The University of Southampton
University of Southampton Institutional Repository

Non-linear long-duration blast loading of cylindrical shell structures

Non-linear long-duration blast loading of cylindrical shell structures
Non-linear long-duration blast loading of cylindrical shell structures
This paper investigates the influence of long-duration blast loads on the structural response of aluminium cylindrical shell structures. Full scale coupled non-linear dynamics are examined experimentally at one of the worlds’ most powerful air blast testing facilities. Evaluating structural response to blast loads of this magnitude is exceptionally difficult using only computational fluid dynamics; typically not achievable without incurring unmanageable solution domains. Clearing, diffraction and exhaust of a long-duration blast wave across any comparatively small structure imposes constraints leading to the use of approximated drag coefficients, designed primarily to expedite the calculation of net translational forces. In this research, detailed pressure histories measured experimentally on the surface of the cylindrical shell are used to accurately configure a computational analysis dispensing with the requirement to utilise approximated drag forces. When further combined with accurate material test data, fibre optic controlled strain gauge instrumentation and high-speed video photography, a full comparative model was possible. This paper shows that without exact knowledge of long-duration flow-field effects a priori, it is very difficult to reliably determine the mode of structural response and degree of blast resistance. Preliminary modelling predicted a global sway and localised plate buckling; however, subsequent experimental testing showed a crushing failure of the shell before any translational movement occurred. Results in this paper will be of direct interest to both practitioners and researchers considering the dynamic response of cylindrical shell structures subject to high power explosive blasts from sources such as hydrocarbon vapour cloud ignition.
0141-0296
113-126
Clubley, S.K.
d3217801-61eb-480d-a6a7-5873b5f6f0fd
Clubley, S.K.
d3217801-61eb-480d-a6a7-5873b5f6f0fd

Clubley, S.K. (2014) Non-linear long-duration blast loading of cylindrical shell structures. Engineering Structures, 59, 113-126. (doi:10.1016/j.engstruct.2013.10.030).

Record type: Article

Abstract

This paper investigates the influence of long-duration blast loads on the structural response of aluminium cylindrical shell structures. Full scale coupled non-linear dynamics are examined experimentally at one of the worlds’ most powerful air blast testing facilities. Evaluating structural response to blast loads of this magnitude is exceptionally difficult using only computational fluid dynamics; typically not achievable without incurring unmanageable solution domains. Clearing, diffraction and exhaust of a long-duration blast wave across any comparatively small structure imposes constraints leading to the use of approximated drag coefficients, designed primarily to expedite the calculation of net translational forces. In this research, detailed pressure histories measured experimentally on the surface of the cylindrical shell are used to accurately configure a computational analysis dispensing with the requirement to utilise approximated drag forces. When further combined with accurate material test data, fibre optic controlled strain gauge instrumentation and high-speed video photography, a full comparative model was possible. This paper shows that without exact knowledge of long-duration flow-field effects a priori, it is very difficult to reliably determine the mode of structural response and degree of blast resistance. Preliminary modelling predicted a global sway and localised plate buckling; however, subsequent experimental testing showed a crushing failure of the shell before any translational movement occurred. Results in this paper will be of direct interest to both practitioners and researchers considering the dynamic response of cylindrical shell structures subject to high power explosive blasts from sources such as hydrocarbon vapour cloud ignition.

Text
Manuscript REV 1- S K Clubley.pdf - Accepted Manuscript
Download (136kB)

More information

Accepted/In Press date: 17 October 2013
Published date: 1 February 2014
Organisations: Faculty of Engineering and the Environment

Identifiers

Local EPrints ID: 358758
URI: https://eprints.soton.ac.uk/id/eprint/358758
ISSN: 0141-0296
PURE UUID: 3ad60fc5-fab9-48fd-9f86-74fd6051330c
ORCID for S.K. Clubley: ORCID iD orcid.org/0000-0003-3779-242X

Catalogue record

Date deposited: 14 Oct 2013 11:30
Last modified: 20 Jul 2019 00:43

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×