring low memory space.
This paper is organized as follows: section II discusses the
general concept of MCA, followed by the description of how
the signal used in the experiment was acquired and then the
steps followed to remove the eye blinks from the raw EEG
signal is presented. Section III presents the results and finally,
conclusions are drawn in section IV.

II. METHODOLOGY
A. The concept of Morphological Component Analysis

Morphological Component Analysis (MCA) is a method
of decomposing a signal into its components. The method is
based on the assumption that every signal component has a
different shape (hence the term morphology) that enables its
reconstruction using a sparse representation [9]. If a signal y
has components 1, y2, ..., yn and each of these components
is represented sparsely using the basis ¢1, ¢o,...¢) respec-
tively, then the signal y can mathematically be written as:

y=dro1 + P22 + ... + dnan (1)

where «j,a9..any are the projection coefficients of
Y1,Y2, .., YN ON basis @1, @2, ...¢n and N is the number of
signal components. In this paper, the signal y is considered
as a linear combination of two signal components, y; and yo
(henceforth, N = 2) where y, y; and ys correspond to the
raw EEG signal, cleaned EEG signal and eye blink signal
respectively. Therefore to meet the assumption of MCA, it
is important that the dictionary of bases ¢1, ¢o exists such
that for each signal component in y is sparse in ¢, and not,
or at least not as sparse as, in ¢o [7].

The signal y can then be decomposed using MCA by
finding the coefficients oy, ae (from (1)) such that:

y=¢1 a1+ ol ag =91 + G (2)



Following the basis pursuit approach, the coefficients «; and
a2 1n (2) can be estimated by /; -norm minimization [10]. The
problem can then be formulated as:

argmin || A1 O aq [[1 + | A2 @ az |1

1,002

such that y=¢17oq + ¢o’ s (3)
where A1 and \o are weighting parameters, and || .. ||; is
[1-norm.

Several algorithms have been developed to solve the
basis pursuit problem (equation 3), namely Iterative Shrink-
age/Thresholding Algorithm (ISTA) [11], Fast ISTA (FISTA)
[12], Split variable Augmented Lagrangian Shrinkage Algo-
rithm (SALSA) [13], [14]. As the name suggests, FISTA is
much faster than ISTA by several order of magnitude [12].
Afonso et al. [13] demonstrated that SALSA is faster than
FISTA and therefore in this paper SALSA was chosen to
solve the basis pursuit problem.

B. Signal acquisition and transmission

The electroencephalography signals were acquired using
the MindWave Mobile headset from Neurosky Inc [15] . This
device consists of a headset, an ear-clip and a sensor arm.
The EEG electrode is on the sensor arm which rests on the
forehead above the eye. According to the 10-20 International
system of EEG electrode placement on the human head [16]
this position is approximately equal to the Fpl position (see
Fig. 1). The headset’s reference and ground electrodes are
on the ear clip at Al and at T4. The device also includes a
Bluetooth module which sends the signals wirelessly to the
computer at a sampling frequency of 512 Hz. EEG signals
are typically below 256 Hz, hence the sampling frequency
of this device meets Shannon’s sampling theorem.

Fig. 1. Position of Mindwave Mobile headset [15] electrodes on 10-20
international system of electrode placement

Transmission Control Protocol/Internet Protocol (TCP/IP)
server was used on the computer and was responsible for
collecting the EEG signal from its Bluetooth receiver. The
server was running JavaScript Object Notation (JSON) based
protocol and the EEG signal was collected at a rate of
512 samples per second by the TCP/IP client that was
implemented in Matlab.
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C. Separating eye blinks from EEG signal using MCA

The EEG signal is non-stationary and its spectral content
evolves slowly over time and can be analysed using STFT.
A STFT performed on a signal y[n] is described as

R+1
STFT{yln]} = Y {yln —mlwln]}e ™" (4)
n=0
where w[n] is the sliding window that emphasis local fre-
quency components within it, and R is the length of the
window; a long window length provides high frequency
resolution and a short window length provides high time
resolution.

The real time blink separation from the raw EEG signal
was performed based on an algorithm shown in Fig. 2. The
parameters such as basis matrices, ¢ = {¢1, ¢2 }, maximum
number of frames, F, and total number of samples per frame,
S, were first initialized. The basis matrices which sparsely
represented the EEG signal and eye blinks were computed by
STFT using a large window length (= 2 s) for the former and
a short window length of about 500 ms for the later as most
eye blinks have duration between 200 to 400 ms. The basis
coefficients were estimated iteratively using a basis pursuit
algorithm and were followed by reconstruction of the cleaned
EEG signal using the obtained coefficients.

The performance of this method was evaluated by correlat-
ing the raw EEG signal obtained as described in section IIB
and the cleaned EEG signal. The correlation coefficient of
two signals is always between 0 and 1, whereas 0 means
the signals are uncorrelated and 1 implies that they are
strongly correlated. Although this method is commonly used
as a comparative measure of likeness of two signals, it is
important to point out that if the measured EEG contains
many eye blinks, it will not correlate with the cleaned EEG
even if the algorithm is 100 percent perfect.

III. RESULTS

The method of removing eye blinks presented in this paper
was tested by acquiring more than 60 frames of EEG signal
and processing each frame in real time. Fig. 3 is a segment
of four frames showing the raw EEG, the processed EEG,
and eye blinks which were removed from the raw EEG. A
closeup of raw EEG, processed EEG and the eye blinks is
shown in Fig. 4 to allow easy visual inspection of the results.

The results show that MCA is capable of separating the
eye blinks from the raw EEG signal in real time. Although
MCA is an iterative algorithm, the average cleaning time
of one frame (512 samples) of raw EEG was 26.9 ms with
standard deviation of 0.8 ms on a desktop computer running
a 64 bit operating system with 3.4 GHz processor. The
correlation of the raw EEG and cleaned signal found to be
between 0.72 to 0.94 depending on how heavily the signal is
contaminated by the eye blinks with worse contamination as
the number of eye blinks increased. These values are higher
than those reported in [8] and comparable to those previously
reported in [2] and [17].
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Fig. 3. Separation eye blinks from raw EEG signal

TABLE I
PERFOMANCE EVALUATION

Perfomance Indicator Value
Correlation Coefficient 0.72 to 0.94
Execution Time/Frame 26.90 ms

IV. CONCLUSIONS

In this paper, the implementation of MCA based method
of removing eye blinks from single channel EEG signal is
demonstrated. Taking advantage of fast computation of the
basis matrices using STFT, it was possible to remove eye
blinks from the EEG signal at real time. This approach is
particularly useful as it is real time and requires less memory,
which is limiting factor for most microcontrollers. In the
future, this work will be extended and be implemented in our
in-house low power wearable EEG targeted for non-medical
BCI applications.
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Algorithm of separating eye blinks from raw EEG in real time
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Fig. 4. Close look of section of signals presented in Fig. 3
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